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1 Linear spaces and mappings

In this section we will introduce some of the basic ideas in linear algebra. Our
treatment is primarily intended as a review for the reader's convenience, with
some additional focus on the geometric aspects of the subject. References are
given at the end of the chapter for more details at both introductory and ad-
vanced levels.

1.1 Vector spaces

The structure introduced now will pervade our course, that of a vector space,
also called a linear space. This is a set that has a natural addition operation
de�ned on it, together with scalar multiplication. Because this is such an im-
portant concept, and arises in a number of di�erent ways, it is worth de�ning
it precisely below.

Before proceeding we set some basic notation. The real numbers will be
denoted by R, and the complex numbers by C ; we will use j :=

p�1 for the
imaginary unit. Also, given a complex number z = x+ jy with x; y 2 R:

� z� = x� jy is the complex conjugate;

� jzj =
p
x2 + y2 is the complex magnitude;

� x = Re(z) is the real part.

We use C+ to denote the open right half-plane formed from the complex num-
bers with positive real part; �C+ is the corresponding closed half-plane, and the
left half-planes C� and �C� are analogously de�ned. Finally, jR denotes the
imaginary axis.

We now de�ne a vector space. In the de�nition, the �eld F can be taken
here to be the real numbers R, or the complex numbers C . The terminology
real vector space, or complex vector space is used to specify these alternatives.
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De�nition 1. Suppose V is a nonempty set and F is a �eld, and that operations
of vector addition and scalar multiplication are de�ned in the following way.

(a) For every pair u, v 2 V a unique element u+v 2 V is assigned called their
sum;

(b) for each � 2 F and v 2 V, there is a unique element �v 2 V called their
product.

Then V is a vector space if the following properties hold for all u, v, w 2 V,
and all �, � 2 F:

(i) There exists a zero element in V, denoted by 0, such that v + 0 = v;

(ii) there exists a vector �v in V, such that v + (�v) = 0;

(iii) the association u+ (v + w) = (u+ v) + w is satis�ed;

(iv) the commutativity relationship u+ v = v + u holds;

(v) scalar distributivity �(u+ v) = �u+ �v holds;

(vi) vector distributivity (�+ �)v = �v + �v is satis�ed;

(vii) the associative rule (��)v = �(�v) for scalar multiplication holds;

(viii) for the unit scalar 1 2 F the equality 1v = v holds.

Formally, a vector space is an additive group together with a scalar multiplica-
tion operation de�ned over a �eld F, which must satisfy the usual rules (v{viii)
of distributivity and associativity. Notice that both V and F contain the zero
element, which we will denote by \0" regardless of the instance.

Given two vector spaces V1 and V2, with the same associated scalar �eld,
we use V1 � V2 to denote the vector space formed by their Cartesian product.
Thus every element of V1 � V2 is of the form

(v1; v2) where v1 2 V1 and v2 2 V2:

Having de�ned a vector space we now consider a number of examples.

Examples:

Both R and C can be considered as real vector spaces, although C is more
commonly regarded as a complex vector space. The most common example of
a real vector space is Rn =R � � � � � R; namely, n copies of R. We represent
elements of Rn in a column vector notation

x =

2
64
x1
...
xn

3
75 2 R

n ; where each xk 2 R:
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Addition and scalar multiplication in Rn are de�ned componentwise:

x+ y =

2
6664
x1 + y1
x2 + y2

...
xn + yn

3
7775 ; �x =

2
6664
�x1
�x2
...

�xn

3
7775 ; for � 2 R; x; y 2 R

n :

Identical de�nitions apply to the complex space C n . As a further step, consider
the space Cm�n of complex m� n matrices of the form

A =

2
64
a11 � � � a1n
...

. . .
...

am1 � � � amn

3
75 :

Using once again componentwise addition and scalar multiplication, Cm�n is a
(real or complex) vector space.

We now de�ne two vector spaces of matrices which will be central in our
course. First, we de�ne the transpose of the above matrix A 2 C

m�n by

A0 =

2
64
a11 � � � am1

...
. . .

...
a1n � � � amn

3
75 2 C

n�m ;

and its Hermitian conjugate or adjoint by

A� =

2
64
a�11 � � � a�m1
...

. . .
...

a�1n � � � a�mn

3
75 2 C

n�m :

In both cases the indices have been transposed, but in the latter we also take
the complex conjugate of each element. Clearly both operations coincide if the
matrix is real; we thus favor the notation A�, which will serve to indicate both
the transpose of a real matrix, and the adjoint of a complex matrix.1

The square matrix A 2 C n�n is Hermitian or self-adjoint if

A = A�:

The space of Hermitian matrices is denoted H n , and is a real vector space. If a
Hermitian matrix A is in Rn�n it is more speci�cally referred to as symmetric.
The set of symmetric matrices is also a real vector space and will be written Sn.

