陶宏根,程日辉,赵小青等.海拉尔盆地火山碎屑岩的测井响应与应用.地球物理学报,2011,54(2):534~544,DOI:10.3969/ j.issn.0001-5733.2011.02.033

Tao H G, Cheng R H, Zhao X Q, et al. Well logging response to the volcaniclastic rocks of Hailar basin and application. *Chinese J. Geophys.* (in Chinese), 2011, **54**(2):534~544, DOI:10.3969/j.issn.0001-5733.2011.02.033

海拉尔盆地火山碎屑岩的测井响应与应用

陶宏根^{1,2},程日辉³,赵小青^{1,2},孙凤贤²,于振锋³

1 吉林大学地球探测科学与技术学院,长春 130026

2 大庆钻探测井一公司,大庆 163412

3 吉林大学地球科学学院,长春 130061

摘 要海拉尔盆地中生界为熔岩-火山碎屑岩-沉积岩系列岩性组合,是测井解释层位.但是精细的岩心岩石类型描述与测井识别岩性的精度不匹配,岩心精细分层厚度往往小于测井分层的最小厚度0.6 m.研究显示,安山岩、熔结凝灰岩、凝灰岩、沉凝灰岩、凝灰质砾岩、凝灰质砂岩和沉积岩等主要岩性具有各自的测井响应,即有特定的岩-电关系模式.交会图可以区分岩性,TH-AC交会图至少可区分出砾岩;PE-RD交会图可把凝灰质砾岩和凝灰质砂岩区分开;K-U交会图可把凝灰质砾岩、粗砂岩和凝灰质粗砂岩区分开.根据岩心岩性特征及其测井响应建立的测井岩石分类可以满足测井解释的精度.按照测井岩石分类进行的岩心分层与测井分层吻合程度达 80%以上.测井岩性分层是利用自然伽玛(GR)、补偿密度(DEN)、补偿中子(CNL)和微球形聚焦测井(MSFL)四条曲线进行的.本项研究提出的 GDCM 法是综合测井岩性分层的一种方法,适合于海拉尔盆地以火山碎屑岩为主岩性的测井解释. **关键词**火山碎屑岩,测井响应,岩-电模式,海拉尔盆地

DOI:10.3969/j.issn.0001-5733.2011.02.033 中图分类号 P631 收稿日期 2010-06-29,2011-01-29 收修定稿

Well logging response to the volcaniclastic rocks of Hailar basin and application

TAO Hong-Gen^{1,2}, CHENG Ri-Hui³, ZHAO Xiao-Qing^{1,2}, SUN Feng-Xian², YU Zhen-Feng³

1 College of Geoexploration Science and Technology, Jilin University, Changchun, 130026, China

2 Daqing Drilling and Exploration Engineering Corporation No. 1 Well Logging Company; Daqing 163412, China

3 College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract The Mesozoic stratum of Hailar basin, a rock succession dominated by volcanicsedimentary clastic rocks is focused for well logging interpretation in this paper. However, the detailed petrological classification and discription of the core rock do not match the recognizing accuracy of logging, and the thickness of detailed subdivision of the core rock is less than 0.6 m, the minimum layering thickness of logging. The study suggests that some types of rocks are with certain logging responses respectively, being models of rock-logging in Hailar basin, such as andesite, ignimbrite, tuff, sedimentary tuff, tuffaceous sandstone, tuffaceous conglomerate and sedimentary rocks. Some types of rocks can be separated from the others in the crossplots. The

作者简介 陶宏根,男,1963年生,教授级高级工程师,主要从事测井工程和管理工作,现为在职博士生. E-mail:taohg@CNPC. com. cn

*通讯作者 程日辉,男,1963年生,教授,博士生导师,主要从事沉积学和石油地质研究. E-mail.chengrh@jlu.edu.cn

基金项目 国家重点基础研究发展计划"973"项目(2009CB219306)和国家自然科学基金项目(40972074)资助,大庆油田公司级项目"海拉尔 盆地乌南地区测井解释方法研究"成果之一.本文获"东北亚生物演化与教育部重点实验室"、吉林大学"211"工程三期建设项目和 2009 年教育部基本科研业务经费"吉林大学创新团队发展计划"支持.

crossplot of Th-AC may separate conglomerate from others at least, the crossplot of PE-RD may separate tuffaceous conglomerate and tuffaceous sandstone from others, and the crossplot of K-U may separate tuffaceous conglomerate, coarse sandstone and tuffaceous coarse sandstone each other. The logging rock classification can meet the requirement of logging interpretation, based on both the core rock and its logging response. The core rock layering has been done under the logging rock classification, and the coincidence beween them is more than 80%. Four curves of logging including GR, DEN, CNL and MSFL are used in litho-logging layering. The method of GDCM, a way of integreted litho-logging layering, is effective in the logging interpretation of volcanic-sedimentary clastic rocks in Hailar basin.

Keywords Volcaniclastic rock, Response of logging, Models of rock-logging, Hailar basin

1 引 言

火山碎屑岩指以火山碎屑为主的岩石,国际分 类中通常将火山碎屑占岩石体积百分比定为大于 75%^[1],在我国岩石分类中其进一步划分为火山碎 屑岩(火山碎屑>90%)和沉火山碎屑岩(火山碎屑 90%~50%,低于 50%为沉积岩类)^[2~4].火山碎屑 主要为新生、同源和外来碎屑三大类^[5].火山碎屑沉 积或火山碎屑岩是火山作用和沉积作用的共同产 物,与正常沉积岩密切共生,分散在不同的沉积体系 中^[6].因此存在从火山熔岩至正常沉积岩的过渡岩 性.准确地识别与鉴定这些岩性是油气勘探开发的 基础.

