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Projected  Newton  Methods  and 
Optimization of Multicommodity  Flows 

Abszruct-A superlinearly convecent Newton like method for linearly 
constrained optimization problems is adapted for solution of multicommod- 
ity nehvork flow probIems of the type arising in communication and 
transportation networks. We shonr that the method can be implemented 
approximately by making  use of conjugate gradient iterations without the 
need to compute explicitly the Hessian matrix. Preliminary computational 
results suggest that this type of method is capable of yielding highly 
accurate solutions of nonlinear multicommodity flow problems far more 
efficiently than any of the methods available at  present. 

I. INTRODUCTION 

T HE methods that are currently most popular for solving 
smooth linearly constrained optimization problems of the 

f o m  

minimize J ( x )  
subject to Ax < b 

where J :  R" + R ,  A :  rn X n, b E R"', are based on solution of 
some type of linear or quadratic programming subproblems. For 

(1) 
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example, methods stemming from the original proposals of 
Goldstein [l], and Levitin and Poljak [2] take the form 

xk+l = xk + a,(X, - xk) (2) 

where X, solves 

minimize ~ J ( x , ) ' ( x - x , ) + - ( x - . u , ) ' H ~ ( x - x , )  

subject to A x  < 6 ,  

1 
2 (3) 

H, is a positive definite matrix, and ak is a positive scalar step 
size determined according to some rule. This method is capable 
of superlinear convergence if Hk is either the Hessian matrix v 'J 
or some suitable quasi-Newton approximation of v 2 J  [2]-[4]. 
However, for large-dimensional problems the overhead for solv- 
ing problem (3) is typically prohibitive with such a choice of Hk 
thereby rendering the method impractical. 

The difficulty with excessive overhead in solving the quadratic 
programming problem (3) can be bypassed in at least two ways if 
the constraint set has a simple form (for instance upper and lower 
bounds on the coordinates of x ,  Cartesian products of simplexes, 
etc.), or has special structure (for example, it expresses conserva- 
tion of  flow equations for the nodes of a directed graph). One 
possibility is to take Hh = 0 in problem (3) so that (3) becomes a 
linear program. This leads to methods of the Frank-Wolfe type 
[ 5 ]  which have been extensively applied for solution of multicom- 
modity network flow problems [6] ,  [8]. The rate of convergence of 
these methods is sublinear [9]. [lo] and therefore too slow for 
applications where high solution accuracy is demanded. The 
other possibility is to choose the matrix HA in (3) to  be positive 
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definite and diagonal. With such a choice it is often possible to 
solve the quadratic subproblem (3)  very efficiently by exploiting 
the simple structure of the constraint set. Methods of this type 
have a long and quite successful history in large-scale problems 
arising in network flow applications [7], ill]-[17] as well as in 
other areas such as optimal control [18], [19].  However, their rate 
of convergence is typically linear and  in many applications un- 
acceptably slow. 

A somewhat different type of method stems from the original 
gradient projection proposal of Rosen [20], and  other related 
proposals (the reduced gradient method and the convex simplex 
method [21],  etc.). The typical iteration in these methods pro- 
ceeds along a linear manifold of active constraints which is 
gradually modified during the algorithm as previously active 
constraints become inactive and new constraints become active 
(see  [22]-[25]). These methods are  quite effective for problems of 
small dimension and have also been applied in some network 
flow problems [26],  [27], but,  in  our view, are highly unsuitable 
for large problems with many constraints. The main reason is 
that they typically allow only one new constraint to become 
active in any one iteration. So if for example 1000 constraints are 
active at the solution which are  not active at the starting  point, 
these methods require at least loo0 iterations and likely many 
more in  order to converge. 

In this paper we consider a projected Newton method first 
proposed in Bertsekas [28] that offers substantial and  often 
decisive advantages over the methods described above for large 
problems with many simple constraints as typified by a multi- 
commodity flow structure. For the problem 

minimize J ( x )  
subject to x > 0 (4) 

it takes the simple form 

where ak is a positive scalar step size, Dk is a positive definite 
symmetric matrix which is diagonal with respect to some of the 
coordinates of x, and [.I' denotes,projection (with respect to the 
standard norm) on the positive orthant. It is shown in [28] that 
D, can be chosen on the basis of second derivatives of J so that 
the method typically converges superlinearly. 

