
Joint Beat & Tatum Tracking from Music Signals

Jarno Seppänen Antti Eronen Jarmo Hiipakka
Nokia Research Center

P.O.Box 407, FI-00045 NOKIA GROUP, Finland
{jarno.seppanen, antti.eronen, jarmo.hiipakka}@nokia.com

Abstract
This paper presents a method for extracting two key met-
rical properties, the beat and the tatum, from acoustic sig-
nals of popular music. The method is computationally very
efficient while performing comparably to earlier methods.
High efficiency is achieved through multirate accent analy-
sis, discrete cosine transform periodicity analysis, and phase
estimation by adaptive comb filtering. During analysis, the
music signals are first represented in terms of accentuation
on four frequency subbands, and then the accent signals are
transformed into periodicity domain. Beat and tatum peri-
ods and phases are estimated in a probabilistic setting, incor-
porating primitive musicological knowledge of beat–tatum
relations, the prior distributions, and the temporal continu-
ities of beats and tatums. In an evaluation with 192 songs,
the beat tracking accuracy of the proposed method was found
comparable to the state of the art. Complexity evaluation
showed that the computational cost is less than 1% of earlier
methods. The authors have written a real-time implementa-
tion of the method for the S60 smartphone platform.

Keywords: Beat tracking, music meter estimation, rhythm
analysis.

1. Introduction
Recent years have brought significant advances in the field
of automatic music signal analysis, and music meter estima-
tion is no exception. In general, the music meter contains
a nested grouping of pulses called metrical levels, where
pulses on higher levels are subsets of the lower level pulses;
the most salient level is known as the beat, and the lowest
level is termed the tatum [1, p. 21].

Metrical analysis of music signals has many applications
ranging from browsing and visualization to classification
and recommendation of music. The state of the art has ad-
vanced high in performance, but the computational require-
ments have also remained restrictively high. The proposed
method significantly improves computational efficiency while
maintaining satisfactory performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

The technical approaches for meter estimation are vari-
ous, including e.g. autocorrelation based methods [6], inter-
onset interval histogramming [5], or banks of comb filter
resonators [4], possibly followed by a probabilistic model [3].
See [2] for a review on rhythm analysis systems.

2. Algorithm Description
The algorithm overview is presented in Fig. 1: the input is
audio signals of polyphonic music, and the output consists
of the times of beats and tatums. The implementation of the
beat and tatum tracker has been done in C++ programming
language in the S60 smartphone platform. The algorithm
design is causal and the implementation works in real time.

The operation of the system can be described in six stages
(see Fig. 1):

1. Resampling stage,

2. Accent filter bank stage,

3. Buffering stage,

4. Periodicity estimation stage,

5. Period estimation stage, and

6. Phase estimation stage.

First, the signal is resampled to a fixed sample rate, to
support arbitrary input sample rates. Second, the accent
filter bank transforms the acoustic signal of music into a
form that is suitable for beat and tatum analysis. In this
stage, subband accent signals are generated, which consti-
tute an estimate of the perceived accentuation on each sub-
band. The accent filter bank stage significantly reduces the
amount of data.

Then, the accent signals are accumulated into four-second
frames. Periodicity estimation looks for repeating accents
on each subband. The subband periodicities are then com-
bined, and summary periodicity is computed.

Next, the most likely beat and tatum periods are esti-
mated from each periodicity frame. This uses a probabilistic
formulation of primitive musicological knowledge, includ-
ing the relation, the prior distribution, and the temporal con-
tinuity of beats and tatums. Finally, the beat phase is found
and beat and tatum times are positioned. The accent signal
is filtered with a pair of comb filters, which adapt to different
beat period estimates.

Phase
estimation

Period
estimation

Accent
filter bank Buffering Periodicity

estimation

Audio
signal

Subband
accent
signals

Accent
frames

Summary
periodicity

Beat and
tatum

periods

Beat and
tatum
times

Resampling

Audio
signal

Figure 1. Beat and tatum analyzer.

x2 LPF

(a)

DiffComp Rect 0.8

0.2

(b)

M1QMF
2 6 kHz

QMF

Σ

QMF
2 1,5 kHz

QMF

Σ

QMF
2

QMF

Σ
375 Hz

24 kHz

375 Hz

(c)

125 Hz 125 Hz

a2

a1

a3

a4

x
Σ

125 Hz

125 Hz

125 Hz
(b) (c)

(b) (c)

(b) (c)

Figure 2. Accent filter bank overview. (a) The audio signal is first divided into subbands, then (b) power estimates on each subband
are calculated, and (c) accent computation is performed on the subband power signals.

