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ABSTRACT 
Research into embedded sensor networks has placed increased 
focus on the problem of developing reliable and flexible software 
for microcontroller-class devices. Languages such as nesC [8] and 
Virgil [14] have brought higher-level programming idioms to this 
lowest layer of software, thereby adding expressiveness. Both 
languages are marked by the absence of dynamic memory 
allocation, which removes the need for a runtime system to 
manage memory. To provide data structures, nesC offers modules, 
and Virgil offers the application an opportunity to allocate and 
initialize objects during compilation. This paper explores 
techniques for compressing fixed object heaps with the goal of 
reducing the RAM footprint of a program. We explore table-based 
compression and introduce a novel form of object layout called 
vertical object layout. We provide experimental results that 
measure the impact on RAM size, code size, and execution time 
for a set of Virgil programs. Our results show that compressed 
vertical layout has better execution time and code size than table-
based compression while achieving more than 20% heap 
reduction on 6 of 12 benchmark programs.  

 
Categories and Subject Descriptors 
E.2 [Data Storage Representations]: Object Representation. 
D.3.3 [Programming Languages] Language Constructs and 
Features. 
 
General Terms 
Management, Measurement, Performance, Languages. 
 
Keywords 
Microcontrollers, program data compression, pointer 
compression, reference compression, object layout, heap 
optimization, vertical object layout. 

 
1. INTRODUCTION 

Microcontrollers are tiny, low-power embedded processors 
deployed to control and monitor consumer products from 
microwaves, to fuel injection systems, to sensor networks. A 
typical microcontroller integrates a central processing unit, RAM, 

reprogrammable flash memory, and IO devices on a single chip. 
They have very limited computational power, and their main 
memory is often measured in hundreds of bytes to a few kilobytes. 
For example, a popular microcontroller unit from Atmel, the 
ATMega128, has 4KB of RAM and 128KB of flash to store code 
and read-only data; it serves as the central processing unit of the 
Mica2 sensor network node. 

The primary resource limitation in many microcontroller 
applications is the RAM space available for storing the program 
heap and stack. This often precludes a dynamic memory 
management system, either a manual one such as C’s malloc() 
and free(), or an automatic system such as a garbage collector. 
For that reason, many microcontroller applications are written to 
pre-allocate all of their needed data structures and do not use any 
form of dynamic memory allocation. In the C programming 
language, this is done by statically declaring arrays and structures 
as global variables. In nesC [8], modules contain state as fields 
and are instantiated by a module wiring system at compile time. In 
Virgil [14], applications allocate and initialize their heap within 
the compiler, which contains an interpreter for the complete 
language. 

Reducing RAM consumption allows larger applications to be 
built and deployed on the same microcontroller model, while 
reducing the resource requirements of a single application allows 
a smaller, cheaper microcontroller to accomplish the same task. 
There are several general techniques to reduce RAM 
consumption. One is to simply remove unused data structures 
through compiler or manual analysis. Another is to reduce the 
average footprint of a program by employing virtual memory 
techniques that move infrequently used data to larger, slower 
storage such as disk. A third is to compress infrequently used data 
and dynamically decompress it as it is accessed. A fourth 
technique, employed here, is to statically compress program 
quantities so that dynamic decompression is unnecessary. We 
discuss previous techniques in more detail in the related work 
section. 

This paper evaluates two offline heap compression 
techniques for programs written in the Virgil language. Both 
techniques exploit the availability of the entire program heap at 
compile time and are employed on top of our compiler that 
already performs sophisticated dead code and data elimination. 
The first compression technique, table-based reference 
compression, was described in our previous work [14] and is 
evaluated in more detail here. The second technique is a novel 
object layout model that we call vertical object layout. Vertical 
object layout represents objects in a more compact way by 
viewing the heap as a collection of field arrays that are indexed by 
object number, rather than the traditional approach of a collection 
of objects that are accessed via pointers. Object numbers can then 
be compressed without additional indirections. We present a 
simple object numbering system for identifiers that ensures that 
each field array is stored without wasting space, even in the 
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presence of subclassing. Our experimental results show that 
vertical object layout has better execution time and code size than 
the table-based compression scheme on nearly all benchmarks, 
while achieving similar RAM size savings. Relative to the 
standard object layout strategy, the code size increase from 
vertical layout is less than 10% for most programs, and less than 
15% for all programs, while the execution time overhead is less 
than 10% for 7 of 12 programs and less than 20% for 9. 
Interestingly, compressed vertical layout provides a more efficient 
type cast operation, which actually improves execution time over 
the baseline for two programs that use dynamic casts intensively.  

