
Vertical Object Layout and Compression for Fixed Heaps
Ben L. Titzer

UCLA Compilers Group
4810 Boelter Hall

Los Angeles, CA 90095
titzer@cs.ucla.edu

Jens Palsberg
UCLA Compilers Group

4531K Boelter Hall
Los Angeles, CA 90095
palsberg@ucla.edu

ABSTRACT
Research into embedded sensor networks has placed increased
focus on the problem of developing reliable and flexible software
for microcontroller-class devices. Languages such as nesC [8] and
Virgil [14] have brought higher-level programming idioms to this
lowest layer of software, thereby adding expressiveness. Both
languages are marked by the absence of dynamic memory
allocation, which removes the need for a runtime system to
manage memory. To provide data structures, nesC offers modules,
and Virgil offers the application an opportunity to allocate and
initialize objects during compilation. This paper explores
techniques for compressing fixed object heaps with the goal of
reducing the RAM footprint of a program. We explore table-based
compression and introduce a novel form of object layout called
vertical object layout. We provide experimental results that
measure the impact on RAM size, code size, and execution time
for a set of Virgil programs. Our results show that compressed
vertical layout has better execution time and code size than table-
based compression while achieving more than 20% heap
reduction on 6 of 12 benchmark programs.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: Object Representation.
D.3.3 [Programming Languages] Language Constructs and
Features.

General Terms
Management, Measurement, Performance, Languages.

Keywords
Microcontrollers, program data compression, pointer
compression, reference compression, object layout, heap
optimization, vertical object layout.

1. INTRODUCTION

Microcontrollers are tiny, low-power embedded processors
deployed to control and monitor consumer products from
microwaves, to fuel injection systems, to sensor networks. A
typical microcontroller integrates a central processing unit, RAM,

reprogrammable flash memory, and IO devices on a single chip.
They have very limited computational power, and their main
memory is often measured in hundreds of bytes to a few kilobytes.
For example, a popular microcontroller unit from Atmel, the
ATMega128, has 4KB of RAM and 128KB of flash to store code
and read-only data; it serves as the central processing unit of the
Mica2 sensor network node.

The primary resource limitation in many microcontroller
applications is the RAM space available for storing the program
heap and stack. This often precludes a dynamic memory
management system, either a manual one such as C’s malloc()
and free(), or an automatic system such as a garbage collector.
For that reason, many microcontroller applications are written to
pre-allocate all of their needed data structures and do not use any
form of dynamic memory allocation. In the C programming
language, this is done by statically declaring arrays and structures
as global variables. In nesC [8], modules contain state as fields
and are instantiated by a module wiring system at compile time. In
Virgil [14], applications allocate and initialize their heap within
the compiler, which contains an interpreter for the complete
language.

Reducing RAM consumption allows larger applications to be
built and deployed on the same microcontroller model, while
reducing the resource requirements of a single application allows
a smaller, cheaper microcontroller to accomplish the same task.
There are several general techniques to reduce RAM
consumption. One is to simply remove unused data structures
through compiler or manual analysis. Another is to reduce the
average footprint of a program by employing virtual memory
techniques that move infrequently used data to larger, slower
storage such as disk. A third is to compress infrequently used data
and dynamically decompress it as it is accessed. A fourth
technique, employed here, is to statically compress program
quantities so that dynamic decompression is unnecessary. We
discuss previous techniques in more detail in the related work
section.

This paper evaluates two offline heap compression
techniques for programs written in the Virgil language. Both
techniques exploit the availability of the entire program heap at
compile time and are employed on top of our compiler that
already performs sophisticated dead code and data elimination.
The first compression technique, table-based reference
compression, was described in our previous work [14] and is
evaluated in more detail here. The second technique is a novel
object layout model that we call vertical object layout. Vertical
object layout represents objects in a more compact way by
viewing the heap as a collection of field arrays that are indexed by
object number, rather than the traditional approach of a collection
of objects that are accessed via pointers. Object numbers can then
be compressed without additional indirections. We present a
simple object numbering system for identifiers that ensures that
each field array is stored without wasting space, even in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009...$5.00.

presence of subclassing. Our experimental results show that
vertical object layout has better execution time and code size than
the table-based compression scheme on nearly all benchmarks,
while achieving similar RAM size savings. Relative to the
standard object layout strategy, the code size increase from
vertical layout is less than 10% for most programs, and less than
15% for all programs, while the execution time overhead is less
than 10% for 7 of 12 programs and less than 20% for 9.
Interestingly, compressed vertical layout provides a more efficient
type cast operation, which actually improves execution time over
the baseline for two programs that use dynamic casts intensively.

The outline of this paper is as follows. Section 2 gives
background for this paper by describing the key features of Virgil
that are relevant to this work. Section 3 describes the basic idea of
reference compression, summarizing our previous work in the
area. Section 4 describes our new object model and its application
to reference compression. Section 5 gives our experimental
results. Section 6 describes related work, and Section 7 gives our
conclusion and vision of future work.

