Notes on generating Sobol' sequences

Stephen Joe and Frances Y. Kuo

August 2008

1 Original implementation

The algorithm for generating Sobol' sequences is clearly explained in [2]. Here we give a brief outline of the details. To generate the *j*th component of the points in a Sobol' sequence, we need to choose a primitive polynomial of some degree s_j in the field \mathbb{Z}_2 ,

$$x^{s_j} + a_{1,j} x^{s_j-1} + a_{2,j} x^{s_j-2} + \dots + a_{s_j-1,j} x + 1,$$
(1)

where the coefficients $a_{1,j}, a_{2,j}, \ldots, a_{s_j-1,j}$ are either 0 or 1. We define a sequence of positive integers $\{m_{1,j}, m_{2,j}, \ldots\}$ by the recurrence relation

$$m_{k,j} := 2a_{1,j} m_{k-1,j} \oplus 2^2 a_{2,j} m_{k-2,j} \oplus \dots \oplus 2^{s_j-1} a_{s_j-1,j} m_{k-s_j+1,j}$$

$$\oplus 2^{s_j} m_{k-s_j,j} \oplus m_{k-s_j,j},$$
(2)

where \oplus is the bit-by-bit exclusive-or operator. The initial values $m_{1,j}, m_{2,j}, \ldots, m_{s_j,j}$ can be chosen freely provided that each $m_{k,j}, 1 \leq k \leq s_j$, is odd and less than 2^k . The so-called *direction numbers* $\{v_{1,j}, v_{2,j}, \ldots\}$ are defined by

$$v_{k,j} := \frac{m_{k,j}}{2^k}.$$

(With a slight abuse of terminology, we also refer to the numbers $m_{k,j}$ as direction numbers.) Then $x_{i,j}$, the *j*th component of the *i*th point in a Sobol' sequence, is given by

$$x_{i,j} := i_1 v_{1,j} \oplus i_2 v_{2,j} \oplus \cdots, \qquad (3)$$

where i_k is the kth digit from the right when i is written in binary $i = (\dots i_3 i_2 i_1)_2$. Here and elsewhere in this article, we use the notation $(\cdot)_2$ to denote the binary representation of numbers.

For example, with $s_j = 3$, $a_{1,j} = 0$, and $a_{2,j} = 1$, we have the primitive polynomial $x^3 + x + 1$. Starting with $m_{1,j} = 1$, $m_{2,j} = 3$, and $m_{3,j} = 7$, we use the recurrence (2) to obtain $m_{4,j} = 5$, $m_{5,j} = 7$, etc. This leads to the direction numbers

$$v_{1,j} = (0.1)_2, v_{2,j} = (0.11)_2, v_{3,j} = (0.111)_2, v_{4,j} = (0.0101)_2, v_{5,j} = (0.00111)_2, \dots$$

Following (3), the *j*th components of the first few points are given by

$0 = (0)_2,$	$x_{0,j} = 0,$
$1 = (1)_2,$	$x_{1,j} = (0.1)_2 = 0.5,$
$2 = (10)_2,$	$x_{2,j} = (0.11)_2 = 0.75,$
$3 = (11)_2,$	$x_{3,j} = (0.1)_2 \oplus (0.11)_2 = (0.01)_2 = 0.25,$
$4 = (100)_2,$	$x_{4,j} = (0.111)_2 = 0.875,$
$5 = (101)_2,$	$x_{5,j} = (0.1)_2 \oplus (0.111)_2 = (0.011)_2 = 0.375,$

2 Gray code implementation

The formula (3) corresponds to the original implementation of Sobol'. A more efficient Gray code implementation proposed by Antonov and Saleev [1] can be used in practice, see also [2].