海拉尔盆地中生界布达特群、兴安岭群、铜钵庙 组、南屯组和大磨拐河组为熔岩-火山碎屑岩-沉积 岩的系列岩性组合^[7~10],是测井解释层位,见图 1. 从岩石学角度,较为准确地区分和描述岩性是可行 的,但对测井解释则存在相当的难度.这不仅是因为 测井分辨率(测井分层最小厚度为 0.6 m),而且在 于目前已成型的碎屑沉积岩[11]和火山岩[12,13]的测 井响应或解释模式不完全适应火山碎屑岩和火山碎 屑沉积岩,碎屑沉积岩的测井模式已经在解释岩石 结构并区分正常的沉积岩性方面具有优势[11,14],但 对火山碎屑岩,由于特殊结构构造,如熔结结构、似 流纹构造和火山玻璃含量及脱玻化,使得该测井解 释模式不完全适应. 侵入岩和火山岩(主要为熔岩) 的测井解释模式在解释岩石成分和区分岩性方面取 得成功[12],但对火山碎屑岩,因混入陆源碎屑,以及 凝灰质物质的类型和含量,使得该测井解释模式不 完全适用.这些不适应性主要表现在:(1)不同岩性 可能会有相同或近似的测井响应;(2)同样的岩性 (井位或层位不同)会有不同的测井响应;(3)岩心分 层与测井分层不一致.不适应性影响到油、气、水层的准确识别.

海拉尔盆地火山碎屑岩测井研究依然处于探索 之中^[15~20].海拉尔盆地是个典型的试验区,相关的 研究涉及到岩性识别^[15~17]、凝灰质含量计算^[18]、储 层分类和含水饱和度计算等^[19,20].本文诣在研究建

图 1 海拉尔盆地岩石地层柱状图(根据 49 口井岩心综合) Fig. 1 The columnar section of lithostratigraphy in Hailar basin (Based on the core data from 49 drilling wells)

立适合海拉尔盆地火山碎屑岩的测井响应模式和对 应的测井岩性分类,这是相关测井解释研究的基础.

2 岩性特征

49 口井取心段岩性识别、薄片鉴定与统计确定 了海拉尔盆地各组(群)(包括布达特群)总体的岩石 类型丰度(表 1).岩石类型有五类:火山熔岩、火山 碎屑岩、沉积火山碎屑岩、火山碎屑沉积岩和正常沉 积岩.火山碎屑沉积岩占比例最大,为43.35%;其 次是正常沉积岩,比例为26.84%;火山碎屑岩为 17.68%;沉积火山碎屑岩为10.02%;火山熔岩为 2.11%.铜钵庙组和南屯组是测井解释主要层段.铜 钵庙组火山碎屑沉积岩丰度最高,其次是沉积岩和 火山碎屑岩.南二段以火山碎屑沉积岩声,正常沉 积岩次之.南一段火山碎屑沉积岩丰度最高,其次是 海拉尔盆地中生界具有特色岩性,主要表现在: 砂岩是由 2~0.05 mm 范围内颗粒组成的具有 碎屑结构的沉积岩石,包括凝灰质砂岩.然而具备这 样粒度和结构条件的还有凝灰岩和沉凝灰岩.这就 存在砂岩广义性问题.在结构相似的条件下,凝灰物 质的成分类型和含量是区分广义性砂岩岩性的关键.

表 1 海拉尔盆地布达特群——大磨拐河组岩石构成 Table 1 Components of rocks from Budate group to Damoguaihe formation in Hailar basin

层位	火山熔岩 (%)	火山碎 屑岩(%)	沉积火山 碎屑岩 (%)	火山碎屑 沉积岩 (%)	沉积岩 (%)
大磨拐河组	0	21.35	14.02	50	14.63
南二段	0.86	5.75	4.6	48.85	39.94
南一段	1.57	21.33	9.2	43.05	24.85
铜钵庙组	2	16.67	7.33	46	28
兴安岭群	0	51.61	9.68	25.81	12.9
布达特群	17.57	28.38	36.49	12.16	5.41
总体	2.11	17.68	10.02	43.35	26.84

	表 2 海拉尔盆地岩石分类表
Table 2	Petrological classification of Hailar basin

结构与成分分类	化学成分分类 (SiO ₂)		岩石基本类型	成岩作用	丰度(%)	备注
火山熔岩类(熔岩基质中 分布的火山碎屑<10%; 熔岩结构)	基性 45%~52% 中性 52%~63% 酸性 >63%		玄武岩 安山岩 流纹岩	冷凝固结	2.11	作为端元岩石类型没细分
火山碎屑熔岩类(熔岩基 质中分布的火山碎屑> 10%;熔结结构或碎屑熔 岩结构)	基性 45%~52% 中性 52%~63% 酸性 >63%	碎屑熔岩	角砾熔岩 凝灰熔岩	冷凝固结	0	尚没有识别出
火山碎屑岩类(火山碎屑 >90%;火山碎屑结构)	基性 45%~52% 中性 52%~63% 酸性 >63%	火山 角砾岩 凝灰岩	熔结角砾岩 非熔结角砾岩 熔 粗粒凝灰岩 结 中粒凝灰岩 非 细粒凝灰岩 将 粉粒凝灰岩 结	冷凝固结 压实固结	17.68	在岩心中不能鉴别出集 块岩,熔结类也区分粒 级.分级按照砾岩和砂岩 标准.凝灰岩混积严重, 分级代表优势级别
沉积火山碎屑岩类(火山 碎屑:90%~50%;正常 沉积碎屑:<50%;火山 碎屑结构)	基性 45%~52% 中性 52%~63% 酸性 >63%(参考 应用)	沉凝 灰岩	粗粒沉凝灰岩 中粒沉凝灰岩 细粒沉凝灰岩 粉粒沉凝灰岩	冷凝固结 压实固结	10.02	成分、磨圆和再旋回石英 用于判断是否是正常沉 积碎屑
火山碎屑沉积岩类(火山 碎屑:<50%;正常沉积 碎屑:>50%;碎屑结构)	不适合	凝灰质 岩石	凝灰质复成分砾岩 凝灰质粗砂岩 凝灰质中砂岩 凝灰质细砂岩 凝灰质粉砂岩 凝灰质泥岩	冷凝固结 压实固结	43.35	杂基和颗粒中凝灰成分用 于判断该岩石类型.冷凝 固结在砾岩中发育较多
正常沉积岩(火山碎屑: <10%;正常沉积碎屑: >90%;碎屑结构和泥状 结构为主)	不适合	复成分码 粗砂岩(中砂岩(粉砂岩(粉砂岩(泥岩(<	砾岩(>2 mm) (2~0.5 mm) (0.5~0.25 mm) (0.25~0.05 mm) (0.05~0.005 mm) (0.005 mm)	压实固结	26.84	除泥岩外其他类型少见,多 为钙质交代的改造类型

砾岩是由大于2 mm 颗粒组成的具有碎屑结构 的沉积岩石.因砾石成分复杂、填隙物为凝灰质或砂 泥质,以及碳酸盐交代和胶结,使复成分砾岩具有多 样岩性特征.凝灰质砾岩和普通砾岩是主要类型.