2.1. Resampling
Before any audio analysis takes place, the signal is con-
verted to a 24 kHz sample rate. This is required because
the filter bank uses fixed frequency regions. The resampling
can be done with a relatively low-quality algorithm, linear
interpolation, because high fidelity is not required for suc-
cessful beat and tatum analysis.

2.2. Accent Filter Bank
Figure 2 presents an overview of the accent filter bank. The in-
coming audio signal x[n] is (a) first divided into subband au-
dio signals, and (b) a power estimate signal is calculated for
each band separately. Last, (c) an accent signal is computed
for each subband.

The filter bank divides the acoustic signal into seven fre-
quency bands by means of six cascaded decimating quadra-
ture mirror filters (QMF). The QMF subband signals are
combined pairwise into three two-octave subband signals,
as shown in Fig. 2(a). When combining two consecutive
branches, the signal from the higher branch is decimated
without filtering. However, the error caused by the alias-
ing produced in this operation is negligible for the proposed
method. The sampling rate decreases by four between suc-
cessive bands due to the two QMF analysis stages and the
extra decimation step. As a result, the frequency bands are
located at 0–190 Hz, 190–750 Hz, 750–3000 Hz, and 3–
12 kHz, when the filter bank input is at 24 kHz.

There is a very efficient structure that can be used to im-

plement the downsampling QMF analysis with just two all-
pass filters, an addition, and a subtraction. This structure is
depicted in Fig. 5.2-5 in [7, p. 203]. The allpass filters for
this application can be first-order filters, because only mod-
est separation is required between bands.

The subband power computation is shown Fig. 2(b). The
audio signal is squared, low-pass filtered (LPF), and dec-
imated by subband specific factor Mi to get the subband
power signal. The low-pass filter is a digital filter having
10 Hz cutoff frequency. The subband decimation ratios Mi =
{48, 12, 3, 3} have been chosen so that the power signal sam-
ple rate is 125 Hz on all subbands.

The subband accent signal computation in Fig. 2(c) is
modelled according to Klapuri et al. [3, p. 344–345]. In the
process, the power signal first is mapped with a nonlinear
level compression function labeled Comp in Fig. 2(c),

f(x) =
{

5.213 ln(1 + 10
√

x), x > 0.0001
5.213 ln 1.1 otherwise. (1)

Following compression, the first-order difference signal is
computed (Diff) and half-wave rectified (Rect). In accor-
dance with Eq. (3) in [3], the rectified signal is summed to
the power signal after constant weighting, see Fig. 2(c). The
high computational efficiency of the proposed method lies
mostly in the accent filter bank design. In addition to effi-
ciency, the resulting accent signals are comparable to those
of Klapuri et al., see e.g. Fig. 3 in [3].

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02 BT

(a
)

Time lag [s]

1 2 3 4 5 6 7 8 9 10
0

0.5

1
B T

(b
)

Frequency [Hz]

Figure 3. (a) Normalized autocorrelation and (b) summary pe-
riodicity, with beat (B) and tatum (T) periods shown.

2.3. Buffering
The buffering stage implements a ring buffer which accu-
mulates the signal into fixed-length frames. The incoming
signal is split into consecutive accent signal frames of a fixed
length N = 512 (4.1 seconds). The value of N can be mod-
ified to choose a different performance–latency tradeoff.

2.4. Accent Periodicity Estimation
The accent signals are analyzed for intrinsic repetitions. Here,
periodicity is defined as the combined strength of accents
that repeat with a given period. For all subband accent sig-
nals, a joint summary periodicity vector is computed.

Autocorrelation ρ[`] =
∑N−1

n=0 a[n]a[n − `], 0 ≤ ` ≤
N−1, is first computed from each N -length subband accent
frame a[n]. The accent signal reaches peak values whenever
there are high accents in the music and remains low other-
wise. Computing autocorrelation from an impulsive accent
signal is comparable to computing the inter-onset interval
(IOI) histogram as described by Seppänen [5], with addi-
tional robustness due to not having to discretize the accent
signal into onsets.

