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Abstract
Software transactional memory (STM) is a synchronization paradigm that has been
well-studied in work on throughput-oriented computing. In that context, its main
utility lies in aiding programmers in producing performant concurrent programs that
are free of synchronization bugs. With STM, programmers merely annotate code
sections that require synchronization; the underlying STM framework automatically
resolves how synchronization is done. In work on real-time systems, schedulability
is more important than throughput. However, all prior work on real-time STM has
been limited to approaches that retry transactions when they conflict. Unfortunately,
reasonable retry bounds can be difficult or impossible to obtain for multiprocessors.
Perhaps because of this, prior work on real-time STM has focused on observed be-
havior rather than schedulability. This thesis argues that real-time STM should
be lock-based and free of retries in order to provide schedulability guarantees, and
presents a real-time STM framework called TORTIS, implemented for Rust programs.

The efficacy of TORTIS is evaluated via both benchmarking experiments and a
schedulability study. In the benchmarks, when contention for shared resources is
high, causing retry-based approaches to repeatedly retry, TORTIS provides up to 75x
improved throughput. The high-contention case is also effectively what schedulabil-
ity analysis aims to bound. In the schedulability study, TORTIS dominated other
prominent retry-based STM approaches, and improved overall schedulability across
all task systems generated by on average 2.4x and as much as 10.1x.

Thesis Supervisor: Dr. Howard Schrobe
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Thesis Supervisor: Dr. Hamed Okhravi
Title: Senior Staff Member, MIT Lincoln Laboratory

Thesis Supervisor: Dr. Bryan Ward
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Chapter 1

Introduction

The multicore revolution has redefined the “common case” computing platform to

be a multiprocessor. As a result, concurrency-related issues have become ubiquitous,

even in settings where they were previously unimportant. This has created a need for

design methods for concurrent software that aids programmers in producing working

implementations. Without such methods, the “reality” of multicore may fall short of

the “promise” suggested by ever increasing core counts.

This thesis is directed at a particular application domain where the mismatch

between the promise and reality of multicore is considerable: safety-critical real-time

systems. Such systems have timing constraints that require certification. Accordingly,

performance is tied to formal analysis pertaining to worst-case system behaviors,

in contrast to throughput-oriented systems, where performance is usually tied to

the average case and rigorous analysis is not pervasive. When seeking to design

a multicore real-time application, many difficult analysis-related certification issues

arise. Additionally, even experienced developers may face difficulties in writing correct

concurrent code, and the safety properties of such code can be challenging to verify

formally.
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/* Dequeue from one shared queue, enqueue on another */
transaction {

Item = Queue1 [Head1 ];
Head1 = Head1 + 1 mod Limit1 ;
Queue2 [Tail2 ] = Item;
Tail2 = Tail2 + 1 mod Limit2 ;

};

Figure 1-1: Pseudo-code showing an example transaction annotation.

1.1 The Case for Real-Time Transactional Mem-

ory

One concurrency-related issue that looms large in any application domain is the need

for efficient synchronization. In work on throughput-oriented computing, this need

has been the driving force behind considerable prior work on a concept called transac-

tional memory (TM), which can be realized in software, hardware, or some combina-

tion of the two [24, 40]. As illustrated in Fig. 1-1, when a TM framework is employed,

programmers must merely annotate code sections that require synchronization. The

TM framework itself determines how synchronization is actually achieved. The goal

here is to enable programmers to more easily produce correct performant code.

An especially strong case for TM can be made for safety-critical real-time systems.

Certification is time-consuming and expensive—in complex systems, certification can

dominate software-development costs, which can approach 50% of total cost [27]. Such

costs can be eased by reusing previously certified hardware and software components,

including the real-time operating system (RTOS) and any middleware employed. Sim-

ilarly, the certification process regarding synchronization could be greatly facilitated

if a certified real-time TM framework were available that enables real-time-related

synchronization choices to be automatically and correctly resolved. Incorrectly re-

solving such choices can have disastrous consequences, as evidenced by the infamous

case of the Mars Pathfinder, where an ill-defined synchronization parameter almost

ended a $265 million mission [28].
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1.2 Contributions of This Thesis

The specific focus of this thesis is software TM (STM).1 All prior work on TM (soft-

ware or not) uses optimistic techniques that may cause conflicting transactions to be

aborted and retried. This optimism can enable non-conflicting transactions to exe-

cute and commit concurrently, increasing throughput. Such designs are motivated by

Lamport’s argument that “contention for [shared objects] is rare in a well-designed

system” [31], and thus such systems perform well when contention is low.

However, in real-time systems, bounds on retries are needed to validate real-time

constraints. Such bounds are inherently based on quantifying worst-case contention,

rather than the low average-case contention that is likely at runtime and for which

retry-based approaches are designed. Furthermore, reasonable bounds for retry-based

STM can be difficult to obtain on a multiprocessor. These two observations motivate

our fundamental thesis that real-time TM should be retry-free.

Towards this goal, we present the first retry-free STM framework, TORTIS (try-

once real-time STM).2 In order to eliminate retries, TORTIS relies on lock-based

synchronization to manage shared-object accesses. Lock-based STM frameworks have

been proposed before [22, 20], but these prior frameworks still resort to using retries

in dealing with some transaction conflicts and in mitigating deadlocks.

TORTIS is implemented as extensions to the Rust compiler as well as a runtime

library. The compiler extensions statically determine the set of objects that may

potentially be accessed within each transaction. Using the results of this static anal-

ysis, locks can be inserted by the compiler to preserve transaction semantics. While

determining the set of objects accessed within a transaction is generally undecidable,

advances in type systems in modern programming languages enable more precision in

data-flow analysis, i.e., determining the set of objects that can reach a line of code.

In particular, eliminating aliasing (multiple references to the same object) has signif-

icantly increased the precision of data-flow analysis and keeps it from collapsing and

1We use the term “TM” when discussing transactional memory broadly, and “STM” when refer-
ring to TM implemented in software.

2In real-time computing, the predictable tortoise wins the race.
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determining that all objects in the program may potentially reach a code location.

We base TORTIS upon one such language, Rust.

In addition to unclear retry bounds, another limitation of retry-based TM is that

input and output (I/O) should not be performed within transactions, as already-

performed I/O cannot be “undone.” Some STM systems obviate this issue by exploit-

ing the stronger type systems of languages such as Haskell to statically prevent I/O

within transactions [23]. Retry-free TM is immune to this issue and can allow I/O in

transactions. This is especially useful in real-time applications, where I/O is used in

sensing and actuating the physical world.

Building upon these observations, this thesis makes four contributions. First, we

present TORTIS, the first retry-free STM system, and the first to support I/O. Sec-

ond, we evaluate TORTIS by pitting it against a prior well-known lock-based STM

implementation to evaluate inherent concurrency and throughput tradeoffs involving

retry-based vs. retry-free STM. Third, we present the first ever (to our knowledge)

schedulability analysis for an STM system. Fourth we present the results of a schedu-

lability study that demonstrates the improved schedulability enabled by retry-free

STM.

This work supports the following thesis:

Retry-free STM is not only possible, but significantly more schedulable

than retry-based STM. Therefore, retry-free STM should be used in real-

time systems for predictable synchronization.

1.3 Organization

The rest of this thesis is organized as follows. After providing relevant background

in Sec. 2, we present the design and implementation of TORTIS in Sec. 3, followed

by a discussion of some of the strengths and weaknesses of this design approach in

Sec. 4. Then, in Sec. 5, we present the results of both throughput-oriented benchmark

experiments, as well as a schedulability study. We conclude in Sec. 7.
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Chapter 2

Background

In this section we provide background on shared-memory concurrent programming,

real-time systems, TM, the Rust ownership model and type system as they relate

to shared-memory concurrent programming in Rust, the effect that the ownership

model has on data-flow analysis in Rust vs. C/C++, and the architecture of the Rust

compiler pipeline.

2.1 Shared-Memory Concurrent Programming

Shared-memory concurrent algorithms may be blocking or non-blocking. Non-blocking

algorithms use special hardware-implemented atomic instructions and memory fences

to safely manage concurrent accesses to shared objects by preserving invariants about

the objects. These algorithms are “non-blocking” because they do not spin or sus-

pend program execution. Some common atomic operations are Compare_and_Swap

and Fetch_and_Add (atomic increment). Non-blocking algorithms give the developer

instruction-level control over their program execution, but are difficult to write by

hand [19]. Herlihy introduced universal constructions in 1991 that can be used to

construct a non-blocking concurrent implementation of any object [25], but objects

made from universal constructions can be inefficient. For example, universal con-

structions often impose excessive space and time overhead for larger data structures

because they copy object state [3].
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In blocking algorithms the developer uses primitives like spinlocks and semaphores

to enforce some mutual exclusion on shared objects. Mutual exclusion ensures that

only one critical section may execute at a time. These primitives are “blocking”

because they block program execution while waiting for exclusive access to the shared

objects. Spinlocks wait in a loop (“spin”) until the lock is available, while semaphores

suspend a thread until some condition is satisfied. Spinlocks are implemented by

libraries using atomic primitives, while semaphores are implemented by the operating

system’s scheduler. Locks must be acquired before reading or writing shared object(s)

and released afterward. Blocking algorithms using locks are easier for the developer

to use and reason about than atomic instructions, but the programmer still needs

to obey lock ordering to prevent deadlock. Nonetheless, efficient synchronization is

difficult to properly implement in either paradigm.

Incorrectly implemented blocking and non-blocking algorithms may also suffer

from starvation, where one thread is repeatedly “starved” for CPU time, or prior-

ity inversion, where a high-priority task is continuously preempted by lower-priority

task(s) [14]. A TM system uses blocking and/or non-blocking algorithms to synchro-

nize shared objects, lifting the implementation burden from the developer.

