MIIFPS

MIPS Instruction Set R5

WWW.mips.com

This section covers the MIPS instruction set.

Instruction Set Overview

* This section covers the MIPS32R3 instruction set
= |nstructions will be broken down into 2 types of instructions:
= Machine instructions — These instruction are directly defined by the MIPS Architecture specification.

= Macro instructions — instructions that are aliases for actual machine instructions or instructions that
the assembler will translate into multiple machine instructions.

MIFPS

+ | am going to break down the instructions into two types.

+ a machine instruction which is directly defined in the MIPS architecture and
has a one to one correspondence with a single instruction bit encoding. Most
of these instruction are designed to execute in a single cycle as long as there
are on data dependencies.

+ then there are macro instructions. These instructions are supplied by the
assembler to make assemble coding easier. These instructions can be a
simple as an alias to a machine instruction or translated into a series of
machine instructions.

While the macro instruction do make it easier to write assemble programs
they will make it more confusing to debug an assemble program. This is
because when a debugger dissembles a stream of instructions from memory
it will list them out a actual machine instructions and not translate them back
into the macro instruction they came from.

Instruction Set Overview

= All instructions one-word length (32 Bits)
* 32 General Purpose Registers (GPRs)
= 2 special: GPRO (zero) and GPR31 (return address)
= 3 operand instructions
= 2 source (rs, rt) and 1 destination (rd) register
= Can have a 16 bit immediate value instead of 1 of the source registers.
» Register length arithmetic only
= No byte or halfword arithmetic.
= Some instructions do have 32 and 64 bit versions
= Double length results go to HI/LO registers

MIFPS

Here are some facts you should know before | begin to tell you more about
the instructions.

+ for the MIPS32 architecture Instructions have a fixed length of 32 bits and
are always aligned in memory on a word boundary.

+ In the MIPs architecture there are 32 General purpose registers

+ two of which are special. GPRO will always reads 0 which is useful when
you are comparing a value to O because it is already in a register. GPR31 is
reserved for the return address from a Jump and link instruction. All other
registers can be used for either address or data.

+ Instructions can have three operands,
+ 2 source registers and one destination register.

+ The immediate instructions have 16 immediate value instead of one of the
source registers. The assembler does allow for some instructions to be
abbreviated to have only 2 operands I'll give examples when | get to those
instructions.

+ Arithmetic instructions operate on whole registers only,

+ there is no half word or byte arithmetic.
+ Some instruction have 32 or 64 bit versions.

+ Double length operands and results will go into the Hi and Lo registers that are not
part of the General purpose registers. These registers are both 32bits wide and HI
will hold the high order bits Lo will hold the low order bits.

Instruction Set Overview — cont.

* Hardware Floating Point is optional through Coprocessor 1

= Hardware Floating Point units have their own registers
= Floating Point Registers are interlocked

MIFPS

+ Hardware floating Point is an optional feature
+ this unit has its own registers

+ which are interlocked in the pipe line so instructions dependent on floating
point results will stall and wait for completion of the floating point operation

Floating point instructions are not covered in this section.

Load/Store Instructions

* One addressing mode
= GPR + signed 16-bit offset
* Addresses aligned on size boundary

= Load/stores must be aligned. Memory operations can only load or store data from
addresses aligned to suit the data type being transferred

= Bytes can be transferred at any address
Halfwords must be even-aligned to 2-byte boundaries

Word transfers aligned to 4-byte boundaries.

All offsets are in bytes

MIFPS

+ There is only one addressing mode and that is register plus a signed
immediate 16 bit off set this plus or minus 32K covers a 64K range of
addresses.

+ All address are aligned to their data type boundary.

+ Byte or a char of course are 1 byte and aligned to a byte boundary.

+ Halfwords or shorts are 2 bytes and aligned to a 2 byte boundary,

+ Words, int or long are 4 bytes and aligned to a 4 byte boundary.

+ all offset values are in bytes

Load/Store Instructions

* Delayed loads

= Memory data cannot be used immediately by next instruction because it arrives too late in
the pipeline.

» L oads are interlocked to the data usage. Therefore the processor will stall for a cycle if
the next instruction tries to use the load data.

= Compilers will try to avoid using data right after a load.

MIFPS

+ Load instructions will always incur at least a one cycle delay even if it hits in
the data cache.

+ The core pipeline is interlocked on the completion of the load data which
will cause the processor to stall an instruction if that instruction uses the
register the data is being loaded into.

+ compliers will try to avoid using data right after a load by trying to find a non
dependent instruction to execute after a load.

Load, Store Instructions

MIFPPS

All load instructions use a destination register and a source register with a
signed immediate offset. Each type of load instruction has a signed and
unsigned version. The sighed version is signed extended and the unsigned
version designated by a U is zero extended.

+The Load Byte instruction loads a byte from any address into the least
significant byte of the destination register.

+The Load Halfword instruction loads a halfword from a halfword aligned
address into the least significant bytes of the destination register.

+The Load word instruction loads a word from a word aligned address the
destination register.

All store instructions use a source register and a destination register with a
signhed immediate offset.

+ store byte stores the least significant byte in the source register to any
address

+ store halfword stores the 2 least significant bytes in the source register to a
halfword aligned address

+ store word stores the contents of the source register to a word aligned address.

Load, Store Instructions

Assemble | Pseudo MIPS32
Code

LB, LBU Load Byte Ib 10, x(t1) t0 = Mem([t1+x] |
LH, LHU Load Halfword Ih t0, x(t1) t0 = Mem[t1 +x] 1| M
LW Load Word Iw t0, x(t1) t0 = Mem([t1 +x] | M
li Load Immediate Iw s0, Immediate s0 = Immediate 1|
SB Store Byte sb 10, x(t1) Mem[t1+x] = t0 M |
SH Store Halfword sh, t0, x(t1) Mem[t1] = tO 1| M
SW Store Word sw t0, x(t1) Mem[t1] = tO M 1|
MIFPPS

All load instructions use a destination register and a source register with a
signed immediate offset. Each type of load instruction has a signed and
unsigned version. The sighed version is signed extended and the unsigned
version designated by a U is zero extended.

+The Load Byte instruction loads a byte from any address into the least
significant byte of the destination register.

+The Load Halfword instruction loads a halfword from a halfword aligned
address into the least significant bytes of the destination register.

+The Load word instruction loads a word from a word aligned address the
destination register.

All store instructions use a source register and a destination register with a
signhed immediate offset.

+ store byte stores the least significant byte in the source register to any
address

+ store halfword stores the 2 least significant bytes in the source register to a
halfword aligned address

+ store word stores the contents of the source register to a word aligned address.

Load Link and Store Conditional

= LL, SC Instructions

= Provide the primitives to implement atomic read-modify-write (RMW) operations
for synchronized memory locations.

= There can be only one active RMW sequence per processor.

= When an LL is executed it starts an active RMW sequence replacing any other
sequence that was active.