2. VIRGIL BACKGROUND

In our previous work [14], we have developed the Virgil

programming language and compiler system that targets
microcontroller-class devices. Virgil is a lightweight object-
oriented language that is closest to Java, C++ and C#. Like Java,
Virgil provides single inheritance between classes, with all
methods virtual by default, except those declared private.
Objects are always passed by reference, never by value, as they
can be in C++. However, like C++ and unlike Java, Virgil has no
universal super-class akin to java.lang.Object from which
all classes ultimately inherit. But Virgil differs from C++ in two
important ways; it is strongly typed, which forces explicit
downcasts of object references to be checked dynamically, and it
does not provide pointer types such as void*. This inheritance
model allows for object-oriented design in applications using
familiar patterns and provides for a straightforward and efficient
object model. In addition to its fields, each Virgil object has a
single word header that stores a pointer to a meta-object
containing a type identifier and a virtual dispatch table. This type
information is unnecessary for Virgil classes that are unrelated to
any other classes (so-called orphan classes) because complete
type information is known statically. Such objects are represented
without object headers and all virtual dispatches are resolved at
compile time.

One of Virgil’s key innovative features is the notion of
initialization time, whereby an application can allocate and
initialize its entire object heap during compilation. This allows an
application to build all of its data structures during compilation;
memory allocation during execution on the device is disallowed.
This feature is motivated by the observation that many
microcontroller programs already written in C and nesC statically
allocate all of their memory via global variables and reuse this
memory at execution time. Static allocation removes the need for
a memory management library such as malloc() and free(),
or in the case of a safe language, the need for a garbage collector
or other automatic memory management system. The lack of
dynamic memory allocation also removes the need for programs
to be made robust against the possibility of exhausting memory,
since memory is statically allocated and apportioned at compile
time.

Virgil elevates the common practice of static memory
allocation on microcontrollers to a first-class language feature. In
addition to implementing the standard phases of compilation such
as parsing, typechecking, optimization and code generation, the
Virgil compiler includes an interpreter for the complete Virgil
language. After typechecking is complete, the compiler executes
the application’s initialization code with the built-in interpreter.
The interpreter allows the application code to perform any Turing-
complete computation using the complete Virgil language,
including, for example, allocating objects, initializing them,
calling methods on them, etc. This phase allows unrestricted
allocation; a general-purpose garbage collector ensures that
unreachable objects allocated by the application are discarded.
When the application’s initialization routines have terminated, the
compiler will generate an executable that includes not only the
code of the program, but also the data of the entire reachable heap.
This initial heap is immediately available to the program at
runtime on the device. During execution the program can perform
unrestricted computation and can read and write heap fields, but
further memory allocation is disallowed and will result in an
exception.

The initialization time model provides new opportunities for
compiler optimizations, since the compiler has not only the entire
code of the program, but the entire initialized heap as well. This
allows the compiler to employ data-sensitive optimizations that
can exploit the size and shape of the heap, as well as the initial
values of fields in objects. One such optimization is a combined
dead code and dead data elimination optimization called
reachable members analysis. RMA can be thought of reachability
over program code and data object simultaneously; it serves to
remove dead code and objects from the program that cannot be
reached over any program execution. For the purposes of this
work, it can be considered complementary. In fact, all of our
experimental results are obtained against a baseline of performing
the RMA optimization first.

Initialization time also makes the optimizations described in
this paper possible. We exploit the availability of the entire
program heap at compile time to represent references specially
and to layout objects in novel ways to achieve better results on
small architectures.

3. REFERENCE COMPRESSION

Microcontrollers have severe limitations on the RAM space

available to store heap objects and the program stack, which
makes a space efficient representation of objects of primary
importance. While the Virgil language was designed to have
straightforward and low costs for the implementation of objects,
as well as sophisticated dead code and dead data elimination
passes, we would like to employ advanced object layout strategies
and compression techniques to further improve on the basic
implementation. Compression has two advantages: first, it allows
larger applications to be built and deployed on the same hardware;
and second, it allows a given application to be deployed on a
smaller, cheaper microcontroller model with less RAM.

Our previous work on Virgil [14] explored table-based
compression of object references for Virgil, but did not evaluate
the impact on performance. This paper provides those
experimental results and compares them with our new technique,
compressed vertical object layout. We briefly describe the
previous table-based compression technique in this section for
completeness.

Reference compression relies on the strong type safety of
Virgil. On microcontroller architectures with between 256 bytes
and 64 kilobytes of RAM, pointers into the memory are typically
represented with a 16-bit integer byte address. In a weakly typed
language like C, a pointer is not constrained to point to values of
any particular type and can conceivably hold any value. In fact,
pointer arithmetic relies on the fact that pointers are represented as
integers and allows operations such as increment, addition,
subtraction, and conversion between types. Worse, C allows
pointers to be converted to integers, manipulated, and converted
back to pointers. In Virgil, the type of a reference restricts the set
of possible objects that it may reference to only those objects that
are of the corresponding type or one of its subtypes. Recall that
after initialization time in the compiler, a Virgil application has
allocated all of its objects that will exist over any execution. The
compiler can use this fact to represent references specially.