The set F(Rm ; Rn ) of functions mapping m real variables to Rn is a vector
space. Addition between two functions f1 and f2 is de�ned by

(f1 + f2)(x1; : : : ; xm) = f1(x1; : : : ; xm) + f2(x1; : : : ; xm)

1The transpose, without conjugation, of a complex matrix A will be denoted by A0; how-

ever, it is seldom required.
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for any variables x1; : : : ; xm; this is called pointwise addition. Scalar multipli-
cation by a real number � is de�ned by

(�f)(x1; : : : ; xm) = �f(x1; : : : ; xm):

An example of a less standard vector space is given by the set composed of
multinomials in m variables, that have homogeneous order n. We denote this

set by P
[n]
m . To illustrate the elements of this set consider

p1(x1; x2; x3) = x21x2x3; p2(x1; x2; x3) = x31x2; p3(x1; x2; x3) = x1x2x3:

Each of these is a multinomial in three variables; however, p1 and p2 have order

four, whereas the order of p3 is three. Thus only p1 and p2 are in P
[4]
3 . Similarly

of

p4(x1; x2; x3) = x41 + x2x
3
3 and p5(x1; x2; x3) = x21x2x3 + x1

only p4 is in P
[4]
3 , whereas p5 is not in any P

[n]
3 space since its terms are not

homogeneous in order. Some thought will convince you that P
[n]
m is a vector

space under pointwise addition. �

1.2 Subspaces

A subspace of a vector space V is a subset of V which is also a vector space
with respect to the same �eld and operations; equivalently, it is a subset which
is closed under the operations on V .

Examples:

A vector space can have many subspaces, and the simplest of these is the zero
subspace, denoted by f0g. This is a subspace of any vector space and contains
only the zero element. Excepting the zero subspace and the entire space, the
simplest type of subspace in V is of the form

Sv = fs 2 V : s = �v; for some � 2 Rg;
given v in V . That is, each element in V generates a subspace by multiplying
it by all possible scalars. In R2 or R3 , such subspaces correspond to lines going
through the origin.

Going back to our earlier examples of vector spaces we see that the multi-

nomials P
[n]
m are subspaces of F(Rm ; R), for any n.

Now Rn has many subspaces and an important set is those associated with
the natural insertion of Rm into Rn , when m < n. Elements of these subspaces
are of the form

x =

�
�x
0

�
;

where �x 2 Rm and 0 2 Rn�m . �
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Given two subspaces S1 and S2 we can de�ne the addition

S1 + S2 = fs 2 V : s = s1 + s2 for some s1 2 S1 and s2 2 S2g
which is easily veri�ed to be a subspace.

1.3 Bases, spans, and linear independence

We now de�ne some key vector space concepts. Given elements v1; : : : ; vm in a
vector space we denote their span by

spanfv1; : : : ; vmg;
which is the set of all vectors v that can be written as

v = �1v1 + � � �+ �mvm

for some scalars �k 2 F; the above expression is called a linear combination

of the vectors v1; : : : ; vm. It is straightforward to verify that the span always
de�nes a subspace. If for some vectors we have

spanfv1; : : : ; vmg = V ;
we say that the vector space V is �nite dimensional. If no such �nite set of
vectors exists we say the vector space is in�nite dimensional. Our focus for the
remainder of the chapter is exclusively �nite dimensional vector spaces. We will
pursue the study of some in�nite dimensional spaces in Chapter 3.

If a vector space V is �nite dimensional we de�ne its dimension, denoted
dim(V), to be the smallest number n such that there exist vectors v1; : : : ; vn
satisfying

spanfv1; : : : ; vng = V :
In that case we say that the set

fv1; : : : ; vng is a basis for V :
Notice that a basis will automatically satisfy the linear independence property,
which means that the only solution to the equation

�1v1 + � � �+ �nvn = 0

is �1 = � � � = �n = 0. Otherwise, one of the elements vi could be expressed
as a linear combination of the others and V would be spanned by fewer than
n vectors. Given this observation, it follows easily that for a given v 2 V , the
scalars (�1; : : : ; �n) satisfying

�1v1 + � � �+ �nvn = v

are unique; they are termed the coordinates of v in the basis fv1; : : : ; vng.
Linear independence is de�ned analogously for any set of vectors fv1; : : : ; vmg;

it is equivalent to saying the vectors are a basis for their span. The maximal
number of linearly independent vectors is n, the dimension of the space; in fact
any linearly independent set can be extended with additional vectors to form a
basis.
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Examples:

From our examples so far Rn ; Cm�n , and P
[n]
m are all �nite dimensional vector

spaces; however, F(Rm ; Rn ) is in�nite dimensional. The real vector space Rn

and complex vector space Cm�n are n and mn dimensional, respectively. The

dimension of P
[n]
m is more challenging to compute and its determination is an

exercise at the end of the chapter.
An important computational concept in vector space analysis is associating

a general k dimensional vector space V with the vector space Fk . This is done
by taking a basis fv1; : : : ; vkg for V , and associating each vector v in V with
the vector of coordinates in the given basis,2

64
�1

...
�k

3
75 2 F

k :

Equivalently, each vector vi in the basis is associated with the vector

ei =

2
66666666664

0
...
0
1
0
...
0

3
77777777775
2 F

k :

That is, ei is the vector with zeros everywhere excepts its ith entry, which is
equal to one. Thus we are identifying the basis fv1; : : : ; vkg in V with the set
fe1; : : : ; ekg which is in fact a basis of Fk , called the canonical basis.