2.2 Real-Time Systems

Real-time systems execute a task system (some set of tasks, or processes) with tim-

ing constraints. Tasks repeat with some task period between each invocation. Each

invocation is called a job. Jobs must finish within some fixed time after they’re re-

leased (before their deadline). A task system is schedulable under a given scheduling

algorithm or synchronization protocol if all jobs always meet their deadlines. Schedu-

lability experiments generate hundreds or thousands of task systems with different

parameters to evaluate an algorithm or protocol’s schedulability. For further discus-

sion of real-time systems and schedulability analysis see [12].
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2.3 Transactional Memory

Prior work on real-time TM has mainly focused on the development of more pre-

dictable contention managers, which are mechanisms that are applied to ensure

progress when transactions conflict in retry-based implementations. Several previ-

ous STM systems (e.g., [4, 45]) are designed for real-time systems, but in fact lack

any schedulability analysis. Instead, such systems have been empirically evaluated

based on average-case responsiveness, deadline-miss ratios, and/or synchronization

overheads.

Sarni et al. [37] presented the first real-time contention manager with associated

schedulability analysis. Other real-time contention managers were presented by El-

Shambakey [21]. Schoeberl et al. [38, 39] presented real-time TM for Java chip multi-

processors, and presented necessary static program-analysis techniques to determine

retry bounds. Belwal and Cheng [6] investigated the effect of eager vs. lazy conflict

detection on real-time schedulability. Note that all prior work on real-time STM and

contention management focused exclusively on retry-based conflict resolution, which

necessitates pessimistic schedulability analysis.

El-Shambakey’s [21] runtime experiments measured average deadline-miss ratios

using several contention managers plus the OMLP [13] and RNLP [43] multiprocessor

real-time locking protocols. He found that “more jobs meet their deadlines under [the]

OMLP and [the] RNLP than any contention manager by 12.4% and 13.7% on average,

respectively.” This conclusion is based on observations and not analysis. Including

an analysis-oriented comparison would likely have made the observed discrepancy

more pronounced. Indeed, retry bounds in multiprocessor real-time systems can be

extremely pessimistic. Additionally, retry-based synchronization is prone to large

overheads due to retry management (e.g., copying data to roll back aborted transac-

tions). To our knowledge, we are the first to present an analysis-based evaluation of

representative real-time STM options.
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2.4 Rust

Rust [29] is a modern programming language with a strong type system and several

unique features that make implementing a retry-free STM system practical. Here

we discuss Rust’s thread-safety properties and how to write parallel programs with

shared objects within Rust’s type system.

2.4.1 Thread Safety

The Rust type system provides a weak version of thread safety. It prevents con-

current accesses to individual shared objects, but multi-object data races leading to

deadlock or livelock are still possible. To ensure exclusive access, Rust types that

are shared among threads must be marked with either the Send or Sync traits [5].

These traits attest to the compiler that the objects are thread-safe, i.e., that there

is a synchronization mechanism for the data type. Traits are similar to interfaces in

other languages and tell the compiler about the functionality of a particular type.

Send objects are passed by value between threads, while Sync objects are effectively

passed by reference. An STM system must provide Send and Sync, but also seeks to

enable parallel programs to access multiple objects, preventing data races, livelock,

or deadlock, thus going beyond Rust’s guarantees.

2.4.2 Ownership and Sharing

Rust’s type system includes an ownership model, which enforces that each object

can be assigned to one variable at any point in time, referred to as its owner. This

ownership model is useful to prevent aliasing, as well as to ensure temporal memory

safety (i.e., no use-after-free vulnerabilities). There can be additional references to

borrow a variable, though only one mutable reference to an object is allowed at a

time, and the existence of a mutable reference precludes any immutable references.

Consequently, parallel programs that compute on shared objects face two challenges

from the Rust type system: (i) sharing ownership across threads, and (ii) sharing

mutability among owners.
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The first issue is addressed by using the Arc data type, which provides multiple

ownership of the contained object. Arc atomically counts references to the data to

ensure the memory is freed from the heap when the last reference drops out of scope.

The second challenge is solved by bothwrapping data in a type that provides inte-

rior mutability, i.e., allows multiple mutable references, and the Sync trait discussed

in Sec. 2.4.1. A type with interior mutability has an immutable interface, but a mu-

table internal state. Types that provide interior mutability are based on UnsafeCell,

the “core primitive for interior mutability in Rust” [2], but must include additional

code to preserve Rust’s ownership invariants. For example, the Mutex type provides

interior mutability based on UnsafeCell but uses a lock to ensure that at most one

mutable reference is live at a time.

The Rust ownership model inherently prevents two concurrent programming bugs.

First, the developer cannot access a resource without acquiring its lock. The Mutex<T>

type takes ownership of T, so T cannot be accessed without acquiring the lock. Second,

the developer cannot forget to release the lock when they no longer need it. Mutex<T>

implements its own Drop trait, which runs when the reference drops out of scope.

When a reference to a Mutex<T> drops out of scope, its lock is automatically released.

The developer can also manually drop the reference (thus releasing the lock) before

the end of the scope. While these features do prevent some common bugs, they do

not prevent deadlock or priority inversion.

Lst. 2.1 puts shared data in a Mutex and then wraps it in an Arc, allowing mu-

table ownership among multiple threads. A key requirement for retry-free STM is

achieving this same behavior, but with synchronization provided by the STM system

automatically instead of manually using a library (e.g., Mutex).

2.5 Data-Flow Analysis

In order to enable retry-free transactions, the set of objects that may potentially be

accessed within each transaction, which we call the conflict set, must be known at

compile time, i.e., statically computed. Doing so requires data-flow analysis, static
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1 let data = Arc::new(Mutex::new(0))
2 for _ in 0..N {
3 //Clone data to pass to new thread
4 let data = Arc::clone(&data);
5 thread::spawn(move || {
6 //synchronize by locking mutex
7 let mut data = data.lock();
8 ...
9 // the lock is unlocked here when

10 // ‘data‘ goes out of scope.
11 });
12 }
Listing 2.1: Parallel programming in Rust. Reference counting types must be used to
give multiple threads ownership of a shared object. Shared objects must implement
either the Send or the Sync trait, or be wrapped in a type, such as Mutex, that
provides Send or Sync.

Def-5: A
Def-6: E
Point: 1

Def-1: A
Def-2: B

Def-3: B
Def-4: D

Figure 2-1: Reaching definitions illustrated. Def. 5 of variable A reaches Point 1, as
do Defs. 2 and 3 of variable B and the definitions of variables D and E.

analysis of how data objects, or references thereof, flow through a program’s control

paths.

Data-flow analysis determines all possible shared objects that may reach a transac-

tion, i.e., still be assigned to a variable used in the transaction, without an intervening

assignment of another object to the variable. Data-flow analysis is inherently conser-

vative as different executions may result in different values reaching a line of code.

Fig. 2-1 illustrates this point and shows a simplified version of a program where con-

ditional branches merge back together. Variable B is defined on both branches, and

both definitions reach Point 1. Consequently, data-flow analysis must conservatively

assume that either object can be used at Point 1. Similarly, function arguments that

vary based on call site are another source of conservatism for data-flow analysis.
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Figure 2-2: The Rust compiler pipeline.

Beyond its inherent conservatism, data-flow analysis runs into several challenges in

practice for C/C++. The first concerns mapping out possible control flows to a code

location, before even considering data flows along them. Precisely determining the

target of indirect control-flow transfers via function pointers or virtual calls in C/C++

is difficult [18]. Thus, data-flow analysis must use an over-approximate set of targets

for such calls, potentially introducing spurious data values to the results. Making

matters worse, C/C++ allow aliasing, i.e., multiple pointers to the same object.

“Points-to” analysis, i.e., determining the object a pointer refers to, is generally

undecidable [41, 26], which often makes tracking flows of specific objects impossible.

In combination, indirect function calls and aliasing make determining meaningful

conflict sets for transactions in C/C++ impossible. In practice, the analysis will

collapse with all (or most) transactions marked as conflicting.

Fortunately, modern type- and memory-safe languages like Rust solve most of

these problems. Rust’s ownership model prevents aliasing, and its strong type system

significantly limits possible targets for indirect function calls. While these features

were designed largely for security reasons, they also enable more precise data-flow

analysis for novel applications such as TORTIS.
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2.6 Rust Compiler Pipeline

The Rust compiler, rustc, is an LLVM [32] front end that generates multiple inter-

mediate representations (IR) to enable borrow and type checking (borrow checking

enforces the ownership model). As illustrated in Fig. 2-2, the Rust compiler turns

the original source code into an abstract syntax tree (AST), which is then lowered

or transformed into the high-level IR (HIR) for type checking, and then mid-level

IR (MIR [33]) for borrow checking and other optimizations. MIR is in turn lowered

to LLVM-IR, which is then optimized and assembled to the desired architecture by

LLVM. The different IRs have different structures, making them more or less suit-

able for particular analyses and transformations. In particular, the AST and HIR

are trees, whereas MIR and LLVM-IR use basic blocks, sequences of non-branching

instructions separated by branching instructions. Nodes in the AST/HIR lack a one-

to-one mapping with basic blocks, as discussed in Sec. 3.3.
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Chapter 3

Design

The key challenge in designing a retry-free TM system is to reliably prevent any

circumstance that would require a transaction to be aborted. While previous lock-

based STM approaches [20, 23, 22] prevent many such circumstances by requiring

that locks be acquired before results are committed, they require aborts to resolve

deadlock (among other reasons). Deadlock-freedom is therefore the quintessential

requirement for a lock-based, retry-free STM system.