凝灰岩是由小于2 mm 的火山碎屑为主组成的 岩石,包括有沉凝灰岩.然而在同一凝灰岩层中,有 时会出现两种类型凝灰质的情况,如流纹质和安山 质的凝灰物质混积.另外的特性是其具有宽泛的粒 度区间,对应砂岩、粉砂岩和泥岩的粒度级别,但分 选性较差,多为混积并具有主粒级优势,如粗粒级凝 灰岩或细粒级凝灰岩.

泥岩是由颗粒小于 0.005 mm 以粘土矿物为主物质组成的岩石. 泥级凝灰岩和凝灰质泥岩使这类型岩石变得复杂. 凝灰物质蚀变和碳酸盐交代有时也使这类泥岩面目全非.

3 测井响应

与岩心资料相比,测井资料具有连续和原位测量特点.不同测井建立一种"笔录",它们是岩石的 "标志",因为它们表达岩石存在的性质^[14].鉴于海 拉尔盆地中生界火山碎屑岩的特性,建立测井响应 分析与岩-电模式,采用多测井对比分析、综合与参 数提取的试验方法.

3.1 参数交会图

交会图法目前已被广泛用于火成岩的测井解释^[21~24].为准确获得岩性测井响应,在多种测井综合对比分析的基础上,对巴1井和乌27井目的层的岩性(显微镜薄片鉴定),读取钍、铀、钾、电阻率、光电吸收面积指数、密度等测井数据,求取平均值,用两组参数编制交会图.实践显示钍-电阻率、光电吸收面积指数-密度、光电吸收面积指数-电阻率、钾-铀和钍-声波时差等5种交会图在识别岩性上有效.

钍-电阻率图(Th-RD)巴1井岩性主要为砾岩、凝灰质砾岩、粗砂岩、凝灰质粗砂岩、泥岩和凝灰岩.Th-RD交会图(图 2)显示,泥岩与凝灰岩界限明显,凝灰质砾岩与砾岩也有显著差异.凝灰质砾岩的 RD值区间为 10~15 Ωm,砾岩的 RD 值区间为 15~20 Ωm;泥岩的 Th 值区间为 14~18.5 ppm,凝 灰岩的 Th 值区间为 6~13.8 ppm.

光电吸收面积指数-密度图(PE-DEN)凝灰质 砾岩、凝灰质砂岩、粗砂岩有较明显的界限(图 3).凝 灰质砾岩 PE 值区间为 1.6~1.93 barn/e,凝灰质砂 岩为 1.92~2.72 barn/e,粗砂岩为 2.1~2.3 barn/e. 凝灰质砂岩和粗砂岩 PE 值均比凝灰质砾岩大.凝 灰质砂岩大部分样本点的 DEN 值区间为 2.43~ 2.6 g/cm³,粗砂岩为 2.34~2.4 g/cm³,交叉区域 明显.

光电吸收面积指数-电阻率图(PE-RD)巴1井 凝灰质砾岩与凝灰质砂岩的样本点和图3的数据点 相同(图4).虽然凝灰质砂岩与凝灰质砾岩在电阻 率、密度和中子曲线上相近,但PE曲线上二者有明 显差异,凝灰质砾岩PE值比凝灰质砂岩小.凝灰质 砾岩PE值区间为1.6~1.95 barn/e,凝灰质砂岩 PE值区间为1.95~2.72 barn/e.

钾-铀图(K-U) 巴1井某井段凝灰质砾岩与凝 灰质粗砂岩 U 曲线差异明显(图5),但在电阻率、中 子和密度曲线上难区分.凝灰质砾岩 U 值最小,粗 砂岩 U 值比凝灰质砾岩大,凝灰质含砾粗砂岩 U 值 最大.凝灰质砂岩 U 值区间为 0.3~0.95 ppm,粗 砂岩 U 值区间为 1.2~1.7 ppm,凝灰质含砾粗砂 岩 U 值区间为 1.9~3.7 ppm.

钍-声波时差图(Th-AC)砾岩的 AC 与其他岩 性有明显区别(图 6),区间为 64~76 μs/m. 泥岩与 凝灰岩有相似的分布区域. 晶屑凝灰岩、粉砂质泥 岩、泥岩、凝灰质砂岩和凝灰质含砾砂岩的 AC 均比 砾岩大.

5种单井交会图显示,每个图至少能区分一种 岩性,如 Th-AC 交会图至少可区分出砾岩;有的图 可区分两种岩性,如 PE-RD 交会图可把凝灰质砾岩 和凝灰质砂岩区分开;有的图可区分三种岩性,如 K-U 交会图可把凝灰质砾岩、粗砂岩和凝灰质含砾 粗砂岩区分开.因此综合运用 5 种交会图可以区别 出主要岩性.

3.2 几种主要岩石类型的岩-电模式

研究与分析显示,利用测井识别岩性不能达到 地质的标准.在地质岩性分类的基础上,通过归并使 成分相近的岩性归类,以符合测井识别精度和分辨 率的要求.本项研究中测井识别岩性是:安山岩、熔 结凝灰岩、凝灰岩、沉凝灰岩、凝灰质砂岩和沉积岩.

安山岩 图 7 是德 4 井安山岩层测井曲线图,深度 1994.45~1998.81 m.第一道为层位,第二道为 筒次,第三道为深度,第四道为岩性,第五道为岩性 描述,第六道从上到下为井径 CAL、自然伽玛 GR 和自然电位 SP,第七道从上到下为微球形聚焦 MSFL、深侧向 LLS 和浅侧向 LLD,第八道从上到 下为密度 DEN、光电吸收截面指数 PE、中子 NPHI和DT,第九道从上到下为铀U、钍Th和钾K.