Iteration (5) constitutes the basic building block for extensions 
to more general inequality constrained problems by means of a 
procedure described in [28]. In this paper we focus on the case 
where the constraint set is a Cartesian product of simplexes, and 
consider in more detail a class of nonlinear multicommodity flow 
problems characterized by a constraint set of this type. We 
describe an approximate version of a Newton like method based 
on approximate solution of the Newton system of equations via 
the conjugate gradient method. It turns out that  for network flow 
problems this conjugate gradient method can be implemented 
very  efficiently-a fact also observed earlier in a different con- 
text by Dembo [29]. A key fact is that the  product of the  Hessian 
matrix of the  objective  function  with an arbitrary  vector can  be 
obtained by means of graph  operations  that  require  relatively  little 
memory  storage  and  computational  overhead. As a result a signifi- 
cant advantage in speed of convergence is gained over earlier 
methods at the expense of relatively small additional overhead 
per iteration. Computational results substantiating this fact may 
be found in [37],  [38]. 

The  notation employed throughout the paper is as follows. All 
vectors are considered to be column vectors. A prime denotes 
transposition. The standard norm in R" is denoted by 1. I, Le., for 
x = (x1;. . , x " )  we write 1x1 = [ ~ ~ = 1 ( x ' ) 2 ] 1 / 2 .  The gradient and 
Hessian of a function f :  R" + R are denoted by of and v ' f ,  
respectively. All vector inequalities are meant to be component- 
wise (for example, x > 0 means x' > 0, i = 1,. . . , n ) .  

11. A PROJECTED NEWTON METHOD FOR MINIMIZING A 
TWICE DIFFERENTIABLE FUNCTION ON A SIhPLEX 

Consider the problem 

minimize J(x) 

subject to x > 0 ,  x i =  r (6) 

where J :  R" -+ R is twice continuously differentiable and r is a 
given positive scalar. We also assume for convenience that J is 
convex although generalizations of all the results and algorithms 
of this paper are possible without this assumption. 

We describe the kth iteration of a Newton like method for 
solving (6). At the beginning of the iteration we have a feasible 
vectcx x k .  The next (feasible) vector X k + l  is obtained by means 
of the following procedure. 

By rearranging indexes if necessary assume that the last coordi- 
nate xi satisfies 

i =I 

x , " = m a x ( x ; l i = 1 ; . - , n } .  (7) 

Consider a reduced  coordinate  system in the vector y E R"-' given 
by 

y =  ($,. . .,),"-I ) = (XI, 2 ; .  . $ - I ) ;  (8) 

denote yk = (xi;. . . , x i - ' ) ,  and consider the reduced objective 
function 

h k ( ) ~ ) = J ( y ' ; . . , y ' - ' , r -  " - l   i = l  y i  i . ( 9 )  

Based on this transformation problem (6) is equivalent locally 
(around Y k )  to the problem 

minimizeh,(y) (10) 

in the Sense that the constraint r - E:I;yi 2 0 is (by construction) 
inactive within a neighborhood of yk.  The following iteration is 
based on this fact [compare to (4), (5)J. For an ( n  - l ) X (  n - 1) 
positive definite symmetric matrix D ,  to be further specified later 
denote 

y > 0 

y k ( a ) =  [ y k - a D k V h k ( y k ) ] + ,  v a & o  (I1) 

where [.I+ denotes projection on the positive orthant (i.e., for a 
vector y = ( y ' ; . . , ~ > " - ~ ) ,  the vector [y]'  has coordinates 
max(0, y ' } ,  i = l ; . . , n  - 1 ) .  Define the vectoryk+l by means of 

Y k + l = Y k ( a k )  ( 1 2 )  

where the step size ak is chosen by means of a rule to be specified 
further later from the range 

ak E [o, g k ]  (13) 

with i f k  given  by 

z k = s u p  0 1 1  y ; ( a ) < r  . (14) i " - l  i i 7 1  

(Note that in view of (3, (8), ( l l ) ,  we have t i k  > 0 or t i k  = CG.) 
The next vector xk + generated by the algorithm has coordinates 
given  by 

~ ~ - ~ = y ~ + ~ ,  i = l ; - . , n - l  ( 1 5 4  

= r - y ~ - ' .  (15b) 
n - 1  

i = l  
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We first note  that,  in view of (l l) ,  (13), (14) the vector x , - l  is 
feasible. The following proposition identifies a class of matrices 
D, for which a descent iteration is obtained. Its proof  is obtained 
easily by using [28, Proposition 11 and the preceding analysis. 

