
Lecture 9 Notes:  07 / 13

Multiple-lens systems

If we have one lens behind another, we can simply treat the image formed by the first 
lens as an object for the second lens.  For example, suppose we have two convergent 
lenses, with focal lengths f1 and f2, separated by a distance L.  The object is located at a 
distance p1 in front of the first lens.  We want to locate the image and find the 
magnification.

This is a typical ray diagram, to show our distances and sign conventions:

For this particular diagram, all the quantities are positive.  If one of the lenses was 
divergent, its focal length would be negative; if one or both of the images was on the 
same side as its corresponding object, the value of q for that image would be negative.

Let us calculate q2 for given p1, L, f1 and f2.  The equations for the two lenses are

We can simply use the first equation to calculate q1 and plug into the second.  For 
example, suppose that the object is 50cm away, the lenses are 120cm apart, the first lens 
has a focal length of 30cm and the second lens has a focal length of 100cm.  Then, our 
equation will give us

This means that the final image will be virtual, and will be 82 centimeters in front of the 
second lens (in the direction of the object).  This is unlike the ray diagram above, where 
the final image is real and behind the second lens.



We can calculate the magnification of this two-lens contraption.  Since the magnification 
of the first lens is M1 = -h1 / h, where h is the height of the object and h1 is the height of 
the first image, and M2 = -h2 / h1, since the first image is now the object and h2 is the 
height of the second image, M1M2 = h2 / h = M is the total magnification from the object 
to the final image (the sign cancels because a sequence of two inverted real images give 
an upright real image, so the magnification for a real image is positive.)  Since 
M1 = -q1 / p1 and M2 = -q2 / p2 = q2 / (L - q1), the magnification is

For our example, this gives

The final image is therefore inverted, and 2.7 times larger than the original.

Example:  We might ask how the magnification depends on the distance L; perhaps our 
apparatus is adjustable, and we want find a length that gives a certain magnification.

M1 = -q1 / p1 does not depend on the distance L, but M2 does.  We have

The overall magnification is thus equal to

What should we make the length of our apparatus if we want a magnification of, say, -5? 
Solve this equation for L:

So if we separated the lenses by 145cm and left the object 50cm from the front lens, the 
magnification would now be -5.



Suppose we have an object at infinity, and we look at it using lenses of focal lengths f1 

and f2 separated by a distance L.  Where does the image form?

The first lens will form an image at the focal point, since parallel rays coming from the 
far-away object will cross at the focal distance.  Thus, q1 = f1.  For the second image,

The location of the second image for a far-away source can be treated as an effective 
focal point of the entire two-lens image.  Thus,

If the separation between the lenses is very small compared to the focal length of the 
first lens (for example, if we put two lenses together, front to back), we can neglect L, 
and obtain the following expression:

The two lenses thus function together as a single lens, with a combined focal length. 
Note that this equation is only valid if the lenses are held very close together; otherwise 
the more general equation above should be used.

We define the power of a lens as the reciprocal of its focal length:  P = 1 / f.  The units 
of lens power are just m-1, but these units are traditionally referred to as diopters when 
used in this context, just like Hertz are seconds-1 in the context of frequency.  As we can 
see, lens power is additive when two lenses are put close together:

Example:  Consider a system with a convergent lens, f1 = 40 cm, followed by a 
divergent lens, f2 = -60 cm, at a distance of 100 cm.   An object is placed 100 cm in front 
of the convergent lens.  What kind of image is formed, and where?

First we'll draw the ray diagram.  Note that the focal points of the lenses coincide.



Thus we expect a small, inverted virtual image located fairly close to the second lens. 
Our lens equations give us

The image is thus a bit to the left of the second lens (by about 1/3 of its focal length), is 
upside-down and smaller than the object.

Potential problems with ray diagrams for multiple-lens systems

When trying to handle multiple-lens systems, some troublesome special cases can occur. 
The first case we'll consider is when the object happens to be at the focal point of the 
first lens.  In this case, the first lens doesn't form an image; the rays coming out of it are 
parallel.  However, the second lens can focus these parallel rays, thus forming a final 
image.  However, we don't have an intermediate image to use as an object for the second 
lens.

This case can be resolved with a ray diagram.  This is a ray diagram for an object at the 
focal point of the first lens:

Since the rays coming out of the first lens are parallel, there is no intermediate image for 
the second lens to use as an object.  What we can do, however, is add another parallel 
ray A that will go through the center of the second lens:



We know that A must be parallel to B (and any other rays starting from the tip of the 
object arrow) because the object is at the focal point.  Also, since A and B, together with 
all other rays from the tip of the arrow, are parallel, after passing through the second 
lens, they will all cross at that lens's focal point.  To determine the magnification, mark 
off the following two triangles and use the fact that they are similar:

The blue triangles give us h / f1 = z / L - f1, while the red triangles give us 
h2 / f2 = z / (L - f1).  Dividing the second equation by the first gives

Note the minus sign, since the final image turns out to be upside-down.