The most straightforward way to implement reference
compression is to use a compression table where each compressed
reference is an object handle: an integer index into a table that
contains the actual addresses of each object. Because Virgil has
disjoint inheritance hierarchies, the compiler can compress each
reference by creating a compression table for its associated root
class, with one entry in the table for each object whose type is a
subclass of that root. The number of bits needed to represent the
integer index is therefore the logarithm of the table size. For
example, if the table has 15 live objects plus null, we could use
a 4-bit integer index, a savings of 75% over storing a 16-bit
address. Because there is no garbage collector which may move
objects at runtime, object addresses are fixed, which allows the
compiler to store the table in ROM or flash, which is considerably
larger than RAM, though usually slightly slower to access. Figure
1 introduces an example class hierarchy and Figure 2a gives the
corresponding table-based compression implementation.

The table adds a level of indirection to all object operations.
Reads and writes on object fields require first looking up the
object’s RAM address from the compression table before
performing the operation as before. In some situations, the
compiler may be able to avoid the cost of the indirection by using
standard optimizations to cache the actual address of frequently
accessed objects, e.g. within loops. Accesses to reference fields in
the heap may also be slower if the fields are bit-packed in memory
and require masks and shifts. (However, if fields are packed only
at the byte level, accesses can be faster if the field requires only
one byte of storage instead of two.) Thus table-based compression
represents a classic space/time tradeoff: it consumes some ROM
space for the tables and may reduce performance, but saves RAM.

It is important to note that table-based compression can
sometimes save RAM space even if the compression tables
themselves are also stored in RAM. This is because for a table of
size K and a pointer size of P bits, the cost of the table is K*P bits
while the savings is N*(P - log(K+1)) bits, where N is the
number of references compressed. N is always larger than K
because every object must have at least one reference to it to be
considered live. If N is large enough, N*(P – log(K+1)) is
larger than K*P. We don’t expect this case to be common; our
implementation always stores compression tables in ROM for
maximum RAM savings.

4. VERTICAL OBJECT MODEL

In traditional high-performance object-oriented systems, each

object is represented in memory as a contiguous region of words
that contain the values for each of the object’s fields. An object
reference is represented as a single-word pointer to this
contiguous memory region, and the different fields of a single
object are located at fixed offsets from this base address.
Advanced features such as mix-ins, multiple inheritance, etc may
be implemented by indirection to further contiguous memory
blocks. This layout strategy has the best performance in a scenario

Figure 2b: Vertical object layout for the example (only
classes A, B, C shown). Each field is represented by an array
and only the occupied portion is stored. Preorder numbering
gives objects of type A ids 0-2, B 3-6, and C 7-9.

A

B

C

A_min

A_max
B_min

B_max
C_min

C_max

0
1
2
3
4
5
6
7
8
9

A_f_array B_g_array C_h_array

Figure 2a: Table-based reference compression for the
example. Each root class (A, X) has its own compression table
in ROM that stores the RAM addresses of the objects.

RAM ROM

X
8 bits

A
4 bits

A_table

X_table

0

0

9

131

Figure 1: Example Virgil class hierarchy. Hexagons
represent classes; their field and method declarations are to
their right.

A

B C

f m()

g h

X

Y U

d

e

Z V

p()

where objects are created, moved, or reclaimed dynamically. An
object allocation operation amounts to little more than an
acquisition of a small contiguous region of memory, often simply
bumping a top-of-heap pointer by a fixed amount. Field accesses
in this model are implemented straightforwardly as a read or write
of a memory address that is a small fixed offset from the object
pointer; nearly all architectures allow this operation to be
implemented with a single instruction. We will refer to this
implementation strategy as the standard or horizontal layout, for
reasons that will become obvious in this section.

In Virgil, the compiler has maximum freedom to layout
objects in any way that respects the program’s semantics because
the memory layout is not exposed to the program. Our basic
insight is that Virgil’s initialization time model gives rise to a
scenario where objects are not created, moved, or reclaimed
dynamically; this means that objects need not be laid out as
contiguous regions of memory words in order to simplify these
operations or to allow the program to perform pointer arithmetic.

Imagine the heap of the program after initialization has
completed. The program has allocated some number of objects of
various types, with each object having values for all of its
declared and inherited fields. If we consider this set of objects to
be a two-dimensional matrix, we can consider the storage for the
fields’ values to be entries in the matrix. Each object corresponds
to a row in the matrix, and each declared field in the program
corresponds to a column. If we represent objects in the standard
layout, a reference corresponds to a pointer to a row of the matrix,
where the elements of a single row are adjacent in memory. In a
sense, the matrix is laid out horizontally. But one can also explore
the implications of arranging this matrix in memory vertically,
where an entire column has its elements adjacent in memory.