并径曲线较稳定,读数 14.0 in,并况良好,对测井曲 线影响不大.安山岩自然伽玛为 58.9API;光电吸收 截面指数约为 2.3 barn/e;中子读数约为10.2%; 钍、铀、钾的读数分别为 2.65 ppm、1.7 ppm 和 2.07%.自然伽玛、钍、铀、钾等各项测井曲线值均 较低.

熔结凝灰岩 图 8 是贝 16 井熔结凝灰岩层测井 曲线图,深度 1351.44~1356.22 m. 井径曲线变化 不大,读数 9.5 in,井径没有坍塌,对测井曲线影响 很小.伽玛曲线值较高,读数约为 129.8API.光电吸 收截面指数约为 2.91 barn/e,中子曲线值较高,读 数约为 31.4%.钍、铀、钾读数分别为 8.17 ppm、 2.78 ppm和 2.56%.整体显示为高自然伽玛,钍、 铀、钾中等,高中子特征.

凝灰岩图 9 是贝 16 井凝灰岩层测井曲线,深度 1742.8~1745.995 m.井径曲线较稳定,读数8.92 in,井况良好,对测井曲线影响不大.自然伽玛读数为 115.5API,光电吸收截面指数为 2.39 barn/e,中子读数约为 25.4%. 钍、铀、钾分别为 12.96 ppm、2.14 ppm和 3.21%. 流纹质凝灰岩的自然伽玛值和钍值偏高.图 2 中凝灰岩 Th 值的区间为 6~13.8 ppm,贝 16 井凝灰岩层 Th 值落在凝灰岩 Th 值区间内.

沉凝灰岩 图 10 为沉凝灰岩层测井曲线图,深 度 2250.7~2258.55 m.井径曲线为一直线,读数为 11.71 in,井眼条件较好,测井曲线不受影响.自然 伽玛读数为 52.57API,光电吸收截面指数读数为 3.19 barn/e,中子读数约为 18.13%. 钍、铀、钾读数 分别为 4.09 ppm、1.16 ppm 和 1.85%.自然伽玛 值,钍、铀、钾及中子值均中等.

凝灰质砾岩图 11 是乌 27 井凝灰质砾岩层测 井曲线图,深度1850.00~1264.05m.井径曲线是

厚	錼				CAL(in) 6 16	MSFL(Ωm) 0.2 - 2000	$\frac{\text{DEN}(g \cdot \text{cm}^{-3})}{2}$	0 <u>U(ppm)</u> 10
Pr	10j	深度 (m)	岩 性	岩性 描述	0 GR(API) 200	LLS(Ωm) 0.22000	0	TH(ppm) 0100
11.	a				0 <u>SP(mV)</u> 100	LLD(Ωm) 0.22000	$\frac{DT(\mu s \cdot m^{-1})}{140 - 40}$	$0 - \frac{K(\%)}{10}$
布达特群	第五简	1995 1996 1997 1997		灰紫色安山岩		and the second se		

图 7 安山岩层综合测井曲线(德 4 井,1994.45~1998.81 m) Fig. 7 The logging curves of andesite (Well De4, 1994.45~1998.81 m)

昆	欲				CAL(in) 6 16	MSFL(Ωm) 0.2 — 200	$\frac{\text{DEN}(g \cdot \text{cm}^{-3})}{2}$	0 <u>U(ppm)</u> 10
125	let	深度	岩 性	岩性	GR(API)	LLS(Ωm)	0 - 10	TH(ppm)
De	No	(m)	-13 LL	描述	0	0.2 200	NPHI(%)	0 100
112	1X				SP(mV) -20 - 80	LLD(Ωm) 0.2 200	$\frac{DT(\mu s \cdot m^{-1})}{140 - 40}$	0 <u>K(%)</u> 10
		1352 -		灰白色		1	8 K	$\langle \rangle$
大	第	1353		流纹页 晶屑熔结 凝灰岩		((2 i	1×
	Ŧī.	1354 -	田公公	办任	11		Y	X
段	筒	1355	EE EE E	流纹质 晶屑岩屑 烙结		2	Ri	
		1356	m A A	凝灰岩		1	N \	

图 8 熔结凝灰岩层综合测井曲线(贝 16 井,1351.44~1356.22 m)

Fig. 8 The well logging curves of ignimbrite (Well Bei 16, 1351.44~1356.22 m)

