
Programmable Packet Scheduling at Line Rate

Anirudh Sivaraman*, Suvinay Subramanian*, Mohammad Alizadeh*, Sharad Chole‡, Shang-Tse Chuang‡, Anurag Agrawal†,
Hari Balakrishnan*, Tom Edsall‡, Sachin Katti+, Nick McKeown+

*MIT CSAIL, †Barefoot Networks, ‡Cisco Systems, +Stanford University

ABSTRACT
Switches today provide a small menu of scheduling algo-
rithms. While we can tweak scheduling parameters, we
cannot modify algorithmic logic, or add a completely new
algorithm, after the switch has been designed. This pa-
per presents a design for a programmable packet scheduler,
which allows scheduling algorithms—potentially algorithms
that are unknown today—to be programmed into a switch
without requiring hardware redesign.

Our design uses the property that scheduling algorithms
make two decisions: in what order to schedule packets and
when to schedule them. Further, we observe that in many
scheduling algorithms, definitive decisions on these two
questions can be made when packets are enqueued. We use
these observations to build a programmable scheduler using
a single abstraction: the push-in first-out queue (PIFO), a
priority queue that maintains the scheduling order or time.

We show that a PIFO-based scheduler lets us program a
wide variety of scheduling algorithms. We present a hard-
ware design for this scheduler for a 64-port 10 Gbit/s shared-
memory (output-queued) switch. Our design costs an addi-
tional 4% in chip area. In return, it lets us program many so-
phisticated algorithms, such as a 5-level hierarchical sched-
uler with programmable decisions at each level.

CCS Concepts
•Networks→ Programmable networks;

Keywords
Programmable scheduling; switch hardware

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil
© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934899

1. INTRODUCTION
Today’s fastest switches, also known as line-rate switches,

provide a small menu of scheduling algorithms: typically,
a combination of Deficit Round Robin [36], strict priority
scheduling, and traffic shaping. A network operator can
change parameters in these algorithms, but cannot change
the core logic in an existing algorithm, or program a new
one, without building new switch hardware.

By contrast, with a programmable packet scheduler, net-
work operators could customize scheduling algorithms to
application requirements, e.g., minimizing flow completion
times [12] using Shortest Remaining Processing Time [35],
allocating bandwidth flexibly across flows or tenants [26,
33] using Weighted Fair Queueing [20], minimizing tail
packet delays using Least Slack Time First [29], etc. More-
over, with a programmable packet scheduler, switch vendors
could implement scheduling algorithms as programs running
on a programmable switching chip, making it easier to ver-
ify and modify these algorithms compared to baking in the
same algorithms into a chip as rigid hardware.

This paper presents a design for programmable packet
scheduling in line-rate switches. All scheduling algorithms
make two basic decisions: in what order packets should
be scheduled and when they should be scheduled, corre-
sponding to work-conserving and non-work-conserving al-
gorithms respectively. Furthermore, for many scheduling al-
gorithms, these two decisions can be made when a packet
is enqueued. This observation suggests a natural hardware
primitive for packet scheduling: a push-in first-out queue
(PIFO) [19, 38]. A PIFO is a priority queue that allows el-
ements to be pushed into an arbitrary position based on an
element’s rank (the scheduling order or time),1 but always
dequeues elements from the head.

We develop a programming model for scheduling (§2)
based on PIFOs with two key ideas. First, we allow users to
set a packet’s rank in a PIFO by supplying a small program
for computing packet ranks (§2.1). Coupling this program
with a single PIFO allows the user to program any schedul-
ing algorithm where the relative scheduling order of buffered
packets does not change with future packet arrivals. Sec-
ond, users can compose PIFOs together in a tree to program

1When the rank denotes the scheduling time, the PIFO im-
plements a calendar queue; we distinguish between PIFOs
and priority queues for this reason.

http://dx.doi.org/10.1145/2934872.2934899

hierarchical scheduling algorithms that violate this relative
ordering property (§2.2 and §2.3).

We find that a PIFO-based scheduler lets us program many
scheduling algorithms (§3), e.g., Weighted Fair Queue-
ing [20], Token Bucket Filtering [10], Hierarchical Packet
Fair Queueing [13], Least-Slack Time-First [29], the Rate-
Controlled Service Disciplines [42], and fine-grained prior-
ity scheduling (e.g., Shortest Job First). Until now, any line-
rate implementations of these algorithms—if they exist at
all—have been hard-wired into switch hardware. We also
describe the limits of the PIFO abstraction (§3.5) by pre-
senting examples of scheduling algorithms that cannot be
programmed using PIFOs.

To evaluate the hardware feasibility of PIFOs, we imple-
mented the design (§4) in Verilog [9] and synthesized it to
an industry-standard 16-nm standard-cell library (§5). The
main operation in our design is sorting an array of PIFO
elements at line rate. To implement this sort, tradition-
ally considered hard [30, 36], we exploit two observations.
One, most scheduling algorithms schedule across flows, with
packet ranks increasingly monotonically within each flow.
Hence, we only need to sort the head packets of all flows to
dequeue from a PIFO. Two, transistor scaling now makes it
feasible to sort these head packets at line rate.

As a result, we find (§5) that is feasible to build a pro-
grammable scheduler, which

• supports 5-level hierarchical scheduling, where the
scheduling algorithms at each level are programmable;

• runs at a clock frequency of 1 GHz—sufficient for a
64-port 10 Gbit/s shared-memory switch;

• uses only 4% additional chip area compared to a
shared-memory switch that supports only a small menu
of scheduling algorithms; and

• has the same buffer size as a typical shared-memory
switch in a datacenter (~60K packets, ~1K flows) [3].

While we have not produced a chip supporting PIFOs, our
synthesis results are promising and make a strong technical
case for switching chip manufacturers to invest in hardware
for programmable schedulers. To that end, C++ code for a
hardware reference model of our programmable scheduler
and Verilog code for our hardware design are available at
http://web.mit.edu/pifo/.

2. A PROGRAMMING MODEL FOR
PACKET SCHEDULING

For work-conserving scheduling algorithms, the charac-
teristic feature is the order in which packets are sched-
uled; for non-work-conserving ones, it is the time at which
each packet is sent. Moreover, for most algorithms used in
practice, these two decisions can be determined definitively
when a packet is enqueued into the packet buffer [38].

Our programming model is built around this observation
and has two underlying components:

f = flow(p) # compute flow from packet p
if f in last_finish:
p.start = max(virtual_time , last_finish[f])

else: # p is first packet in f
p.start = virtual_time

last_finish[f] = p.start + p.length/f.weight
p.rank = p.start

Figure 1: Scheduling transaction for STFQ. p.x refers to a
packet field x in packet p. y refers to a state variable that is
persisted on the switch across packets, e.g., last_finish
and virtual_time in this snippet. p.rank denotes the
packet’s computed rank.

1. The push-in first-out queue (PIFO) [19], which main-
tains the scheduling order or scheduling time for en-
queued elements. A PIFO is a priority queue that al-
lows elements to be enqueued into an arbitrary position
based on the element’s rank, but dequeues elements
from the head. Elements with a lower rank are de-
queued first; if two elements have the same value, the
element enqueued earlier is dequeued first.

2. The computation of an element’s rank before it is en-
queued into a PIFO. We model this computation as a
packet transaction [37], an atomically executed block
of code that is executed once for each element before
enqueuing it in a PIFO.2

We note that scheduling with the PIFO abstraction does
not require packets to be stored in per-flow queues.

We now describe the three main abstractions in our pro-
gramming model. First, we show how to use a scheduling
transaction to program simple work-conserving scheduling
algorithms using a single PIFO (§2.1). Second, we gen-
eralize to a scheduling tree to program hierarchical work-
conserving scheduling algorithms (§2.2). Third, we augment
nodes of this tree with a shaping transaction to program non-
work-conserving scheduling algorithms (§2.3).

2.1 Scheduling transactions
A scheduling transaction is a block of code associated

with a PIFO that is executed once for each packet before
the packet is enqueued. The scheduling transaction com-
putes the packet’s rank, which determines its position in the
PIFO. A single scheduling transaction and PIFO are suffi-
cient to specify any scheduling algorithm where the relative
scheduling order of packets already in the buffer does not
change with the arrival of future packets.