Consider again the example in Figure 1 and the
corresponding vertical layout in Figure 2b. The classes A, B and C
have declared fields f, g, and h, respectively. Suppose now that
we collect all the objects in the initialized heap of these types and
number them so that all the objects of exact type A are first, B
second, and C third. Then if we put these objects into a table such
that the columns are the fields f, g, and h, we can see that each
column has a contiguous range of indices for which the field is
valid corresponding to the indices of the class in which the field
was declared. If we represent an object reference as an index from
0 to 9 (with -1 representing a null reference), and represent the
field f as an array A_f_array, we can read and write the field
by simply indexing into A_f_array by the object number.

An access of the field g in the program requires the receiver
object to be of type B; therefore we know statically that accesses
of field g must use indices in the valid range for B objects. While
we could represent the field g as an array over the entire index
range 0 to 9, we can avoid wasting space by instead rebasing the

array so that element 0 of the array corresponds to index 3, the
first valid index for B. Then, an access of the field g for a type B
would simply adjust by subtracting 3 from the object index before
accessing the array. While these seems slower, it is equivalent to a
base 0 array if the compiler constant-folds the known fixed
address of the array and the subtraction adjustment; the compiler
will just use a known fixed address corresponding to where the
array would have started in memory if it had been based at 0.

It is simple to generalize from the example. For any
inheritance tree, we simply assign object identifiers using a pre-
order tree traversal. Figure 3 gives the algorithm. The output of
the algorithm is an interval of valid indices for each class and an
object id for every object. By employing preorder traversal of the
inheritance tree, the final assignment guarantees that each class
has a contiguous range of indices corresponding to all objects of
that type or one of its subtypes. Therefore the array that represents
that field in the vertical object layout can be compact without
wasting space. This algorithm chooses to restart the object id at
zero for each root class in the hierarchy, which means that an
object id is unique within its inheritance hierarchy, but not
necessarily globally unique.

We can use the same technique to represent meta-objects
vertically as well. In Virgil, meta-objects store only a type
identifier that is used for dynamically checking down casts and a
dispatch table that is used for virtual dispatch. We can use the
same algorithm to number the meta-objects according to the
inheritance hierarchy and then represent each method slot in the
dispatch table vertically. A virtual dispatch then amounts to two
vertical field accesses (as opposed to two horizontal field accesses

void assignAll(Program p) {
 for (ClassInfo cl : p.getRootClasses())
 assignIndices(0, cl);
}
int assignIndices(int min, ClassInfo cl) {
 int max = min;
 // assign the indices for objects of this type
 for (ObjectInfo o : cl.instances)
 o.index = max++;
 // recursively assign id's for all the children
 for (ClassInfo child : cl.getChildren())
 max = assignIndices(max, child);

 // remember the interval for this class
 cl.indices = new Interval(min, max);
 return max;
}
 Figure 3: algorithm to compute object indices by pre-order
traversal of inheritance tree. For each class, ClassInfo
stores a list of the child classes and an interval representing
the valid indices for objects of this class and subclasses. For
each object, ObjectInfo stores the object id (index)
assigned to the object.

Figure 4 shows object operations from the Figure 1 example and each model’s corresponding implementation (in pseudo-C). Bold
expressions are constants inlined into the code by the compiler. Underlined expressions represent tables stored in ROM.

 Horizontal Horizontal Reference Compressed Vertical

e instanceof A e != null e != -1 e != -1

e instanceof B e != null &&
e->meta->id == B_metaid

e != -1 &&
A_table[e]->meta->id == B_metaid e >= B_min && e <= B_max

e instanceof C e != null &&
e->meta->id == C_metaid

e != -1 &&
A_table[e]->meta->id == C_metaid e >= C_min

e.f e->f A_table[e]->f A_f_array[e]

e.g e->g A_table[e]->g B_g_array[e - B_min]

e.m() e->meta->m(e) A_table[e]->meta->m(e) A_m[A_metaid[e]](e)

in the traditional approach). The first access is to get the type
information of the object by indexing into the type information
array using the object index. The retrieved value is a meta-object
id that is then used to index into the appropriate virtual method
array, which stores a direct pointer to the code of the appropriate
method.

This numbering technique also has another advantage in that
the contiguousness of the object identifiers makes dynamic type
tests extremely cheap, because the object identifier actually
encodes all the type information needed for the cast. The
algorithm assigns object identifiers so that every class has an
interval of valid indices that correspond to all objects of that type.
Thus, given a reference R that is represented by an object index
and a cast to a class C, we can simply check that the index R is
within the interval for the class C. This requires only two
comparisons against two constants; no indirections and no
memory loads are required. The range check automatically
handles the case of a null reference, because null is represented
with -1, which is outside of the range for any type.

Reference compression becomes trivial with vertical object
layout. Because each object reference is now represented as an
index that is bounded by the number of objects in its inheritance
hierarchy, like table-based compression, it can be compressed to a
smaller bit quantity. Thus, wherever the reference is stored in the
heap (e.g. in the fields of other objects), it consumes less space.
However, the field arrays may not be completed packed at the bit
level. If the field is compressed to fewer than 8 bits, the indexing
operation is more efficient if the field array is a byte array rather
than packed at the bit-level because memory is usually not bit-
addressable. Our implementation does not compress references in
the vertical layout to be smaller than a byte.

