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Preface 

This book is a collection of Scientific American columns that I wrote 
over a period of 25 years. It is the thirteenth such collection.. The unify- 
ing theme, if there must be one, is recreational mathematics; that is, 
mathematics presented in a spirit of play. As with earlier books, the 
columns have been corrected and expanded with addendums based on 
current feedback from readers. So much has happened since to Penrose 
tilings (especially their unexpected applications to crystal theory), to 
public key cryptosystems and to the French Oulipo, that I have written 
brand new chapters for each of these topics. Also published lhere for the 
first time is astonishing news concerning my old and dear friend Dr. 
Matrix. I report my discovery that Dr. Matrix had not been killed by a 
Russian KGB agent, as supposed, but is alive and well in Casablanca. 

Martin Gardner 



Penr ose Tiling 

At the end of a 1975 Scientific American column on tiling 
the plane periodically with congruent convex polygons (reprinted in my 
Time Travel and Other Mathematical Bewilderments) I promised a later 
column on nonperiodic tiling. This chapter reprints my fulfillment of 
that promise -a 1977 column that reported for the first time a remark- 
able nonperiodic tiling discovered by Roger Penrose, the noted British 
mathematical physicist and cosmologisr. First, let me give some defini- 
tions and background. 

A periodic tiling is one on which you can outline a region that tiles 
the plane by translation, that is, by shifting the position of the region 
without rotating or reflecting it. M. C. Escher, the Dutch artist, is famous 
for his many pictures of periodic tilings with shapes that resemble living 
things. Figure 1 is typical. An adjacent black and white bird constitute a 
fundamental region that tiles by translation. Think of the plane as being 
covered with transparent paper on which each tile is outlined. Only if the 
tiling is periodic can you shift the paper, without rotation, to a new 
position where all outlines again exactly fit. 

An infinity of shapes - for instance the regular hexagon - tile only 
periodically. An infinity of other shapes tile both periodically and non- 
periodically. A checkerboard is easily converted to a nonperiodic tiling 
by identical isosceles right triangles or by quadrilaterals. Simply bisect 
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1988 M C Escher He~rs Cordon Art - Baarn - Holland 

Figure 1 A periodic tessellation by M.  C .  Escher (1949) 

each square as shown in Figure 2A, left, altering the orientations to 
prevent periodicity. It is also easy to tile nonperiodically with dominoes. 

Isoceles triangles also tile in the radial fashion shown in the center of 
Figure 2A. Although the tiling is highly ordered, it is obviously not 
periodic. As Michael Goldberg pointed out in a 1955 paper titled "Cen- 
tral Tessellations," such a tiling can be sliced in half, and then the half 
planes can be shifted one step or more to make a spiral form of nonper- 
iodic tiling, as shown in Figure 2A, right. The triangle can be distorted in 
an infinity of ways by replacing its two equal sides with congruent lines, 
as shown at the left in Figure 2B. If the new sides have straight edges, the 
result is a polygon of 5, 7, 9, 11 . . . edges that tiles spirally. Figure 3 
shows a striking pattern obtained in this way from a nine-sided polygon. 
It was first found by Heinz Voderberg in a complicated procedure. 
Goldberg's method of obtaining it makes it almost trivial. 

In all known cases of nonperiodic tiling by congruent figures the 
figure also tiles periodically. Figure 2B, right, shows how two of the 
Voderberg enneagons go together to make an octagon that tiles periodi- 
cally in an obvious way. 

Another kind of nonperiodic tiling is obtained by tiles that group 
together to form larger replicas of themselves. Solomon W. Golomb 
calls them "reptiles." (See Chapter 19 of my book Unexpected  Hanging.) 
Figure 4 shows how a shape called the "sphinx" tiles nonperiodically by 



i%nrose Tiling 3 

giving rise to ever larger sphinxes. Again, two sphinxes (with one sphinx 
rotated 180 degrees) tile periodically in an obvious way. 

Are there sets of tiles that tile only nonperi~dicall~? By "only" we 
mean that neither a single shape or subset nor the entire set tiles periodi- 
cally, but that by using all of them a nonperiodic tiling is possible. 
Rotating and reflecting tiles are allowed. 

For many decades experts believed no such set exists, but: the suppo- 
sition proved to be untrue. In 1961 Hao Wang became interested in 
tiling the plane with sets of unit squares whose edges were colored in 
various ways. They are called Wang dominoes, and Wang wrote a splen- 
did article about them for Scientific American in 1965. Wang's problem 
was to find a procedure for deciding whether any given set of dominoes 
will tile by placing them so that abutting edges are the same color. 
Rotations and reflections are not allowed. The problem is important 
because it relates to decision questions in symbolic logic. Wang conjec- 
tured that any set of tiles which can tile the plane can tile it periodically 
and showed that if this is the case, there is a decision procedu~re for such 
tiling. 

In 1964 Robert Berger, in his thesis for a doctorate from Harvard 
University in applied mathematics, showed that Wang's conjecture is 

Figure 2 (A) Nonperiodic tiling with congruent shapes (B)  An enrzeagon 
(dotted at left) and a pair of enneagons (right) forming czn octagon 
that tiles periodically 



Figure 3 A spiral tiling by Heinz Voderberg 

Figure 4 Three generations of sphinxes i n  a nonperiodic tiling 
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false. There is no general procedure. Therefore there is a s'et of Wang 
dominoes that tiles only nonperiodically. Berger constructecl such a set, 
using more than 20,000 dominoes. Later he found a much smaller set of 
104, and Donald Knuth was able to reduce the number to 92. 

It is easy to change such a set of Wang dominoes into polygonal tiles 
that tile only nonperiodically. You simply put projections and slots on 
the edges to make jigsaw pieces that fit in the manner fol-merly pre- 
scribed by colors. An edge formerly one color fits only another formerly 
the same color, and a similar relation obtains for the other colors. By 
allowing such tiles to rotate and reflect Robinson construclted six tiles 
(see Figure 5) that force nonperiodicity in the sense explained above. In 
1977 Robert Ammann found a different set of six tiles that; also force 
nonperiodicity. Whether tiles of this square type can be reduced to less 
than six is not known, though there are strong grounds for believing six 
to be the minimum. 

At the University of Oxford, where he is Rouse Ball P'rofessor of 
Mathematics, Penrose found small sets of tiles, not of the square type, 

Figure 5 Raphael M.  Robinson's six tiles that force a nonperiodic tiling 
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that force nonperiodicity. Although most of his work is in relativity 
theory and quantum mechanics, he continues the active interest in 
recreational mathematics he shared with his geneticist father, the late 
L. S. Penrose. (They are the inventors of the famous "Penrose staircase" 
that goes round and round without getting higher; Escher depicted it in 
his lithograph "Ascending and Descending.") In 1973 Penrose found a 
set of six tiles that force nonperiodicity. In 1974 he found a way to 
reduce them to four. Soon afterward he lowered them to two. 

Because the tiles lend themselves to commercial puzzles, Penrose 
was reluctant to disclose them until he had applied for patents in the 
United Kingdom, the United States and Japan. The patents are now in 
force. I am equally indebted to John Horton Conway for many of the 
results of his study of the Penrose tiles. 

The shapes of a pair of Penrose tiles can vary, but the most interest- 
ing pair have shapes that Conway calls "darts" and "kites." Figure 6A 
shows how they are derived from a rhombus with angles of 72 and 108 
degrees. Divide the long diagonal in the familiar golden ratio of (1 + 

T 

'/GO H 

% 136' 
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'36 O 72 O 
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T 
+=k& Kite T Dart 

Ace (fool's kite) Short bow tie 

C 

Long bow tie 

Figure 6 (A) Construction of dart and kite (B) A coloring (black and gray) 
of dart and kite to force nonperiodicity (C) Aces and bow ties that 
speed constructions 
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6 ) / 2  = 1.61803398 . . . , then join the point to the obtuse corners. That 
is all. Let phi stand for the golden ratio. Each line segment is either 1 or 
phi as indicated. The smallest angle is 36 degrees, and the other angles 
are multiples of it. 

The rhombus of course tiles periodically, but we are not allowed to 
join the pieces in this manner. Forbidden ways of joining sides of equal 
length can be enforced by bumps and dents, but there are sinnpler ways. 
For example, we can label the corners H and T (heads and tails) as is 
shown in Figure 6B, and then give the rule that in fitting edges only 
corners of the same letter may meet. Dots of two colors could be placed 
in the corners to aid in conforming to this rule, but a prettier method, 
proposed by Conway, is to draw circular arcs of two colors on each tile, 
shown in the illustration as black and gray. Each arc cuts the sides as 
well as the axis of symmetry in the golden ratio. Our rule is that abutting 
edges must join arcs of the same color. 

To appreciate the full beauty and mystery of Penrose tiling one 
should make at least 100 kites and 60 darts. The pieces need be colored 
on one side only. The number of pieces of the two shapes are (like their 
areas) in the golden ratio. You might suppose you need more of the 
smaller darts, but it is the other way around. You need 1.618 . . . as 
many kites as darts. In an infinite tiling this proportion is exact. The 
irrationality of the ratio underlies a proof by Penrose that lhe tiling is 
nonperiodic because if it were periodic, the ratio clearly would have to 
be rational. 

A good plan is to draw as many darts and kites as you can on one 
sheet, with a ratio of about five kites to three darts, using a thin line for 
the curves. The sheet can be photocopied many times. The curves can 
then be colored with, say, red and green felt-tip pens. Conwqy has found 
that it speeds constructions and keeps patterns stabler if you imake many 
copies of the three larger shapes as is shown in Figure 6C. As you expand 
a pattern, you can continually replace darts and kites with aces and bow 
ties. Actually an infinity of arbitrarily large pairs of shapes, made up of 
darts and kites, will serve for tiling any infinite pattern. 

A Penrose pattern is made by starting with darts and kites around 
one vertex and then expanding radially. Each time you add a piece to an 
edge, you must choose between a dart and a kite. Sometimes the choice 
is forced, sometimes it is not. Sometimes either piece fits, but later you 
may encounter a contradiction (a spot where no piece can be legally 
added) and be forced to go back and make the other choice. It is a good 
plan to go around a boundary, placing all the forced pieces first. They 
cannot lead to a contradiction. You can then experiment with unforced 



pieces. It is always possible to continue forever. The more you play with 
the pieces, the more you will become aware of "forcing rules" that 
increase efficiency. For example, a dart forces two kites in its concavity, 
creating the ubiquitous ace. 

There are many ways to prove that the number of Penrose tilings is 
uncountable, just as the number of points on a line is. These proofs rest 
on a surprising phenomenon discovered by Penrose. Conway calls it 
"inflation" and "deflation." Figure 7 shows the beginning of inflation. 
Imagine that every dart is cut in half and then all short edges of the 
original pieces are glued together. The result: a new tiling (shown in 
heavy black lines) by larger darts and kites. 

Inflation can be continued to infinity, with each new "generation" of 
pieces larger than the last. Note that the second-generation kite, al- 
though it is the same size and shape as a first-generation ace, is formed 
differently. For this reason the ace is also called a fool's kite. It should 
never be mistaken for a second-generation kite. Deflation is the same 
process carried the other way. On every Penrose tiling we can draw 
smaller and smaller generations of darts and kites. This pattern too goes 
to infinity, creating a structure that is a fractal (see Chapter 3). 

Figure 7 How a pattern is inflated 
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Conway's proof of the uncountability of Penrose patterns (Penrose 
had earlier proved it in a different way) can be outlined as follows. On 
the kite label one side of the axis of symmetry L, the other R (for left and 
right). Do the same on the dart, using 1 and r. Now pick a random point 
on the tiling. Record the letter that gives its location on the tile. Inflate 
the pattern one step, note the location of the same point in a second-gen- 
eration tile and again record the letter. Continuing through higher infla- 
tions, you generate an infinite sequence of symbols that is a unique 
labeling of the original pattern seen, so to speak, from the selected point. 

Pick another point on the original pattern. The procedure may give a 
sequence that starts differently, but it will reach a letter beyond which it 
agrees to infinity with the former sequence. If there is no such agree- 
ment beyond a certain point, the two sequences label distinct patterns. 
Not all possible sequences of the four symbols can be produced this way, 
but those that label different patterns can be shown to cori-espond in 
number with the number of points on a line. 