In this first retry-free STM system, TORTIS, all transaction synchronization is

performed using group locks [10]: one lock is acquired before, and released after, a

transaction, rather than finer-grained model based on the objects actually accessed

at runtime. Thus, the one lock must guard all objects potentially accessed within the

transaction, regardless of the code paths exercised, and also be locked by any con-

flicting transaction. While finer-grained locking for retry-free STM may be possible,

it is outside the scope of this thesis.

Group locks are based on resource groups, i.e., the set of objects that may be ac-

cessed within a transaction. Resource groups are determined statically by a data-flow

analysis of shared objects to determine which transactions the shared objects reach.

With this information, we then perform conflict analysis to assign all transactions

that may access at least one common shared object to the same group lock. We

discern reads from writes in the data-flow analysis to enable read-only transactions

and write transactions. Further, conflicts are transitive to guarantee correctness. For
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Figure 3-1: Transactions in source code, along with our runtime library are passed
to the TORTIS rustc. Internally, transactions are added to the AST and HIR nodes
before being desugared to global locks when generating MIR. At this stage, a correct
STM system exists but provides no concurrency. As an optimization, TORTIS adds
a data-flow analysis on shared objects and transactions to determine what shared
objects a transaction uses, i.e., its resource group. The transaction conflict sets are
then analyzed, and the global lock optimized to the correct resource group lock for
each transaction.

example, if transactions 1 and 2 conflict they must use the same group lock. If trans-

actions 2 and 3 also conflict they must also use the same group lock. Since transaction

2 can only use one group lock, transactions 1 and 3 must use the same group lock

even though they do not conflict themselves.

Fig. 3-1 illustrates the TORTIS design, and Fig. 3-2 illustrates where in the Rust

compiler pipeline each step takes place. To achieve our design goals, we first introduce

syntactic sugar for transactions, in effect our API for STM. Transactions are desug-

ared by the compiler to global locks, which nominally achieve retry-free STM albeit

with fully synchronous transactions. Our primary contribution is showing that Rust

enables these locks to be optimized to group locks that enable a reasonable degree

of concurrency and are still retry-free, permitting tight schedulability analysis. We

describe the required steps for TORTIS here:

1. Import TORTIS runtime library. Programmers must import the TORTIS

runtime library to use our wrapper types for shared objects, and allow our STM

system to recognize them. The library also contains our lock implementation.

2. Recognize transactions. Transactions are syntactic sugar that are parsed
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Figure 3-2: The Rust compiler pipeline with TORTIS additions.
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and interpreted to a single, global lock by the compiler. At this stage a correct

STM system with fully synchronous transactions exists.

3. Optimize Locks. TORTIS next optimizes the global transaction lock to re-

source-group locks to provide retry-free, concurrent transactions.

• Analyze conflict sets. TORTIS analyzes the MIR to determine conflict

sets per transaction, using a data-flow analysis from shared-object alloca-

tions to transactions.

• Group transactions. Given the conflict sets of each transaction, the

compiler groups transactions into resource groups and updates the trans-

action locks to the correct group lock.

3.1 Running Example

To illustrate many concepts, we present a running example in Lst. 3.1. In this exam-

ple, transactions are monetary transfers among several different BankAccount objects,

which are processed in different threads.

3.2 Import TORTIS Runtime Library

While most of the TORTIS implementation is based on extensions to the Rust com-

piler, we also developed a TORTIS library that must be used by the developer. In

particular, this library provides wrapper types that enable interior mutability, as well

as implementing the Send and Sync traits, enabling sharing across threads. These

wrapper types, TxCell and TxPtr, are based on abstractions in the Rust standard

library for single-threaded code, namely Cell and UnsafeCell respectively. Cell

provides interior mutability by copying values into and out of a mutable memory

location via the functions get() and set(). UnsafeCell provides interior mutability

via shared references to a memory location.
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1 fn main() {
2 let alice = Arc::new(
3 TxRefCell::new(
4 BankAccount::new()
5 )
6 );
7 let bob = ... //same initialization
8 let charlie = ...
9 let dawn = ...

10 let t1 = thread::spawn(move || {
11 transaction {
12 transfer(alice, bob);
13 }
14 });
15 let t2 = thread::spawn(move || {
16 transaction {
17 transfer(charlie, dawn);
18 }
19 });
20 }
21 fn transfer(
22 src: Arc<TxRefCell<BankAccount>>,
23 dst: Arc<TxRefCell<BankAccount>>,
24 ) {
25 let srcRef = src.borrow_mut();
26 let dstRef = dst.borrow_mut();
27 *srcRef -= 10;
28 *dstRef += 10;
29 }

Listing 3.1: An example TORTIS program.

Our first attempt at an object with interior mutability without copying used

RefCell instead of UnsafeCell. RefCell enforces Rust’s ownership and borrowing

rules at runtime: it keeps an internal reference count and panics if there is any

attempt to borrow a value that is already mutably borrowed. This attempt initially

seemed correct when tested with mutexes, but failed when tested with read-write

locks because RefCell’s reference counting is not atomic. Two threads could race

to decrement the reference count, leading to an incorrect count and spurious panics.

This runtime reference counting is not necessary for TORTIS because the data-flow
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analysis ensures that locks enforce Rust’s ownership and borrowing rules. It imposes

an unnecessary performance overhead as well. Thus, we switched to TxPtr using

UnsafeCell.

TxCell and TxPtr differ from their single-threaded counterparts in that they are

given Send and Sync traits, which allows them to be shared among multiple threads.

However, these traits do not themselves implement a synchronization mechanism, but

are simply promises to the type system that such a mechanism does exist for this type.

TxCell and TxPtr are thus wrapper types that can be recognized by the compiler as

transactional shared objects and trigger the compiler’s STM system to: (i) provide

synchronization within transactions, and (ii) verify that shared objects are not used

outside of transactions. Other retry-based Rust STM libraries [30, 7] use similar cell-

and pointer-based wrappers.

We note that TxCell and TxPtr (and the data types they wrap) are the only

types of shared objects TORTIS protects. This does not imply a loss in generality, as

TxCell and TxPtr can wrap arbitrary data types. Further, the programmer can avail

themselves of any synchronization method for shared objects not wrapped in TxCell

or TxPtr, albeit without the guarantees of the TORTIS STM system. However, we

make no guarantees about how such other synchronization methods may interplay

with TORTIS. For example, if a transaction acquires a Rust Mutex, this may lead

to deadlock due to dependencies on non-transactional code. Therefore, non-TORTIS

synchronization is not advisable to include in transactions, but can be used alongside

transactions at the programmer’s discretion. However, given the thread-safety prop-

erties provided by Rust, they are the only types that do not already provide some

underlying form of synchronization for the wrapped object (transactions provide syn-

chronization for multiple objects). For example, to create a shared object outside of

TORTIS, you would use a type such as Mutex, which provides its own synchronization,

albeit subject to programmer error resulting in, e.g., deadlock.

In addition to the wrapper types, the TORTIS library contains our lock imple-

mentations. Putting the lock implementations inside the library rather than inside

the compiler itself allows the library implementer to change the lock implementation
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1 {
2 lock(0);
3 {
4 /* critical section */
5 }
6 unlock(0);
7 }

Listing 3.2: A desugared transaction in Rust source code.

without rebuilding the compiler, thereby providing greater flexibility to experiment

with lock implementations. This is made possible by annotating the functions as lang

items, or operations that “plug in” to the compiler without being in the compiler

source code. We have included implementations of a naive mutex spinlock, a mutex

ticket lock, and a “phase-fair” reader-writer ticket lock that alternates between read

and write phases [16]. The phase-fair reader-writer spinlock is designed for multipro-

cessor real-time systems: it has asymptotically optimal blocking bounds with 𝑂(𝑚)

writer blocking and 𝑂(1) reader blocking. This design opens up the possibility of a

future API to specify the desired lock implementation for an application, for example,

to allow the programmer to specify if a spin- or suspension-based lock should be used.

For further discussion of lock scalability, see [17].

Our library also provides an API to access specific group locks, with the lock

number used as an argument to the exposed lock() and unlock() functions. The

global lock is number zero. Changing to a specific resource group lock only requires

updating the function argument. All other details are abstracted out of the API and

handled internally by the library.

3.3 Recognize Transactions

TORTIS adds the transaction keyword to Rust as syntactic sugar for transactions,

as shown in Line 13 of Lst. 3.1. Each transaction is converted to a node in the AST,

like other code blocks. Transaction blocks in the AST become transaction blocks in

HIR, which retains a tree-based node structure.
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When lowering from the HIR to MIR, the transaction{} blocks are desugared to

lock(0) and unlock(0) calls surrounding a regular code block. These calls reference

the global lock (zero) by default, but are later optimized to use group locks. This

ensures that transactions have their own scope, and thus that any references borrowed

within a transaction block will drop out of scope when the transaction completes. In

concert with the inserted locks, this ensures that two threads will never hold a mutable

reference to the same transactional shared object concurrently. The source equivalent

of desugared transactions is shown in Lst. 3.2. These lock and unlock calls reference

the lang items transaction_lock and transaction_unlock in the TORTIS library,

as discussed previously. These calls serve as transaction identifiers in later compiler

passes, as anything between the lock and unlock calls is part of the transaction, and

enable our subsequent data-flow analysis for lock optimization.