Weighted Fair Queueing (WFQ) [20] is one example.
It achieves weighted max-min allocation of link capacity
across flows3 sharing a link. Approximations to WFQ4

include Deficit Round Robin (DRR) [36], Stochastic Fair-

2Any state visible on the switch after processing N consec-
utive packets is identical to a serial execution of the transac-
tions across the N packets in order of packet arrival [37].
3In this paper, a flow is any set of packets sharing common
values for specific packet fields.
4An approximation is required because the original WFQ
algorithm [20] has a complex virtual time calculation.

http://web.mit.edu/pifo/

Left

(0.1)
Right

(0.9)

A

(0.3)

B

(0.7)

C

(0.4)

D

(0.6)

root

(a) Algorithm

Left Right

root
True,

WFQ_Root

p.class == Left,

WFQ_Left

p.class == Right,

WFQ_Right

(b) Scheduling tree

f = flow(p) # see caption below
if f in last_finish:

p.start = max(virtual_time , last_finish[f])
else:

p.start = virtual_time
last_finish[f] = p.start + p.length / f.weight
p.rank = p.start

(c) Scheduling transaction for WFQ_Root, WFQ_Left, and
WFQ_Right.

Figure 2: Programming HPFQ using PIFOs. “Left” and “Right” are classes. A, B, C, and D are flows. Within each tree node in
the scheduling tree, the first line is the packet predicate and the second is the scheduling transaction. All three nodes execute the
same code for the scheduling transaction except for their flow() function, which returns a packet’s flow/class. For WFQ_Root,
it returns the packet’s class: Left/Right. For WFQ_Left and WFQ_Right, it returns the packet’s flow: A/B or C/D.

ness Queueing (SFQ) [30], and Start-Time Fair Queueing
(STFQ) [25]. We consider STFQ here, and show how to
program it using the scheduling transaction in Figure 1.

Before a packet is enqueued, STFQ computes a virtual
start time for that packet (p.start in Figure 1) as the maxi-
mum of the virtual finish time of the previous packet in that
packet’s flow (last_finish[f] in Figure 1) and the current
value of the virtual time (virtual_time in Figure 1), a state
variable that tracks the virtual start time of the last dequeued
packet across all flows (§5.5 discusses how this state vari-
able can be accessed on enqueue). Packets are scheduled in
order of increasing virtual start times, which is the packet’s
rank in the PIFO.

2.2 Scheduling trees
Scheduling algorithms that require changing the relative

order of buffered packets when a new packet arrives cannot
be programmed using a single scheduling transaction and
PIFO. An important class of such algorithms are hierarchi-
cal schedulers that compose multiple scheduling policies at
different levels of the hierarchy. We introduce a scheduling
tree for such algorithms.

To illustrate a scheduling tree, consider Hierarchical
Packet Fair Queueing (HPFQ) [13]. HPFQ first divides
link capacity between classes, then recursively between sub
classes in each class, all the way down to the leaf nodes.
Figure 2a provides an example; the number on each child
indicates its weight relative to its siblings. HPFQ cannot
be realized using a single scheduling transaction and PIFO
because the relative scheduling order of packets that are al-
ready buffered can change with future packet arrivals (Sec-
tion 2.2 of the HPFQ paper [13] provides an example).

HPFQ can, however, be realized using a tree of PIFOs,
with a scheduling transaction attached to each PIFO in the
tree. To see how, observe that HPFQ executes WFQ at each
level of the hierarchy, with each node using WFQ among its
children. As discussed in §2.1, a single PIFO encodes the
current scheduling order for WFQ, i.e., the scheduling order
if there are no further arrivals. Similarly, a tree of PIFOs
(Figure 3), where each PIFO’s elements are either packets or
references to other PIFOs, can be used to encode the current
scheduling order of HPFQ and other hierarchical schedul-
ing algorithms. To determine this scheduling order, inspect

P1P2

LRRL

PIFO-L

P3P4

PIFO-R

This tree encodes

the order

L P3

R P1

R P2

LP4

i.e., P3, P1, P2, P4

PIFO-Root

Figure 3: PIFO trees encode current scheduling order.

the root PIFO to determine the next child PIFO to sched-
ule. Then, recursively inspect the child PIFO to determine
the next grandchild PIFO to schedule, until reaching a leaf
PIFO that determines the next packet to schedule.

The current scheduling order of the PIFO tree can be mod-
ified as packets are enqueued, by executing a scheduling
transaction at each node in the PIFO tree. This is our sec-
ond programming abstraction: a scheduling tree. Each node
in this tree is a tuple with two attributes. First, a packet
predicate that specifies which packets execute that node’s
scheduling transaction before enqueuing an element into that
node’s PIFO; this element is either a packet or a reference to
a child PIFO of the node. Second, a scheduling transaction
that specifies how the rank is computed for elements (packet
or PIFO references) that are enqueued into the node’s PIFO.
Figure 2b shows an example for HPFQ.

When a packet is enqueued into a scheduling tree, it ex-
ecutes one transaction at each node whose packet predicate
matches the arriving packet. These nodes form a path from
a leaf to the root of the tree and the transaction at each node
on this path updates the scheduling order at that node. One
element is enqueued into the PIFO at each node on the path
from the leaf to the root. At the leaf node, that element is the
packet itself; at the other nodes, it is a reference to the next
PIFO on the path towards the leaf. Packets are dequeued in
the order encoded by the tree of PIFOs (Figure 3).

2.3 Shaping transactions
So far, we have only considered work-conserving schedul-

ing algorithms. Shaping transactions allow us to program
non-work-conserving scheduling algorithms. Non-work-
conserving algorithms differ from work-conserving algo-
rithms in that they decide the time at which packets are

Left

(0.1)
Right

(0.9)

A

(0.3)

B

(0.7)

C

(0.4)

D

(0.6)

root

Right rate limited to 5 Mbit/s

(a) Algorithm

Left Right

root
True,

WFQ_Root,

NULL

p.class == Left,

WFQ_Left,

NULL

p.class == Right,

WFQ_Right,

TBF_Right

(b) Scheduling tree

tokens = tokens + r * (now - last_time)
if (tokens > B):

tokens = B
if (p.length <= tokens):

p.send_time = now
else:

p.send_time = now + (p.length - tokens) / r
tokens = tokens - p.length
last_time = now
p.rank = p.send_time

(c) Shaping transaction for TBF_Right.
Figure 4: Programming Hierarchies with Shaping using PIFOs. The third line within each tree node in the scheduling tree is
the shaping transaction. The scheduling transactions for WFQ_Right, WFQ_Left, and WFQ_Root are identical to Figure 2.

scheduled as opposed to the scheduling order. As an ex-
ample, consider the algorithm shown in Figure 4a, which
extends the previous HPFQ example with the requirement
that the Right class be limited to 5 Mbit/s. We refer to this
example throughout the paper as Hierarchies with Shaping.

To motivate our abstraction for non-work-conserving
algorithms, recall that a PIFO tree encodes the current
scheduling order, by walking down the tree from the root
PIFO to a leaf PIFO to schedule packets. With this encod-
ing, a PIFO reference can be scheduled only if it resides in
a PIFO and there is a chain of PIFO references from the
root PIFO to that PIFO reference. To program non-work-
conserving scheduling algorithms, we provide the ability to
defer when a PIFO reference is enqueued into the PIFO tree,
and hence is available for scheduling.

To defer enqueues into the PIFO tree, we augment nodes
of the scheduling tree with an optional third attribute: a
shaping transaction that is executed on all packets matched
by the node’s packet predicate. The shaping transaction on
a node determines when a reference to the node’s PIFO is
available for scheduling in the node’s parent’s PIFO. The
shaping transaction is implemented using a shaping PIFO at
the child—distinct from the scheduling PIFO at all nodes—
that holds references to the child’s scheduling PIFO until
they are released to the parent’s scheduling PIFO. The shap-
ing transaction uses the wall-clock departure time as the rank
for the shaping PIFO, unlike the scheduling transaction that
uses the relative scheduling order as the rank.

Once a reference to the child’s scheduling PIFO has
been released to the parent’s scheduling PIFO from the
child’s shaping PIFO, it is scheduled by executing the par-
ent’s scheduling transaction and enqueuing it in the parent’s
scheduling PIFO. If a node has no shaping transaction, ref-
erences to that node’s scheduling PIFO are immediately en-
queued into its parent’s scheduling PIFO with no deferral.
The dequeue logic during shaping still follows Figure 3: de-
queue recursively from the root until we schedule a packet.

Figure 4c shows an example of a shaping transaction that
defers enqueues based on a Token Bucket Filter (TBF) with
a rate-limit of r and a burst allowance B. Here, the packet’s
wall clock departure time (p.send_time), is used as its
rank in the shaping PIFO. Figure 4b shows how to use this
shaping transaction to program Hierarchies with Shaping:

Parent

Child

1a

23

1a. Time 0: Enqueue element into C.S.

1b. Time 0: Enqueue ref to C.S into C.H.