The (binary-reflected) Gray code of an integer i is defined as

gray(i) :=
$$i \oplus \left\lfloor \frac{i}{2} \right\rfloor = (\dots i_3 i_2 i_1)_2 \oplus (\dots i_4 i_3 i_2)_2.$$

It has the property that the binary representations of gray(i) and gray(i-1) differ in only one position, namely, the index of the first 0 digit from the right in the binary representation of i-1.

i	$\operatorname{gray}(i)$
$0 = (0000)_2$	$(0000)_2 = 0$
$1 = (0001)_2$	$(0001)_2 = 1$
$2 = (0010)_2$	$(0011)_2 = 3$
$3 = (0011)_2$	$(0010)_2 = 2$
$4 = (0100)_2$	$(0110)_2 = 6$
$5 = (0101)_2$	$(0111)_2 = 7$
$6 = (0110)_2$	$(0101)_2 = 5$
$7 = (0111)_2$	$(0100)_2 = 4$
$8 = (1000)_2$	$(1100)_2 = 12$
$9 = (1001)_2$	$(1101)_2 = 13$
$10 = (1010)_2$	$(1111)_2 = 15$
$11 = (1011)_2$	$(1110)_2 = 14$
$12 = (1100)_2$	$(1010)_2 = 10$
$13 = (1101)_2$	$(1011)_2 = 11$
$14 = (1110)_2$	$(1001)_2 = 9$
$15 = (1111)_2$	$(1000)_2 = 8$

Observe from the table that Gray code is simply a reordering of the nonnegative integers within every block of 2^m numbers for m = 0, 1, ...

Instead of (3), we generate the Sobol' points using

$$\bar{x}_{i,j} := g_{i,1} v_{1,j} \oplus g_{i,2} v_{2,j} \oplus \cdots,$$
 (4)

where $g_{i,k}$ is the *k*th digit from the right of the Gray code of *i* in binary, i.e., $gray(i) = (\dots g_{i,3}g_{i,2}g_{i,1})_2$. Equivalently, since gray(i) and gray(i-1) differ in one known position, we can generate the points recursively using

$$\bar{x}_{0,j} := 0 \quad \text{and} \quad \bar{x}_{i,j} := \bar{x}_{i-1,j} \oplus v_{c_{i-1},j},$$
(5)

where c_i is the index of the first 0 digit from the right in the binary representation of $i = (\dots i_3 i_2 i_1)_2$. We have $c_0 = 1$, $c_1 = 2$, $c_2 = 1$, $c_3 = 3$, $c_4 = 1$, $c_5 = 2$, etc.

With the Gray code implementation, we simply obtain the points in a different order, while still preserving their uniformity properties. This is because every block of 2^m points for $m = 0, 1, \ldots$ is the same as the original implementation. We stress that (4) and (5) generate exactly the same sequence; (4) allows one to start from any position in the sequence, while (5) is recursive and is more computationally efficient.

3 Primitive polynomials and direction numbers

Following the convention established in [2], we identify the coefficients of a primitive polynomial (1) with an integer

$$a_j := (a_{1,j}a_{2,j}\dots a_{s_j-1,j})_2,$$

so that each primitive polynomial is uniquely specified by its degree s_j together with the number a_j . For example, from $s_j = 7$ and $a_j = 28 = (011100)_2$ we obtain the polynomial $x^7 + x^5 + x^4 + x^3 + 1$.

The primitive polynomials and direction numbers obtained based on various search criteria (see [3, 4]) can be downloaded as text files from our web page

http://www.maths.unsw.edu.au/~fkuo/sobol/

The files will be updated frequently as the parameters for higher dimensions become available. Our target dimension is 21201.

4 Skipping initial points?

It has been recommended by some that the Sobol' sequence tends to perform better if an initial portion of the sequence is dropped: the number of points skipped is the largest power of 2 smaller than the number of points to be used. However, we are less persuaded by such recommendation ourselves.

References

- I. A. Antonov and V. M. Saleev (1979), An economic method of computing LP_τ-sequences, Zh. vȳchisl. Mat. mat. Fiz. **19**, 243–245. English translation: U.S.S.R. Comput. Maths. Math. Phys. 19, 252–256.
- [2] P. Bratley and B. L. Fox (1988), Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Softw. 14, 88–100.
- [3] S. Joe and F. Y. Kuo (2003), Remark on Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Softw. 29, 49–57.
- [4] S. Joe and F. Y. Kuo (2008), Constructing Sobol' sequences with better two-dimensional projections, SIAM J. Sci. Comput. 30, 2635–2654.