The outline of this paper is as follows. Section 2 gives 
background for this paper by describing the key features of Virgil 
that are relevant to this work. Section 3 describes the basic idea of 
reference compression, summarizing our previous work in the 
area. Section 4 describes our new object model and its application 
to reference compression. Section 5 gives our experimental 
results. Section 6 describes related work, and Section 7 gives our 
conclusion and vision of future work. 

 
2. VIRGIL BACKGROUND 

 
In our previous work [14], we have developed the Virgil 

programming language and compiler system that targets 
microcontroller-class devices. Virgil is a lightweight object-
oriented language that is closest to Java, C++ and C#. Like Java, 
Virgil provides single inheritance between classes, with all 
methods virtual by default, except those declared private. 
Objects are always passed by reference, never by value, as they 
can be in C++. However, like C++ and unlike Java, Virgil has no 
universal super-class akin to java.lang.Object from which 
all classes ultimately inherit. But Virgil differs from C++ in two 
important ways; it is strongly typed, which forces explicit 
downcasts of object references to be checked dynamically, and it 
does not provide pointer types such as void*. This inheritance 
model allows for object-oriented design in applications using 
familiar patterns and provides for a straightforward and efficient 
object model. In addition to its fields, each Virgil object has a 
single word header that stores a pointer to a meta-object 
containing a type identifier and a virtual dispatch table. This type 
information is unnecessary for Virgil classes that are unrelated to 
any other classes (so-called orphan classes) because complete 
type information is known statically. Such objects are represented 
without object headers and all virtual dispatches are resolved at 
compile time. 

One of Virgil’s key innovative features is the notion of 
initialization time, whereby an application can allocate and 
initialize its entire object heap during compilation. This allows an 
application to build all of its data structures during compilation; 
memory allocation during execution on the device is disallowed. 
This feature is motivated by the observation that many 
microcontroller programs already written in C and nesC statically 
allocate all of their memory via global variables and reuse this 
memory at execution time. Static allocation removes the need for 
a memory management library such as malloc() and free(), 
or in the case of a safe language, the need for a garbage collector 
or other automatic memory management system. The lack of 
dynamic memory allocation also removes the need for programs 
to be made robust against the possibility of exhausting memory, 
since memory is statically allocated and apportioned at compile 
time. 

Virgil elevates the common practice of static memory 
allocation on microcontrollers to a first-class language feature. In 
addition to implementing the standard phases of compilation such 
as parsing, typechecking, optimization and code generation, the 
Virgil compiler includes an interpreter for the complete Virgil 
language. After typechecking is complete, the compiler executes 
the application’s initialization code with the built-in interpreter. 
The interpreter allows the application code to perform any Turing-
complete computation using the complete Virgil language, 
including, for example, allocating objects, initializing them, 
calling methods on them, etc. This phase allows unrestricted 
allocation; a general-purpose garbage collector ensures that 
unreachable objects allocated by the application are discarded. 
When the application’s initialization routines have terminated, the 
compiler will generate an executable that includes not only the 
code of the program, but also the data of the entire reachable heap. 
This initial heap is immediately available to the program at 
runtime on the device. During execution the program can perform 
unrestricted computation and can read and write heap fields, but 
further memory allocation is disallowed and will result in an 
exception. 

The initialization time model provides new opportunities for 
compiler optimizations, since the compiler has not only the entire 
code of the program, but the entire initialized heap as well. This 
allows the compiler to employ data-sensitive optimizations that 
can exploit the size and shape of the heap, as well as the initial 
values of fields in objects. One such optimization is a combined 
dead code and dead data elimination optimization called 
reachable members analysis. RMA can be thought of reachability 
over program code and data object simultaneously; it serves to 
remove dead code and objects from the program that cannot be 
reached over any program execution. For the purposes of this 
work, it can be considered complementary. In fact, all of our 
experimental results are obtained against a baseline of performing 
the RMA optimization first. 

Initialization time also makes the optimizations described in 
this paper possible. We exploit the availability of the entire 
program heap at compile time to represent references specially 
and to layout objects in novel ways to achieve better results on 
small architectures. 

 
3. REFERENCE COMPRESSION 

 
Microcontrollers have severe limitations on the RAM space 

available to store heap objects and the program stack, which 
makes a space efficient representation of objects of primary 
importance. While the Virgil language was designed to have 
straightforward and low costs for the implementation of objects, 
as well as sophisticated dead code and dead data elimination 
passes, we would like to employ advanced object layout strategies 
and compression techniques to further improve on the basic 
implementation. Compression has two advantages: first, it allows 
larger applications to be built and deployed on the same hardware; 
and second, it allows a given application to be deployed on a 
smaller, cheaper microcontroller model with less RAM.  