2. Time T (> 0): C.H dequeues ref, enqueues it into P.S.

3. Time T’ (> T): P.S dequeues from C.S.

Shaping (C.H)Scheduling (C.S)

Scheduling (P.S)

1b
Arriving

Element

Figure 5: Child’s shaping transaction (1b) defers enqueue
into Parent’s scheduling PIFO (2) until time T. Blue arrows
show enqueue paths. Red arrows show dequeue paths.

the TBF shaping transaction (TBF_Right) determines when
PIFO references for Right’s scheduling PIFO are released to
Root’s scheduling PIFO.

Timing of operations during shaping. When a packet is
enqueued in a tree of PIFOs, it executes a scheduling trans-
action at the leaf node whose predicate matches this packet.
It then continues upward towards the root executing schedul-
ing transactions along the path, until it reaches the first node
that also has a shaping transaction attached to it. Figure 5
shows the operations that occur at this node, Child, and its
parent, Parent, to implement shaping.

Two transactions are executed at Child: the original
scheduling transaction to push an element into Child’s
scheduling PIFO (step 1a in Figure 5) and a shaping transac-
tion to push an element R (step 1b), which is a reference to
Child’s scheduling PIFO, into Child’s shaping PIFO. After
R is pushed into Child’s shaping PIFO, further transactions
for this packet are suspended until R’s rank, the wall-clock
time T , is reached.

At T , R will be dequeued from Child’s shaping PIFO and
enqueued into Parent’s scheduling PIFO (step 2), making it
available for scheduling at Parent. The rest of the packet’s
path to the root is now resumed starting at Parent. This
suspend-resume process can occur multiple times if there are

multiple nodes with shaping transactions along a packet’s
path from its leaf to the root.

3. THE EXPRESSIVENESS OF PIFOS
In addition to the three examples from §2, we now provide

several more examples (§3.1 through §3.4) and also describe
the limitations of our programming model (§3.5).

3.1 Least Slack-Time First
Least Slack-Time First (LSTF) [29, 31] schedules packets

at each switch in increasing order of packet slacks, i.e., the
time remaining until each packet’s deadline. Packet slacks
are initialized at an end host or edge switch and are decre-
mented by the wait time at each switch’s queue. We can
program LSTF using a simple scheduling transaction:

p.rank = p.slack + p.arrival_time

The addition of the packet’s arrival time to the slack al-
ready carried in the packet ensures that packets are dequeued
in order of their slack at the time of dequeue, not enqueue.
Then, after packets are dequeued, we subtract the time at
which the packet is dequeued from the packet’s slack, which
has the effect of decrementing the slack by the wait time at
the switch’s queue. This subtraction can be achieved by pro-
gramming the egress pipeline of a programmable switch [17]
to decrement one header field by another.

3.2 Stop-and-Go Queueing

if (now >= frame_end_time):
frame_begin_time = frame_end_time
frame_end_time = frame_begin_time + T

p.rank = frame_end_time

Figure 6: Shaping transaction for Stop-and-Go Queueing.

Stop-and-Go Queueing [24] is a non-work-conserving al-
gorithm that provides bounded delays to packets using a
framing strategy. Time is divided into non-overlapping
frames of equal length T, where every packet arriving within
a frame is transmitted at the end of the frame, smoothing out
any burstiness in traffic patterns induced by previous hops.

The shaping transaction in Figure 6 specifies the scheme.
frame_begin_time and frame_end_time are two state vari-
ables that track the beginning and end of the current frame
in wall-clock time. When a packet is enqueued, its departure
time is set to the end of the current frame. Multiple packets
with the same departure time are sent out in first-in first-out
order, as guaranteed by a PIFO’s semantics for breaking ties
with equal ranks (§2).

3.3 Minimum rate guarantees
A common scheduling policy on many switches today is

providing a minimum rate guarantee to a flow, provided the
sum of such guarantees does not exceed the link capacity.
A minimum rate guarantee can be programmed using PIFOs
with a two-level PIFO tree, where the root of the tree im-
plements strict priority scheduling across flows. Flows be-
low their minimum rate are scheduled preferentially to flows

Replenish tokens
tb = tb + min_rate * (now - last_time)
if (tb > BURST_SIZE):

tb = BURST_SIZE

Check if we have enough tokens
if (tb > p.size):

p.over_min = 0 # under min. rate
tb = tb - p.size

else:
p.over_min = 1 # over min. rate

last_time = now
p.rank = p.over_min

Figure 7: Scheduling transaction for min. rate guarantees.

above their minimum rate. Then, at the next level of the tree,
the PIFOs implement the FIFO discipline for each flow.

When a packet is enqueued, we execute a FIFO schedul-
ing transaction at its leaf node, setting its rank to the wall-
clock time on arrival. At the root, a PIFO reference (the
packet’s flow identifier) is pushed into the root PIFO using
a rank that reflects whether the flow is above or below its
rate limit after the arrival of the current packet. To deter-
mine this, we run the scheduling transaction in Figure 7 that
uses a token bucket (the state variable tb) that can be filled
up until BURST_SIZE to decide if the arriving packet puts the
flow above or below min_rate.

Note that a single PIFO node with the scheduling transac-
tion in Figure 7 is not sufficient. It causes packet reordering
within a flow: an arriving packet can cause a flow to move
from a lower to a higher priority and, in the process, leave
before low priority packets from the same flow that arrived
earlier. The two-level tree solves this problem by attaching
priorities to transmission opportunities for a specific flow,
not specific packets. Now if an arriving packet causes a flow
to move from low to high priority, the next packet scheduled
from this flow is the earliest packet of that flow chosen in
FIFO order, not the arriving packet.

3.4 Other examples
We now briefly describe several more scheduling algo-

rithms that can be programmed using PIFOs.
1. Fine-grained priority scheduling. Many algorithms

schedule the packet with the lowest value of a field ini-
tialized by the end host. These algorithms can be pro-
grammed by setting the packet’s rank to the appropri-
ate field. Examples of such algorithms and the fields
they use are strict priority scheduling (IP TOS field),
Shortest Flow First (flow size), Shortest Remaining
Processing Time (remaining flow size), Least Attained
Service (bytes received for a flow), and Earliest Dead-
line First (time until a deadline).

2. Service-Curve Earliest Deadline First (SC-
EDF) [34] schedules packets in increasing order of a
deadline computed from a flow’s service curve, which
specifies the service a flow should receive over any
given time interval. We can program SC-EDF using a

scheduling transaction that sets a packet’s rank to the
deadline computed by the SC-EDF algorithm.

3. Rate-Controlled Service Disciplines (RCSD) [42]
such as Jitter-EDD [41] and Hierarchical Round
Robin [27] are a class of non-work-conserving sched-
ulers that can be implemented using a combination of
a rate regulator to shape traffic and a packet scheduler
to schedule the shaped traffic. An RCSD algorithm can
be programmed using PIFOs by setting the rate regu-
lator using a shaping transaction and the packet sched-
uler using a scheduling transaction.

4. Incremental deployment. Operators may wish to use
programmable scheduling only for a subset of their
traffic. This can be programmed as a hierarchical
scheduling algorithm, with one FIFO class dedicated
to legacy traffic and another to experimental traffic.
Within the experimental class, an operator could pro-
gram any scheduling tree.

3.5 Limitations
Changing the scheduling order of all packets of a flow.
Although a tree of PIFOs can enable algorithms where the
relative scheduling order of buffered packets changes in re-
sponse to new packet arrivals (§2.2), it does not permit arbi-
trary changes to the scheduling order of buffered packets. In
particular, it does not support changing the scheduling order
for all buffered packets of a flow when a new packet from
that flow arrives.

An example of an algorithm that needs this capability is
pFabric [12], which introduces “starvation prevention” to
schedule the packets of the flow with the shortest remain-
ing size in FIFO order, in order to prevent packet reordering.
To see why this is beyond the capabilities of PIFOs, con-
sider the sequence of arrivals below, where pi(j) represents a
packet from flow i with remaining size j, where the remain-
ing size is the number of unacknowledged bytes in a flow.

1. Enqueue p0(7).
2. Enqueue p1(9), p1(8).
3. The scheduling order is: p0(7), p1(9), p1(8).
4. Enqueue p1(6).
5. The new order is: p1(9), p1(8), p1(6), p0(7).
Specifying these semantics are beyond the capabilities of

the PIFO abstractions we have developed.5 For instance,
adding a level of hierarchy with a PIFO tree does not help.
Suppose we programmed a PIFO tree implementing FIFO
at the leaves and picking among flows at the root based on
the remaining flow size. This would result in the schedul-
ing order p1(9), p0(7), p1(8), p1(6), after enqueuing p1(6).
The problem is that there is no way to change the scheduling
order for multiple references to flow 1 in the root PIFO by
enqueuing only one reference to flow 1.