= The RMW sequence is completed by a subsequent SC instruction that either
completes the RMW sequence atomically, or does not and fails.
= SC will fail if

= An ERET instruction is executed
= Coherent store completed by another processor or coherent I/O module

MIFPS

Load Link and Store conditional instructions provide very basic semaphore
operations. For example when a device driver is accessing a part of shared
memory that it shares with an interrupt routine.

+ the Load Link and Store conditional instruction sequence provides a way to
implement a atomic read modify write operation

+ you can have one active Load Link Store conditional sequence active at a
time.

+ If another Load Link is executed between a Load Link Store conditional pair
the Store conditional from the original pair will fail.

+ the Read modify write sequence is completed by a subsequent Store
conditional which will either succeed in the store or fail depending on the
detection of conditions in-between which may have cause the memory
location to be altered.

+ For a single processor system any exception return or ERET in-between a
Load Link and Store conditional pair will cause the Store conditional to fail.

LL and SC Additional Failure Conditions

= MT enabled Cores

= Any TC completes a store within the same cacheline as the word accessed by
LL and SC.

= The TCRestart register for the TC executing the LL/SC instruction sequence is
written.

= Cores Using the Memory Coherence Manager

= A coherent store is completed by another processor or coherent I/O module into
the cacheline containing the word.

= M4K core

= The SYNC instruction is externalized on the SRAM interface of the M4K core.
External logic can use this information in a system-dependent manner to
enforce memory ordering between various memory elements in the system.

MIFPS

Here are some additional failure condition that depend on the type of MIPS
Core being used

+ For a Multi threaded enabled core

+ if any thread completes a store into the same cache line as an active Load
Link Store conditional sequence or the thread executing the sequence is
restarted the Store conditional will fail

+ In a multi core system using the MIPS Memory Coherence Manager
hardware option any processor that writes into the same cache line will cause
the Store conditional to fail

+ In a M4K implementation the sync instruction is externalized to allow
ordering of memory writes by other memory elements in the system. If the
sync signal is utilized like this in your system then any write by any memory
element to the 2K byte memory region that contains the word being written
will cause the Store conditional to fail.

STOP! Do not include in Video presentation:

For a MT enabled core

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

*A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

10

*The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous region of virtual
memory. (The region does not have to be aligned, other than the alignment required for instruction words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:
*Execution of SC must have been preceded by execution of an LL instruction.

*On coherent core - An RMW sequence executed without intervening events that would cause the SC to fail must use the
same address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

10

Load Link and Store Conditional

/ Instruction Stream ./ LL-SC Chain
y Load Linked (LL) 2 » Store Conditional (SC)
.‘ instruction executed } !- instruction executed
| | 3
LL rtoffset(base) I SC rt,offset(base) RMW sequence
I completed
Events that can break the chain: {success)
» Execution of ERET
« Store to memory block GPRrt *— 1
. . RMW sequence
Load Link (LL) bit NOT complsted
(failure)
RMW - Read Modify Write > GPRrt *— 0

Memory is written on success, and not written on failure

MIFPS

+ When an Load Link enters the instruction pipeline it starts an active Read
Modify Write sequence replacing any other sequence that was active.

+ Load Link bit in the CPO register is set

+ Execution continues until a Store conditional instruction is executed

+ If in-between the Load Link and Store conditional , there is no exception
or a coherent store completed by another processor or coherent /0O module,
into the block of synchronizable physical memory containing the word, the
store will succeed.

+ A 1, indicating success, is written into source register .

+ Otherwise, memory is not modified and a 0, indicating failure, is written
into source register.

1"

Load Link and Store Conditional

Assemble |Pseudo
Code

Load Link Word I1t1, x(t0) t1 = Mem[t0 +x]
SC Store Conditional sc t1, x(t0) Mem][t0+x] = t1 %]
Word
= Example of a wait for a TryAgain:
binary semaphore: Il t1, 0(t0)
WaitForSem: bne t1, zero, WaitForSem
la t0, sem lit1, 1
sc t1, 0(t0)

beq t1, zero, TryAgain
* got the semaphore... */
jrra

MIFPPS s

13

Unaligned Loads and Stores
= LWL (big endian example)

Iwl s1, 2(0)

4 5 6 7 8
OE OF 01 02 03

Address 0 1
contents 0OA | 0B

Register s1 Before LWL instruction
Byte # 0 1 2 3
contents 09 08 07 06

Register|s1 After LWL instruction

Byte # 0 1 2 3
contents 0C 0D 07 06
|
Y

MIPS ’

Normal loads and stores in the MIPS architecture must be aligned; halfwords
may be loaded only from 2-byte boundaries and words only from 4-byte
boundaries. A load instruction with an unaligned address will produce an
Address Error Exception so you should install a exception handler. This
exception handler could emulate the desired load operation and hide the fact
that the load was not aligned from the application. The exception handler
could do this with a series of byte loads, shifts, and adds but the is a easier
and quicker way.

Here is an example of handling a unaligned store with a combination of Load
Word Left and Load Word Right to get the job done with two instructions.

+ First use a Load Word left to load the most significant two bytes of the
unaligned address into the most significant bytes of the destination register.

+ For this example the unaligned word is in bytes 2,3,4 and 5. S1 is the
destination register and the address being loaded from, is address 0 with a
offset of 2.

+ to make it clear about what is happening before the load starts S1 contains
a hex 09 08 07 and 06

16

+ after the load word left you can see bytes 0 and 1 now contain Oc and 0D which
was the value in the most significant bytes of the unaligned address.

16

Unaligned Loads and Stores
* LWR (big endian example)

lwr s1, 4(0)

Address 0 1 2 3
contents OA | OB 0C oD

6 |7 |8
\o1 |02 |03

\

Register s1 Before LWR instruction

Byte # 0 1| 2 3
contents 0c 0D | oz 06
\
Register s1 After LWL instruction
Byte # 0 1 2 3
contents 0C 0D OE OF
L + J
M I l= S 17

+ Next use a Load Word right to load the least significant two bytes of the
unaligned address into the least significant bytes of the destination register.

+ the least significant unaligned bytes are in are in bytes 4 and 5. S1 is the
destination register and the address being loaded from is address 0 with a
offset of 4.

+ to make it clear about what is happening before the load starts S1 contains
a hex 0C 0D which we already moved there using the load work Left
instruction and 07 and 06 in the least significant bytes

+ after the load word left you can see bytes 2 and 3 now contain OE and OF
which was the value in the least significant bytes of the unaligned address.

17

Unaligned Load, Store

IMISFETEY [ESHIEERRE =LA =S W 2 Wi

Load Word Left Iwl s1, x(a sl =
s1 merged Mem[a0 +x]
LWR Load Word Right Iwr s1, x(a0) s1= %]
s1 merged Mem[a0 +x]
SWL Store Word Left swl s1, x(a0) Mem[a0 +x] = s1
SWR Store Word Right Swr Mem[a0 +x] = s1 |
MIRFPPS -

We see here the syntax of the Load word Left and right that | have already
shown you in the example

+ Here is the syntax Store Word Right and Left instruction that will store a
word from a register to an unaligned address.