Our previous work on Virgil [14] explored table-based 
compression of object references for Virgil, but did not evaluate 
the impact on performance. This paper provides those 
experimental results and compares them with our new technique, 
compressed vertical object layout. We briefly describe the 
previous table-based compression technique in this section for 
completeness. 



Reference compression relies on the strong type safety of 
Virgil. On microcontroller architectures with between 256 bytes 
and 64 kilobytes of RAM, pointers into the memory are typically 
represented with a 16-bit integer byte address. In a weakly typed 
language like C, a pointer is not constrained to point to values of 
any particular type and can conceivably hold any value. In fact, 
pointer arithmetic relies on the fact that pointers are represented as 
integers and allows operations such as increment, addition, 
subtraction, and conversion between types. Worse, C allows 
pointers to be converted to integers, manipulated, and converted 
back to pointers. In Virgil, the type of a reference restricts the set 
of possible objects that it may reference to only those objects that 
are of the corresponding type or one of its subtypes. Recall that 
after initialization time in the compiler, a Virgil application has 
allocated all of its objects that will exist over any execution. The 
compiler can use this fact to represent references specially. 

The most straightforward way to implement reference 
compression is to use a compression table where each compressed 
reference is an object handle: an integer index into a table that 
contains the actual addresses of each object. Because Virgil has 
disjoint inheritance hierarchies, the compiler can compress each 
reference by creating a compression table for its associated root 
class, with one entry in the table for each object whose type is a 
subclass of that root. The number of bits needed to represent the 
integer index is therefore the logarithm of the table size. For 
example, if the table has 15 live objects plus null, we could use 
a 4-bit integer index, a savings of 75% over storing a 16-bit 
address. Because there is no garbage collector which may move 
objects at runtime, object addresses are fixed, which allows the 
compiler to store the table in ROM or flash, which is considerably 
larger than RAM, though usually slightly slower to access. Figure 
1 introduces an example class hierarchy and Figure 2a gives the 
corresponding table-based compression implementation.  

The table adds a level of indirection to all object operations. 
Reads and writes on object fields require first looking up the 
object’s RAM address from the compression table before 
performing the operation as before. In some situations, the 
compiler may be able to avoid the cost of the indirection by using 
standard optimizations to cache the actual address of frequently 
accessed objects, e.g. within loops. Accesses to reference fields in 
the heap may also be slower if the fields are bit-packed in memory 
and require masks and shifts. (However, if fields are packed only 
at the byte level, accesses can be faster if the field requires only 
one byte of storage instead of two.) Thus table-based compression 
represents a classic space/time tradeoff: it consumes some ROM 
space for the tables and may reduce performance, but saves RAM. 

It is important to note that table-based compression can 
sometimes save RAM space even if the compression tables 
themselves are also stored in RAM. This is because for a table of 
size K and a pointer size of P bits, the cost of the table is K*P bits 
while the savings is N*(P - log(K+1)) bits, where N is the 
number of references compressed. N is always larger than K 
because every object must have at least one reference to it to be 
considered live. If N is large enough, N*(P – log(K+1)) is 
larger than K*P. We don’t expect this case to be common; our 
implementation always stores compression tables in ROM for 
maximum RAM savings. 

 
4. VERTICAL OBJECT MODEL 

 
In traditional high-performance object-oriented systems, each 

object is represented in memory as a contiguous region of words 
that contain the values for each of the object’s fields. An object 
reference is represented as a single-word pointer to this 
contiguous memory region, and the different fields of a single 
object are located at fixed offsets from this base address. 
Advanced features such as mix-ins, multiple inheritance, etc may 
be implemented by indirection to further contiguous memory 
blocks. This layout strategy has the best performance in a scenario 

Figure 2b: Vertical object layout for the example (only 
classes A, B, C shown). Each field is represented by an array 
and only the occupied portion is stored. Preorder numbering 
gives objects of type A ids 0-2, B 3-6, and C 7-9.  
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Figure 2a: Table-based reference compression for the 
example. Each root class (A, X) has its own compression table 
in ROM that stores the RAM addresses of the objects.  
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Figure 1: Example Virgil class hierarchy. Hexagons 
represent classes; their field and method declarations are to 
their right. 
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where objects are created, moved, or reclaimed dynamically. An 
object allocation operation amounts to little more than an 
acquisition of a small contiguous region of memory, often simply 
bumping a top-of-heap pointer by a fixed amount. Field accesses 
in this model are implemented straightforwardly as a read or write 
of a memory address that is a small fixed offset from the object 
pointer; nearly all architectures allow this operation to be 
implemented with a single instruction. We will refer to this 
implementation strategy as the standard or horizontal layout, for 
reasons that will become obvious in this section. 