A single PIFO can, however, implement pFabric with-
out starvation prevention, which is identical to the Short-
est Remaining Processing Time (SRPT) discipline (§3.4). It

5This is ironic because we started this project to implement
pFabric in a programmable manner, and have ended up being
able to do almost everything but that!

can also implement the Shortest Flow First (SFF) discipline
(§3.4), which performs almost as well as pFabric [12].

Traffic shaping across multiple nodes in a scheduling
tree. Our programming model attaches a single shaping and
scheduling transaction to a tree node. This lets us enforce
rate limits on a single node, but not across multiple nodes.

As an example, PIFOs cannot express the following pol-
icy: WFQ on a set of flows A, B, and C, with the additional
constraint that the aggregate throughput of A+B doesn’t ex-
ceed 10 Mbit/s. One work around is to implement this as
HPFQ across two classes C1 and C2, with C1 containing A
and B, and C2 containing C alone. Then, we enforce the rate
limit of 10 Mbit/s on C1 as in Figure 4. However, this isn’t
equivalent to our desired policy. More generally, our pro-
gramming model for programmable scheduling establishes
a one-to-one relationship between the scheduling and shap-
ing transactions, which is constraining for some algorithms.

Output rate limiting. The PIFO abstraction enforces
rate limits using a shaping transaction, which determines a
packet or PIFO reference’s scheduling time before it is en-
queued into a PIFO. The shaping transaction permits rate
limiting on the input side, i.e., before elements are enqueued.
An alternate form of rate limiting is on the output, i.e., by
limiting the rate at which elements are scheduled.

To illustrate the difference, consider a scheduling algo-
rithm with two priority queues, LO and HI, where LO is to be
rate limited to 10 Mbit/s. To program this using input side
rate limiting, we would use a shaping transaction to impose
a 10 Mbit/s rate limit on LO and a scheduling transaction
to implement strict priority scheduling between LO and HI.
Now, assume packets from HI starve LO for a long period of
time. During this time, packets from LO, after leaving the
shaping PIFO, accumulate in the PIFO shared with HI. Now,
if there are suddenly no more HI packets, all packets from LO
are transmitted at line rate, and no longer rate limited to 10
Mbit/s for a transient period of time, i.e., until all instances
of LO are drained out of the PIFO shared with HI. Input rate
limiting still provides long-term rate guarantees, while out-
put rate limiting provides short-term guarantees as well.

4. DESIGN
We now present a hardware design for a programmable

scheduler based on PIFOs. We target shared-memory
switches such as Broadcom’s Trident II [3] (Figure 8). In
these switches, a parser feeds packets from all ports into
a shared ingress pipeline, after which they enter a shared
scheduler and a similarly shared egress pipeline. To reduce
chip area, combinational logic and memory for packet pro-
cessing are shared across ports, both in the pipelines and in
the scheduler. As a result, digital circuits on the switch must
handle the aggregate processing requirements of all output
ports at minimum packet size, e.g., 64 10 Gbit/s ports each
transmitting 64 byte packets. This translates into ~1 bil-
lion packets per second, after accounting for minimum inter-
packet gaps, or a 1 GHz clock frequency.

We first describe how scheduling and shaping transactions
can be implemented (§4.1). Then, we show how a tree of PI-

SchedulerParser DeparserIngress pipeline Egress pipeline

TCP

IPv4 IPv6

VLANEth match/action

Stage 1

match/action

Stage 2

match/action

Stage 32

match/action

Stage 1

match/action

Stage 32

64

Output

ports

64

Input

ports

Figure 8: A 64-port shared memory switch. Combinational logic and memory are shared across ports, both in the pipelines
and in the scheduler. The switch runs at a clock frequency of 1 GHz.

FOs can be realized using a full mesh of PIFO blocks by
appropriately interconnecting these blocks (§4.2). We also
describe how a compiler (§4.3) could automatically config-
ure this mesh from a scheduling tree.

4.1 Scheduling and shaping transactions
To program and implement scheduling and shaping trans-

actions, we use Domino [37], a recent system to program
stateful data-plane algorithms at line rate. Domino intro-
duces hardware primitives (atoms), and software abstrac-
tions (packet transactions) to program stateful algorithms on
programmable switches [1, 5, 11, 17]

Atoms are processing units representing a programmable
switch’s instruction set, while a packet transaction is a
block of code that is guaranteed to execute atomically. The
Domino compiler compiles a scheduling or shaping packet
transaction into an atom pipeline that executes the transac-
tion atomically, rejecting the transaction if it can’t run at line
rate. Transactions may be rejected for two reasons; either
because there are not enough atoms to execute the transac-
tion, or because the transaction requires computation beyond
the atoms’ capabilities.

Domino proposes atoms that are expressive enough to
support many data-plane algorithms and small enough to
implement at 1 GHz . For instance, even the most expres-
sive of these atoms, called Pairs, occupies only 6000 µm2

in a 32 nm standard-cell library [37]; a 200 mm2 switch-
ing chip [23] can support 300 Pairs atoms with < 2% area
overhead. These 300 atoms are sufficient for many data-
plane algorithms [37]. The Domino paper also shows how
the STFQ transaction (Figure 1) can be run at 1 GHz on a
switch pipeline with the Pairs atom.

Similarly, we could use the Domino compiler to com-
pile other scheduling and shaping transactions to an atom
pipeline. For example, the transactions for Token Bucket
Filtering (Figure 4c), minimum rate guarantees (§3.3), Stop-
and-Go queueing (§3.2), and LSTF (§3.1), can all be ex-
pressed as Domino programs. An important restriction in
Domino is the absence of loops, which precludes rank com-
putations containing a loop with an unbounded iteration
count. We have not, however, encountered a scheduling or
shaping transaction requiring this capability.

4.2 The PIFO mesh
We lay out PIFOs physically as a full mesh (Figure 9) of

Logical

PIFOs

Next-hop

lookup

Atom

pipeline

Enq Deq

Logical

PIFOs

Next-hop

lookup

Atom

pipeline

Enq Deq

Logical

PIFOs

Next-hop

lookup

Atom

pipeline

Enq Deq

Figure 9: Three PIFO blocks in a PIFO mesh

Logical PIFOsAtom pipeline Next-hop lookup

Enq (logical PIFO ID,

rank, metadata)

Deq (logical PIFO ID)

Figure 10: A single PIFO block. Enqueue operations exe-
cute transactions in the atom pipeline before enqueuing ele-
ments into a logical PIFO. Dequeue operations dequeue ele-
ments from logical PIFOs before looking up their next hop.

PIFO blocks (Figure 10). Each PIFO block supports multi-
ple logical PIFOs. These logical PIFOs correspond to PIFOs
for different output ports or different classes in a hierarchical
scheduling algorithm, which share the combinational logic
required for a PIFO. We expect a small number of PIFO
blocks in a typical switch (e.g., fewer than five) because each
PIFO block corresponds to a different level of a hierarchical
scheduling tree and most practical hierarchical scheduling
algorithms we know of do not require more than a few levels
of hierarchy. As a result, a full mesh between these blocks
is feasible (§5.3 has more details).

PIFO blocks run at 1 GHz and contain an atom pipeline
to execute scheduling and shaping transactions before en-
queuing into a logical PIFO. In every clock cycle, each PIFO
block supports one enqueue and dequeue operation on a log-
ical PIFO residing within that block (shaping transactions
require more than one operation per clock cycle and are dis-
cussed in §4.4).

The interface to a PIFO block is:
1. Enqueue an element (packet or reference to another

PIFO) given a logical PIFO ID, the element’s rank,
and some metadata that will be carried with the ele-
ment such as the packet length required for STFQ’s
rank computation. The enqueue returns nothing.

WFQ_Root

WFQ_Left WFQ_Right

Pkts. from

flows A/B

Pkts. from

flows C/D
Transmit

pkt.

Transmit

pkt.

Link

available

(a) Logical PIFO tree for HPFQ

Link

available

Transmit

pkt.

Pkt. from all

flows: A/B/C/D

WFQ_Root
WFQ_Left

WFQ_Right

DEQ DEQ

ENQ ENQ

Next-hop

lookup

Next-hop

lookup

(b) Physical PIFO mesh for HPFQ
Figure 11: Compiling HPFQ (Figure 2) to a PIFO mesh. On the left, the logical PIFO tree captures relationships between
PIFOs: which PIFOs dequeue or enqueue into which PIFOs. Red arrows indicate dequeues, blue indicates enqueues. On the
right, we show the physical PIFO mesh for the logical PIFO tree on the left, following the same notation.

WFQ_Root

WFQ_Left WFQ_Right

Pkts. from

flows A/B

Pkts. from

flows C/D

TBF_Right

Transmit

pkt.

Transmit

pkt.

Link

available

(a) Logical PIFO tree for Hierarchies with Shaping

Transmit

pkt.