We have omitted the colored curves on our pictures of tilings be- 
cause they make it difficult to see the tiles. If you work with colored tiles, 
however, you will be struck by the beautiful designs created by these 
curves. Penrose and Conway independently proved that whenever a 
curve closes, it has a pentagonal symmetry, and the entire region within 
the curve has a fivefold symmetry. At the most a pattern car1 have two 
curves of each color that do not close. In most patterns all curves close. 

Although it is possible to construct Penrose patterns with a high 
degree of symmetry (an infinity of patterns have bilateral symmetry), 
most patterns, like the universe, are a mystifying mixture of order and 
unexpected deviations from order. As the patterns expand, they seem to 
be always striving to repeat themselves but never quite managing it. 
G. K. Chesterton once suggested that an extraterrestrial being, observing 
how many features of a human body are duplicated on the left and the 
right, would reasonably deduce that we have a heart on each side. The 
world, he said, "looks just a little more mathematical and regular than it 
is; its exactitude is obvious, but its inexactitude is hidden; i1.s wildness 
lies in wait." Everywhere there is a "silent swerving from accuracy by an 
inch that is the uncanny element in everything . . . a sort of secret 
treason in the universe." The passage is a nice description of Penrose's 
planar worlds. 

There is something even more surprising about Penrose universes. 
In a curious finite sense, given by the "local isomorphism theorem," all 
Penrose patterns are alike. Penrose was able to show that every finite 
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region in any pattern is contained somewhere inside every other pattern. 
Moreover, it appears infinitely many times in every pattern. 

To understand how crazy this situation is, imagine you are living on 
an infinite plane tessellated by one tiling of the uncountable infinity of 
Penrose tilings. You can examine your pattern, piece by piece, in ever 
expanding areas. No matter how much of it you explore you can never 
determine which tiling you are on. It is no help to travel far out and 
examine disconnected regions, because all the regions belong to one 
large finite region that is exactly duplicated infinitely many times on all 
patterns. Of course, this is trivially true of any periodic tessellation, but 
Penrose universes are not periodic. They differ from one another in 
infinitely many ways, and yet it is only at the unobtainable limit that one 
can be distinguished from another. 

Suppose you have explored a circular region of diameter d. Call it 
the "town" where you live. Suddenly you are transported to a randomly 
chosen parallel Penrose world. How far are you from a circular region 
that exactly matches the streets of your home town? Conway answers 
with a truly remarkable theorem. The distance from the perimeter of the 
home town to the perimeter of the duplicate town is never more than d 
times half of the cube of the golden ratio, or 2.1 1+ times d. (This is an 
upper bound, not an average.) If you walk in the right direction, you 
need not go more than that distance to find yourself inside an exact copy 
of your home town. The theorem also applies to the universe in which 
you live. Every large circular pattern (there is an infinity of different 
ones) can be reached by walking a distance in some direction that is 
certainly less than about twice the diameter of the pattern and more 
likely about the same distance as the diameter. 

The theorem is quite unexpected. Consider an analogous isomor- 
phism exhibited by a sequence of unpatterned digits such as pi. If you 
pick a finite sequence of 10 digits and then start from a random spot in 
pi, you are pretty sure to encounter the same sequence if you move far 
enough along pi, but the distance you must go has no known upper 
bound, and the expected distance is enormously longer than 10 digits. 
The longer the finite sequence is, the farther you can expect to walk to 
find it again. On a Penrose pattern you are always very close to a 
duplicate of home. 

There are just seven ways that darts and kites will fit around a vertex. 
Let us consider first, using Conway's nomenclature, the two ways with 
pentagonal symmetry. 

The sun (shown in white in Figure 8) does not force the placing of 
any other piece around it. If you add pieces so that pentagonal symmetry 
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Figure 8 The infinite s u n  pattern 

is always preserved, however, you will be forced to construct the beauti- 
ful pattern shown. It is uniquely determined to infinity. 

The star, shown in white in Figure 9, forces the 10 light gray kites 
around it. Enlarge this pattern, always preserving the fivefold symmetry, 
and you will create another flowery design that is infinite and unique. 
The star and sun patterns are the only Penrose universes with perfect 
pentagonal symmetry, and there is a lovely sense in which they are 
equivalent. Inflate or deflate either of the patterns and you get the other. 

The ace is a third way to tile around a vertex. It forces no more 
pieces. The deuce, the jack and the queen are shown in white in Figure 
10, surrounded by the tiles they immediately force. As Penrose discov- 
ered (it was later found independently by Clive Bach), some of the seven 
vertex figures force the placing of tiles that are not joined to the immedi- 
ately forced region. Plate 1 shows in deep color the central portion of the 
king's "empire." (The king is the dark gray area.) All the deep colored 
tiles are forced by the king. (Two aces, just outside the left and right 
borders, are also forced but are not shown.) 



Figure 9 The infinite star pattern 

Jack Queen Deuce 

Figure 10 The "empires" of deuce, jack and queen 
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This picture of the king's empire was drawn by a computer program 
written by Eric Regener of Concordia University in Montreal. His pro- 
gram deflates any Penrose pattern any number of steps. The heavy black 
lines show the domain immediately forced by the king. The thin black 
lines are a third-generation deflation in which the king and almost all of 
his empire are replicated. 

The most extraordinary of all Penrose universes, essential for under- 
standing the tiles, is the infinite cartwheel pattern, the center of which is 
shown in Figure 1 1. The regular decagon at the center, outlined in heavy 
black (each side is a pair of long and short edges), is what Conway calls a 
"cartwheel." Every point on any pattern is inside a cartwheel exactly like 

Figure 11 The cartwheel pattern surrounding Batman 



this one. By one-step inflation we see that every point will be inside a 
larger cartwheel. Similarly, every point is inside a cartwheel of every 
generation, although the wheels need not be concentric. 

Note the 10 light gray spokes that radiate to infinity. Conway calls 
them "worms." They are made of long and short bow ties, the number of 
long ones being in the golden ratio to the number of short ones. Every 
Penrose universe contains an infinite number of arbitrarily long worms. 
Inflate or deflate a worm and you get another worm along the same axis. 
Observe that two full worms extend across the central cartwheel in the 
infinite cartwheel pattern. (Inside it they are not gray.) The remaining 
spokes are half-infinite worms. Aside from spokes and the interior of the 
central cartwheel, the pattern has perfect tenfold symmetry. Between 
any two spokes we see an alternating display of increasingly large por- 
tions of the sun and star patterns. 

Any spoke of the infinite cartwheel pattern can be turned side to side 
(or, what amounts to the same thing, each of its bow ties can be rotated 
end for end), and the spoke will still fit all surrounding tiles except for 
those inside the central cartwheel. There are 10 spokes; thus there are 
21° = 1024 combinations of states. After eliminating rotations and re- 
flections, however, there are only 62 distinct combinations. Each combi- 
nation leaves inside the cartwheel a region that Conway has named a 
"decapod." 

Decapods are made up of 10 identical isosceles triangles with the 
shapes of enlarged half darts. The decapods with maximum symmetry 
are the buzzsaw and the starfish shown in Figure 12. Like a worm, each 
triangle can be turned. As before, ignoring rotations and reflections, we 
get 62 decapods. Imagine the convex vertexes on the perimeter of each 
decapod to be labeled T and the concave vertexes labeled H. To continue 
tiling, these H's and T's must be matched to the heads and tails of the 
tiles in the usual manner. 

When the spokes are arranged the way they are in the infinite cart- 
wheel pattern shown, a decapod called Batman is formed at the center. 
Batman (shown in dark gray) is the only decapod that can legally be 
tiled. (No finite region can have more than one legal tiling.) Batman 
does not, however, force the infinite cartwheel pattern. It merely allows 
it. Indeed, no finite portion of a legal tiling can force an entire pattern, 
because the finite portion is contained in every tiling. 

Note that the infinite cartwheel pattern is bilaterally symmetrical, its 
axis of symmetry going vertically through Batman. Inflate the pattern 
and it remains unchanged except for mirror reflection in a line perpen- 
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Buzzsaw Starfish Asterix 

Figure 12 Three decapods 

dicular to the symmetry axis. The five darts in Batman and its two central 
kites are the only tiles in any Penrose universe that are not inside a 
region of fivefold symmetry. All other pieces in this pattern or any other 
one are in infinitely many regions of fivefold symmetry. 

The other 6 1 decapods are produced inside the central cartwheel by 
the other 61 combinations of worm turns in the spokes. All 61 are 
"holes" in the following sense. A hole is any finite empty region, sur- 
rounded by an infinite tiling, that cannot be legally tiled. 'You might 
suppose each decapod is the center of infinitely many tilings, but here 
Penrose's universes play another joke on us. Surprisingly, 60 decapods 
force a unique tiling that differs from the one shown only in the compo- 
sition of the spokes. Only Batman and one other decapod, called Asterix* 
after a French cartoon character, do not. Like Batman, Asterix allows an 
infinite cartwheel pattern, but it also allows patterns of other kinds. 

Now for a startling conjecture. Conway believes, although he has not 
completed the proof, that every possible hole, of whatever size or shape, 
is equivalent to a decapod hole in the following sense. By rearranging 
tiles around the hole, taking away or adding a finite number (of pieces if 
necessary, you can transform every hole into a decapod. If this is true, 
any finite number of holes in a pattern can also be reduced to one 
decapod. We have only to remove enough tiles to join the holes into one 
big hole, then reduce the big hole until an untileable decapod results. 

*Asterix the Gaul is featured in a popular series of French picture books for children. 
The stories are fantasies taking place at the time of Julius Caesar. Asterix is also an 
intended pun on "asterisk." 
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Think of a decapod as being a solid tile. Except for Batman and 
Asterix, each of the 62 decapods is like an imperfection that solidifies a 
crystal. It forces a unique infinite cartwheel pattern, spokes and all, that 
goes on forever. If Conway's conjecture holds, any "foreign piece" 
(Penrose's term) that forces a unique tiling, no matter how large the 
piece is, has an outline that transforms into one of 60 decapod holes. 

Kites and darts can be changed to other shapes by the same tech- 
nique described earlier for changing isosceles triangles into spiral-tiling 
polygons. It is the same technique that Escher employed for transform- 
ing polygonal tiles into animal shapes. Figure 13 shows how Penrose 
changed his darts and kites into chickens that tile only nonperiodically. 
Note that although the chickens are asymmetrical, it is never necessary 
to turn any of them over to tile the plane. Alas, Escher died before he 
could know of Penrose's tiles. How he would have reveled in their 
possibilities! 

By dissecting darts and kites into smaller pieces and putting them 
together in other ways you can make other pairs of tiles with properties 
similar to those of darts and kites. Penrose found an unusually simple 
pair: the two rhombuses in the sample pattern of Figure 14. All edges are 
the same length. The larger piece has angles of 72 and 108 degrees and 

Figure 13 Penrose's nonperiodic chickens 
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Figure 14 A nonperiodic tiling with Roger Penrose's rkombtlses 

the smaller one has angles of 36 and 144 degrees. As before, both the 
areas and the number of pieces needed for each type are in the golden 
ratio. Tiling patterns inflate and deflate and tile the plane in an uncount- 
able infinity of nonperiodic ways. The nonperiodicity can be forced by 
bumps and dents or by a coloring such as the one suggested by Penrose 
and shown in the illustration by the light and dark gray areas. 

We see how closely the two sets of tiles are related to each other and 
to the golden ratio by examining the pentagram in Figure 15. This was 
the mystic symbol of the ancient Greek Pythagorean brothel-hood and 
the dipgram with which Goethe's Faust trapped Mephistopheles. The 
construction can continue forever, outward and inward, and every line 
segment is in the golden ratio to the next smaller one. Note how all four 
Penrose tiles are embedded in the diagram. The kite is ABCD, and the 
dart is AECB. The rhombuses, although they are not in the proper rela- 
tive sizes, are AECD and ABCF. As Conway likes to put it, the two sets of 
tiles are based on the same underlying "golden stuff." Any theorem 
about kites and darts can be translated into a theorem about the Penrose 
rhombuses or any other pair of Penrose tiles and vice versa. Conway 
prefers to work with darts and kites, but other mathematicians prefer 
working with the simpler rhombuses. Robert Ammann has found a 



Figure 15 The Pythagorean pentagram 

bewildering variety of other sets of nonperiodic tiles. One set, consisting 
of two convex pentagons and a convex hexagon, forces nonperiodicity 
without any edge markings. He found several pairs, each a hexagon with 
five interior angles of 90 degrees and one of 270 degrees. You'll find 
these sets depicted and their remarkable properties discussed in the 
book by Branko Griinbaum and G. C. Shephard listed in the next chap- 
ter's bibliography. 