The accent frame power ρ[0] is stored for later weight-
ing of subband periodicities. Offset and scale variations are
eliminated from autocorrelation frames by normalization,

ρ̄[`] =
ρ[`]−minn ρ[n]∑N−1

n=0 ρ[n]−N minn ρ[n]
. (2)

See Fig. 3(a) for an example normalized autocorrelation frame.
The figure shows also the correct beat period B, 0.5 seconds,
and tatum period T, 0.25 seconds, as vertical lines.

Next, accent periodicity is estimated by means of the N -
point discrete cosine transform (DCT)

R[k] = ck

N−1∑
n=0

ρ̄[n] cos
π(2n + 1)k

2N
(3)

c0 =
√

1/N (4)

ck =
√

2/N, 1 ≤ k ≤ N − 1. (5)

Calculate
final

weight
matrix

Summary
periodicity
strength

Update
beat and

tatum
weights

Previous
period

estimates

Priors

Beat &
tatum

weights

Period
relation
matrix

Weight
matrix

Calculate
weighted
periodicity

Find
maxima

Weighted
periodicity

Beat
and

tatum
periods

Figure 4. The period estimator.

Similarly to an IOI histogram [5], accent peaks with a period
p cause high responses in the autocorrelation function at lags
` = 0, ` = p (nearest peaks), ` = 2p (second-nearest peaks),
` = 3p (third-nearest peaks), and so on. Such response is ex-
ploited in DCT-based periodicity estimation, which matches
the autocorrelation response with zero-phase cosine func-
tions; see dashed lines in Fig. 3(a).

Only a specific periodicity window, 0.1 s ≤ p ≤ 2 s, is
utilized from the DCT vector R[k]. This window specifies
the range of beat and tatum periods for estimation. The sub-
band periodicities Ri[k] are combined into an M -point sum-
mary periodicity vector, M = 128,

S[k] =
4∑

i=1

ρi[0]γR̃i[k] 0 ≤ k ≤ M − 1, (6)

where R̃i[k] has interpolated values of Ri[k] from 0.5 Hz
to 10 Hz, and the parameter γ = 1.2 controls weighting.
Figure 3(b) shows an example summary periodicity vector.

2.5. Beat and Tatum Period Estimation
The period estimation stage finds the most likely beat pe-
riod τ̂B

n and tatum period τ̂A
n for the current frame at time n

based on the observed periodicity S[k] and primitive mu-
sicological knowledge. Likelihood functions are used for
modeling primitive musicological knowledge as proposed
by Klapuri et al. in [3, p. 344–345], although the actual
calculations of the model are different. An overview of the
period estimator are depicted in Fig. 4.

First, weights f i(τ i
n) for the different beat and tatum pe-

riod candidates are calculated as a product of prior distribu-
tions pi(τ i) and “continuity functions”:

f i
C

(
τ i
n

τ i
n−1

)
=

1
σ1

√
2π

exp

[
− 1

2σ2
1

(
ln

τ i
n

τ i
n−1

)2
]

, (7)

as defined in Eq. (21) in [3, p. 348]. Here, i = A denotes
the tatum and i = B denotes the beat. The value σ1 = 0.63
is used. The continuity function describes the tendency that
the periods are slowly varying, thus taking care of “tying”
the successive period estimates together. τ i

n−1 is defined as
the median of three previous period estimates. This is found
to be slightly more robust than just using the estimate from

0
0.5

1
1.5

2

00.511.52
0

0.2

0.4

0.6

0.8

Beat period [s]Tatum period [s]

Li
ke

lih
oo

d

Figure 5. Likelihood of different beat and tatum periods to
occur jointly.

the previous frame. The priors are lognormal distributions
as described in Eq. (22) in [3, p. 348].

The output of the Update beat and tatum weights step in
Fig. 4 are two weighting vectors containing the evaluated
values of the functions fB(τB

n) and fA(τA
n). The values

are obtained by evaluating the continuity functions for the
set of possible periods given the previous beat and tatum
estimates, and multiplying with the priors.