To see how this type of identi�cation is made, suppose we are dealing with
Rn�m , which has dimension k = nm. Then a basis for this vector space is

Eir =

2
64
0 � � � 0
...

. . . 1
...

0 � � � 0

3
75 ;

which are the matrices that are zero everywhere but their (i; r)th-entry, which is
one. Then we identify each of these with the vector en(r�1)+i 2 Rk . Thus addi-
tion or scalar multiplication on Rn�m can be translated to equivalent operations
on R

k . �

1.4 Mappings and matrix representations

We now introduce the concept of a linear mapping between vector spaces. The
mapping A : V ! W is linear if

A(�v1 + �v2) = �Av1 + �Av2
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for all v1; v2 in V , and all scalars �1 and �2. Here V and W are vector spaces
with the same associated �eld F. The space V is called the domain of the
mapping, and W its codomain.

Given bases fv1; : : : ; vng and fw1; : : : ; wmg for V and W , respectively, we
associate scalars aik with the mapping A, de�ning them such that they satisfy

Avk = a1kw1 + a2kw2 + � � �+ amkwm;

for each 1 � k � n. Namely, given any basis vector vk, the coe�cients aik
are the coordinates of Avk in the chosen basis for W . It turns out that these
mn numbers aik completely specify the linear mapping A. To see this is true
consider any vector v 2 V , and let w = Av. We can express both vectors in
their respective bases as v = �1v1 + � � � + �nvn and w = �1w1 + � � � + �mwm.
Now we have

w = Av = A(�1v1 + � � �+ �nvn)

= �1Av1 + � � �+ �nAvn

=

nX
k=1

mX
i=1

�kaikwi =

mX
i=1

 
nX

k=1

�kaik

!
wi;

and therefore by uniqueness of the coordinates we must have

�i =
nX

k=1

�kaik; i = 1; : : : ;m:

To express this relationship in a more convenient form, we can write the set of
numbers aik as the m� n matrix

[A] =

2
64
a11 � � � a1n
...

. . .
...

am1 � � � amn

3
75 :

Then via the standard matrix product we have2
64
�1
...
�m

3
75 =

2
64
a11 � � � a1n
...

. . .
...

am1 � � � amn

3
75
2
64
�1

...
�n

3
75 :

In summary any linear mapping A between vector spaces can be regarded as a
matrix [A] mapping Fn to Fm via matrix multiplication.

Notice that the numbers aik depend intimately on the bases fv1; : : : ; vng
and fw1; : : : ; wmg. Frequently we use only one basis for V and one for W and
thus there is no need to distinguish between the map A and the basis dependent
matrix [A]. Therefore after this section we will simply write A to denote either
the map or the matrix, making which is meant context dependent.

We now give two examples to illustrate the above discussion more clearly.
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Examples:

Given matrices B 2 C k�k and D 2 C l�l we de�ne the map � : C k�l ! C k�l by

�(X) = BX �XD;

where the right-hand side is in terms of matrix addition and multiplication.
Clearly � is a linear mapping since

�(�X1 + �X2) = B(�X1 + �X2)� (�X1 + �X2)D

= �(BX1 �X1D) + �(BX2 �X2D)

= ��(X1) + ��(X2):

If we now consider the identi�cation between the matrix space C k�l and the
product space C kl , then � can be thought of as a map from C kl to C kl , and can
accordingly be represented by a complex matrix, which is kl � kl. We now do
an explicit 2� 2 example for illustration. Suppose k = l = 2 and that

B =

�
1 2
3 4

�
and D =

�
5 0
0 0

�
:

We would like to �nd a matrix representation for �. Since the domain and
codomain of � are equal, we will use the standard basis for C 2�2 for each. This
basis is given by the matrices Eir de�ned earlier. We have

�(E11) =

��4 0
3 0

�
= �4E11 + 3E21;

�(E12) =

�
0 1
0 3

�
= E12 + 3E22;

�(E21) =

�
2 0
�1 0

�
= 2E11 �E21;

�(E22) =

�
0 2
0 4

�
= 2E12 + 4E22:

Now we identify the basis fE11; E12; E21; E22g with the standard basis for C 4

given by fe1; e2; e3; e4g. Therefore we get that

[�] =

2
664
�4 0 2 0
0 1 0 2
3 0 �1 0
0 3 0 4

3
775

in this basis.
Another linear operator involves the multinomial function P

[n]
m de�ned earlier

in this section. Given an element a 2 P
[k]
m we can de�ne the mapping 
 : P

[n]
m !