Are there pairs of tiles not related to the golden ratio that force 
nonperiodicity? Is there a pair of similar tiles that force nonperiodicity? 
Is there a pair of convex tiles that will force nonperiodicity without edge 
markings? 

Of course, the major unsolved problem is whether there is a single 
shape that will tile the plane only nonperiodically. Most experts think 
not, but no one is anywhere near proving it. It has not even been shown 
that if such a tile exists, it must be nonconvex. 
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In the decade since my column on Penrose tiling ran in 
Scientific American (January 1977), Roger Penrose, John Conway, Rob- 
ert Ammann and others have made enormous strides in exploring non- 
periodic tiling. (I will continue here to use the term "nonperiodic," 
although Branko Griinbaum and G. C. Shephard in their monumental 
work Tilings and Patterns prefer to call a set of tiles "aperiodic" if it tiles 
only nonperiodically.) The discovery of what are now called Ammann 
bars or lines and of 3-space analogues of Penrose tiling has led to an 
amazing development in crystallography, but first let me summarize in 
this previously unpublished chapter some of the developments that pre- 
ceded this breakthrough. 

Robert Ammann, a brilliant young mathematician working at low- 
level computer jobs in Massachusetts, independently discovered 
Penrose's rhomb tiles in 1976, about eight months before my column on 
Penrose tiling appeared. In correspondence I informed him of the darts 
and kites, as well as Penrose's earlier discovery of the rhombs. Ammann 
soon realized that both pairs of tiles formed patterns that were deter- 
mined by five families of parallel lines that cross the plane in five differ- 
ent directions, intersecting one another at 36015 = 72-degree angles. 
One family of such lines, now called Ammann bars, is shown in 
Figure 16. 
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Figure 16 A family of Ammann bars displaying (left to right) a SLLSLLS 
sequence 

Observe that the lines cross the concave corners of darts that point 
in the same or opposite direction. This is not strictly accurate, but for 
our purposes lines ruled in this easy way are adequate. For a precise 
positioning of the lines, see the Griinbaum/Shephard book. When accu- 
rately placed, each line is a trifle outside a dart's concave corner. Inside 
each regular decagon (ten-sided polygon) on the pattern, the Ammann 
bars form a perfect pentagram (five-pointed star). 

Note that the spacings between bars are of two lengths which we will 
call L (for long) and S (for short). When the lines are properly drawn, 
these two lengths are in golden ratio. Moreover, on the infinite plane the 
number of L's in a family of bars and the number of S's in that same 
family are in golden ratio. Moving in either direction perpendicular to a 
family of bars, we can record the sequence of spacings as a sequence of 
L's and S's. This sequence is nonperiodic, and constitutes a remarkable 
1-dimensional analogue of Penrose tiling. The local isomorphism 
theorem applies. If you select any finite portion of the sequence, you can 
always find it duplicated not far away. Start anywhere and write down 
the letters to any finite length, say a billion. If you start at any other spot 
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in the sequence, you are certain to reach this identical billion-letter 
sequence. Only when the sequence is taken as infinite is it unique. 

Conway discovered that this sequence can be obtained from the 
golden ratio in the following way. Write down in ascending order the 
multiples of the golden ratio (1 + &)/2) and round them down to the 
nearest integer. The result is the sequence that begins 1, 3,4, 6, 8, 9, 11, 
12, 14, 16, 17, 19, 21, 22,24, 25, 2 7 , 2 9 , 3 0 , 3 2 , 3 3 , 3 5 , 3 7 , 3 8 , 4 0 , 4 2 , 4 3 ,  
45, 46, 48, 50. . . . It is sequence 917 in N. J. A. Sloane's Handbook of 
Integer Sequences. If you round down multiples of the square of the 
golden ratio, you get the sequence 2,5,7, 10, 13, 15, 18,20, 23. . . . The 
two sequences are called "complementary." Together they display every 
positive integer once and only once. Successive multiples of any real 
number a ,  rounded down to the nearest integer, form a sequence called 
the spectrum of a. If a is irrational, the sequence is called a Beatty 
sequence after Samuel Beatty, a Canadian mathematician who called 
attention to such sequences in 1926. As we shall see in Chapter 8, the 
complementary Beatty sequences based on the golden ratio provide the 
winning strategy for a famous variant of Nim known as Wythoff's game. 
References on Beatty sequences are given in that chapter's bibliography. 

Adjacent numbers in the golden Beatty sequence differ by either 1 or 
2. Put down this first row of differences, then change each 1 to 0 and 
each 2 to 1. You get an endless binary sequence that starts 
101 10 10 1 101 10 10. . . . This is a portion of the sequence of S's and L's in 
any infinite family of Ammann bars. Conway uses the term "musical 
sequence" for any finite segment of the golden ratio sequence. Follow- 
ing Penrose, I shall call them Fibonacci sequences. 

Such sequences have many curious properties. For example, put a 
decimal point in front of the Fibonacci sequence given above in binary 
notation. The result is an irrational binary fraction that is generated by 
the following continued fraction: 



The exponents of this continued fraction are none other than the 
Fibonacci numbers. Conway has many unpublished results on the way 
Penrose tilings are related to Fibonacci numbers, which are in turn 
related to the growth patterns of plants. 

Penrose tilings are, as we have seen, self-similar in the sense that 
inflating or deflating them produces another tiling. Fibonacci sequences 
have the same self-similar property. There are many techniques for 
inflating and deflating them to produce another such sequence, but the 
simplest is as follows. To deflate, replace each S by an L, each LL by S, 
and drop all single L's. For example, the sequence LSLLSLSLLSLLSLS 
deflates by these rules to LSLLSLSLL. To inflate, replace each L by S, 
each S by LL, then add an L between each pair of S's. 

A Fibonacci sequence cannot contain SS or LLL. This provides a 
simple way to tell if a sequence of S's and L's is Fibonacci. Apply the 
deflation rules until you reach either a sequence that contains an SS or 
an LLL (in which case the sequence is not Fibonacci) or a single letter 
that proves it is. If you inflate or deflate a Penrose tiling, the sequence in 
each family of Ammann bars also inflates or deflates. The sequence of 
long and short bow ties in any worm, such as the worms in the ten 
spokes of the cartwheel pattern, is also a Fibonacci sequence. 

Two families of Ammann bars tessellate the plane with nonperiodic 
parallelograms that form a grid into which the tiles fit. As Griinbaum and 
Shephard put it, instead of thinking of the tiles as determining Ammann 
bars, "it is the system of bars which are fundamental and the only 
function of the tiles is to give a practical realization to them." The bars 
are something vaguely like the quantum fields that determine the posi- 
tions and paths of particles. Ammann was the first to perceive, early in 
1977, that his grid of bars leads into "forcing theorems" -theorems that 
tell how a small set of tiles will force the positions of infinite sets of other 
tiles. 

As Ammann expressed it in a letter to me: "Whenever a set of tiles 
forces two parallel lines to occupy certain positions, it forces an infinite 
number of nonadjacent parallel lines also to occupy certain positions. 
Whenever three lines cross at the proper angles, a tile is forced." This 
property of a finite set of tiles forcing the positions of tiles at arbitrarily 
long distances belongs also to the Penrose rhombs and to Robinson 
squares, even though they have no connection with the golden ratio. 

Taking off from Ammann's discoveries, Conway went on to develop 
many remarkable forcing theorems. I will say here only that two Penrose 
tiles (each can be of either type), suitably placed and arbitrarily far apart, 
will determine two infinite families (not complete families) of bars. 
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Intersections of the two families in turn determine the positions of an 
infinite set of tiles. The king, queen, jack, deuce and star, for example, 
force an infinite set of tiles in their empires. (The ace and sun do not 
force any tiles.) The king's empire is unusually dense. You might expect 
the density of such forced tiles to thin out as you get farther from the 
center, but this is not the case. The 'density remains constant for the 
entire plane. 

Ammann's other great discovery, also made in 1976, was a set of two 
rhombohedra (parallelepipeds with six congruent rhomb faces) which, 
with suitable face-matching rules, force a nonperiodic tiling of space. 
Nets for the two solids are shown in Figure 17. If you cut these two nets 
out of cardboard, fold along the lines and tape the edges, you will obtain 
the two solids shown at the bottom of the illustration. One can be 
thought of as a cube that has been squashed along a space diagonal and 

Figure 17 Nets for the obtuse and acute golden rhombohedra 
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the other as a cube that has been stretched along a space diagonal. All 
twelve faces are congruent, with their diagonals in golden ratio. The 
geometer H. S. M. Coxeter, in a note added on page 161 to the thirteenth 
edition of W. W. Rouse Ball's classic Mathematical Recreations and 
Essays (Dover, 1987), which he edited, calls a rhombohedron of this type 
a "golden rhombohedron." There are just two kinds, both of which had 
been studied by Kepler. The acute golden rhombohedron has two oppo- 
site corners where three equal acute angles meet. The obtuse golden 
rhombohedron has two opposite corners where equal obtuse angles 
meet. Other corners on both solids are mixtures of acute and obtuse 
angles. 

Ammann's two rhombohedra are the two golden types. The faces of 
the acute solid meet along edges at angles of 72 and 108 degrees. Those 
on the obtuse solid meet at 36 and 144 degrees. (The four dihedral angles 
are multiples of 360110 = 36 degrees.) The face angles are close to 64 
and 1 16 degrees. Periodic tiling is ruled out by suitably placed holes and 
projections. Note the spots on the unfolded faces in the illustration. 
Imagine each solid with a duplicate that has its spots in a pattern that is a 
mirror image of the other. This forms a set of four solids that force 
nonperiodicity if you put them together so every spot touches another 
spot. It is not known if there is a way to avoid this mirror-image marking 
so that just two solids, suitably marked, will force nonperiodicity. If a 
plane is passed through the space tiling at a suitable angle, the plane 
displays a tiling very close to a tiling by Penrose rhombs. 

I sent Ammann's results to Penrose. In a letter dated May 4, 1976, 
Penrose asked me to convey his congratulations to Ammann on two 
counts: for his independent discovery of the rhomb tiles and for the 
space tiling by the two golden rhombohedra. He continued: 

It is just possible that these things may have some significance in 
biology. You will recall that some viruses grow in the shapes of regular 
dodecahedra and icosahedra. It has always seemed puzzling how they do 
this. But with Ammann's non-periodic solids as basic units, one would 
arrive at quasi-periodic 'crystals' involving such seemingly impossible 
(crystallographically) cleavage directions along dodecahedra1 or 
icosahedral planes. Is it possible that the viruses might grow in some 
such way involving non-periodic basic units-or is the idea too fanciful? 

A year after Ammann's discovery of his nonperiodic space tiling, it 
was rediscovered in Japan by Koji Miyazaki, an architect at Kobe Univer- 
sity. He also discovered another way that the two golden rhombohedra 
can tile space nonperiodically, although the tiling is not forced. Five 
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acute and five obtuse golden rhombohedra will fit together to form a 
rhombic triacontrahedron. Two such solids, joined by a common obtuse 
vertex, can be surrounded with 60 more golden rhombohedra (30 of 
each type) to make a larger rhombic triacontrahedron. This enlargement 
can be continued to infinity, tiling space in a honeycomb that has a 
center of icosahedral symmetry. 

Penrose's conjectures about crystals, even his terminology, proved 
to be amazingly prophetic. In the early 1980's a number of scientists and 
mathematicians began to speculate cautiously about the possibility that 
the atomic structure of crystals might be based on a nonperiodic lattice. 
Then in 1984 Dany Schechtman and his colleagues at the National 
Bureau of Standards made a dramatic announcement. They had found a 
nonperiodic structure in the electron micrographs of a rapidly cooled 
aluminum-manganese alloy that some chemists immediately dubbed 
Schechtmanite. The micrographs displayed a clear fivefold symmetry 
which strongly suggested a nonperiodic space tiling analogous to 
Penrose tiling. 