Load Upper 16 bits

* Load Upper Immediate loads an immediate value into the upper 16 bits of
the destination register and zeros out the lower 16 bits.

= Commonly used in conjunction with ori to load an immediate address or 32 bit data value.

= |uiatx
= oriat, at, 0x2345
= Used in macro instructions li and la

Instruction | Assembly Pseudo
code

Load Upper luis1, x s1=x<<16]|0
Immediate

MIFPPS

19

Arithmetic Instructions

» Register length arithmetic only
= No byte or halfword arithmetic.

= Double length results go to HI/LO registers
= The low-order 32-bit word of the result is placed into special register LO.
= High-order 32-bit word is placed into special register HI.

MIFPS

20

I'll now talk about the Arithmetic Instructions.

+ The rule to remember is that all instructions use register length arithmetic so
in the case of MIPS Core CPUs that means 32 bit arithmetic.

+ there is no byte or halfword arithmetic

+ double length results from multiply and divide instructions are placed in two
special registers called HI and LO

+ the 4 least significant bytes go into the Lo register
+ and the 4 Most significant bytes go into the HI register

There are additional instructions to move the values from these register into a
General Purpose Register which | will cover later

20

Arithmetic Instructions

Assemble | Pseudo
Code

add s1, s2, s3 s1=82+s3
ADDU Add Unsigned addu s1, s2, s3 s1=s2+s3 %])
ADDI Add Immediate addis1, s2, x s1=s2+x %}
ADDIU Add Immediate addiu s1, s2, x s1=s82+x | |
Unsigned
SuB Subtract sub s1, s2, s3 s1=s2-s3 |
SUBU Subtract Unsigned subu s1, s2, s3 s1=s2-83 | |

MIFPPS

21

I'll now go over the basic arithmetic instructions. Each one will have a signed
and unsigned version. The unsigned version will end in a U.

+ First the simple add instruction which takes two registers and adds them
together and places the result in a destination register.

+ Next is an add immediate which takes a 16 bit immediate value and adds
it to the contents of a register and places the result in a destination register.

+ The subtract instruction subtraction subtracts one register value from
another and places the result in a destination register. As you can see here
there is no subtract immediate you can do that using the add immediate
instruction and just supply a negative number.

+ The Multiply instruction multiplies the value in two registers and places the
result in the HI and LO registers

+ The divide instruction divides the value in two registers and places the
result in the HI and LO registers

21

One thing to note: what | am describing is here is actual machine instructions. The
assembler allows a much broader range of these instructions through the use of
instruction macros which the assembler will interrupt into actual machine instructions.
For example The assembler will take either registers or immediate values up to 32
bits and do the right thing. I'll cover more on this in the assembler section.

21

Arithmetic Instructions

Assemble | Pseudo MIPS32
Code

MULT Multiply mult s1, s2 HI LO =s1xs2 | |

MULTU Multiply Unsigned multu s1, s2 HI LO =s1 x s2 | M

DIV Divide div s1, s2 HI LO =s1/s2 (| 1|

DIvVU Divide Unsigned divu s1, s2 HI LO =s1/s2 | |
MIRFPPS &

+ The Multiply instruction multiplies the value in two registers and places the
result in the HI and LO registers

+ The divide instruction divides the value in two registers and places the
result in the HI and LO registers

22

Arithmetic Instructions

Instruction | Assemble |Pseudo
Code
S|t Set on Less than slt s0, s1, s2 If (s1 <s2)s0=1 See MIPS16
elses0=0 only instructions
SLTU Set on Less than sltu s0, s1, s2 If (s1 <s2)s0=1 See MIPS16
Unsigned elses0=0 only instructions
SLTI Set on Less than slti sO, s1, x If (s1<x)s0=1 See MIPS16
Immediate elses0=0 only instructions
SLTIU Set on Less than sltiu s0, s1, x If (s1 <x)s0=1 See MIPS16
Immediate elses0 =0 only instructions
Unsigned
MIRFPPS 5

Here are the set instructions. These will test two values and place a 1 in the

destination register if the first register is less than the second.

+ the other form of the instruction takes an immediate value instead of the
second register so if the value in the register is less than the immediate
value then the destination register is set to 1.

These machine instructions are used by the assemble to create macros for
branch greater than, branch less than, branch equal and all combinations of

the three.

23

Arithmetic Accumulate Instructions
= Multiply add/subtract

= Multiply two 32 bit values and either add or subtract them from the HI/LO
registers

= The most significant 32 bits of the result are written into H/ and the least
significant 32 bits are written into LO.

= No arithmetic exception occurs under any circumstances.

Assemble | Pseudo
Code

MADD Multiply and add to madd s1, s2 HI LO +=s1x s2
MADDU unsigned HI/LO registers maddu s1, s2
MSUB Multiply and msub s1, s2 HI LO -=s1 x s2 |
MSUBU unsigned subtract from HI/LO msubu s1, s2
registers
MIPPS "

24

Arithmetic Instructions

= Multiply — 32 bit product

= MUL - The 32-bit word value is multiplied by a 32-bit value, treating both
operands as signed values, to produce a 64-bit result. The least significant
32 bits of the product are written to a GPR register. The contents of H/ and
LO are not preserved across this instruction

Assemble | Pseudo
Code

Multiply to GPR mul s0, s1, s2 s0=s1xs2

MIFPS 2

There is what | call a simple multiply instruction that will multiply two
registers and place the least significant 32 bits into a general purpose
register

You need to ensure that overflows are either avoided or irrelevant. Because
there is no overflow detection .

Also you cannot intersperse MUL instructions with MADD instructions
because the processor is allowed to use the Hl and LO registers even
though the results are stored in a General Purpose Register so any
accumulated results are not preserved across the execution of a MUL
instruction.

+ the machine instruction takes two registers multiplies them together and
but the result in a third register

The assembler will allow you to use immediate values in place of the input
registers.

25

Arithmetic Instructions

* Count Leading Zeros Or Ones

Assemble |Pseudo |MIPS32
Code

Count leading Os clz s0, s1 s0 = number of
leading Zeros in
s1

CLO Count leading 1s clo s0, s1 s0 = number of M
leading Ones in
s

MIFPPS

26

There are two simple instructions to count either zeros or ones starting from
the most significant bit.

+ Count Leading zeros starts at the most significant bit and travels backward
counting zeros until it finds a one

+ Count Leading ones does the opposite starts at the most significant bit
and travels backward counting ones until it finds a zero.

26

Logical Instructions

Assemble | Pseudo
Code

Logical AND and t0, t1, t2 t0=11 &t2
ANDI Logical AND andi t0, t1, x t0=11 &x |

Immediate
OR Logical OR ort0, t1, t2 t0=t1|12 | |
ORI Logical OR Immediate ori tO, t1, x t0=11|x |
NOR Logical NOR nor t0, t1, t2 If (11 && 1t2) 10 =1 %

elset0=0

XOR Logical XOR xor 10, t1 ,t2 if (11 7t2)t0=1 | %]
XORI Logical XOR xori 10, t1, x if (t1 2 x)t0 =1 |

Immediate

MIFPPS

27

Now I'll cover the logical instructions

+ AND operation compares each bit in the two input registers if both bits are
1 then the corresponding bit in the destination register will be set to 1 other
wise it will be set to 0.