P
[n+k]
m by function multiplication


(p)(x1; x2; : : : ; xm) := a(x1; x2; : : : ; xm)p(x1; x2; : : : ; xm):
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Again 
 can be regarded as a matrix, which maps Rd1 ! Rd2 , where d1 and d2
are the dimensions of P

[n]
m and P

[n+k]
m , respectively. �

Associated with any linear map A : V ! W is its image space, which is
de�ned by

ImA = fw 2 W : there exists v 2 V satisfying Av = wg:
This set contains all the elements of W which are the image of some point in V .
Clearly if fv1; : : : ; vng is a basis for V , then

ImA = spanfAv1; : : : ; Avng
and is thus a subspace. The map A is called surjective when ImA =W .

The dimension of the image space is called the rank of the linear mapping
A, and the concept is applied as well to the associated matrix [A]. Namely,

rank[A] = dim(ImA):

If S is a subspace of V , then the image of S under the mapping A is denoted
AS. That is,

AS = fw 2 W : there exists s 2 S satisfying As = wg:
In particular, this means that AV = ImA.

Another important set related to A is its kernel, or null space, de�ned by

KerA = fv 2 V : Av = 0g:
In words, KerA is the set of vectors in V which get mapped by A to the zero
element in W , and is easily veri�ed to be a subspace of V .

If we consider the equation Av = w, suppose va and vb are both solutions;
then

A(va � vb) = 0:

Plainly, the di�erence between any two solutions is in the kernel of A. Thus
given any solution va to the equation, all solutions are parametrized by

va + v0;

where v0 is any element in KerA.
In particular, when KerA is the zero subspace, there is at most a unique

solution to the equation Av = w. This means Ava = Avb only when va = vb; a
mapping with this property is called injective.

In summary, a solution to the equation Av = w will exist if and only if
w 2 ImA; it will be unique only when KerA is the zero subspace.

The dimensions of the image and kernel of A are linked by the relationship

dim(V) = dim(ImA) + dim(KerA);
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proved in the exercises at the end of the chapter.
A mapping is called bijective when it is both injective and surjective; that

is, for every w 2 W there exists a unique v satisfying Av = w. In this case there
is a well-de�ned inverse mapping A�1 :W ! V , such that

A�1A = IV ; AA�1 = IW :

In the above, I denotes the identity mapping in each space, that is the map
that leaves elements unchanged. For instance, IV : v 7! v for every v 2 V .

From the above property on dimensions we see that if there exists a bijective
linear mapping between two spaces V and W , then the spaces must have the
same dimension. Also, if a mapping A is from V back to itself, namely, A :
V ! V , then one of the two properties (injectivity or surjectivity) su�ces to
guarantee the other.

We will also use the terms nonsingular or invertible to describe bijective
mappings, and apply these terms as well to their associated matrices. Notice
that invertibility of the mapping A is equivalent to invertibility of [A] in terms
of the standard matrix product; this holds true regardless of the chosen bases.

Examples:

To illustrate these notions let us return to the mappings � and 
 de�ned above.
For the 2� 2 numerical example given, � maps C 2�2 back to itself. It is easily
checked that it is invertible by showing either

Im� = C
2�2 ; or equivalently Ker� = 0:

In contrast 
 is not a map on the same space, instead taking P
[n]
m to the

larger space P
[n+k]
m . And we see that the dimension of the image of 
 is at most

n, and the dimension of its kernel at least k. Thus assuming k > 0, there are

at least some elements w 2 P
[n+k]
m for which


v = w

cannot be solved. These are exactly the values of w that are not in Im
.

�

1.5 Change of basis and invariance

We have already discussed the idea of choosing a basis fv1; : : : ; vng for the
vector space V , and then associating every vector x in V with its coordinates

xv =

2
64
�1

...
�n

3
75 2 F

n ;
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which are the unique scalars satisfying x = �1v1 + � � � + �nvn. This raises
the question, suppose we choose another basis u1; : : : ; un for V , how can we
e�ectively move between these basis representations? That is, given x 2 V , how
are the coordinate vectors xv ; xu 2 Fn related?

The answer is as follows. Suppose that each basis vector uk is expressed by

uk = t1kv1 + � � �+ tnkvn;

in the basis fv1; : : : ; vng. Then the coe�cients tik de�ne the matrix

T =

2
64
t11 � � � t1n
...

. . .
...

tn1 � � � tnn

3
75 :

Notice that such a matrix is nonsingular, since it represents the identity mapping
IV in the bases fv1; : : : ; vng and fu1; : : : ; ung. Then the relationship between
the two coordinate vectors is

Txu = xv :

Now suppose A : V ! V and that Av : Fn ! Fn is the representation of
A on the basis v1; : : : ; vn, and Au is the representation of A using the basis
u1; : : : ; un. How is Au related to Av?