Vertical layout may also save more memory by eliminating
the need to pad fields in order to align their addresses on word
boundaries. In the horizontal object layout, compilers sometimes
need to add padding between fields in the same object in order to
align individual fields on word boundaries. This becomes
unnecessary in vertical object layout; as long as each field array is
aligned at the appropriate boundary for its type, each element in
the array will be aligned by the simple virtue of being of uniform
size. However, memory alignment is not generally an issue on 8-
bit microcontrollers.

5. EXPERIMENTAL RESULTS

In this section we evaluate the impact that reference

compression and the vertical object model have on three program
factors: code size, heap size, and execution time. Each of our
benchmark programs is written entirely in Virgil and does not rely
on external device drivers or libraries, but instead the device
drivers necessary to run on the hardware are themselves
implemented in Virgil and are included in these results. These
applications target the Mica2 sensor network node that contains
an ATMega128 AVR microcontroller (4KB of RAM, 128KB of
flash). Our Virgil compiler emits C code that is compiled to AVR
machine code by avr-gcc version 4.0.3. Code size and data size
numbers correspond to the size of the .text and .data sections
in the ELF executables emitted by avr-gcc, and thus
correspond to the exact usage by the program when loaded onto

the device. Precise performance numbers are obtained by using
the program instrumentation capabilities [15] of the Avrora cycle-
accurate AVR emulator.

We use 12 Virgil benchmark programs that are available as
part of the driver kit we developed for the AVR microcontroller.
Blink is a simple test of the timer driver, toggling the green
LED twice per second; LinkedList is a simple program that
creates and manipulates linked lists; TestADC repeatedly
samples the analog to digital converter device; TestUSART
transmits and receives data from the serial port; TestSPI
stresses the serial peripheral interface driver; TestRadio
initializes the CC1000 radio and sends some pre-computed
packets; MsgKernel is an SOS excerpt that sends messages
between modules; Fannkuch is adapted from the Programming
Language Shootout Benchmarks and permutes arrays; Decoder
is a bit pattern recognizer that uses a data structure similar to a
BDD; Bubblesort sorts arrays; PolyTree is a binary tree
implementation that uses parametric types; and BinaryTree
is the same tree implementation but uses boxed values.

We tested five configurations of the Virgil compiler (version
vpc-b03-013) including the standard horizontal object layout;
the four new configurations are normalized against the results of
the standard layout to show relative increase and decrease in code
size, data size, and execution time. The three main configurations
are: hlrc, which is the standard horizontal layout with table-
based compression; vl, which is the vertical object layout without
compression; and vlrc, which is the vertical layout with
compression applied to object indices. The last configuration,
hlrcram, is only shown for code size and execution time
comparison; it corresponds to horizontal layout with reference
compression, but instead of storing the compression tables in
ROM, they are stored in RAM. This of course does not save RAM
overall, but allows us to compare the cost of accessing ROM
versus accessing RAM.

 Data Code Time

BinaryTree 703 432 3613978

PolyTree 602 436 3460648

BubbleSort 874 3878 8419862

Decoder 374 980 4119442

Fannkuch 406 5612 951068

MsgKernel 352 3262 2314365

TestRadio 188 4706 14862672

TestSPI 98 2484 26912

TestUSART 83 2564 1153916

TestADC 50 992 53849859

LinkedList 115 664 1973094

Blink 18 778 8038

Figure 5: Raw data for the standard horizontal model. Code
and data sizes are in bytes, and execution time is given in
clock cycles (active cycles over 20 seconds for non-
terminating programs like Blink). All other results are
normalized to these.

Figure 6a shows a comparison of the relative data sizes for
our benchmark programs for the three main configurations,

normalized against the base configuration of horizontal layout
with no reference compression. First, we notice that vertical
layout (vl) often saves some memory over the base
configuration. This is because it does not require type identifiers
in the meta objects; object numbers have been assigned so that
they encode the type information. Also, the horizontal layout
sometimes produces zero-length objects; avr-gcc allocates a
single byte of memory to such objects. The second observation is
that the compressed vertical layout typically performs as well as
the compressed horizontal layout, although some of this is due to
the empty object anomaly and the lack of type identifiers in meta
objects. As expected, compressed vertical layout (vlrc) is
uniformly better than vertical layout (vl) alone.

Figure 6b shows the relative increase in code size for the
same benchmarks with an added configuration, with all
configurations normalized against the base configuration of
horizontal layout without reference compression. Here, we can see
that all configurations increase the code size of all programs (with
the sole exception of vlrc on MsgKernel), with both vl and
vlrc performing better than hlrc in each case. The increase for
vlrc is less than 10% for most programs and less than 15% for
all programs. Here, adding compression to the vertical layout
actually reduces code size. This is because all field arrays become
smaller, down to a single byte (because the Virgil compiler does
not pack field arrays at the bit level), therefore the code to access
them becomes smaller.

