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INTRODUCTION TO NON-EUCLIDEAN SPACES

INTRODUCTION:

The history of non-Euclidean geometry is a fascinating subject, which is described
very well in the introductory chapter of Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity by Steven Weinberg. Here I would like
to summarize the important points. Although historical in its organization, this section
describes some essential mathematics and should be read carefully.

Euclid showed in his Elements how geometry could be deduced from a few definitions,
axioms, and postulates. One of Euclid’s assumptions, however, seemed to generations of
mathematicians to be somewhat less obvious than the others. This assumption, known
as Euclid’s fifth postulate, was stated by Euclid as follows:

“If a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines if produced
indefinitely meet on that side on which the angles are less than two right angles.”
[This statement is interpreted to imply that the two straight lines will never meet
if extended on the opposite side.]

Figure 5.1: Euclid’s fifth postulate.

Many mathematicians attempted to prove this postulate from the other assumptions,
but all of these attempts ended in failure. It was discovered, however, that the fifth
postulate could be replaced by any of a number of equivalent statements, such as:
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Figure 5.2: Statements equivalent to the fifth postulate.

(a) “If a straight line intersects one of two parallels (i.e, lines which do not intersect
however far they are extended), it will intersect the other also.”

(b) “There is one and only one line that passes through any given point and is parallel
to a given line.”

(c) “Given any figure there exists a figure, similar* to it, of any size.”

(d) “There is a triangle in which the sum of the three angles is equal to two right angles
(i.e., 180◦).”

Given Euclid’s other assumptions, each of the above statements is equivalent to the fifth
postulate.

The attitude of mathematicians toward the fifth postulate underwent a marked
change during the eighteenth century, when mathematicians began to consider the possi-
bility of abandoning the fifth postulate. In 1733 the Jesuit Giovanni Geralamo Saccheri
(1667–1733) published a study of what geometry would be like if the postulate were
false. He, however, was apparently convinced that the fifth postulate must be true, and
he pursued this work because he hoped to discover an inconsistency — he didn’t.

Carl Friedrich Gauss (1777-1855) seems to have been the first to really take seriously
the possibility that the fifth postulate could be false. He, János Bolyai (an Austrian
army officer, 1802-1860), and Nikolai Ivanovich Lobachevsky (a Russian mathematician,
1793-1856) independently discovered and explored a geometry which in modern terms is
described as a two-dimensional space of constant negative curvature. The space is infinite

* Two polygons are similar if their corresponding angles are equal, and their corre-
sponding sides are proportional.
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Figure 5.3: The frontispiece of Giovanni Geralamo Saccheri’s 1733 book titled Euclides
ab omni naevo vindicatus (Euclid Freed of Every Flaw). Saccheri pursued the conse-
quences of assuming that the fifth postulate was false, hoping to find a contradiction.

in extent, is homogeneous and isotropic, and satisfies all of Euclid’s assumptions except
for the fifth postulate. In this space every one of the statements of the fifth postulate
and its equivalents listed above are false — through a given point there can be drawn
infinitely many lines parallel to a given line; no figures of different size are similar; and
the sum of the angles of any triangle is less than 180◦.

The surface of a sphere, it should be pointed out, satisfies all the postulates of Euclid
except for the fifth and the second, which states that “Any straight line segment can be
extended indefinitely in a straight line.” From a modern point of view the surface of a
sphere provides a perfectly interesting example of a non-Euclidean geometry. Historically,
however, this example was not taken very seriously, apparently because it seemed too
simple. The great circles would be the objects that play the role of straight lines, but
since any two great circles intersect, there could be no such thing as parallel lines.

Despite the work of Gauss, Bolyai, and Lobachevsky, it was still not clear that their
non-Euclidean geometry was logically consistent. This problem was not solved until 1870,
when Felix Klein (1849-1925) developed an “analytic” description of this geometry. In
Klein’s description, a “point” of the Gauss-Bolyai-Lobachevsky (G-B-L) geometry can
be described by two real number coordinates (x,y), with the restriction

x2 + y2 < 1 . (5.1)
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Figure 5.4: Carl Friedrich Gauss, János Bolyai, and Nikolai Ivanovich Lobachevsky indepen-
dently developed the first example of a mathematical theory in which Euclid’s fifth postulate is
false, now known as the Gauss–Bolyai–Lobachevsky geometry. Gauss (1777–1855) was the son
of poor working-class parents in Germany, but by the time he was 15 his mathematical talents
were noticed by the Duke of Brunswick, who sent Gauss to the Collegium Carolinum and then
the University of Göttingen. Gauss remained at Göttingen for the rest of his life, becoming Pro-
fessor of Astronomy and director of the astronomical observatory in 1807. His students included
Richard Dedekind, Bernhard Riemann, Peter Gustav Lejeune Dirichlet, Gustav Kirchhoff, Au-
gust Ferdinand Möbius, and Friedrich Bessel. Bolyai (1802–1860) was the son of Farkas Bolyai, a
teacher of mathematics, physics, and chemistry at the Calvinist College in Marosvásárhely, Hun-
gary (now Tirgu-Mures, Romania). Although his father was well-educated, he was nonetheless
not well paid, so János attended Marosvásárhely College and later studied military engineering
at the Academy of Engineering at Vienna, because that is what they could afford. He then en-
tered the army engineering corps, where he served for 11 years, during which time he carried out
his now-famous investigation of non-Euclidean geometry. The work was published in 1831 as an
appendix in a book written by his father. Bolyai resigned from the army in 1833 due mainly
to health problems, and lived the rest of his life in relative poverty, dying at the age of 57 of
pneumonia. The Romanian postage stamp shown here honored the 100th anniversary of Bolyai’s
death; the picture was apparently fabricated, as no authentic picture of Bolyai is known to exist.
Lobachevsky (1792–1856) was the son of Polish parents living in Russia. His father was a clerk
in a land-surveying office, who died when Lobachevsky was only seven. His mother relocated the
family to Kazan, Russia, where Lobachevsky attended Kazan Gymnasium and later was given
a scholarship to Kazan University, where one of his professors was Martin Bartels, who was a
teacher and friend of Gauss. Lobachevsky remained at Kazan University for the rest of career,
becoming rector of the university in 1827. His work on non-Euclidean geometry was published in
the Kazan Messenger in 1829, but was rejected for publication by the St. Petersburg Academy
of Sciences. Lobachevsky was asked to retire in 1846, and after that his health and financial
situation deteriorated, he became blind, and his favorite eldest son died. Lobachevsky himself
died before the importance of his work in mathematics was appreciated.
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The distance d(1, 2) between two points (x1, y1) and (x2, y2) is then defined to be

cosh

[
d(1, 2)

a

]
=

1− x1x2 − y1y2√
1− x21 − y21

√
1− x22 − y22

, (5.2)

where a is a fundamental length which sets a scale for the geometry. Note that the space
is infinite despite the coordinate restriction of Eq. (5.1), because the distance approaches
infinity as either x21 + y21 → 1 or x22 + y22 → 1. Klein showed that with this definition
of point and distance the model satisfies all of the assumptions of the G-B-L geometry.
Thus, assuming the consistency of the real number system, the consistency of the G-B-L
geometry was established. In addition, this work reinforced the important idea of analytic
geometry which had been introduced by Descartes. It has since proven to be very useful
to describe a geometry not by listing axioms, but instead by giving an explicit description
in terms of a coordinate system and distance function.

Gauss went on to develop two very central ideas in non-Euclidean geometry. The
first is the distinction between the “inner” and “outer” properties of a surface. The inner
properties of a surface are those distance relationships that can be measured within the
surface itself, such as in Eq. (5.2). The outer properties refer to the way in which a space
might be embedded in a higher dimensional space. For example, the surface of a sphere is
a two-dimensional space which we visualize by embedding in a three-dimensional space.
Gauss emphasized that the distance relationships within the two-dimensional surface
itself provide a complete mathematical system which can be studied independently of
any assumptions about the embedding in the three-dimensional space. Gauss wrote in
1827 that it is the inner properties of the surface that are “most worthy of being diligently
explored by geometers.” Note that the G-B-L geometry cannot be fully embedded in a
three-dimensional Euclidean space, although finite patches of it can be so embedded. To
describe the whole space, it is necessary to describe it in terms of its inner properties.

Gauss’s second central idea had to do with the form of the distance function d(1, 2).
It turns out that if one allows this function to have any form, then the class of geometries
is so unconstrained that nothing very interesting results. Gauss realized first that one
need not specify d(1, 2) for arbitrary points 1 and 2. It is sufficient to consider only
infinitesimal line segments. Such a line segment can be described as extending from the
point (x, y) to (x+ dx, y + dy). The length of a finite segment of a curve is then defined
by summing up (integrating) the lengths of the infinitesimal segments that make it up.
The distance d(1, 2) between two arbitrary points can then be defined as the length of
the shortest curve which joins the two points. The concept of a line is replaced by a
geodesic, defined to be any curve that is the shortest path between its endpoints. More
precisely, a geodesic is not necessarily the true minimum of the path length — it is only
necessary that the path is stationary, in the sense that the first derivative with respect
to any variation of the path between the two endpoints must vanish. The path length
might then be a minimum, a maximum, or a saddle point.
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For the length of the infinitesimal line segment from (x, y) to (x+ dx, y+ dy), Gauss

realized that the interesting case is to restrict one’s attention to functions for which the

squared segment length ds2 is quadratic in dx and dy (i.e., functions for which each term

contains two powers of dx and/or dy). Such functions can be written as

ds2 = gxxdx2 + gxydxdy + gyxdy dx+ gyydy2 , (5.3)

where gxx, gxy, gyx, and gyy are functions of position (x, y) and are together called the

metric of the space. (Since gxy and gyx both multiply dx dy, only their sum is relevant. By

convention one sets gxy = gyx.) Gauss showed that the assumption that ds2 is quadratic

is equivalent to the assumption that in any infinitesimal region it is possible to choose a

coordinate system (x′, y′) in which the distance relation is Euclidean: ds2 = dx′2 + dy′2.