Nothing like this had been seen before. It was, as science writer Ivars 
Peterson put it, as if someone had observed a five-sided snowflake. It had 
long been a dogma in crystallography that crystals could exhibit rota- 
tional symmetry of only 2, 3, 4 and 6 rotations, but never 5, 7 or 8. 
Another dogma was that solid matter took only two forms: either with 
atoms in a periodic arrangement or with disordered atoms in such 
amorphous material as glass. 

The ordered lattices of all crystals then known derived from three 
Platonic solids: the tetrahedron, cube and octahedron. The dodecahe- 
dron and icosahedron were ruled out because their fivefold symmetry 
made periodic tiling impossible. Yet here was a material that seemed to 
exhibit icosahedral symmetry. Like Penrose tiling, when the material 
was rotated by 72 degrees, or 115 of a circle, it remained essentially the 
same in an overall statistical way, but without long-range periodicity. It 
seemed to be a form of matter halfway between glass and ordinary 
crystals, suggesting that instead of a sharp demarcation between the two 
forms, there could be a continuum of in-between structures. 

Among physicists, chemists and crystallographers the effect of this 
discovery was explosive. Similar nonperiodic structures were soon 
being induced in other alloys, and dozens of papers began to appear. It 
became clear that solid matter could exhibit nonperiodic lattices with 
any kind of rotational symmetry. Wide varieties of solid tiles in sets of 
two or more were proposed as models, some forcing nonperiodicity, 
some merely allowing it. A crystal structure was produced made of 



layers of sheets with two-dimensional Penrose rhomb tiling. N. G. de 
Bruijn in the Netherlands developed an algebraic theory of nonperiodic 
tiling based on what he calls "pentagrids," similar to Ammann bars. In a 
1987 paper, he reported a surprising connection between nonperiodic tiling 
theory and a shuffling theorem known to card magicians as the Gilbreath 
principle. (On this principle see Chapter 9 of my New Mathematical Diver- 
sions from Scientific American.) 

There is now enormous ferment in the ongoing empirical and theo- 
retical investigations of "quasicrystals," as the new halfway crystals are 
called. There is also opposition to the view that their lattices are genu- 
inely nonperiodic. The leading opponent is Linus Pauling, who argues 
that the micrographs should be interpreted as a spurious form of fivefold 
symmetry known to crystallographers as multiple twinning. "Crystallo- 
graphers can now cease to worry that the validity of one of the accepted 
bases of their science has been questioned," Pauling concluded in a 
1985 report in Nature. Another possibility is that quasicrystals are simply 
extremely large unit cells of a periodic pattern that will be found when 
larger samples are made. And there are other possibilities. Proponents of 
quasicrystals maintain that all these alternative interpretations of the 
micrographs have been eliminated and that true nonperiodicity is the 
simplest explanation. It could be that in a few years empirical studies 
will disconfirm this, and quasicrystals may go the ill-fated way of poly- 
water; but if the nonperiodic interpretation holds, it will be a sensational 
turning point in crystallography. 

Assuming quasicrystals are real, the next few years should see in- 
creasingly efficient techniques for producing them. Many questions cry 
out for answers. What physical forces are involved in the formation of 
these strange crystals? Penrose has suggested that perhaps nonlocal 
quantum field effects play a role because without an overall plan it is 
hard to see how such a crystal could grow in such a way as to preserve its 
long-range nonperiodic pattern. (In the passage quoted earlier from his 
1976 letter, Penrose's speculations about viruses reflected his concern 
over how a quasicrystal could grow without guidance by nonlocal 
forces.) What are the elastic and electronic properties of quasicrystals? 
Will geologists ever find quasicrystals produced by nature? 

If quasicrystals are what their defenders think they are, they provide 
a striking example of how work done in recreational mathematics, 
purely for fun and aesthetic satisfaction, can turn out to have significant 
practical applications to the physical world and to technology. 

In 1980 I heard Conway lecture on Penrose tiling at Bell Laborato- 
ries. Discussing "hole theory," he said he liked to imagine a vast temple 
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with a floor tesselated by Penrose tiles and a circular column exactly in 
the center. The tiles seem to go under the column. Actually, the column 
covers a hole that can't be tesselated. Incidentally, on such patterns the 
Ammann bars get broken out of alignment as they pass through the hole. 

A Penrose tiling can, of course, always be colored with four colors so 
that no two tiles of the same color share a common edge. Can it always 
be colored with three? It can be shown, Conway said, from the local 
isomorphism theorem, that if any Penrose tiling is three-colorable, all 
are, but so far no one has proved that any infinite Penrose tiling is 
three-colorable. 

Conway gave the following simple reductio a d  absurdum proof 
(which he credited to Peter Barlow, a British mathematician who died in 
1862, best known today for his books of tables) that no tiling pattern can 
have more than one center of fivefold symmetry. Assume it has more 
than one. Select the two, A and B, that are closest together. (See Figure 
18.) Rotate the pattern 36015 = 72 degrees clockwise around B, carrying 
A to A' as shown. Return to the original position, and rotate the pattern 
72 degrees counterclockwise around A, taking B to B'. Result: Both 
rotations (if our assumption is true) would leave the pattern unchanged, 
but now it has two centers of fivefold symmetry, A' and B', that are closer 
together than A and B. This contradicts our second assumption that A 
and B are the closest centers. 

There are single tiles (and sets of tiles) that tile the plane periodically 
in only one way: the regular hexagon and the cross pentomino, for 
example. All triangles and all parallelograms tile in an uncountable 

Figure 18 Barlow's proof that no 
pattern can have two 
centers o f  fivefold Figure 19 The Conway tile that 
symmetry tiles in zero ways 



infinity of ways. Grünbaum and Shephard conjecture that no tile exists
that tiles periodically in a countable infinity of ways. They also conjec-
ture that given any positive integer r, there are single tiles that tile the
plane in just r ways. Such tiles have been found for r =1 through 10. In
his lecture Conway exhibited what he calls the “Conway tile” (Figure
19) for r = 0. He concluded by saying it was the first lecture he had ever
given on Penrose tiling in which he didn’t inadvertently say “karts and
dites.”
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Mandelbro t's Fractals 

When Zulus cannot smile, they frown, 
To keep an arc before the eye. 
Describing distances to town, 
They say, "As flies the butterfly." 

-JOHN UPDIKE, "Zulus Live in Land 
without a Square" 

A fascinating aspect of the history of mathematics is the 
way that the definitions of names for classes of mathematical objects are 
continually revised. The process usually goes like this: The objects are 
given a name, x ,  and defined in a rough way that conforms to intuition 
and usage. Then someone discovers an exceptional object that meets the 
definition but clearly is not what everyone has in mind when he calls an 
object x .  A new and more precise definition is then proposed that either 
includes the exceptional object or excludes it. The new definition 
"works" as long as no new exceptions arise. If they do, the definition has 
to be revised again, and the process may continue indefinitely. 

If the exceptions are strongly counter to intuition, they are some- 
times called monsters. The adjective pathological is often attached to 
them. In this chapter we consider the word "curve," describe a few 
monsters that have forced redefinitions of the term and introduce a 



frightening new monster captured last year by William Gosper, a bril- 
liant computer scientist now with Symbolics, Inc., in Mountain View, 
California. Readers of my books have met Gosper before in connection 
with the cellular-automata game Life. It was Gosper who constructed the 
"glider gun" that made it possible to "universalize" Life's cellular space. 
(See the three chapters on Life in my Wheels, Life, and Other Mathemati- 
cal Amusements.) 

Ancient Greek mathematicians had several definitions for curves. 
One was that they are the intersection of two surfaces. The conic-section 
curves, for instance, are generated when a cone is cut at certain angles 
by a plane. Another was that they are the locus of a moving point. A 
circle is traced by a rotating compass leg, an ellipse by a moving stylus 
that is stretching a closed loop of string around two pins, and so on for 
other curves generated by more complicated mechanisms. 

Seventeenth-century analytic geometry made possible a more pre- 
cise definition. Familiar curves became the diagrams of algebraic equa- 
tions. Could a plane curve be defined as the locus of points on the 
Cartesian plane that satisfy any two-variable equation? No, because the 
diagrams of some equations emerge as disconnected points or lines, and 
no one wanted to call such diagrams curves. Calculus suggested a way 
out. The word "curve" was limited to a graph whose points are a contin- 
uous function of an equation. 

It seems intuitively obvious that if a curve is a continuous function, it 
should be possible to differentiate the function or, what amounts to the 
same thing, to draw a tangent to any point on the curve. In the second 
half of the nineteenth century, however, mathematicians began to find 
all kinds of monster curves that had no unique tangent at any point. One 
of the most disturbing of such monsters was described in 1890 by the 
Italian mathematician and logician Giuseppe Peano. He showed how a 
single point, moving continuously over a square, could (in a finite time) 
pass at least once through every point on the square and its boundary! 
(Actually any such curve must go through an infinity of points at least 
three times.) At the limit, the curve becomes a solid square. Peano's 
curve is a legitimate diagram of a continuous function. Yet nowhere on 
it can a unique tangent be drawn because at no instant can we specify 
the direction in which a point is moving. 

David Hilbert proposed a simple way to generate a Peano curve with 
two end points. The first four steps of his recursive procedure should be 
clear from the pictures in Figure 20. At the limit the curve begins and 
ends at the square's top corners. The four steps in Figure 21 show how 
Waclaw Sierpinski generated a closed Peano curve. 
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Figure 20 Hilbert's open Peano cuwe 

In both versions think of the successive graphs as approximations 
approaching the graph of the limit curve. This limit curve in each ver- 
sion is infinitely long and completely fills the square even though each 
approximation misses an uncountable infinity of points both of whose 
coordinates are irrational. (In general the limit of a sequence of approxi- 
mation curves may go through many points that are not on any of the 
approximations.) Sierpinski's curve bounds an area 5/12 that of the 
square. Well, not exactly. The constructions approach this fraction as a 
limit, but the curve itself, the diagram of the limiting function, abolishes 
the distinction between inside and outside! 



Figure 21 Sierpinski's closed Peano curve 

Peano curves were a profound shock to mathematicians. Their paths 
seem to be one-dimensional, yet at the limit they occupy a two-dimen- 
sional area. Should they be called curves? To make things worse, Peano 
curves can be drawn just as easily to fill cubes and hypercubes. 

Helge von Koch, a Swedish mathematician, proposed in 1904 an- 
other delightful monster now called the snowflake curve. We start with 
an equilateral triangle and apply the simple recursive construction 
shown in Figure 22 to generate a crinkly curve resembling a snowflake. 
At the limit it is infinite in length; indeed, the distance is infinite between 
any two arbitrary points on the curve! The area bounded by the curve is 
exactly 8/5 that of the initial triangle. Like a Peano curve, its points have 
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no unique tangents, which means that the curve's generating function, 
although continuous, has no derivative. 

If the triangles are constructed inward instead of outward, one gets 
the anti-snowflake curve. Its perimeter is also infinite, and it bounds an 
infinity of disconnected regions with a total area equal to 215 that of the 
original triangle. One can start with regular polygons of more than three 
sides and erect similar polygons on the middle third of each side. A 
square, with the added squares projecting outward, produces the cross- 
stitch curve of infinite length that bounds an area twice the original 
square. (See my Sixth Book of Mathematical Games from Scientific Amer- 
ican, Chapter 22.) If the added squares go inward, they produce the 
anti-cross-stitch, an infinite curve that bounds no area. Similar construc- 
tions, starting with polygons of more than four sides, produce curves 
that self-intersect. 

A 3-space analogue of the snowflake is constructed by dividing each 
face of a regular tetrahedron into four equilateral triangles, erecting a 
smaller tetrahedron on the central triangle and continuing the proce- 
dure indefinitely. Will the final result be a finite solid with a surface of 
infinite area? No, the astonishing answer (Gosper assures me) is that at 
the limit the surface becomes a perfect cube! 

Figure 22 The first four orders of Helge von Koch's snowflake 
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We can generalize further by dividing the sides of a regular polygon 
into more than three parts. For example, divide each side of an equilat- 
eral triangle into five parts, erect smaller triangles on the second and 
fourth sections and repeat to the limit. For an ultimate generalization 
begin with any closed curve that can be divided into congruent seg- 
ments, then alter the segments any way you like, provided the alteration 
is segmented so that the change can be repeated on the smaller segments 
and carried to the limit. Analogous constructions can be made on the 
surfaces of solids. Of course, the results may be messy, self-intersecting 
curves or surfaces of no special interest. 