In Virgil, the compiler has maximum freedom to layout 
objects in any way that respects the program’s semantics because 
the memory layout is not exposed to the program. Our basic 
insight is that Virgil’s initialization time model gives rise to a 
scenario where objects are not created, moved, or reclaimed 
dynamically; this means that objects need not be laid out as 
contiguous regions of memory words in order to simplify these 
operations or to allow the program to perform pointer arithmetic. 

Imagine the heap of the program after initialization has 
completed. The program has allocated some number of objects of 
various types, with each object having values for all of its 
declared and inherited fields. If we consider this set of objects to 
be a two-dimensional matrix, we can consider the storage for the 
fields’ values to be entries in the matrix. Each object corresponds 
to a row in the matrix, and each declared field in the program 
corresponds to a column. If we represent objects in the standard 
layout, a reference corresponds to a pointer to a row of the matrix, 
where the elements of a single row are adjacent in memory. In a 
sense, the matrix is laid out horizontally. But one can also explore 
the implications of arranging this matrix in memory vertically, 
where an entire column has its elements adjacent in memory. 

Consider again the example in Figure 1 and the 
corresponding vertical layout in Figure 2b. The classes A, B and C 
have declared fields f, g, and h, respectively. Suppose now that 
we collect all the objects in the initialized heap of these types and 
number them so that all the objects of exact type A are first, B 
second, and C third. Then if we put these objects into a table such 
that the columns are the fields f, g, and h, we can see that each 
column has a contiguous range of indices for which the field is 
valid corresponding to the indices of the class in which the field 
was declared. If we represent an object reference as an index from 
0 to 9 (with -1 representing a null reference), and represent the 
field f as an array A_f_array, we can read and write the field 
by simply indexing into A_f_array by the object number.  

An access of the field g in the program requires the receiver 
object to be of type B; therefore we know statically that accesses 
of field g must use indices in the valid range for B objects. While 
we could represent the field g as an array over the entire index 
range 0 to 9, we can avoid wasting space by instead rebasing the 

array so that element 0 of the array corresponds to index 3, the 
first valid index for B. Then, an access of the field g for a type B 
would simply adjust by subtracting 3 from the object index before 
accessing the array. While these seems slower, it is equivalent to a 
base 0 array if the compiler constant-folds the known fixed 
address of the array and the subtraction adjustment; the compiler 
will just use a known fixed address corresponding to where the 
array would have started in memory if it had been based at 0.  

It is simple to generalize from the example. For any 
inheritance tree, we simply assign object identifiers using a pre-
order tree traversal. Figure 3 gives the algorithm. The output of 
the algorithm is an interval of valid indices for each class and an 
object id for every object. By employing preorder traversal of the 
inheritance tree, the final assignment guarantees that each class 
has a contiguous range of indices corresponding to all objects of 
that type or one of its subtypes. Therefore the array that represents 
that field in the vertical object layout can be compact without 
wasting space. This algorithm chooses to restart the object id at 
zero for each root class in the hierarchy, which means that an 
object id is unique within its inheritance hierarchy, but not 
necessarily globally unique. 

We can use the same technique to represent meta-objects 
vertically as well. In Virgil, meta-objects store only a type 
identifier that is used for dynamically checking down casts and a 
dispatch table that is used for virtual dispatch. We can use the 
same algorithm to number the meta-objects according to the 
inheritance hierarchy and then represent each method slot in the 
dispatch table vertically. A virtual dispatch then amounts to two 
vertical field accesses (as opposed to two horizontal field accesses 

void assignAll(Program p) { 
    for ( ClassInfo cl : p.getRootClasses() ) 
        assignIndices(0, cl); 
} 
int assignIndices(int min, ClassInfo cl) { 
    int max = min; 
    // assign the indices for objects of this type 
    for (ObjectInfo o : cl.instances)  
        o.index = max++; 
    // recursively assign id's for all the children 
    for (ClassInfo child : cl.getChildren())  
        max = assignIndices(max, child); 
         
    // remember the interval for this class 
    cl.indices = new Interval(min, max); 
    return max; 
} 
 Figure 3: algorithm to compute object indices by pre-order 
traversal of inheritance tree. For each class, ClassInfo 
stores a list of the child classes and an interval representing 
the valid indices for objects of this class and subclasses. For 
each object, ObjectInfo stores the object id (index) 
assigned to the object. 

Figure 4 shows object operations from the Figure 1 example and each model’s corresponding implementation (in pseudo-C). Bold 
expressions are constants inlined into the code by the compiler. Underlined expressions represent tables stored in ROM. 