In our first (failed) implementation effort, we attempted to flag MIR basic blocks

as being a transaction or not, which proved to be impossible. AST / HIR nodes

correspond precisely to scopes in the code (i.e., regions between curly brackets),

and thus one node in the AST / HIR corresponds to a given transaction. Basic

blocks in MIR and lower representations break this correspondence. For instance, if

a transaction begins with an if statement, the conditional branch will be the last

statement of the preceding basic block. Consequently, we cannot cleanly label a

basic block as being part of a particular transaction. By adding locks/unlocks before

lowering from the HIR, we avoid the issue of mapping basic blocks to transactions,

and have a clean notion of what is in a transaction: anything between the lock and

unlock calls.

By inserting calls to the global lock, the transaction desugaring alone implements

a strawman retry-free STM system, albeit one with no concurrency. A similar sys-

tem could be implemented in C/C++. However, we next show that it is possible

to optimize these locks and achieve reasonable concurrency in Rust, whereas this

is impossible in C/C++ as discussed in Sec. 2.5. A key insight of this thesis is

demonstrating that a strongly typed language with no aliasing such as Rust enables

retry-free STM with reasonable concurrency.
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3.4 Optimize Locks

To optimize locks, we must first determine which transactions may conflict, i.e.,

which transactions are in the same resource group. Resource groups are defined as

the transitive closure of all transactions which may access a common object, e.g., if

transactions A and B access a common shared object, as do transactions B and C,

then all three transactions are in a resource group. Resource groups are thus defined

by determining what shared objects a transaction may access. We determine this by

working in the opposite direction, mapping each shared object to the transactions that

it may reach. Here we first cover creating resource groups via conflict-set analysis,

then show how resource groups are used to group transactions. Our goal is to have

many small resource groups as this results in less lock contention, and thus greater

concurrency, at runtime.

3.4.1 Conflict-Set Analysis

Conflict set-analysis has two pieces: identifying transactions and shared objects, and

creating a per-transaction list of accessed shared objects. For each shared object

identified, we must determine the set of transactions that it may reach, i.e., perform

data-flow analysis on shared objects. rustc provides facilities for this at the MIR

level, but not AST / HIR, which is why TORTIS implements conflict-set analysis

on MIR. Before explaining the technical details, we illustrate the required data-flow

analysis through the example in Lst. 3.1. Consider variable alice in fn main. The

variable alice is defined on Line 2, which is the unique identifier for that object.

A reference to alice is passed on Line 10 in the closure to spawn a new thread.

Later, the variable is passed to the transfer function on Line 21 inside a transaction.

Finally, it is mutably borrowed on Line 25. The goal of our data-flow analysis is to

follow all shared objects, like alice, to all their uses to determine which transactions

use which shared objects. For the purpose of our implementation, the data-flow

analysis must be complete, but may not be exact: over-approximating the conflict

set may cause additional blocking, thereby decreasing performance and schedulability
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lock(); A

if (condition) B

// true C // false D

unlock(); E

Figure 3-3: Reverse post-order traversal of a graph. In a reverse post-order traversal
you visit a node before you visit any nodes reachable from it. This ensures that the
data-flow analysis visits every possible basic block in the control flow between the
lock() and unlock() calls. A reverse post-order traversal of this graph is either “A
B C D E” or “A B D C E”.

but maintaining correctness, while under-approximating it may invalidate transaction

semantics.

TORTIS identifies transactions within MIR based on the lock and unlock calls

inserted in the prior step (transaction recognition). MIR has a more primitive set of

operations than Rust source code and is organized into basic blocks similar to LLVM-

IR, with explicit control-flow transitions (such as function calls) from one basic block

to another at the end of each basic block. Basic blocks can be ordered arbitrarily

within a function, and thus finding the start and end of a transaction and all basic

blocks that may execute in between cannot be done by linearly iterating through the

basic blocks. Hence, we perform a reverse post-order traversal of basic blocks based

on their control flow to identify each transaction’s start and end, as well as all the

basic blocks in between. Fig. 3-3 illustrates a post-order traversal. This ordering

ensures that we see a lock call before its corresponding unlock, and that all basic

blocks that can be executed between are properly associated with the transaction.

We use the starting point of the transaction, i.e., its lock call, as its unique identifier.

With this reverse post-order traversal, we know which function calls are part of which

transactions.

Identifying shared objects statically requires a simplifying assumption: that all

objects allocated at the same line of code are the same object. It may be possible in
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some cases to distinguish objects via whole program context and data-flow sensitive

analysis, or through dynamic analysis, but we leave achieving additional precision

as an open challenge. Our simplifying assumption does introduce conservatism into

the conflict analysis. For example, if objects are created within a loop, we treat all

objects created by a single line of code in the loop as the same object. While this

is conservative, over-approximating the conflict set of a transaction is safe in that it

ensures atomicity, but may lead to increased blocking.

The next step of our data-flow analysis is to identify all uses of shared ob-

jects within each transaction. The Rust compiler provides facilities for performing

definition-use analysis, commonly called def-use analysis, in MIR. This analysis re-

turns every use of a given object within the local function. Such a use could be

an arithmetic operation, reference, copy, etc. With these results combined with the

function-call-to-transaction mapping from the reverse postorder traversal, we corre-

late each use of a TORTIS object with any transaction in the local function. However,

transactional shared objects are seldom used solely in the function in which they are

declared (they may be passed through a closure to be used in another thread, as in

Line 10 of Lst. 3.1). Thus, we must perform interprocedural analysis to identify all

potential uses within transactions.

The interprocedural def-use analysis consists of a depth-first search (DFS) that

starts at the definition of a TORTIS shared object and traces its uses. When an object

is used as an argument to another function call or closure, the search continues by

applying the Rust compiler’s def-use analysis recursively on that function or closure

body. The search stops recursing upon encountering an access of the shared object

(get, set, borrow, or borrow_mut).

These results are stored in a use-to-allocation mapping, associating the use (read or

write) with a set of possible shared objects that line could have referred to. The search

finds all uses of a shared object within a transaction to determine whether the trans-

action writes or merely reads the object. Combining the function-call-to-transaction

mapping from the post-order traversal with this definition-to-use mapping, we can

determine which allocations may be used in a transaction, i.e., its conflict set. If a
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use is not contained in a transaction we emit an error. This ensures that transac-

tion semantics cannot be violated by accessing shared objects outside of transaction

blocks.

DFS results are memoized so that deep traversals are not done repeatedly. For

example, consider the data-flow analysis of charlie in Lst. 3.1 after the analysis of

alice completes. The charlie variable is allocated on Line 8 and also used as the

first argument to fn transfer on Line 17. Instead of repeating the recursive DFS to

find that the object is terminally used on Line 25, it can read the memoized results

and report that charlie is accessed by the transaction on Line 16.

Data-flow analysis must scan every function in the developer’s entire crate (Rust’s

nomenclature for a library) to determine all the shared objects that could possibly

be used in a transaction. This was a challenge to implement in Rust MIR because of

the compiler’s query system. Instead of organizing compilation as a series of passes

over the source code that execute sequentially, MIR code generation is organized as

a directed acyclic graph (DAG) of queries. Each query (other than the “root” query)

may depend on other queries, but may not form a cycle. TORTIS adds conflict

analysis and data-flow analysis to the query graph, with the conflict-analysis query

depending on the data-flow analysis query from every function in the crate. This

wide dependency can create cycles among the different queries in the compiler, which

can be at different stages of optimization, and also be concurrently processed by

different threads in the compiler. TORTIS prevents this cycle by (i) excluding an

unstable, experimental function type from the analysis, and (ii) cloning the MIR data

structure in one place instead of passing it by reference. Consulting with the rustc

compiler team revealed that MIR-level, whole-crate analyses are currently lacking in

the compiler, yielding poor support for them and requiring cloning the MIR data

structure. Cleaner implementations may be possible at the LLVM-IR level, if the

enabling assumptions of Rust’s type system, specifically that there is no aliasing, are

preserved when lowering to LLVM-IR.
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Transaction Conflict Set
Transaction 1 {A, B}
Transaction 2 {C}
Transaction 3 {A, C}
Transaction 4 {D}

A

B C

Resource
Group 1

D Resource
Group 2

Figure 3-4: Computing the transitive closure over the conflict sets. Transactions 1,
2, and 3 conflict and must share Group Lock 1. Transaction 4 has no conflicts and
can have its own group lock.

3.4.2 Transaction Grouping

Transaction grouping takes the conflict sets created by conflict-set analysis and uses

them to group transactions that may conflict. This formulation of resource groups

ensures that transactions are atomic, can never deadlock, and only requires one lock

per transaction.

We convert the resource-grouping problem into finding connected components in

a graph, where transactions are nodes, and an edge exists between two transactions

if they access one (or more) common shared objects. Fig. 3-4 depicts such a graph

and the transitive case—though Transactions 1 and 2 have no objects in common,

Transaction 3 conflicts with both of them so all three conflict. Connected components

in this graph represent resource groups, as elements are connected if and only if they

transitively access a common shared object.

Mutex Locks

Once the transaction groups are determined, the last step is to update the lock()

and unlock() calls in individual transactions to reference the lock for the correct

resource group instead of the global lock. According to our runtime library design,

the lock is specified as an integer argument in our API. Consequently, changing the

lock used by a transaction only requires updating the argument to the API call.
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Transaction Conflict Set Resource Group Lock
Transaction 1 {read A, write B} Resource Group 1 Write
Transaction 2 {read C} Resource Group 1 Read
Transaction 3 {read A, read C} Resource Group 1 Read
Transaction 4 {write D} Resource Group 2 Write

Figure 3-5: Read-write lock emission after transaction grouping. Each transaction
must acquire the read or write lock for its resource group. Transaction 1 writes one of
the resources, so it must acquire Resource Group 1’s write lock, while Transactions 2
and 3 may acquire Resource Group 1’s read lock. Transaction 4 acquires the write
lock for Resource Group 2.