Another problem to consider is, what happens when the first lens forms its image behind 
the second lens?  It is not clear that we can use this image as the second lens's object, 
since it is no longer in front of the lens, where the lens can receive light from it.  For 
example, consider an object 50cm in front of a lens with a focal length of 40cm.  The 
image will form at a distance of 1 / (1/40-1/50) = 200cm behind this lens.  What if the 
second lens, with a focal length of 30cm, is placed just 100cm behind the lens, a full 
meter in front of where the image will form?  Again, a ray diagram will clarify the 
situation.  First, draw it as if the second lens didn't exist:



The problem is, our rays don't go into the second lens in any way that would make it 
easy to predict their behavior.  However, we can always add more rays.  We know that 
any rays emanating from the tip of the object will go towards the image point in the 
lower-right corner, so we add a ray that does that but also goes through the center of the 
second lens, and another ray that goes through the focal point of the second lens.  We 
know how to properly continue these rays:

We have found our image.  We could do geometry at this point and determine the 
location and magnification of the image, but let us try to just mindlessly use the lens 
equations for the first and second lens, without worrying whether the second lens has an 
image to use as an object:

The first equation gives us q1 = 200 cm.  The second equation is

Turns out this is the right result.  The image is slightly smaller than the object, inverted 
and slightly within the second lens' focal distance.  So, this case, unlike the case with the 
object at the focal point, is not really a problem in terms of applying the lens equations. 
It is only a problem when one has to draw the ray diagram, and this problem is solved 
through introduction of additional rays.



Intro to wave optics:  the double-slit experiment

When we are dealing with light interacting with objects of size comparable to the 
wavelength, we must take into account the wave nature of light.  One of the simplest 
examples of wave optics is the interference of light from two small slits in a screen.

Suppose we have two slits, illuminated by a coherent light source such as a laser (so that 
the waves emerge from the two slits with the same phase).  If the slits are smaller than or 
comparable to the wavelength, each will act as a point source.  In the diagram below, red 
lines indicate wave crests (maxima) and red lines indicate troughs (minima).

In some directions (labeled “constructive”), the crests overlap with the crests and the 
troughs overlap with the troughs.  The wave amplitudes from the two point sources add 
in these directions, and if we place a screen where the labels are, there will be a bright 
spot on the screen (called a fringe).  In other directions (labeled “destructive”), the crests 
overlap with the troughs, and the waves tend to cancel out.  On our screen, we would see 
dark spots along these directions.  This is called a double-slit interference pattern.

Consider the geometry of the double-slit apparatus.  As the light travels from each slit to 
a point on the screen, the path lengths from the two slits are different by a distance ∆L :  



Let θ  be the angle from between the line from the center of the slit apparatus to the 
center of the screen and the line to the point on the screen.  Then, it is easy to show that 
the angle subtended by ∆L is also θ.  Therefore,  ∆L = d sin θ .  We get constructive 
interference if the path lengths are different by a multiple of the wavelength, and 
destructive interference if the path lengths are different by half a wavelength:

Thus we see the alternating pattern of spots of constructive and destructive interference 
on the screen, as expected.  The central point on the screen has a spot where the path 
lengths are equal, so it is a bright spot; the flanking spots are where the path length 
difference is λ / 2, which are dark, followed by bright spots again, etc.

Example:  Red light with a wavelength of 650 nm goes through double slits with a 
separation of 1 mm.  The interference pattern is projected on a screen 10 meters away. 
What is the distance between the first bright spot and the second one?  What if blue 
light, with a wavelength of 450 nm, is used instead?

The first spot occurs at θ = 0.  The second spot is at d sin θ = λ, or sin θ = λ / d, 
θ = 6.5 x 10-4 radians.  The separation on the screen is Rθ, where R is the distance to the 
screen, so the separation is y = 6.5 x 10-3m = 6.5mm.

For blue light, we get θ = 4.5 x 10-4 radians and y = 4.5mm.  Light with shorter 
wavelengths leads to narrower interference patterns.

Example:  A screen is 2 meters away from the double-slit source.  The double slits are 
separated by a distance of 1.5mm.  A 1cm section of screen contains 12 alternating bright 
fringes.  What is the wavelength of light?

Since one centimeter contains 12 fringes, n changes by 12 over the course of a 
centimeter.  One centimeter corresponds to θ = 0.01m / 2m = 0.005 radians.  Thus,
d sin (0.005) ≈ 0.005d = 12λ, or λ = 0.005 x (1.5 x 10-3m) / 12 =  6.25 x 10-7m = 625 nm.