 Horizontal Horizontal Reference Compressed Vertical 

e instanceof A e != null  e != -1 e != -1 

e instanceof B e != null &&  
e->meta->id == B_metaid 

e != -1 &&  
A_table[e]->meta->id == B_metaid e >= B_min && e <= B_max 

e instanceof C e != null &&  
e->meta->id == C_metaid 

e != -1 &&  
A_table[e]->meta->id == C_metaid e >= C_min 

e.f e->f A_table[e]->f A_f_array[e] 

e.g e->g A_table[e]->g B_g_array[e - B_min] 

e.m() e->meta->m(e) A_table[e]->meta->m(e) A_m[A_metaid[e]](e) 
 



in the traditional approach). The first access is to get the type 
information of the object by indexing into the type information 
array using the object index. The retrieved value is a meta-object 
id that is then used to index into the appropriate virtual method 
array, which stores a direct pointer to the code of the appropriate 
method. 

This numbering technique also has another advantage in that 
the contiguousness of the object identifiers makes dynamic type 
tests extremely cheap, because the object identifier actually 
encodes all the type information needed for the cast. The 
algorithm assigns object identifiers so that every class has an 
interval of valid indices that correspond to all objects of that type. 
Thus, given a reference R that is represented by an object index 
and a cast to a class C, we can simply check that the index R is 
within the interval for the class C. This requires only two 
comparisons against two constants; no indirections and no 
memory loads are required. The range check automatically 
handles the case of a null reference, because null is represented 
with -1, which is outside of the range for any type. 

Reference compression becomes trivial with vertical object 
layout. Because each object reference is now represented as an 
index that is bounded by the number of objects in its inheritance 
hierarchy, like table-based compression, it can be compressed to a 
smaller bit quantity. Thus, wherever the reference is stored in the 
heap (e.g. in the fields of other objects), it consumes less space. 
However, the field arrays may not be completed packed at the bit 
level. If the field is compressed to fewer than 8 bits, the indexing 
operation is more efficient if the field array is a byte array rather 
than packed at the bit-level because memory is usually not bit-
addressable. Our implementation does not compress references in 
the vertical layout to be smaller than a byte. 

Vertical layout may also save more memory by eliminating 
the need to pad fields in order to align their addresses on word 
boundaries. In the horizontal object layout, compilers sometimes 
need to add padding between fields in the same object in order to 
align individual fields on word boundaries. This becomes 
unnecessary in vertical object layout; as long as each field array is 
aligned at the appropriate boundary for its type, each element in 
the array will be aligned by the simple virtue of being of uniform 
size. However, memory alignment is not generally an issue on 8-
bit microcontrollers. 

 
5.  EXPERIMENTAL RESULTS 

 
In this section we evaluate the impact that reference 

compression and the vertical object model have on three program 
factors: code size, heap size, and execution time. Each of our 
benchmark programs is written entirely in Virgil and does not rely 
on external device drivers or libraries, but instead the device 
drivers necessary to run on the hardware are themselves 
implemented in Virgil and are included in these results. These 
applications target the Mica2 sensor network node that contains 
an ATMega128 AVR microcontroller (4KB of RAM, 128KB of 
flash). Our Virgil compiler emits C code that is compiled to AVR 
machine code by avr-gcc version 4.0.3. Code size and data size 
numbers correspond to the size of the .text and .data sections 
in the ELF executables emitted by avr-gcc, and thus 
correspond to the exact usage by the program when loaded onto 

the device. Precise performance numbers are obtained by using 
the program instrumentation capabilities [15] of the Avrora cycle-
accurate AVR emulator. 

We use 12 Virgil benchmark programs that are available as 
part of the driver kit we developed for the AVR microcontroller. 
Blink is a simple test of the timer driver, toggling the green 
LED twice per second; LinkedList is a simple program that 
creates and manipulates linked lists; TestADC repeatedly 
samples the analog to digital converter device; TestUSART 
transmits and receives data from the serial port; TestSPI 
stresses the serial peripheral interface driver; TestRadio 
initializes the CC1000 radio and sends some pre-computed 
packets; MsgKernel is an SOS excerpt that sends messages 
between modules; Fannkuch is adapted from the Programming 
Language Shootout Benchmarks and permutes arrays; Decoder 
is a bit pattern recognizer that uses a data structure similar to a 
BDD; Bubblesort sorts arrays; PolyTree is a binary tree 
implementation that uses parametric types; and BinaryTree 
is the same tree implementation but uses boxed values. 