Pkt. from

flows C/D

Pkt. from

flows A/B

WFQ_Root
WFQ_Left

WFQ_Right

TBF_Right

Pkt. from

flows C/D

DEQ DEQDEQ

ENQ ENQ ENQ

Next-hop

lookup
Next-hop

lookup

Next-hop

lookup

Link

available

(b) Physical PIFO mesh for Hierarchies with Shaping
Figure 12: Compiling Hierarchies with Shaping (Figure 2) to a PIFO mesh. Same comments as Figure 11 apply.

2. Dequeue from a specific logical PIFO ID within the
block. The dequeue returns either a packet or a refer-
ence to another PIFO.

After a dequeue, besides transmitting a packet, a PIFO
block may communicate with another for two reasons:

1. To dequeue a logical PIFO in another block, e.g., when
dequeuing a sequence of PIFOs from the root to a leaf
of a scheduling tree to transmit packets.

2. To enqueue into a logical PIFO in another block, e.g.,
when enqueuing a packet that has just been dequeued
from a shaping PIFO.

We configure these post-dequeue operations using a small
lookup table, which looks up the “next hop” following a de-
queue. This lookup table specifies an operation (enqueue,
dequeue, transmit), the PIFO block for the next operation,
and any arguments the operation needs.

4.3 Compiling from a scheduling tree to a
PIFO mesh

A programmer should not have to manually configure a
PIFO mesh. Instead, a compiler translates from a scheduling

tree to a PIFO mesh configuration implementing that tree.
While we haven’t prototyped this compiler, we illustrate how
it would work using HPFQ (Figure 2) and Hierarchies with
Shaping (Figure 4).

The compiler first converts the scheduling tree to a log-
ical PIFO tree that specifies the enqueue and dequeue op-
erations on each PIFO. Figures 11a and 12a show this tree
for Figures 2 and 4 respectively. It then overlays this tree
over a PIFO mesh by assigning every level of the tree to
a PIFO block and configuring the lookup tables to connect
PIFO blocks as required by the tree. Figure 11b shows the
PIFO mesh for Figure 2, while Figure 12b shows the PIFO
mesh for Figure 4.

If a particular level of the tree has more than one enqueue
or dequeue from another level, which arises in the presence
of shaping transactions (§4.4), we allocate new PIFO blocks
to respect the constraint that any PIFO block provides one
enqueue and dequeue operation per clock cycle, e.g., Fig-
ure 12b has an additional PIFO block containing TBF_Right
alone. Finally, we use the Domino compiler to compile
scheduling and shaping transactions.

4.4 Challenges with shaping transactions
Each PIFO block supports one enqueue and dequeue op-

eration per clock cycle. This suffices for any algorithm
that only uses scheduling transactions (work-conserving al-
gorithms) because, for such algorithms, each packet needs
at most one enqueue and one dequeue at each level of its
scheduling tree, and we map the PIFOs at each level to a
different PIFO block.

However, shaping transactions pose challenges. Consider
Hierarchies with Shaping (Figure 12a). When the shaping
transaction enqueues elements into TBF_Right, these ele-
ments will be released into WFQ_Root at a future time T .
The external enqueue into WFQ_Root may also happen ex-
actly at T , if a packet arrives at T . This creates a conflict
because there are two enqueue operations in the same cy-
cle. Conflicts may also occur on dequeues. For instance, if
TBF_Right shared its PIFO block with another logical PIFO,
dequeue operations to the two logical PIFOs could occur at
the same time because TBF_Right can be dequeued at any
arbitrary wall-clock time.

In a conflict, only one of the two operations can proceed.
We resolve this conflict in favor of scheduling PIFOs. Shap-
ing PIFOs are used for rate limiting to a rate lower than the
line rate. Therefore, they can afford to be delayed by a few
clocks until there are no conflicts. By contrast, delaying
scheduling decisions of a scheduling PIFO would mean that
the switch would idle and not satisfy its line-rate guarantee.

As a result, shaping PIFOs only get best-effort service.
There are workarounds to this. One is overclocking the
pipeline at (say) 1.25 GHz instead of 1 GHz, providing spare
clock cycles for such best-effort processing. Another is to
provide multiple ports to a PIFO block to support multi-
ple operations every clock. These techniques are commonly
used in switches for background tasks such as reclaiming
buffer space, and can be applied to the PIFO mesh as well.

5. HARDWARE IMPLEMENTATION
This section describes the hardware implementation of

our programmable scheduler. We discuss performance re-
quirements (§5.1), the implementation of a PIFO block
(§5.2), and the full-mesh interconnect between them (§5.3).
Finally, we estimate the area overhead of our design (§5.4).

5.1 Performance requirements
Our goal is a programmable scheduler competitive with

common shared-memory switches, such as the Broadcom
Trident II [3], used in many datacenters today. Based on the
Trident II, we target 1000 flows that can be flexibly allocated
across logical PIFOs and a 12 MByte packet buffer size [6]
with a cell size6 of 200 bytes. In the worst case, every packet
is a single cell. Hence, up to 60K packets/elements per PIFO
block can be spread out over multiple logical PIFOs.

Based on these requirements, our baseline design targets
a PIFO block that supports 64K packets and 1024 flows that
can be shared across 256 logical PIFOs. Further, we target a
6Packets in a shared-memory switch are allocated in small
units called cells.

2

Rank Store

(SRAM)

A

B
DequeueEnqueue

C

6

8

3

4

5

5

2

4

Increasing ranks

Flow Scheduler

(flip-flops)

A 0B 1C 3

Increasing ranks

Figure 13: Block diagram of PIFO block with a flow sched-
uler and a rank store. Logical PIFOs and metadata are not
shown for simplicity.

16-bit rank field and a 32-bit metadata field (e.g., p.length
in Figure 1) for our PIFO block. We put 5 such blocks to-
gether into a 5-block PIFO mesh that can support up to 5
levels of hierarchy in a scheduling algorithm—sufficient for
most practical hierarchical schedulers we know of.

5.2 A single PIFO block
A PIFO block supports two operations: an enqueue that

inserts an element into a logical PIFO and a dequeue to re-
move the head of a logical PIFO. We first describe an imple-
mentation of a PIFO block with a single logical PIFO and
then extend it to multiple logical PIFOs in the same block.

One naive implementation is a single sorted array. An
incoming element is compared against all array elements in
parallel to determine a location for the new element, and then
inserted there by shifting the array. However, each compar-
ison needs one comparator circuit, and supporting 64K of
these is infeasible.

At the same time, nearly all practical scheduling algo-
rithms group packets into flows or classes,7 e.g., based on
traffic type, ports, or addresses. They then schedule a flow’s
packets in FIFO order because packet ranks increase across
a flow’s consecutive packets. This motivates a design with
two parts (Figure 13):

1. A flow scheduler that picks the element to dequeue
based on the rank of the head (earliest) elements of
each flow. The flow scheduler is effectively a PIFO
consisting of the head elements of all flows.

2. A rank store, a FIFO bank that stores the ranks of ele-
ments beyond the head for each flow in FIFO order.

This decomposition reduces the number of elements re-
quiring sorting from the number of packets (64K) to the
number of flows (1024). During an enqueue, an element
(both rank and metadata) is appended to the end of the ap-
propriate FIFO in the rank store. For a flow’s first element,
we bypass the rank store and directly push it into the flow
scheduler. To permit enqueues into this PIFO block, we also
supply a flow ID argument to the enqueue operation.

The FIFO bank needed for the rank store is a well-
understood hardware design. Such FIFO banks are used to
buffer packet payloads in switches and much engineering ef-
fort has gone into optimizing them. As a result, we focus our

7Last-In First-Out (LIFO) is a counterexample. We can han-
dle LIFO by creating a new flow for every packet, if there
are fewer than 1024 packets (flows) in the buffer at any time.

implementation effort on the flow scheduler alone.

The Flow Scheduler. The flow scheduler sorts an array of
flows using the ranks of the head elements in each flow. It
supports one enqueue and one dequeue to its enclosing PIFO
block every clock cycle, which translates into the following
operations on the flow scheduler every clock cycle.

1. Enqueue operation: Inserting a flow when the flow
goes from empty to non-empty.

2. Dequeue operation: Removing a flow that empties
once it is scheduled, (or) removing and reinserting a
flow with the rank of the next element if the flow is
still backlogged.

The operations above require the flow scheduler to inter-
nally support two primitives every clock cycle.

1. Push up to two elements into the flow scheduler: one
each for an enqueue’s insert and a dequeue’s reinsert.

2. Pop one element: for the remove from a dequeue.
These primitives access all of the flow scheduler’s elements
in parallel. To facilitate this, we implement the flow sched-
uler in flip flops, unlike the rank store, which is in SRAM.

