Nearest-Neighbor Classifier

MTL 782

Instance-Based Classifiers

Set of Stored Cases

				 Store the training records 	
Atr1		AtrN	Class A	 Use training records to predict the class label of unseen cases 	
			В		
			В	Unseen Case	
			С		
			А	Atr1 ······ AtrN	
			С		
			В		

Instance Based Classifiers

- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify *k* nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

– Manhatten distance

$$d(p,q) = \sum_{i} |p_i - q_i|$$

– q norm distance

$$d(p,q) = (\sum_{i} |p_{i} - q_{i}|^{q})^{1/q}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$$

where D_z is the set of k closest training examples to z.

Weigh the vote according to distance

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} w_i \times I(v = y_i)$$

• weight factor, $w = 1/d^2$

The KNN classification algorithm

Let k be the number of nearest neighbors and D be the set of training examples.

1. for each test example z = (x',y') do

2. Compute $d(\mathbf{x}', \mathbf{x})$, the distance between z and every example, $(\mathbf{x}, \mathbf{y}) \in D$

3. Select $D_z \subseteq D$, the set of k closest training examples to z.

4.
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$$

5. end for

KNN Classification

Age

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 60 KG to 100KG
 - income of a person may vary from Rs10K to Rs 2 Lakh

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality: all vectors are almost equidistant to the query vector
 - Can produce undesirable results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Thank You