+ OR operation compares each bit in the two input registers if both bits are 0
then the corresponding bit in the destination register will be set to 0 other
wise it will be set to 1

+ NOR operation compares each bit in the two input registers if both bits are
0 then the corresponding bit in the destination register will be set to 1 other
wise it will be setto 0

+ XOR operation compares each bit in the two input registers if one and only
one bit is 1 then the corresponding bit in the destination register will be set to
1 other wise it will be setto 0

27

Move Instructions

Assemble | Pseudo
Code

MOVE Move from one register move a0, t0 a0 =10
to another (macro for:
addu a0, zero, t0)

MOVN Move on not Zero movn s0, s1, s2 If (s2 |=0) s0 = s1 |

MOVZ Move on Zero movz s0, s1, s2 If (s2 ==0) s0 = s1 |

MFHI Move from HI mfhi sO sO = HI | |
MFLO Move from LO mflo sO s0=LO | M
MTHI Move to HI mthi sO HI = s0 |

MTLO Move to LO mtlo sO LO =s0 |

MI—S -

Now for the move instructions

+ There is a move macro which would be used to copy the contents of one
register to another. This translates to a unsigned add of register 0 to the
register to be copied and placing the result in the destination register
effectively making a copy.

+ Next are two instructions that test a register for true or false, 1 or 0 and
conditionally do a register copy. These instructions are normally used in
conjunction with the set instructions to test their result.

+ the last 4 move instructions either move from or to a Hi or Lo registers to a
General purpose register.

Shift Instructions

Assemble | Pseudo
Code

Shift Left Logical sll 10, t1, x t0 = t1 << x Zero fill

SLLV Shift Left Logical sll t0, t1, t2 t0 = t1 << t2 Zero fill M %]
Variable

SRL Shift right Logical srl tO, t1, t2 t0 = t1 >> x Zero fill | %]

SRLV Shift right Logical srlv t0, t1, t2 t0 = t1 >> t2 Zero fill | M
Variable

SRA Shift right Arithmetic srat0, t1, t2 t0 = t1 >> x Sign bit | |

duplication

SRAV Shift right Arithmetic srav t0, t1, t2 t0 = t1 >> t2 Sign bit | |

Variable duplication
MIRFPPS =

Shift instructions can be used to move bits around, or used instead of a
multiply if multiplying by a power of 2. They were also used to isolate
particular bits before MIPS32 release 2 but now we have insert and extract
instructions that do that much more efficiently.

+ The shift left logical will shift the value in the source register to the left by
the immediate value given, filling the bits with zeros. The Shift Left Logical is
most notably looks the same as a nop because a Nop is instruction code is
all zeros and the instruction code for SLL is also a zero so a Shift Left
Logical where GPR 0 is both the source and destination register and the shift
amountis O interrupts as the same as a nop. It also looks like the super
scalar nop when the immediate value is 1 for much the same reason.

The shift left variable is almost the same but instead of a immediate value
you provide a variable value in a register.

And of course there are the equivalent shift right instructions

There are also right shift arithmetic instructions that will preserve the sigh
value with the shift instead of just zero filling.

29

Branch Instructions
= Branch Delay Slot for branches (and jumps)

* There will be a 1 cycle delay while the new program counter is generated for a
branch instruction.

* To make it more efficient, the processor always executes the instruction
immediately following branch/jump (except for Branch Likely).

= The Assemblers will fill the BDS automatically unless the set .noreorder option
is included in the assembler code.

* Do not place branch, jump, ERET, DERET, or WAIT instructions in the BDS.
» Branches have maximum of +-128KB displacement

» Conditional branches have only a 16-bit displacement field—giving a 2'8-byte
range (instructions are 4 byte aligned) This immediate value is interpreted as a
sighed PC-relative displacement.

MIFPS 0

Branches change the instruction stream to a different path usually based on a
conditional evaluation.

+ The processor needs one cycle to install the new program counter for a
taken branch

+ so0 instead of letting this cycle go to waist the processor will always execute
the instruction that follows the branch. This is a good place to do a loop
increment.

+The assembler will fill this Branch delay slot with an instruction of it'’s choice.
If that is not what you want you can use the set .noreorder directive to the
assembler around areas of code where you want to hand fill the delay slots.

+ If you do this, be careful not to place any branch, Jump, Error return, Debug
Error return or wait instruction in a delay slot.

+ Branches have a maximum of 128K plus or minus displacement from the
current PC location .

+ The 16 bit immediate field is automatically shifted left two bits to align with a
four byte instruction address giving it a range of 18 signed bits.

30

Branch Instructions

* Branch Likely Instructions
= The instruction in the BDS is only executed if the branch is taken.

= This instruction is useful in for loops where the code usually branches back to
the beginning of the loop. The delay slot can be used to increment the loop
counter.

= The instruction is noted by the ‘L’ added to the normal branch instruction
mnemonic.

MIFPS .

+ There is an exception to the rule that the branch always executes the
instruction in the branch delay slot. In the case of a branch likely instruction
the instruction in the branch delay slot is only executed if the branch is taken
and not if the branch condition falls through.

+ Branch likely instructions are useful in loops where the code will loop
several times through and the delay slot can be used to increment the
counter.

+ Most branch instructions have a likely equivalent and are distinguished by
endingin a “L”

31

Branch Instructions

e

BEQ Branch if Equal beq 10, t1, x
BEQL
BNE Branch if Not Equal bne t0, t1, x
BNEL
BLEZ Branch if Less than blez t0, x
BLEZL or Equal to Zero
BGEZ Branch if Greater bgez t0, x
BGEZL then or Equal to