层	简	265 स्ट्रेस	702 - Mar	201202 200-00-	CAL(in) 6 16	$MSFL(\Omega m)$ 0.2 - 200	DEN(g·cm ⁻³) 2 3 PE(barn/e)	0 <u>U(ppm)</u> 10	
		休度 (m)	岩 性	岩性描述	0-150	0.2200	NPHI(%)	0 - 100	
位	次				SP(mV) -2080	LLD(Ωm) 0.2200	$\frac{0.420.18}{DT(\mu s \cdot m^{-1})}$ 14040	$0 \frac{K(\%)}{10}$	
		1743 -	~ ~ ^	灰绿色含钙晶屑			1	N	
	第			<u>流纹质融灰岩</u> 灰绿色流纹质					
南	4	1744 -	~ ~ ~ ~	友绿色晶屑岩屑	1 1	P	1):	$\left(\gamma \right)$	
-			~~~	<u> </u>					
rin.	-	1745	222	秋绿巴流纹顶 晶屑凝灰岩					
段	简	- International		灰绿色流纹质 晶屑玻基凝灰岩					

图 9 凝灰岩层综合测井曲线(贝 16 井, 1742.8~1745.99 m)

Fig. 9 The well logging curves of tuff (Well Bei 16, 1742.8 ${\sim}1745.99$ m)

厚	俯				CAL(in) 616	MSFL(Ωm) 0.2—2000	$\frac{\text{DEN}(g \cdot \text{cm}^{-3})}{2}$ $\frac{\text{PE}(\text{harm/e})}{2}$	0 <u>U(ppm)</u> 10
		深度 (m)	岩 性	岩性描述	GR(API) 0	LLS(Ωm) 0.22000	0 10	0 TH(ppm) 0
112.	X				SP(mV) -1000	LLD(Ωm) 0.22000	$\frac{42}{DT(\mu s \cdot m^{-1})}$ 140 40	0 <u>K(%)</u> 10
布达特群	第三筒	2251 протоков 2252 протоков 2253 протоков 2254 протоков 2255 протоков 2256 протоков 2256 протоков 2256 протоков 2256 протоков 2256 протоков 2256 протоков 2255 протоков 22		灰绿色沉岩屑 晶屑凝灰岩 灰白色沉岩屑 晶屑凝灰岩 灰绿色沉岩屑 晶屑凝灰岩		Sart		

图 10 沉凝灰岩层综合测井曲线(贝 33 井 2250.70~2258.55 m) Fig. 10 The well logging curves of sedimentary tuff (Well Bei 33, 2250.70~2258.55 m)

昆	目筒				CAL(in) 050	MSFL(Ωm) 0.2-200	EMLL 0.2 200	$\frac{\text{DEN}(g \cdot cm^{-3})}{2}$	0 <u>U(ppm)</u> 10
124	led	深度 (m)	岩 性	岩性描述	GR(API) 0	LLS(Ωm) 0.2200	0.2 200	PE(barn/e) 0 10	TH(ppm) 0
位	次	(,			SP(mV) -300100	LLD(Ωm) 0.2200	0.2 - 200	$DT(\mu s \cdot m^{-1})$ 300 50	0 <u>K(%)</u> 10
2		1851	· · · · · · · · · · · · · · · · · · ·				1		
		1852-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
南	第	1853-	0000						
	1	1854-	00000	灰色					
=	Ξ	1855-	~~~~	沉凝灰质			2		
	1	1856-	~~~~	你若		[5		
段	筒	1857	1000					117 i	
		1858-	1000 000			1	8	(i	
		1859-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			. II.			

图 11 凝灰质砾岩层综合测井曲线(乌 27 井 1850.00~1859.35 m)

Fig. 11 The logging curves of tuffaceous conglomerate (Well Wu 27, 1850.00~1859.35 m)

图 12 凝灰质含砾粗砂岩层综合测井曲线(乌 28 井 1260.23~264.05 m)

Fig. 12 The logging curves of tuffaceous coarse sandstone (Well Wu 28, 1260.23~1264.05 m)

图 13 泥岩层综合测井曲线(贝 33 井 1837.00~1843.50 m) Fig.13 The logging curves of mudstone (Well Bei33, 1837.00~1843.50 m)

直线,读数 12.134 in,井况良好,对于测井曲线影响 不大.自然伽玛读数为 89.223API,光电吸收截面指数 约为 1.744 barn/e. 钍、铀、钾的读数分别为 5.697 ppm、 0.665 ppm 和 3.197%.自然伽玛值,钍、铀、钾等值均较 低.图 3 凝灰质砾岩 PE 值区间为 1.6~1.93 barn/e,乌 27 井凝灰质砾岩层 PE 值落在凝灰质砾岩区.

凝灰质砂岩 图 12 是乌 28 井凝灰质含砾粗砂 岩层测井曲线,深度 1260.23~1264.05 m.井径曲 线较稳定,读数 10.48 in,井况良好,对测井曲线影 响不大.自然伽玛读数为 113.6API,光电吸收截面 指数的读数为 1.96 barn/e,中子读数为 19.01%. 钍、铀、钾数分别为 7ppm、1.98 ppm 和 4.58%.自 然伽玛值,钍、铀、钾等值均中等.图 4 凝灰质含砾粗 砂岩 U 值区间为 1.9~3.7 ppm,乌 28 井凝灰质含 砾粗砂岩层 U 值是 1.98 ppm,落在凝灰质砂岩 U 值区间内.

泥岩图 13 是贝 33 井泥岩层测井曲线图,深度 1837~1843.5 m. 井径曲线为一直线,读数 9.29 in, 说明井况良好,测井曲线不受影响.自然伽玛读数为 104.04API;光电吸收截面指数读数为3.48barn/e,中

			roth emponetation of wen rogging of		
分类	:	岩石基本类型	分类原则说明	典型岩性测井特征	
火山熔岩类		玄武岩 安山岩 英安岩 流纹岩	成分分类 熔岩 基 质 中 分 布 的 火 山 碎 屑 <50% 熔岩结构	安山岩 GR:54~73API;PE:2.0~2.4barn/e; NPHI:10.2~24.2%;U:1.74~2.51ppm; TH:2.65~6.92ppm;K:1.6~2.3%	
火山碎屑岩类	角砾岩 凝灰岩	火山角砾岩 粗粒级凝灰岩 中粒级凝灰岩 细粒级凝灰岩 粉粒级凝灰岩 泥级凝灰岩	结构分类 火山碎屑:>50% 火山角砾岩:碎屑>2 mm 凝灰岩:碎屑<2 mm 凝灰岩分级标准:碎屑岩标准	凝灰岩 GR:104~170API;PE:2.02~2.56barn/e; NPHI:15.6~29.8%;U:2.04~3.41ppm; TH:11.5~24.3ppm;K:2.5~3.8%	
火山碎屑 沉积岩类	凝灰质 岩石	凝灰质砾岩 凝灰质粗粒砂岩 凝灰质中粒砂岩 凝灰质细粒砂岩 凝灰质粉砂岩 凝灰质泥岩	成分-结构分类 火山碎屑:10%~50% 碎屑结构	凝灰质砂岩 GR:70~120API;PE:1.85~2.32barn/e; NPHI:12.1~21.3%;U:1.42~2.22ppm; Th:5~11ppm;K:2.58~4.85%	