A book could be written about other kinds of pathological planar 
monsters. The Dutch topologist L. E. J. Brouwer published in 1910 a 
recursive construction for cutting a region into three subregions in such 
an insane way that at the limit all three subregions touch at every point 
(see "Geometry and Intuition," by Hans Hahn; Scientific American, April 
1954). Brouwer's construction generalizes to divide a region into n 
subregions, all meeting at every point. A more recently discovered fam- 
ily of monsters, the dragon curves, were introduced in Scientific Ameri- 
can's Mathematical Games department in 1967 (reprinted in my Mathe- 
matical Magic Show, Knopf, 1977) and later analyzed by Chandler Davis 
and Donald Knuth in a 1970 article. 

It is now my privilege to present Gosper's new monster, a beautiful 
Peano curve that he calls the flowsnake. Its construction starts with a 
pattern of seven regular hexagons (see Figure 23). Eight vertexes are 
joined as shown by the gray line, made up of seven equal-length seg- 
ments. The gray line is order 1 of the flowsnake. Order 2, shown in black, 
is obtained by replacing each gray segment with a similar twisted line of 
seven segments. Each segment of the black line is 1 / f i  the length of a 
gray segment; this proportion holds at every stage of the construction. 

The recursive procedure is continued to produce flowsnakes of 
higher orders. Figure 24 shows two computer drawings of flowsnakes of 
orders 3 and 4. By dividing the plane into black and white, with the 
bifurcating line passing through the flowsnake's end points, we see how 
the curve cuts the plane into two regions that twist about in almost, but 
not quite, the same pattern. 

The curve that diagrams the limit of the successive flowsnake func- 
tions passes through every point of its region at least once, completely 
filling the space. The curve is infinite and nondifferentiable. Like the 
straight line, it is self-similar in the sense that if you enlarge any portion 
of it, the pattern always looks the same. Snowflake curves have the same 
property. 
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Figure 23 Order 1 (gray) and order 2 (black) of  William Gosper's "flowsnake" 

In the light of these crazy curves, how do mathematicians currently 
define a curve? The scene is so crowded with monsters that no single 
definition covers all the objects to which the word "curve" is commonly 
applied. The topologist defines a curve as a set of points that are compact 
and connected and form a 1-dimensional continuum. To make the defi- 
nition clear, however, a lengthy discourse on point-set topology would 
be required. The definition catches well-behaved curves that diagram 
functions with derivatives, but it misses some of the nondifferentiable 
monsters we have been considering. "Of course we have no physical 
snowflake curves," Philip Morrison has written. "Nature gives no infini- 
ties, not even within molecular collisions. There is a cutoff at the ang- 
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Figure 24 Flowsnakes o f  order 3 (top) and order 4 (bottom) 
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strom level. Still, surprises abound." By surprises Morrison means those 
random natural patterns that have, in a statistical sense, the property of 
self-similarity as successive enlargements are made. His remarks appear 
in a review (Scientific American, November 1975) of a remarkable 
French book, Les Objets Fractals: Forme, Hasard et Dimensions, by Ben- 
oit Mandelbrot. 

Mandelbrot is a Polish-born (Warsaw, 1924) French mathematician 
who is currently an IBM Fellow at the Thomas J. Watson Research 
Center at Yorktown Heights, N.Y. Like Stanislaw Ulam and many other 
eminent Polish mathematicians, Mandelbrot has had a career involving 
a marvelous mixture of creative work in both pure and applied mathe- 
matics, notably in physics and economics. His teacher, the French math- 
ematician Paul Pierre Levy, made the first systematic study of statisti- 
cally self-similar curves, but they were regarded as useless, bizarre 
curiosities until Mandelbrot recognized them as being a basic tool for 
analyzing an enormous variety of physical phenomena. 

Mandelbrot's book is filled with pictures of just such phenomena. 
Consider coastlines. Their butterfly-flight irregularity is statistically self- 
similar. A coastline looks the same from a high altitude as it does from a 
low one. It is meaningless to speak of a coastline's "length" because it all 
depends on the precision of measurement. As Morrison puts it, "a coast- 
line on maps at varying scales obeys a power law like the snowflake 
curve's, from a scale of hundreds of kilometers down to one of perhaps 
meters, where geography stops and pebbles begin." 

The surface of the moon is another example. Remember your sur- 
prise on seeing the first closeup photographs of the moon made from a 
satellite in orbit around it? The moon's pocked surface looked basically 
as it did in photographs made with telescopes on the earth. Only the 
crater sizes were different. The same random self-similarity is found on 
the surface of certain cheeses, in the scattering of stars in the sky, on the 
bark of trees, in the contours of mountains, in atmospheric turbulence, 
in auditory noise and in countless other natural patterns. The Brownian 
motion of suspended particles approximates a statistically self-similar 
curve that (at the limit) has infinite length and no tangents. 

Let us go back to the flowsnake for a close look at its perimeter and 
at an amazing paradox. The perimeter can be constructed by a recursive 
procedure much simpler than the one used to get the flowsnake itself. 
Figure 25 shows how it works. Start with a regular hexagon, then replace 
each side with a zigzag line (gray) of three equal segments, each 1 / f i  the 
original side. The result is a nonconvex 18-gon. Since the zigzag line 
adds the same amount of area as it takes away, the 18-gon obviously has 
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the same area as the original hexagon. Repeat the construction on each 
of the 18 sides to produce a 54-gon, and imagine that the recursive 
procedure is continued to the limit. At each step the number of sides 
triples, but the area never changes. At the limit the area filled by the 
flowsnake is exactly the same as the area of the original hexagon. 

The entire region has an astounding property. It can be dissected, as 
is shown in Figure 26, into seven subregions, each of which is an exact 
copy of the entire region. 

Now for the paradox. What is the ratio of the area of a subregion to 
the entire region? Clearly it is 1 /7, since seven identical subregions make 
up the whole. But let us approach it from another angle, remembering 
that the areas of similar figures are proportional to the square of their 
linear dimensions. The outside perimeter consists of six segments, such 
as the segment from A to B, which is half the closed boundary of a 
subregion. Clearly the boundary of a subregion must be enlarged by a 
linear factor of 3 to fit the boundary of the entire region. But if this is 
true, the areas must be in a ratio of (1/3)2 = 119. We seem to have proved 
that the ratio of the areas is both 117 and 119. As Gosper asked when he 
first sent the paradox, Voss ist los? 

The answer lies in the peculiar, counterintuitive character of the 
pathological boundary. There is no fuzziness about the area of the region 
it bounds. It is indeed seven times the area of a subregion. Nor is the 
boundary fuzzy. It looks fuzzy, but it is nevertheless a precisely defined 
infinite set of points. It has, however, a strongly counterintuitive prop- 
erty. By what linear factor must the boundary of one of the seven subre- 
gions be enlarged to make it congruent with the outside overall bound- 
ary? One would suppose a factor of 3, but the actual factor is 
fi = 2.645. . . . It is impossible, of course, to print the boundary be- 
cause at the limit its complexity is infinite. Only a few steps of its 
construction can be shown before the ink begins to smear. 
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A deep question now arises. What "dimension" should be assigned 
to the flowsnake's boundary? Like the snowflake, it lies in a strange 
twilight zone between one dimension and two dimensions. In 1919 a 
German point-set topologist, Felix Hausdorff, resolved the difficulty by 
giving fractional dimensions to such curves, or what Mandelbrot calls 
"fractal" dimensions. The term was invented by Mandelbrot about 1975. 
He based it on the Latin verb frangere, which means "to break," and its 
adjective form, fractus. The term suggests the broken, fragmented char- 
acter of fractals, and also the fractional numbers that provide, as we shall 
see, a fractal's degree of shagginess. Fractal dimensions should not be 
confused with Hausdorff spaces - topological structures that mercifully 
we do not have to go into here. 

The familiar Euclidean dimensions 0, 1, 2, 3, 4 . . . are sometimes 
called topological dimensions because their spaces are topologically 

Figure 26 A flowsnake paradox 



distinct; that is, you can't transform one space into another by continu- 
ous topological deformation. A point has topological dimension 0. 
Smooth, well-behaved curves such as straight lines, circles, parabolas 
and so on have a Euclidean dimension of 1. Surfaces have dimension 2; 
solids, dimension 3; and hypersolids, higher integers. 

To grasp how fractal dimensions are calculated, consider first a 
straight line segment. If magnified by a factor x ,  the enlarged line can be 
cut into y copies of the original. The dimension of the line segment is the 
exponent of x that gives y. In this case x = y because doubling the line 
segment produces two copies of the segment, tripling the line segment 
produces three copies and so on. We can express the scaling ratio by 
writing log 2/log 2 = 1. 

Magnify a square by doubling its edge. The enlarged square can be 
cut into four copies of the original. If you triple the edge, it can be cut 
into nine copies. Generally, if you magnify a plane figure by a linear 
factor x ,  its area increases by a factor of x2. The dimension of a square, 
therefore, is log 4/1og 2 = 2. If you double a cube's edge, the enlarged 
cube can be cut into eight copies of the original. Its dimension is log 
8/log 2 = 3. And so it goes for hypercubes in higher topological (Euclid- 
ean) spaces. 

Let us now apply this technique to the snowflake. If you enlarge a 
portion of it by a linear factor of 3, it produces 4 copies of the original. At 
each construction step the ragged line is exactly 413 times the length of 
the previous line, although each straight segment is 113 the length of the 
previous segment. It is reasonable, therefore, to assign to the limit curve 
a Hausdorff dimension D, or fractal dimension, that is log 4/log 3 = 

1.261859. . . . The boundary of Gosper's flowsnake is constructed by 
repeatedly replacing a line segment with a zigzag path that is 3/47 as 
long. Its fractal dimension is log 3/log 47 = 1.129 15. . . . 

Calling these numbers "dimensions" is somewhat misleading. They 
are not Euclidean dimensions. It is best to think of them as measures of 
complexity, of the "degree of wiggliness," as Mandelbrot once put it. The 
complexity of Gosper's flowsnake boundary is a trifle lower than the 
snowflake. Figure 27, from Mandelbrot's 1977 book, is made by replac- 
ing lines of four units with lines of eight units to produce a squarish 
asymmetric snowflake with complexity log 8/log 4 = 1.5. Its fractal di- 
mension, therefore, is a bit higher than the flowsnake boundary. Be- 
cause each construction step adds the same amount of area as it takes 
away, the limit curve bounds the same area as the original square. 

We can express fractal dimensions with the general formula D = log n/ 
log fl, where n is the number of self-similar parts that result when the 
original is magnified by factor r and D is the fractal dimension. Fractal 
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Figure 27 The first three orders of Benoit Mandelbrot's square snowflake 

curves that are 1-dimensional in the Euclidean sense can have a fractal 
number that ranges from 1 to 2 if the curve is on the plane, but can go to 
higher numbers if the curve twists through higher Euclidean spaces. If a 
fractal curve passes through every point on the plane within its bound- 
ary, as does the flowsnake (the snake itself, not its boundary) and other 
Peano curves, then it achieves at the limit both a Euclidean dimension 
and a fractal dimension of 2. If it passes through every point in a solid, it 
achieves at the limit Euclidean and fractal dimensions of 3. Similarly, a 
fractal surface of Euclidean dimension 2 can have a fractal dimension 
that ranges from 2 to 3 as long as it is confined to 3-space, but can go 
higher if it twists through higher Euclidean spaces, and so on for fractal 
structures of higher topological dimensions. 

Can fractals have complexity numbers less than l? The answer is yes, 
although the structures are not topologically equivalent to line seg- 
ments. For example, remove the center third of a line segment, then 
remove the central third of each of the two remaining segments and 
continue this process of third removing to infinity. The result is what 
Mandelbrot likes to call "Cantor dust." In the literature they are called 
Cantor discontinua or Cantor sets, after Georg Cantor, who studied 
them. When you apply Mandelbrot's formula for fractals, you get a 
number between 0 and 1. In this case, the number is D = log 2/log 
3 = 0.6309. . . . Other "cutout" procedures give other numbers. Man- 
delbrot calls them "subfractals" to distinguish them from fractals with 
numbers higher than their Euclidean dimension. 