Horizontal reference compression increases the code size in
two ways. First, it introduces compression tables that are stored in
the read-only code space. Second, it requires extra instructions for
each object operation due to the extra indirection. When the
compression tables are stored in ROM, (the hlrc configuration),
the Virgil compiler must emit short inline AVR assembly
sequences because C does not expose the ROM address space at
the source level. These assembly instructions are essentially
unoptimizable by avr-gcc. To better isolate this effect, this
figure includes code size results for a new configuration,
hlrcram (or horizontal layout with reference compression tables
in RAM). This configuration of course does not save RAM
overall, but allows us to explore the effect of the special ROM
assembly sequences on the code size in comparison to accessing
the RAM. Comparing the hlrc configuration against the
hlrcram shows that most of the code size increase is due to
these special inlined ROM access sequences. The difference could
be reduced if either avr-gcc understood and optimized accesses
to ROM, or if the AVR architecture offered better addressing
modes to access the ROM with fewer instructions. It is important
to note that the largest proportional code size increases are for the
smallest programs, as can be seen from the raw data in Figure 5.

Figure 6c gives the relative increase in execution time
obtained by executing each benchmark in the Avrora [16]
instruction-level simulator. The vertical layout technique performs
better than horizontal compression in all but one case, and the
execution time overhead for the compressed vertical layout is less
than 20% in 9 of the 12 benchmarks, less than 10% in 7, and
actually performs better by than the baseline by a small amount in
two cases. These two programs perform a large number of
dynamic type tests, which are cheaper in the vertical layout. This
figure also includes results for the hlrcram configuration from
Figure 6b in order to isolate how much of the execution time
overhead is due to the cost of a ROM access versus a RAM
access. In most cases, the execution time of hlrcram is
noticeably better than that of hlrc, which means that a

Figure 6a shows the heap size decrease for three object
models normalized against the heap size for the standard
horizontal layout. (larger is better)

Figure 6b shows the code size increase for four object
models normalized against the code size of the standard
horizontal layout. (smaller is better)

Figure 6c shows the execution time increase for four object
models normalized against the execution time of the standard
horizontal layout. (smaller is better)

significant fraction of the overhead is due to this ROM access
cost. Also notice that that the largest proportional execution time

increases tend to be for the smaller, pointer-intensive programs
like BinaryTree, PolyTree, LinkedList, and Decoder.

Figure 7a combines the data from figures 6a and 6c, showing
the tradeoff between increase in execution time and the savings in
heap size for the three main configurations. First, we can see that
the vertical layout without reference compression (vl) usually
increases execution time without saving much heap space, while
adding reference compression to vertical layout (vlrc) increases
heap savings and usually has better execution time than vertical
layout alone. Also, hlrc compression tends to have a larger
increase in execution time with some savings in heap size, but not
as much as vlrc. Overall, there is significant variation across the
benchmarks, suggesting that the two factors are not intrinsically
correlated. Instead, it is more likely that the factors are correlated
to benchmark characteristics, therefore the compiler should take
these characteristics into account and avoid reference compression
when it will save little heap space.

Figure 7b combines data from figures 6b and 6c to show the
correlation between increase in code size and increase in
execution time for the three main configurations. First, we can see
that the two factors appear closely correlated because the points
cluster near a line from the origin into the upper right quadrant.
This is most likely due to the simplicity of the AVR instruction set
architecture and lack of an instruction cache; adding more
instructions has a predictable effect on the execution time.
Second, we can see that vlrc performs significantly better than
the other configurations, with most of its points clustered near the
origin. Third, we can see that hlrc performs the worst, with the
largest increases in code size and execution time.

Figures 7c combines the data from figures 6a and 6b,
comparing relative increase in code size versus decrease in heap
size. Here we can see for a given heap size reduction (horizontal
axis), vlrc tends to produce smaller code than hlrc.

6. RELATED WORK

The Virgil notion of initialization time enables the compiler

to have the entire heap available before generating code. In the
traditional case where the compiler does not know all run-time
objects, researchers have developed static analysis techniques that
estimate a range of values for each object field. If such a range of
values is small, then the compiler can optimize the heap usage by
compressing fields using various strategies. For example,
Ananian and Rinard [2] use static analysis of Java programs to
eliminate fields with constant values and reduce the sizes of fields
that can assume a small number of values. Cooprider and Regehr
[7] use static analysis of C programs to pack scalars, pointers,
structures, and arrays using a compression-table scheme. Lattner
and Adve [9] use static analysis to convert and compress 64-bit
pointers to 32 bits. Unlike these previous approaches, our
compression techniques do not require computationally intensive
program analysis but instead exploit the type safety of Virgil.
Compilation time for all our benchmarks is less than two seconds,
of which the compression time is not measurable, compared to [7]
which reports analysis times measured in minutes.

While traditional static compilers do not have the complete
heap, the run-time system can track all objects that have been
created and use the information to dynamically compress pointers.
Some research systems exist that employ dynamic techniques,
sometimes assisted by hardware. For example, Zhang and Gupta
[19] use special hardware instructions to help compress pointers
and integers on the fly; they use profiling information to guide

Figure 7a compares heap size change versus execution time
change for the three object models, normalized against the
standard horizontal object model.