Denote 

and consider for all a 0 the vector x, (a) with coordinates given 
by 

x L ( a ) = y i . ( a ) ,  i = l , . . .  ,n - 1  (17) 

x ; ( a ) = r -   y ; ( n ) .  (18) 
n - 1  

i = l  

Proposition I: Assume that the positive definite symmetric 
matrix D, is diagonal with  respect to the index set I;  ( x , )  in the 
sense that the elements D;’ of D, satisfy 

DL’ = 0 

f o r a l l i E I ~ ( x , ) a n d j = I , . . . , n w i t h i # j  . 
a) If x, is a global minimum of problem (6) then 

x , ( a ) = x , ,  Va>O. 

b) If x, is not a global minimum of problem (6)  then there 
exists Z E  (0, L?,] such that for all n E (0,4 the vector x ,  ( a )  is 
feasible, and 

J [ x , ( a ) ] < J ( x , ) ,  V a E ( O , a ] .  (19) 

The proposition above shows that the algorithm essentially 
terminates at a global minimum and is capable of descent when 
not at a global minimum. 

There are a number of issues relating to selection of the matrix 
D, and the step size a, and associated questions of convergence 
and  rate of convergence  which are addressed in [28] for the case 
of the related problem (4) and will only be summarized here. We 
first mention that the convergence results available require that 
D, is not only diagonal with respect to the set I; (x , ) .  but rather 
with respect to the possibly larger set 

where 

c is a fixed positive scalar, s i  is given by 

and p\ are scalar sequences such that 

p\ > p ’ > O ,  k = 0 , 1 ; . . ,  

with p’ being some positive scalars which are fixed throughout the 
algorithm. This is an antizigzagging  device of the type commonly 
employed in feasible direction methods (see,  e.g., [30]), and is 
designed to counteract the possible discontinuity exhibited by the 
set Z; ( x , )  as x A  approaches the boundary of the positive orthant. 

Regarding the  choice of the step size a,. there are at least two 
practical methods that lead to algorithms which are demonstrably 

convergent. In the first method a, is chosen according to 

n,=min{a,CT,} (23) 

where E is a fixed positive constant and ‘Y, is given by (14).  (If D, 
is chosen on the basis of second derivatives of the objective 
function as in the algorithm of the next section the s d a r  ti 
should equal unity.) In the second method an initial step size is 
chosen and is successively reduced by a certain factor until a 
“sufficient” reduction (according to  an Armijo like test) of the 
objective function is observed [28]. Under further mild assump- 
tions it is possible to show that all limit points of sequence 
generated by the algorithm are global minima of problem (6). A 
proof of this fact is obtained by slight modification of the proof 
of Proposition 2 of [28]. Furthermore, after some iteration the 
sets 1; are equal to both I: ( x , )  and the set of indexes of 
coordinates of yk that are zero at the limit point. This last 
property is instrumental in constructing superlinearly convergent 
algorithms as it shows [in view  of  (11) and (ZO)] that the portion of 
the matrix D,  which rnmt be  “diagonalized”p1ays no role  near the 
end of the algorithm. As a result, superlinear convergence can  be 
achieved by choosing the portion of the matrix D, that corre- 
sponds to the indexes not in Ikf to be equal to the inverse Hessian 
of h ,  with  respect to these indexes. The kth iteration of the 
resulting algorithm can be restated as follows. 

First the set I; is calculated according to (20)-(22) on the 
basis of the gradient vh,. Then the vector y is partitioned as in 

y =  [;I 
where j is the vector of coordinates y’ with i E I,‘ and j is the 
vector pf coordinates y’  with i tZ I ; .  Then a “search direction” 
d, = ( d ,  , d , )  is obtained by solving the systems of equations 

H , d =  - g k  - -  
(25 )  

H,a= - g, (26) 

where 2, (or E,) is the vector wi-th coordinates a h , ( y k ) / a y f  with 
i E 1,- (respegtively, i e I:)* Hk is a diagonal positive definite 
matrix, and H ,  is a symmetric positive definite matrix which is 
equal to the Hessian of h ,  with respect to the coordinates y’,  
i E I ; .  The vector -y, + is then obtained by 

Y , , ,  = [ Y k  + a k d k l -  ‘ (27) 

where a, is the step size obtained according to one of the rules 
mentioned earlier. 

