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Abstract—To provision IT solutions with reduced operating and CO- footprint [3]. Although server virtualization [4] by
expenses, many businesses are moving their IT infrastructas  enabling resource multiplexing among Virtual Machingsg)
into public data centers or start to build their own private d ata in one server mitigates the resource overprovisioninglprab
centers. Data centers can provide flexible resource provisining o . . .
in order to accommodate the workload demand. In this paper, resource utilization in a d_a_ta genter is still rather pobiisl _
we present a comprehensive survey of most relevant researchfeported that the mean utilization of CPU, memory and disk
activities on resource management of data centers that aimot on several thousands of servers, which were randomly select
optimize the resource utilization. We first describe the resurce from different data centers during the period from June 2009
overprovisioning problem in current data centers. Then, wesum- to May 2011, were 17.76%, 77.93% and 75.28%, respectively

marize two important components in the resource management 51 Reisset al [6] collected the resource utilization trace
platform and present the benefit of accurately predicting tre [5]- ISS - [6] sou utiizall S

workload in resource management. Afterwards, we classify>e Of VMs in one cluster over the 29 day period from the
isting resource management in a data center into three categies: Google Cluster Trace [7] and found out that the average CPU
Virtual Machine (VM) based, Physical MachineRM) based and ytilization is less than 60% and the average memory utitimat
application based resource management mechanisms. We diss 5 |ags than 50%. Obviously, the resources in a data center
the performance degradation for implementing these three knds - d t f the i ially the CPU
of resource management in a heterogeneous data center. Filya are overproy|S|0ne most o € ume, especially the
we present three important issues arised in the data center Fesource which consumes more energy than other resources.
resource management and some potential approaches to addse Therefore, adopting an agile resource management meahanis
the issues. This paper presents a timely survey on resourceto accommodate the dynamics of application resource demand
management in a data center, and provides a comprehensive s critical in enhancing resource utilization without \dting
reference for further research in this field. L , . .
o applications’ SLAs in the data center. The application vese
Index Terms—Resource management, resource utilization, re- demand refers to the number of VMs required to serve the
source allocation, workload prediction, data center. application and the amount of resources (CPU cycles, memory
and network 1/O) assigned for each VM. Instead of optimizing
[. INTRODUCTION resource utilization, some studies manage the resources in

NTERNET based commerce has been blooming and gro@fder to minimize the energy consumption of the data center

ing rapidly in recent years, and data centers are enablitfd, [9], and others aim to reduce the operational cost of
IT solutions for facilitating e-commerce because of thegag running a data center by making use of resource management
potential in reducing the operating expens&@PEX) and [10], [11]. The resource management approach to achieving
management overheads, i.e., data centers provide a shah@dthree objectives is quite similar. In this paper, we focu
elastic computing infrastructure to different businessates ©n optimizing resource utilization, one aspect of resource
for hosting multiple applications. More specifically, datn- Management.
ters provision services in terms of Infrastructure as a igerv A resource management platform, normally, consists of two
(laa9), Platform as a Servicdag or Software as a Service parts: Global Resource Manag€sRM) and Local Resource
(Saa$ to different tenants based on their demands. MeaMlanager (RM) [12], [13]. GRM provides a global view
while, the Service Level AgreemerI(4), a service contract Of the resource provisioning strategy, i.e., GRM determine
assigned between a tenant and a data center provider (€gch VM's location (VM that is hosted by a corresponding
Amazon), is guaranteed by the data center among tenag&fver) so that the physical server has sufficient but not
As a reward, tenants would make payment for renting tﬁélperﬂUOUS resources to host the VMs. Live VM migration
resources from data center providers via different chargiff applied to implement global resource management. GRM
models (e.g., pay-as-you-go model and reservation moddljovisions coarse time scale resource management because
However, resource utilization of a data center is not efficieof the complexity of running the global resource allocation
for managing on-demand app"ca’[ions_ Studies []_], [2] ha\ﬁégorithm. LRM, installed in each server, is to implement VM
shown that servers (note that the terms “server” and “Physi®ased operations (such as creating, starting, terminataty
Machine PM)” are interchangeably used in the paper) ifnigrating VM), which are controlled by GRM. Meanwhile,
the data center are underutilized most of the time due &M assigns server-based resources to the hosting VMs
overprovisioning for the peak resource demand. Resouecording to the information from GRM and dynamically
overprovisioning results in the energy inefficient problem adjusts the resources to its VMs based on their real-time

the data center that increases the data center provideftgebu resource demands. However, LRM is unaware of other servers’
information (such as other servers’ resource utilization)
X. Sun and N. Ansari are with Advanced Networking Lab,, Hieat & — gpplication-based information (such as the performance of
Computer Engineering Dept, New Jersey Institute of TeamolNewark, NJ licati hich . h h
07102, USA. E-maikxs47, nirwan.ansay@nii.edu. applications which are running on the other servers).

R. Wang is with Huawei Technologies Co., Shanghai, China. GRM comprises two components as shown in Fig. 1.
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The workload demand predictor is to estimate the workloadirvey.
demand of the selected object for the next time period based
on the historical data traces stored in the database. Tleetobj ||, VM WORKLOAD BASED RESOURCE MANAGEMENT

can be VM’. SEerver or appllcgtlon; the workload _demand of a\/M workload based resource management is to predict each
different object may Ineur diffierent resources, L.e., if BR VM workload based on its historical workload data traces and
selects VM as the object, then the VM workload demar}g assign the necessary resources to every VM based on the
normally refers.t.o the resource (C.PU cycles,. memory, a'%gtimated workload. The architecture for realizing the VM
netwqu I/O) utilization of the VM in th.e dedicated Serveh - ced resource management mechanism is shown in Fig. 1.
[15]; if GRM selects server as the object, then the S€MNV%he server in Fig. 1 is implemented by Xen based hypervisor.

workload is defined as the sum of the resource utilizatiq_rhM which is located in Domain 0. traces the workloads of
of all VMs [17], and the application workload is referred tq,, ' '

h b ; licati ved | &%\;/Ms in Domain U and reports them to GRM. VM workload
as the average number ot app |cat|0n_ requests arrived in ed resource management strategy consists of two eets: t
time period [18]. Also, owing to the different charactedst

) , i ; VM workload prediction algorithm, which is run in the GRM’s
of objects’ workload data traces, choosing different ots;ecVM workload predictor component, and the VM workload

results_ in adopting different prediction models to estinay,»sed resource allocation method, which is implemented by
the objects’ future workload demands. The Global Resour&eRA in GRM and LRA in LRM

Allocator (GRA in Fig. 1 is to assign resources to every
object based on its estimated workload demand and to map the o
estimated resources of the objects to different serverbap A VM workload prediction
the total resource utilization of servers in the data ceiger Normally, the VM workload is defined as the average uti-
maximized and applications’ SLAs are guaranteed. The GRi&ation of different types of resources of the VM in its hiogt
in GRM would adopt a different strategy in estimating theerver during a fixed time period. The types of resources
workload of choosing a different object. Often, LRM doe#clude CPU cycle, memory, and network 1/O resources. So,
not implement the workload demand predictor because tW&1 workload based prediction executed in GRM is to estimate
prediction algorithm is computationally intensive andming the resource utilization of each VM in the server for the next
the prediction algorithm on each server will drain the servéime period based on each VM's historical workload data
resources. However, LRM can trace the workload of the objeicaces.
or sense the object’s performance, and utilizes the infaama  Jhenget al. [20] argued that the historical VM workload
to fulfill local resource provisioning by the Local Resourcelata traces from the same day have weak correlation with
Allocator (LRA) in LRM. the current VM workload, but there is a strong correlation
Workload demand prediction is critical for resource marbetween the current VM workload and the workload from the
agement for two reasons. First, the workload of an object $ame time in the previous week. The Grey forecasting model
fluctuating over time, and the resource allocation straiegy is applied to predict the tendency of CPU, memory and hard
the current time period may not be suitable in the next tindisk utilization of VMs.
period. Second, a resource allocation strategy may incur VMKashifuddinet al. [21] proposed to use chaotic theory to
migration, which takes time to complete the process [19]. Swedict VMs’ workloads. They argued that the VM’s workload
predicting the workload demand is necessary to proactivelgata traces may not exhibit a cyclic pattern, i.e., the same o
manage resources of the objects. Zhanal [12] showed similar workload pattern may not appear in a fixed period,
that resource management with workload prediction outpernd the VM’'s workload cannot be accurately predicted for a
forms resource management without workload predictiom Tkong term, i.e., the prediction error is exponentially E&sing
accuracy of the workload demand prediction algorithm isith respect to the prediction time. By proving that the
a very important factor in determining the performance afiorkload follows a Chaotic time series, they proved that
the whole resource management mechanism. A huge bhihs maximum Lyapunov Exponent value of the time series
of workload prediction leads to a big deviation in resourcgata samples from the Google Cluster Data Trace [7], NASA
demand estimation of the objects that may result in resouf@?] and the World Cup [22] data trace are all positive [23].
overprovisioning or underprovisioning. Based on the proof, chaos theory is applied to predict each
Based on the workload demand of the objects to be piéM’s workload in terms of the VM's CPU utilization in the
dicted, we can category the resource management mecharfisture by using the historical data trace of each VM. In the
into three types: VM, PM, and application workload predinti experimental evaluation, the proposed VM workload based
based resource management mechanisms, respectively. pi¢agliction algorithm estimates the CPU usage of a single
structure the rest of the paper as follows. Sections I, II/M in 5-minute intervals with Mean Square ErroMGE)
and IV present the VM, PM, and application workload basdaetween 0.005 and 0.015 (depending on different data traces
resource management mechanisms, respectively. Sectiomu¥ on the VM) that outperforms other prediction methods,
discusses the performance degradation of implementirggthee., Fourier Transform with Sliding Window [24] and Wavisle
three types of resource management in a heterogeneous datia Markov Chains [25].
center. Section VI presents several issues that arise idatee  Based on the Exponentially Weighted Moving Average
center resource management and some potential approach€EWMA model, Zheret al. [12] predicted the CPU, memory
address the issues. Section VII summarizes and concludesahd network 1/0 resource demand of each VM for running
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Fig. 1. VM workload based resource management platform.

Internet applications. Meanwhile, in order to predict thel V foresee the CPU utilization of all VMs in the group. The
resource demand conservatively, they proposed the Fast éqperiments are based on 21 days of CPU utilization time
and Slow Down FUSD) prediction algorithm by adapting theseries collected from one enterprise customer. The results
smooth coefficient of the EWMA model when the observeshow that 91% of the VMs’ workload in the cluster can
resource demand is going up or down, i.e., FUSD algorithbe correctly predicted within 10% error and the VMs with
would predict the resource demand a little higher than tigher workloads in the cluster achieve higher prediction
expected whenever the observed resource demand is gaioguracy (approaching approximately 100%) than VMs with
up or down (the predicted resource demand is increasilogver workloads.
faster than the observed resource demand when it is goiNnghen and Shen [27] also drew a similar conclusion that
up and the predicted resource demand is decreasing slowgfs from the same tenant (i.e., VMs collaboratively serve
than the observed resource demand when it is going dowRy same application) exhibit the similar resource utiicza
to reserve more resource for the demand. The experimenfgle series. Meanwhile, the resource demands of VMs exhibit
results show that by choosing proper system parameters, 74%ajly periodical pattern. They analyzed the Google cluste
of the predicted CPU utilization is higher than the observgg,ce [7] and PlanetLab trace [28] to prove the conclusion.
one with the mean error of 9.4%. Based on these two characteristics of VMs’ resource utitiza