In the abstract world of pure mathematics, fractal structures such as 
we have considered are called "ordered fractals." In the real world there 



are, of course, no ordered fractals. Structures such as coastlines, trees, 
rivers, clouds, blood vessels, lightning bolts, paths of particles in Brown- 
ian motion and thousands of other fractal-like phenomena are imperfect 
models that are (within certain upper and lower bounds) fractals in a 
statistical sense. They are self-similar in that they preserve a statistical 
similarity that is independent of scaling. One must average the fractal 
numbers at different scalings, and of course to do this one must make 
empirical studies. Such fractals are called random fractals or statistical 
fractals. Coastlines, for instance, have fractal dimensions that change 
from coast to coast. Investigations show that they fall within a range of 
1.15 to 1.25, the second number measuring the complexity of the west 
coast of England. 

The surfaces of mountains are splendid models of random surface 
fractals. Mandelbrot and his associates, notably Richard F. Voss at IBM, 
have for the past few years been writing computer programs that gener- 
ate artificial mountain ranges, clouds and imaginary planets with artifi- 
cial oceans and continents. Plate 2 shows one of Voss's most striking 
computer displays: an earthlike planet that never was, as viewed from an 
equally artificial moon. Artificial clouds have also been produced by 
computer programs based on fractal formulas. Trees have proved to be 
more difficult to mimic, but Michael Barnsley and his colleagues at the 
Georgia Institute of Technologj have found ways to mimic leaves and 
ferns (see Ivars Peterson's 1987 article). These computer graphic dis- 
plays have led to the generation of strange artificial landscapes for 
imaginary planets in science fiction films, starting with Star Trek 11: The 
Wrath of Khan. 

Cantor sets can be constructed in any Euclidean space to make 
spongelike structures of "dust" with fractal numbers less than the num- 
ber of the space. Mandelbrot has produced random fractals of Cantor 
dust in 3-space that model to a surprising degree the apparent distribu- 
tion of stars in the universe. The hierarchy of star clusters, superclusters 
and super-superclusters suggests that perhaps the entire universe is, 
within limits, close to the structure of a random fractal. 

ADDENDUM 

Although this chapter has been considerably expanded and updated 
since it first appeared in Scientific American in 1976, some additional 
updating is called for. 
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In 1967, when Mandelbrot first wrote about fractals in his classic 
paper "How Long is the Coast of Britain?," he surely could not have 
anticipated the speed with which his work would trigger revolutions in 
both mathematics and physics. Not only have fractals become one of the 
most energetic research areas of topology, with high-speed computers 
serving as essential tools, they have also become fundamental aspects of 
a revolutionary new field of physics called chaos theory. The topic is so 
vast and developing so rapidly that I can do no more here than refer the 
reader to the first nontechnical book on the topic, James Gleick's splen- 
did Chaos: Making a New Science (Viking, 1987). 

Gleick's survey will introduce you to the most important fractals 
involved in what are called the "strange attractors" of chaos, to such 
beautiful fractals (on the complex plane) as Julia sets and to the incredi- 
ble Mandelbrot set (M-set) that Mandelbrot found in 1980. It has been 
called the most mysterious object in geometry. As research continues, 
the definition of fractal has broadened to a point at which Mandelbrot 
has proposed that a final definition be postponed until things settle 
down. It is no longer necessary, for example, that ordered fractals pre- 
serve self-similarity at all scaling. All sorts of "nonlinear fractals" have 
been constructed, such as the affine fractals that show affine distortions 
at successive magnifications. The M-set, a sort of dictionary for all Julia 
sets (I won't try to explain what that means!), is not self-similar, except in 
a topological way, although it contains an infinite number of copies of 
itself. Every new level of enlargement reveals unpredictable surprises. 
For more than a year, as successive magnifications were made, it was not 
even known if the set is connected. Each enlargement disclosed isolated 
"islands" and particles of dust. Further enlargements would join these 
disconnected portions to the mainland, but new islands and dust would 
appear. It was finally proved in 1982 that the set is indeed connected at 
the limit, but it may be decades before its major properties are 
uncovered. 

In an interview in Omni (June 1986) the British mathematical physi- 
cist Roger Penrose invoked the Mandelbrot set to support his Platonic 
approach to mathematics: 

Have you ever seen those pictures produced by computers, the object 
known as the Mandelbrot set? It's as if you are traveling to some distant 
world. You turn on your sensing device and see this incredibly 
complicated configuration, with all sorts of structure to it, and you try to 
figure out what it is. You might think it is some extraordinary landscape 
or perhaps some kind of creature with lots of little babies all over the 
place, babies that are almost but not quite the same as the creature 
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itself. Very elaborate and impressive! Yet just from seeing the equations, 
nobody had the remotest conception that they would produce patterns of 
this nature. Now these landscapes aren't conjured up out of someone's 
imagination; everyone sees the same pattern. You're exploring something 
with a computer, but it's not dissimilar from exploring something with 
experimental apparatus. 

If you know your way around the complex plane and are interested 
in exploring by computer the amazing jungles of the M-set, you should 
subscribe to Amygdala. This is a monthly newsletter that reports new 
discoveries about the M-set, more efficient computer techniques for 
investigating it and anything else related to the M-set that strikes the 
editor's fancy. It has even introduced a new subgenre of science fiction 
called M-set SF, centered around such notions as that the M-set is a living 
entity inhabiting hyperspacetime and possessing paranormal powers. 
Rollo Silver is the newsletter's founder and editor. He describes himself 
as "an ontological engineer who lives and works in the mountains of 
Northern New Mexico. Deprived of the company of his peers and half- 
crazed by isolation, he started Amygdala in self-defense in 1986." 

You can get a flyer containing samples of various issues and infor- 
mation on how to subscribe to the newsletter and to a color-slide supple- 
ment by writing to Amygdala, Box 219, San Cristobel, NM 87564. Amyg- 
dala, by the way, is Latin for almond. The title honors Mandelbrot, 
whose name in German and Yiddish means "almond bread." 

Mandelbrot's The Fractal Geometry of Nature is surely one of the 
most beautiful, witty and exciting books about mathematics ever pub- 
lished. Its text and breathtaking graphics catch such marvelous monsters 
as the Devil's staircase, Minkowski sausages, Gosper's fudgeflake, Ber- 
noulli clusters, Sierpinski carpets, Menger sponges, Fatou dust, squigs, 
dragons and all kinds of curds and cheeses. 

Since 1987 Mandelbrot has been a professor of mathematics at Yale 
University. In 1980 he was given the F. Bernard Medal for Meritorious 
Service to Science by Columbia University, a prestigious award recom- 
mended every five years by the National Academy of Sciences. Since 
then he has received six other distinguished service awards and six 
honorary doctorates. There are sure to be more honors to come. He has 
been called the most versatile mathematician since John von Neumann 
and Norbert Wiener. 
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Con way's Surreal Numbers 

Some said "John, print it"; 
others said, "Not so." 

Some said "It might do good"; 
others said, "No." 

-JOHN BUNYAN, Apology for His Book 

John Horton Conway, the almost legendary mathemati- 
cian of the University of Cambridge (now at Princeton University), 
quotes the above lines at the end of the preface to his book, On Numbers 
and Games (Academic Press, 1976), or ONAG, as he and his friends call 
it. It is hard to imagine a mathematician who would say not so or no. The 
book is vintage Conway: profound, pathbreaking, disturbing, original, 
dazzling, witty and splattered with outrageous Carrollian wordplay. 
Mathematicians, from logicians and set theorists to the humblest ama- 
teurs, will be kept busy for decades rediscovering what Conway has left 
out or forgotten and exploring the strange new territories opened by his 
work. 

The sketch of Conway reproduced here could be titled "John 
'Horned' (Horton) Conway." The infinitely regressing, interlocking 
horns form, at the limit, what topologists call a "wild" structure; this one 
is termed the Alexander horned sphere. Although it is equivalent to the 



John "Homed" (Horton) Conway ,  a s  sketched by  a colleague o n  
computer-printout paper 
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simply connected surface of a ball, it bounds a region that is not simply 
connected. A loop of elastic cord circling the base of a horn cannot be 
removed from the structure even in an infinity of steps. (A four-horned 
mechanical puzzle sold as Loony Loop has a nylon loop that can be 
removed.) 

Conway is the inventor of the computer game Life, which I had the 
honor of introducing in my Scientific American columns in 197 1 (see the 
three chapters on Life in my Wheels, Life, and Other Mathematical 
Amusements, W. H .  Freeman and Company, 1983). By carefully choos- 
ing a few ridiculously simple transition rules Conway created a cellular 
automaton structure of extraordinary depth and variety. Now he has 
done it again. By invoking the simplest possible distinction-a binary 
division between two sets-and adding a few simple rules, definitions 
and conventions, he has constructed a rich field of numbers and an 
equally rich associated structure of two-person games. 

The story of how Conway's numbers are created on successive 
"days," starting with the zeroth day, is told in Donald E. Knuth's novel- 
ette Surreal Numbers (Addison-Wesley, 1974). Since I discussed Knuth's 
book in the chapter "Nothing" in my Mathematical Magic Show (Knopf, 
1977), I shall say no more about it here except to remind readers that the 
construction of the numbers is based on one rule: If we are given a left 
set L and a right set R and no member of L is equal to or greater than any 
member of R ,  then there is a number (LIR) that is the "simplest number" 
(in a sense defined by Conway) in between. 

By starting with literally nothing at all (the empty set) on the left and 
the right, ( 1 ), one obtains a definition of zero. Everything else follows by 
the technique of plugging newly created numbers back into the left-right 
arrangement. The expression (010) is not a number, but (01 ), with the 
null set on the right, defines 1, ( 10) defines -1 and so on. 

Proceeding inductively, Conway is able to define all integers, all 
integral fractions, all irrationals, all of Georg Cantor's transfinite num- 
bers, a set of infinitesimals (they are the reciprocals of Cantor's num- 
bers, not the infinitesimals of nonstandard analysis) and infinite classes 
of weird numbers never before seen by man, such as 

where o is omega, Cantor's first infinite ordinal. 
Conway's games are constructed in a similar but more general way. 

The fundamental rule is: If L and R are any two sets of games, there is a 
game (LIR). Some games correspond to numbers and some do not, but 



all of them (like the numbers) rest on nothing. "We remind the reader 
again," Conway writes, "that since ultimately we are reduced to ques- 
tions about members of the empty set, no one of our inductions will 
require a 'basis."' 

In a "game" in Conway's system two players, Left and Right, alter- 
nate moves. (Left and Right designate players, such as Black and White 
or Arthur and Bertha, not who goes first or second.) Every game begins 
with a first position, or state. At this state and at each subsequent state a 
player has a choice of "options," or moves. Each choice completely 
determines the next state. In standard play the first person unable to 
make a legal move loses. This is a reasonable convention, Conway 
writes, "since we normally consider ourselves as losing when we cannot 
find any good move, we should obviously lose when we cannot find any 
move at all!" In "misere" play, which is usually much more difficult to 
analyze, the person who cannot move is the winner. Every game can be 
diagrammed as a rooted tree, its branches signifying each player's op- 
tions at each successive state. On Conway's trees Left's options go up and 
to the left and Right's go up and to the right. 

Games may be "impartial," as in Nim, which means that any legal 
move can be made by the player whose turn it is to move. If a game is not 
impartial, as in chess (where each player must move only his own 
pieces), Conway now calls it a partizan game. His net thus catches both 
an enormous variety of familiar games, from Nim to chess, and an 
infinity of games never before imagined. Although his theory applies to 
games with an infinity of states or to games with an infinity of options or 
to both, he is concerned mainly with games that end after a finite 
number of moves. "Left and Right," he explains, "are both busy men, 
with heavy political responsibilities." 

Conway illustrates the lower levels of his theory with positions taken 
from a partizan domino-placing game that I discussed briefly in Knotted 
Doughnuts and Other Mathematical Entertainments (W. H .  Freeman and 
Company, 1986), Chapter 19, as the game of Crosscram. (Conway calls it 
Domineering.) The board is a rectangular checkerboard of arbitrary size 
and shape. Players alternately place a domino to cover two adjacent 
squares, but Left must place his pieces vertically and Right must place 
his horizontally. The first player who is unable to move loses. 

An isolated empty square 
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allows no move by either player. "No move allowed" corresponds to the 
empty set, so that in Conway's notation this simplest of all games is 
assigned the value { I ) = 0, the simplest of all numbers. Conway calls it 
Endgame. Its tree diagram, shown at the right of the square, is merely 
the root node with no branches. Because neither side can move, the 
second player, regardless of whether he is Left or Right, is the winner. "I 
courteously offer you the first move in this game," writes Conway. Since 
you cannot move, he wins. 