We tested five configurations of the Virgil compiler (version 
vpc-b03-013) including the standard horizontal object layout; 
the four new configurations are normalized against the results of 
the standard layout to show relative increase and decrease in code 
size, data size, and execution time. The three main configurations 
are: hlrc, which is the standard horizontal layout with table-
based compression; vl, which is the vertical object layout without 
compression; and vlrc, which is the vertical layout with 
compression applied to object indices. The last configuration, 
hlrcram, is only shown for code size and execution time 
comparison; it corresponds to horizontal layout with reference 
compression, but instead of storing the compression tables in 
ROM, they are stored in RAM. This of course does not save RAM 
overall, but allows us to compare the cost of accessing ROM 
versus accessing RAM. 

 Data Code Time 

BinaryTree 703 432 3613978 

PolyTree 602 436 3460648 

BubbleSort 874 3878 8419862 

Decoder 374 980 4119442 

Fannkuch 406 5612 951068 

MsgKernel 352 3262 2314365 

TestRadio 188 4706 14862672 

TestSPI 98 2484 26912 

TestUSART 83 2564 1153916 

TestADC 50 992 53849859 

LinkedList 115 664 1973094 

Blink 18 778 8038 
 
Figure 5: Raw data for the standard horizontal model. Code 
and data sizes are in bytes, and execution time is given in 
clock cycles (active cycles over 20 seconds for non-
terminating programs like Blink). All other results are 
normalized to these. 



Figure 6a shows a comparison of the relative data sizes for 
our benchmark programs for the three main configurations, 

normalized against the base configuration of horizontal layout 
with no reference compression. First, we notice that vertical 
layout (vl) often saves some memory over the base 
configuration. This is because it does not require type identifiers 
in the meta objects; object numbers have been assigned so that 
they encode the type information. Also, the horizontal layout 
sometimes produces zero-length objects; avr-gcc allocates a 
single byte of memory to such objects. The second observation is 
that the compressed vertical layout typically performs as well as 
the compressed horizontal layout, although some of this is due to 
the empty object anomaly and the lack of type identifiers in meta 
objects. As expected, compressed vertical layout (vlrc) is 
uniformly better than vertical layout (vl) alone. 

Figure 6b shows the relative increase in code size for the 
same benchmarks with an added configuration, with all 
configurations normalized against the base configuration of 
horizontal layout without reference compression. Here, we can see 
that all configurations increase the code size of all programs (with 
the sole exception of vlrc on MsgKernel), with both vl and 
vlrc performing better than hlrc in each case. The increase for 
vlrc is less than 10% for most programs and less than 15% for 
all programs. Here, adding compression to the vertical layout 
actually reduces code size. This is because all field arrays become 
smaller, down to a single byte (because the Virgil compiler does 
not pack field arrays at the bit level), therefore the code to access 
them becomes smaller. 

Horizontal reference compression increases the code size in 
two ways. First, it introduces compression tables that are stored in 
the read-only code space. Second, it requires extra instructions for 
each object operation due to the extra indirection. When the 
compression tables are stored in ROM, (the hlrc configuration), 
the Virgil compiler must emit short inline AVR assembly 
sequences because C does not expose the ROM address space at 
the source level. These assembly instructions are essentially 
unoptimizable by avr-gcc. To better isolate this effect, this 
figure includes code size results for a new configuration, 
hlrcram (or horizontal layout with reference compression tables 
in RAM). This configuration of course does not save RAM 
overall, but allows us to explore the effect of the special ROM 
assembly sequences on the code size in comparison to accessing 
the RAM. Comparing the hlrc configuration against the 
hlrcram shows that most of the code size increase is due to 
these special inlined ROM access sequences. The difference could 
be reduced if either avr-gcc understood and optimized accesses 
to ROM, or if the AVR architecture offered better addressing 
modes to access the ROM with fewer instructions. It is important 
to note that the largest proportional code size increases are for the 
smallest programs, as can be seen from the raw data in Figure 5. 

Figure 6c gives the relative increase in execution time 
obtained by executing each benchmark in the Avrora [16] 
instruction-level simulator. The vertical layout technique performs 
better than horizontal compression in all but one case, and the 
execution time overhead for the compressed vertical layout is less 
than 20% in 9 of the 12 benchmarks, less than 10% in 7, and 
actually performs better by than the baseline by a small amount in 
two cases. These two programs perform a large number of 
dynamic type tests, which are cheaper in the vertical layout. This 
figure also includes results for the hlrcram configuration from 
Figure 6b in order to isolate how much of the execution time 
overhead is due to the cost of a ROM access versus a RAM 
access. In most cases, the execution time of hlrcram is 
noticeably better than that of hlrc, which means that a 

Figure 6a shows the heap size decrease for three object 
models normalized against the heap size for the standard 
horizontal layout. (larger is better) 

Figure 6b shows the code size increase for four object 
models normalized against the code size of the standard 
horizontal layout. (smaller is better) 

Figure 6c shows the execution time increase for four object 
models normalized against the execution time of the standard 
horizontal layout. (smaller is better) 

 

 

 



significant fraction of the overhead is due to this ROM access 
cost. Also notice that that the largest proportional execution time 

increases tend to be for the smaller, pointer-intensive programs 
like BinaryTree, PolyTree, LinkedList, and Decoder. 