. time series, they estimated the future resource utilinatib

Arijit et al [26] showed that each application running "M by detecting the resource demand patterns (i.e., finding

the cloud can be decomposed into one or more componentihln A X
. L -The smooth envelop of the resource utilization time selGés)
terms of jobs and each of which is served by a collaborative

set of VMs. By analyzing the discretized time series datézt r?f VMs (i.e., VMs serve the same application) in the past
they found that the workload data traces of VMs from the ours.
same collaborative set tend to vary in a collated fashion. So Bobroff et al. [29] argued that not all the VMs’ workloads
they analyzed the historical time series data of workloades are predicable, i.e., the prediction of some VMs’ workloads
of all VMs and grouped the VMs as a cluster in which alM@y result in relatively larger prediction errors (i.e.eth
VMs show the similar recurring workload patterns. Insteadidth (standard deviation) of the prediction error disitibn

of predicting the VM’s workload individually, the proposeds larger than the width of the workload distribution). The
prediction is based on per cluster, thus eliminating theseoilarger prediction error brings about the misleading of VM
and randomness in individual VM workload measuremenf&Source management later on. They pointed out that if a
Meanwhile, they pointed out that not all the clusters’ wosd VM's workload time series is lack of periodicity or suffers
demands are predictable since the predictability of the WMs @ quickly decaying autocorrelation function (i.e., the \8W’
the same cluster varies. The cluster-based autocornefatig- Workload undergoes random fluctuations over time), then
tion and time-lagged cross-correlation function are idtieed ~ Proactive resource management applied into these type af VM
to determine the predictability of the cluster, i.e., wiestthe 1S meaningless.

workload of a cluster can be predicted by its historical data The VM workload prediction module can be easily imple-
trace or by at least one other cluster's workload data tracesented because it does not need to acquire any application-
Hidden Markov model is applied as an estimation model fdrased configuration. The monitoring engines (e.g., XenMon
a group of clusters (i.e., every cluster in the group is self31] and virtual firewall-router [4]) in each server’s hypisor
predictable or predictive of other clusters in the group) tperiodically monitor its VMs'’ resource utilization and @p
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it to GRM. However, VM’s workload exhibits non-stationgrit 1) VM workload based Global Resource Managérhe
over time, i.e., VM’s workload changes unpredictably witloptimal resource allocation, as mentioned before, is toitnax
time, especially, the VMs serving some short-running tasksize resource utilization without violating applicatioSé As.
(e.g., DAG-of-tasks in MapReduce system). In other wordslowever, VM workload based GRA is agnostic to the appli-
the ownership of a VM varies over time (i.e., a VM may beation level information, implying that GRA is unaware of
rent by different tenants over a certain time period), ang ththe application’s performance (such as the average afiplica
the tasks running in the VM may also vary over time. Differeresponse time and the average application throughput). In
tasks incur different computational complexities, hemaaling order to account for the application level aspect, an assomp
to the resource utilization of a VM randomly fluctuated oves made that applications’ SLA are violated whenever the
time, and so the VM resource utilization may be unpredietabkerver is overloaded, i.e., the summation of resourceatitin
Some long-running tasks exhibit predictable features.,(e.gf VMs housed within the same server reaches a predefined
periodicity), but VMs’ resource utilization may also be plyo threshold [12], [19], [36]. So, in order to guarantee SLA, VM
estimated in some scenarios. This is because each VMerkload based resource allocation should guarantee take to
resource utilization not only depends on the applicatiarsis resource utilization of the server to be less than the tloldsh
activities (i.e., the number of requests for running thé&gaas otherwise, VM migration is triggered to move the workload
the VM), but also relies on other factors, such as the worklo#o the lightly loaded servers or a new server. On the other
scheduling strategy. For instance, one VM may cooperdtiand, if the estimated resource utilization of the servie (t
with other VMs in serving the same application, and so tr@immation of resource utilization of VMs in the server) is to
dynamic workload scheduling strategy can affect the imtligi  low, server consolidation [12], [37], [38] is enabled to anbe
VM'’s workload. Therefore, it is a big challenge to accurgtelthe resource utilization.
predict the VM workload. In order to notify and capture Studies [19], [36] have proposed the similar ideas of VM
the dynamic changes of VMs' resource demands in timmiigration strategy which tries to detect underprovisioned
VM workload prediction models need to update the modskrvers (i.e., the server’s resource utilization is higthem
parameters frequently. Meanwhile, there is a tradeoff betw a threshold) and determine a suitable VM in the underpro-
the prediction period (i.e., the duration allowed to prédivisioned server to be migrated to an overprovisioned server
the VM workload) and the accuracy of prediction resultsyhich has enough space to host the VM without becoming an
and so the prediction period is setup relatively small (e.guinderprovisioned server. Woad al. [19] chose the VM with
several minutes or hours) to guarantee the accurate pedicsmaller volume value (i.e., lower resource demand) to be mi-
results. Furthermore, the VM resource utilization reflabes grated from the underprovisioned server to the overpromesi
VM workload, and thus the VM workload can be depictedne, while Farahnakiaat al. [36] selected the VM with the
as resource utilization of the VM in the server. However, ifninimum migration time (the migration time is determined by
the servers in the data center are heterogeneous (the sertrex VM’s memory size and available network bandwidth [49]),
with different resource capacities), the VM resourcezdilion which is more suitable for the live VM migration among data
prediction model, applicable for the current server, may reenters (i.e., wide area network VM live migration).
longer work for the server to which the VM has migrated. Eliminating the number of underprovisioned servers cannot
Thereby, the accuracy of the prediction algorithm degradsslve the problem that the resources in the data center are
considerably. The premise of server homogeneity imposed tiyderprovisioned, i.e., the number of awaked servers in the
the above methods impedes their practical deployments. data center cannot satisfy the resource demands of applica-
tions, and so new servers should be woken up. Chen and Shen
[27] proposed a complementary VM allocation (CompVM)
mechanism, which tries to optimize the location of each VM
in each time slot so that the number of awaked servers is
Recent resource management platforms, like VMware DR&nimized. In other words, CompVM tries to find a VM
[32], Microsoft PRO [33], HP PRM [34] and IBM PLM [35], allocation solution such that each VM is assigned to theeserv
are all VM workload based resource management. They avhich can satisfy its resource demands, and the multiple
trying to achieve better performance isolation (the reseurdimensional resource utilization of all the awaked senisrs
consumption of one VM should not impact the promised guaminimized. Bobroffet al [29] also proposed the similar VM
antees of other virtual machines on the same hardware) adidcation mechanism. They formulated the VM allocation
provide a platform to dynamically allocate resources to VMgroblem as a one-dimensional bin-packing problem (only CPU
based on the VMs’ resource utilization or the static shaces i5 considered as the resource of interest) and applied ste fir
that various resource allocation strategies can be impi&de fit heuristic algorithm to derive the optimal VM placement in
Normally, VM workload based resource allocation is impleeach time slot. Recalculating the optimal location of ewéky
mented by two means: LRA in GRM and GRA in LRM. LRAIn each time slot can maximize the resource utilization ef th
provides fine-grained resource allocation by utilizing teme data center, but the complexity of running the algorithm in a
resource utilization information and the information ped large data center is a big challenge. Moreover, recaloigati
by GRM. GRA, on the other hand, provides coarse-graindse optimal location of every VM in each time slot may incur
resource allocation based on the estimated resourceatitiz the unnecessary migrations (i.e., the cost of migratioarigdr
of VMs. than the benefit of migration) and oscillations (i.e., sondsV

B. VM workload based resource allocation
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migrate back and forth in every time slot). adopt different resource scheduling strategies and we will
Zhen et al [12] defined two kinds of server groups acdiscuss them separately in the following.

cording to the predicted server’s resource utilization YCP

utilization, memory utilization, and network 1/O utilizan):

if all types of predicted resource utilization of the seraeee

a) CPU resource schedulingA CPU resource allocator
(located in Domain 0 in Xen based server), i.e., a CPU
e scheduler, is to assign the CPU resource to different VMs
below a cold thres_hold (_a Iowgr resource utilization th@h in the same server. There are three kinds of CPU schedulers
then the server is enlisted in the cold spot group; if aryrovided by Xen: Simple Earliest Deadline FirSEDF) [40],

type of predicted resource utiIization_ .Of t_he server is mo‘éorrowed Virtual Time BVT) [41] and Credit Scheduler [42].
a hot threshold (a higher resource utilization threshahign In the SEDF scheduler, each job is given two parameters, i.e.

the server is enlisted in the hot spot_group. Th_e pred_iCtBEriod P, and sliceS; (wherei is the index of jobs), and
shown in the resource manager architecture (Fig. 2) is ﬁ?e SEDF scheduler tries to guarantee jdy assigning the
estimate the resource utilization of each VM. The Hotsp%b at leastS; amount of time in a period of;. So, the

Solver tries to find a migration_s.,trat_egy for every serveria t SEDF scheduler defines the priority of a job as the deadline
hot spot group so that the utilization of any of the serverse .o job, i.e., the time at which the job’s period ends.

resource is below a hot threshold, i.e., none of the serve . S
’ ' hat, the SEDF sch [
is overloaded. The Coldspot Solver is triggered when tt}ggsed on that, the S scheduler provides a dynamic priorit

o . . al-time scheduling policy among jobs from different VMs.
average resource utilization of all active servers is betow g policy gl

tina threshold. which indicates that the res More specifically, SEDF maintains a preemptive queue and
green computing threshold, which indicates that Ineé resuly ¢, )|eg jobs according to their dynamic deadlines. Tseng
is fully overprovisioned. The Coldspot Solver tries to mov

; ) &nd Huang [43] pointed out that SEDF performs badly when
all the VMs from the sever, which are in the cold spot 9rOURy server is in the overload condition, i.e., all the jobs iingrn

to the servers Whose resource l?t'l'za.lt'on IS below_a Waltlle server may miss their deadlines (domino-effect of mlisse
threshold (a median resource utilization threshold indisa

that th ) . ith i tilizadi deadlines). They proposed to execute the Deadline Monotoni
| a | belsev;ehr Its ;utr;]mnr? \tNI ? certan restzuicti utiiaa '%PM) scheduling, i.e., a fixed-priority preemptive scheduling
evel below that of the hot spot group) so that the origin Igorithm, in a CPU scheduler when the server is overloaded

cold servers can go into the standby mode. All the m'grat'oa{hd the CPU scheduler chooses the SEDF scheduling when the

_decisioqs are enlis_ted into_the migration list an_d exeCUtggrver is not overloaded. This is because the DM scheduling
in the first come first serve fashpn. Therefore, in order tg n guarantee higher priority jobs in meeting their dealin
guarantee the SLA, all the servers in the hot spot group slhoué the expense of lower priority jobs in missing their demeti

he removed by VM migration, meanwhile, in order to improvg?‘l]' i.e., even when the server is overloaded, the DM schedu

the resource utlllzatlon,. t_he_ number of servers in the co g can guarantee the SLAs of higher priority jobs rathentha
spot group should be minimized. Beloglazov and Buyya [3 olating all jobs’ SLAs

provided the similar idea to determine the server is under- _ )
utilized (i.e., the server’s utilization is lower than thénimum ~ Duda and Cheriton [41] proposed a novel BVT scheduling
threshold) or over-utilized (i.e., the server’s utilizatiis higher @lgorithm for either uniprocessor or multiprocessorsfptat.
than the maximum threshold), and they tested the total gnefg the long term, the BVT scheduling tries to share the CPU
consumption of the data center as well as the SLA violati¢t?@g€ among jobs proportionally by their weights. On theioth
rate by selecting different values of minimum and maximuf@@nd; in the short term, some latency-sensitive jobs ao@/ad
threshold. to warp back in their virtual time (i.e., execution time obg)