Today spaces with a metric of this form are generally called either metric spaces or

Riemannian spaces.

In Euclidean space one can use any coordinate system one wants, although one

usually prefers a Cartesian system in which the metric has the form:

ds2 = dx2 + dy2 . (5.4)

Any two systems with metrics of this form are related to each other by a translation

and/or a rotation. For some purposes, however, it is convenient to use polar coordinates

r and θ, for which the metric is given by

ds2 = dr2 + r2dθ2 . (5.5)

Thus, the mere fact that the metric does not have the Cartesian form of Eq. (5.4) does

not imply that the underlying space is non-Euclidean — one might simply be using a

non-Cartesian coordinate system. It is therefore useful to have some way of describing

the inner curvature of a space in a way which is not confused by the choice of a coordinate

system. Such a method was developed for two-dimensional spaces by Gauss, who showed

that the underlying space is Euclidean if and only if a somewhat complicated expression

involving derivatives of the metric is equal to zero. The extension to more than two

dimensions was carried out by Georg Friedrich Bernhard Riemann (1826-1866). The

details of the Gaussian curvature and the Riemann curvature tensor are beyond the level

of this discussion.
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GENERAL RELATIVITY:

As I have mentioned before, Einstein’s theory of general relativity is nothing more
nor less than a theory of gravity. When Einstein invented the special theory of relativity
in 1905, he realized immediately that it was inconsistent with Newton’s theory of gravity.
The inconsistency has nothing in particular to do with the inverse square nature of
the force law, and it cannot be remedied by simply modifying the way that the force
depends on the distance. Rather, the inconsistency is due to the fact that Newton’s law
of gravity assumes that the force between two bodies depends instantaneously on the
distance between them. That is, to determine the force due to body B acting on body A
at time t, one must merely know the position of the two bodies at time t. However, as we
discussed in Lecture Notes 1, special relativity implies that the synchronization of clocks
depends on the velocity of the observer. Thus, two observers who are moving relative to
each other will not agree on what it means to measure the positions of A and B at the
same time, and so a physically meaningful quantity like a force cannot be determined by
these two positions. If special relativity is correct, then Newton’s law of gravity must be
modified.

The idea of an action-at-a-distance theory is not completely ruled out by special
relativity, but it is very difficult to formulate such a theory. The electromagnetic force
of one charged particle acting on another can be expressed by an action-at-a-distance
law, but it is rather complicated. (The force law is stated, for example, in The Feynman
Lectures on Physics, Volume 1, by R.P. Feynman, R.B. Leighton, and M. Sands.) The
force on charge A at time t does not depend on the position of charge B at time t,
but instead depends on the position (and velocity, and acceleration!) of charge B at a
retarded time t′. The time t′ is determined by the rule that a light pulse (moving at
speed c) can just barely travel from B to A in the time interval from t′ to t, as illustrated
in the following diagram:

Figure 5.5: Definition of the retarded time t′. The electromagnetic force on particle
A at time t, due to particle B, can be expressed in terms of the position, velocity, and
acceleration of charge B at the retarded time t′.
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Two different observers will agree when this relationship is met, since they agree

on what it means for a trajectory to move at the speed of light. However, the two

observers will measure different values for the positions, velocities, and accelerations, and

it requires a very complicated force law such that both observers will conclude that the

law is satisfied.

The simplest way to formulate electromagnetic theory is to avoid action-at-a-distance

forces, but instead to use the concept of a field. The electric and magnetic fields are each

defined at all points in space, and a charged particle interacts only with the fields at the

location of the particle. The evolution of the fields is governed by Maxwell’s equations.

These equations allow information about the changing position of a particle to propagate

in the form of waves which travel at the speed of light.

General relativity is also a theory of fields, similar in type to the Maxwell theory of

electromagnetism. In the case of general relativity there is no known action-at-a-distance

formalism. The “fields” which are involved in general relativity are of course not the

electric and magnetic fields of the Maxwell theory. The fields of general relativity are in

fact the metric functions defined earlier. Space and time must be considered together, and

it is the metric functions on this “spacetime” which are the fields that general relativity

uses to describe gravitation. We will see later that in this curved (i.e., non-Euclidean)

spacetime, a freely falling particle is assumed to travel along a geodesic. The attractive

effect of gravity then appears simply as a distortion of spacetime.

THE SURFACE OF A SPHERE:

As mentioned above, the surface of a sphere embedded in a three-dimensional Eu-

clidean space is a perfectly good example of a non-Euclidean geometry. In order to

develop some of the techniques of non-Euclidean geometry, we begin by studying this

familiar system. Since the three-dimensional embedding space is Euclidean, we can use

our knowledge of Euclidean geometry to learn about the non-Euclidean two-dimensional

geometry of the surface of the sphere. Beware, however, that not all two-dimensional

curved surfaces can be embedded in a three-dimensional Euclidean space.

The surface of the sphere can be described by using Cartesian coordinates (x, y, z)
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in the three-dimensional space, in which case the surface is given by:

Figure 5.6: A sphere in Cartesian
coordinates.

x2 + y2 + z2 = R2 , (5.6)

where R is the radius of the sphere. We now want to take seriously the notion that the
two-dimensional space of the surface defines a two-dimensional geometry with “inner”
properties that are independent of the existence of the third dimension. We take the
point of view that the third dimension has been introduced only as an aid in visualizing
the two-dimensional surface. This third dimension can of course be useful, because in
the three-dimensional picture the properties of homogeneity and isotropy are obvious.
(Recall here that homogeneity and isotropy refer to properties of the two-dimensional
space. Homogeneity means that all points on the surface of the sphere are equivalent.
Isotropy means that if a two-dimensional creature living in the two-dimensional surface
were to look in all directions within the two-dimensional surface, he would see the same
thing in all directions.)

In order to describe the two-dimensional world without reference to the third dimen-
sion, it is useful to introduce a two-dimensional coordinate system. The most natural
choice is to use the usual angular variables θ and φ, as shown in Fig. 5.7.

From the diagram we can see that x, y, and z can be expressed as

x = R sin θ cosφ

y = R sin θ sinφ

z = R cos θ ,

(5.7)

where θ runs from 0 to π and φ runs from 0 to 2π.
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Figure 5.7: Spherical polar coordinates for the surfaces of a sphere.

Figure 5.8: Variation of θ in spherical polar coordinates: ds = Rdθ.

To describe the inner properties of this two-dimensional space, we must write down
an expression for the metric. That is, we need an expression for the distance ds between
two points on the surface labelled by (θ, φ) and (θ + dθ, φ + dφ). It is helpful to think
about varying θ and φ one at a time. As θ is increased, the point moves a distance R dθ
toward the south (where I am using the positive z-axis to define a North pole), as can be
seen in Fig. 5.8.

When φ is increased, the point moves toward the east, tracing out a circle at constant
latitude. The radius of the circle is R sin θ, and so the distance moved is given by
R sin θ dφ, as shown in the Fig. 5.9.
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Figure 5.9: Variation of φ in spherical polar coordinates: ds = R sin θ dφ.

Since these two displacements are in orthogonal directions, the total distance is given
by the Pythagorean theorem:

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
. (5.8)

Eq. (5.8) describes the metric of the two-dimensional space.

If one wishes to avoid the pictures, one can also derive Eq. (5.8) directly from
Eqs. (5.7), by writing

dx =
∂x

∂θ
dθ +

∂x

∂φ
dφ = R cos θ cosφ dθ −R sin θ sinφ dφ ,

dy =
∂y

∂θ
dθ +

∂y

∂φ
dφ = R cos θ sinφ dθ +R sin θ cosφ dφ ,

and

dz =
∂z

∂θ
dθ +

∂z

∂φ
dφ = −R sin θ dθ . (5.9)

These expressions can then be substituted into

ds2 = dx2 + dy2 + dz2 , (5.10)

and after some algebra involving repeated use of the identity sin2 φ + cos2 φ = 1, one
again obtains Eq. (5.8).
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A CLOSED THREE-DIMENSIONAL SPACE:

The goal here is to use the same techniques to describe a closed three-dimensional
space. This space will be homogeneous and isotropic, and it will have a finite volume
but no boundary. Since the space is homogeneous and isotropic, it is a candidate for the
space in which we live.

To derive a metric for the three-dimensional space, one simply repeats the steps
carried out above with one additional dimension. One begins therefore in a Euclidean
space with four dimensions, and hence with four Cartesian coordinates which I will call
(x, y, z, w). The surface of a sphere in this four-dimensional space is then described by
the equation

x2 + y2 + z2 + w2 = R2 . (5.11)

Note that the surface of the sphere is a three-dimensional space, since it can be described
by three coordinates.

To explicitly describe the surface by three coordinates, one can introduce one more
angular variable in addition to θ and φ. We therefore introduce ψ, which will represent
the angle between the point being described and the w-axis. Since ψ measures the angle
from an axis, like θ it ranges from 0 to π. One can then look at the point projected into
the x-y-z subspace and define the variables θ and φ as we did above. (By “project into
the x-y-z subspace”, I simply mean to ignore the w-coordinate.) Pictorially one would
depict ψ as

Figure 5.10: The new angular variable ψ, which measures
the angle from the w-axis.

and in terms of equations it can be expressed as

x = R sinψ sin θ cosφ

y = R sinψ sin θ sinφ

z = R sinψ cos θ

w = R cosψ ,

(5.12)



INTRODUCTION TO NON-EUCLIDEAN SPACES p. 13

8.286 LECTURE NOTES 5, FALL 2018

where
0 ≤ ψ ≤ π , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , (5.13)

and φ = 0 is identified with φ = 2π.