A vertical strip of two (or three) cells 

offers no move to Right but allows one move for Left. Left's move leads 
to a position of value 0, so that the value of this region is (01 ) = 1. It is 
the simplest of all positive games, and it corresponds to the simplest 
positive number. Positive games are wins for Left regardless of who 
starts. The region's tree diagram is shown at the right above. 

A horizontal strip of two (or three) cells 

allows one move for Right but no move for Left. The value of the region 
is { 10) = -1. It is the simplest of all negative games and corresponds to 
the simplest negative number. Negative games are wins for Right regard- 
less of who starts. 

A vertical strip of four (or five) cells 

has a value of 2. Right has no moves. Left can, if he likes, take the two 
middle cells in order to leave a zero position, but his "best" move is to 
take two end cells, because that leaves him an additional move. If this 
region is the entire board, then of course either play wins, but if it is an 
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isolated region in a larger board or in one of many boards in a "com- 
pound game," it may be important to make the move that maximizes the 
number of additional moves it leaves for the player. For this reason the 
tree shows only Left's best line of play. The value of the game is 
{1,01 ) = (1) ) = 2. A horizontal strip of four cells has a value of -2. If 
only one player can move in a region and he can fit n of his dominoes 
into it but no more, then clearly the region has the value +n if the player 
is Left and -n if the player is Right. 

Things get more interesting if both players can move in a region, 
because then one player may have ways of blocking his opponent. Con- 
sider the following region: 

Left can place a domino that blocks any move by Right, thus leaving a 
zero position and winning. Right cannot similarly block Left because 
Right's only move leaves a position of value 1. In Conway's notation the 
value of this position is (0, - 111) = {Oil), an expression that defines 
112. The position therefore counts as half a move in favor of Left. By 
turning the L region on its side one finds that the position is { - 1(0,1) = 

{ - 110) = - 112, or half a move in favor of Right. 
More complicated fractions arise in Conway's theory. For example, 

has a value of {1/211) = 314 of a move for Left, since 314 is the simplest 
number between 112 and 1, the values of the best options for Left and 
Right. In a game called partizan Hackenbush (the impartial form of this 
game was explained in my Wheels, Life, and Other Mathematical Amuse- 
ments [cited earlier], and is more fully treated in Conway's book), Con- 
way gives an example of a position in which Left is exactly 5/64 move 
ahead! 

The values of some game positions are not numbers at all. The 
simplest example is illustrated in Crosscram by this region: 
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Both Left and Right have opening moves only, so that the first person 
to play wins regardless of whether he is Left or Right. Since each player 
can reduce the value to 0, the value of the position is (010). This is not a 
number. Conway symbolizes it with * and calls it "star." Another exam- 
ple would be a Nim heap containing a single counter. It is the simplest 
"fuzzy" game. Fuzzy values correspond to positions in which either 
player can win if he moves first. 

The value of a compound game is simply the sum of the values of its 
component games. This statement applies also to the value of a position 
in a game in progress that has been divided by play into a set of sub- 
games. For example, Figure 28 shows a position in a game of Crosscram 
played on a standard chessboard. The values of the isolated regions are 
indicated. The position seems to be well balanced, but the regions have a 
sum of 11/4, which means that Left is one and one-fourth of a move ahead 
and therefore can win regardless of who moves next. This outcome 

Figure 28 A Crosscram position that will result in a win for Left 



would be tedious to decide by drawing a complete tree, but Conway's 
theory gives it quickly and automatically. 

A game is not considered "solved" until its outcome (assuming that 
both players make their best moves) is known (that is, whether the 
game's value is zero, positive, negative or fuzzy) and a successful strategy 
is found for the player who has the win. This stricture applies only to 
games that must end, but such games may offer infinite options, as in the 
game Conway calls "My Dad Has More Money than Yours." Players 
alternately name a sum of money for just two moves and the highest sum 
wins. Although the tree, Conway admits, is complicated, the outcome is 
clearly a second-player win. 

Are these not trivial beginnings? Yes, but they provide a secure 
foundation on which Conway, by plugging newly created games back 
into his left-right scheme, carefully builds a vast and fantastic edifice. I 
shall not proceed further with it here; instead I shall describe a few 
unusual games that Conway analyzes in the light of his theory. In all 
these games we assume standard play in that the first person who is 
unable to move loses. 

1. Col (named for its inventor, Colin Vout). A map is drawn on brown 
paper. L has black paint, R has white. They alternately color a region 
with the proviso that regions sharing a border segment not be the same 
color. It is useful to regard all regions bordering a white one as being 
tinted white and all regions bordering a black one as being tinted black. A 
region acquiring both tints drops out of the map as being an unpaintable 
one. 

Conway analyzes Col on the map's dual graph (see Figure 29), defin- 
ing what he calls "explosive nodes" and marking them with lightning 
bolts. Of course, the game can be played on white paper with pencils of 
any two colors. Vout has reported that in the set of all topologically 
distinct connected maps of one region through five regions 9 are first- 
player wins and 21 are second-player wins. The game in general is 
unsolved. 

2. Snort (after Simon Norton). This is the same as Col except that 
neighboring regions must be the same color. It too is unsolved. Conway 
suspects it has a richer theory than Col. His most valuable tip: If you can 
color a region adjacent to every region of your opponent's color, do so. 
In addition Conway has discovered some basic theorems that he reports 
under the heading "A Short Snort Dictionary." 

3. Silver Dollar Game without the Dollar. The board is a horizontal 
strip of cells extending any length to the right (see Figure 30A). Pennies 
are arbitrarily placed on certain cells, one to a cell, to provide the initial 
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Figure 29 A five-region map, with its dual graph (gray), for playing Col or Snort 

position. Players alternately move a coin to the left to any empty cell. No 
jumps are allowed. Eventually all the coins jam at the left, and the person 
who cannot move loses. 

The game is simply Nim in one of its endless disguises. (I assume the 
reader is familiar with Nim and knows how to determine the winning 

Figure 30 (A) The silver-coin game without the silver dollar (B) The same 
game with the dollar 
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strategy. If not, he can consult any number of books, including Conway's 
book or my Scientific American Book of Mathematical Puzzles & Diver- 
sions [Simon and Schuster, 19591). Corresponding to the Nim heaps (or 
rows) of counters are the vacant cells between pennies, starting with the 
vacancy at the extreme right and including only alternate vacancies. In 
the illustration the Nim heaps are indicated by brackets and one arrow. 
The heaps are 3,4,O and 5, so that the game is equivalent to playing Nim 
with rows of three, four and five counters. 

Rational play is exactly as in Nim: Move to reduce the Nim sum of 
the heaps to 0, a game with a second-player win. The one trivial differ- 
ence is that here a heap can increase in size. If, however, you have the 
win and your opponent makes such a move, you immediately restore the 
heap to its previous size by moving the coin that is just to the right of the 
heap. 

If in the illustrated position it is your move, you are sure to win if you 
make the move indicated by the curved arrow. If your opponent re- 
sponds by moving counter A two cells to the left, the move raises the 
empty heap to 2. Your response is to move B two cells to the left, thus 
returning the heap to 0. 

4. Silver Dollar Game with the Dollar. This is the same as the preced- 
ing game except that one of the coins (any one) is a silver dollar and the 
cell farthest to the left is a money bag (see Figure 30B). A coin farthest to 
the left can move into the bag. When the dollar is bagged, the game ends 
and the next player wins by taking the bag. 

This game too is Nim disguised. Count the bag as being empty if the 
coin at its right is a penny and full if it is the dollar, and play Nim as 
before. If you have the win, your opponent will be forced to drop the 
dollar in the bag. If the winner is deemed to be the player who bags the 
dollar, count the bag as being full if the coin at its right is the coin just to 
the left of the dollar and count it as being empty otherwise. The position 
shown corresponds to Nim with heaps of 4, 3, 0 and 2. The first player 
wins in both versions only if he makes the move indicated by the curved 
arrow. 

5. Rims. The initial position of this pleasant way of playing a variant 
of Nim consists of two or more groups of spots. The move is to draw a 
simple closed loop through any positive number of spots in one group. 
The loop must not cross itself or cross or touch any other loop. A game is 
shown in Figure 3 1. 

Conway shows that Rims is the same as Nim played with the added 
rule that you are allowed, if you like, to take from the center of a row, 
leaving two new rows instead of one or more rows. Although the number 
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3 5 7 

Figure 31 A position in Rims 

of heaps can increase, the winning strategy is standard Nim strategy. If 
each loop is confined to one or two spots, the game is equivalent to the 
familiar game of Kayles. (See Chapter 16 of my Mathematical Carnival, 
Knopf, 1975.) Conway calls it Rayles. 

6. Prim and Dim. Let me introduce these games by explaining Prime 
Nim, a simpler game not discussed by Conway. It was first analyzed 
some 20 years ago by Claude E. Shannon. Prime Nim is played the same 
way that Nim is except players must diminish heaps only by prime 
numbers, including 1 as a prime. "The game is actually a bit of a mathe- 
matical hoax," wrote Shannon (in a private communication), "since at 
first sight it seems to involve deep additive properties of the prime 
numbers. Actually the only property involved is that all multiples of the 
first nonprime are nonprime." 

The first nonprime is 4. The strategy therefore is merely to regard 
each heap as being equal to the remainder when its number is divided by 
4 and then to play standard Nim strategy with these modulo-4 numbers. 
If 1 is not counted as being prime, the strategy is less simple in standard 
play and is so complicated in misere play that I do not believe it has ever 
been solved. 

Prim, suggested by Allan Tritter, requires that players take from each 
heap a number prime to the heap's number. In other words, the two 
numbers must not be equal or have a common divisor other than 1. Dim 
requires that a player remove a divisor of n (including 1 and n as 
divisors) from a heap of size n. Conway gives solutions to both games as 
well as variants in which taking 1 from a heap of 1 is allowed in Prim and 
taking n from a heap of n is not allowed in Dim. 



7. Cutcake. This is a new partizan game invented by Conway. It is 
played with a set of rectangular cakes, each scored into unit squares like 
a waffle. Left's move is to break a piece of cake into two parts along any 
horizontal lattice line, Right's is to break a piece along any vertical line. 
The game has a surprisingly simple theory. 

Figure 32 shows a 4 X 7 cake. In Conway's notation its value is 0, 
which means it is a second-player win regardless of who goes first. It 
looks as if the vertical breaker, who has twice as many opening moves as 
his opponent, would have the advantage, but he does not if he goes first. 
Assume that the vertical breaker goes first and breaks along the line 
indicated by the arrow. What is the second player's winning response? 

I have given only a few examples of Conway's exotic nomenclature. 
Games can be short, small, all small, tame, restive, restless, divine, 
extraverted and introverted. There are ups, downs, remote stars, semis- 
tars and superstars. There are atomic weights and sets with such names 
as On, No, Ug and Oz. Conway has a temperature theory, with thermo- 
graphs on which hot positions are cooled by pouring cold water on 
them. He has a Mach principle for the small world: the atomic weight of 
a short all-small game is at least 1 if and only if the game exceeds the 
remote stars! 

Conway's theorem 99 conveys some notion of the book's whimsical 
flavor. It tells us (I paraphrase to remove a slight error that Conway 
discovered too late to correct) that any short all-small game of atomic 

Figure 32 A format for Cutcake, with the first move being a vertical break at 
the arrow 
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weight zero is dominated by some superstar. Only a feeling of incomple- 
teness, Conway adds, prompts him to give a final theorem. Theorem 100 
is: "This is the last theorem in this book." 

ANSWERS 

The problem was to find the winning response to a first-player move in 
Cutcake. The cake is a 4 X 7 rectangle. If the first player breaks the cake 
vertically into a 4 X 4 square and a 4 X 3 rectangle, the unique winning 
reply is to break the 4 X 3 piece into two 2 X 3 rectangles. 