2) VM workload based Local Resource Manag@wing S° that the jobs can be ;erved earlier, i.e., the latencsftsen
to the long time interval required for preforming gIobalObS can borrow virtual time from their future CPU usage. By
resource management and dynamic changes of VM’s resou|,rzgglem_entat|on, t_he BVT schedulgr sorts the jobs _W!th their
demand over time, more flexible resource adjustment in thitual time and dispatches them with the smallest virtiraét
local server can improve resource utilization and appboat first.
QoS significantly. In other words, VM workload based GRM The Credit Scheduler [42], [45] is the default CPU scheduler
determines the suitable servers to host VMs in the data ceritea Xen-based server. It tries to automatically balancdaae
and LRM tries to satisfy the real-time resource demands fbm VMs across all available physical CPUs on a symmetric
VMs in a dedicated server. One simple approach for assignimuiltiprocessor server. Each VM is assigned a weight and a
resources to local VMs is static allocation, i.e., localorgse cap. The cap is an absolute value defining the amount of CPU
management assigns the weight to different VMs over timesource that one VM receives (i.e., one VM’s CPU capacity)
slots and allocate the amount of resources to VMs which aaad the weight is a relative value which is proportional to
proportional to their weights, meanwhile, each VM’s weighthe CPU resource that the VM receives. In each time slice,
is equal to the resource utilization estimated by GRM [12fhe scheduler transforms the weight into a credit allocatio
Yet, static allocation becomes inefficient if VMs'’ loads yar for each VM. Once a VM is assigned the CPU resource, its
over time. Therefore, a more efficient resource allocatiamedits will be consumed. The priority of a VM can be one of
strategy in the LRM needs to be designed. The optimal lodalo values: over or under, which indicates the VM's credit is
resource allocation strategy is to achieve high servessurce depleted or not, respectively. So, if the VM is out of credits
utilization, reduce applications’ response time andyaadsign it only runs when other higher priority VMs (i.e., VMs with
resources to VMs in the server. Different types of resourceedits remaining) have completed their execution.
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Fig. 2. VM workload based resource manager architecturg [12

b) Memory resource schedulingtn order to share a if some VMs try to access the same contents in the memory
server's memory among its hosting VMs, the hypervisor gfages, one of the VM can share its memory pages with others),
the server virtualizes the physical memory by adding aneexit would be assigned more memory in the next time slice, and
level of address translation, i.e., a mapping function leetw vice versa.

a virtual address (which is used by VMs) and a physical Heo et al. [47] proposed a dynamic memory allocation
address (which is a software abstraction in order to providaategy based on the memory usage of each VM. Initially,
the hypervisor with the status of the hardware memory). the hypervisor set two values (i.€[** andU™") to ensure
general, there is a tradeoff between VMs’ performance isoldne minimum and maximum amount of memory assigned to
tion and efficient memory utilization in the memory resourceach VM. The memory usage of each VM is monitored and
scheduling, i.e., static memory scheduling (reserve theumin once the VM'’s memory usage is below a predefined threshold
of memory to VMs to be applied in the Xen-based server [4i) the previous time slice, the hypervisor would revoke its
performs better performance isolation and incurs lowetrobn free memory and assign it to the other VMs. Basically, the
overhead, but it may result in lower memory utilization andlypervisor dramatically assigns extra memory to VMs, which
VMs’ performance degradation. On the other hand, dynamace underprovisioned, and slowly revokes the idle memory of
memory scheduling among VMs can improve the memolyMs, which are overprovisioned.
utilization since the scheduler can automatically assig;m t Lu and Shen [48] presented that VMs' memory usage may
memory to VMs to accommodate their memory demands, budt be related to VMs’ performance, i.e., the memory usage
the performance isolation may be violated. Different frdra t based allocation strategies may probably degrade the VMs’
CPU resource, which can be immediately assigned to the jd@eS. They proposed to use the VM page miss ratio (the
according to the real-time information (such as the deadlinnumber of page misses under the new VM memory allocation
of the jobs), adjusting the memory size to the hosting VMdivided by that under its baseline allocation) as a parantete
needs to modify the physical memory address among the VMigtermine the VM memory allocation and guarantee the VM'’s
which is not as flexible as the CPU resource scheduling. Thpgrformance consequently. Specifically, each VM is assigne
normally, the memory resource scheduling period is longbaseline memory allocation initially (baseline memoryed-
than the CPU resource scheduling period and the memdign ensures each VM's bound performance). The hypervisor
resource scheduler relies on the historical memory usageobfa server allocates the remaining memory resources to VMs
the hosting VMs (i.e., non-real time information) to estima so that the overall page misses (i.e., the geometric mean of
the VMs’ future memory usage. each VM’s page miss ratio) is reduced. As a consequence, the
Waldspurger [46] proposed a ballooning technique in théM with a higher page miss ratio would obtain more memory
memory management in order to achieve efficient memorgsource as compared to the VM with a lower page miss ratio.
utilization and guarantee memory performance isolati@the c) Network 1/0O resource scheduling\letwork 1/O vir-
VM in a server is installed a balloon module, which is tdualization technologies enable VMs share the network re-
allocate the VM's pages and map them into physical memosource of a server to improve the network 1/O utilization
The hypervisor of a server can increase or reclaim the memaunyd provide flexible connectivity. In general, the netwoi® |
of one VM by implementing balloon inflating or deflatingvirtualization architecture is shown in Fig. 3 where each VM
operation. The memory allocation strategy in the ballognirhas at least one Virtual Network Interface CaMN(C) to
technique is based on each VM’s memory usage and its shavemmunicate with other VMs. Virtual bridge (such as Open
based entitlement, i.e., if the VM has less idle memory andbwitch [49], VMware’s vNetwork distributed vswitch [50]
shares more memory pages with other VMs (content-bassud Cisco’s Nexus 1000V [51]) is a software layer located
page sharing is provisioned in the ballooning technique, i. between VNICs of VMs and Physical Network Interface Cards
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S w ( B W . aggregate and core switches in a data center are non-b¢pckin
and so they tried to design a server-based fair bandwidth

t t VMs as a cooperative bargaining game, and tried to 1)
v y guarantee the minimum bandwidth allocation to VMs based
on their base bandwidth requirement, and 2) proportionally
Virtual Bridge share the remaining bandwidth based on their weights. Pasca
and Gulati [64] also considered a server-based fair barttwid
allocation, but they considered not only the minimum QoS
- - - guarantee and proportional sharing, but also tried to geovi
PNIC PNIC PNIC . . . .
performance isolation among VMs in a server by limiting
the maximum bandwidth allocation to VMs. To improve the
Fig. 3. Network /O virtualization Architecture. network resource utilization, Sun and Ansari [61] proposed
the bandwidth efficiency persistence proportional shaiing
network level BEPPS-N algorithm. By allowing each PNIC
(PNICs. It provides packet forwarding between VNICs angunning in the work-conserving mode, the algorithm tries to
PNICs based on forwarding tables. Also, it supplies flexiblgssign the bandwidth to all the flows in a link as much as
connectivity management (e.g., Open vSwitch supports bgibssible, thereby achieving max-min fairness. Raieiual.
VLANs and GRE tunnels [52]), traffic statistics collectionca [65] demonstrated that enabling the multipath forwardiing
QoS enforcement, etc. One of the challenges in the netweykjata center network can significantly increase the thiuigh
I/O virtualization technologies is to allocate the networlind resource utilization of the network.
resource to VMs so that 1) VMs can fairly share the network Note that the network 1/0 resource scheduling strategies
resource, 2) the network resource usage is improved, ate3) fhentioned above are to allocate the bandwidth to the VMs
minimum QoS is guaranteed among VMs [53], [54]. Howevegnce the location of each VM is determined (i.e., each VM has
different from the CPU and memory scheduling, schedulingready been assigned to the corresponding PM). Howeeer, th
the network resource in a server is not sufficient to achiewscations of the VMs can significantly affect the performanc
the goals mentioned above, because the traffic of a VM may the network resource scheduling strategy. For instance,
go through not only PNICs in a server but also switches ingyppose there are two VMs, i.e., VM 1 and VM 2, and each
data center, i.e., if only the allocation strategy at theeasc PM can only host one of the two VMs; meanwhile, assume
point (server side) is considered, the network resourcebeil the traffic demand from VM 1 to VM 2 is 1 unit and the
overprovisioned in a server's PNICs (because the bottlenaesidual link capacity of the rack switch and aggregatecwit
would be at the aggregation or core switches in the data ce§4 unit and 0.9 unit, respectively. As shown in Fig. 4(aJ, fo
ter). Popaet al. [53] presented that it is impossible to achievg bad VM placement, the network will be congested on the
network-level proportional resource allocation (i.e.d€0- aggregate links no matter what kind of network 1/O resource
end data rate is proportional among different flows based ggheduling strategy is applied. For a good VM placement, as
the flows’ weights), guarantee minimum QoS of each VMhown in Fig. 4(b), QoS of each VM will be satisfied. In
and maximize network resource utilization simultaneouslgection VI-A, we will discuss resource allocation by jojntl
because there are two kinds of tradeoffs among these theggimizing the VM placement and bandwidth (i.e., network
goals, i.e., 1) the tradeoff between network-level prapos! /0 resource) scheduling in detail.
resource allocation and high utilization, and 2) the trdfdeo
between network-level proportional resource allocation a
minimum QoS guarantee of each VM. Therefore, designing

an optimal network 1/0 resource scheduling in a data centerPM workload based resource management is to predict
is very challenging. each PM’s workload based on its historical data trace and

By applying the models proposed in [55]-[57], it is easy tgreform PM based resource aIIocation: The _platform of PM
achieve flow-based network resource fair-sharing in a eind’yorkload based resource management is similar to that of VM

link (i.e., fair-sharing the network resource in a singleveeor Workload based resource management (Fig. 1), but the LRM
a single switch). The authors in [58]-[60] tried to fairlysign only traces its PM’'s workload rather than all VMs on the

the network resource to flows in a congested link by notifyingM: PM wgrkload based resource management also consists
the source VMs to fairly reduce their transmission rates1 S@ tWo parts: PM workload prediction and PM workload based

and Ansari [61] proposed the persistence proportionaiispar €Source allocation.
at network-level PPS-N algorithm by fairly assigning the
bandwidth (i.e., network resource) to flows at the congestgd PM workload prediction

links. On the other hand, rather than providing fair reseurc . , .
. ) . PM workload is defined as the average resource utilization
allocation, Ballaniet al. [62] proposed a virtual cluster struc- . : : .
; of a PM during a fixed time period. Types of resources
ture in order to guarantee the network performance among

different tepants (i'e" minimum QoS guarantee) by res@r\/i IMultipath forwarding refers to routing the traffic load ofethV/M pair
the bandwidth to VMs. Guet al. [63] assumed that all the through multiple paths in order to balance the load amongptiibs.

\ VNKIC J VNIC | VNIC YAIC allocation. They modeled the bandwidth competition among

Il1. PM WORKLOAD BASED RESOURCE MANAGEMENT
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Fig. 4. The illustration of effects different VM placemenkthods on the performance of VMs.