Since the coordinate system is to describe the surface, some point on the surface has
to be chosen to be the origin of the coordinate system. For the two-dimensional spherical
surface of the last section, we can consider the north pole to be the center, and then θ is
the radial coordinate that measures the distance from the center. Here we are choosing
the center of our coordinate system to be the positive w-axis, which we will also describe
as the “north pole”. The coordinates of the north pole in the four-dimensional embedding
space are (x= 0, y= 0, z= 0, w=R). In the polar coordinate system the north pole is
described by ψ = 0, and the distance from the north pole is given by Rψ. Thus ψ plays
the role of the radial coordinate in this system.

To derive the metric, one could proceed purely algebraically along the lines of
Eq. (5.9) above, or one could use the geometric arguments which were used to moti-
vate Eq. (5.8). For the geometric approach, one notes that a variation from ψ to ψ+ dψ
results in a displacement by a distance R dψ. A variation in θ or φ results in a displace-
ment contained entirely within the x-y-z three-space; ds2 is given by Eq. (5.8) times an
overall factor of sin2 ψ due to the fact that the radius in the x-y-z space is given by
r sinψ. Assuming that these two displacements are orthogonal to each other, the metric
can be written as

ds2 = R2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)]
. (5.14)

To complete the justification of Eq. (5.14), we should verify that the infinitesimal
displacement of the point when ψ is varied is orthogonal to the displacement caused by
infinitesimal variation of θ or φ. To see this, let us use vector notation ~r ≡ (x, y, z, w) to
describe the four-dimensional space. Then, as ψ is varied from ψ to ψ + dψ, the vector
~r varies from ~r to ~r + d~rψ, where we can see from Eq. (5.12) that

d~rψ =

(
∂x

∂ψ
,
∂y

∂ψ
,
∂z

∂ψ
,
∂w

∂ψ

)
dψ

= R cosψ(sin θ cosφ, sin θ sinφ, cos θ, 0) dψ −R sinψ(0, 0, 0, 1) dψ .

(5.15)

Note that the components in the x-y-z subspace are proportional to (x, y, z) =
R sinψ(sin θ cosφ, sin θ sinφ, cos θ), so within this subspace the vector points radially out-
ward from the origin. Similarly, as θ is varied from θ to θ+ dθ, ~r varies from ~r to ~r+ d~rθ,
where

d~rθ =

(
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ
,
∂w

∂θ

)
dθ

= R sinψ(cos θ cosφ, cos θ sinφ,− sin θ, 0) .

(5.16)
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This time there is no w-component, and we know that varying θ does not change x2+y2+

z2, and therefore the components within the x-y-z subspace make a tangential vector.

Since a tangential vector is orthogonal to a radial vector, it follows that d~rψ · d~rθ =

0, which is what we wanted to prove. The geometrical argument is easily verified by

straightforward calculation:

d~rψ · d~rθ = R2 sinψ cosψ[sin θ cos θ cos2 ψ

+ sin θ cos θ sin2 φ− sin θ cos θ + 0] = 0 .
(5.17)

A similar argument guarantees that d~rψ is also orthogonal to d~rφ, so the justification of

Eq. (5.14) is complete.

Remember that the coordinate system that one uses to describe a curved space is

totally arbitrary. Another choice that is frequently used to describe this space is to

replace ψ by

u ≡ sinψ . (5.18)

Note that u is double-valued: as ψ varies over its range from 0 to π, u varies from 0 to 1

and then decreases back to 0. The new metric can then be found by noting that

du = cosψ dψ =
√

1− u2 dψ , (5.19a)

and so

dψ2 =
du2

1− u2
, (5.19b)

and then

ds2 = R2

{
du2

1− u2
+ u2

(
dθ2 + sin2 θ dφ2

)}
. (5.20)

In these coordinates it is particularly easy to see that in a small region about the origin,

i.e., for |u| � 1, the u2 in the denominator can be ignored, and the metric becomes the

metric for Euclidean space in spherical polar coordinates. This is just an example of

the general principle introduced by Gauss: as long as ds2 is expressed as a quadratic

function of the coordinate differentials, then in any infinitesimal region it is possible to

find coordinates for which the metric is Euclidean.

The geometry of this space will be pursued further in the next problem set.
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IMPLICATIONS OF GENERAL RELATIVITY:

Eqs. (5.14) or (5.20) describe a curved three-dimensional space which is finite but
without boundary. The length scale of this space is described by the parameter R, which
can have any value. Since R corresponds to the radius of the sphere as embedded in the
four-dimensional space, we will refer to R as the radius of curvature of the space.

Since general relativity describes gravity as a distortion of the spacetime metric,
however, one might expect that the dynamics of general relativity would determine the
curvature of the space, and hence determine the quantity R. The calculations are beyond
these lectures, but the result is simple. General relativity requires that the geometry
of the universe be non-Euclidean, except for the special case in which the parameter k
defined in Lecture Notes 3 is zero. This is why the k = 0 model is called flat. When
k > 0, which we have been calling a closed universe, general relativity requires that the
geometry be a closed three-dimensional space, as described by the metric of Eqs. (5.14)
or (5.20). Thus, if gravity is strong enough to cause the universe to recollapse, then it is
also strong enough to curve the universe back on itself to create a universe that is finite
but unbounded.*

Using Newtonian arguments, we have already calculated how the size of the model
universe changes with time, proportional to the scale factor a(t). The Friedmann equa-
tions that we obtained are identical to the predictions of general relativity, so the size
of the universe will be proportional to the scale factor a(t) that we already calculated.
For the closed universe geometry, however, the size of the universe is proportional to
the radius of curvature R, so consistency requires that R must be proportional to a(t).
Furthermore, we recall that the value of a(t) depends on the size of the “notch.” The
radius of curvature R, however, is a physical length that must be measured in physical
distance units, such as meters. Thus, dimensional consistency requires that R(t) to be
proportional to a(t)/

√
k, which also has the units of physical length. The constant of

proportionality is fixed by the details of general relativity, but the answer is that the
constant of proportionality is 1:

R2(t) =
a2(t)

k
. (5.21)

Although the quantity a2(t)/k has been described in the context of a purely Newtonian
calculation, the speed of light was inserted into the definition of k, which was given by
Eq. (3.30) as

k = −2E

c2
, where E =

1

2
ȧ2 − 4π

3

Gρi
a

.

* Warning: the simple correspondence between the closure of the universe in time and
the closure of the universe in space holds for matter-dominated universes, and even for
universes containing arbitrary mixes of matter and radiation. However, when we explore
the consequences of a nonzero cosmological constant in Lecture Notes 7, we will find
that the relation no longer holds. Universes which are spatially closed might nonetheless
expand forever, and universes which are spatially open might nonetheless recollapse.
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Thus Eq. (5.21) can be written as

R2(t) =
a2(t)c2

2E
,

which shows that curvature is explicitly a relativistic effect. In the nonrelativistic limit
where c becomes infinitely large compared to all other velocities, R(t) will approach in-
finity. Thus in the nonrelativistic limit the radius of curvature of the universe approaches
infinity, so the space becomes closer and closer to Euclidean. (Note that the surface of a
sphere of infinite radius is actually a plane.)

One can then rewrite the equations of evolution in terms of R(t). Using

H2 =

 ȧ
a

2

=
8π

3
Gρ− kc2

a2
(5.22)

from Eqs. (3.25) and (3.31), one has

H2 =

 ṘR
2

=
8π

3
Gρ− c2

R2
. (5.23)

To express the value of R(t) in terms of observables, one can replace ρ by Ωρc , where ρc
is given by 3H2/(8πG) as in Eq. (3.33). One then has

R =
cH−1√
Ω− 1

, (5.24)

which is the same as Eq. (4.32). Note that as Ω becomes closer to one (approaching
from above), R(t) becomes larger and larger, so the space becomes closer and closer to
Euclidean. In addition, Eq. (5.24) shows explicitly that R(t) is proportional to c, as we
discussed in the previous paragraph. Thus, if the speed of light is taken to be infinitely
larger than all other velocities, then again the space becomes Euclidean. Curvature is
therefore a relativistic effect.

THE ROBERTSON-WALKER FORM OF THE METRIC:

When Eq. (5.21) is substituted into Eq. (5.20), the resulting metric is given by

ds2 =
a2(t)

k

{
du2

1− u2
+ u2

(
dθ2 + sin2 θ dφ2

)}
, (5.25)
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which is a little more complicated than necessary. It is convenient to replace the radial
coordinate u (where u ≡ sinψ) with a new radial coordinate r defined by

r ≡ u√
k
≡ sinψ√

k
. (5.26)

Then dr = k−1/2du, and the metric can be rewritten as

ds2 = a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
. (5.27)

This is the standard form, called the Robertson-Walker metric. Since the coordinate r
is proportional to u, and u is double-valued, so is r. That is, r = 0 at the center of the
coordinate system, which is identified with the north pole of the sphere that describes the
closed universe. As r grows the point described by (r, θ, φ) moves away from the north
pole, and r reaches its maximum value of 1/

√
k when the point reaches the equator of

the sphere. If one continues to move the point in the same direction, then r decreases
back to zero as the point moves from the equator to the south pole, where r again is zero.