The flow scheduler is a sorted array, where a push is im-
plemented by executing the three steps below (Figure 14).

1. Compare the incoming rank against all ranks in the ar-
ray in parallel, using a comparator. This produces a bit
mask of comparison results indicating if the incoming
rank is greater/lesser than an array element’s rank.

2. Find the first 0-1 transition in this bit mask, using a
priority encoder, to determine the index to push into.

3. Push the element into this index, by shifting the array.
A pop is implemented by shifting the head element out of
the sorted array.

So far, we have focused on a flow scheduler implemen-
tation handling a single logical PIFO. To handle multiple
logical PIFOs, we keep elements sorted by rank, regardless
of the logical PIFO they belong to; hence, the push logic
doesn’t change. To pop from a specific logical PIFO, we
compare against all elements to find elements with that log-
ical PIFO ID. Among these, we find the first using a priority
encoder, and remove this element by shifting the array. The
rank store implementation doesn’t change when introducing
logical PIFOs; however, we do require that a flow belong to
exactly one logical PIFO.

To concurrently issue 2 pushes and 1 pop every clock cy-
cle, we provision three parallel digital circuits (Figure 14).
Both the push and pop require 2 clock cycles to complete
and need to be pipelined to maintain the required through-
put (Figure 15). For pushes, the first stage of the pipeline
executes the parallel comparison and priority encoder steps
to determine an index; the second stage pushes the element
into the array using the index. Similarly, for pops, the first
stage executes the equality check (for logical PIFO IDs) and
priority encoder steps to compute an index; the second stage
pops the head element out of the array using the index.

Our implementation meets timing at 1 GHz and supports
up to one enqueue/dequeue operation on a logical PIFO
within a PIFO block every clock cycle. Because a reinsert
operation requires a pop, followed by an access to the rank

Rank

== comparators> comparators

Priority encoderPriority encoder

Shift elements based on push, pop indices

Pop

(DEQ)
Push 1

(ENQ)

Push 2

(reinsert)

Logical

PIFO ID

Rank

Rank

Logical

PIFO ID
Rank

Logical

PIFO ID
Rank

Logical

PIFO ID

Figure 14: Hardware implementation of flow scheduler.
Each element in the flow scheduler is connected to two >
comparators (2 pushes) and one == comparator (1 pop).

Clock

Push

operations

Check > A in

parallel,

priority encode

Push A by

shifting into

array

Start push(A) Finish push(A)

Cycle 1 Cycle 2

Push

pipeline

Pop

pipeline

Popped

Element

Pop

Output

Start pop(X) Finish pop(X)Pop

operations

Check == X in

parallel,

priority encode

Pop head of

logical PIFO X

by shifting out

of array

Figure 15: 2-stage pipeline for flow scheduler

store for the next element, followed by a push, our imple-
mentation supports a dequeue from the same logical PIFO
only once every 4 cycles. This is because if a dequeue is ini-
tiated in clock cycle 1, the pop for the dequeue completes in
2, the rank store is accessed in 3, and the push is initiated in
4, making cycle 5 the earliest time to reissue a dequeue. This
restriction is inconsequential in practice. A dequeue every 4
cycles from a logical PIFO is sufficient to service the high-
est link speed today, 100 Gbit/s, which requires a dequeue at
most once every 5 clock cycles for a minimum packet size
of 64 bytes. Dequeues to distinct logical PIFO IDs are still
permitted every cycle.

5.3 Interconnecting PIFO blocks
An interconnect between PIFO blocks allows PIFO blocks

to enqueue into and dequeue from other blocks. Because
the number of PIFO blocks is small, we provide a full mesh
between them. For a 5-block PIFO mesh as in our baseline
design, this requires 5*4 = 20 sets of wires between PIFO
blocks. Each set carries all the inputs required for specifying
an enqueue and dequeue operation on a PIFO block.

For our baseline design (§5.1), for an enqueue, we require
a logical PIFO ID (8 bits), the element’s rank (16 bits), the
element meta data (32 bits), and the flow ID (10 bits). For

a dequeue, we need a logical PIFO ID (8 bits) and wires to
store the dequeued element’s metadata field (32 bits). This
adds up to 106 bits per set of wires, or 2120 bits for the
mesh. This is a small number of wires for a chip. For ex-
ample, RMT’s match-action pipeline uses 4000 1-bit wires
between a a pair of pipeline stages to move its 4K packet
header vector between stages [17].

5.4 Area overhead
Because we target a shared-memory switch, the schedul-

ing logic is shared across ports and a single PIFO mesh
services an entire switch. Therefore, to estimate the area
overhead of a programmable scheduler, we estimate the area
overhead of a single PIFO mesh. Our overhead does not have
to be multiplied by the number of ports and is the same for
two shared-memory switches with equal aggregate packet
rates, e.g., a 6-port 100G switch and a 60-port 10G switch.

To determine the area of a PIFO mesh, we compute the
area of a single PIFO block and multiply it by the number of
blocks because the area of the interconnect is negligible. For
a single block’s area, we separately estimate areas for the
rank store, atom pipelines, and flow scheduler, and ignore
the area of the small next-hop lookup tables. We estimate
the rank store’s area by using SRAM estimates [8], the atom
pipeline’s area using Domino [37], and the flow scheduler’s
area by implementing it in Verilog [9] and synthesizing it to
gate-level netlist in a 16-nm standard cell library using the
Cadence Encounter RTL Compiler [2]. The RTL Compiler
also verifies that the flow scheduler meets timing at 1 GHz.

Overall, our baseline design consumes about 7.35 mm2 of
chip area (Table 1). This is about 3.7% of the chip area of
a typical switching chip, using the minimum chip area esti-
mate of 200 mm2 provided by Gibb et al. [23]. In return for
this 3.7%, we get a significantly more flexible packet sched-
uler than current switches, which provide fixed two or three-
level hierarchical scheduling. Our 3.7% area overhead is
similar to the overhead for other programmable switch func-
tions, e.g., 2% for programmable parsing [23] and 15% for
programmable header processing [17].

Varying the flow scheduler’s parameters from the base-
line. The flow scheduler has four parameters: rank width,
metadata width, number of logical PIFOs, and number of
flows. Among these, increasing the number of flows has the
most impact on whether the flow scheduler meets timing at
1 GHz. This is because the flow scheduler uses a priority en-
coder, whose size is the number of flows and whose critical
path delay increases with the number of flows. With other
parameters set to their baseline values, we vary the number
of flows to determine the eventual limits of a flow scheduler
with today’s transistor technology (Table 2), and find that we
can scale to 2048 flows while still meeting timing at 1 GHz.

The remaining parameters affect the area of a flow sched-
uler, but have little effect on meeting timing at 1 GHz. For
instance, starting from the baseline design of the flow sched-
uler that takes up 0.224 mm2, increasing the rank width to 32
bits increases it to 0.317 mm2, increasing the number of log-
ical PIFOs to 1024 increases it to 0.233 mm2, and increasing

Component Area in mm2

Switching chip 200–400 [23]
Flow Scheduler 0.224 (from synthesis)
SRAM (1 Mbit) 0.145 [8]
Rank store 64 K * (16 + 32) bits * 0.145 mm2

/ Mbit = 0.445
Next pointers for linked
lists in dynamically allo-
cated rank store

64 K * 16 bit pointers * 0.145 =
0.148

Free list memory for dy-
namically allocated rank
store

64 K * 16 bit pointers * 0.145 =
0.148

Head, tail, and count
memory for each flow in
the rank store

0.1476 (from synthesis)

One PIFO block 0.224 + 0.445 + 0.148 + 0.148 +
0.1476 = 1.11 mm2

5-block PIFO mesh 5.55
300 atoms spread out
over the 5-block PIFO
mesh for rank computa-
tions

6000 µm2* 300 = 1.8 mm2

(§4.1, [37])

Overhead for 5-block
PIFO mesh

(5.55 + 1.8) / 200.0 = 3.7 %

Table 1: A 5-block PIFO mesh incurs a 3.7% chip area over-
head relative to a baseline switch.

of flows Area (mm2) Meets timing at 1 GHz?
256 0.053 Yes
512 0.107 Yes
1024 0.224 Yes
2048 0.454 Yes
4096 0.914 No

Table 2: The flow scheduler’s area increases with the number
of flows. The flow scheduler meets timing until 2048 flows.

the metadata width to 64 bits increases it to 0.317 mm2. In
all cases, the flow scheduler continues to meet timing.