The next step, Calculate final weight matrix, adds in the
modelling of the most likely relations between simultaneous
beat and tatum periods. For example, the beat and tatum are
more likely to occur at ratios of 2, 4, 6, and 8 than in ratios
of 1, 3, 5, and 7. The likelihood of possible beat and tatum
period combinations τB , τA is modelled with a Gaussian
mixture density, as described in Eq. (25) in [3, p. 348]:

g(τB , τA) =
9∑

l=1

wlN (
τB

τA
; l, σ2) (8)

where l are the component means and σ2 is the common
variance. Eq. (8) is evaluated for the set of M × M period
combinations. The weights wl were hand adjusted to give
good performance on a small set of test data. Fig. 5 de-
picts the resulting likelihood surface g(τB , τA). The final
weighting function is

h(τB
n , τA

n) =

√
fB(τB

n)
√

g(τB
n , τA

n)fA(τA
n). (9)

Taking the square root spreads the function such that the
peaks do not become too narrow. The result is a final M×M
likelihood weighting matrix H with values of h(τB

n , τA
n) for

all beat and tatum period combinations.
The Calculate weighted periodicity step weights the sum-

mary periodicity observation with the obtained likelihood
weighting matrix H. We assume that the likelihood of ob-
serving a certain beat and tatum combination is proportional
to a sum of the corresponding values of the summary peri-
odicity, and define the observation O(τB

n , τA
n) = (S[kB] +

Comb filter
1

Time of last
beat in the

previous frame

Beat
period

Phase
prediction

Weighted
accentuation

Phase
prediction

Comb filter
2

Previous
beat period

Calculate
scores for

phase
candidates

Calculate
scores for

phase
candidates

Previous
beat

period

Beat
period Select winning

phase and refine
beat period. Store

winning Comb
filter state. Beat period

and phase

Predicted
phase

Predicted
phase

Figure 6. The phase estimation stage finds the phase of the beat
and tatum pulses, and may also refine the beat period estimate.

S[kA])/2, where the indices kB and kA correspond to the
periods τB

n and τA
n , respectively. This gives an observation

matrix of the same size as our weighting matrix. The ob-
servation matrix is multiplied pointwise with the weighting
matrix, giving the weighted M × M periodicity matrix P
with values P (τB

n , τA
n) = h(τB

n , τA
n)O(τB

n , τA
n). The fi-

nal step is to Find the maximum from P. The indices of
the maximum correspond to the beat and tatum period es-
timates τ̂B

n , τ̂A
n . The period estimates are passed on to the

phase estimator stage.

2.6. Beat Phase Estimation
The phase estimation stage is depicted in Fig. 6. The tatum
phase is the same as the beat phase and, thus, only the beat
phase is estimated. Phase estimation is based on a weighted
sum v[n] =

∑4
i=1(6 − i)ai[n] of the observed subband ac-

cent signals ai[n], 0 ≤ n ≤ N −1. Compared to Eq. (27) in
[3, p. 350], the summation is done directly across the accent
subbands, instead of resonator outputs.

A bank of comb filters with constant half time T0 and de-
lays corresponding to different period candidates have been
found to be a robust way of measuring the periodicity in ac-
centuation signals [3] [4]. Another benefit of comb filters
is that an estimate of the phase of the beat pulse is read-
ily obtained by examining the comb filter states [4, p. 593].
However, implementing a bank of comb filters across the
range of possible beat and tatum periods is computationally
very expensive. The proposed method utilizes the benefits
of comb filters with a fraction of the computational cost of
the earlier methods. The phase estimator implements two
comb filters. The output of a comb filter with delay τ and

gain ατ for the input v[n] is given by

r[n] = ατr[n− τ] + (1− ατ)v[n]. (10)

The parameter τ of the two comb filters is continuously
adapted to match the current (τ̂B

n) and the previous (τ̂B
n−1)

period estimates. The feedback gain ατ = 0.5τ/T0 , where
the half time T0 corresponds to three seconds in samples.

The phase estimation starts by finding a prediction φ̂n for
the beat phase φn in this frame, the step Phase prediction in
Fig. 6. The prediction is calculated by adding the current
beat period estimate to the time of the last beat in the previ-
ous frame. Another source of phase prediction is the comb
filter state, however, this is not always available since the
filter states may be reset between frames.

The accent signal is passed through the Comb filter 1,
giving the output r1[n]. If there are peaks in the accent sig-
nal corresponding to the comb filter delay, the output level
of the comb filter will be large due to a resonance.

We then calculate a score for the different phase candi-
dates l = 0, . . . , τ̂B − 1 in this frame. The score is

p[l] =
1
|Il|

∑
j∈Il

r1[j] (11)

where Il is the set of indices {l, l + τ̂B , l + 2τ̂B , . . .} be-
longing to the current frame, ∀i ∈ Il : 0 ≤ i ≤ N − 1.
The scores are weighted by a function which depends on the
deviation of the phase candidate from the predicted phase
value. More precisely, the weight is calculated according to
Eq. (33) in [3, p. 350]:

w[l] =
1

σ3

√
2π

exp
(
−d[l]2

2σ2
3

)
, (12)

but the distance is calculated in a simpler way: d[l] = (l −
φ̂n)/τ̂B . The phase estimate is the value of l maximizing
p[l]w[l].