Zero
BGEZAL Branch if Greater bgezal t0, x
BEGZALL then or Equal to

Zero and Link
BLEZAL Branch if Less then blezal tO, x
BLEZALL or Equal to Zero

and Link

Pseudo
Code

If (t0 == t1)
PC = BDS address + x

If (t0 !=t1)
PC = BDS address + x

If (t0 <= 0)
PC = BDS address + x

If (t0 >= 0)
PC = BDS +x

If (t0 >= 0)
PC = BDS address + x
RA=PC +8

If (t0 <= 0)
PC = BDS address + x
RA=PC +8

32

Here are the machine branch instructions

+ Branch Equal will branch to the PC offset if the two source registers are

equal

Branch Not Equal will branch to the PC offset if the two source registers are

not equal

+ Branch Less than zero will branch to the PC offset if source register is

less then or equal to zero

Branch Greater than zero branch to the PC offset if source register is greater

then or equal zero

+ Branch Less than zero and Link will branch to the PC offset and set the
return address register to the next instruction after the delay slot if source

reqgister is less then or equal to zero

Branch Greater than zero and link will branch to the PC offset and set the
return address register to the next instruction after the delay slot if source

reqgister is greater then or equal to zero

32

Branch Instructions Macros

Assemble |Pseudo
Code

BEQZ Branch if Equal to Zero beq 10,zero, x If (0 == 0) %) (%]
BEQZL PC = BDS address + x
BGE Branch Greater then or bge t0, t1, x If (t0 >=t1) M
BGEL Equal PC = BDS address + x
BGT Branch if greater then bgt t0, t1, x If (t0 > t1) M
BGTL PC = BDS address + x
BLE Branch if less then or ble t0, t1, x If (10 <=11) M
BLEL Equal PC =BDS +x
BLT Branch if less then blt t0, t1, x If (10 < t1) |
BLTL PC = BDS address + x
BLTZAL Branch if Less then 0 bltzal t0, x If (t0 < 0) |
BLTZALL and Link PC = BDS address + x
RA=PC+8

B Branch Unconditional bix PC = BDS address + x | =
BAL Branch And Link bal x PC = BDS address + x M

Unconditional RA = PC +8

M l |= 5 33

Here are the assembler macro branch instructions that fill in any other
possible branch conditions. Remember these are made up of one or usually
more machine instructions. | won’t go over each one of these but you could
pause now and review them at your leisure. These instructions will use the
AT register GPR 1 so your code should leave this register alone. If your code
uses the AT register the be sure to “set noat” the assembler will then give
you a error if you use a macro instruction the uses AT.

Stop for video

+ branch to the PC offset if the two source registers are equal to zero

branch to the PC offset if first source register is greater then or equal the
second source register

+ branch to the PC offset if first source register is greater then the second
source register

branch to the PC offset if first source register is less then or equal the
second source register

+ branch to the PC offset if first source register is less then the second
source register

33

branch to the PC offset and set the return address register to the next instruction after
the delay slot if source register is less then zero

+branch Unconditional does a PC relative jump

Branch and Link unconditional does a PC relative jump and set the return address in
the return address register

33

Jump Instructions

* Jump immediate instructions (J)

= A 26 bit immediate value to defines the target of a jump. Since all instructions are 4 byte
aligned in memory, the two least-significant address bits need not be stored, allowing an
address range of 228 or 256MB.

= The 28 bits of address is interpreted as an absolute address within a 256MB aligned
segment, (not PC relative).

= The jump address is computed by shifting the lower 26 bits of the instruction left by 2 and
concatenating them with the upper 4 bits of the instruction in the branch delay slot.

* Jumps beyond the 256M segment.
= A “jump register” (JR) instruction, can go to any 32-bit address.

MIFPS

35

Lets talk about Jump instructions There are three types of jump instructions

+ Jump immediate instruction will jump to a absolute address with the current
256 megabyte PC-region.

+ You supply the instruction a 26 bit immediate value. This value is the target
address of the jump shifted to the right by two. It is shifted to the right by two
since all instructions are word aligned and the last two bits of the instruction
address will always be 0. So this instruction uses that fact to pack a 28 bits
address into 26 bits.

+ The current 256 megabyte PC region is defined by the 4 most significant bit
of the address of the Branch Delay slot.

+ So the jump address is the immediate value shifted to the left by 2 and
concatenated with the upper 4 bits of the address of the branch delay slot.

The good news is the assembler allows you to use the label of the jump target
and it does the shifting and concatenating for you.

35

+ To reach out side the current 256 megabyte PC region you need to use the jump
register instruction.

+ The jump register instruction uses a register that contains a 32 bit absolute
address, so the jump target can be anywhere in the 4 gigabyte address range.

35

Jump Instructions

* Procedure call by jump-and-link (JAL)
= Return address on linked branch/jump saved in ra (GPR31)
* Delay Slot for Jumps (same as for Branches)

= There will be a 1 cycle delay while the new program counter is generated for a Jump
instruction.

= To make it more efficient, the processor always executes the instruction immediately
following a Jump.

= The assembler will fill the delay slot automatically unless the set .noreorder option is
included in the assembler code.

= Do not place branch, jump, ERET, DERET, or WAIT instructions in the delay slot.

MIFPS

36

The Jump and link instruction use to call a subroutine, stores the return
address into

a register. R31 the return address register. Then when the subroutine wants to
return it can execute a Jump Register instruction with R31 to return to the
caller routine.

+ There is a delay slot for jumps. It is the same as it is for branches.

36

Jump Instructions

Assemble | Pseudo
Code

Jump target (PC +4) &
OxFOOO 0000) | (x << 2)

JAL Jump target and jal x = ((PC +4) & | |

link OXFOOU 0000) | (x << 2)
JR Jump address in jrt0 RA=PC +8 | |
JR.HB register PC =10
JALR Jump address in jal to PC =10 M |
JALR.HB register and Link RA=PC + 8

Adding .hb to JAL and JALR instructions will interlock the pipeline enabling it to
stall while waiting to clear all execution and instruction hazards.

MIFPPS

37

To summarize the jump instructions

+The Jump instruction jumps to and address using the immediate value, the
label supplied with the instruction

+The Jump and link instruction does the same as the Jump instruction and in
addition places a return address in the return address register.

+ The jump register instruction jumps to the address in the source register

+ and the jump and link register does the same as the Jump register
instruction and in addition places a return address in the return address
register.

+ adding the dot HB to the Jump and link or a jump and link register will
cause the CPU to stall and wait for all execution and instruction hazards
created by any CoProcessor 0 state changes. I'll talk more about these
when | talk about the EHB instruction.

37

System Call Instruction

* The SYSCALL instruction allows a user program to generate an identifiable
exception.
= This exception enables switching from user mode to kernel mode. For example 1/O

devices are usually controlled by the OS, so when a user program needs to perform I/O it
will do a system call to hand over control to the OS.

= The OS uses a system call number to determine what system call is to be used.

= A code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction. Not
used in 032.

MIFPS

39

The System call instruction is use

+in a OS environment to transfer control from a user program to the to the
OS running in Kernel mode.

+ The system call can a supply a unique number, usually referred to a the
system call number, which the OS can use to determine which OS function is
being requested.

+ This system call number can be retrieved by reading the instruction as data
and extracting the code field. However As we will see the 032 standard uses
an easier method to store and get the call number.

39

System Call Instruction Usage (032)

* The syscall number is put in v0
* Arguments are passed in a0 through a3
* Return values are passed back in v0 and v1

* In keeping with the calling conventions, the syscall preserves the values of
those registers which 032 defines as surviving function calls.

o nscton | sssoly wPssz wPsiee

SYSCALL System Call Syscall x Load system call number into vO

Note: x fills the Load arguments into a0 - a3
code field butis Make the call

not used for 032 Check return values in v0 and v1 as

necessary

MIFPS w

Here is a run through of using a system call in Linux that uses the 032
standard.