正常碎屑沉积岩		 砾岩 粗粒砂岩 中粒砂岩 细粒砂岩 粉砂岩 泥岩 	结构分类 火山碎屑:<10% 碎屑结构和泥状结构 粒度分级同表 2	泥岩 GR:100~160API;PE:3.1~3.68barn/e; NPHI:19.2~34.5%;U:3.45~6.50ppm; Th:10.5~21.4ppm;K:2.2~3.8%	

表 3 海拉尔盆地测井岩石分类表

Table 3 The rock classification of well logging of Hailar basin

子读数为 27.65%. 钍、铀、钾读数分别为 12.12 ppm、 4.45 ppm和 2.27%. 自然伽玛值, 钍、铀、钾等各项测 井曲线值均中等偏高.

上述几种岩性及岩-电模式具有代表性,但在实际工作中能识别的岩性和运用的岩-电模式多且复杂.根据海拉尔盆地岩性和测井响应特征,建立测井 岩石分类表(表 3).表 3 较表 2 有明显的合并和简 化,是前段成果的总结,也是今后工作的指导,并及 时修订.

4 测井响应在岩性分层中的应用

利用测井曲线进行岩性分层是测井解释的重要 内容之一.通过综合研究与实践,针对火山碎屑岩为 主的海拉尔盆地岩性分层与识别,形成了可行的测 井岩性分层方法(GDCM法).该方法主要利用自然 伽玛(GR)、补偿密度(DEN)、补偿中子(CNL)和微 球形聚焦测井(MSFL)四条曲线,通过 GR、MSFL 曲线数值大小导致的形态变化以及 DEN 和 CNL 曲线交叉与分离,并综合四条曲线特征进行岩性 分层.

地层中岩石矿物成分不同,泥质含量不同,放射 性强度也不同.泥岩对放射性物质的吸附强,自然伽 玛值较高.自然伽玛值低是砂岩或储层的表现.地层 中自然伽玛曲线以波浪线形式出现,呈现峰值不同 的波峰和波谷,其半幅点作为岩层分界线.中子和密 度两条曲线近置反向,相交和分离的特征反映岩层 物性好坏^[25].曲线靠近一交汇,表明岩性纯,泥质含 量少,物性好;曲线分离则反映物性差.岩性界线是1/3 幅点处.微球形聚焦测井是探测较浅的电阻率曲线, 对不同岩性的变化反应敏感,泥质含量高的岩层微 球值低.曲线会在岩性发生变化时以折线的波峰和 波谷形态发生变化.微球曲线波峰和波谷的宽度较 自然伽玛要窄,其对薄岩层的反映比自然伽玛更灵 敏.岩性界线亦是1/3 幅点处.密度测井的横向探测 深度较浅,为6 in,自然伽玛测井稍大,为8 in,而中 子测井能达到12 in,因此自然伽玛做主要分层,密 度和中子互补做辅助分层.电阻率测井中,地层电阻 率越大探测深度越大,因此微球形聚焦可做到精细 分层.

GDCM 法遵循如下程序:首先以自然伽玛曲线 的变化确定大的岩性分层(图 14a),再利用中子和 密度曲线的交汇与分离所体现出的岩石物性差别对 岩层更进一步划分(图14b),最后利用微球形聚焦 测井曲线对岩层反应灵敏的特点,对已划分的岩层 再次精细划分(图 14c).把三组曲线所划分的岩性 分层综合起来,便得到了利用测井曲线识别出的岩 性分层(图 14d).岩层划分之后需要利用已有的岩-电模式进行岩性校正.

运用此方法对海拉尔盆地多口井进行了测井岩

性分层,同时对相应的岩心段进行细致的岩心分层. 对比显示,两者匹配较好,吻合度较高.乌24 井在 2436.7~2446.4 m(9.7 m 长)进行测井岩性分层, 并与岩心分层进行了对比(图 15).其中,测井分层 与岩心分层有 8.6 m 相一致,吻合度达 88.66%;存 在 1.1 m 误差,误差率为 11.34%.误差存在的原因 是:(1)半幅点和 1/3 幅点的分界与实际界线有出 入;(2)测井分层最小厚度一般为 0.6 m,即使最小 分层达到 0.2 m,也与岩心厘米级分层的精度相差 甚远;(3)岩性识别存在误差,尤其是凝灰岩和凝灰 质砂岩方面,需要利用已有岩-电模式校正.

5 讨论和结论

大庆探区火山岩和火山碎屑岩已成为当前油气

图 14 应用自然伽玛、补偿密度、补偿中子和 微球形聚焦曲线进行岩性分层的方法

Fig. 14 The method of litho-layering of logging using GR, DEN, CNL and MSFL (GDCM)

勘探的主要目标之一,地质-地球物理综合研究得到 广泛开展[26~28],海拉尔盆地岩心岩性与对应测井的 综合分析可以建立一些岩-电关系模式,并得到应 用.本文由于建立了测井岩性分类,采用 GDCM 法 进行测井岩性分层,同时综合岩-电关系模式分析, 在岩性识别上较前期研究增加了适应性和准确性. 然而,火山碎屑岩的特殊性(已前述)使建立的岩-电 模式应用受到一定的限制.在凝灰质砂岩中凝灰质 的类型与含量、成岩作用(尤其是玻璃质的脱玻化作 用、凝灰物质的蚀变和碳酸盐的交代作用)[6]、储集 岩孔渗特性[29,30]等是影响测井解释的主要地质因 素.为此需要:(1)深化岩-电关系研究,建立综合模 式,进一步提高测井岩性分层与岩石地层的符合度; (2)加强以孔渗结构分析为核心的储集岩分类和分 级研究,建立综合模式,进一步提高以粗碎屑岩为主 的储集岩测井研究精度,其在油气勘探开发中意义 更大.

本文所提出的测井岩性分层方法采用了油气勘 探开发中普遍运用的测井类型,因此对其他盆地或 地区是有借鉴或参考意义的.但岩-电模式的应用需 要依据具体的岩石特征和测井响应,同时要结合成 像测井和核磁共振测井等新技术^[31~35].

通过海拉尔盆地火山碎屑岩及其测井响应的研 究,取得的结论是:

(1)海拉尔盆地以火山碎屑岩为主的地层具有 复杂特殊的岩性特征,地质的岩石类型划分不完全 适应测井解释,建立测井岩石分类是需要的.

(2)几种主要岩性,安山岩、熔结凝灰岩、凝灰 岩、沉凝灰岩、凝灰质砂岩和沉积岩具有各自的测井 响应,可以建立岩-电关系模式.

图 15 乌 24 井测井曲线岩性分层与岩心观察对比

Fig. 15 Comparison of the litho-layering of logging and the subdivsion of core rocks of well Wu 24

(3)测井岩性分层法(GDCM法)是一种适合本 地区火山碎屑岩岩性分层的有效方法.

参考文献(References)

- [1] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary of Terms. London: Blackwell, 1989
- [2] 王璞珺,郑常青,舒 萍等. 松辽盆地深层火山岩岩性分类方案. 大庆石油地质与开发,2007,26(4):17~22
 Wang P J, Zheng C Q, Shu P, et al. Classification of deep volcanic rocks in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing (in Chinese),2007,26(4): 17~22
- [3] 王璞珺,吴河勇,庞颜明等.松辽盆地火山岩相:相序、相模式 与储层物性的定量关系.吉林大学学报(地球科学版),2006, 36(5):805~812

Wang P J, Wu H Y, Pang Y M, et al. Volcanic facies of Songliao basin: Sequence, modle and the quantitative relationship with porosity & permeability of volcanic reserveoir. *Journal of Jilin University (Earth Science Edition)* (in Chinese), 2006, **36**(5):805~812

- [4] 孙善平,刘永顺,钟 蓉等.火山碎屑岩分类评述及火山沉积 学研究展望.岩石矿物学杂志,2001,20(3):313~317
 Sun S P, Liu Y S, Zhong R, et al. Classification of pyroclastic rocks and trend of volcanic sedimentology: A review. Acta Petrologica et Mineralogica (in Chinese), 2001,20(3):313~317