Figure 7b compares code size change versus execution time
change for three object models, normalized against the
standard horizontal object model.

Figure 7c compares heap size change versus code size
change for three object models, normalized against the
standard horizontal object model.

what data should be compressed and when compression should be
done. Chen et al. [6] use a garbage collector that compresses
objects when a compacting garbage collector is not sufficient for
creating space for the current allocation request; this may require
dynamic decompression of objects upon their next use. Wright,
Seidl, and Wolczko [18] present a memory architecture with
hardware support for mapping object identifiers to physical
addresses, thereby enabling new techniques for parallel and
concurrent garbage collection; such an architecture could support
compression of pointers as well. Wilson [17] supports large
address spaces with modest word sizes by using pointer swizzling
at page fault time to translate large pointers into fewer bits.

Optimization of heap usage can sometimes help performance
as well. For example, Mogul et al. [10] observed in 1995 that
pointer sizes could affect performance significantly on a 64-bit
computer because larger pointers occupy more space, putting
greater stress on the memory system, affecting cache hit ratios and
paging frequency. Adl-Tabatabai et al. [1] represent 64-bit
pointers as 32-bit unsigned offsets from a known base resulting in
a significant performance improvement.

For object-oriented languages such as Java, each object has a
header that contains such data as type information, a hash code,
and a lock. Bacon, Fink, and Grove [4] presented compression
techniques that allow most Java objects to have a single-word
object header.

Languages such as Java and Virgil allow single inheritance
of classes. For languages such as C++, List Flavors, and Theta
that allow multiple inheritance among classes, researchers have
developed object layouts that enable fast field access with few
indirections. For example, Pugh and Weddell [12] and later Myers
[11] use both positive and negative offsets of fields. It remains to
be seen whether vertical object layout can be useful for languages
with multiple inheritance of classes and more complex object
layout models. For example, it may be possible to apply ideas
from PQ-Encoding in [20].

Like most languages in common use, Virgil uses primitive
types of data such as integers. Bacon [3] presented Kava, a
language without primitive types in which all data is programmed
in an object-oriented manner. An interesting future direction
might be to explore whether our techniques can be useful for a
Kava-like language with a Virgil notion of initialization time.

7. CONCLUSION AND FUTURE WORK

In this paper, we evaluated static heap compression strategies

that are made possible by the compilation model of Virgil—
specifically, the availability of the entire program heap at compile
time. Our experimental results show that programs compressed
using vertical object layout have better execution time and code
size than the compression-table approach while achieving nearly
the same RAM savings. For six of the 12 benchmark programs,
vertical layout with reference compression reduces heap size by
more than 20%, while no program suffers more than 15% code
size increase.

The lack of dynamic memory allocation is also common in
hard real-time systems and high-integrity systems. For example,
SPARK [5], an industry-standard subset of Ada, disallows
dynamic memory allocation in order to simplify software
verification. Recently, Taha Ellner, and Xi [13] described a
functional meta-language for generating heap-bounded programs
using a staged computation model and sophisticated types. The
techniques described here for compression could have

applicability to software written for both of these systems due to
the fixed size of the heap.

Currently, the vertical object layout model requires that no
new objects be created at runtime. Object allocation may require
growing the field tables individually, and maintaining the
contiguous nature of object identifiers might be tricky, especially
in the presence of subtyping. Also, as objects become
unreachable, entries in the field tables become unused and would
need to be recycled. It is not clear whether the costs of such
maintenance would outweigh the benefits. One might instead
consider a hybrid strategy that “verticalizes” those types that are
allocated only at initialization time and not at runtime. Another
technique might to be to hybridize both horizontal and vertical
layouts for the same type in interesting ways—perhaps only part
of an object is stored horizontally, and the rest of the object is
stored vertically, with the index stored in the horizontal layout for
access. When the class hierarchy is fixed and known statically, it
is possible to layout the meta-objects (i.e. dispatch tables)
vertically, even though new objects can be created at runtime.
This allows the object header to be compressed to a small meta-
object identifier; a virtual dispatch is then implemented as an
index operation into the appropriate virtual method array.

Our compiler detects read-only component fields and object
fields and inlines the values of those that are constant over all
objects, but currently it does not move other read-only object
fields to ROM. This would be complex in the horizontal layout
model because an object might be split into a read-only portion
stored in ROM and a read-write portion stored in RAM. An
uncompressed horizontal object reference must point to the
address of one half of the object, and that half must have a pointer
to the other half. However, when compression is applied to the
horizontal layout, the compiler can use one object index but
instead have two compression tables, one that holds the address of
the RAM portion of the object, and one that holds the ROM
address of the object. Even more promising is the idea of using
vertical object layout to radically simplify moving individual
fields to ROM. Because an entire field is stored contiguously and
object indexes are used instead, moving a field array to ROM is
trivial; the compiler can generate code to access the appropriate
memory space at each field usage site. However, none of these
strategies is currently implemented in the Virgil compiler.