include CPU cycle, memory, and network I/O resources. Sbhereby, an assumption is made such that when the PM’s
PM workload based prediction is to estimate the resouragerage resource utilization approaches a predefined upper
utilization of the PM for the next time period. bound (e.g., 90%), the applications running on the PM are
Nidhi and Rao [16], [17] argued that the characteristics @bnsidered to have violated their SLAs. Therefore, sintitar
a PM's workload in a data center is dynamically changintipe VM workload based resource mechanism, GRA in the PM
over time because the PM workload is considered as thwerkload based resource allocation mechanism tries todavoi
synthetic workload of hosting VMs and live VM migrationtriggering the PM overload in the data center to guarantee
happens frequently in the data center. Therefore, a specéjaplications’ SLAS.
workload prediction algorithm can hardly predict acculsate Although PM workload based resource management does
all the time, i.e., different prediction models and paramgt not need to monitor every VM'’s resource utilization in a PM
may need to be adopted in order to accommodate the namd thus reduces the total control overhead from hypenitsor
characteristics of the PM’s workload. The authors propos&ldifficult to design the PM workload based resource alloca-
an ensemble learning approach to predict the PM's worklo&idn strategy because GRA in PM workload based resource
quickly and accurately. The basic idea of the approach is teanagement is VM-agnostic, i.e., GRA is unaware of the
form a set of base workload learners, i.e., individual woakl VM-level information, and so traditional live VM migration
prediction algorithms, to estimate the PM’'s workload basegirategies to minimize the number of awaked PMs cannot be
on the historical data separately. Then, the final workloaehplemented in the PM workload based resource management.
prediction value is calculated as the weighted average ofNidhi and Rao [66], [67] tried to minimize the energy
predictions of all learners in the set. The learner's weigltbnsumption in a PM cluster by shutting down the low-utilize
is updated periodically by computing the difference of theMs or switching them to low-power-mode for a period if
actual value with the estimated value, and the learner whassplications running on these PMs are non-critical. Gmeitch
estimated value is closer to the actual value will get a largal. [68] predicted the workload traces from different PMs and
weight, and vice versa. The experimental result shows Heat thecked whether these workload traces can be consolidated
proposed approach can achieve an accuracy of 87.8%. into a smaller number of PMs, i.e., the total resource watiilan
Similar to the VM workload, the PM workload also exhibitss improved by awaking a smaller number of PMs.
non-stationary feature over time, due to reasons like cesinfy  For the local resource allocation, PM workload based LRM
the service function of a PM (e.qg., a file server is reconfigurean adopt the same strategies proposed in the VM workload
as a web server), etc. LRM in the PM workload prediction onlyased LRM.
needs to upload the information about resource utilizatibn
the PM rather than every VM in the PM, and thus alleviates
the network traffic for uploading the resource utilizaticatal
traces to GRM. In addition, the computational load of the

prediction algorithm is lighter since the number of PMs i th Application based resource management is to predict each
data center is much less than the number of VMs. application’s workload and assign the necessary resoottet

application based on the estimated workload so that the ap-
plication’s SLA can be satisfied. Application workload base
resource management platform is shown in Fig. 5. Normally,
GRM does not have insight on the application’s performane® application running in a data center comprises different
because only the resource utilization of all PMs is uploaded application-tiers. An application-tier can be considerzsl
GRM and there is no solid evidence showing the relationshém individual component or function in the application. For
between the PM resource utilization and the applicatiobA.S instance, an application can be separated into three tiers,

IV. APPLICATION WORKLOAD BASED RESOURCE
MANAGEMENT

B. Server workload based resource allocation
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Fig. 5. Application based resource management platform.

which are running various tasks in different VMs: a frontworkload during look-ahead interval by solving the Yule-
end tier (e.g., a HTTP server), a client-server processarg t Walker equations. Wegt al. [72] argued that the application
and/or an enterprise database tier [69], [70]. The fromtt@r workload data trace in the data center exhibits periodical
receives the application requests from users, and the sexjueature, and so they applied the ARIMA model to do short-
are processed in the dedicated back-end tier (includirgli term application workload prediction; the results showreat t
server processing tier and/or an enterprise databasendllyr there is less than 10% underestimate or overestimate pigadic
all the application requests go through the front-end &ed error on average. Toret al. [73] formulated the web server’s
so the front-end tier has to sense the application workloarkload in the data center as a time series, which exhibits
and report the workload data traces to GRM. GRM, whicshort-term random fluctuations. However, the time series al
has the same two modules mentioned in Fig. 1, analyzegresses prominent periodic patterns in a diurnal cydieyT
every application/application-tier workload data trgmesdicts provided both long term (in days) and short term (in minutes)
the future workload and decides the minimum amount afpplication workload predictions. For the long term prédic,
resource demand of each application/application-tieethashe load is modeled as a dynamic harmonic regression. For the
on the estimated workload. Each application/applicatien- short term prediction, the autoregressive model is apgdbed
has a resource demand pool, which defines the minimuhe workload prediction.
amount of resource demands. Afterwards, GRM maps allOther than the server and VM workload prediction, the
the resource demand pools into physical servers in orderdpplication workload does not predict the resource utitira
maximize the total resource utilization in the data cetBM  directly. The number of application/application-tier uvesgts is
is also applied in the platform to optimize the server reseurmuch easier to be estimated than VM and server workload
utilization in a fine scale time domain. since the application workload depends on human activities
and exhibits periodical characteristic over time. Morapve
the application workload prediction algorithm is unawafe o
the hardware deployment in the data center, i.e., the server
The application workload is referred to as the number dieterogeneity does not affect the performance of the appli-
incoming requests of the specific application. Recentlypynacation prediction module. However, applications sometime
studies focused on predicting the application workloadhim t suffer the flash crowd load, which is unpredictable [74],
data center. Prevost al [71] assumed that each applicatiorand result in applications’ SLA violation. Meanwhile, the
is accessed via a set of VMs, which are assigned differentdPplication workload prediction is to estimate the numbfer o
addresses, and predicted the number of requests for eactapplication requests in the next prediction period, whish i
address. They used FIR Wiener Filter to predict the workloambt directly related to resource demand of the application,
of web servers (e.g., WWW server at NASA) by utilizing.e., GRM has no insight on how much resources that the
the historical workload data traces with a sliding windovapplication really needs. Therefore, GRA in the applicatio
of size N. FIR Wiener Filter is a tool to minimize the workload based resource management would design much
mean square error between the actual workload and predictedre complicated resource allocation strategy than GRA in

A. Application workload prediction
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the other two managements mentioned earlier. requests may not need to process through all the tiers (all
the application’s functions) in the application configioat
Peteret al. [78] modeled the application as a Directed Acyclic
Graph (DAG) where nodes represent application-tiers, (i.e.
Similar to the VM based resource allocation module, thgpplication functions) and edges represent the relatipash
application workload based resource allocation strate@yso between tiers (i.e., if the output of one application-tier i
implemented by two components: GRA and LRA which arghe input of another application-tier, then there is a dedc
located in GRM and LRM, respectively. line between the two tiers). Associated with each edge is a
1) Application workload based global resource managerate indicating the number of requests of the destinatiaeno
Application workload based GRM is to predict the worktriggered per request of the source node. According to the
load demands and assign resources to applications in GRéplication configuration, each tier's requests served Wjla
Normally, SLA in application workload based resource mamare modeled as a M/G/1/PS queue, i.e., the average service
agement is defined as the average application response tiate of each tier's requests running on the VM is assumed to
in terms of the waiting time plus the service time. In ordefiave an arbitrary distribution, the service disciplinessuamed
to maximize the resource utilization and satisfy applmasi to be processor sharing, and the average request arrieal rat
SLAs, minimum resources assigned to each application dhogh each tier are assumed to have a Poisson distribution. Wood
be decided (i.e., if the minimum resource is allocated to the al. [19] modeled one application served by one VM as a
application, the average response time for handling a squ&/G/1 queuing system, and so the VM'’s average service rate
during a specific time period is equal to the predefined SLA} not only determined by the application’s average arnisise
Then, GRM should map the minimum resource demands of blit also decided by the variance of application request-inte
applications into physical servers. So, GRA comprisesethrgrrival times and server time.
mapping functions as shown in Fig. 6. b) The mapping function from the average service rate
a) The mapping function from the average arrival ratelemand to the minimum resource demaiitie second map-
to the average service rateThe first mapping function is to ping function is to find the relationship between the average
decide the minimum average service rate (the average numdgplication service rate demand and the minimum resource
of requests to be served during one time slot) needed basedlemand. So, by combining with the first mapping func-
the estimated average arrival rate of the application, (ie tion, the relationship between the average arrival ratehef t
number of application requests during one time slot) and thaeplication/application-tier and the minimum resourceead
predefined SLA. Studies [72], [75]-[78] have applied quguins established by the given application’s SLA.
models to formulate the relationship between the estimatedt is normally assumed that only one VM serves one
average arrival rate and average service rate demand af gigpplication/application-tier, and most studies triedetedmine
SLA for each application/application-tier. the minimum size of the VM. The average service time of the
Kimish et al [79] argued that an application running/M which is serving a particular application-tier is assuine
in a particular server follows the M/M/1 queueing modelko be linearly proportional to the amount of resources alled
i.e., the application arrival and service rates are all $ais to the VM [76]. Kimishet al. [79] considered the relationship
distributions. Liuet al [84] also assumed the inter-arrivalbetween the average service rate and the minimum resource
time of the request sequence of the whole application falemand as a black box, and the application/applicatiaistie
lows an exponential distribution. Meanwhile, they constde performance is tested under different resource provisgni
the service time sequence of the application requests to bedore it is deployed in the data center, i.e., the data cente
exponentially distributed no matter how many VMs or servepovides limited types of VMs/servers to host the applica-
are serving the application. Studies [75], [76], [78] caesed tions (different types of VMs/servers have different reseu
that one application can be separated into different tiats aconfigurations which are similar to the types of instances
formulated the queuing model based on each application-tirovided by Amazon EC2 [80] and Windows Azure [81]),
rather than the whole application. Waeg al. [75] and Italo and the application/application-tier is first run in eveype
et al [76] assumed the application configuration shown iaf VM/PM and tested with every type of VM/PM’s average
Fig. 7, i.e., all the applications can be separated into Mstie service rate. Therefore, the average application/apgica
each of which is served by one VM. Meanwhile, all theier's service rate of different types of VM/PM is obtained
application requests from the clients should be served by ahd GRA can select different types of VM/PM according to
the application-tiers, i.e., the departure rate of apfiicatier the average application/application-tier’s arrival rate
i — 1 is the arrival rate of application-tiet. Based on the Instead of mapping the application service rate to the
above assumption, each VM that serves the application-temimum resource, some studies directly mapped the arrival
is assumed to follow the M/M/1 queuing model with FCFS3ate to the minimum resource under the constraint of the SLA
scheduling, and so the entire application is modeled as ianterms of the response time. In doing so, the first mapping
interconnected network of M M/M/1 queues, one for each tiglunction becomes unnecessary. \é@ral [82] claimed that the
In other words, the average application response time is tlesponse time is linearly proportional to the applicatiaival
sum of time delays in every M/M/1 queue model from all tiergate when the CPU utilization is 100% and different types of
Massimilianoet al. [77] argued that not all the applications’CPU exhibit different linear curves to indicate the relaship
workflows pass through tier by tier, i.e., different applioa between the response time and arrival rate by given the SLA.

B. Application workload based resource allocation
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\ is to test the application or application-tier over diffiere
particular hardware configurations.

¢) The mapping function from the minimum resource

donaion demand to serversBy building the first two mapping func-
tions, the relationship among the minimum resource demand,
Tier 1 ) i ) SLA and the arrival rate of application/application-tiex i
established, i.e., the expression ofsources demand =
f(SLA,arrival rate) for each application/application-tier
is known, but assigning the minimum resources to the
applications/application-tiers is not equal to maximigithe
resource utilization. Finding the minimum number of awaked
servers that can provide all the applications/applicatiers’
e ( ] minimum resource demand is the optimal solution to reach
\ o the maximum resource utilization in the data center. Theesf

K / mapping the minimum resource demand to the physical servers

Fig. 7. Application configuration in data center [75].

efficiently is an important step in resource management.
Recently, a third mapping function, the VM placement
problem, has been formulated as a bin packing problem

[84]-[86], which can be depicted as follows:

So, based on different arrival rates, we can select difteren
types of CPUs to meet the application’s SLA in terms of
response time. Yingt al [83] showed that the application
arrival rate is proportional to the application resourceneed

and provided an empirical formula to setup the relationship
among the arrival rate, resource demand and application per
formance. Wanget al. [69] proposed that the average arrival
rate of each application-tier is linearly proportional e {CPU
consumption (i.e., the number of CPU cycles consumed by
running a specific application-tier) over the average raspo
time, and the coefficient of the linear function is calcutate
based on the historical data traces, which include arrival
rates and response time of different application-tiersJCP e
consumption and CPU capacity over different time slots. Via ®
experiments, Liuet al [84] demonstrated that when only
one VM serves the application/application-tier, the agera

Given: 1) N number of VMs and the resource de-
mands of each VMd] (wherel < ¢ < N andr
denotes different types of resource demands, i.eg
{epu, mem, bandwidth, disk}); 2) the resource capacity
of the servers in the data centéf (note that the
servers in the data center are considered to have the same
configurations and we will discuss the VM placement
problem among heterogeneous servers in Section V-B1).
Obtain: The VM location indicator variableg; ; (i.e.,

x;; = 1 indicates the VM is placed in thgth server;
else,z; ; = 0).