5.5 Additional implementation concerns

Coordination between enqueue and dequeue. When
computing packet ranks on enqueue, some scheduling algo-
rithms access state modified on packet dequeues. An exam-
ple is STFQ (§2.1) that accesses the virtual_time variable
when computing a packet’s virtual start time. This enqueue-
dequeue coordination can be implemented in two ways. One
is shared state that can be accessed on both enqueue and de-
queue, similar to queue occupancy counters. Another is to
periodically synchronize the enqueue and dequeue views of
the same state: for STFQ, the degree of short-term fairness
is directly correlated with how up-to-date the virtual_time
information on the enqueue side is.

Buffer management. Our design focuses on programmable
scheduling and does not manage the allocation of a switch’s
data buffer across flows. Buffer management can use static
buffer limits for each flow. The limits can also be dynamic,
e.g., RED [22] and dynamic buffer sizing [18].

In a shared-memory switch, buffer management is orthog-
onal to scheduling, and is implemented using counters that

track flow occupancy in a shared buffer. Before a packet
is enqueued into the scheduler, if any counter exceeds a
static or dynamic threshold, the packet is dropped. A similar
design for buffer management could be used with a PIFO-
based scheduler as well.

Priority Flow Control. Priority Flow Control (PFC) [7]
is a standard that allows a switch to send a pause message
to an upstream switch requesting it to cease transmission of
packets belonging to particular flows. PFC can be integrated
into our hardware design by masking out certain flows in
the flow scheduler during the dequeue operation if they have
been paused because of a PFC pause message, and unmask-
ing them when a PFC resume message is received.

Multi-pipeline switches. The highest end switches today,
such as the Broadcom Tomahawk [4], support aggregate ca-
pacities exceeding 3 Tbit/sec. At a minimum packet size of
64 bytes, this corresponds to an aggregate packet rate of ~6
billion packets/s. Because a single switch pipeline (Figure 8)
typically runs at 1 GHz and processes a billion packets/s,
such switches require multiple ingress and egress pipelines
that share access to the scheduler subsystem alone.

In multi-pipeline switches, each PIFO block needs to sup-
port multiple enqueue and dequeue operations per clock cy-
cle (as many as the number of ingress and egress pipelines)
because packets can be enqueued from any of the input ports
every clock cycle, and each input port could reside in any
of the ingress pipelines. Similarly, each egress pipeline re-
quires a new packet every clock cycle, resulting in multiple
dequeues every clock cycle.

A full-fledged design for multi-pipeline switches is be-
yond this paper, but our current design facilitates a multi-
pipeline implementation. A rank store supporting multi-
ple pipelines is similar to the data buffer of multi-pipeline
switches today. Building a flow scheduler to support multi-
ple enqueues/dequeues per clock is relatively easy because it
is maintained in flip flops, where it is simple to add multiple
ports (unlike SRAM).

6. RELATED WORK
The Push-in First-out Queue. PIFOs were first intro-
duced as a proof construct to prove that a combined input-
output queued switch could exactly emulate an output-
queued switch [19]. We show here that PIFOs can be used
as an abstraction for programmable scheduling at line rate.

Packet scheduling algorithms. The literature is replete
with scheduling algorithms [12, 13, 24, 25, 29, 35, 36, 42]
. Yet, line-rate switches support only a few: DRR, traffic
shaping, and strict priorities. As §3 shows, PIFOs allow a
line-rate switch to run many of these scheduling algorithms,
which, so far, have only been run on software routers.

Programmable switches. Recent work has proposed
hardware architectures [1, 5, 11, 17] and software ab-
stractions [16, 37] for programmable switches. While
many packet-processing tasks can be programmed on these
switches, scheduling isn’t one of them. Programmable

switches can assist a PIFO-based scheduler by providing a
programmable ingress pipeline for scheduling and shaping
transactions, without requiring a dedicated atom pipeline in-
side each PIFO block. However, they still need PIFOs for
programmable scheduling.

Universal Packet Scheduling (UPS). UPS [31] shares our
goal of flexible packet scheduling by seeking a single
scheduling algorithm that is universal and can emulate any
scheduling algorithm. Theoretically, UPS finds that the well-
known LSTF scheduling discipline [29] is universal if packet
departure times for the scheduling algorithm to be emulated
are known up front. Practically, UPS shows that by appro-
priately initializing slacks, many different scheduling objec-
tives can be emulated using LSTF. LSTF is programmable
using PIFOs, but the set of schemes practically expressible
with LSTF is limited. For example, LSTF cannot express:

1. Hierarchical scheduling algorithms such as HPFQ, be-
cause it uses only one priority queue.

2. Non-work-conserving algorithms. For such algorithms
LSTF must know the departure time of each packet up-
front, which is not practical.

3. Short-term bandwidth fairness in fair queueing, be-
cause LSTF maintains no switch state except one pri-
ority queue. As shown in Figure 1, programming a
fair queueing algorithm requires us to maintain a vir-
tual time state variable. Without this, a new flow could
have arbitrary virtual start times, and be deprived of
its fair share indefinitely. UPS provides a fix to this
that requires estimating fair shares periodically, which
is hard to do in practice.

4. Scheduling policies that aggregate flows from distinct
endpoints into a single flow at the switch. An ex-
ample is fair queueing across video and web traffic
classes, regardless of endpoint. Such policies require
the switch to maintain the state required for fair queue-
ing because no end point sees all the traffic within a
class. However, LSTF cannot maintain and update
switch state progammatically.

The restrictions in UPS/LSTF are a result of a limited pro-
gramming model. UPS assumes that switches are fixed and
cannot be programmed to modify packet fields. Further, it
only has a single priority queue. By using atom pipelines
to execute scheduling and shaping transactions, and by com-
posing multiple PIFOs together, PIFOs express a wider class
of scheduling algorithms.

Hardware designs for priority queues. P-heap is a
pipelined binary heap scaling to 4-billion entries [14, 15].
However, each P-heap supports traffic belonging to a single
10 Gbit/s input port in an input-queued switch and there is
a separate P-heap instance for each port [14]. This per-port
design incurs prohibitive area overhead on a shared-memory
switch, and prevents sharing of the data buffer and binary
heap across output ports. Conversely, it isn’t easy to overlay
multiple logical PIFOs over a single P-heap, which would
allow the P-heap to be shared across ports.

7. DISCUSSION
Packet scheduling allocates scarce link capacity across

contending flows. This allocation services an applica-
tion or a network-wide objective, e.g., max-min fairness
(WFQ) or minimum flow completion time (SRPT). Past
work has demonstrated significant performance benefits re-
sulting from switch support for flexible allocation [12, 21,
32, 39]. However, these benefits have remained unrealized,
because today there isn’t a pathway to implementing such
schemes. PIFOs provide that pathway. They express many
scheduling algorithms and are implementable at line rate.

How a programmable scheduler will be used is still un-
clear, but at the very least PIFOs present the network
as an additional surface for deploying resource allocation
schemes. No longer will transport protocol designers need to
restrict themselves to end-host/edge-based solutions to dat-
acenter transport. As an example of a immediate use case
for PIFOs, one could run HPFQ for traffic isolation, where
the classes corresponds to different tenants in a datacenter
and the flows correspond to all source-destination VM pairs
belonging to a tenant. This kind of isolation is much harder
to provide with end-host/edge-based solutions today.

Looking forward, a programmable scheduler on switches
could simplify packet transport. For instance, pFabric [12]
minimizes flow completion times by coupling a simple
switch scheduler (shortest remaining processing time) with
a simple end-host protocol (line rate transmission with no
congestion control). Other transport mechanisms [28, 32]
leverage fair queueing in the network to simplify transport
and make it more predictable.

That said, our current design is only a first step and can be
improved in several ways.

1. A scheduling tree is more convenient than directly con-
figuring a PIFO mesh, but it is still a low-level abstrac-
tion. Are there higher level abstractions?

2. Now that we have shown it is feasible, how will pro-
grammable scheduling be used in practice? This would
involve surveying network operators to understand
how programmable scheduling could benefit them. In
turn, this would provide valuable design guidance for
setting various parameters in our hardware design.

3. Beyond a few counter examples, we lack a formal char-
acterization of algorithms that cannot be implemented
using PIFOs. For instance, is there a simple, checkable
property separating algorithms that can and cannot be
implemented using PIFOs? Given an algorithm spec-
ification, can we automatically check if the algorithm
can be programmed using PIFOs?

4. Our current design scales to 2048 flows. If allocated
evenly across 64 ports, we could program scheduling
across 32 flows at each port. This permits per-port
scheduling across traffic aggregates (e.g., fair queue-
ing across 32 tenants within a server), but not a finer
granularity (e.g., 5-tuples). Ideally, to schedule at the
finest granularity, our design would support 60K flows:
the physical limit of one flow for each packet. We cur-
rently support up to 2048. Can we bridge this gap?