Read-Write Locks

If TORTIS is configured to use read-write locks, then the lock() and unlock()

calls must be optimized to write_lock() / write_unlock() or read_lock() /

read_unlock(). A transaction that writes at least one shared object in its resource

group must acquire the group lock exclusively (write_lock()), even if other ob-

jects in the group are merely read. A transaction may acquire the group lock as a

reader (read_lock()) if it only reads shared objects and does not write any. Fig. 3-5

illustrates an example of this.
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Chapter 4

Discussion

TORTIS’s design decisions to obviate retries may sacrifice concurrency, most notably

the granularity at which shared objects are identified. Here we discuss some of these

tradeoffs, how transaction placement affects concurrency within TORTIS, and oppor-

tunities for future work.

4.1 Granularity of Synchronization

TORTIS uniquely identifies objects based upon their allocation site. For example,

TORTIS often cannot differentiate list elements from one another, as they are all al-

located in a common function. Therefore, TORTIS provides coarse-grained synchro-

nization for such objects, and will effectively treat the entire list (or other multi-object

aggregate structures) as one object. This limits opportunities for concurrency. How-

ever, we note that for the purpose of schedulability analysis, retry-based STM systems

often cannot guarantee that two transactions operating on a common structure will

not conflict. For example, even if two transactions do not conflict in a list, if this

cannot be determined statically, schedulability analysis must assume they conflict.

Consequently, TORTIS trades off potential performance for schedulability.
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1 fn transfer_tx(
2 src: Arc<TxRefCell<BankAccount>>,
3 dst: Arc<TxRefCell<BankAccount>>,
4 ) {
5 transaction {
6 let srcRef = src.borrow_mut();
7 let dstRef = dst.borrow_mut();
8 *srcRef -= 10;
9 *dstRef += 10;

10 }
11 }
Listing 4.1: Data-flow analysis limitations. This helper function contains one trans-
action, which acquires and releases one group lock. This lock must guard any possi-
ble shared objects passed as arguments to this function, so two transfers with non-
conflicting shared objects will still conflict.

4.2 Transaction Placement

The nature of TORTIS’s data-flow analysis favors some software design patterns over

others. To illustrate this, consider the transfer function in Lst 3.1 in comparison

to the transfer_tx function in Lst 4.1. By enclosing the transfer function in a

transaction, each transaction has its own individual conflict set, thereby allowing

the two transactions in Lst 3.1 to be in different resource groups. If transfer_tx

was used instead, i.e., the transaction block was moved to the helper function,

instead of surrounding it, there would only be one transaction to analyze, instead of

two. alice, bob, charlie, and dawn are all accessed within the lone transaction in

transfer_tx. Consequently, all four are in the conflict set for the transaction, forcing

the serialization of what are two parallel transactions in Lst. 3.1. This shows how

pulling transactions out of helper functions and closer to specific objects can facilitate

more precise conflict analysis.
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Chapter 5

Evaluation

To evaluate both the strengths and weaknesses of TORTIS, we conduct two general

classes of evaluations: (i) throughput-oriented experiments, and (ii) schedulability

experiments. The throughput-oriented experiments are designed to test how TORTIS

scales and performs under different types of contention. Then based on these experi-

ments, we conduct schedulability experiments to quantify how the more deterministic

design of TORTIS affects schedulability.

Ideally we would compare our system against an existing open-source real-time

STM system with associated schedulability analysis, but we are not aware of any.

Instead, for both experiments we chose to compare against the well-known algo-

rithm Transactional Locking II (TL2) [20], performing our own schedulability anal-

ysis for both TORTIS and TL2. We chose TL2 as a baseline for comparison for

four main reasons: (i) like TORTIS, TL2 is lock-based, though it does allow for re-

tries; (ii) TL2 is a well-established algorithm (over 1,000 citations); (iii) there is an

open-source Rust-based implementation [30], which allows us to perform performance

comparisons without the confounding variable of language performance issues; and

(iv) measurement-based studies of some prior real-time STM approaches have been

shown inferior to lock-based synchronization [21].

To better understand our experimental results, we provide a brief overview of

TL2. Transactions are effectively simulated at runtime to determine what objects

they access. This simulation requires additional overhead not present in TORTIS, but
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enables greater runtime concurrency. After the simulation phase, locks are acquired

for each of the written objects so that results can be committed. In the interest of

average-case performance, such locks are acquired in an arbitrary order, potentially

leading to deadlock, which causes a transaction to abort and retry. We modified the

Rust TL2 implementation to lock objects in address order to prevent deadlock and ease

schedulability analysis. However, for our throughput evaluation, we compare against

both the random (original, TL2) and ordered (modified, TL2-O) lock acquisition. A

transaction is forced to retry if an object it accesses is updated (or locked) after its

simulation, thus invalidating the simulation’s results. In this manner, transactions

may conflict at runtime if they access common objects. We note that TL2 can harness

(retry-based) hardware TM features (e.g., Intel TSX) to improve performance, but

this was disabled to compare pure software-based TM approaches.

5.1 Throughput Evaluation

STM systems are most commonly evaluated on observed average-case throughput.

We conducted similar evaluations in the interest of full transparency to demonstrate

how TORTIS performs in comparison to prior work. In particular, we considered

transactions operating on a buffer and varied the access patterns to identify the

limits of concurrency under both approaches.

We ran these experiments on a two-socket, 18-cores-per-socket x86 machine run-

ning the Linux 4.9.30 Litmus-RT kernel [12] with two Intel Xeon E5-2699 v3 CPUs

@ 2.30GHz with 128GB RAM and 32KB L1, 256KB L2, and 46080KB L3 caches.

All experiments were run in the partitioned earliest-deadline-first scheduler (P-EDF)

with one thread per core. For each benchmark, we ran transactions in a tight loop for

three seconds per core to measure the total transactions per second across all cores

that executed.

For the linear benchmarks, multiple threads read and write a single shared fixed-

size buffer. Each transaction accesses a given percentage of randomly chosen buffer

elements per loop iteration. Some percentage of these accesses are writes, while the
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Figure 5-1: Varying the number of cores. 64-element buffer, 10% of elements accessed,
5% writes.

rest are reads. For all benchmarks, the accessed elements are randomly determined

before the transactions execute so as not to include overhead in the transaction or

measurement time. We vary the number of cores, accessed-elements percentage, and

write percentage for our experiments.

In our first experiments, we varied the number of cores to evaluate how both

STM systems scale. Each transaction accesses 10% of the elements in a 64-element

buffer (6/64 elements), with a 5% probability of writing to the element. The results

of this experiment are shown in Fig. 5-1. TORTIS’s throughput strictly decreases as

the number of cores increases because it guards the buffer with a single group lock,

which prevents concurrency. Increasing core counts increase blocking and cache-line

bouncing, which decreases overall throughput. As the number of cores increases to

8, TL2 sees increased throughput due to the parallelism afforded by scaling to more

cores. However, beyond 8 cores the contention begins to reduce throughput as more

transactions are forced to retry or block to commit results.

Next, we sought to evaluate how the number of elements accessed within each

transaction affected throughput. In TL2, the more elements accessed, the more state

must be tracked in the transaction simulation, and the more locks that must be

acquired, each of which incurs additional overhead, not present in TORTIS. The

51



Figure 5-2: Varying the number of elements accessed. 8 cores, 64-element buffer, 5%
writes.

results of this experiment are shown in Fig. 5-2. Note that TORTIS throughput

decreases gradually as accessing more elements increases critical-section length.

Finally, to explore the effect of read/write concurrency, we varied write percentage,

assuming 8 cores and 10% of elements accessed in a 64-element buffer. While TORTIS

can be configured to use mutexes or read-write locks, TL2 is optimized for read-only

transactions. The results of this experiment are shown in Fig. 5-3. Mutex TORTIS’s

performance is virtually unchanged as the write percentage decreases and TORTIS

with read-write locks shows up to a 2.6x improvement, while TL2 and TL2-O exhibit

two orders of magnitude greater throughput.

There are 12 additional graphs based on different experimental parameters avail-

able in the appendix. Based upon these experiments, we make the following two

high-level observations.

Obs. 1 TL2 has greater average throughput than TORTIS when transaction con-

tention is low, by a factor up to 100x.

This trend is observed in Figs. 5-2, and 5-3. This is to be expected, as TL2 is

specifically designed to improve throughput in the common case of relatively rare

contention. For example, consider Fig. 5-2: when the percent of elements accessed
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Figure 5-3: Varying the write percentage. 8 cores, 64-element buffer, 10% of elements
accessed.

within the transactions is small, TL2 outperforms TORTIS by 2.4x. Similarly, when

the overwhelming majority of accesses are read accesses, which TL2 enables to run

concurrently, the throughput is nearly 100x that of TORTIS as seen in Fig. 5-3.

Obs. 2 In more highly contended cases, TORTIS performs substantially better than

TL2 , by a factor of as much as 75x.

This observation is supported in all three of our throughput Figs. (5-1, 5-2, and

5-3). When each transaction operates over the entire vector there are fewer opportu-

nities for concurrency, and thus the throughput is lower for both TORTIS and TL2.

However, TL2 is subject to additional overheads from retries, both in the actual re-

computation of the transaction, as well as the need to maintain additional metadata

and perform additional data copies. These overheads dominate the runtime, and sub-

stantially reduce performance. In contrast, in TORTIS a single lock is acquired before

operating on the buffer in place—a much more efficient operation. When more than

50% of the elements are accessed per transaction, TORTIS outperforms TL2 by an

average of 59x, and up to 75x when every element in the buffer is accessed. Similarly,

when the write percentage increases, read transactions cannot execute concurrently

as often, and a similar trend is observed in that TORTIS enables an average of 4.4x
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more throughput when the write percentage is over 50%.