To study this, take any x 2 V and let xv , xu be its coordinates in the
respective bases, and zv, zu be the coordinates of Ax. Then we have

zu = T�1zv = T�1Avxv = T�1AvTxu:

Since the above identity and

zu = Auxu

both hold for every xu, we conclude that

Au = T�1AvT:

The above relationship is called a similarity transformation. This discussion can
be summarized in the following commutative diagram. Let E : V ! Fn be the
map that takes elements of V to their representation in Fn with respect to the
basis fv1; : : : ; vng. Then
Next we examine mappings when viewed with respect to a subspace. Suppose
that S � V is a k-dimensional subspace of V , and that v1; : : : ; vn is a basis for
V with

spanfv1; : : : ; vkg = S:
That is the �rst k vectors of this basis forms a basis for S. If E : V ! Fn is the
associated map which maps the basis vectors in V to the standard basis on Fn ,
then

ES = F
k � f0g � F

n :
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V

V

F
n

Fn

E

E

A Av

T
�1

T
�1

Au = T�1AvT:

F
n

Fn

Thus in Fn we can view S as the elements of the form�
x

0

�
where x 2 F

k :

From the point of view of a linear mapping A : V ! V this partitioning of Fn

gives a useful decomposition of the corresponding matrix [A]. Namely, we can
regard [A] as

[A] =

�
A1 A2

A3 A4

�
;

where A1 : F
k ! Fk ; A2 : F

n�k ! Fk ; A3 : F
k ! Fn�k , and A4 : F

n�k ! Fn�k .
We have that

EAS = Im

�
A1

A3

�
:

Finally to end this section we have the notion of invarianceof a subspace to
a mapping. We say that a subspace S � V is A-invariant if A : V ! V and

AS � S:

Clearly every map has at least two invariant subspaces, the zero subspace and
entire domain V . For subspaces S of intermediate dimension, the invariance
property is expressed most clearly by saying the associated matrix has the form

[A] =

�
A1 A2

0 A4

�
:

Here we are assuming, as above, that our basis for V is obtained by extending
a basis for S. Similarly if a matrix has this form the subspace Fk � f0g is
[A]-invariant.

We will revisit the question of �nding non-trivial invariant subspaces later
in the chapter, when studying eigenvectors and the Jordan decomposition.
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2 Matrix theory

The material of this section is aimed directly at both analysis and computation.
Our goals will be to review some basic facts about matrices, and present some
additional results for later reference, including two matrix decompositions which
have tremendous application, the Jordan form and singular value decomposi-
tion. Both are extremely useful for analytical purposes, and the singular value
decomposition is also very important in computations. We will also present
some results about self-adjoint and positive de�nite matrices.

2.1 Eigenvalues and Jordan form

In this section we are concerned exclusively with complex square matrices. We
begin with a de�nition: if A 2 C

n�n , we say that � 2 C is an eigenvalue of A if

Ax = �x (1)

can be satis�ed for some nonzero vector x in C n . Such a vector x is called an
eigenvector. Equivalently this means that Ker(�I�A) 6= 0 or �I�A is singular.
A matrix is singular exactly when its determinant is zero, and therefore we have
that � is an eigenvalue if and only if

det(�I �A) = 0;

where det(�) denotes determinant. Regarding � as a variable we call the poly-
nomial

det(�I �A) = �n + an�1�
n�1 + � � �+ a0

the characteristic polynomial of A. If A is a real matrix then the coe�cients ak
will be real as well. The characteristic polynomial can be factored as

det(�I �A) = (�� �1) � � � (�� �n):

The n complex roots �k, which need not be distinct, are the eigenvalues of A,
and are collectively denoted by eig(A). Furthermore if A is a real matrix, then
any nonreal eigenvalues must appear in conjugate pairs. Also, a matrix has the
eigenvalue zero if and only if it is singular.

Associated with every eigenvalue �k is the subspace

Ek = Ker(�kI �A);

every nonzero element in Ek is an eigenvector corresponding to the eigenvalue
�k. Now suppose that a set of eigenvectors satis�es

spanfx1; : : : ; xng = C
n :

Then we can de�ne the invertible matrix X =
�
x1 � � � xn

�
, and from the

matrix product we �nd

AX =
�
Ax1 � � � Axn

�
=
�
�1x1 � � � �nxn

�
= X�
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where � is the diagonal matrix

� =

2
64
�1 0

. . .

0 �n

3
75 :

Thus in this case we have a similarity transformation X such that X�1AX = �
is diagonal, and we say that the matrix A is diagonalizable.

Summarizing we have the following result.

Proposition 2. A matrix A is diagonalizable if and only if

E1 + E2 + � � �+ En = C
n holds.

The following example shows that not all matrices can be diagonalized. Con-
sider the 2� 2 matrix �

0 1
0 0

�
:

It has a repeated eigenvalue at zero, but only one linearly independent eigen-
vector. Thus it cannot be diagonalized. Matrices of this form have a special
role in the decomposition we are about to introduce: de�ne the n�n matrix N
by

N =

2
6664
0 1 0

. . .