8. CONCLUSION
Until recently, it was widely assumed that the fastest

switching chips would be fixed-function; a programmable
device could not have the same performance. Recent re-
search into programmable parsers [23], fast programmable
switch pipelines [17], and languages to program them [16,
40], coupled with recent multi-Tbit/s programmable com-
mercial chips [1, 11] suggests that change might be afoot.

But so far, it has been considered off-limits to program the
packet scheduler—in part because the desired algorithms are
so varied, and because the scheduler sits at the heart of the
shared packet buffer where timing requirements are tightest.
It has been widely assumed too hard to find a useful abstrac-
tion that can also be implemented in fast hardware.

PIFOs appear to be a very promising abstraction: they in-
clude a variety of existing algorithms, and allow us to ex-
press new ones. Further, they can be implemented at line
rate with modest chip area overhead.

We believe the most exciting consequence will be the cre-
ation of many new schedulers, invented by network opera-
tors, iterated and refined, then deployed for their own needs.
No longer will research experiments be limited to simulation
and progress constrained by a vendor’s choice of schedul-
ing algorithms. Those needing a new algorithm could create
their own, or even download one from an open-source repos-
itory or a reproducible SIGCOMM paper.

To get there, we will need real switching chips with pro-
grammable PIFO schedulers. The good news is that we see
no reason why future switching chips can not include a pro-
grammable PIFO scheduler.

Acknowledgements
We are grateful to our shepherd, Jeff Mogul, the anonymous
SIGCOMM reviewers, and Amy Ousterhout for many sug-
gestions that greatly improved the clarity of the paper. We
thank Ion Stoica for helpful discussions, Robert Hunt for
help with the design of the compiler, and Radhika Mittal for
helping us understand LSTF. This work was partly supported
by NSF grant CNS-1563826 and a gift from the Cisco Re-
search Center. We thank the industrial partners of the MIT
Center for Wireless Networks and Mobile Computing (Wire-
less@MIT) for their support.

9. REFERENCES
[1] Barefoot: The World’s Fastest and Most Programmable

Networks.
https://barefootnetworks.com/media/white_papers/Barefoot-
Worlds-Fastest-Most-Programmable-Networks.pdf.

[2] Cadence Encounter RTL Compiler.
http://www.cadence.com/products/ld/rtl_compiler.

[3] High Capacity StrataXGS®Trident II Ethernet Switch
Series. http://www.broadcom.com/products/Switching/Data-
Center/BCM56850-Series.

[4] High-Density 25/100 Gigabit Ethernet StrataXGS Tomahawk
Ethernet Switch Series. http://www.broadcom.com/products/
Switching/Data-Center/BCM56960-Series.

[5] Intel FlexPipe. http://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/ethernet-switch-
fm6000-series-brief.pdf.

https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
http://www.cadence.com/products/ld/rtl_compiler
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf

[6] Packet Buffers. http://people.ucsc.edu/~warner/buffer.html.
[7] Priority Flow Control: Build Reliable Layer 2 Infrastructure.

http://www.cisco.com/en/US/prod/collateral/switches/
ps9441/ps9670/white_paper_c11-
542809_ns783_Networking_Solutions_White_Paper.html.

[8] SRAM - ARM. https://www.arm.com/products/physical-ip/
embedded-memory-ip/sram.php.

[9] System Verilog.
https://en.wikipedia.org/wiki/SystemVerilog.

[10] Token Bucket. https://en.wikipedia.org/wiki/Token_bucket.
[11] XPliant™ Ethernet Switch Product Family.

http://www.cavium.com/XPliant-Ethernet-Switch-Product-
Family.html.

[12] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal
Near-Optimal Datacenter Transport. In SIGCOMM, 2013.

[13] J. C. R. Bennett and H. Zhang. Hierarchical Packet Fair
Queueing Algorithms. In SIGCOMM, 1996.

[14] R. Bhagwan and B. Lin. Design of a High-Speed Packet
Switch for Fine-Grained Quality-of-Service Guarantees. In
ICC, 2000.

[15] R. Bhagwan and B. Lin. Fast and Scalable Priority Queue
Architecture for High-Speed Network Switches. In
INFOCOM, 2000.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
Protocol-Independent Packet Processors. SIGCOMM CCR,
July 2014.

[17] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-action
Processing in Hardware for SDN. In SIGCOMM, 2013.

[18] A. K. Choudhury and E. L. Hahne. Dynamic Queue Length
Thresholds for Shared-memory Packet Switches. IEEE/ACM
Trans. Netw., 6(2):130–140, Apr. 1998.

[19] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar.
Matching Output Queueing with a Combined Input Output
Queued Switch. IEEE Journal on Selected Areas in
Communications, 17(6):1030–1039, Jun 1999.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In SIGCOMM,
1989.

[21] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized Task-aware Scheduling for Data Center
Networks. In SIGCOMM, 2014.

[22] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug. 1993.

[23] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design Principles for Packet Parsers. In ANCS, 2013.

[24] S. J. Golestani. A Stop-and-Go Queueing Framework for
Congestion Management. In SIGCOMM, 1990.

[25] P. Goyal, H. M. Vin, and H. Chen. Start-time Fair Queueing:
A Scheduling Algorithm for Integrated Services Packet
Switching Networks. In SIGCOMM, 1996.

[26] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,
A. Greenberg, and C. Kim. EyeQ: Practical Network
Performance Isolation at the Edge. In NSDI, 2013.

[27] C. R. Kalmanek, H. Kanakia, and S. Keshav. Rate Controlled
Servers for Very High-Speed Networks. In GLOBECOM,
1990.

[28] S. Keshav. Packet-Pair Flow Control. IEEE/ACM
Transactions on Networking, 1994.

[29] J.-T. Leung. A New Algorithm for Scheduling Periodic,
Real-Time Tasks. Algorithmica, 4(1-4):209–219, 1989.

[30] P. McKenney. Stochastic Fairness Queuing. In INFOCOM,
1990.

[31] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker.
Universal Packet Scheduling. In NSDI, 2016.

[32] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh,
and S. Katti. NUMFabric: Fast and Flexible Bandwidth
Allocation in Datacenters. In SIGCOMM, 2016.

[33] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. FairCloud: Sharing the Network
in Cloud Computing. In SIGCOMM, 2012.

[34] H. Sariowan, R. L. Cruz, and G. C. Polyzos. SCED: A
Generalized Scheduling Policy for Guaranteeing
Quality-of-service. IEEE/ACM Transactions on Networking,
Oct. 1999.

[35] L. E. Schrage and L. W. Miller. The Queue M/G/1 with the
Shortest Remaining Processing Time Discipline. Operations
Research, 14(4):670–684, 1966.

[36] M. Shreedhar and G. Varghese. Efficient Fair Queuing using
Deficit Round Robin. IEEE/ACM Transactions on
Networking, 4(3):375–385, 1996.

[37] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh,
H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking.
Packet Transactions: High-Level Programming for Line-Rate
Switches. In SIGCOMM, 2016.

[38] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T.
Chuang, T. Edsall, M. Alizadeh, S. Katti, N. McKeown, and
H. Balakrishnan. Towards Programmable Packet Scheduling.
In HotNets, 2015.

[39] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No Silver Bullet: Extending SDN to the
Data Plane. In HotNets, 2013.

[40] H. Song. Protocol-Oblivious Forwarding: Unleash the Power
of SDN Through a Future-proof Forwarding Plane. In
HotSDN, 2013.

[41] D. Verma, H. Zhang, and D. Ferrari. Guaranteeing Delay
Jitter Bounds in Packet Switching Networks. In TRICOMM,
1991.

[42] H. Zhang and D. Ferrari. Rate-Controlled Service
Disciplines. J. High Speed Networks, 3(4):389–412, 1994.

http://people.ucsc.edu/~warner/buffer.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-542809_ns783_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-542809_ns783_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-542809_ns783_Networking_Solutions_White_Paper.html
https://www.arm.com/products/physical-ip/embedded-memory-ip/sram.php
https://www.arm.com/products/physical-ip/embedded-memory-ip/sram.php
https://en.wikipedia.org/wiki/SystemVerilog
https://en.wikipedia.org/wiki/Token_bucket
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

	Introduction
	A programming model for packet scheduling
	Scheduling transactions
	Scheduling trees
	Shaping transactions

	The expressiveness of PIFOs
	Least Slack-Time First
	Stop-and-Go Queueing
	Minimum rate guarantees
	Other examples
	Limitations

	Design
	Scheduling and shaping transactions
	The PIFO mesh
	Compiling from a scheduling tree to a PIFO mesh
	Challenges with shaping transactions

	Hardware Implementation
	Performance requirements
	A single PIFO block
	Interconnecting PIFO blocks
	Area overhead
	Additional implementation concerns

	Related Work
	Discussion
	Conclusion
	References