THE OPEN UNIVERSE:

We have seen that when k > 0 the universe is spatially closed (finite volume), and
that it approaches an infinite volume Euclidean space as k → 0 (i.e., in this limit the
radius of the sphere approaches infinity). What happens if k < 0?

As you have probably learned from your experience in physics, in many cases the
same equations will hold whether the variables that occur in those equations are positive
or negative. Thus, we might expect that the formulas derived above would be valid for
k < 0, and this is indeed the case. However, there is one complication which should be
pointed out. Above we made the change of variables given by Eq. (5.26), involving the
quantity

√
k . This quantity would be imaginary if k were negative, and thus it would

not be possible for both u and r to be real. One can see from Eq. (5.25) that the metric
in terms of u is pathological when k is negative, since ds2 is not positive definite. For
u < 1 it is in fact negative definite, and for u > 1 the sign is indeterminate, since the
angular pieces contribute negatively while the radial piece contributes positively. Thus,
it seems clear that the u variable must be discarded when k < 0. On the other hand,
the metric in the form of Eq. (5.27) remains perfectly well behaved for negative values of
k. To minimize the possible confusion of dealing with negative quantities, we can define
κ = −k, and rewrite the Robertson-Walker metric (5.27) for open universes as

ds2 = a2(t)

{
dr2

1 + κr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

(Open universe, κ > 0)

(5.28)
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While it is reasonable to assume that Eq. (5.28) is correct, our derivation was cer-
tainly far from rigorous. I will not try to give a rigorous derivation, but I will try at
least to sketch how a rigorous derivation could be constructed. If we wanted to be more
rigorous, we would begin by summarizing the goal: to construct a metric describing a
homogeneous and isotropic space. While the θ and φ angular coordinates are not very
obviously isotropic, we are sufficiently familiar with this construction to be convinced
that the angular dependence of the metric above is isotropic. Although the coordinate
system makes the north pole (θ = 0) look like a special direction, we know that the coor-
dinates could be redefined to put the north pole of the coordinate system at any angle.
The homogeneity of the Robertson-Walker metric is similar, but less familiar to us. For
the closed Robertson-Walker metric we know that the space is homogeneous, because we
derived the metric by starting with the manifestly homogeneous 3-dimensional sphere
embedded in four Euclidean dimensions. But the Robertson-Walker coordinates make
the origin (r = 0) look special, just as the angular coordinates make the north pole look
special. As in the case of the angular coordinates, we know that the origin of the closed
Robertson-Walker coordinate system is not really special, and that we could redefine our
coordinate system so that the origin can be put at any location.

To show that the open Robertson-Walker metric in Eq. (5.28) is homogeneous, we
would start by studying the homogeneity of the closed universe metric in detail, turning
the verbal statements in the previous paragraph into an explicit set of coordinate trans-
formations that show how to move the origin to an arbitrary point. The details become
rather complicated, as indeed they would if we tried to explicitly show how to construct
a coordinate transformation to move the north pole of the (θ, φ) angular coordinates.
Nonetheless, once the equations are written, it would become clear that they are just a
set of algebraic relations: if they hold for all positive k, they will necessarily hold for neg-
ative k as well. Thus the same algebra that shows the closed Robertson-Walker universe
to be homogeneous also shows that the open metric is homogeneous.

We will not try to show it, but it can be shown that any three-dimensional homoge-
neous and isotropic space can be described by the Robertson-Walker metric, Eq. (5.27),
where k can be positive, negative, or zero. Other coordinate systems are of course possi-
ble, but geometrically different spaces are not.

Note that the sign of k affects the question of whether the space is finite or infinite.
For k > 0, Eq. (5.27) implies that something peculiar happens when kr2 = 1, at which
point the metric is singular. Since r is related to the original ψ coordinate by r =
sin(ψ)/

√
k, one sees that this value of the radius variable corresponds to ψ = π/2, and

hence the equator of the original sphere embedded in four dimensions. There is nothing
singular about the space, but the metric becomes singular because the coordinate r
behaves peculiarly, reaching a maximum value. Beyond the equator, r must get smaller
and then approach zero at the “south pole” (x = 0, y = 0, z = 0, w = −R). Thus, the
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space is finite. However, if k < 0 then the metric is given by Eq. (5.28), which remains
perfectly well-defined for all values of r, and thus the range of the r-coordinate is infinite.
This does not by itself prove that the space is infinite, since the value of a coordinate
is not directly measurable. However, one can calculate the physical distance from the
origin to a point with radial coordinate r by integrating the metric of Eq. (5.28) along a
radial path (with dθ = dφ = 0):

`phys(r) = a(t)

∫ r

0

dr′√
1 + κr′2

=
sinh−1

√
κ r√

κ
, (5.29)

where the integration can be carried out by substituting r′ = sinh(ψ)/
√
κ. Since the

inverse sinh function can become arbitrarily large, the space is infinite.

The G-B-L geometry discussed in the introduction is simply the two-dimensional
version of the space of an open universe at some arbitrary fixed time. The realization by
Klein described in Eqs. (5.1) and (5.2) represents a somewhat peculiar choice of coordinate
system.

THE GENERALIZATION FROM SPACE TO SPACETIME

Eq. (5.27) actually shows only a spatial metric, while I said earlier that general
relativity describes the gravitational field in terms of a spacetime metric. To put the
spacetime metric into context, we recall that in special relativity it is possible to define
a Lorentz-invariant separation between two events. Specifically, if the coordinates of an
event A are (xA, yA, zA, tA), and the coordinates of an event B are (xB , yB , zB , tB), then
the Lorentz-invariant separation between A and B is defined by

s2 ≡ (xA − xB)
2

+ (yA − yB)
2

+ (zA − zB)
2 − c2 (tA − tB)

2
. (5.30)

By saying that this expression is Lorentz-invariant, we mean that it has the same value
in all inertial references frames, even though the individual terms may very well have
different values.

While the value of s2 is the same in all inertial frames, the intuitive meaning of s2 is
easiest to see by considering its value in particular frames. If s2 > 0, then the separation
between the events is called spacelike. In that case it is always possible to find an inertial
reference frame in which the two events are simultaneous, and in that frame s is equal to
the spatial distance between the two events. Equivalently, we can say that it is always
possible to find an inertial observer to whom the two events appear simultaneous. s is
then equal to the distance between these events, as measured by a ruler at rest with
respect to this observer. s can be called the proper distance between the events. If s2 < 0
then the separation is called timelike, and in that case it is always possible to find an
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inertial observer to whom it appears that the two events occur at the same position. If
she defines

s2 = −c2τ2 , (5.31)

then τ is the time separation between the events when measured on her clock. τ is often
called the proper time between the two events. Note that if the two events happen to the
same object, such as two flashes of the same strobe light, and the object is moving at
constant velocity, then the proper time between the flashes is just the time as measured
by a clock at rest with respect to the strobe light. If ds2 = 0, then the separation between
the two events is called lightlike, and in that case a light pulse leaving the earlier event
will arrive at the location of the latter event just as it occurs.

If you are not familiar with the Lorentz-invariant separation, you may want to look
at the Appendix at the end of this set of Lecture Notes. There I start with the three basic
effects of special relativity, as described in Lecture Notes 1, and show how to construct the
Lorentz transformation. The Lorentz transformation is the set of equations that describe
how to relate the coordinates of an event in two different inertial coordinate frames,
where one frame is moving relative to the other. Using the Lorentz transformation, the
Appendix goes on to show that the expression defined by Eq. (5.30) is truly Lorentz-
invariant. (For purposes of this course, however, the Appendix can be considered outside
the course requirements. It is okay for you to just accept the result that s2 is Lorentz-
invariant.)

The spacetime metric of general relativity is the curved-spacetime generalization
of the Lorentz-invariant separation of special relativity. Following the ideas of Gauss
discussed near the beginning of these lecture notes, we will restrict our attention to de-
scribing the separation between two infinitesimally separated spacetime points (x, y, z, t)
and (x+ dx, y+ dy, z+ dz, t+ dt). For special relativity the metric of Eq. (5.30) reduces
in the infinitesimal case to

ds2 = dx2 + dy2 + dz2 − c2 dt2 , (5.32)

which is known as the Minkowski metric. Continuing with Gauss’s approach, we insist
— even when we describe arbitrary curved spacetimes — that ds2 be expressed as a
quadratic expression in the coordinate differentials. This implies (although we will not
show it) that for any spacetime point P it is always possible to choose a coordinate system
(x′, y′, z′, t′) so that the metric reduces to the Minkowski metric in an infinitesimal region
around that point. If the spacetime is curved the metric will not have the Minkowski form
outside this infinitesimal region, however, so the metric will be called locally Minkowskian
at the point P .

In curved spacetimes there is no coordinate system in which the metric has the
Minkowski form everywhere. Thus, to infer the separation between two points one must
know not only the values of the coordinates, but also the metric. The coordinates are
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then not themselves direct measurements of distance, but instead are just an arbitrary
way of labeling points. Since one needs to introduce a metric for any coordinate system,
there is nothing that forces us to use any particular coordinate system or set of coordinate
systems. This is different from special relativity, where the metric (5.32) is valid only for
a special class of coordinate systems, called inertial coordinate systems, which are related
to each other by a special class of transformations, called Lorentz transformations. If I
were to replace the coordinate x by x′ ≡ sinhx, then the metric would no longer look
like Eq. (5.32). The coordinate transformation x′ ≡ sinhx is therefore not allowed in
the standard formulation of special relativity (although one could use the formalism of
general relativity for a special relativity problem if one chose to.) In general relativity, on
the other hand, there is usually no coordinate system in which the metric is particularly
simple, so the formalism is designed to allow any choice of coordinates, and hence any kind
of coordinate transformation. In general relativity, therefore, x′ = sinhx is a perfectly
acceptable coordinate transformation. As long as the coordinates allow a unique way to
label each point in spacetime, they are acceptable. If I change coordinate systems, I can
always change the metric so that the value of ds2 between any two points remains the
same. For this reason ds2 is said to be coordinate-invariant.