Objective:Minimize the total number of awaked servers.
Constraints:1) each VM is placed in one server, i.e.,
Vi,zj x;; = 1; 2) the capacity of each server is not
violated, i.e.,Vj,Vr,> . diz; ; < C".

response time is a convex function of the CPU utilization for The bin packing problem is a widely accepted NP-hard
a given application/application-tier average arrivakrdiut if problem [87] and many traditional heuristic algorithmsasu

the application/application-tier is deployed in more tl@are as First Fit, Best Fit, Best Fit Decreasing, etc.) have been
VMs, the mapping function is very complicated, and so prgroposed to solve it. However, the efficiency of the bin pagki
testing the application performance under different reseu based VM placement strategy excessively depends on the
provisioning is the only way to solve the mapping function.predication of the VM resources, i.e., if the VM resource
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demands are under-estimated/over-estimated, the VM plastarting with the first lightly loaded server (which has the
ment strategy may result in SLA violation/resource utiiga most amount of idle resource) and continuing until the set
degradation. of hotspot servers is exhausted or there is no lightly loaded
Jin et al. [88] proposed that VM resource demands argerver left. Liuet al [84] proposed that instead of supplying
divided into deterministic (such as CPU resource) and stechone large VM (which can accommodate the minimum resource
tic resource demands (such as bandwidth resource). Tamand) serving one application/application-tier, psmning
deterministic resource demands are static during each timere smaller size VMs, which can be collaboratively working
slot, while the stochastic resource demands varies and fbe the same application/application-tier, is more infiigy
distribution of each stochastic resource demanfbllows a since higher resource utilization in terms of a smaller nemb
normal distributionN (], 672), where ) is the expectation of awaked servers, can be reached, thereby a novel VM-
of stochastic resourcegs demand for VM4, and6{2) is the splitting and assignment heuristic algorithm was proposed
variance of stochastic resoures demand for VM:. Thus, Other studies [69], [76], [94] argued that optimizing VM
the authors formulated the stochastic VM placement problgstacement globally would drain the network resource and
in which the objective and the variables are the same as thggrade the VMs’ performance. This is because implementing
traditional bin packing VM placement. Yet, in addition toVM placement would trigger live migration of a huge amount
guaranteeing that the hosting VMs' total deterministiorese of VMs that incurs huge bandwidth and causes service in-
demands do not exceed the server's capacity, the formalatierruption. So, they tried to optimize the resource alliocat
includes one more constraint that for each stochastic resoulocally, i.e., they assigned resources to different VMsi@lvh
demand, the resource underprovisioning probability (that may serve different applications) within one server. For in
hosting VMs’ total resource demand exceeds the serves®nce, in Fig. 8, there are two applications and each can be
capacity) is less than. Other studies [89], [90] formulated theseparated into n-tier and distributed into n physical sstve
VM placement problem as a stochastic integer programmifigRA tries to allocate resources to VMs on each server in
by considering the VM resource demands and the VM costder to satisfy the whole applications’ SLA. Although it
(e.g., the electricity price) as stochastic values. Howebeir is not an optimal resource allocation solution and somehow
objective is to minimize the total cost of serving the VMsannot guarantee applications’ SLA, this method relaxes th
rather than minimizing the total number of awaked serverscomplexity of the VM placement problem and avoids live VM
Considering the VM placement as a bin packing problefigration.
or stochastic programming leads to rearranging all the VMs’ 2) Application workload based local resource manager:
placements for each time slot. Thus, in order to improv&milar to the other two resource management schemes, ap-
the complexity as well as reduce the number of migrationglying the application workload based LRM in each server
many studies design generic algorithms to find the sub-@ptintan potentially improve the resource utilization and ermean
solution of the VM placement [91]-[93]. The basic idea o&pplications’ QoS by adjusting the resource allocation regno
these algorithms is to only rearrange the hotspot serviees, ( VMs in a small time scale. The VM workload based local
servers cannot satisfy resource demands of their hosting)VMesource scheduling strategies mentioned earlier cantedso
VMs to the suitable places. Specifically, the algorithmsttry implemented in the application workload based LRM. On
migrate the VMs from hotspot servers to the lightly loadethe other hand, different from VM based LRM, application
servers. The lightly loaded servers are ordered by a certhiased LRM can acquire the application level information
criteria (e.g., CPU usage, memory usage or some resoufesy., average arrival rate of an application/applicatien
load indicator function). The VM migration attempts are mad applications’ SLA, etc.) from its GRM to deploy its unique
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local resource scheduling strategy in a server. ment:
Resource heterogeneity: Hardware provided by the data center
Policy is heterogeneous [6], [95], [96], i.e., configurations afvees
Local Resource Manager ) Physical Server in the data center are not identical. For instance, differen
ur — g;:;ﬁnl e oo [ M1 J servers may be equipped with differe_nt types of CPU, and
different amount of RAM and hard disk. Resource hetero-
e — J— geneity is very common in a large-scale data center because
: . VM2 of necessary and frequent replacements of out-of-ordeerser

and installation of new state-of-the-art servers that aoegem
s : powerful than the existing ones to accommodate the dramatic
Utilization : increment of resource demands in the data center [79], [97]-
[rCentoller¥V Sensor [mv] [99]. Meanwhile, the high performance servers are equipped
) with more energy efficient components (e.g., energy efficien
CPU, memory and NIC) to serve applications so that the
hybrid (in the sense of having energy and non-energy efficien
Wang et al. [69] constructed LRM shown in Fig. 9. EachServers) data center can decrease the OPEX of data center

VM is running one application-tier and the sensor in th¥enders. _ o o
server senses each VMs CPU utilization in each time slot. TA@Plication type heterogeneity: Applications running in the

utilization controller compares the recent CPU utilizatisith data center may rely on different types of resource to de-
the CPU utilization demang’e/ (i.e., arrival ratey \yhich is termine their performance [6]. For example, CPU-intensive

! service rate

given by GRM. If the recent CPU utilization is larger thargPplications (e.g., GZIP data compression [100], scientifi
the CPU utilization demand, the Arbiter would increase tHePmputing [99], etc.) consume more CPU resource than other
CPU entitlement of the specific VM, and vice versa. AlsdyPes of resource to enhance their performance, and other
the Arbiter should consider some policies (e.g., pricsites Memory (Multigrid application [101], multimedia appligats
different application-tiers) enforced in the VMs. The Aator [102], etc.) or network I/0 (e.g., web services [103]) irgioe
(which is considered as a LRM) is to implement the cp@PPplications’ performance depends on the amount of memory
entitlement quota of each VM in the real physical CPUPr bandwidth assigned to them. Therefore, application type
Instead of measuring each VM’s CPU utilization, Wastgal.  N€terogeneity affects the performance of different apfitns

[62] proposed to monitor the performance of each app”mtiglﬁerently, and preseﬂts great_challenges to resouroeatibn

in a server (each VM is used to host one application) pedmong different applications in the data center.

odically. The resource controller in the server is to coraparS-A heterogeneity: SLA is a QoS contract signed between the
each application’s performance with its predefined SLA arf@rvice provider (i.e., the SaaS provider who rents ressurc
make the resource allocation decision, i.e., if the currefft the data center) and the infrastructure provider (iles, t
application performance is worse than its SLA, then it wouldata center provider). In other words, the service provider
have more chance to obtain more CPU entitlement, and vigauires its service to be guaranteed with a certain kind of
versa. Yinget al. [83] traced each VM's resource demand a®0S- The infrastructure provider, on the other hand, tres t
each time slot and adjusted the local resource provisiotingManage its resources and meets the QoS as much as it can;
minimize the sum of the application utility function, whigh Otherwise, it would pay a penalty. Basically, SLA defines
determined by the resource demand, resource provision, S{h€ Q0S metric, i.e., the QoS related cost function [104],

Fig. 9. Local resource manager architecture [69].

of the application, and the application priority. [105]. However, different service providers have their own
definitions of QoS [13], [106]. Some studies define QoS as
V. COMPARISONS OF DIFFERENT RESOURCE the average response time that one application request is
MANAGEMENT MECHANISMS IN THE HETEROGENEOUS fylfilled by the VM(s) in the data center [77], [79], [84], [I
DATA CENTER [108] or the probability of the average response time needs

In a real data center, it is difficult to achieve optimalo be achieved [76], while some define QoS as the average
resource management because of the complicated data cepaeket loss percentage as their performance metric [139][1
environment, and most of the studies discuss the resoues®l some depict QoS as the throughput (i.e., requests per
management mechanism in a homogeneous data center, wisigtond [110] or the number of completed jobs per time slot
does not exhibit all the realistic heterogeneity featutest t [111], [112]). SLA heterogeneity results in selecting erént
will be delineated in the following. In this section, we willmodels to estimate the application performance, thus headi
first explain the heterogeneity characteristics in the dedd to complicated resource management.
center and then analyze the difficulty of implementing diéfe Workload heterogeneity: Workload in the data center exhibits
resource management mechanisms in the heterogeneous sjgadial and temporal dynamics. Spatial dynamics refers to

center. different features exhibited by different workload datacts
. o of VMs/servers/applications, and these features can be cha
A. Heterogeneity characteristics of a data center acterized by three parts: usage mode, intensity and daratio

We provide a brief overview of four heterogeneity featureBynamic usage mode among data traces indicates that work-
of a data center that present impediment to resource managads of different VMs/servers/applications’ exhibit fdifent
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TABLE |
THE COMPARISON OF THREE RESOURCE MANAGEMENT MECHANISMS IN TEEHETEROGENEOUS DATA CENTER

Resource heterogeneity  Application type heterogeneity A Béterogeneity — Workload heterogeneity

VM workload prediction H L N H

VM workload based resource allocation N L N N
PM workload prediction H L N H

PM workload based resource allocation N L N N
Application workload prediction N N N L

Application workload based resource allocation L L L N

characteristics,, e.g., some express a seasonal, weettlyror such that the sum of their resource utilization is less than
nal cycle over time [72], [73], [113] and some workload data threshold when performing VM/PM consolidation, and if
traces show sudden huge spikes, i.e., sudden workloadssuithe servers’ resource capacities are different, the surmmat
[74], [114], which are considered as unpredictable worttloaf resource utilization makes no sense (i.e., summation of
and degrade the application performance. Dynamic intensiesource utilization would probably reach 100% because of
implies that the ratio of the peak workload to the averaghe different capacities of servers). For instance, suppiosre
workload is different among different data traces. Dynamare two PMs, i.e., PM 1 and PM 2, and the CPU capacity of
duration implies that the length of the workload data tradeM 1 is two times higher than that of PM 2 (for simplicity,
varies, i.e., the makespan of one application/applicaiiem we only consider CPU resource in this example); meanwhile,
running on a specific hardware is dynamically changed, e.gs shown in Fig. 10, initially (i.e., in time sldt), each PM
the durations of some short-term jobs running in particul&wosts only one VM, i.e., VM A and VM B, respectively, and
VMs are less than 15 minutes, but some jobs run longer thére CPU utilization of VM A and VM B is 80% and 60%,
300 minutes [115]. respectively. In time slot;, the CPU utilization of VM A

On the other hand, temporal dynamics means that tHeops to 20%, and so VM A can be consolidated into PM 2 if
workload data trace of a VM/PM/application may changee only consider the sum of the VMs’ CPU utilization being
its features over time. Temporal dynamics often exists lass than a threshold (assumed to be 90%). However, the CPU
the VM/PM workload data trace because of changes of thdlization of VM A will be higher than 20% after VM A has
ownership of VMs, VM migration and server consolidationbeen migrated into PM 2, whose capacity is half that of PM
Therefore, owing to the heterogeneity of workload feature$, and so it is possible that the CPU utilization of PM 2 will
there is no unique model that can predict every objecéxceed the threshold, and will result in the SLA violation.
future workload accurately, thus rendering resource atloa
inefficient. ] v [ i i

Consolidate VM A into PM 2 may exceed
the CPU utilization threshold of PM 2.