Figure 7a combines the data from figures 6a and 6c, showing 
the tradeoff between increase in execution time and the savings in 
heap size for the three main configurations. First, we can see that 
the vertical layout without reference compression (vl) usually 
increases execution time without saving much heap space, while 
adding reference compression to vertical layout (vlrc) increases 
heap savings and usually has better execution time than vertical 
layout alone. Also, hlrc compression tends to have a larger 
increase in execution time with some savings in heap size, but not 
as much as vlrc. Overall, there is significant variation across the 
benchmarks, suggesting that the two factors are not intrinsically 
correlated. Instead, it is more likely that the factors are correlated 
to benchmark characteristics, therefore the compiler should take 
these characteristics into account and avoid reference compression 
when it will save little heap space. 

Figure 7b combines data from figures 6b and 6c to show the 
correlation between increase in code size and increase in 
execution time for the three main configurations. First, we can see 
that the two factors appear closely correlated because the points 
cluster near a line from the origin into the upper right quadrant. 
This is most likely due to the simplicity of the AVR instruction set 
architecture and lack of an instruction cache; adding more 
instructions has a predictable effect on the execution time. 
Second, we can see that vlrc performs significantly better than 
the other configurations, with most of its points clustered near the 
origin. Third, we can see that hlrc performs the worst, with the 
largest increases in code size and execution time. 

Figures 7c combines the data from figures 6a and 6b, 
comparing relative increase in code size versus decrease in heap 
size. Here we can see for a given heap size reduction (horizontal 
axis), vlrc tends to produce smaller code than hlrc.  

 
6. RELATED WORK 

 
The Virgil notion of initialization time enables the compiler 

to have the entire heap available before generating code. In the 
traditional case where the compiler does not know all run-time 
objects, researchers have developed static analysis techniques that 
estimate a range of values for each object field.  If such a range of 
values is small, then the compiler can optimize the heap usage by 
compressing fields using various strategies.  For example, 
Ananian and Rinard [2] use static analysis of Java programs to 
eliminate fields with constant values and reduce the sizes of fields 
that can assume a small number of values.  Cooprider and Regehr 
[7] use static analysis of C programs to pack scalars, pointers, 
structures, and arrays using a compression-table scheme. Lattner 
and Adve [9] use static analysis to convert and compress 64-bit 
pointers to 32 bits. Unlike these previous approaches, our 
compression techniques do not require computationally intensive 
program analysis but instead exploit the type safety of Virgil. 
Compilation time for all our benchmarks is less than two seconds, 
of which the compression time is not measurable, compared to [7] 
which reports analysis times measured in minutes.  

While traditional static compilers do not have the complete 
heap, the run-time system can track all objects that have been 
created and use the information to dynamically compress pointers.  
Some research systems exist that employ dynamic techniques, 
sometimes assisted by hardware. For example, Zhang and Gupta 
[19] use special hardware instructions to help compress pointers 
and integers on the fly; they use profiling information to guide 

Figure 7a compares heap size change versus execution time 
change for the three object models, normalized against the 
standard horizontal object model. 

Figure 7b compares code size change versus execution time 
change for three object models, normalized against the 
standard horizontal object model. 

Figure 7c compares heap size change versus code size 
change for three object models, normalized against the 
standard horizontal object model. 

 

 

 



what data should be compressed and when compression should be 
done. Chen et al. [6] use a garbage collector that compresses 
objects when a compacting garbage collector is not sufficient for 
creating space for the current allocation request; this may require 
dynamic decompression of objects upon their next use.  Wright, 
Seidl, and Wolczko [18] present a memory architecture with 
hardware support for mapping object identifiers to physical 
addresses, thereby enabling new techniques for parallel and 
concurrent garbage collection; such an architecture could support 
compression of pointers as well.  Wilson [17] supports large 
address spaces with modest word sizes by using pointer swizzling 
at page fault time to translate large pointers into fewer bits.   

Optimization of heap usage can sometimes help performance 
as well.  For example, Mogul et al. [10] observed in 1995 that 
pointer sizes could affect performance significantly on a 64-bit 
computer because larger pointers occupy more space, putting 
greater stress on the memory system, affecting cache hit ratios and 
paging frequency.  Adl-Tabatabai et al. [1] represent 64-bit 
pointers as 32-bit unsigned offsets from a known base resulting in 
a significant performance improvement. 