- [5] Einsele G. Sedimentary Basins: Evolution, Facies and Budget. Berlin, Springer, 2000. 64~74
- [6] 程日辉,刘万洙,王璞珺等.松辽盆地东缘下白垩统营城组二段火山碎屑沉积的过程、相和结构,吉林大学学报(地球科学版),2007,37(6):1166~1175

Cheng R H, Liu W Z, Wang P J, et al. Processes, facies and architecture of the Early Cretaceous pyroclastic deposits of the second member, Yingcheng Formation, the eastern margin of the Songliao Basin. *Journal of Jilin University (Earth Science Edition)* (in Chinese), 2007,**37**(6):1166~1175

- [7] 程日辉,沈艳杰,颜景波等.海拉尔盆地火山碎屑岩的成岩作用. 岩石学报,2010,26(1):0047~0054
 Cheng R H, Shen Y J, Yan J B, et al. Diagenenis of volcaniclastic rocks in Hailaer basin. Acta Petrologica Sinica (in Chinese), 2010, 26(1):47~54
- [8] 吴河勇,李子顺,冯子辉等.海拉尔盆地乌尔逊—贝尔凹陷构 造特征与油气成藏过程分析.石油学报,2006,27(增刊):1~6
 Wu H R, Li Z S, Feng Z H, et al. Analysis on structural features and reservoir- forming process of Wuerxun and Beier sags in Hailaer Basin. Acta Petrolei Sinica (in Chinese), 2006,27(Suppl.):1~6
- [9] 刘 立,高玉巧,曲希玉等.海拉尔盆地乌尔逊凹陷无机 CO2
 气储层的岩石学与碳氧同位素特征.岩石学报,2006,22(8):
 2229~2236

Liu L, Gao Y Q, Qu X Y, et al. Petrology and carbon-

oxygen isotope of inorganic CO₂ gas reservoir in Wuerxun depression, Hailaer basin. Acta Petrologica Sinica (in Chinese), 2006,**22**(8):2229~2236

[10] 曹瑞成,李军辉,卢双舫等.海拉尔盆地呼河湖凹陷白垩系层 序地层特征及沉积演化.吉林大学学报(地球科学版),2010, 40(3):535~541

Cao R C, Li J H, Lu S F, et al. Sequence stratigraphic character and sedimentary evolution in Cretaceous in Huhehu depression in Hailaer basin. *Journal of Jilin University* (*Earth Science Edition*) (in Chinese), $2010, 40(3): 535 \sim 541$

 [11] 李舟波,地球物理测井数据处理与综合解释.长春:吉林大学 出版社,2003
 Li Z B. Geophysical Logging Data Processing and Comprehensive Interpretation (in Chinese). Changchun: Jilin University

Press,2003
[12] 潘保芝,薛林福,李舟波等.裂缝性火成岩储层测井评价方法 与应用.北京:石油工业出版社,2003
Pan B Z,Xue L F,Li Z B,et al. Evaluation and Application of Logging to the Fractured Igneous Reservoirs (in Chinese).
Beijing:Petroleum Industry Press,2003

- [13] 陈小军,罗顺社,张 凌.火山熔岩特征及岩性识别方法.油气 地球物理,2009,7(2):18~21
 Chen X J, Luo S S, Zhang L. The lithology identification method and characteristics of volcanic lava. *Petroleum Geophysics*(in Chinese), 2009,7(2):18~21
- [15] 陈 军,范晓敏,莫修文.火山碎屑岩岩性的测井识别方法.吉林大学学报(地球科学版),2007,37(增刊):99~101
 Chen J, Fan X M, Mo X W. The Research of volcaniclastic rock lithologic identification based logging. Journal of Jiling University (Earth Science Edition) (in Chinese),2007,37 (Suppl.):99~101
- [16] 张美玲,邵 阳,高柏原等.海拉尔盆地含火山岩地层主要岩 性分布及测井响应分析.中国石油勘探,2009,2:50~54 Zhang M L, Shao Y, Gao B Y, et al. Major lithological distribution and log response analysis of volcanic rock bearing strata in Hailar Basin. *China Petroleum Exploration* (in Chinese), 2009,2:50~54
- [17] 张 涛,莫修文.基于交会图与模糊聚类算法的复杂岩性识别.吉林大学学报(地球科学版),2007.37(增刊):109~113
 Zhang T, Mo X W. Complex lithologic identification based on cross plot and fuzzy clustering algorithm. *Journal of Jiling University* (*Earth Science Edition*) (in Chinese), 2007,37(Suppl.):109~113
- [18] 欧 霞,赵志伟,鲁 红等.火山碎屑沉积岩储层泥质与凝灰 含量计算方法研究.测井技术,2009.33(4):371~373
 Ou X, Zhao Z W, Lu H, et al. Computation method for shale and tuff content in reservoir with pyroclastic sedimentary rock. *Well Logging Technology*(in Chinese), 2009,33(4):371~ 373

- [19] 钟淑敏,刘传平,朱建华等.应用核磁共振测井进行海拉尔地 区储层分类.测井技术,2008,32(2):191~195
 Zhong S M, Liu C P, Zhu J H, et al. Reservoir classification using nuclear magnetic resonance logging in Hailaer Basin, Daqing Oilfield. Well Logging Technology (in Chinese), 2008,32(2):191~195