When we introduced the two-dimensional spatial metric in Eq. (5.3), we assumed that
ds2 represented the distance between the two points, where the meaning of “distance”
was no different from what it would mean in Euclidean geometry — it is what one would
measure with a ruler. Here we are trying to generalize this method, so we want to define
ds2 to have the same meaning it would have in special relativity. In special relativity we
were able to define ds2 in terms of the observations made by inertial observers, which
means observers for whom the law of inertia is valid, which in turn means observers to
whom no net force is applied. In general relativity, forces other than gravity are treated
in essentially the same way as in special relativity, so there is no problem defining what
it means for the net nongravitational force on an observer to vanish. But gravity is
trickier. Consider, for example the homogeneously expanding universe that we discussed
in Lecture Notes 2, 3, and 4. If I am moving with the expansion of the universe (i.e., if
I am at rest with respect to the comoving coordinate system), then I can view myself as
being at rest. If I look at the distant galaxies around me, however, they will appear to be
slowing in their outward motion, and hence accelerating towards me, under the influence
of gravity. But an observer on one of those galaxies would consider himself to be at rest,
and I would appear to be accelerating. According to general relativity both points of
view are equally valid, so the concept of gravitational acceleration becomes relative.

Another simple and famous example that illustrates the relative nature of gravi-
tational forces is the elevator (thought) experiment. Suppose a man, holding a bag of
groceries, is standing in an elevator. Now suppose that the elevator cables are cut, and
the elevator free falls downward without friction or air resistance. The man will then
accelerate downward with the same acceleration as the elevator, and he will feel no force
between his feet and the elevator floor. If he lets go of the bag of groceries, the bag
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would not move relative to him, but would appear to float in front of him. In the frame
of the Earth, all the objects (the elevator, the man, and the groceries) are accelerating
downward under the force of gravity. But in the frame of the elevator, everything ap-
pears weightless. (Everything is is weightless until the big crunch occurs in the building’s
basement — but remember, this in only a thought experiment. No living creatures were
harmed in the writing of this paragraph.)

We are accustomed to thinking of the frame of the Earth as being the correct “phys-
ical” description, because the frame of the Earth is nearly inertial over a large region of
space and time. In the context of general relativity, however, both frames are equally
correct. Thus, the presence or absence of gravity is determined by which frame of ref-
erence we are using. This idea in fact is one of the foundational concepts of general
relativity, known as the equivalence principle. The physics of the accelerating frame of
the elevator, with no gravity, is equivalent to the physics in the rest frame of the Earth,
with its gravitational field. The equivalence principle says that it is always possible, in
a sufficiently small region, to find a frame of reference in which the force of gravity is
absent.

The bottom line here is that if we are trying to generalize the notion of an inertial
observer in special relativity, we cannot insist that the gravitational force on the observer
vanishes, because this condition will appear to hold in some coordinate systems but not
others. So, instead we insist only that the net nongravitational force on the observer
vanish, and we say that such an observer is free-falling. Note that the man in the falling
elevator is free-falling, while a man standing in an elevator that is at rest with respect to
the Earth is not. In the latter case the floor is pushing upward on the man’s feet, so the
net nongravitational force is nonzero.

With the replacement of inertial observers by free-falling observers, the meaning of
ds2 in general relativity is the same as what we had in special relativity. If the value of
ds2 calculated between two events is positive, then there is always a free-falling observer
to whom the events appear simultaneous. In this case, the proper distance ds between
the events is the distance between them, as measured by a ruler at rest relative to this
free-falling observer. If ds2 < 0, then there is always a free-falling observer for whom the
events appear to happen at the same location. One then defines

ds2 ≡ −c2 dτ2 , (5.33)

as in Eq. (5.31), where dτ is again called the proper time interval between the events. It
is the time interval between the two events that would be measured by a clock carried
by the free-falling observer mentioned above. If ds2 = 0, then the two events can be
connected by a light pulse, which leaves the first event and arrives at the second.*

* The concept of a free-falling observer is intimately linked to the concept of a locally
Minkowskian coordinate system, so the meaning of ds2 could also have been explained in
terms of these coordinate systems. The free-falling observers are those that are at rest or
moving at a constant velocity relative to a coordinate system that is locally Minkowskian
at the location of the observer.
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INCLUSION OF TIME IN THE ROBERTSON-WALKER METRIC

What happens when we add time to the Robertson-Walker metric of Eq. (5.27)? In
general the answer can depend on how we choose to define our time variable, but we
will hold with the choice called cosmic time, which we discussed in Lecture Notes 2 (in a
section called “The Synchronization of Clocks”). We concluded there that it is possible to
define a cosmic time variable t which can be measured locally. That is, each observer who
is at rest with respect to the matter in her vicinity can measure t on her own wristwatch.
The wristwatches throughout the universe can be synchronized, once and for all, by some
choice of a cosmic event. For example, we can all agree to set our wristwatches to read
12 billion years when the temperature of the cosmic microwave background radiation
reaches 3.0 K, or when the Hubble parameter reaches 85 km-sec−1-Mpc−1. Once the
watches are synchronized, we argued that the homogeneity of the universe guarantees
that they will stay synchronized: all watches will read the same time when the cosmic
background radiation temperature reaches 2.0 K, or when the Hubble parameter reaches
75 km-sec−1-Mpc−1. In practice we usually define the synchronization of cosmic time
so that t = 0 corresponds to our best estimate of when a(t) was equal to zero, and the
Hubble parameter and temperature were infinite. (More precisely, we choose t = 0 to
correspond to the time when a(t), as extrapolated in our mathematical model, was equal
to zero. As discussed in The Big Bang Singularity section of Lecture Notes 4, there is no
reason for us to have confidence in this extrapolation.)

I think it will be most straightforward for me to write the answer first, and then
explain why it could not have been anything different. If the time variable t is taken to
be cosmic time, and the metric is to be homogeneous and isotropic, then it can always
be written as

ds2 = −c2 dt2 + a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
. (5.34)

So, why does this have to be the answer? Consider first the case in which the
separation dt = 0 (i.e., when the two events whose separation we are calculating have
the same time coordinate). In that case Eq. (5.34) reduces to our previous expression,
Eq. (5.27). Since we have already stated (albeit without proof) that Eq. (5.27) describes
the most general possible three-dimensional space that is homogeneous and isotropic,
the answer for the dt = 0 case is settled. We could of course choose other coordinates
that would make the spatial part of Eq. (5.34) look different, but Eq. (5.34) as written
describes the most general possible geometry.

Now consider the interval defined by dt 6= 0, but dr = dθ = dφ = 0. This represents
the motion of a comoving observer for an increment of coordinate time dt. There are
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no nongravitational forces acting on the comoving observer, so she is also a free-falling
observer. This is a timelike separation, so we use the definition ds2 = −c2 dτ2 from
Eq. (5.33), and we deduce that dt = dτ , where dτ is the time measured on the comoving
observer’s wristwatch. But an interval of cosmic time is defined as the interval measured
on the wristwatches of comoving observers, so the metric of Eq. (5.34) implies that t is
precisely the time variable that we have called cosmic time. Note that if the coefficient
of the dt2 term in the metric were anything other than −c2, we would have found that
the time coordinate interval dt is proportional to wristwatch time, but not equal to it.

We have now verified that the terms that are present in Eq. (5.34) must have the
forms that they have. But what about the possibility of adding other terms. Since the
metric is required to be a quadratic function of the coordinate differentials, the only
possible new terms that could be added are terms proportional to dtdr, dtdθ, or dtdφ.
(Recall that terms like dr dθ would contribute even when the time is fixed, dt = 0, so such
terms have already been ruled out by the statement that Eq. (5.27) is the most general
possible homogeneous and isotropic space.) Let us consider first the possibility of adding
a term dr dt to the metric. The claim is that such a term would violate our assumption
of isotropy, because it would create a distinction between the direction of increasing and
decreasing r. To see this, consider two observers, Tweedledee and Tweedledum, who
both start at r = r0 at time t = t0. Tweedledee is moving outward and Tweedledum is
moving inward, both with coordinate speed dr/dt = v (and with fixed values of θ and
φ). At t = t0 + dt, Tweedledee will be located at r = r0 + v dt, while Tweedledum will
be located at r = r0 − v dt. Thus the displacement vector of Tweedledee has dr > 0,
while that of Tweedledum has dr < 0, and both have the same dt. The hypothetical new
term will therefore contribute to ds2 with opposite signs for the two cases, so the values
of ds2 will be different for Tweedledee and Tweedledum. Since ds2 = −c2 dτ2, and dτ is
the wristwatch time that each will measure, we conclude that each will have a different
wristwatch time at the end of this interval. When they each compare with the comoving
observers whose wristwatches read cosmic time, t = t0 + dt, the two will see different
discrepancies. This means that there is a Tweedledee/Tweedledum asymmetry, but the
only difference in the setup was their direction of travel. Thus, the addition of such a
term would be a violation of isotropy. An identical argument can be made for dtdθ or
dtdφ terms, so we conclude that Eq. (5.34) is necessarily the right answer.