For object-oriented languages such as Java, each object has a 
header that contains such data as type information, a hash code, 
and a lock.  Bacon, Fink, and Grove [4] presented compression 
techniques that allow most Java objects to have a single-word 
object header.  

Languages such as Java and Virgil allow single inheritance 
of classes.  For languages such as C++, List Flavors, and Theta 
that allow multiple inheritance among classes, researchers have 
developed object layouts that enable fast field access with few 
indirections. For example, Pugh and Weddell [12] and later Myers 
[11] use both positive and negative offsets of fields.  It remains to 
be seen whether vertical object layout can be useful for languages 
with multiple inheritance of classes and more complex object 
layout models. For example, it may be possible to apply ideas 
from PQ-Encoding in [20].  

Like most languages in common use, Virgil uses primitive 
types of data such as integers. Bacon [3] presented Kava, a 
language without primitive types in which all data is programmed 
in an object-oriented manner. An interesting future direction 
might be to explore whether our techniques can be useful for a 
Kava-like language with a Virgil notion of initialization time. 

 
7. CONCLUSION AND FUTURE WORK 

 
In this paper, we evaluated static heap compression strategies 

that are made possible by the compilation model of Virgil—
specifically, the availability of the entire program heap at compile 
time. Our experimental results show that programs compressed 
using vertical object layout have better execution time and code 
size than the compression-table approach while achieving nearly 
the same RAM savings. For six of the 12 benchmark programs, 
vertical layout with reference compression reduces heap size by 
more than 20%, while no program suffers more than 15% code 
size increase.  

The lack of dynamic memory allocation is also common in 
hard real-time systems and high-integrity systems. For example, 
SPARK [5], an industry-standard subset of Ada, disallows 
dynamic memory allocation in order to simplify software 
verification. Recently, Taha Ellner, and Xi [13] described a 
functional meta-language for generating heap-bounded programs 
using a staged computation model and sophisticated types. The 
techniques described here for compression could have 

applicability to software written for both of these systems due to 
the fixed size of the heap. 

Currently, the vertical object layout model requires that no 
new objects be created at runtime. Object allocation may require 
growing the field tables individually, and maintaining the 
contiguous nature of object identifiers might be tricky, especially 
in the presence of subtyping. Also, as objects become 
unreachable, entries in the field tables become unused and would 
need to be recycled. It is not clear whether the costs of such 
maintenance would outweigh the benefits. One might instead 
consider a hybrid strategy that “verticalizes” those types that are 
allocated only at initialization time and not at runtime. Another 
technique might to be to hybridize both horizontal and vertical 
layouts for the same type in interesting ways—perhaps only part 
of an object is stored horizontally, and the rest of the object is 
stored vertically, with the index stored in the horizontal layout for 
access. When the class hierarchy is fixed and known statically, it 
is possible to layout the meta-objects (i.e. dispatch tables) 
vertically, even though new objects can be created at runtime. 
This allows the object header to be compressed to a small meta-
object identifier; a virtual dispatch is then implemented as an 
index operation into the appropriate virtual method array.  

Our compiler detects read-only component fields and object 
fields and inlines the values of those that are constant over all 
objects, but currently it does not move other read-only object 
fields to ROM. This would be complex in the horizontal layout 
model because an object might be split into a read-only portion 
stored in ROM and a read-write portion stored in RAM. An 
uncompressed horizontal object reference must point to the 
address of one half of the object, and that half must have a pointer 
to the other half. However, when compression is applied to the 
horizontal layout, the compiler can use one object index but 
instead have two compression tables, one that holds the address of 
the RAM portion of the object, and one that holds the ROM 
address of the object. Even more promising is the idea of using 
vertical object layout to radically simplify moving individual 
fields to ROM. Because an entire field is stored contiguously and 
object indexes are used instead, moving a field array to ROM is 
trivial; the compiler can generate code to access the appropriate 
memory space at each field usage site. However, none of these 
strategies is currently implemented in the Virgil compiler. 

In this work, our compiler employs a single object model for 
all inheritance hierarchies in the program, but one could consider 
a compiler that employs different object models for different 
hierarchies depending on the relative execution frequency of 
object operations and space consumption. For example, the 
compiler might elect to compress the most infrequently used 
objects using the most space efficient strategy, while employing 
the best performing (but possibly larger) strategy for the most 
frequently accessed objects. Such a compiler might employ 
heuristics on access frequencies or use feedback from profiling 
runs. We would like to extend our compiler and explore these 
more sophisticated strategies. 
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