We  wish to call the reader’s attention to the natural decom- 
position of the iteration into the following three phases: the 
formation of the index set 1;; the computation of the “search 
direction” d , ;  and the determination of the step size a,. There is 
considerable freedom for variations in each phase independent of 
what is done in other phases while still maintaining desirable 
convergence and  rate of convergence properties. 

Approximate  Implementation  Via the  Colljugate Gradient  Method 

Finding the “search direction” 2, requires the solution of the 
linear system of (26). Solution of this system can be accom- 
plished, of course, by a finite method involving triangular factori- 
zation but when the dimension of this system is large, as for 
example in multicommodity flow problems, the associated com- 
putational overhead can make the overall algorithm impractical. 
The alternative is to solve this system iteratively by, for example, 
a successive overrelaxation method or a conjugate gradient 
method. This approach is practiced widely  by numerical analysts 
[31] and its success typically hinges upon the ability of the 
iterative method to yield a good approximation of the solution of 



BERTSEKAS AND GAFNI: PROJECTED NEWTON METHODS 1093 

system (26) within a few iterations. In order to guarantee conver- 
gence of the overall optimization algorithm it is necessary that 
the approximate solution, call it Z, of the system (26) satisfies 

22, < 0 (28) 

whenever # 0, in order to make possible a reduction in  the 
objective function value [cf., Proposition lb)]. This is the minimal 
requirement that we impose upon the iterative method used to 
solve (26). 

In this paper we are primarily interested in approximate solu- 
tion of the system 

H k Z  = - g, (29) 

or equivalently, the unconstrained minimization problem 

by means of the following  scaled  version of the conjugate gradi- 
ent method. 

A positive definite symmetric matrix S,  is chosen, and a 
sequence { z w z }  is generated according to the iteration 

to = 0 ,  

z , + l = z , + y * p , , , ,  m = O , l , - . . ,  (31) 

where the conjugage direction sequence { pnl } is given  recursively 
by 

Po = - s ,ro,  

p,,, = - Skrwl i- / 3 , , , p , , ,~ , ,  rn =1,2;. . , (32) 

the residual sequence { r,,,} is defined by 

rnI = Hkzm + g k ,  rn = 0,1: . . , (33) 

and the scalars y,,, and /3, are given by 

(34) 

r; Sk r, 
Pnz = , , rn=1,2;.. . (35) 

'nz-lSkrwI-l 

As is well known [25], [32] this method wiu-find. the solution L?, 
of system (29) in at most ( n  - 1) steps (i.e., dk = z I I - , )  regardless 
of the choice of S,. We are primarily interested, however, in 
approximate implementations whereby only a few conjugate 
gradient iterations of the method are performed and under these 
circumstances the choice of S,  can have a substantial effect on 
the quality of the final approximate solution. A popular choice 
for many problems (and the one we prefer for multicommodity 
flow problems) is to choose S,  to be diagonal with elements along 
the diagonal equal to the second derivatives of the h , with respect 
to the corresponding coordinates j'? i E 1: evaluated at v,. There 
are, however, other attractive possibilities depending on problem 
structure (see [33]). 

It is easily verified that if # 0, then we have 

z,;,jjk<O1 Qrn=1,2 , - . . ,  

so, regardless of how many conjugate gradient iterations are 
performed, the final approximate solution Z of system (29) will 
satisfy the descent condition (28). 

We finally mention that the assumption that H, be positive 
definite is not strictly necessary for the preceding algorithm to 
generate a descent direction. It is sufficient that E, # 0 and H, be 
such that the quadratic optimization problem (30) have at least 

one globally optimal solution. It turns  out  that this minor refine- 
ment is significant for the multicommodity flow problems to be 
considered in the next section. 

Extension to the Case where  the Constraint  Set is a  Cartesian 
Product of Simplexes 

Consider the problem 

minimize J [ x ( l ) ; . - , x ( r n ) ]  

i = l  

where each x( j ) ,  j =1; . -,rn is a vector in R"1, the function J :  
m + R is  convex and twice continuously differentiable, 

and 5 ,  j = 1,. . . , M are given positive scalars. 
The extension of the method described earlier in this section to 

handle problem (37) is evident once it is realized that  one  can 
similarly pass to a reduced coordinate system of dimension 
( n l  + . + n ,  - m )  while in  the process eliminating the m 
equality constraints E ; ~ , x ' ( j )  = r ( j ) ,  j =1,. . .,rn [cf. (S), (15)]. 
One then obtains a reduced problem involving nonnegativity 
constraints only [cf. (9), (lo)] which is locally (around the current 
iterate) equivalent to problem (37). The iteration described earlier, 
including the conjugate gradient approximation process, is fully 
applicable to the reduced problem. 