5.2 Schedulability Evaluation

Our principal objective in the TORTIS design was to enable predictable worst-case

performance, and thus improve schedulability. In doing so, we willingly sacrifice

average-case throughput in more common uncontended scenarios in favor of higher

throughput in contended scenarios, and tighter bounds on synchronization-related

overhead. To evaluate these points, we conducted a schedulability study. Before

describing our study in detail, we briefly overview how we account for transaction

interference under TL2 and TORTIS.

5.2.1 Analysis Approaches for Synchronization

Our analysis for both TL2 and TORTIS builds upon the recent inflation-free anal-

ysis framework of Biondi et al. [8] to determine schedulability under P-EDF. This

framework determines schedulability by bounding the maximum deadline busy-period

length and includes terms that account for synchronization interference. Synchroniza-

tion interference on a given CPU partition is the duration of processor time spent

blocking or retrying during a given interval for tasks to complete.

For TORTIS, synchronization interference is entirely due to blocking, as with other

lock-based synchronization methods. We apply the integer-linear-programming-based

non-preemptive FIFO lock analysis presented with the inflation-free framework [8]

(which includes release blocking) for TORTIS. We note that with the lang item-

based approach to lock insertion from Sec. 3.3, swapping lock implementations is

straightforward, and thus TORTIS schedulability can be assessed by simply assessing

any existing locking protocol.

There was no prior schedulability analysis for TL2. As such, we extended the same

analysis framework to account for TL2 synchronization costs. In TL2, synchronization

interference can be comprised of both retries and blocking; one of its underlying steps

is to lock all resources that will be written during a transaction. Though lock-free
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analysis can account for repeated retries due to resource contention, existing lock-free

analyses do not apply to TL2, as they do not account for the combination of retries

and blocking that can occur.

Details of our analysis are included in the appendix, in which we also give examples

of the types of transaction interference. There, we illustrate how both local (same

CPU) and remote (other CPUs’) transactions can force a given transaction to retry.

For each local transaction, we factor in that it may cause a retry when the task of

interest is preempted during its execution of a transaction; the preempting task may

execute a transaction that invalidates the results of the simulated execution, forcing

a retry when that transaction resumes execution. The analysis also accounts for

interference caused by remote transactions that can be executing concurrently with

the task of interest. Our computation of interference is calculated on a per-task basis,

allowing us to account for the number of interfering transactions that may be present

during a given interval.

When analyzing an individual transaction, we must consider which resources may

be accessed. For the buffers examined above, separate transactions could access

different buffer elements concurrently. However, as elements are added to and removed

from a given buffer, the element accessed by a transaction may change. Thus, we

assume that each access to a given data object (e.g., buffer) may conflict with any

other access to the same data object. Therefore, the conflict sets for TL2 and TORTIS

are the same; we cannot statically determine which elements will be accessed within

an object.

5.2.2 Experimental Design

We used SchedCAT [1] and the inflation-free framework [8] to analyze the schedula-

bility of task systems under P-EDF on an eight-processor platform.

We generated implicit-deadline sporadic task systems for scenarios categorized

by task periods, task utilizations, number of shared objects, object-access durations,

the probability that a task contains any transactions for a given object, and the

number of transactions that task issues for that object. We varied these parameters
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(a) 4 objects, access probability of 0.25, short
transaction length, 1 transaction.
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(b) 16 objects, access probability of 0.10,
medium transaction length, 1 transaction.
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(c) 8 objects, access probability of 0.50, medium
transaction length, number of transactions cho-
sen from {1 . . . 5}.

Figure 5-4: For these scenarios, there were four shared objects, and task periods were
chosen from [1ms, 1000ms].

to represent systems similar to those studied in prior work [8]. A scenario is defined

by a particular selection of these parameters. Task periods were selected from a log-

uniform distribution in [10ms, 100ms] or [1ms, 1000ms]. Each task’s utilization was

selected from an exponential distribution with a mean of 0.1. The number of data

objects was chosen from {4, 8, 16}. For each task, the probability that a transaction

accesses a given data object was chosen from {0.1, 0.25, 0.5}. If a task accesses a

given data object, it either contains one transaction for that object or it contains a

number of transactions for that object selected from {1, . . . , 5}. (Each transaction
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accesses only one data object.) We used the same transaction length for both TL2 and

TORTIS, selected uniformly from either [1𝜇s, 25𝜇s] (short) or [25𝜇s, 100𝜇s] (medium).

We did not include overheads.

5.2.3 Favoring the Competition

By using the same transaction length for both TL2 and TORTIS, we are favoring

TL2 . A transaction handled by TORTIS simply reads or writes its set of elements.

TL2, on the other hand, simulates a transaction’s execution, acquires write locks,

and checks the simulated values before writing the values and releasing write locks.

As shown in Fig. 5-1, when the number of threads is one, TORTIS outperforms TL2

by a factor of 15x, which is reflective of the extra bookkeeping required for retries.

Accounting for this added work would increase the retry cost of each transaction

under TL2. We chose to ignore this work to make our evaluation independent of

TL2 implementation choices, and instead focus on retry-free vs. retry-based analysis

tradeoffs. Furthermore, we assume blocking for locks to commit transaction results

is negligible. Hence our analysis applies equally to TL2 and TL2-O. If we did account

for blocking, TL2-O would have lower blocking bounds than TL2. Even with these

generous simplifications, TORTIS offers significant schedulability improvements over

TL2.

5.2.4 Schedulability Results

Considering all possible combinations of task-set parameters results in 72 scenarios.

For each one, we generated task systems with a number of tasks between {8, 12, .., 80}.

As tasks were generated, they were added to each partition in turn. For each number

of tasks, we generated 1000 independent task systems. We plot the schedulability ratio

of these, which is computed by taking the ratio of task systems that were schedulable

by each approach out of the 1000 systems generated with the given parameters.

To summarize the relative performance of approaches under a given scenario, we

compute for each approach its task schedulable area (TSA), which is the area under
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its schedulability curve as computed with a midpoint sum. We report the TSA ratio

showing the improvement of TORTIS over TL2.

Each scenario resulted in one graph. All 72 graphs are included as supplementary

material, and in Fig. 5-4, we present three of these; we show the graphs correspond-

ing to the scenarios with roughly the maximum, average, and minimum amount of

schedulability recovered by TORTIS over TL2. While each plot is with respect to

the number of tasks, higher task counts generally yield an increase in system utiliza-

tion and resource contention. With sufficiently high utilization, task systems are not

schedulable. The no synchronization line in each plot represents P-EDF schedula-

bility of the independent tasks, including no synchronization. A task set that is not

schedulable under no synchronization cannot be schedulable after synchronization

interference is accounted for, and is plotted to show utilization loss associated with

synchronization.

From these results, we make the following observations.

Obs. 3 TORTIS dominates TL2 with respect to schedulability in all observed cases.

This observation is shown in Fig. 5-4. For all scenarios, the TSA of TORTIS was

higher than that of TL2. TL2 is designed for the common case where contention is

rare, but when contention is high TORTIS provides substantially higher performance

(Obs. 2). Schedulability analysis is based on bounding the worst-case contention, so

lower-overhead, retry-free, deterministic synchronization as used in TORTIS provides

improved schedulability. While the TL2 schedulability analysis was our own, we used

a recent schedulabilty analysis framework and did not charge overheads for retries

(other than accounting for actually re-running the transaction) nor the blocking on

locks to commit per-object results.

Obs. 4 In some scenarios, the schedulability improvement from TORTIS over TL2

is modest.

This is observed in Fig. 5-4c, which depicts a system that is difficult to schedule.

Here, the TSA ratio is 1.5. With the high resource contention, there is little room for

schedulability improvement. At the other end of the spectrum, we observed that the
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TL2 performed well in scenarios with low contention, leaving minimal opportunity for

improvement.
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Chapter 6

Future work

This first investigation of retry-free STM provides a rich platform for further study of

real-time STM. We plan to address limitations of TORTIS’s current implementation

and the implications of retry-free STM in future work.

Multi-crate analysis. Given the Rust compiler’s underlying structure, perform-

ing analyses that span multiple crates is difficult. Thus, TORTIS does not correctly

protect objects that are operated upon within transactions in different crates. In

future work, we plan to explore how to support conflict analysis and lock updates

during link-time optimization (LTO) to enable whole-program transaction analysis,

even across shared libraries.

Nested locking and fine-grained locking. We also plan to leverage the sig-

nificant body of prior work on nested locking in real-time systems [43, 9, 34, 42] to

enable finer-grained locking for transactions, and thus greater runtime concurrency.

Fine-grained locking can also be optimized by moving locks to delay acquisition or

expedite release, shortening the critical section while preserving atomicity.

Transaction priorities and suspend vs. spin. When transactions conflict,

prioritizing the more important transaction leads to better schedulability and re-

sponsiveness. Handling priority levels in the STM system keeps the developer from

running into priority-inversion issues [36, 28, 14]. The system could also behave more

predictably with better performance if the contention manager chose to emit not only

spinlocks, but also suspension-based locks. Future extensions could use a suspension-
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aware locking protocol with priority levels like RNLP [44] or other priority-aware

locking protocols like FMLP [11] or FMLP+ [15].

Different lock granularities per transaction. Given the tradeoffs between

lock granularity and performance, perhaps fine-grained locks are better for one trans-

action while coarse-grained locks are better for another transaction within the same

program. In addition, it may even be more performant in some cases to emit one lock

per field in a shared object. More sophisticated data-flow analysis could use heuristics

to determine the best approach for a given data structure or transaction.

