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1 Original implementation

The algorithm for generating Sobol′ sequences is clearly explained in [2]. Here we give a brief
outline of the details. To generate the jth component of the points in a Sobol′ sequence, we
need to choose a primitive polynomial of some degree sj in the field Z2,

xsj + a1,j xsj−1 + a2,j xsj−2 + · · ·+ asj−1,j x + 1, (1)

where the coefficients a1,j, a2,j, . . . , asj−1,j are either 0 or 1. We define a sequence of positive
integers {m1,j,m2,j, . . .} by the recurrence relation

mk,j := 2a1,j mk−1,j ⊕ 22a2,j mk−2,j ⊕ · · · ⊕ 2sj−1asj−1,j mk−sj+1,j (2)

⊕ 2sjmk−sj ,j ⊕mk−sj ,j,

where ⊕ is the bit-by-bit exclusive-or operator. The initial values m1,j, m2,j, . . . , msj ,j can
be chosen freely provided that each mk,j, 1 ≤ k ≤ sj, is odd and less than 2k. The so-called
direction numbers {v1,j, v2,j, . . .} are defined by

vk,j :=
mk,j

2k
.

(With a slight abuse of terminology, we also refer to the numbers mk,j as direction numbers.)
Then xi,j, the jth component of the ith point in a Sobol′ sequence, is given by

xi,j := i1 v1,j ⊕ i2 v2,j ⊕ · · · , (3)

where ik is the kth digit from the right when i is written in binary i = (. . . i3i2i1)2. Here
and elsewhere in this article, we use the notation (·)2 to denote the binary representation of
numbers.

For example, with sj = 3, a1,j = 0, and a2,j = 1, we have the primitive polynomial
x3 + x + 1. Starting with m1,j = 1, m2,j = 3, and m3,j = 7, we use the recurrence (2) to
obtain m4,j = 5, m5,j = 7, etc. This leads to the direction numbers

v1,j = (0.1)2, v2,j = (0.11)2, v3,j = (0.111)2, v4,j = (0.0101)2, v5,j = (0.00111)2, . . . .

Following (3), the jth components of the first few points are given by

0 = (0)2, x0,j = 0,

1 = (1)2, x1,j = (0.1)2 = 0.5,

2 = (10)2, x2,j = (0.11)2 = 0.75,

3 = (11)2, x3,j = (0.1)2 ⊕ (0.11)2 = (0.01)2 = 0.25,

4 = (100)2, x4,j = (0.111)2 = 0.875,

5 = (101)2, x5,j = (0.1)2 ⊕ (0.111)2 = (0.011)2 = 0.375,
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2 Gray code implementation

The formula (3) corresponds to the original implementation of Sobol′. A more efficient Gray
code implementation proposed by Antonov and Saleev [1] can be used in practice, see also
[2].

The (binary-reflected) Gray code of an integer i is defined as

gray(i) := i⊕
⌊

i

2

⌋
= (. . . i3i2i1)2 ⊕ (. . . i4i3i2)2.

It has the property that the binary representations of gray(i) and gray(i− 1) differ in only
one position, namely, the index of the first 0 digit from the right in the binary representation
of i− 1.

i gray(i)

0 = (0000)2 (0000)2 = 0
1 = (0001)2 (0001)2 = 1
2 = (0010)2 (0011)2 = 3
3 = (0011)2 (0010)2 = 2
4 = (0100)2 (0110)2 = 6
5 = (0101)2 (0111)2 = 7
6 = (0110)2 (0101)2 = 5
7 = (0111)2 (0100)2 = 4
8 = (1000)2 (1100)2 = 12
9 = (1001)2 (1101)2 = 13

10 = (1010)2 (1111)2 = 15
11 = (1011)2 (1110)2 = 14
12 = (1100)2 (1010)2 = 10
13 = (1101)2 (1011)2 = 11
14 = (1110)2 (1001)2 = 9
15 = (1111)2 (1000)2 = 8

Observe from the table that Gray code is simply a reordering of the nonnegative integers
within every block of 2m numbers for m = 0, 1, . . ..

Instead of (3), we generate the Sobol′ points using

x̄i,j := gi,1 v1,j ⊕ gi,2 v2,j ⊕ · · · , (4)

where gi,k is the kth digit from the right of the Gray code of i in binary, i.e., gray(i) =
(. . . gi,3gi,2gi,1)2. Equivalently, since gray(i) and gray(i− 1) differ in one known position, we
can generate the points recursively using

x̄0,j := 0 and x̄i,j := x̄i−1,j ⊕ vci−1,j, (5)

where ci is the index of the first 0 digit from the right in the binary representation of
i = (. . . i3i2i1)2. We have c0 = 1, c1 = 2, c2 = 1, c3 = 3, c4 = 1, c5 = 2, etc.

With the Gray code implementation, we simply obtain the points in a different order,
while still preserving their uniformity properties. This is because every block of 2m points for
m = 0, 1, . . . is the same as the original implementation. We stress that (4) and (5) generate
exactly the same sequence; (4) allows one to start from any position in the sequence, while
(5) is recursive and is more computationally efficient.
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3 Primitive polynomials and direction numbers

Following the convention established in [2], we identify the coefficients of a primitive poly-
nomial (1) with an integer

aj := (a1,ja2,j . . . asj−1,j)2,

so that each primitive polynomial is uniquely specified by its degree sj together with the
number aj. For example, from sj = 7 and aj = 28 = (011100)2 we obtain the polynomial
x7 + x5 + x4 + x3 + 1.

The primitive polynomials and direction numbers obtained based on various search cri-
teria (see [3, 4]) can be downloaded as text files from our web page

http://www.maths.unsw.edu.au/~fkuo/sobol/

The files will be updated frequently as the parameters for higher dimensions become avail-
able. Our target dimension is 21201.

4 Skipping initial points?

It has been recommended by some that the Sobol′ sequence tends to perform better if an
initial portion of the sequence is dropped: the number of points skipped is the largest power
of 2 smaller than the number of points to be used. However, we are less persuaded by such
recommendation ourselves.
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