EQUATIONS FOR A GEODESIC

As was stated earlier, in general relativity a freely falling particle is assumed to travel
on a geodesic of the curved spacetime. Stated more precisely, the equations of motion in
general relativity are derived from the assumption that the path length from the initial
point to the final point should have a vanishing derivative with respect to any variation
of the path that does not vary the endpoints. If the meaning of this statement is not
clear to you at this point, then don’t worry yet — it will hopefully become clear once we
define some notation.
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We will start by deriving the equation for a geodesic in a two-dimensional space with
a positive-definite metric (i.e., with all lengths positive). The metric will be assumed to
have the general form specified by Gauss, and given earlier as Eq. (5.3):

ds2 = gxxdx2 + gxydxdy + gyxdy dx+ gyydy2 , (5.3)

where gxx, gxy, gyx, and gyy are functions of position (x, y) and are together called the
metric of the space. As explained earlier, we take gyx ≡ gxy.

The first step will be to simplify the notation, since Eq. (5.3) requires a lot of writing.
To start, rename the coordinate x as x1, and rename y as x2. Then the two coordinates
together can be described as xi, where i is understood to take on the values 1 and 2.
Eq. (5.3) can then be rewritten as

ds2 =
2∑
i=1

2∑
j=1

gij(x
k) dxi dxj , (5.35)

where I write the metric as gij(x
k) to indicate explicitly that it is a function of all

of the coordinates xk. One further simplification is known as the Einstein summation
convention. This is no doubt Einstein’s most important contribution to ecology, saving
barrels of ink and tons of paper each year. The convention stipulates that whenever an
index is repeated, it is automatically summed over the standard range (which in this case
is from 1 to 2). Using this convention, Eq. (5.35) can be written compactly as

ds2 = gij(x
k) dxi dxj . (5.36)

(In using this notation, it is important that the context makes it clear that the su-
perscript i in xi is to be interpreted as an index, and not a power. You might wonder
why people tolerate this confusion, when it could be avoided by writing all indices as sub-
scripts. The reason is that curved space geometers find it useful to use both superscripts
and subscripts to denote indices. Quantities with upper indices (superscripts) are called
contravariant, and quantities with lower indices (subscripts) are called covariant. These
indices can always be arranged so that each summation over a repeated index involves
one upper and one lower index, as has been done in Eq. (5.36). To understand fully the
meaning of upper and lower indices, one must study how the equations of non-Euclidean
geometry are transformed by a redefinition of the coordinate system. We will skip this
topic, but I point out that the formalism is constructed so that the rules of transformation
are indicated by whether the indices are upper or lower. Furthermore, the transformation
rules guarantee that any sum over a repeated index, with one upper and one lower, is
invariant under a change of coordinates.)
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Now we can state the geodesic problem: given two points xiA and xiB , what equation
determines the geodesic, or shortest path, between the two points? (In this case it will
be the shortest path.)

An arbitrary path can be described by a function xi(λ), where λ is a parameter
which we take to run between 0 and some final value λf . Thus, the statement that the
path runs from xiA to xiB translates into the equations

xi(0) = xiA, xi(λf ) = xiB . (5.37)

Now focus attention on an infinitesimal segment of the curve, from λ to λ + dλ. The
change in the values of the two coordinates over this segment is given by

dxi =
dxi

dλ
dλ . (5.38)

Since dλ is infinitesimal, one need not consider terms in Eq. (5.38) that are higher order
in dλ. Combining this equation with Eq. (5.36), one has

ds2 = gij
(
xk(λ)

) dxi

dλ

dxj

dλ
dλ2 ,

and then

ds =

√
gij
(
xk(λ)

) dxi

dλ

dxj

dλ
dλ . (5.39)

The total length of the path is then

S[xi(λ)] =

∫ λf

0

√
gij
(
xk(λ)

) dxi

dλ

dxj

dλ
dλ . (5.40)

The path length S[xi(λ)] is actually a function of the function xi(λ). A function of a
function is usually called a functional, and the argument of the functional is usually
enclosed in square brackets.

Next we consider how the path length will vary if the path is changed infinitesimally.
To formulate this precisely, we write the equation for a nearby path, with the same
endpoints, as

x̃i(λ) = xi(λ) + αwi(λ) , (5.41a)

Figure 5.11: A path x(λ) and a small variation of it, x̃(λ).
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where α is a number (which we will take to be small), and the path variation function
wi(λ) is required to satisfy

wi(0) = 0 , wi(λf ) = 0 , (5.41b)

so that the new path x̃i(λ) has the same endpoints as original path xi(λ). The rule for
a geodesic is that no matter how the path is varied, the original length is a minimum.
This implies that if wi(λ) is held fixed, for any value that satisfies Eq. (5.41b), the path
length of x̃i(λ) should have a minimum at α = 0. Thus,

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

= 0 for all wi(λ) . (5.42)

The problem now is simply to calculate the derivative in Eq. (5.42). To simplify the
notation, we define

A(λ, α) = gij
(
x̃k(λ)

) dx̃i

dλ

dx̃j

dλ
, (5.43)

so we can write

S
[
x̃i(λ)

]
=

∫ λf

0

√
A(λ, α) dλ . (5.44)

Note that the derivative can be taken inside the integral that defines S[x̃i(λ)], since the
limits of integration do not depend on α. Using the chain rule of differentiation, we find

d

dα
gij
(
x̃k(λ)

)∣∣∣∣
α=0

=
∂gij
∂xk

∣∣∣∣
xk=xk(λ)

∂x̃k

∂α

∣∣∣∣
α=0

=
∂gij
∂xk

(
xi(λ)

)
wk , (5.45)

where the Einstein summation convention applies to the sum over k. Differentiating
Eq. (5.44), one then finds

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1

2

∫ λf

0

1√
A(λ, 0)

{
∂gij
∂xk

wk
dxi

dλ

dxj

dλ
+

+gij
dwi

dλ

dxj

dλ
+ gij

dxi

dλ

dwj

dλ

}
dλ ,

(5.46)

where the metric gij is to be evaluated at xk(λ).

The expression can be further simplified by recognizing that the summed indices are
“dummy” indices, in the sense that their names can be changed without changing the
value of the expression. (When one does this, of course, it is essential that the name be
changed in the same way for each occurrence of the index.) Suppose then that the third
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term in curly brackets of the above equation is rewritten by substituting i→ j and j → i.
It then becomes identical to the second term, except that the indices on gij are reversed.
But gij is symmetric in the sense that gji = gij (see the remarks following Eq. (5.3)), so
the two terms are identical. Thus,

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1

2

∫ λf

0

1√
A(λ, 0)

{
∂gij
∂xk

wk
dxi

dλ

dxj

dλ
+ 2gij

dwi

dλ

dxj

dλ

}
dλ . (5.47)

The next step is to simplify the dependence on wi(λ). The expression above depends
explicitly on both the function wi(λ) and its derivative, but the dependence on the
derivative can be removed by an integration by parts. Note that the term∫ λf

0

[
1√
A
gij

dxj

dλ

]
dwi

dλ
dλ

can be integrated using ∫
udv = −

∫
v du+ [uv]

λ=λf

λ=0 ,

where

u =
1√
A
gij

dxj

dλ
, du =

d

dλ

[
1√
A
gij

dxj

dλ

]
dλ

dv =
dwi

dλ
dλ , v = wi .

The surface term [uv]
λ=λf

λ=0 then vanishes, since wi(0) = wi(λf ) = 0. So,∫ λf

0

[
1√
A
gij

dxj

dλ

]
dwi

dλ
dλ = −

∫ λf

0

d

dλ

[
1√
A
gij

dxj

dλ

]
wi dλ . (5.48)

Thus, Eq. (5.47) simplifies to

dS

dα

∣∣∣∣
α=0

=
1

2

∫ λf

0

{
1√
A

∂gij
∂xk

dxi

dλ

dxj

dλ
wk − 2

d

dλ

[
1√
A
gij

dxj

dλ

]
wi
}

dλ .

If one also renames the indices in the first term by i→ j, j → k, k → i, one can write

dS

dα

∣∣∣∣
α=0

=

∫ λf

0

{
1

2
√
A

∂gjk
∂xi

dxj

dλ

dxk

dλ
− d

dλ

[
1√
A
gij

dxj

dλ

]}
wi(λ) dλ . (5.49)

The next step is to set the quantity in curly brackets in the expression above equal
to zero. To justify this, one must of course realize that the vanishing of an integral
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does not in general require that the integrand is zero — that is, it is very easy to find
nonzero functions that integrate to zero over some specified range. However, we need to
require that the derivative above vanish not merely for some particular value of wi(λ),
but rather that it vanish for all values of wi(λ) that are consistent with Eq. (5.41b). This
stronger requirement implies that the integrand must vanish. Note that if the quantity
in curly brackets did not vanish, one could choose wi(λ) to equal the quantity in curly
brackets, so the integral in Eq. (5.49) becomes the integral of a perfect square. Since then
the integrand is nonnegative, the integral can vanish only if the integrand is identically
zero. (Technically, the integrand can still be nonzero on a set of measure zero, such as
a discrete set of points, since the integral over such a set gives zero in any case. We
will restrict ourselves, however, to continuous functions, and then such a quantity must
vanish everywhere.) Thus,

d

dλ

[
1√
A
gij

dxj

dλ

]
=

1

2
√
A

∂gjk
∂xi

dxj

dλ

dxk

dλ
. (5.50)

The above equation is actually quite complicated, since the quantity A defined by
Eq. (5.43) is complicated. However, the equation also has more generality than we really
need: as we derived it, it will be valid for any parameterization xi(λ) of the path. If
we instead make a specific choice about how the path is to be parameterized, then the
equation can be simplified. In particular, we can simplify the equation tremendously by
choosing λ to be the path length, as measured along the curve. Recalling that

ds =

√
gij
(
xk(λ)

)dxi

dλ

dxj

dλ
dλ =

√
Adλ ,

one sees that dλ = ds requires

A = 1 (for λ = path length). (5.51)

Then the geodesic equation becomes

d

ds

[
gij

dxj

ds

]
=

1

2

∂gjk
∂xi

dxj

ds

dxk

ds
, (5.52)

where I have replaced λ by s to indicate clearly that it is the physical path length.