Contention-based analysis. The amount of time a transaction blocks in TOR-

TIS depends not only on the contention for the resources it uses, but the contention

for all the resources in its resource group. Finer-grained contention analysis could

break these “transitive blocking chains” to make the blocking time directly propor-

tional to the number of other transactions attempting to use only the same resources

[35].

Runtime lock management. TORTIS’s analysis is all performed statically

at compile time. Runtime lock management could help determine which subset of

potentially accessed shared objects are within scope at the start of a transaction,

preventing unnecessary locking.

Study of I/O. While transactions that do not retry can theoretically support I/O,

TORTIS does not yet have a clear plan for how to support I/O. Further exploration is

needed to determine whether TORTIS requires a new I/O abstraction and what that

abstraction might look like.

Case study. We compared TORTIS to TL2 using synthetic benchmarks on com-

mon data structures. It would be interesting to apply TORTIS to a larger, more com-

plex real-time system with multiple data structures and evaluate its performance. It

would also be interesting to perform a usability study to evaluate the difficulty of

writing code using TORTIS.

Other optimizations. Two transactions in the same thread cannot block on one

another, so should not need exclusive locks. Helper functions containing transactions

could be duplicated or inlined to solve the transaction placement issue discussed in
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Sec. 4.2. Transactions could more gracefully handle exceptions and release locks

before panicking.
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Chapter 7

Conclusion

We have presented TORTIS, the first ever retry-free STM framework. TORTIS is

designed for application in real-time systems. A certified STM framework in this

setting could greatly ease the development of certifiable real-time systems. This real-

time focus motivated us to present the first ever schedulability analysis for an existing

retry-based STM system. Based on this analysis, we conducted a schedulability study,

in which TORTIS dominated prior work by a ratio of over 10x increase in schedulable

task sets in some cases. In producing TORTIS, we limited attention to the use of

group locks in dealing with conflicting transactions. In future work, we plan to

consider finer-grained locking approaches, as well as other issues related to conflict

analysis. TORTIS’s modular design provides a sound basis for delving into these and

other issues pertaining to real-time STM.
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Appendix A

Bounding Transaction Interference

Here we describe how we account for the interference between transactions when TL2

is used.

A.1 Inflation-Free Approach

We build on an inflation-free approach [8] that bounds the maximum deadline busy-

period length in a system scheduled with P-EDF. For each partition, we use the

inflation-free approach by providing analysis of the possible retries or blocking in a

busy-period for the TL2. As with the original analysis for lock-free and lock-based

resource access that utilized this framework, all synchronization delays incurred by

jobs in a busy-period can be accounted for using two terms for each processor.

These two terms are 𝐵(PDC) and 𝐵(AC), correspond to the processor demand cri-

terion and the arrival curve, respectively. (Refer to the work by Biondi et al. [8] for

more details on how these terms are used in their inflation-free analysis.) To compute

𝐵(PDC), we determine the additional processor demand that can be caused by syn-

chronization interference. After describing how we account for both local and remote

interference, we then discuss how the calculation of 𝐵(AC) differs.
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A.1.1 TL2 Details

The TL2 [20] algorithm has six basic steps: (1) sample the global version clock, (2) run

a speculative execution to determine the read-set and write-set, (3) lock the write-set,

(4) increment the global version clock, (5) validate the read-set, and (6) commit and

release the locks. A transaction can be forced to retry in Steps 2 and 4.1 Additionally,

a transaction can block while acquiring all of the locks for the write-set in Step 3. We

state the assumptions we make for the analysis of TL2 below.

• We reason on the maximum transaction length. This is the duration of a trans-

action from start to finish (executing each of the steps described above) without

any retries; we account for retries as taking this entire duration.

• The duration of each transaction is included in a task’s WCET.

• Commit loops are preemptable.

• We do not consider a specific locking protocol in our analysis.

The first assumption accounts for time spent on a single transaction execution

that results in a commit. What remains is for us to account for any additional

transaction execution caused by retries. The second assumption reflects that non-

preemptivity is not specified for TL2 execution; one can certainly imagine a system in

which TL2 is modified to execute portions of transactions non-preemptively, and thus

the analysis accounts for both cases. Similarly, we do not constrain our analysis to

a specific locking protocol. Some protocol choices would allow additional constraints

on interfering transaction to be imposed, but some would cause significant blocking

(in turn impacting 𝐿𝑚𝑎𝑥). Instead, our analysis looks at which transactions could

interfere on the basis of their required resources, not a specific locking mechanism.

A.1.2 Definitions

The following discussion is based on looking at a single processor of interest, 𝑃 *. We

show how to account for the synchronization interference over a busy-period of length
1Depending on implementation decisions, a transaction may also retry in Step 3.
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Figure A-1: An execution scenario in which a local transaction can cause a retry.

𝑡 to compute 𝐵(PDC)(𝑃 *, 𝑡). The entire task system (across all partitions) is denoted

Γ. The set of tasks on 𝑃 * is denoted Γ(𝑃 *). We denote an arbitrary task as 𝜏𝑖. The

period of 𝜏𝑖 is denoted 𝑝𝑖, and its deadline is denoted 𝑑𝑖. In the following examples,

we reason about an arbitrary job of a given task. The execution of a job can contain

one or more transactions. We denote an arbitrary transaction Tx𝑦. Each transaction

has a worst-case duration of 𝐿𝑚𝑎𝑥.

Based on the possible sequences of execution for tasks’ transactions coordinated

by TL2, we analyze the maximum duration of synchronization delays. We determine

for each processor how much additional work (retries or blocking) may occur based

on transaction interference.

A.1.3 Local Transaction Interference

A transaction is local when it shares the same partition as the arbitrary task 𝜏𝑖 .The

following example shows how a local transaction can cause a retry.

Example 1 As illustrated in Fig. A-1, a job of 𝜏1 is released at 𝑡 = 0. At 𝑡 = 2, it

begins executing Tx1, which requires reading ℓ𝑎 and writing to ℓ𝑏. Tx1 begins executing

the steps of TL2 summarized above, starting with reading the global clock and doing

the speculative execution. At 𝑡 = 4, 𝜏2 releases a job with a higher priority (due to
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Figure A-2: An execution scenario in which a single local transaction can cause multiple
(local) transactions to retry.

its earlier deadline). Tx2 executes and commits, writing to ℓ𝑎. After Tx1 resumes, it

detects (in Step 5) that ℓ𝑎 has been updated. This forces Tx1 to retry, rendering its

previous execution useless; it must start over from Step 1. ♦

The transaction time is accounted for in a task’s execution time, but our analysis of

synchronization interference must also account for the wasted time spent executing

the failed transaction prior to the retry.

Ex. 1 illustrates that a local transaction writing to a resource can force a transac-

tion reading that resource to retry if its task preempts the reading transaction. The

following example illustrates that a preempting task can cause multiple transactions

to retry.

Example 2 As illustrated in Fig. A-2, 𝜏1 is preempted while executing Tx1 by 𝜏2.

Unlike in Ex. 1, Tx2 cannot cause Tx1 to retry. However, at 𝑡 = 6, 𝜏3 begins executing,

and at 𝑡 = 7 issues Tx3. Tx3 writes to ℓ𝑎. Therefore, when both 𝜏2 and 𝜏1 resume,

their respective transactions, which both read ℓ𝑎, must retry. ♦

This example serves to illustrate that a single writing transaction preempting an

executing transaction can cause multiple other transaction to retry.

For both of the above examples, we highlighted only a single job of each task.

However, during the interval 𝑡, multiple jobs may execute of a given task may execute,

each of which may contain a transaction. If we consider that 𝜏𝑗 contains a transaction

that may preempt other tasks, we must consider nljobs(𝜏𝑗, 𝑡) = ⌊ 𝑡+𝑝𝑗−𝑑𝑗

𝑝𝑗
⌋ jobs of this

task during the busy-period of length 𝑡. This is the definition given with the original

inflation-free analysis [8].
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An additional consideration is that each task may contain multiple transactions.

However, a given task can only be forced to retry once due to all other transactions

of a given job. As illustrated in both of the examples above, a preemption is required

to cause a retry, and each job can only preempt a given task once under P-EDF.

Based on the above observations, we define a binary variable to indicate possible

interference due to a forced retry. For tasks 𝜏𝑖 and 𝜏𝑗, we let 𝑋𝑖,𝑗 = 1 if 𝜏𝑗’s period

is less than 𝜏𝑖’s period and any of 𝜏𝑗’s transactions writes to one or more resources

that any transaction of 𝜏𝑖 reads. Otherwise, 𝑋𝑖,𝑗 = 0. Thus, if 𝑋𝑖,𝑗 = 1, there is

an execution pattern that can result in a transaction of 𝜏𝑗 causing a transaction of

𝜏𝑖 to retry. Recall that, each access of an element of a larger data structure like a

buffer could interfere with other access to that data structure. Therefore, for our

schedulability analysis, if tasks 𝜏𝑖 and 𝜏𝑗 shared any data structure (through their

respective transactions), then 𝑋𝑖,𝑗 = 1.

Over the busy-interval of length 𝑡, 𝜏𝑖 may incur retry interference of up to∑︀
𝜏𝑗∈Γ(𝑃 *) nljobs(𝜏𝑗, 𝑡) · 𝑋𝑖,𝑗 · 𝐿𝑚𝑎𝑥. As illustrated in Ex. 2, a preempting job of 𝜏𝑗 can

cause multiple retries. Therefore, we account for the total local interference on 𝑃 *

over an interval 𝑡 as 𝐵
(PDC)
𝐿 (𝑃 *, 𝑡) = ∑︀

𝜏𝑖∈Γ(𝑃 *)
∑︀

𝜏𝑗∈Γ(𝑃 *) nljobs(𝜏𝑗, 𝑡) · 𝑋𝑖,𝑗 · 𝐿𝑚𝑎𝑥.