- [20] 张晓峰,潘保芝,范晓敏等.海拉尔盆地南屯组凝灰质砂岩储 层含水饱和度计算方法.测井技术,2009.33(4):345~349 Zhang X F, Pan B Z, Fan X M, et al. Computational method of saturation of the tuffaceous sandstones reservoir of Nantun group in Hailar Basin. Well Logging Technology (in Chinese), 2009.33(4):345~349
- [21] Khatchikian A. Log evaluation of oil-bearing volcanic rock. Expanded Abstrcts of 23rd Annual SPWLA Logging Meeting, 1982, AA
- [22] 潘保芝,李舟波,付有升等.测井资料在松辽盆地火成岩岩性 识别和储层评价中的应用.石油物探,2009,48(1):48~56
 Pan B Z, Li Z B, Fu Y S, et al. Application of logging data in lithology identification and reservoir evaluation of igneous rock in Songliao basin. *Geophysical Prospecting for Petroleum* (in Chinese), 2009,48(1):48~56
- [23] 赵 建,高福红.测井资料交会图在火山岩岩性识别中的应用.世界地质,2003,22(2):136~140
 Zhao J,Gao F H. Application of crossplots based on well log data in identifying volcanic lithology. World Geology (in Chinese), 2003, 22(2):136~140
- [24] 刘俊田,焦立新,张日供等. 三塘湖盆地牛东区块石炭系火山 岩储集层测井评价. 天然气地球科学,2009,20(4):518~524 Liu J T, Jiao L X, Zhang R G, et al. Well logging evaluation of carboniferous volcanic reservoirs in Niudong block, Santanghu Basin. Natural Gas Geoscience (in Chinese), 2009,20(4):518~524
- [25] 马 正.油气测井地质学.武汉:中国地质大学出版,1994:37~38
 Ma Z, Petroleum Logging Geology (in Chinese). Wuhan: China University of Geosciences Press,1994.37~38
- [26] 裴江云,刘 洪,李幼铭等. 共反射弧叠加方法在火山岩成像中的应用. 地球物理学报,2004,47(1):106~111
 Pei J Y, Liu H, Li Y M, et al. Application of seismic data common reflection arc stack method in imaging of igneous rocks. *Chinese J. Geophys.* (in Chinese), 2004,47(1):106~111
- [27] 唐华风,王璞珺,姜传金等.松辽盆地白垩系营城组隐伏火山 机构物理模型和地震识别.地球物理学进展,2007,22(2): 530~536

Tang H F, Wang P J, Jiang C J, et al. Physical model and seismic recognition of concealed volcanic edifices of Yingcheng Formation in Songliao Basin, Cretaceous, NE China. *Progress in Geophysics* (in Chinese), 2007, **22**(2):530~536

- [28] 王璞珺,冯志强,刘万洙等. 盆地火山岩:岩性・岩相・储层・ 气藏・勘探. 北京:科学出版社, 2008.99~102
 Wang P J, Feng Z Q, Liu W Z, et al. Volcanic Rocks in Petroliferous Basins: Petrography, Facies, Reservoir, Pool, Exploration (in Chinese). Beijing: Science Press, 2008. 99~102
- [29] 张海龙,刘忠海,周灿灿等. 低孔低渗储集层岩石物理分类方法的讨论. 石油勘探与开发,2008,35(6):763~768
 Zhang L H, Liu Z H, Zhou C C, et al. A method for petrophysical classification for low poristy and low permeability reservoirs. *Petroleum Exploration and Development* (in Chinese), 2008,35(6):763~768
- [30] 张海龙,周灿灿,刘国强等.不同类型低孔低渗储集层的成因 及物性差异和测井评价对策.石油勘探与开发,2007,**34**(6): 702~710

Zhang H L, Zhou C C, Liu G Q, et al. Early origin and property differences of various types of low-porosity and lowpermeability reservoirs and well logging evaluation strategies. *Petroleum Exploration and Development* (in Chinese), 2007,**34**(6):702~710

- [31] 秦绪英,宋波涛.测井技术现状与展望.勘探地球物理进展, 2002,1(25):26~34
 Qin X Y, Song B T. Current Status and prospect of logging techniques. *Progress in Exploration Geophysics* (in Chinese), 2002,1(25):26~34
- [32] 赵 平,张美玲,刘甲辰等. 2004~2005 年国内外测井技术 现状及发展趋势.测井技术,2006,30(5):385~389
 Zhao P, Zhang M L, Liu J C, et al. Status and trends of logging techniques at home and abroad. Well Logging Technology (in Chinese), 2006,30(5):385~389
- [33] Boqin Sun. Two-dimensional NMR logging and field test results. SPWLA 45th Annual Symposium, 2004, Paper KK
- 【34】 张元中,肖立志.新世纪第一个五年测井技术的若干进展.地 球物理学进展,2004,19(4):828~836
 Zhang Y Z, Xiao L Z. Some progress of well logging techniques during the first five years of the new millennium. *Progress in Geophysics* (in Chinese), 2004,19(4):828~836
- [35] Lofts J. A new micro-resistivity imaging device for use in oil based mud. SPWLA 43rd Annual Symposium, Paper []. Transactions. June 2002[CD-ROM]