1
0 0

3
7775 ;

where N = 0 if the dimension n = 1. Such matrices are called nilpotent because
Nn = 0. Using these we de�ne a matrix to be a Jordan block if it is of the form

J = �I +N =

2
6664
� 1 0

. . .

1
0 �

3
7775 :

Notice all scalars are 1 � 1 Jordan blocks. A Jordan block has one eigenvalue
� of multiplicity n. However, it has only one linearly independent eigenvector.
A key feature of a Jordan block is that it has precisely n subspaces which are
J-invariant. They are given by

C
k � f0g;

for 1 � k � n. When k = 1 this corresponds exactly to the subspace associated
with its eigenvector. We can now state the Jordan decomposition theorem.

14



Theorem 3. Suppose A 2 C n�n . Then there exists a nonsingular matrix T 2
C n�n , and an integer 1 � p � n, such that

T�1AT = J =

2
6664
J1 0

J2
. . .

0 Jp

3
7775 ;

where the matrices Jk are Jordan blocks.

This theorem states that a matrix can be transformed to one that is block-
diagonal, where each of the diagonal matrices is a Jordan block. Clearly if a
matrix is diagonalizable each Jordan block Jk will simply be a scalar equal to
an eigenvalue of A. In general each block Jk has a single eigenvalue of A in
all its diagonal entries; however, a given eigenvalue of A may occur in several
blocks.

The relevance of the Jordan decomposition is that it provides a canonical
form to characterize matrix similarity; namely, two matrices are similar if and
only if they share the same Jordan form. Another related feature is that the
Jordan form exhibits the structure of invariant subspaces of a given matrix.
This is best seen by writing the above equation as

AT = TJ:

Now suppose we denote by T1 the submatrix of T formed by its �rst n1 columns,
where n1 is the dimension of the block J1. Then the �rst n1 columns of the
preceding equation give

AT1 = T1J1;

which implies that S1 = ImT1 is invariant under A. Furthermore, we can use
this formula to study the linear mapping on S1 obtained by restriction of A. In
fact we �nd that in the basis de�ned by the columns of T1, this linear mapping
has the associated matrix J1; in particular, the only eigenvalue of A restricted
to S1 is �1.

The preceding idea can be extended by selecting T1 to contain the columns
corresponding to more than one Jordan block. The resulting invariant subspace
will be such that the restriction of A to it has only the eigenvalues of the chosen
blocks. Even more generally, we can pick any invariant subspace of J and
generate from it invariant subspaces of A. Indeed there are exactly nk invariant
subspaces of A associated with the nk � nk Jordan block Jk, and all invariant
subspaces of A can be constructed from this collection.

We will not explicitly require a constructive method for transforming a ma-
trix to Jordan form, and will use this result solely for analysis.

2.2 Self-adjoint, unitary, and positive de�nite matrices

We have already introduced the adjoint A� of a complex matrix A; in this
section we study in more detail the structure given to the space of matrices by

15



this operation. A �rst observation, which will be used extensively below, is that

(AB)� = B�A�

for matrices A and B of compatible dimensions; this follows directly by de�ni-
tion.

Another basic concept closely related to the adjoint is the Euclidean length
of a vector x 2 C

n , de�ned by

jxj =
p
x�x

This extends the usual de�nition of magnitude of a complex number, so our
notation will not cause any ambiguity. In particular,

jxj2 = x�x =

nX
i=1

jxij2:

Clearly jxj is never negative, and is zero only when the vector x = 0. Later in
the course we will discuss generalizations of this concept in more general vector
spaces.

We have already encountered the notion of a Hermitian matrix, characterized
by the self-adjoint property Q� = Q. Recall the notation H n for the real vector
space of complex Hermitian matrices. We now collect some properties and
introduce some new de�nitions, for later use. Everything we will state will
apply as well to the set Sn of real, symmetric matrices.

Our �rst result about self-adjoint matrices is that their eigenvalues are always
real. Suppose Ax = �x for nonzero x. Then we have

�x�x = x�Ax = (Ax)�x = ��x�x:

Since x�x > 0 we conclude that � = ��.
We say that two vectors x,y 2 C n are orthogonal if

y�x = 0:

Given a set of vectors fv1; : : : ; vkg in C n we say the vectors are orthonormal if

v�i vr =

�
1; if i = r;
0; if i 6= r.