+ The system call number is put into the vO register. This makes it easier to
retrieve instead of using the code field in the instruction.

+ The arguments to the system call are passed in the argument registers a0
through a3

+ Any return values can be passed back to the user code through registers vO
and v1

+ In keeping with the 032 standard the OS, Linux in this case, must preserve
registers as if a function call was being preformed.

+ the instruction is called with a immediate value normally the system call
number.

Usually a user program is not concerned with the system call interface
because it would use a standard library to interface with the OS.

40

Trap Instructions

* Trap instructions are like conditional branches except they cause an
exception.

* These are for compilers and interpreters that want to implement run-time
checks. For example, checking array bounds. They are also used for
assertions in the Linux kernel.

= All immediate values are 16 bits.

MIFPS

4

Trap instructions are programmable conditional exceptions

+ Trap instructions evaluate a condition and can cause an exception.

+ For example an OS can use them for assertions, which are usually
conditions that the OS assumes will never happen.

+ Some forms of the trap instruction can have a 16 bit immediate value to
pass information back to the OS. The OS might use this information to
determine what happened.

41

Trap Instructions

Trap if Equal teq s0, s1 =s1) trap |
TEQI Trap if Equal Immediate teqi s0, x If (s0 == x) trap |
TNE Trap if not Equal tne s0, s1 If (sO !=s1) trap |
TNEI Trap if not Equal Immediate tnei s0, x If (s0 != x) trap |
T Trap if Less than tit s0, s1 If (sO < s1) trap |
TLTU (unsigned) titu s0, s1
TLTI Trap if Less than Immediate tlti s0, x If (s0 < x) trap %]
TLTIU (unsigned) titiu s0, x
TGE Trap if Greater than or Equal tge s0, s1 If (s0 >= s1) trap |
TGEU (unsigned) tgeu s0, s1
TGEI Trap if Greater than or Equal tgei s0, x If (s0 >= x) trap |
TGEIU (unsigned) Immediate tgeiu s0, x

MIFPS @

Since these are very similar to condition branches | have already covered |
will not go into the details of each type of trap instruction.

BREAK Instruction

* The BREAK instruction causes an unconditional exception. (unconditional
Trap)

= Exception processing can determine the address where the break occurred by reading the
CPO EPC register.

= The instruction can contain an immediate value (code) in bits 6 through 25. To get this
value the programmer will need to load the instruction word stored at EPC and extract
these bits.

BREAK Breakpoint break code Execution break at
EPC

MIFPS

43

The Break instruction is usually use by debuggers to cause a break in
execution. As the user instructs the debugger to set a breakpoint the
debugger will replace the code at the breakpoint with a break instruction. Then
when the break point happens the exception will turn control over the
debugger. After the debugger has completed what the user wants and the
user has instructed it to continue execution the debugger will put the program
code back and execute it.

+ The break causes an unconditional exception

+ the Core puts address of the break instruction in the CPO register EPC so, a
debugger will know where the break happened.

+ the instruction can contain a twenty bit value that can be used to pass
information to the exception. For example a debugger could use this as a
indication of what type of break point it was or a pointer to the program
instruction that the break replaced. This information will need to be extracted
from the break instruction word.

+ The break instruction takes one immediate value.

43

Extract Bit Field

= Easy way to read bits within a 32 bit value

Assembly | Pseudo
code

Extract Bit Field

ext s0, s1, x,y

For example: ext s0, s1, 9, 10
Copy bits starting from bit 9 for
10 bits from register s1 to bits 0
through 9 in s0 and zero fill

remaining bits.

Source register s1

Destination register s0

31

Zero filled

MIFPS

44

A new instruction introduced in MIPS32 Release 2 is the bit extract instruction.

+This instruction can replace a series of instruction that would have previously
been needed to extract a bit or bits from a word. For example you would have
previously need to do shift left and a shift right to extract a bit field to the least
significant bits of a register.

+ The extract instruction takes 4 arguments, the destination register, the
source register, the least significant bit of the field to be extracted and the
number of bits to be extracted.

+ For example to extract 10 bits starting at bit 9 from register s1 to register sO

the assemble code would be “ext sO s1 9 10”

+ this would start to copy from bit 9 of S1 to

+ bit 0 of register sO for 10 bits. The remaining bits in register sO would be 0

filled.

44

Insert Bit Field

* Easy way to write bits within a 32 bit value

Instruction | Assembly | Pseudo
code

Insert Bit Field ins s0, s1, %,y

For example: ins s0, s1, 9, 10
Copy bits starting from bit 0 for 31
10 bits in register s1 merge into
bits 9 through 18 in s0.

Source register (s1)

Destination register (s0)

MIFPS

The counter part to the extract instruction is the insert instruction

+ as with the extract instruction this replaces several steps in merging a bit
field into a word

+ the syntax for this instruction is the mnemonic ins, then the register to be
merged , the source register that contains the bit field, the least significant bit
in the destination register where the merge will start and the number of bytes
to copy.

+ So to merge 10 bits into register sO from register s1 starting at bit 9 the
assemble code would be “ins s0 s1 9 10”

+ this would start to copy from bit 0 in register s1

+ to bit 9 in register s0 for 10 bits

Interrupt Control

» DI - The interrupt-disabling sequence (requiring a read-modify-write
sequence on SR) is itself not guaranteed to be atomic.
= Atomically clears the SR(IE) bit, returning the old value of SR in a general purpose
register
= El - atomically sets the SR(IE) bit, returning the old value of SR in a general
purpose register.
* Note of caution: It is better to restore the old value of SR returned by DI, so your “disable

interrupts” code will not malfunction if you accidentally invoke it when interrupts were
already disabled.

Disable di s0 s0=38R, SR[IE]=0
Interrupts
El Enable Interrupts ei sO s0 = SR, SR[IE] =1 il

MIFPS

46

There two instructions that make interrupt control easier

+ First is the Disable interrupt instruction. This instruction helps by atomically
writing the value of the Status register to a general purpose register and then
clearing the Interrupt Enable bit in the CPO Status register.

+ The Enable Interrupt instruction writes the value of the status register to a
general purpose register and then sets the interrupt enable bit in the status
register.

Note you might not always what to use the Enable interrupt instruction
particularly if you are nesting interrupts. You might just what to restore the
Status register with the value it had when it entered your interrupt function, so
it would continue with processing any interrupt function that may have
interrupted interrupted.

+ The assembler syntax for each is instruction the destination register where
the Status register will be saved.

46

Software Debug Breakpoint

* This instruction causes a debug exception, passing control to the debug
exception handler.

* The code field can be used for passing information to the debug exception handler, and is
retrieved by the debug exception handler only by loading the contents of the memory
word containing the instruction, using the address in the DEPC register. The code field,
bits 6 through 25 can then be extracted.

Instruction | Assembly | Pseudo MIPS32
code

SDBBP Software Debug sdbbp code Causes debug
Breakpoint exception

MIFPS “

There is a software breakpoint instruction that works very much like the break
instruction except it causes a debug mode exception which is tied into the
EJTAG controller. A hardware EJTAG probe could use this instruction to set a
breakpoint.