B. Comparison of three resource management mechanism:

heterogeneous data center e S ——/—————\;———ﬂfeshdd:%%
In this section, we will discuss how the different kinds o

heterogeneities in the data center degrade the perforntdnci W

the three resource management mechanisms. We measure ™! Fidz M PM2

degree of performance degradation into three levels: Hi(Hig fo h

i.e., the heterogeneity feature degrades the performamb@o rig 10, Effects of the resource heterogeneity on the pexdace of the VM
corresponding resource management mechanism significamidrkload based resource allocation strategy.
and there is no suitable solution to solve the problem), lw(Lo
i.e., the heterogeneity feature may complicate the coore$p  One solution to relax the problem resulting from resource
ing resource management mechanism, but can be solvedhleyerogeneity is to predict the amount of resources that eac
applying suitable methods), N (None, i.e., the heteroggneVM/PM needs rather than the resource utilization, but it is a
feature does not affect the performance of the correspgndisig challenge to precisely predict the exact resource déman
resource management mechanism). Table | summarizes dfieeach VM/PM, especially to estimate the CPU resource
comparison results. demand. Zhanet al [98] separated the heterogeneous servers
1) The impact of the resource heterogeneitgesource into N sub-clusters and each sub-cluster comprises a number
heterogeneity makes each server's resource capacity ldthomogeneous servers. As shown in Fig. 11, the proposed
erogeneous, and thus degrades the prediction accuracyrasiource management model has two levels of management.
VM/PM workload prediction (mentioned in Section Il). Fur-In the global resource management, instead of predictiag th
thermore, resource heterogeneity degrades the perfoemaresource utilization of VMs and servers, the global sched-
of the VM/PM workload based resource allocation strategyler first predicts the resource usage of each sub-cluster
because the strategy tries to find two or more VMs/servesiad subsequently calculates their residual resourcesedBas
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on the estimated residual resources of each sub-cluster, this example) in order to achieve different objectives,, i.e
global scheduler distributes the incoming applicationki@xd minimizing the number of the awake PMs, maximizing the
among the sub-clusters. The amounts of assigned applicatiesource utilizations of the awake PMs and maximizing the
workloads for each sub-cluster are proportional to theiir esenergy efficiencies of the awake PMs. However, most of the
mated residual resources. In sub-cluster resource mamagenrecent studies [86], [118], [119] preferred to first pick tigls

the local scheduler first maps the resource utilization ef thvith higher power efficiency in hosting the suitable VMs in
sub-cluster into the scheduling delay (i.e., the scheduiglay order to improve the energy efficiency.

is expressed as a linear function of the resource utilingftio 2) The impact of the application type heterogeneity:
each sub-cluster). Then, the local scheduler tries to niz@m Application type heterogeneity results in different apali
the number of awake servers in its sub-cluster and minimigens/VMs/PMs requiring different demands of different re
the SLA (in terms of the upper bound of the scheduling delaghurce types, and thus leads to the unbalanced demands among
cost simultaneously. different types of resource in a server, i.e., some servers
may have higher CPU demands but lower memory and disk
quilgf“;lm demands, and some may have lower CPU demands but higher
- memory and disk demands. Thus, it is necessary to consider
et T B the features of mglti-dimensional resource demands tocin.q)r
Axgmznam’_{ \ — ——0O— M the resource utilization, reduce the energy consumption of
’ the data center as well as guarantee the applications’ SLA
[120], [121]. Obviously, application type heterogeneity i
R creases the complexity of VM/PM workload prediction be-
44—.@ cause GRM needs to estimate multi-dimensional instead of
- one-dimensional resource utilization of VMs/servers aat s
Fig. 11. A data center resource management model [98]. up a different prediction model to estimate each dimensiona
resource utilization of each VM/PM. Yet, application type
On the other hand, in the application workload basegkterogeneity does not affect the application workload pre
resource management, GRM predicts the number of incomigigtion, which is to estimate the average number of incoming
requests for each application, and thus resource hetegtgenapplication requests.
does not affect the application workload prediction accura  \oreover, application type heterogeneity complicates the
However, resource heterogeneity complicates the mappifgplications/VMs/PMs based resource allocation, i.e.isit
function from the minimum resource demands to physica{ore complicated to map the resource demands into the
servers (i.e., the third mapping function mentioned in B@ct minimum number of physical servers by considering the multi
IV-B). Placing the minimum resource demands in terms @fimensional nature of the resource demands (this is praven t
VMs into the minimum number of physical servers witthe NP hard [122], [123]). The heuristic solutions of VM, sarv
heterogeneous features can be formulated as a vector Jify application workload based multi-dimensional reseurc
packing problem, which is proven to be NP hard [117]. Thgocation are similar (if only application type heterogém
heterogeneous features of physical severs are depicté®asg considered), which can be divided into three categories:
different capacities and efficiency (in terms of the amour§ngle dimensional mapping heuristics: the basic idea of this
of power consumption by running a unit of workload). It isype of solutions is to map the multi-dimensional resource
obvious that GRM prefers to pick the physical servers wilemands into single dimension, and thus perform VM/PM
higher capacity to host the suitable VMs in order to minimizgonsolidation. Woodet al. [19] defined thevolumeof each

the number of the awake servers. However, it is not the b&a{y/pm as the product of the VM/PM's CPU, network and
solution if the objective is to maximize the resource uitian  memory utilization, i.e.,:

of the awake servers (note that minimizing the number of the

awake servers is not equivalent to maximizing the resource 1 1 1
utilization of the data center in the heterogeneous dattecen Vi 1T ug? x 1—unet x 1 —umen’ @
or maximize the energy efficiency of the data center. For

instance, suppose there are three clusters of PMs (PMs framerev; is thevolumeof VM/PM 4, andu ", u*** andu/**"
the same cluster have the same configurations), denotedaesthe CPU, network and memory utilization of VM/PM
PM A, PM B and PM C, and the capacity of each PM imespectively. Thus, the larger value of implies the higher
cluster PM A, PM B and PM C is 1 unit, 0.5 unit and 0.8nultidimensional resource utilization of VM/PN Thereby,
unit, respectively; meanwhile, the energy efficiencies had t the suitable VMs in the server with the highestlumeare
PMs from different clusters are related as follows: PMEM migrated to the servers with lowerolumevalue. Arzuaga
B>PM A. Assume four VMs are to be allocated in the PMsand Kaeli [124] defined the Virtual Server Load3L) as the
i.,e., VM 1, VM 2, VM 3 and VM 4, and the resource demandsesource demand of each physical server. Depatethe index
of VM 1, VM 2, VM 3, and VM 4 are 0.5, 0.5, 0.5, andof the VMs which are running in servér r as the index of
0.4 unit, respectively. Fig. 12 illustrates different sdgies for different types of resource (e.g:,€ {cpu, memory, disk}),
awaking different PMs to host the VMs (note that we consid@rjﬂ. as the resource usage of VMj in serveri, andc'. as
the resource utilization threshold of each PM to be 100% iesourcer capacity of servet, respectively. Then, the VSL

Global scheduler
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o x g .
@ Virtual Machine |:| Physical Machine

Average resource utilization=95% Average resource utilization=96.67% Average resource utilization=66.88%

=
L e e

PM A PM A PM A PM B PM B PM C PM C PM C PM C
(a) minimizing the number (b) maximizing the average resource (c) maximizing the energy efficiencies of
of the awaked PMs utilization of the awaked PMs the awaked PMs

Fig. 12. The illustration for awaking different types of PMshost the VMs in order to achieve different objectives.

of server; can be expressed as follows: not determined by the SLA. Also, VM/PM workload based
Sl resource allocation is not impacted by the SLA, since no

R matter what kind of QoS contract is signed in the SLA,

VSL: = Z Wr X = c ' @ once the SLA is violated, the average resource utilizatibn o

T

the server must have exceeded a predefined threshold in the

wherew, is a weight associated with resourceBased on the VM/PM workload based resource allocation. In other words,
definition of VSL, a load-balancing VM migration framwork€nsuring every dimensional resource utilization of theveser
is proposed to balance the VSL values among servers Ig§s than a threshold can satisfy the SLA.

migrating suitable VM; from the servers with larger VSL 10 application SLA heterogeneity, however, complicates
values to the servers with smaller VSL values. the application workload based resource allocation becaus
. Although.mapp!ng the multi-dimensional resource demanﬂfﬁerent types of SLA may generate different mapping func-
into one dimension decrease the complexity of VM Migons tg generate the average service rate based on the appli
gration/placement, it sometimes misleads the real resoufSinn average arrival rate, and calculate different minmm
demands of VMs/servers, and thus results in inapproprite Viesoyrce requirement of the application consequently. For
migration/placement [86], [125]. o instance, if the SLA is depicted as the application’s averag
Multi-dimension aware heuristics: Rather than ignoring the rognanse time, normally, different queuing models areiegpl
relatl_oqshlps across_multl-dlmensmns, multl_—dlmensaware to formulate the relationship between the average serditee r
heuristics is to consider the server's complimentary defean,y the average arrival rate of the application; however, if
for different dimensions simultaneously during VM migraghe g1 A is defined as the average packet loss percentage or
tion/placement. Singlet al [126] proposed the VectorDotyhe ayerage throughput of the application, it is difficult to
scheme to balance the multi-dimensional workload amoRg,, the average arrival rate into the average service rate of
physical servers. The basic idea of VectorDot is to plagge appiication by applying queuing models. Therefore, he
the VM (which has, for instance, high CPU demands buf,,\ving application workload based resource management,
low memory demands) to the suitable server (which has lQWitapie models should be designed and investigated in twde
CPU utilization but high memory utilization), i.e., the VMI' ggapish the relationship between the average arrivelaad
resource demands is complementary to the resource Uthzaty, e 4cqyal resource demands based on different types of.SLAs
of the target server. In order to measure the. complemgylta@onget al. [13], [128] proposed that the performance of the
of the VM among servers, the dot product is defined in the,yjication (which can be defined as the application’s ayera
paper. Thus,_ the VM is migrated to the ava|IabI_e server, ("‘?esponse time, throughput, average packet loss percentage
the server with enough space to hold the VM) with higher d@kc  is 4 linear function with respect to the applicatioarage
product value. Norm-based Greed scheme [127] proposed Iy | rate and the amount of resources assigned to the
similar idea, however, the method defined resource diSta’Eﬁ?plication, and the coefficients of the linear function ten
metric (i.e.,> w,u;hi, Wherew, is a weight of resource maagured with plentiful experiments. Thereby, by obtajnin
T, Wiy IS VM7j’s demands of resouree andh; - is serveri’s  the function, it is easy to calculate the minimum resouree pr
residual capacity of resoure, rather than the dot product tovisioning based on the application average arrival ratethad
measure the complementarity between a VM and a server.SLA. Rather than modeling the different mapping functiams i

3) The impact of the SLA heterogeneiffhe application terms ofresource demand = f(SLA, arrival rate), Zhan
SLA heterogeneity does not affect the performance of thee al [112] separated the applications with different SLAs into
VM/PM/application workload prediction algorithm, becausdifferent priority levels, which are based on the requiratme
the variation of the VM/PM/application’s resource demaigds of the response time. For example, a web server application
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(who needs immediate response) has a higher priority thinus the application/application-tier running in the VKIS

a MapReduce application (whose SLA is defined as tlthanges over time. For example, suppose there are two ap-
application’s throughput), and thus the web server apidioa plications, namely, app-A and app-B, with different featur
can be assigned with more resources and the MapRed(ce, their workload time series have different features)d
applications can be queued if the resources are not awailatdach of them has two VMs initially. If app-A's workload drops