The vectors are orthonormal if each has unit length and is orthogonal to all the
others. It is easy to show that orthonormal vectors are linearly independent, so
such a set can have at most n members. If k < n, then it is always possible to
�nd a vector vk+1 such that fv1; : : : ; vk+1g is an orthonormal set. To see this,
form the k � n matrix

V �k =

2
64
v�1
...
v�k

3
75 :
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The kernel of V �k has the nonzero dimension n � k, and therefore any element
of the kernel is orthogonal to the vectors fv1; : : : ; vkg. We conclude that any
element of unit length in KerV �k is a suitable candidate for vk+1. Applying this
procedure repeatedly we can generate an orthonormal basis fv1; : : : ; vng for
C
n .
A square matrix U 2 C n�n is called unitary if it satis�es

U�U = I:

From this de�nition we see that the columns of any unitary matrix forms an
orthonormal basis for C n . Further, since U is square it must be that U� = U�1

and therefore UU� = I . So the columns of U� also form an orthonormal basis.
A key property of unitary matrices is that if y = Ux, for some x 2 C n , then the
length of y is equal to that of x:

jyj = p
y�y =

p
(Ux)�(Ux) =

p
x�U�Ux = jxj:

Unitary matrices are the only matrices that leave the length of every vector
unchanged. We are now ready to state the spectral theorem for Hermitian
matrices.

Theorem 4. Suppose H is a matrix in H n . Then there exist a unitary matrix
U and a real diagonal matrix � such that

H = U�U�:

Notice that since U� = U�1 for a unitary U , the above expression is a similarity
transformation. Therefore the theorem says that a self-adjoint matrix can be
diagonalized by a unitary similarity transformation. Thus the columns of U
are all eigenvectors of H . Since the proof of this result assembles a number of
concepts from this chapter we provide it below.

Proof . We will use an induction argument. Clearly the result is true if H is
simply a scalar, and it is therefore su�cient to show that if the result holds for
matrices in H n�1 then it holds for H 2 H n . We proceed with the assumption
that the decomposition result holds for (n� 1)� (n� 1) Hermitian matrices.

The matrix H has at least one eigenvalue �1, and �1 is real since H is
Hermitian. Let x1 be an eigenvector associated with this eigenvalue, and without
loss of generality we assume it to have length one. De�ne X to be any unitary
matrix with x1 as its �rst column, namely,

X = [x1 � � �xn]:
Now consider the product X�HX . Its �rst column is given by X�Hx1 =
�1X

�x1 = �1e1, where e1 is the �rst element of the canonical basis. Its �rst
row is described by x�1HX , which is equal to �1x

�
1X = �1e

�
1, since x

�
1H = �1x

�
1

because H is self-adjoint. Thus we have

X�HX =

�
�1 0
0 H2

�
;
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where H2 a Hermitian matrix in H
n�1 . By the inductive hypothesis there exists

a unitary matrix X2 in C
(n�1)�(n�1) such that H2 = X2�2X

�
2 , where �2 is both

diagonal and real. We conclude that

H =

�
X

�
I 0
0 X2

���
�1 0
0 �2

���
I 0
0 X�

2

�
X�

�
:

The right-hand side gives the desired decomposition.
�

We remark, additionally, that the eigenvalues of H can be arranged in de-
creasing order in the diagonal of �. This follows directly from the above induc-
tion argument: just take �1 to be the largest eigenvalue.

We now focus on the case where these eigenvalues have a de�nite sign. Given
Q 2 H n , we say it is positive de�nite, denoted Q > 0, if

x�Qx > 0;

for all nonzero x 2 C n . Similarly Q is positive semide�nite, denoted Q � 0, if
the inequality is nonstrict; and negative de�nite and negative semide�nite are
similarly de�ned. If a matrix is not positive or negative semide�nite, then it is
inde�nite.

The following properties of positive matrices follow directly from the de�ni-
tion, and are left as exercises:

� If Q > 0 and A 2 C n�m , then A�QA � 0. If Ker(A) = f0g, then
A�QA > 0.

� If Q1 > 0, Q2 > 0, then �1Q1 + �2Q2 > 0 whenever �1 > 0, �2 � 0. In
particular, the set of positive de�nite matrices is a convex cone in H n , as
de�ned in the previous section.

At this point we may well ask, how can we check whether a matrix is positive
de�nite? The following answer is derived from Theorem 4:

If Q 2 H
n ; then Q > 0 if and only if the eigenvalues of Q are all positive.

Notice in particular that a positive de�nite matrix is always invertible, and its
inverse is also positive de�nite. Also a matrix is positive semide�nite exactly
when none of its eigenvalues are negative; in that case the number of strictly
positive eigenvalues is equal to the rank of the matrix.

An additional useful property for positive matrices is the existence of a
square root. Let Q = U�U� � 0, in other words the diagonal elements of � are
non-negative. Then we can de�ne �

1

2 to be the matrix with diagonal elements

�
1

2

k , and

Q
1

2 := U�
1

2U�:

ThenQ
1

2 � 0 (alsoQ
1

2 > 0 whenQ > 0) and it is easily veri�ed that Q
1

2Q
1

2 = Q.
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Having de�ned a notion of positivity, our next aim is to generalize the idea
of ordering to matrices: namely, what does it mean for a matrix to be larger
than another matrix? We write

Q > S

for matrices Q, S 2 H
n to denote that Q� S > 0. We refer to such expressions

generally as matrix inequalities. Note that for matrices that it may be that
neither Q � S nor Q � S holds; that is, not all matrices are comparable.