R,I,+ ... + n  

111. O p n h n z ~ n o ~  OF MLJLTICO~~MODITY FLOWS 

We consider a network consisting of N nodes 1,2,. . . , N and a 
set of directed links denoted by L. We denote  by (i, I )  the link 
from node i to node I ,  and assume that the network is connected 
in the sense that for any two nodes rn, n there is a directed path 
from m to n. We are given a set W of ordered node pairs referred 
to~as  origin-destination (or OD) pairs. For each OD pair w E W,  
we are given a set of directed paths P,,, that begin at the origin 
node  and terminate at the destination node. For each w E W we 
are also given a positive scalar r ,  referred to as the input of OD 
pair w, and this input must be optimally divided among the paths 
in P,- so as to minimize a certain objective function. 

For every pathp E P, corresponding to  an OD pair n' E W ,  we 
denote by x p  the flow traveling on p .  These flows must satisfy 

x P = r , . ,  V w E W  (38) 

xp  2 0,  V p  E Pb, w E W .  (39) 
P E p w  

Equations (38) and (39) define the constraint set of the optimiza- 
tion problem-a Cartesian product of simplexes. 

To every set of path flows { x p l p  E P,, w E W }  satisfying (38), 
(39) there corresponds a flow f,, for every link ( i ,  I ) .  It is defined 
by the relation 

f,/= Gp(i,I)xp, V ( i , I ) E L  (40) 

where S,(i, 1)  =1 if the path p contains the link (i? I )  and 
Sp (i. I) = 0 otherwise. If  we denote by x and f the vectors of path 
flows and link flows, respectively, we can write relation (40) as 

W E  w p E P, 

f =  Ex (41) 

where E is the arc-chain matrix of the network. 
For each link (i, I )  we are given a convex  twice continuously 

differentiable scalar function D ; / ( f i / )  with strictly positive second 
derivative for all f,/ 2 0. The objective function is  given by 

D ( f I P  c D, , ( f , / ) .  (42) 
( 1 . 1 )  E L  
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By using (41) we can write the problem in terms of the path flow 
variables xp as 

minimize J (  x )  D (  Ex) 
subject to x p  = r,, V W E  W (43) 

P E P w  

x,> 0, vp E Pn,, w E w. 
In communication network applications the function D may 

express, for example, average delay per message [6], [ l l ]  or a flow 
control objective [34], while in  transportation networks it may 
arise via a user or system optimization principle formulation [16], 
[17], [35]. The algorithm to be presented admits an extension to 
the case where the function D does not have the separable form 
(42), but we prefer to concentrate on the simpler and practically 
important separable case in order to avoid further complications 
in our notation. 

Clearly problem (42) falls within the framework of the previous 
section and the approximate version of the projected Newton 
method described there can be applied for its solution. A key 
element for the success of this algorithm lies in that the conjugate 
gradient iterations required for approximate solution of the corre- 
sponding system of equations can be carried out very efficiently. 
This in turn hinges on the fact that the product of the matrix H, 
with  various  vectors,  which  is  needed for the  computation of the 
residual r, in (33) and the step size y, in (34), can  be  computed by 
graph type operations without  explicitly  computing or storing the 
matrix R,. 

We now describe the k th iteration of the algorithm whereby 
given a feasible vector of path flows x, we find the next vector 

Phase I (Determination of the  Reduced  Coordinate  System and 
rhe Set Ik-): For each w E W let p, be the path carrying maximal 
flow, i.e., 

X k - 1 .  

x f * = m a x { x f l p E P n } ,  V W E W .  (44) 

Define the reduced coordinate system in the vector y given by [cf. 
(8)1 

y P  = X P  , Vp E P, withp # pw and w E W (45) 

and denote by y ,  the vector that corresponds to xk according to 
this transformation. Consider the reduced objective function 
h, ( y )  = J(.x) [cf. (9)] where x has coordinates given by x p  = y p ,  
V p ~ P , w ~ t h p # p , , a n d w ~ W a n d  