Eq. (5.52) is in many cases the most convenient form of the geodesic equation, but
it is nonetheless not the standard way that the geodesic equation is written in general
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relativity books. Instead, the standard form is to write an explicit equation for d2xi/ds2.

One begins by expanding the left-hand side of Eq. (5.52), using the chain rule:

d

ds

[
gij

dxj

ds

]
= gij

d2xj

ds2
+ ∂kgij

dxj

ds

dxk

ds
, (5.53)

where I have used the standard abbreviation

∂k ≡
∂

∂xk
. (5.54)

The geodesic equation then becomes

gij
d2xj

ds2
=

1

2
(∂igjk − 2∂kgij)

dxj

ds

dxk

ds
. (5.55)

Using the symmetry of the factor on the right, −2∂kgij can be rewritten more symmet-

rically as −∂kgij − ∂jgik. Eq. (5.55) can then be turned into an equation of the desired

form by inverting the matrix gij that appears on the left-hand side. One defines gij as

the matrix inverse of gij , which in index notation translates into the statement

gi`g`j = δij , (5.56)

where δij denotes the Kronecker δ-function (which is defined to be one if i = j, and zero

otherwise). One can then change the free index in Eq. (5.55) to `, and then multiply by

gi`. The result is written standardly in the form

d2xi

ds2
= −Γijk

dxj

ds

dxk

ds
, (5.57)

where

Γijk =
1

2
gi` (∂jg`k + ∂kg`j − ∂`gjk) . (5.58)

The quantity Γijk is called the affine connection.
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THE SCHWARZSCHILD METRIC

General relativity includes a set of equations known as the Einstein field equations,
which describe how a gravitational field is produced by matter. These equations are
the analogue of the Maxwell equations of electromagnetism, which describe how an elec-
tromagnetic field is produced by charges and currents. The Einstein field equations are
beyond the scope of this course, but it will nonetheless be useful to describe some features
of the solutions to the field equations.

Of particular interest are the solutions for spherically symmetric objects, such as
planets, stars, or black holes. In Newtonian mechanics, you will recall, the gravitational
field outside a spherical distribution of matter has the peculiar property that it is inde-
pendent of the details of the mass distribution. Outside of a spherical distribution, the
field is uniquely determined if the total mass is known, independent of how this mass
is distributed with radius. In general relativity, it turns out, the same feature is found
— the metric is determined solely by the total mass enclosed. The metric for a spher-
ically symmetric distribution of mass, in the region outside the mass, is given by the
Schwarzschild metric,

ds2 = −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

(5.59)

where M is the total mass of the object, and θ and φ are the usual polar coordinates.
Their range is given by 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and φ = 2π is identified with φ = 0.

Note that the metric becomes singular at r = 2GM/c2, which is known as the
Schwarzschild radius:

RS =
2GM

c2
. (5.60)

A metric is said to be singular if any of the coefficients become infinite, or if any of the
coefficients vanish; in this case both happen: the coefficient of the dt2 term vanishes at
the Schwarzschild radius, and the coefficient of dr2 becomes infinite. The singularity at
the Schwarzschild radius, however, does not indicate any true singularity in the structure
of space. If a person or instrument fell through the Schwarzschild radius, nothing peculiar
would be felt. In this case the singularity is caused only by the choice of the coordinate
system, and other coordinate systems can be constructed for which there is no singularity.
In this course, however, we will not have time to look at such coordinate systems. The
Schwarzschild metric is also singular at r = 0; unlike the singularity at r = RS , the
singularity at r = 0 is a true physical singularity. Physically measurable quantities, such
as the tidal forces associated with nonuniform gravitational fields, become infinite at
r = 0.
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Although the singularity at r = RS is only an artifact of the coordinate system, it can
be shown nonetheless that r = RS represents the point of no return for an object falling
into a black hole. If any object (even a photon) falls inside the Schwarzschild radius, then
it will never be able to escape. Thus, an object that is contained within its Schwarzschild
radius is called a black hole. The sphere at r = RS is called the “Schwarzschild horizon,”
meaning that it is impossible, from the outside, to see anything beyond r = RS .

The distinction between a black hole and a star is simply the question of whether this
Schwarzschild horizon exists. If the matter extends to radii beyond the value of RS indi-
cated by Eq. (5.60), then the Schwarzschild metric will not be valid at the Schwarzschild
radius. In this case the horizon may or may not exist, depending on the distribution
of matter inside the object. However, if the mass distribution is so compact that it is
contained within the Schwarzschild radius, then the Schwarzschild metric will describe
the space outside of the matter, and the Schwarzschild horizon will be guaranteed to
exist.

Just for orientation, we can compute the Schwarzschild radius of the sun, which has
a mass of 1.989× 1030 kg. Thus,

RS,� =
2× 6.673× 10−11 m3-kg−1-s−2 × 1.989× 1030 kg

(2.998× 108 m-s−1)2

= 2.95 km .

(5.61)

So if the sun were compressed to a size smaller than 2.95 km, it would become a black
hole.

GEODESICS IN THE SCHWARZSCHILD METRIC

Our purpose in introducing the Schwarzschild metric is mainly to provide an example
of the calculation of a geodesic in a realistic general relativity setting.

In this section we will calculate the geodesic, and hence the trajectory, for a particle
that is released from rest at r = r0 in the Schwarzschild metric of Eq. (5.59). Note that r
is a radial coordinate, in the sense that it provides a measure of how far a spacetime point
is from the center of symmetry. However, it would be misleading to call r the radius, since
it does not literally measure the distance from the center. If r is varied by an amount dr,
the new point is separated from the first not by dr, but instead by dr/

√
1− 2GM/rc2. r

is sometimes called the circumferential radius, since the term r2(dθ2 + sin2 θ dφ2) in the
metric implies that the circumference of a circle at a fixed value of r is equal to 2πr, as
in Euclidean geometry.

By spherical symmetry, we know that the particle will fall straight toward the center
of the sphere, so the coordinates θ and φ will remain constant. Thus, the terms in the
metric proportional to dθ2 and dφ2 will give no contribution as the particle moves along
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the trajectory. Since the spherical symmetry also guarantees that the other terms in the
metric are independent of θ and φ, these two angles can be completely ignored in solving
the problem; the values of the two angles will remain constant at their initial values.

The trajectory of such a particle is timelike, and can be parameterized by the proper
time as it would be measured on a clock that moves with the particle. The trajectory can
be described by the functions r(τ) and t(τ), where the latter function gives the value of
the coordinate t as a function of the proper time. The metric (5.59) gives the separation
dτ2 between two neighboring points along the trajectory. Dividing Eq. (5.59) by dτ2,
one finds the relation

c2 =

(
1− 2GM

rc2

)
c2
(

dt

dτ

)2

−
(

1− 2GM

rc2

)−1(
dr

dτ

)2

. (5.62)

This allows one to determine dt/dτ in terms of dr/dτ . To be more compact, we introduce
the notation

h(r) ≡ 1− RS
r

= 1− 2GM

rc2
, (5.63)

so Eq. (5.62) can be rewritten as

c2
(

dt

dτ

)2

= c2h−1(r) + h−2(r)

(
dr

dτ

)2

. (5.64)

To generalize the geodesic equation (5.52) to spacetime trajectories, there is nothing
significant that needs to be changed. We are changing the number of dimensions and we
are switching to a metric that is not positive definite, but neither of these changes affect
the derivation of the geodesic equation in any way. Since the trajectories of particles are
timelike, we parameterize the path not by s, which would be imaginary, but instead by
τ . This does not change the form of the equation either, since the only place where the
parameterization mattered was when we assumed that A = 1, in deriving Eq. (5.52) from
Eq. (5.50). But the derivation depended only on the prescription that A = constant, and
not on A = 1. In this case we will be using A = −c2, but the geodesic equation will be
unaffected. So, we can rewrite the geodesic equation as

d

dτ

[
gµν

dxν

dτ

]
=

1

2

∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (5.65)

where I followed a common convention of using Greek letters for spacetime indices. The
letters µ, ν, λ, σ, etc. are summed from 0 to 3 when they are repeated, where x0 ≡ t.
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Note that of the 4 components of dxµ/dτ , only two are nonzero: dr/dτ and dt/dτ .
Since Eq. (5.64) allows us to find dt/dτ in terms of dr/dτ , it will be sufficient for us to
look at only the geodesic equation for dr/dτ . Writing Eq. (5.65) for µ = r, one finds

d

dτ

[
grr

dr

dτ

]
=

1

2
∂rgrr

(
dr

dτ

)2

+
1

2
∂rgtt

(
dt

dτ

)2

, (5.66)

where

grr = h−1(r) , (5.67)

and

gtt = −c2h(r) . (5.68)

Using the fact that ∂rh(r) = −RS/r2, Eq. (5.66) becomes

h−1(r)
d2r

dτ2
− h−2(r)

RS
r2

(
dr

dτ

)2

=

− 1

2
h−2(r)

RS
r2

(
dr

dτ

)2

− 1

2
c2
RS
r2

(
dt

dτ

)2

.