In this work, our compiler employs a single object model for
all inheritance hierarchies in the program, but one could consider
a compiler that employs different object models for different
hierarchies depending on the relative execution frequency of
object operations and space consumption. For example, the
compiler might elect to compress the most infrequently used
objects using the most space efficient strategy, while employing
the best performing (but possibly larger) strategy for the most
frequently accessed objects. Such a compiler might employ
heuristics on access frequencies or use feedback from profiling
runs. We would like to extend our compiler and explore these
more sophisticated strategies.

7.1 Acknowledgments

Thanks to undergraduates Ryan Hall and Akop Palyan for

developing many of the AVR hardware drivers in Virgil. The
authors were partially supported by NSF ITR award #0427202
and a research fellowship with the Center for Embedded Network
Sensing at UCLA, an NSF Science and Technology Center.

8. REFERENCES

[1] A. Adl-Tabatabai, J. Bharadwaj, M. Cierniak, M. Eng, J.
Fang, B. Lewis, B. Murphy, and J. Stichnoth. Improving 64-
bit Java IPF performance by compressing heap references. In
CGO’04, International Symposium on Code Generation and
Optimization. San Jose, CA. March 2004.

[2] C. Ananian and M. Rinard. Data Size Optimizations for Java
Programs. In LCTES ’03, Workshop on Languages,
Compilers, and Tools for Embedded Systems. San Diego,
CA. June 2003.

[3] D. Bacon. Kava: a Java Dialect with a Uniform Object
Model for Lightweight Classes. Concurrency and
Computation: Practice and Experience 15(3-5): 185-206.
2003.

[4] D. Bacon, S. Fink, and D. Grove. Space- and Time-efficient
Implementation of the Java Object Model. In ECOOP ’02,
the 16th European Conference on Object-Oriented
Programming, University of Malaga, Spain. June 2002.

[5] R. Chapman, J. Barnes, and B. Dobbing. On the Principled
Design of Object-Oriented Programming Languages for
High-Integrity Systems. In the 2nd NASA/FAA Object-
Oriented Technology Workshop. 2003.

[6] G. Chen, M. Kandemir, N. Vijaykrishnan, M. Irwin, B.
Mathiske, and M. Wolczko. Heap Compression for Memory-
constrained Java Environments. In OOPSLA ’03, the 18th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications. Anaheim, CA.
October 2003.

[7] N. Cooprider and J. Regehr. Offline compression for on-chip
RAM. In PLDI’07, ACM SIGPLAN Conference on
Programming Language Design and Implementation. San
Diego, CA. June 2007.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to
Networked Embedded Systems. In PLDI ’03, the ACM
Conference on Programming Language Design and
Implementation. San Diego, CA. June 2003.

[9] C. Lattner and V. Adve. Automatic Pool Allocation for
Disjoint Data Structures. In MSP ’02, ACM Workshop on
Memory System Performance. Berlin, Germany. June 2002.

[10] J. Mogul, J. Bartlett, R. Mayo, and A. Srivastava.
Performance implications of multiple pointer sizes. In
USENIX’95, Technical Conference on UNIX and Advanced
Computing Systems, pp.187-200, 1995.

[11] A. Myers. Bidirectional Object Layout for Separate
Compilation. In OOPSLA’95, ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications. Austin, TX. October 1995.

[12] W. Pugh and G. Weddell: Two-directional record layout for
multiple inheritance. In PLDI’90, ACM SIGPLAN
Conference on Programming Language Design and
Implementation. White Plains, NY. June 1990.

[13] W. Taha, S. Ellner, and H. Xi. Generating Imperative, Heap-
Bounded Programs in a Functional Setting. In EMSOFT ’03,
the 3rd Annual International Conference on Embedded
Software. Philadelphia, PA. October 2003.

[14] B. Titzer. Virgil: Objects on the Head of a Pin. In
OOPSLA’06, ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and
Applications. Portland, OR. October 2006.

[15] B. Titzer and J. Palsberg. Nonintrusive Precision
Instrumentation of Microcontroller Software. In LCTES ’05,
ACM SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems. Chicago, IL. June 2005.

[16] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable Sensor
Network Simulation with Precise Timing. In IPSN ’05, The
Fourth International Conference on Information Processing
in Sensor Networks. Los Angeles, CA. April 2005.

[17] P. Wilson. Operating system support for small objects. In
Object Orientation in Operating Systems, pp.80-86, 1991.

[18] G. Wright, M. Seidl, and M. Wolczko. An object-aware
memory architecture. Science of Computer Programming
62(2): 145-163. 2006.

[19] Y. Zhang and R. Gupta. Compressing heap data for
improved memory performance. Software--Practice and
Experience, 36(10):1081-1111, 2006.

[20] Y. Zibin and J. Gil. Efficient Subtyping tests with PQ-
Encoding. In OOPSLA ’01, ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications. Tampa, FL. October 2001.