We conclude our discussion by establishing a very useful result, known as
the Schur complement formula.

Theorem 5. Suppose that Q;M , and R are matrices and that M and Q are
self-adjoint. Then the following are equivalent:

(a) The matrix inequalities Q > 0 and

M �RQ�1R� > 0 both hold:

(b) The matrix inequality �
M R

R� Q

�
> 0 is satis�ed:

Proof . The two inequalities listed in (a) are equivalent to the single block
inequality. �

M �RQ�1R� 0
0 Q

�
> 0 :

Now left- and right-multiply this inequality by the nonsingular matrix�
I RQ�1

0 I

�

and its adjoint, respectively, to get�
M R

R� Q

�
=

�
I RQ�1

0 I

�
�
�
M �RQ�1R� 0

0 Q

��
I 0

Q�1R� I

�
> 0:

Therefore inequality (b) holds if and only if (a) holds. �

We remark that an identical result holds in the negative de�nite case, re-
placing all \>" by \<".

Having assembled some facts about self-adjoint matrices, we move on to our
�nal matrix theory topic.

19



2.3 Singular value decomposition

Here we introduce the singular value decomposition of a rectangular matrix,
which will have many applications in our analysis, and is of very signi�cant
computational value. The term singular value decomposition, or SVD, refers to
the product U�V � in the statement of the theorem below.

Theorem 6. Suppose A 2 Cm�n and that p = minfm; ng. Then there exist
unitary matrices U 2 Cm�m and V 2 C n�n such that

A = U�V �;

where � 2 R
m�n and its scalar entries satisfy

(a) the condition �ir = 0, for i 6= r;

(b) the ordering �11 � �22 � � � � � �pp � 0.

Proof . Since the result holds for A if and only if it holds for A�, we assume
without loss of generality that n � m. To start let r be the rank of A�A, which
is Hermitian and therefore by Theorem 4 we have

A�A = V

�
��2 0
0 0

�
V �; where �� =

2
64
�1 0

. . .

0 �r

3
75 > 0 and V is unitary.

We also assume that the nonstrict ordering �1 � � � � � �r holds. Now de�ne

J =

�
�� 0
0 I

�

and we have

J�1V �A�AV J�1 = (AV J�1)�(AV J�1) =

�
Ir 0
0 0

�
;

where Ir denotes the r � r identity matrix. From the right-hand side we see
that the �rst r columns of AV J�1 form an orthonormal set, and the remaining
columns must be zero. Thus

AV J�1 =
�
U1 0

�
;

where U1 2 Cm�r . This leads to

A =
�
U1 0

� ��� 0
0 I

�
V � =

�
U1 U2

� ��� 0
0 0

�
V �;

where the right-hand side is valid for any U2 2 Cm�(m�r) . So choose U2 such
that

�
U1 U2

�
is unitary.

�
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When n = m the matrix � in the SVD is diagonal. When these dimensions are
not equal � has the form of either

2
64
�11 0

. . .

0 �mm 0

3
75 when n > m, or

2
6664
�11 0

. . .

�nn
0 0

3
7775 when n < m.

The �rst p non-negative scalars �kk are called the singular values of the matrix
A, and are denoted by the ordered set �1; : : : �p, where �k = �kk . As we already
saw in the proof, the decomposition of the theorem immediately gives us that

A�A = V (���)V � and AA� = U(���)U�;

which are singular value decompositions of A�A and AA�. But since V � = V �1

and U� = U�1 it follows that these are also the diagonalizations of the matrices.
Thus

�21 � �22 � � � � � �2p � 0

are exactly the p largest eigenvalues of A�A and AA�; the remaining eigenvalues
of either matrix are all necessarily equal to zero. This observation provides
a straightforward method to obtain the singular value decomposition of any
matrix A, by diagonalizing the Hermitian matrices A�A and AA�.

The SVD of a matrix has many useful properties. We use ��(A) to denote
the largest singular value �1, which from the SVD has the following property.

��(A) = maxfjAvj : v 2 C n and jvj = 1g:

Namely, it gives the maximum magni�cation of length a vector v can experience
when acted upon by A.

Finally, partition U =
�
u1 � � � um

�
and V =

�
v1 � � � vn

�
and suppose

that A has r nonzero singular values. Then

ImA = Im
�
u1 � � �ur

�
and KerA = Im

�
vr+1 � � � vn

�
:

That is, the SVD provides an orthonormal basis for both the image and kernel
of A. Furthermore notice that the rank of A is equal to r, precisely the number
of nonzero singular values.

Notes and references

Given its ubiquitous presence in analytical subjects, introductory linear algebra
is the subject of many excellent books; one choice is [5]. For an advanced
treatment from a geometric perspective the reader is referred to [2].

Two excellent sources for matrix theory are [3] and the companion work [4].
For information and algorithms for computing with matrices see [1].
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