4) The impact of the workload heterogeneifjhe workload and only needs one VM, and meanwhile, if app-B’s workload
prediction accuracy does not determine or affect the resouincreases and requires more resources, then GRM will eleas
allocation strategy applied in GRM of the data center, banhe of the VMs from app-A and re-assign it to app-B to satisfy
it is the main factor in determining the efficiency of GRMits resource demands. Eventually, the features of theigeeess
Meanhiwle, workload heterogeneity is the key jeopardy MM'’'s workload time series is altered over time (because the
degrading the performance of the prediction algorithm. Aapplication running in the reassigned VM is changed), thus
mentioned in the previous section, VM/PM/application workdegrading the workload prediction accuracy. One way toesolv
load in the data center exhibits spatial and temporal dyosamithe accuracy degradation of the VM/PM workload prediction
In order to solve the spatial dynamics problem among differeis to fix the number of VMs/servers for serving a specific appli
workload time series, it is necessary to build the predicticcation, i.e., no matter whether the application’s workloathe
model individually by analyzing the features of correspogd data center increases/decreases, GRM can only adjustzéne si
VM/PM/application workload time series. For instance hiét of VMs/servers without changing the number of VMs/servers
workload time series has the clear seasonal component wadrving the application. Herb&t al. [136] proposed a new
low noise (i.e., fewer random fluctuations), it is better pplg workload classification and forecasting system to solve the
Moving Average 1A) prediction model to estimate the futureVM/PM workload temporal dynamics problem. The basic
workload [129], [130]; on the other hand, if the workloaddea of the proposed workload classification and forecgstin
time series has some noise and changes within trend, butsystem, which is quite similar to [17], is to automatically
seasonal behavior, then the Simple Exponential Smoothisglect the most suitable prediction model (which yields the
model may perform better [132]; moreover, if the workloadhinimum Mean Absolute Scaled Error) from the model set
time series has the clear seasonal component with some ndisesach time slot. Thus, once the features of the workload
then GRM can apply the Auto Regressive Integrated Movirigne seires are changed, the system can adaptively choese th
Averages ARIMA) stochastic process model to predict theuitable prediction model after a certain time period. Hosve
workload [72], [135]. Vazqueet al. [133] evaluated the accu-the drawback of the proposed method is high complexity, i.e.
racy of several common workload prediction models by tgstinwo or more prediction models need to be executed in parallel
the models to forecast the real cloud computing workloatts compare the prediction accuracy.
including Google cluster [7] and Intel Netbatch [134]. Also
the complexity and the prediction period of different pridin
models should be considered in selecting a suitable model
to estimate the workload. For instance, if the workload is Several works have contributed to maximize the resource
a seasonal time series, then ARIMA can perform long-teruiilization by applying the resource management schemes as
workload estimation at the expenses of higher complexigresented in the previous sections. However, there ade stil
while MA can only precisely predict the short-term (i.e.some issues which need to be addressed. This section discuss
next one or two time slots) workload at the gain of loweseveral open issues and possible research directions in the
complexity. Herbset al. [136] theoretically analyzed differentresource management of the data center.
prediction models for application scenarios as well asrthei
pros and cons with respect to the complexity, the historical
data requirements (i.e., how many historical data poinés :fr’ Network aware resource management
needed to predict the future data points) and the predictionwith an explosive growth of data center traffic, network
period. bandwidth constraint becomes increasingly more critiCed-

The temporal dynamics implies that the features of a specitltional resource management only tries to assign the PM
workload time series may vary over time. For instance, thesources to the VMs in order to guarantee the corresponding
workload has clear seasonal components initially, buthas tSLAs while ignoring the resource management at the network
time passes by, the workload time series loses the seasdagkr. As mentioned in Sec. [I-B2, provisioning sufficient
component but exhibits active periods with clear trends Thesources to the VMs in the local PMs may not satisfy the
temporal dynamics of the workload may degrade the predictiSLAs if the resource is under-provisioned at the networkitay
accuracy significantly because the historical workloaddat In other words, allocating insufficient network resources t
cannot reflect the features of workload time series in theréut the VMs may degrade the performance of the VMs, thus
The VM/PM workload exhibits temporal dynamics most of theiolating the applications’ SLAs. For example, tradititipa
time. This is because, as mentioned previously, the apgjaita the web service application comprises three tiers, i.erQatf
workload mainly depends on the human activities, whiobnd Web server tier, a middle application tier, and a backend
exhibit periodic features most of time; however, the VM/PMlatabase/storage tier. It is desirable to guarantee eifioand-
workload is not only determined by the human activities butidth provisioning among the three tiers’ communications
also affected by the VM/PM based resource allocation, atal avoid application performance degradation. The optimal

VI. OPEN ISSUES
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network aware resource management is to minimize the numapping, virtual switch switch) mapping and virtual link
ber of the awaked PMs while guaranteeing each link in tielink) mapping:

network not to be congested, i.e., the network resources ar¢ vM mapping: The basic idea of VM mapping in the
not under-provisioned. However, the VM placement problem  heuristic algorithm is to balance the resource demands
is coupled with the network resource allocation problem, a among the PMs. Specifically, each VM selects the PM
bad VM placement may incur insufficient networking resource  wjth the minimumPM cost among the feasible PMs,

provisioning to the VMs; this coupling thus complicates the  \hich have enough residual resourtés host the VM.

network aware resource management. The PM costof PM i, denoted as® M., (i), is defined
Many studies have considered the network aware resource as follows:

management problem as the Virtual Data CentddC) em- PMope(i) = & 3)

bedding problem. Specifically, each application is runming s | (i) = 7|

Virtual Data Center\{DC), which consists of not only a num-
ber of VMs but also the virtual switches and virtual links in
providing the virtual network connectivities among VMsdan
so allocating the resources to the application can be ceresid
as embedding the VDC into the physical data center. Bagjcall
the framework of the VDC embedding problem is shown in
Fig. 13. Different VMs, which communicate with each other
to serve the same application, form a VDC and every VDC
has its own IP address spdc&Ms within the same VDC
can communicate with each other just as they are in the same
layer-2 Ethernet. VMs in different VDCs can communicate
through layer-3 gateways. The VDC predictor estimates its
VDC resource demands, which include the number of VMs,
the resource capacity of each VM, and the bandwidth demand N

matrix among the VMs. The VDC solver is a centralized pswitcheost(7) = Y b (4, k) b(3), 4)
resource manager in the data center. On the one hand, the VDC J=1

solver receives the information of the physical data center \hereN is the number of the VMs that are connected to
such as the topology of the data center and the status and the vswitch in the VDC (j, k) is the number of hops
resource utilization of the PMs and switches; on the other petween VM; and physical switch, and b(j) is the
hand, it generates solutions for efficiently provisionirig t bandwidth demand of VM. The intuition behind the
resources to each VDC. vswitch mapping is that it prefers to map the vswitch

into the lower layer physical switch that generates a fewer
VDC VDC
predictor predictor

wherer (i) is the residual CPU resource of PMT is

the average residual CPU resource among PMsbdiy

is the occupied bandwidth resource of PMThus, a

smaller value ofP M., () indicates that the PM has less

occupied bandwidth and more residual CPU resource.
o vswitch mapping: In the second step, the heuristic
algorithm tries to map each vswitch in VDC into the
physical switch with the minimuncommunications cost
among the feasible physical switches, which have enough
residual capacity to host the resource demands of the
vswitch. Thecommunications costf physical switchj,
denoted apswitch.os:(j), is defined as follows:

VDO number of hops and thus results in a lower cost.
« vlink mapping: In the third step, the heuristic algorithm

\__ VDCq VD, tries to map each vlink into the corresponding physical
link. The basic idea is to find the shortest physical path

W v v between the two VMs among the available physical paths
DCN Virtnalization such that the residual bandwidth capacity of each selected
VDC Solver physical link is no less than the bandwidth demand of the

vlink.
iear T dsil Routing VM | Bandwidth Guo et al. [138] proposed a similar algorithm to solve

Topology|  utilization infonmliunvplaccmcn'“prvvisit"ning" the VDC embedding problem. Specifically, in order to reduce

the complexity for solving the VM embedding problem, the
neighboring PMs are grouped into clusters of differentsize
before any VDC allocation takes place. Thus, each VDC only
Fat-tree VL2 DCell BCube Others needs to search for the suitable PM cluster to host itséierat
than searching the entire data center. In the first step, b@ V
solver would select a suitable PM cluster to host the VDC.
Fig. 13. The framework of the VDC embedding. The number of PMs of the selected PM cluster should be
larger than the number of VMs in the VDC and the aggregate
Based on the VDC embedding framework, Rabbemal. ngress and egress bandwidth of the PM cluster should be
[137] proposed a heuristic algorithm to efficiently solve thlarger than those of the VDC. In the second step, the VDC

VDC embedding problem, which is proven to be NP-hargplver tries to map the VMs in the VDC into the PMs in the
[137], [138]. The algorithm comprises three steps, i.e., vigelected PM cluster. The basic idea of the VM mapping is very

3The paper [137] only considers the CPU and bandwidth resademands
°Note that IP address spaces of different VDCs may overlap. of VMs when performing VM mapping.

Data Center Network Infrastructure
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similar to [137], which is to allocate the VMs into feasiblewhere L is the total number of the physical links in the data
PMs (which have enough residual resources to host the VM®nter; is the cost of linkl (which is a convex function of the
while balancing the residual bandwidth among PMs. In tHimk utilization), M is the total number of the PMs available
third step, the VDC solver tries to allocate physical pathrs fin the data centery,, represents the status of PM (i.e., if

all the VM-pairs, and at the same time tries to find the shortd8M m is awaked,g,, = 1; otherwise,g,,, = 0), anda is a
available path between the two VMs by applying the Breadtheighting factor in order to allow operators to freely adjire

First Search algorithm. . R .
ff hénk €., 5 h
The intuition behind the two mentioned VDC embeddintgradeo between thenk cost(i.e. 7 z; fu) and thecapactty

heuristic algorithms are very similar, but the complexity o . L M - o
the algorithms are very high, i.e., if the VDC solver canno(iOSt (€., 37 2 gm)- Thus, the joint optimization problem,

m=1
find a feasible physical path (i.e., the residual bandwidithllo denoted as PO, can be formulated as follows:

the physical paths is _Ie_ss than the bandwidth dgmand of the Given: 1) the resource demands for each VM, 2) the
VM pair) for a VM pair in the last step, the algorithms need 3 5ijaple resources for each PM, and 3) the bandwidth
to retu.rn to the first step to find anothgr fe§15|ble VM mapping.  gemand for each VM pair.
This kind of back-tracking Ie_ads to high tl_me compllexr[y. In Obtain: 1) the VM location indicator variable; ,, (i.e.,
order to reduce the corr_1p_|exﬂy of the algorlthm_, studie®[13 —xi,m — 1 indicates VMi is in PM m; elsex; ., —= 0); 2)
[140] propos_ed the aff_lnlty—aware VM_aIIocatlon method to the routing indicator variablgf.’j (i.e.,yf.’j —'1 indicates
place thg af_fme VMs (i.e., the VMs with a large amqur_wt of the traffic from VM to VM j is routed on pathy: else,
communications or data exchanges among thgm) W|th_|n .the WP = 0).
same ToR Top of Rac_:lx PMs as much as possible. This is d’bjective:Minimize 7.
bec_:ause the communlca'_uons links t_hat only traverse the ToR Constraints:1) each VM is placed in one PM; 2) the
switch have lower blocking probability as compared to the o4 e capacity of each PM is not violated: 3) the traffic
commumcqnons I|nl_<s that need to traverse the a_ggregatlon of each PM pair is routed on one physical path.
or core switches. Different from the VDC embedding based
resource management (which first maps the VMs into feasibleln order to efficiently solve the optimization problem, the
PMs, and then determines the bandwidth allocation for eagHthors leveraged the idea of Markov chain approximation
VM pair), bandwidth demands of the VM pairs determiné&€thod [144] to obtain an approximated solution of PO.
the VM mapping in the affinity-aware VM allocation method. Belabedet al. [145] argued that applying the virtual bridg-
However, the proposed affinity-aware VM allocation methoig* and multipath forwarding (mentioned in Sec. [1-B2c)
cannot guarantee that all the VM pairs can acquire sufficieieichniques in the routing optimization can achieve better
bandwidth provisioning on the corresponding physical pattradeoff between thdink cost and thecapacity cost Note
Meng et al. [141] proposed a traffic-aware VM placementhat recent Ethernet switching solutions in the data center
algorithm to reduce the network cost. The basic idea of tmetwork, such as Provider Backbone Bridges with Traffic
algorithm is to partition VMs into VM-clusters accordingEngineeringPBB-TE) [146], the Shortest Path BridginGPB
to the traffic between different VMs as well as the datprotocol [147] and the Transparent Interconnection of adfot
center network characteristics, and then place the VMtetas Links (TRILL) protocol [148], can enable multipath forwarding
into different slot-clusters (i.e., PM clusters) to minamithe of the Ethernet frames, which can potentially provide bette
network cost. However, the algorithm does not consider tih@ad balancing among different paths. In order to enable the
capacity of the slot-cluster, i.e., some VM-clusters may noultipath forwarding in solving the joint optimization golem
find the suitable slot-clusters to host them because of tfiee., P0), the authors declared the variagyﬂc;in PO as a non-
capacity limitations of the slot-clusters. negative real variable, rather than a binary variable.
Kliazovich et al.[142] demonstrated that there is a tradeoff Meanwhile, in order to enable virtual bridging in solving
between minimizing the number of awaked PMs in the dathe joint optimizing problem, the authors proposed thaheac
center and avoiding the network congestion (which tries @M can be considered as a switch to route the traffic of
minimize the maximum link utilization). Specifically, in -or VM pairs. Note that enabling the virtual bridging function
der to avoid network congestion, the bandwidth-aware VMs the hypervisor may consume extra resources of the PM for
should be distributed among the PMs as much as possibiguting the traffic, but this may reduce the available resesir
However, this methodology contradicts the energy efficiefdr each PM to host the VMs. Thus, the second constraint
resource management strategy, which tries to concentilatei@ PO needs to be modified. Specifically, suppose each VM
the VMs within the minimum number of PMs. Many studiess characterized by #D|-dimensional (note thaD is a set
proposed different methodologies to optimize the tradeolif resource dimensions and each dimension corresponds to a
Jianget al. [143] tried to jointly optimize the VM placement different resource type such as CPU, memory or disk space)
and the routing path selection among VM pairs in ordeesource demand vectoy = [r; 1, - ,r; |p||, Wherer; 4 is
to optimize the tradeoff. Specifically, they formulated théhe VM i's resource demand for dimensionb(d € D), then,
objective functionf as follows:

1 L 1 M 4Virtual bridging is to offload the traffic (generated from th@ pair)
f== Z h +a— Z s (5) switching operations from the access and aggregate switchthe software
L M
=1

o hypervisor level in the PM, if the two VMs are in the same PM.
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for each PMm, we have the following constraint: M R
; R R
vde D, 7¢ Z i T Z riatim < C,  (6)

Renewable power plant

—— 4@ meter

Power grid

wherer!"*/7i¢ is the amount of traffic demand for VN| 7

is a coefficient that maps the traffic demand of ViMnto

the resource demand (for routing the traffic demand usil

virtual bridge in the PM) for dimensional, and C? is the q o~
resource capacity of Pvh for dimensionald. The new joint | .= i Tape—
optimization problem has been proven to be NP-hard [14!  coliector l

In order to find the suboptimal solution, the authors mapp

the joint optimization problem into the single source figil
location problem $SFLB, which is a well-studied problem,

and applied the repeated matching heuristic algorithm Jj148ig. 14. The power supply system of a green data center.
which can reach good optimality gaps for solving SSFLP, to

generate the suboptimal valuesxf,, and y,ﬁj.

The above works tried to propose heuristic algorithms ®ftteries in the green data center may induce many problems:
solve the network aware resource management problem andatteries incur extra energy losses because of selfatige;
each of them has its tradeoff between the complexity and the €duipping batteries increases the CAPEX of the green-
performance. However, a number of VM migrations amontéowered system; 3) batteries contain chemicals, which are
PMs are introduced for implementing the network aware@rmful to the environment. Therefore, it is beneficial tddu
resource management algorithms, and the VM migratiofPattery-absent green data center. Since green energgtcann
consume a huge amount of the bandwidth resource in the "Panked”, in order to minimize the brown energy usage,
switches [150], which may significantly increase the traffif’® generated green energy should be fully utilized in each
load of the data center network, thus resulting SLA violatio ime_slot. Therefore, it is necessary to adjust the resource
Thus, it is necessary to design an optimal network awaP€oVisioning based on the amount of the available greerggner

resource management by considering the bandwidth demaffighe data center. GreenSlot [156], [157] and GreenHadoop
introduced in the VM migrations. [153] systems have been proposed to schedule the workload

based on the green energy supply. The jobs in the data center
. are grouped into two types: deferrable jobs (which havedoos
B. Resource management in the green data center deadline, such as batch processing jobs) and non-deferrabl
In order to reduce the OPEX aigd), footprints for running jobs (which need to be handled immediately, such as web
the data center, the concept of green data center is inteagucservices). The basic idea of the two proposed systems is to
i.e., the data center is both powered by renewable enefgyffer the deferrable jobs if the green energy is insufficien
as well as brown energy [151]-[155]. Renewable energy @nd execute them before their deadlines.
generated at the site of the data center, and once the releewabAlthough there are many disadvantages to equip the system
energy is insufficient or unavailable to satisfy the energyith battery, in reality, data centers have already beeippgd
demands of the data center, brown energy, which acts wish uninterrupted power supplies (UPSs) to protect agains
backup energy supplement, is obtained from the electrigadssible power failures [158]. Moreover, though batteries
grid (note that the renewable energy could be drawn from thensume extra energy by self-discharging, they can bank
nearby renewable power plants to power the data center, tha excessive green energy instead of wasting it. Thus, it is
this kind of renewable energy is not free for the data centeralistic to consider the green data center as a batterylezhab
providers. Thus, from minimizing the OPEX point of viewsystem.Since green energy can be banked into batterigs (i.e
we consider green energy as the on-site renewable energy #irelgreen energy provisioning can be adjusted over timiy, fu
brown energy as the energy from the electrical grid or theilizing the generated green energy may not be the optimal
renewable power plants). The goal of the resource managensmiution in the battery enabled green data center. Forrinsta
in the green data center is to optimally allocate resoursesgreen energy can be banked (i.e., not fully utilized) at the
applications in order to minimize the brown energy usageurrent time slot and utilized at latter time slots when the
while guaranteeing the applications’ SLAs. green energy generation is not sufficient to satisfy thegner
Normally, the power supply system of a green data centerdemands of the data center and the electricity price isivelgt
shown in Fig. 14, in which the on-site green energy collectbigh. Therefore, designing an efficient green energy pionis
locally extracts energy from the green energy source aimd) strategy is critical to minimize the brown energy cost of
converts it into electrical power, the charge controllggulates the resource management in the data center. However, it is
the electrical power from the green energy collector, ardifficult to design an optimal green energy provisioningstr
the inverter converts the electrical power between AC amdy, because the current green energy provisioning decisio
DC. The smart meter records the electric energy from tliee coupled with the future decisions (e.g., the current igree
power grid and renewable power plants consumed by the dateergy provisioning decision may leave insufficient bagtter
center. Many studies [152], [153] argued that the introduceapacity, and so the green energy generated in the neae futur

Inverter

Data Center
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may be wasted). Inspired by the green energy supplemett st
egy in cellular networks [159], the green energy provigigni
strategy and the resource management in the data center Outside Air Water Cooling
be designed in a similar manner. Specifically, GRM predig Economizier Economizier Power
the green energy generation, the resource demands of the
center as well as the electricity price in each fine-graing
time slot (e.g., one hour) during one coarse-grained tiroe s
(e.g., one day) based on different kinds of prediction made
Then, according to the these prediction results, an offli
green energy provisioning strategy is designed to minimi

Cooling Supply System

Power Infrastructure

the electricity cost by determining the amount of green gyer T Power

available for the data center as well as the amount of theygne

stored in the battery in each fine-grained time slot during o

coarse-grained time slot. However, the actual green ene $

generation, resource demands and electricity may diffenfr

the prediction results; an online resource managementdho - UFS
Server rack battery

be designed to dynamically adjust the resource provisgni
to serve the application workloads in order to maintain the
amount of energy stored in the battery to be no less than ffi@ 15. The architecture of a data center.
value generated from the offline green energy provisioning

strategy, while guaranteeing the application SLA. For in- . R
stance, if the green energy generation is over-estimatddfu equipment depends on the amount of resource provisioning.

estimated, less/more resource should be provisioned wSe'Fherefore, Liuet al. [162] modeled the power consumption

i cooling i
the workload in order to maintain the amount of energy Ievgf the cooling supply systerp as a function of IT

in the battery (which are pre-determined by the offline gre wer consump_t|c_)rd_(wh|ch IS deter_mmed by the amount
energy provisioning strategy). of resource provisioning) and the environment parameiers,

peooling — kd3, wherek is an coefficient which is proportional
to the temperature difference between the returned hotaair f
C. Cooling aware resource management the IT equipment (denoted &g 4) and the outside cooling air
cooling __ 3
Generally, the architecture of a data center is depicted (ﬁke”me‘?' aso.4). In other W_OrdSp = altra—toa)d”,
Fig. 15, where the IT equipment includes the computin herea is a parameter decided by the air flow rate.lAbdaHa
! i sqolin
(PMs) and communication (switches) resources in the déta [164] @lso modeled the cooling supply systeffi”*"? as
center, the power infrastructure generates and delivees fhnonlinear function with respect to the power consumption
power to the IT equipment and the cooling supply system, aﬂ& the IT equipment as well as the environment parameters

the cooling supply system produces and delivers the coolifg9d- tr4. the air flow rate and the air density). We define
resources to remove the heat from the IT equipment. NormalfiJ€ €ooling power efficiency as the IT power ?pnsumptloh
vided by the cooling power consumptigiic®*"9. In other

the cooling supply system comprises two major components: . th h )
cooling resource generator and cooling resource distibut’ords. the amount of heat generated by the IT equipment,

Cooling resource generator, i.e., the outside air econeraizd WhICh consumes eta units of power, can be removed by the

water economizer in Fig. 15, is to chill down the returned h61°9””9_ syst_em using 1 unit of power. Thus, ?ntuitively, \@he
air/water from the Computer Room Air ConditioningRAQ " 1S high (i-e., the value ofa(tra — to4) is small), in.
units and send back the cooling air/water to the CRAC unif¥/der to minimize the energy consumption of the cooling
Cooling resource distributor, i.e., CRACs in Fig. 15, is tgUPPIy system, GRM should assign more resources to serve

disperse the cooled air/iwater to the IT equipment and colldf® applications, and vice versa. Moreover, if green energy
the returned hot air/water. is considered in the cooling aware resource management, in

The cooling supply system is very important to ensur(érderto a_chieve the ob_jective (i.e.,_minimize the brownrgpe
L%ﬁlge while guaranteeing the applications’ SLAS), theuneso
I

roper operation of the IT equipment. However, the ener S .
Prop P auip rovisioning strategy would be much more complicated by

consumption of the cooling supply system is tremendo ) . )
it was reported that about 35%-55% of the total eneréﬁsl,corporatmg the green energy generation and cooling powe

consumption of the data center is consumed by the cooli HlClency into the resource management.
supply system [160]. Moreover, the report of U.S. Environ-
mentral Protection Agency also stated that the cooling lsupp VII. CONCLUSION
system consumes about 50% of the total energy consumptioMe have presented an overview on different kinds of re-
in the data center [161]. Therefore, minimizing the energyource management mechanismes for a data center to maximize
consumption of the cooling supply system can significanttihe resource utilization. Resource management basicaithy ¢
reduce the data center’s total energy consumption. prises two components: Global Resource ManaG&N]) and

The cooling supply system is to ensure the IT equipmehbcal Resource ManagetRM). GRM can essentially opti-
under redline temperature [163], and the temperature offthemize the coarse-grained resource allocation from the globa
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