If there are at least three beat period predictions avail-
able and the beat period estimate has changed since the last
frame, the above steps are mirrored using the previous beat
period as the delay of comb filter 2. This is depicted by the
right hand side branch in Fig. 6. The motivation for this is
that if the prediction for the beat period in the current frame
is erroneous, the comb filter tuned to the previous beat pe-
riod may indicate this by remaining locked to the previous
beat period and phase, and producing a more energetic out-
put and thus larger score than the filter tuned to the erro-
neous current period.

In the final step, the best scores delivered by both branches
are compared, and the one giving the largest score deter-
mines the final beat period and phase. Thus, if the comb
filter branch tuned to the previous beat period gives a larger
score, the beat period estimate is adjusted equal to the pre-
vious beat period. The state of the winning comb filter is
stored to be used in the next frame as comb filter 2.

After the beat period and phase are obtained, the beat
and tatum locations for the current audio frame are inter-
polated. Although this reduces the ability of the system to
follow rapid tempo changes, it reduces the computational
load since the back end processing is done only once for
each audio frame.

3. Implementation
The authors have written a real-time implementation of the
proposed method for the S60 smartphone platform. The im-
plementation uses fixed-point arithmetic, where all signals
are represented as 32-bit integers and coefficients as 16-
bit integers. The power estimation low-pass filter is imple-
mented simply as a first-order IIR due to the arithmetic used.
Increasing the filter order would have a positive impact on
performance, but the given filter design causes that the co-
efficients exceed 16-bit dynamic scale. Naturally, the accent
power compression is realized by a 200-point lookup table.
Tables are used also in the period and phase estimation for
efficiently computing weight function values. The continu-
ity function, the priors, and the likelihood surface shown in
Fig. 5 are stored into lookup tables. Lookup tables are also
utilized for storing precalculated feedback gain values for
the comb filters. For efficiency, both the autocorrelation and
discrete cosine transform processes are implemented on top
of a fast Fourier transform (FFT).

For low-latency real-time implementation, the algorithm
is split into two execution threads. Referring to Fig. 1, a
high-priority “front-end” thread runs the resampling and ac-
cent filter bank stages, feeding their results into a memory
buffer. The front-end runs synchronously with other au-
dio signal processing. Periodicity estimation and following
stages are run in a low-priority “back-end” thread, which is
signaled when a new accent frame is available from buffer-
ing stage. The lower priority allows the back-end processing
to take a longer time without interrupting the audio process-
ing, unlinking audio frame length and accent frame length.

4. Evaluation
The proposed algorithm is evaluated in two aspects, beat
tracking performance and computational complexity. The
methods of Klapuri et al. [3] and Scheirer [4] are used as a
comparison, using the original authors’ implementations. 1

4.1. Performance
The performance was evaluated by analyzing 192 songs in
CD audio quality. Songs with a steady beat were selected
from various genres. The majority of songs were rock/pop
(43%), soul/R&B/funk (18%), jazz/blues (16%), and elec-
tronic/dance (11%) music, and all except two songs were in
4/4 meter. The beats of approximately one minute long song

1 We wish to thank Anssi Klapuri and Eric Scheirer for making
their algorithm implementations available for the comparison.

Table 1. Beat tracking accuracy scores.

Continuity required Individual estimates
Method Correct Accept d/h Period Correct Accept d/h Period

Proposed 60% 70% 76% 64% 76% 79%
Klapuri 66% 76% 73% 72% 85% 81%
Scheirer 29% 34% 30% 53% 65% 59%

excerpts were annotated by tapping along with the song play-
ing. The evaluation methodology followed the one proposed
in [3], assessing both the period and phase estimation accu-
racy of the proposed method. A correct period estimate is
defined to deviate less than 17.5% from the annotated refer-
ence, and the correct phase to deviate less than 0.175 times
the annotated beat time. The following scores were calcu-
lated and averaged over the duration of the excerpts and over
all 192 songs:

• Correct: Beat estimate with correct period and phase.

• Accept d/h: Beat estimate with period matching either
0.5, 1.0, or 2.0 times the correct value, and correct
phase.

• Period: Beat estimate with correct period, phase is
ignored.