Denote D,‘, and D: the first and second derivatives of D,, 
evaluated at xk ,  and define the first derivative  length of a path p 
by 

1,= D i ,  QpEP,., W E  W ,  (47) 
( i , l ) E P  

Le., I ,  if the s u m  of first derivatives DA over all links on the path p. 
It is easlly  verified that 

~- a J ( x k )  

axp 
-lp, vp E Pu, w E w 

and that the gradient of the reduced objective function is 2 = ven 
by 

By differentiating this expression with respect to y p  we also find 

after a straightforward calculation the diagonal elements of the 
Hessian V ’h, 

a 2 h k ( y k )  = Q’;, tlp E P , ,   p f p , ,  w E W (50) 
( a y p ) ’  L,  

where Lp is the set of links that are traversed by either the path p or 
the path p,. bur not  both. In view of our assumption D,y( f;,) > 0 
for all f,, > 0 we see that 

for all feasible vectors yk. 
We are now in a position to define the set 1: in terms of a 

positive scalar c > 0 which remains fixed throughout the algo- 
rithm. We set [cf. (20)-(22), (49)-(51)] 

TL = ( p ~ 0 ~ y , P ~ ~ , P , 1 , > 1 , ~ , p ~ P n , , p # p , , ~ ~ W }  (52) 

where 
€ , P = m i n { € , S , P }  (53) 

sR=~yR-[YkP-~pR(l,-l,~,)]+/, VPEP,,  P#PW,  WEW. 

and 

(54) 

An equivalent definition is that a pathp belongs to Ik+ if it has a 
larger first derivative length than  the corresponding reference 
path pw,  and it carries flow that is less or equal to both z and 
p f ( 1 ,  - l p w ) .  As will be seen later the algorithm “tries” to set the 
flow of these paths to zero [cf. (57), (69)]. 

Phase 2 (Computation of the Search Direction): As in the previ- 
ous section we form a partition of the vector y [cf. (24)] 

y =  [x]  
where j is the vector of path flows y p  with p E I: and j is the 
vector of path flows y p  with p 4 Z;. The search direction d,, 
partitioned consistently with (55) 

is defined as follows  [cf. (25), (26)]. For paths p E 1; we set 

@ = - P . R ( l p - l p , ) ,  VPEI,- ,  (57) 

i.e., the matrix gk of (25) is set to the diagonal matrix with 
elements a’hk(yk)/( ayP12 along the diagonal. 

For paths p E Zk+ the search direction is defined by 

where gk is the gradient of h k with respect to 7 having coordinates 
(I, - I,,) [cf. (49)] and H k  is the Hessian matrix of h, with 
respect to 7. This equation will be solved (perhaps approximately) 
by means of the conjugate gradient method described in the 
previous section [cf. (31)-(35)]. As scaling matrix s k  in (32) and 
(35) we  will choose the diagonal matrix with diagonal elements 
the scalars p f ,  p 4 I ; ,  p +pH., w E W, given  by (50) and (51). 
From (31)-(35) it is evident that the only difficult part  in 
implementing the conjugate gradient iteration lies in computing 
vectors of the form 

v = R k A y  (59) 
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where A y  is any vector of dimension equal to the number of 
paths p with p p Ik+ and p # p W ,  w E W .  A key fact is that in 
order  to  compute,  for a  given A y ,  theuector v = p k A y  of (59) we 
need not form  explicitly the matrix  Hk  and multiply it with A y .  
Indeed consider the following function: 

c k ( A f ) = ,  ( A f t l ) 2 D ~  
1 

(60) 
(i. /) E L 

of the incremental flow vector A f and the corresponding function 
of the reduced incremental path flow vector A y  

M k ( A y ) = G k ( E A x )  (61) 

obtained via the transformation 

Af = EAx (62) 

[cf. (41)] and  the transformation 

A y P = A x P ,   Q p ~ P , , ~ , p e I ~ , p ; f p ~ ,  w E W ,  (63) 

Axp  = 0 ,  Q p  E I; (64) 

The Hessian of the function Gk is the same as the Hessian of the 
objective function D evaluated at the flow vector f correspond- 
ing to x k ,  and consequently the Hessian of thefunction Mk with 
respect to the vector T i s  equal to the matrix Hk.  For any vector 
A y  the vector u = H k A y  is therefore equal to the gradient 
v M k  ( A  y ) ,  i.e., 

v = H A  k Y - v M k ( A Y ) .  - (66) 