Exception Return

» Returning from exceptions

* The instruction ERET, (exception return) clears the SR(EXL) bit and jumps to the address
stored in EPC atomically.

= DERET clears execution and instruction hazards, returns from Debug Mode and resumes
non-debug execution at the instruction whose address is contained in the DEPC register.

ERET Exception Return eret EXL=0
PC = EPC
DERET Debug Exception deret EXL =0 5|
Return PC = DEPC
MIPPS w

There are two instructions that can be used to return from exception handling.

+ The Exception Return instruction will atomically clear the exception bit EXL
in the status register and then jump to the address stored in the Error
Program Counter.

+ the Debug Exception Return instruction returns from a EJTAG debug
exception and then jumps to the address stored in the Debug Error Program
Counter.

+ the syntax for both is just the instruction mnemonic

48

Exception Return — Special Case

= ERET will jump to the address stored in ErrorEPC when the ERL bit is set in
the Status register.

= ERL- Error Level; Set by the processor when a Reset, Soft Reset, NMI or Cache Error
exception are taken.

= These exceptions can happen when the core is already taking an exception. This can prevent a
infinite exception loop.

MIFPPS

49

There is a special case where the Error Return instruction will use the Error
Error Program Counter instead of the Error Program Counter.

+ The Error Level bit is set in the status register during a Reset, Soft reset,
Non Maskable Interrupt or a Cache error exception

+ exceptions can happen while processing these exceptions which are usually
not recoverable so using the Error Error Program Counter is a way of not
going into an infinite exception processing loop

49

Sign Extend bytes and halfwords

» These instructions sign extend bytes and half-words so they are suitable for
arithmetic instructions.

Sign Extend Byte seb t0, s1 Propagate bit 7 through out the
entire word
SEH Sign Extend seh t0, s1 Propagate bit 15 through out the | |
Halfword entire word

* The SEH instruction can be used to convert two contiguous
halfwords into two sign-extended word values in three
instructions. For example:

Iw t0, 0(a1) I* Read two contiguous halfwords */
seh t1, t0 I* 1 = lower halfword sign-extended to word */
sra t0, t0, 16 I* t0 = upper halfword sign-extended to word */
MIFPS @

The MIPs architecture does not allow arithmetic operations to be performed
on anything other than integers. If there is a value that is less than a integer
that needs to be used in an arithmetic expression in must first be made to
look like an integer.

+ This can be done by sign extending a byte or half word.

+ The Sign Extend Byte instruction will propagate bit 7 from bit 8 through 31

+ the Sign Extend Half-word instruction will propagate bit 15 from bit 16
through bit 31

+ You can use the Sign extend half word instruction in-conjunction with Shift
Right arithmetic to sign extend two contiguous half- words

+ first load the two contiguous half words into memory

+ next use the sign extend half-word instruction to sign extend the least
significant half-work and copy the result to another register.

+ then use the shift right arithmetic with a value of 16 to shift the original value
16 bit and sign extend it.

50

Swap instructions

* These instructions can be combined to swap the endianness of a word.

WSBH Word Swap Bytes
Within Halfwords

ROTR Rotate Word Right

ROTRV Rotate Word Right
variable

Iw t0, 0(a1)
wsbh t0, t0

rotr t0, t0, 16

wsbh t1, t2 Rotates by bytes each halfword of

the word in t2 and places it into t1
rotr t2, t1, x t2 = 11 <->(right) x |
rotrv t2, t1, t3 t2 = 11 <->(right) 13

I* Oxaa bcch Read word value */

I* Oxbbaaddcc Convert endianness of halfwords */

* O%Swap the halfwords within the word */

MIFPS

51

There are three instructions that are used to manipulate bits within words.

+ these instructions can be combined to swap the endianess of a word with

just two instructions.

+ The word swap within halfword instruction rotates bytes within both half-

words

+ Rotate word right rotates bits in a word for a given number of bits set by the

immediate value

+ Rotate word right variable is similar but it uses the value in a register
instead of the immediate value to determine the amount of bits to rotate.

Let look at as example of an endianness swap

+ first load the word into a register
+ next swap the bytes in each half-word using the word-swap half-word

instruction

51

+ then use the Rotate word instruction giving it a immediate value of 16 to swap the
half-words

51

Moving to and from CPO registers

MFCO
MTCO
EHB

Move From CPO mfco t0, CPOR, x t0 = CPOR[X]

Move To CPO mtco t0, CPOR, x CPOR[x] = t0 M
Execution Hazard ehb Stall till hazards cleared M
Barrier

If you write a field of a CPO register (MTCO) it may effect subsequent
instructions, and the MIPS rules do not guarantee how long that might
take.

The EHB instruction alters the instruction issue behavior on a pipelined
processor by stopping execution until all execution hazards have been
cleared. All execution hazards created by previous instructions are
cleared for instructions executed immediately following the EHB.

MIFPS =

There are three instructions that are use in working with Co-Processor zero

+ Move From Co-processor zero moves from a Co-processor zero register,
designated by a register and select numbers, to a general purpose register.

+ Move To Co-processor zero moves a value in a general purpose register to
a Co-processor zero register designated by its register and select numbers

+ The EHB instruction will clear execution Hazard Barriers

+ Hazards are created when the Move to Co-processor zero instruction is
used because there is no guarantee how long it might take for the value
written to be usable by another instruction.

+ When the core executes a EHB instruction it will guarantee the value is safe
to use by waiting for the value to be committed to the register.

You should consult your core’s Software Users Manual, for which actions
cause hazards and how long the Hazard will last. Depending on the action not
all Move to Co-processor zero instructions will cause a hazard and for others

52

as long as the value that was moved will not be used in a set period of time, a EHB
may not be needed.

52

Reading CPO Registers while in user mode

» This instruction will allow a program in user mode to move the contents of a
hardware register to a general purpose register (GPR) if that operation is
enabled by software running in kernel mode. This is done by setting the
appropriate bit in the CP0 HWREna register

RDHWR Read Hardware rdhwr t0, x 10 = HWR[X]
Register

CPUNum — CPU number in a multi-processor system
SYNCI_Step - 0 no cache to sync or will indicate step size
CC - Cycle count

reserved

CCRes - Cycle count resolution

Reserved

ULR User Local Register

Reserved

MIFPS s

The read hardware register instruction allows access to some of the CP0O
Registers while in user mode. Permission to do this is set in the HWREna
register that needs to be setup while the cpu is in Kernel mode.

+ The assembler syntax for this instruction is a destination register and a
operation code

| will use this instruction in a up coming example to get the sync step count,
opcode 1

53

SYNC Instruction

= A SYNC instruction defines a load/store barrier. You are guaranteed that all
load/stores initiated before the SYNC will be completed before any
load/store after the SYNC start.

= Affects only uncached and cached coherent loads and stores

= To guarantee that memaory reference results are visible across operating mode changes
for example a sync is required on entry to and exit from Debug Mode to guarantee that
memory affects are handled correctly.