A.1.4 Remote Transaction Interference

For considering the interference caused by transactions remote to 𝑃 *, we begin by

building intuition about the types of interference that can occur. Then we describe

how we compute an upper-bound on interference.

As we saw with local transactions, a remote transaction writing to a resource can

force a transaction on 𝑃 * to retry. In fact, when the read-set is validated in Step 5 of

TL2, if any of the memory locations in the read-set are locked by a different thread,

the transaction must retry.

Example 3 Consider the execution scenario illustrated in Fig. A-3. Tx1 begins ex-

ecuting at 𝑡 = 2. After executing Steps 1-4, it must check its read-set. However, at

𝑡 = 4, Tx2 has locked ℓ𝑎. Thus, the read-set validation (Step 5) for Tx1 fails, forc-
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Figure A-3: A possible execution pattern that illustrates remote interference.

ing a retry. (This is the specified behavior for TL2 [20]; a transaction observing the

write-lock held cannot progress, as the value read during the speculative execution is

anticipated to change.) The same read-set invalidation occurs for Tx1 at 𝑡 = 8, and

similarly Tx2 is forced to retry (caused by Tx3 holding the write-lock on ℓ𝑐) at 𝑡 = 7.

♦

Ex. 3 highlights that a transaction (here, Tx1) can repeatedly retry while a con-

flicting transaction (here, Tx2) holds a write-lock. During that time period, that

conflicting transaction (here, Tx2) can also be forced to retry in the same manner.

Thus, even without considering a specific lock implementation, it is clear that other

tasks that write an object shared between the considered transactions can cause delay

for up to a duration of 𝐿𝑚𝑎𝑥.

Example 4 (cont’d) When looking at the duration of time for which Tx1 is executing

only to be forced to retry, we see that this is longer than simply the duration of Tx2,

even though Tx1 only overlaps resources with Tx2. Here, Tx3 is transitively interfering

with Tx1. ♦

To detect all possible transitive interference, we must consider all possible trans-

actions that overlap in some way (even transitively) with a given transaction. Doing

so can be accomplished by constructing a graph of transactions, with edges added

between possible conflicts, and determining which transactions are reachable.

Though we have been looking at these individual resources, recall that any larger

set that may overlap can correspond to a broader data structure, and that we con-

strain our evaluation to transactions operating on only one data structure. Addition-
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ally, for real-time analysis, we must assume that all accesses to a given data object

may interfere, as we cannot determine which elements will be used ahead of time.

Thus, Tx1, Tx2, and Tx3 must be considered as if they all access the same data ob-

ject and can conflict as shown in Ex. 3. (Because they operate on separate elements

at runtime as supported by TL2, they cannot be assumed to simply execute their

transactions sequentially.)

Unlike with local interference, multiple transactions from a remote job can cause

interference on 𝑃 *. Additionally, due to the possibility of preemptions, a single remote

transaction may cause multiple retries on 𝑃 *.

When analyzing 𝜏𝑖 on 𝑃 *, we let 𝑌𝑖,𝑗 be the number of transactions of a single job

of 𝜏𝑗 (on a partition remote to 𝑃 *) that conflict with any of 𝜏𝑖’s transactions. As in

prior work [8], we define the number of remote jobs of 𝜏𝑗 as nrjobs(𝜏𝑗, 𝑡) = ⌈ 𝑡+𝑑𝑗

𝑝𝑗
⌉.

Thus, across all tasks on 𝑃 *, we estimate the remote interference as 𝐵
(PDC)
𝑅 (𝑃 *, 𝑡) =∑︀

𝜏𝑖∈Γ(𝑃 *)
∑︀

𝜏𝑗 /∈Γ(𝑃 *) nrjobs(𝜏𝑗, 𝑡) · 𝑌𝑖,𝑗 · 𝐿𝑚𝑎𝑥.

A.1.5 Overall Computation of Synchronization Delay

Based on the local and remote interference that can be incurred by 𝑃 *, we compute

𝐵(PDC)(𝑃 *, 𝑡) = 𝐵
(PDC)
𝐿 (𝑃 *, 𝑡) + 𝐵

(PDC)
𝑅 (𝑃 *, 𝑡).

As in prior work [8], on the processor of interest, the term 𝐵(AC)(𝑃 *, 𝑡) denotes

the synchronization delay for a busy-period of length 𝑡, and the term 𝐵(PDC)(𝑃 *, 𝑡)

denotes the sum of arrival blocking and synchronization delay for a deadline busy-

period of length 𝑡. Above, we described our approach for computing 𝐵(PDC)(𝑃 *, 𝑡).

Because we assume preemptive execution, there is no arrival blocking included in that

term. To instead compute 𝐵(AC)(𝑃 *, 𝑡), we simply change the definition of nljobs to

nljobs(𝜏𝑖, 𝑡) = ⌈ 𝑡
𝑝𝑖

⌉. This reflects that the bound 𝐵(AC)(𝑃 *, 𝑡) must consider all jobs

released in the window of length 𝑡, not only those that have a deadline before the end

of the window [8].
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Appendix B

Schedulability Metrics and Figures

Here we further describe metrics used to evaluate the schedulability results, as well

as include all graphs (for each of the 72 scenarios) from our study.

B.1 Task Schedulable Area Ratio

As discussed in Sec. Sec. 5.2, we compute the task schedulable area (TSA) for each

of the figures by calculating the area under the schedulability curve using a midpoint

sum. We compared TORTIS and TL2 on the basis of two ratios:

Ratio 1 = TSA(TORTIS)
TSA(TL2)

and

Ratio 2 = TSA(TORTIS) − TSA(TL2)
TSA(no synchronization) − TSA(TL2) .

These ratios capture the difference between TORTIS and TL2 and the ratio of im-

provement with regards to total possible improvement. After calculating these ratios

for all 72 experiments, statistics presented in Table B.1 allowed us to select the rep-

resentative cases and evaluate TORTIS’s overall schedulability improvements.
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Ratio 1 Ratio 2
MAX 10.19 0.95
MIN 1.01 0.02
AVG 2.46 0.49

MEDIAN 1.77 0.51

Table B.1: Statistics of TSA ratio calculations.
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Figure B-1: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.

B.2 Complete Figures

Below we include all of the graphs from our schedulability experiments in order of

decreasing value of Ratio 2.

76



8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

no synchronization
TORTIS
TL2

Figure B-2: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-3: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-4: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-5: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-6: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-7: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-8: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-9: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-10: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-11: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-12: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-13: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-14: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-15: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-16: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-17: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-18: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

no synchronization
TORTIS
TL2

Figure B-19: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-20: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-21: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-22: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-23: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-24: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-25: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-26: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-27: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-28: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-29: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-30: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

no synchronization
TORTIS
TL2

Figure B-31: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-32: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-33: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-34: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-35: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-36: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with with a single transaction.
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Figure B-37: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-38: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-39: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-40: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-41: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-42: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-43: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-44: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-45: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-46: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-47: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-48: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-49: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-50: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-51: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-52: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-53: Results from the scenario with periods selected from [10ms, 100ms], 4 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-54: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-55: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-56: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-57: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-58: Results from the scenario with periods selected from [10ms, 100ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-59: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.1. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-60: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with with a single transaction.
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Figure B-61: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-62: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-63: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-64: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.

97



8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

no synchronization
TORTIS
TL2

Figure B-65: Results from the scenario with periods selected from [10ms, 100ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-66: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-67: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.25. Tasks accessing a data object
did so with a number of transaction selected from {1, . . . , 5}.
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Figure B-68: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with with a single transaction.
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Figure B-69: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-70: Results from the scenario with periods selected from [1ms, 1000ms], 4 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-71: Results from the scenario with periods selected from [1ms, 1000ms], 16 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Figure B-72: Results from the scenario with periods selected from [1ms, 1000ms], 8 data
objects, and tasks accessing objects with probability 0.5. Tasks accessing a data object did
so with a number of transaction selected from {1, . . . , 5}.
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Appendix C

Throughput Benchmark Results

Here we include additional graphs for throughput benchmarks with varying parame-

ters.
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Figure C-1: Varying number of cores. 128-element buffer, 10% of elements accessed,
5% writes.

Figure C-2: Varying number of cores. 256-element buffer, 10% of elements accessed,
5% writes.

Figure C-3: Varying the number of elements accessed. 16 cores, 64-element buffer,
5% writes.

Figure C-4: Varying the number of elements accessed. 8 cores, 128-element buffer,
5% writes.
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Figure C-5: Varying the number of elements accessed. 16 cores, 128-element buffer,
5% writes.

Figure C-6: Varying the number of elements accessed. 8 cores, 256-element buffer,
5% writes.

Figure C-7: Varying the number of elements accessed. 16 cores, 256-element buffer,
5% writes.

Figure C-8: Varying the write percentage. 16 cores, 64-element buffer, 10% of ele-
ments accessed.
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Figure C-9: Varying the write percentage. 8 cores, 128-element buffer, 10% of ele-
ments accessed.

Figure C-10: Varying the write percentage. 16 cores, 128-element buffer, 10% of
elements accessed.

Figure C-11: Varying the write percentage. 8 cores, 256-element buffer, 10% of
elements accessed.

Figure C-12: Varying the write percentage. 16 cores, 256-element buffer, 10% of
elements accessed.
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