On the other hand we have already shown how to compute the 
gradient of functions such as Mk [cf. (47)-(49)]. The procedure 
consists of finding the incremental flow vectors A f i ,  correspond- 
ing to A y  according to (62)-(65) and forming the products 
D i A  f t l  for each link. Then the coordinates of the vector v of (66) 
are given by [cf. (48), (49)] 

U P  = DZA f,, - DiiA f Z l  
( i . 0  E p  ( i . 0  E P* 

Q p E P , , . ,   p e l : ,   p f p , ,  W E  W .  (67) 

Thus, the products g k z n ,  and p k p m  appearing in the basic 
iteration of the conjugate gradient method (31)-(35) can be 
calculated by the procedure described above without the need to 
compute or store the matrix Hk. Since all other operations in 
(31)-(35) require either the formation of inner products of  vec- 
tors or the multiplication of a vector with a diagonal matrix it can 
be seen that the Newton like method can be implemented via the 
conjugate gradient method by graph operations and without 
explicit computation or storage of any Hessian matrix. 

In a practical implementation of the algorithm one should not 
try to solve the system (58) exactly at each iteration since this 
typically requires a large number of iterations of the conjugate 
gradient method. Rather one should terminate the conjugate 
gradient iterations according to some criterion. Some possible 
criteria are as follows. 

a) Terminate after a fixed number of conjugate gradient itera- 
tions. (Termination after a single iteration yields a steepest de- 
scent like method.) 

b) Terminate at an iteration m if the residual r,,, satisfies 

I r m l  b k l r O l  (68) 

where Bk is some scalar factor less than unity which  may depend 
on the iteration index k .  

c) Terminate either as in a) [or as in b)] or if some coordinate 
of the vector ( j  + zm) has a negative coordinate, whichever 
comes first. 

Taking Bk = 0 in (68) means solving the system HkA yk = - gk 
exactly and yields  Newton’s method. n u s ,  if P k  + 0 one expects 
that it is possible to construct a method that realizes the superlin- 
ear convergence rate of Newton’s method by making use  of a 
proper rule for choosing the step size ax.  (A result of this type is 
shown for the unconstrained Newton’s method in [36].) 

Phase 3 (Determination of the Step  Size (Yk):  As usual in 
Newton Like methods, we first try a unity step size and subse- 
quently reduce it if certain conditions are not satisfied. Thus, we 
form the vector 

where d ,  is the search direction obtained in the previous phase. 
This vector may not lead to a feasible path flow vector since any 
one of the constraints 

may be violated (particularly when far from the solution). In this 
case the step size should be adjusted so that these constraints  are 
satisfied. This can be  done  by considering the vector 

and finding the largest step size Zk for which all the constraints 

are satisfied. The simplest way to determine a, is to compute for 
each OD pair w the largest step size 2’ for which (72) is satisfied 
and obtain Zk by means of the equation 

One may then successively reduce the value of ‘Yk by multipli- 
cation  by a factor less than unity until a sufficient reduction of 
the objective function is effected in the spirit of the Armijo rule 
(see [28]). 

There are a number of convergence and rate of convergence 
results that one can show for the algorithm described above and 
its variations. These results are similar in nature to corresponding 
results given in [28] and in other sources [31],  [36], and we  will 
not give a complete account. We only mention that it is possible 
to show that if the step size ah of  (73) is used, and if the 
algorithm is started sufficiently close to a global minimum and a 
sufficiently accurate solution of the Newton system (58) is ob- 
tained via the conjugate gradient method (i.e., the scalar B h  in 
(68) is sufficiently small) then the method converges to a global 
minimum, and for all k the step size Sk will be unity. If in 
addition /3, + 0 then the rate of convergence will be superlinear. 

We finally mention that in some cases the number of paths in 
P,, may be very large and it may be unwieldly to keep track of all 
the path flows xf‘ ,  as for example when P, is the set of all 
directed paths  joining OD pair w. In this case typically the vast 
majority of path flows at the optimum is zero and it  is better to 
work  with a small subset of paths of each OD pair w that carry 
positive flow. This subset is augmented at each iteration by a 
path of minimum first derivative length (see  [13], [15],  [16]). 

Note  added in proof A version of the algorithm of this paper 
has been coded in  Fortran and is made available from the 
authors on request. 
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