(5.69)

Now use Eq. (5.64) to eliminate dt/dτ , and notice that the terms involving dr/dτ cancel
against each other. The only remaining terms are proportional to h−1(r), so one can
multiply by the inverse of this quantity to obtain

d2r

dτ2
= −c

2

2

RS
r2

= −GM
r2

. (5.70)

This equation is identical in form to the corresponding equation in Newtonian me-
chanics, but the physics is far from identical. In the Newtonian case the time variable
denotes a universal time that can be read on any clock, while in the general relativity case
the time variable τ represents the proper time that would be measured by a clock that is
moving with the falling particle. The time that would be measured on a stationary clock
would be different.

Since Eq. (5.70) is a familiar differential equation, we can integrate it without diffi-
culty. The first step is to obtain a conservation of energy equation, which can be done
by multiplying the equation by dr/dτ . The equation can then be written as

d

dτ

{
1

2

(
dr

dτ

)2

− GM

r

}
= 0 , (5.71)
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which implies that the quantity in curly brackets is conserved. If the particle is released
from rest at r = r0, then the initial value of this conserved quantity is −GM/r0, so
Eq. (5.71) becomes

dr

dτ
= −

√
2GM

(
1

r
− 1

r0

)
= −

√
2GM(r0 − r)

rr0
. (5.72)

This equation can be reduced to a definite integral by bringing all of the r-dependent
factors to one side and integrating:

τ = −
∫ rf

r0

dr

√
rr0

2GM(r0 − r)
. (5.73)

This integral can be carried out, so finally we have an expression for the proper time
τ(rf ) at which the particle is at the radius coordinate rf :

τ(rf ) =

√
r0

2GM

{
r0 tan−1

(√
r0 − rf
rf

)
+
√
rf (r0 − rf )

}
. (5.74)

So, from the point of view of a person riding on the falling particle, the Schwarzschild
horizon will be reached in a finite length of time.

However, if we ask how the trajectory evolves as a function of coordinate time t,
we will see a very different picture. The velocity with respect to coordinate time can be
found by the chain rule:

dr

dt
=

dr

dτ

dτ

dt
=

dr/dτ

dt/dτ
, (5.75)

and then Eq. (5.64) can be used to eliminate dt/dτ :

dr

dt
=

dr/dτ√
h−1(r) + c−2h−2(r)

(
dr
dτ

)2 . (5.76)

It is possible to find an exact solution for t as a function of r, which can be obtained by
using Eq. (5.72) to eliminate dr/dτ from the above equation, and then expressing t as
an integral over r, similar to Eq. (5.73). The result is very cumbersome, however, and
not very illuminating. We are most interested, however, in how Eq. (5.76) behaves when
r is near the horizon, and that behavior can be extracted rather easily. Near the horizon
h(r) approaches zero so h−1(r) blows up, with

h−1(r) =
r

r −RS
≈ RS
r −RS

. (5.77)
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The argument of the square root in the denominator of Eq. (5.76) is then dominated by
the second term, which with Eq. (5.77) gives

dr

dt
≈ c

(
r −RS
RS

)
. (5.78)

Rearranging and integrating to some final r = rf , one finds

t(rf ) ≈ −RS
c

∫ rf dr′

r′ −RS
≈ −RS

c
ln(rf −RS) . (5.79)

Thus t diverges logarithmically as rf → RS , so the object does not reach RS for any finite
value of t. Thus, even though a person falling into a black hole would pass the horizon
in a finite amount of time, from the outside the person will never be seen to reach the
horizon.
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APPENDIX 5A: THE LORENTZ TRANSFORMATION
AND THE LORENTZ-INVARIANT INTERVAL

THE LORENTZ TRANSFORMATION:

The kinematic results of special relativity which were discussed in Lecture Notes
1 — time dilation, Lorentz-Fitzgerald contraction, and the relativity of simultaneity —
can all be neatly summarized in a set of equations called the Lorentz transformation.
These equations relate the coordinates of an event as seen by one inertial observer to the
coordinates of the same event as seen by another inertial observer in relative motion.

The Lorentz transformation can be easily derived from the principles that have al-
ready been established. Suppose that a space ship observer constructs a physical coordi-
nate system by carrying with him an entire network of measuring rods oriented along his
x- and y-axes, as in Fig. 5A.1. He also has a network of clocks. He determines the spatial
coordinates of an event by observing where in this network of measuring rods it occurs,
and he determines the time by reading it from a clock located at the site of the event. We
will refer to these coordinates as x′, y′, and t′, using the primes to distinguish them from
our own coordinate system, which we will continue to call x, y, and t. (To simplify the
discussion I am assuming that everything happens in the 2-dimensional plane spanned
by the x- and y-axes. The z direction can be reinstated very easily, since its properties
are the same as those of the y direction.)

Let us suppose that the moving coordinate system is oriented so that its x′-axis
moves to the right along our x-axis, and the clocks are synchronized so that the clock at
the origin of each system is set to zero at the time when the two origins cross each other.

Notice, that since there is no contraction of the measuring rods that are oriented
perpendicular to the motion, the y-coordinate of an event has the same value in either
frame. This leads to the first transformation equation,

y′ = y . (5A.1)

If there was a third spatial dimension in the problem, one would similarly conclude that
z′ = z.

Suppose now that an event A occurs in our coordinate system at a spacetime point
(x, t), where we will set y ≡ 0 for simplicity. We now wish to calculate the coordinates
as measured by the moving (primed) system. Since y = y′ = 0, the event will occur on
the measuring rod which constitutes the x′-axis of the moving system, so we can for now
ignore the existence of the other measuring rods.

Fig. 5A.2 shows the trajectory of the origin of the primed coordinate system, which
we will call O′. It starts at the origin of our system at t = 0, and then moves to the
right at speed v. The diagram also shows that the moving measuring rod which connects
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Figure 5A.1: A “physical” coordinate frame, made of clocks and measuring rods.

Figure 5A.2: Trajectory of O′, the origin of the primed coordinate system. It starts at
the origin of our system at t = 0, and moves to the right at speed v.

the event A to O′ has length x − vt, when measured in our frame. However, since the
measuring rod is contracted by a factor

γ ≡ 1√
1− β2

, (5A.2)

it follows that the length that one would read off from the rod itself must be γ(x − vt).
Thus,

x′ = γ(x− vt) . (5A.3)
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To determine t′, we must find the time on the moving clock which coincides with the
event A. To do this, consider first the event B which occurs at the same time as event A
in our frame, but which is located at the origin O′ of the moving system. Since the clock
at O′ is synchronized with ours at t = 0 and then runs slowly by a factor of γ, we know
that

t′(B) = t/γ . (5A.4)

However, the clock at B is trailing the clock at A, and therefore the two clocks will not
appear to us to be synchronized. Instead, we have learned that the trailing clock will
read a time that is later than the leading clock by an amount β`o/c, where `o is rest
length of the rod that joins the two clocks. In this case `o = x′ = γ(x− vt), so

t′(A) = t′(B)− βγ(x− vt)
/
c

=
(
1− β2

)
γt− βγ

(x
c
− βt

)
= γ

(
t− vx

c2

)
.

(5A.5)

This completes the derivation of the Lorentz transformation equations, which can be
summarized as follows:

x′ = γ(x− vt)

y′ = y

z′ = z

t′ = γ
(
t− vx

c2

)
.

(5A.6)

We have already verified that there is no distinction between the moving reference
frame and ours, so that the moving observer observes the same distortion in our measuring
devices that we observe in his. In the formalism of the Lorentz transformation, this fact
is verified by inverting the transformation. That is, the above equations can be solved
to express the unprimed variables in terms of the primed variables. When this exercise
is carried out, it is found that the equations have exactly the same form, except that the
sign of the relative velocity v is reversed.

THE LORENTZ-INVARIANT INTERVAL:

So far we have considered only pulses of light that move either parallel or perpen-
dicular to the direction of motion. However, the Lorentz transformation allows us to
easily verify that the measured speed of light is the same in all directions. To see this,
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consider a spherical light pulse that emanates from the origin. In our system, the wave
front moves at the speed of light and therefore satisfies the equation

x2 + y2 + z2 = c2t2 . (5A.7)

We need to verify that the same equation holds for the coordinates of the wave front in
the primed reference frame. We therefore use the Lorentz transformations to calculate
the quantity

x′2 + y′2 + z′2 − c2t′2 .

When we carry out this somewhat complicated but straightforward calculation, we find
the following remarkable relation:

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2 . (5A.8)

This quantity,
x2 + y2 + z2 − c2t2 ,

is therefore called the “Lorentz invariant interval” between the event (x, y, z, t) and the
origin.

The origin is of course not really a special point, so one can just as well define the
Lorentz invariant interval between any two events A and B:

s2 ≡ (xA − xB)
2

+ (yA − yB)
2

+ (zA − zB)
2 − c2 (tA − tB)

2
. (5A.9)

Although I am calling the Lorentz invariant interval s2, I obviously do not mean to imply
that it is always positive — it can have either sign. I call it s2 only because it has the
units of cm2. If s2 is positive, then the two events are said to be spacelike separated.
In that case, it can be shown that there exists a frame of reference in which the two
events occur at the same time, and the value of s2 represents the square of the distance
between the events in that frame. If s2 is negative, the two events are said to be timelike
separated. In that case there exists a frame of reference in which the two events occur
at the same position, and the value of s2 represents −c2 times the square of the time
separation in that frame. Note also that whenever s2 is negative one can imagine a clock
that moves between the two events at a uniform speed — s2 is then equal to −c2 times
the time interval as measured by the clock. This time interval is sometimes called the
proper time between the two events.