We calculated the scores for both the longest continuous
correctly analyzed segment and individual estimates without
continuity requirement. For comparison, the methods pro-
posed in [3] and [4] were run on the same data. The results
are shown in Table 1. In summary, the proposed method ap-
proaches the Klapuri et al. method performance in all of the
cases. The biggest deviations are in the Scheirer method
scores with continuity requirement, reflecting the lack of
beat period smoothing in the Scheirer method.

4.2. Complexity
We compared the computational complexity of the three al-
gorithms on a PC having 1.86 GHz Pentium M processor
and 1 GB of memory. The proposed and Scheirer methods
were implemented in C++ in floating point and compiled
with the same compiler settings; function inlining intrinsics
were added into Scheirer’s original algorithm. The Klapuri
method is a combination of MATLAB and C++ code.

A 300-second audio clip was processed five times with
each of the three methods and the algorithm CPU time was
measured (excluding file access and decoding). The median
CPU cycles of the five runs are shown in Table 2, divided by
106 (Mcycles), and normalized with audio clip length (Mcy-
cles/s). The Klapuri method is not strictly comparable to the
others because it is mostly MATLAB processing: 61% of
the CPU is used in MATLAB code. The Scheirer method
cycles break down into 82% for comb filtering and 13% for

Table 2. Processor usage profiles.

Method Mcycles Mcycles/s

Proposed 678 2.3
Klapuri (MATLAB) 125000 420
Scheirer 136000 450
Scheirer without malloc etc. 119000 390

runtime functions (e.g. malloc). A second Scheirer pro-
file in Table 2 has the runtime functions subtracted. The
proposed algorithm is found over 170 times more efficient.

We also evaluated the computational complexity of the
proposed method on a Nokia 6630 smartphone having a
220 MHz ARM9 processor. An instruction profiler was
configured to sample the processor program counter on a
1 kHz rate, yielding 302500 data points in total. During
playback, 13% of processor time was spent in the beat and
tatum tracker implementation and 8% in MP3 format de-
coding. The profile shows the algorithm to perform very ef-
ficiently, comparable to the complexity of the MP3 decoder.

5. Conclusion
A beat and tatum tracker algorithm can be made computa-
tionally very efficient without compromising beat tracking
performance. We introduced a novel beat and tatum tracker
for music signals, consisting of multirate accent analysis,
discrete cosine transform periodicity analysis, and phase es-
timation by adaptive comb filtering. The complexity of the
proposed method is less than 1% of Scheirer’s method, and
its beat tracking accuracy approaches Klapuri’s method. The
authors have created a real-time implementation of the pro-
posed method for the S60 smartphone platform.

References

[1] J.A. Bilmes. “Timing is of the Essence: Perceptual and Com-
putational Techniques for Representing, Learning, and Re-
producing Expressive Timing in Percussive Rhythm.” M.Sc.
Thesis, Massachusetts Institute of Tech., Sep. 1993.

[2] F. Gouyon and S. Dixon. “A review of automatic rhythm de-
scription systems.” Comp. Music J., 29(1):34–54, 2005.

[3] A.P. Klapuri, A.J. Eronen, and J.T. Astola. “Analysis of
the meter of acoustic musical signals.” IEEE Trans. Audio,
Speech, and Lang. Proc., 14(1):342–355, Jan. 2006.

[4] E.D. Scheirer. “Tempo and beat analysis of acoustic musical
signals.” J. Acoust. Soc. Am., 103(1):588–601, Jan. 1998.

[5] J. Seppänen. “Tatum grid analysis of musical signals.” In
Proc. IEEE Workshop on Applic. of Signal Proc. to Audio
and Acoust. (WASPAA), pp. 131–134, New Paltz, NY, USA,
Oct. 2001.

[6] C. Uhle, J. Rohden, M. Cremer, and J. Herre. “Low com-
plexity musical meter estimation from polyphonic music.”
In Proc. AES 25th Int. Conf., London, UK, 2004.

[7] P.P. Vaidyanathan. Multirate Systems and Filter Banks.
Prentice-Hall, Upper Saddle River, NJ, USA, 1993.

	 Introduction
	 Algorithm Description
	 Resampling
	 Accent Filter Bank
	 Buffering
	 Accent Periodicity Estimation
	 Beat and Tatum Period Estimation
	 Beat Phase Estimation

	 Implementation
	 Evaluation
	 Performance
	 Complexity

	 Conclusion