= The SYNC instruction stalls until all loads, stores, refills are completed and all write
buffers are empty.

MIFPS

54

The Sync instruction will stall any future loads and stores until all loads and
stores are coherent through out the system. The use of the sync instruction is
only necessary when memory is being shared between two or more devices
within a system. For example if you are using a DMA controller to send data
out of your system you need to make sure all stores to the uncached shared
memory area between the CPU and the DMA controller have completed
before you start the DMA. In a multi CPU system you may need to make sure
before you load a value from a shared memory region into a CPU that another
CPU doesn’t have a newer value that has not yet been written to the shared
memory for example it may have it in its cache.

+ a sync only affects uncached or cached coherent loads and stores. Cached
loads and stores to non shared memory are no-coherent and you don’t have
to use the sync instruction for these areas.

+ A Sync is need when changing the operating mode between normal and
EJTAG Debug and vise a versa to guarantee changes made to memory
before and after the mode change is visible to both the EJTAG controller and
the CPU.

+ the Sync instruction will stall the CPU until all uncached and cached
coherent loads, stores and refills are completed and all the interim write
buffers are empty.

SYNC Instruction continued

= |f the Config7 ES (Externalize Sync) bit is set, executing a SYNC instruction will cause a
synchronizing transaction on the external bus. How your system handles this transaction
is system dependent. A typical system will flush any external write buffers and complete
all pending transactions before completing the SYNC.

= Note: This is not true for a 4KE, 4KSD or M4K, these do not have a Config7 register.

Assembly | Pseudo
code

SYNC To order loads and sync
stores

MIFPPS s

The sync instruction does require external hardware to be able to propagate
the sync signal to the external bus.

+ the Externalized Sync bit in the Config7 register of CoProcessor zero
controls whether or not the sync signal is sent out to the external interface.

+ the exception to this is our 4KE, 4KSD and M4K cores where the signal is
always sent.

+ the assembler syntax is simply sync

55

Synchronize Caches to Make Instruction
Writes Effective

= A SYNCI instruction is used after a new instruction stream is written to
make the new instructions effective relative to an instruction fetch. It is
available in all operating modes

= The operation occurs only on the cache line which contains the effective address. One
SYNCI instruction is required for every cache line that was written.

SYNCI Synchronize synci x(t0) Synchronize cache line
Caches that contains t0[x]

MIFPS

56

The Syncl instruction is used to synchronize a data cache line with a
instruction cache line.

+ this is necessary when a program loads another program into memory
because the load instruction only loads the data cache and to execute the
code, the instruction cache for the data region needs to be invalidated so that
when a fetch happens it will get an instruction cache miss and fetch the new
instructions.

+ the Syncl instruction only effects the cache line of the address given so you
will need to loop through all the effected cache lines.

+ You pass the address to the synci instruction using a register with a
immediate offset

56

Synchronize Caches to Make Instruction

Writes Effective - continued
= The following example shows a routine which can be called after
the new instruction stream is written to make those changes

effective.

/* Inputs: a0 = Start address of new instruction stream, a1 = Size, in bytes, of new instruction stream */
addu a1, a0, a1 [* Calculate end address + 1 */
rdhwr v0, SYNCI_Step I* Get step size for SYNCI */
beq v0, zero, 20f I* If no caches require synchronization, */
nop I* branch around */

10: synci 0(a0) I* Synchronize all caches around address */
sltu v1, a0, a1 I* Compare current with end address */
bne v1, zero, 10b I* Branch if more to do */
addu a0, a0, v0 I* Add step size in delay slot */
sync I* Clear memory hazards */

20: jr.hbra /* Return, clearing instruction hazards */
nop

MIPS

Here is an example of a assemble function that can be used after code has
been written into memory to synchronize the caches.

+ The function takes 2 inputs, the starting address in register a0 and the size
of the area to sync in bytes

+ calculate the end address
+ get the size of a cache line

+ if the size is 0 we have no caches so no need to syncl so the code will jump
to the return

+ Sync the first address

+ Check to see if it is the last cache line to sync

Use the delay slot to increment the byte count by the step size
And loop back if there is more to do

+ once we have looped through all the cache lines use the sync instruction to
sync any coherent memory so other devices that might be sharing the
memory will see the change

+ and return making sure that any instruction hazards have been cleared

Note the JR.HB instruction could be replaced with JALR.HB, ERET, or
DERET instructions, as appropriate.

TLB Instructions

Mnemonic | instruction | Assembly | MIPS32___| MIPS16e

TLBR Read Indexed TLB Entry tibr |
TLBWI Wirite Indexed TLB Entry tibwi ()
TLBWR Write Random TLB Entry tibwr)
TLBP Probe TLB for matching Entry tibp 1|

= TLBR - The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of
the TLB entry pointed to by the Index register.

= TLBWI - The TLB entry pointed to by the Index register is written from the contents of the EntryHi,
EntryLo0O, EntryLo1, and PageMask registers.

= TLBWR - The TLB entry pointed to by the Random register is written from the contents of the
EntryHi, EntryLo0, EntryLo1, and PageMask registers.

= TLBP - The Index register is loaded with the address of the TLB entry whose contents match the
contents of the EntryHi register. If no TLB entry matches, the high-order bit of the Index register is
set.

= The TLB is covered in more detail later in this class.

MIFPS s

There are four instructions the control the translation look aside buffer. These
will be covered in detail in a separate TLB section.

58

Cache Instructions

CACHE Perform a cache cache op, x(t0) Cache operation on address
operation based at t0[x]

PREF Move data between pref y, x(t0) Prefetch memory t0[x] based %)
memory and cache on hinty

These instructions are covered in more detail later in this class

MIFPS

59

Like wise there are two instructions the control the cache these will be
covered in detail in a separate section on the Cache.

59

Wait Instruction

Assembly | Pseudo
code

WAIT Force core into low wait
power mode

= The WAIT instruction causes the CPU to enter a low-power
sleep mode until woken by an interrupt. Most of the core
logic is stopped, but the Count register, in particular,
continues to run. The WAIT instruction is commonly used in
the OS idle loop when there is nothing for the CPU to do.

* The WAIT instruction is covered in more detail later in this
class

MIFPS s

The wait instruction can be used to control the power consumption of the CPU
when there is nothing to do but wait for an interrupt. This instruction will be
cover in detail in a separate section on power.

60

Instructions for Shadow Register Sets

Instruction Assembly | Pseudo
code

RDPGPR Read Previous GPR rdpgpr t0, 1 t0=
SGPR[pss][1]

WRPGPR Write Previous GPR wrpgpr 1, t0 SGPR[pss][1] = M
10

= A core that does not support shadow sets will still implement
these instructions, causing a register-to-register copy.

= These instructions are covered in more detail later in this
class

MIFPS .

There are two instruction that control reading and writing Shadow register set
since these work with interrupts they are covered in detail in a separate
section for exceptions and interrupts.