ADDENDUM 

Since this chapter first ran as a Scientific American column in 1976, 
Conway has written other books and papers, and articles about him have 
appeared, some of which are listed in the bibliography. Especially nota- 
ble is the two-volume Winning Ways, on which he collaborated with 
Elwyn Berlekamp and Richard Guy. It has already become a classic of 
recreational mathematics and has made important technical contribu- 
tions to game theory and combinatorics. For Conway's work on Penrose 
tiling, see Chapters 1 and 2 of the book you now hold. For his work on 
sporadic groups and knot theory, see my Scientific American columns 
for June 1980 and September 1983, respectively. In 1987 Conway left 
Cambridge to accept a professorship at Princeton University. 

Conway spoke on his game theories at a conference on recreational 
mathematics at Miami University in September 1976. His lecture, re- 
printed as "A Gamut of Game Theories" in Mathematics Magazine (see 
bibliography), concludes: 

The theories can be applied to hundreds and thousands of games-really 
lovely little things; you can invent more and more and more of them. 
It's especially delightful when you find a game that somebody's already 
considered and possibly not made much headway with, and you find you 
can just turn on one of these automatic theories and work out the value 
of something and say, "Ah! Right is 47164th~ of a move ahead, and so 
she wins." 
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Back from the Klondike 
and Other Problems 

The "combinatorial revolution" in mathematics is still 
exploding as books and articles on combinatorics continue to prolifer- 
ate. The computer is certainly contributing to the revolution by its 
power to analyze combinatorial problems that are too complex to be 
approached any other way. Another stimulating force is the increasing 
application of combinatorial theory to science and technology, particu- 
larly in particle physics and molecular biology. On a large scale the 
universe may be a collection of continuums to be handled by calculus, 
but on the microlevel it is a jumble of discrete elements with mysterious 
jumps and curious combinatorial properties. In some modern theories 
even time and space are quantized. 

Hundreds of intriguing combinatorial puzzles, some old, some new, 
are now receiving the attention of serious mathematicians. We shall first 
take a look at an amusing prize puzzle devised by Sam Loyd that has 
recently been "cooked," or invalidated, by a computer program and 
then follow with several combinatorial problems that have no general 
solution in sight but present challenging tasks on their lower levels. 



The greatest puzzle book ever published in the United States is a 
large volume, bound in pale green cloth, that has on its cover Sam 
Loyd's Cyclopedia of 5000 Puzzles, Tricks and Conundrums, with An- 
swers. The spine bears a price of $5, but today one is lucky to find a copy 
for less than $25. Almost nothing is known about its publishing history. 
Although it is profusely illustrated, none of its several artists is identified. 
Copies bear the imprint of either the Morningside Press or the Lamb 
Publishing Company, both of New York, but no one knows which edition 
came first. 

All copies are dated 1914. Because this was three years after Loyd's 
death, it was widely assumed that his son, who took his father's name, 
had selected the puzzles from older newspapers and magazines and had 
patched them hastily into one massive volume. (The book is peppered 
with omissions, mistakes and printer's errors.) It was later discovered 
that the elder Loyd had edited and published a quarterly called Our 
Puzzle Magazine, which first appeared in June 1907. Copies of it are now 
exceedingly rare. The Cyclopedia is simply a reprinting of this magazine 
made from its unaltered page plates. 

Loyd's "Back from the Klondike" puzzle, shown in Figure 33, ap- 
peared in the second issue (October 1907) of his magazine and is re- 

Figure 33 Sam Loyd's solution to his Klondike puzzle 



Bock from the Klondike and Other Problems 65 

printed on page 106 of the Cyclopedia. It is not known whether Loyd 
called it a "prize puzzle" because a prize for its solution was offered to 
readers of the magazine or whether it had been a contest puzzle in some 
earlier incarnation. 

"Start from that heart in the center," Loyd says, "and go three steps 
in a straight line in any one of the eight directions, north, south, east or 
west, or on the bias, as the ladies say, northeast, northwest, southeast or 
southwest. When you have gone three steps in a straight line, you will 
reach a square with a number on it, which indicates the second day's 
journey, as many steps as it tells, in a straight line in any one of the eight 
directions. From this new point when reached, march on again accord- 
ing to the number indicated, and continue on, following the require- 
ments of the numbers reached, until you come upon a square with a 
number which will carry you just one step beyond the border, when you 
are supposed to be out of the woods and can holler all you want, as you 
will have solved the puzzle." 

Loyd's sneaky solution is shown by the curved black line. The path 
simply shuttles up and down along a main diagonal until a number is 
reached that makes possible what Loyd, in his answer, calls a "bold 
strike via S.E. to liberty!" The solution, Loyd claims, is unique. "Those 
who failed to master it readily discovered that one false step at any stage 
of the game throws one into the whirlpool from which there is no 
egress." 

But the old maestro was wrong! Early in 1976 Penelope J. Greene, a 
graduate student in sociology at the University of Washington, R. Dun- 
can Mitchell, a graduate student in economics there, and Horace A. 
Greene, a science teacher at Roosevelt University in Chicago, made a 
combined attack on the problem with a Fortran program written by 
Mitchell. In a few seconds the program found Loyd's solution along with 
an explosion of hundreds of others. Indeed, one can leave the center 3 in 
any of the eight directions and escape from the woods. The start of one 
alternate route is shown in Figure 34. All these other routes lead eventu- 
ally to 4, a key link on the diagonal, from which the path is completed as 
it is in Loyd's solution. 

The three programmers noticed something unusual about the alter- 
nate answers. One cell and one only, not a link in Loyd's solution, is 
common to all the alternative routes. They called it the "troublesome 2" 
(circled in illustration). Could this have been an artist's error? It seems 
likely, because when the programmers substituted other digits for 2, the 
computer found only one nonzero digit that eliminates all alternative 
paths. 
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Figure 34 An alternate path through the "troublesome 2" 

This is the pleasant task-it is really quite easy- that I offer readers. 
Correct Loyd's Klondike puzzle by changing the troublesome 2 to the 
only nonzero digit that restores uniqueness to Loyd's solution. In calling 
Loyd's solution unique, we discount wasted "side trips," where one 
leaves a cell only to return to it again before proceeding or where one 
leaves cell A for a side trip to B when one can go directly from A to B. 

The origin of Chinese checkers, a board game popular around the 
world since about 1920, is obscure. Apparently it was first marketed 
under this trade name in the United States. It has no connection with 
China and almost no resemblance to checkers, but the name has 
persisted. 

The standard board is shown in Figure 35. The holes are numbered 
for convenience in recording moves, and borders have been added to 
outline all star boards of smaller size. If two people play, 10 marbles of 
one color are placed in the triangular "yard" formed by holes 1 through 
10 and 10 marbles of another color go in holes 1 12 through 12 1. Rules of 
play are similar to those of Halma (see Chapter 11 of my Wheels, Life, 
and Other Mathematical Amusements, W .  H. Freeman and Company, 
1983), a popular British game that probably suggested the variant repre- 
sented by Chinese checkers. 



Bock from the Klondike ond Other Problems 67 

Two kinds of move are allowed. A "step" is a move in any of six 
directions to an adjacent vacant hole. A "hop" is a move over an adjacent 
marble, again in any of the six directions, to a vacant hole on the other 
side. The hop is like a checker jump except that the jumped piece is not 
removed and can be either one's own piece or an opponent's. A piece 
can continue hopping as long as possible or the chain can be stopped at 
any point. Hops are never compulsory. The combining of steps and hops 

Figure 35 A variety o f  boards for Chinese checkers 



68 Chapter 5 

is forbidden. The winner is the first player to occupy all the holes of his 
opponent's starting yard. 

The game is obviously unplayable on the degenerate smallest "star" 
of one hole. On the next larger star each player has one marble and the 
game is a trivial win for the first player to move. The increase in com- 
plexity as the size of the board is increased to three marbles on each side 
is enormous. I believe it is not known which player has the win. 

On this star the game is quite pleasant. To prevent one player from 
forcing a draw by keeping a marble perpetually in its home yard one 
more rule must be added: If a counter can leave its yard by hopping an 
enemy counter, it must do so. Once it is out of its yard, it may not return, 
although it is allowed to pass through the yard in a chain of hops. 

Let us consider on each star board the following solitaire problem. 
Marbles of one color are placed in starting positions on the bottom yard. 
What is the minimum number of moves (counting a chain of hops as a 
single move) necessary to transfer all of them to the yard at the top? 

The problem is meaningless on the smallest star and trivial on the 
13-hole star. For the star with a yard of three marbles 1 1 moves will do it. 
Example: 92-81, 81-71, 105-82-61, 61-52, 93-82, 82-61-42, 42- 
30, 71 -61, 61 -42- 17, 52-41, 41 -29. 

For the six-marble star the best solution I have been able to get is 18 
moves. Starting with 1 13 - 93 there are many ways to construct in nine 
moves a vertical "ladder" of marbles on holes 9, 30, 52, 71, 93 and 114. 
Nine more moves, reversing the previous play, put the six marbles in the 
top yard. 

Now for our main problem: What is the minimum number of moves 
needed to transfer 10 marbles from one yard to the opposite yard on the 
standard Chinese checkers board? I first heard of this problem in 1961 
from Octave Levenspiel, professor of chemical engineering at Oregon 
State University. He wrote that the best he could do was 31 moves but 
that his mother, "the family puzzle solver, chess and bridge champ," had 
once solved it in 28 but had failed to record the moves. Ibidem, a 
Canadian periodical on magic (now defunct), published in August 1969, 
a "proof" that 29 is the minimum. Then in 1971 Levenspiel, trying to 
reconstruct his mother's 28-move solution, hit on a spectacular solution 
in 27! Harry 0. Davis of Portland, OR., believes he has a proof that 27 is 
the minimum, but the proposition has not yet been confirmed. 

Can the reader find a 27-move solution? Chinese checkers is some- 
times sold with a larger board that has 25 marbles in each yard. For such 
a board the best solution in my files, sent to me in 1974 by Min-Wen Du 
of Taiwan, is 35 moves. 
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In the London Tribune for November 7, 1906, Henry Ernest Du- 
deney, Loyd's British counterpart, published the problem of placing 16 
pawns on a chessboard so that no three are in line in any direction. (The 
problem later appeared as No. 317 in his Amusements in Mathematics.) 
By "line" is meant any straight line, not just orthogonals and diagonals. 
The pawns represent points at the centers of cells. Since then the gener- 
alized no-three-in-line problem, as it came to be known, has been the 
topic of several technical papers. 

The main problem, which is still unsolved, is to answer the following 
question: On a square checkerboard of n cells on a side ( n  greater than 
1 )  is it always possible to place 2n counters so that no three are in line? 
The old "pigeonhole" principle proves that 2n cannot be exceeded. No 
row or column can hold more than two counters, and since 2n counters 
require two in each orthogonal, one more counter is certain to put three 
counters in one row as well as three in one column. A less trivial 
argument (developed by R. R. Hall, T. H. Jackson, A. Sudbery and K. 
Wild in their 1975 paper) proves that at least n counters can always be 
placed. For large boards these authors show that one can get quite close 
to 3n/2 counters. 

Michael A. Adena, Derek A. Holton and Patrick A. Kelly, in their 1974 
paper, reported on computer programs that found all distinct solutions 
for n equals 2 through 10. Rotations and reflections are excluded. The 
number of solutions are respectively 1, 1, 4 ,  5 ,  11, 22, 57, 5 1 and 156. 
Figure 36 gives an example for each n from 2 through 10. Note the 
startling simplicity and symmetry of the order-8 solution! 

At the time these authors wrote, no solution for n = 11 was known. 
They gave a solution for n = 12, but it proved to be invalid. They had 
failed to notice two rows of three in line. 

Solutions for n = 1 1 and n = 12 were found in 1975 by D. Craggs and 
R. Hughes-Jones of the University of Kent and published in 1976. They 
are shown in Figure 37. Craggs and Hughes-Jones found five other 
solutions for n = 1 1  and three others for n = 12. The total number of 
solutions for these two values of n is not known, and no one has con- 
structed a solution for a square of an order higher than 12. Richard K. 
Guy and Patrick A. Kelly, in their 1968 paper, give arguments to support 
their conjecture that the number of orders with 2n solutions is finite. The 
smallest board on which a 2n solution is impossible is not known. 

If we narrow the definition of "line" to an orthogonal or diagonal 
row, the problem is solved. The maximum cannot be greater than 2n,  
and 2n is possible on all boards of orders higher than 1 .  For n greater 
than 3 the problem is solved by superposing any two solutions of the 
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Figure 36 Some solutions to the maximum "No-Three-in-Line Problem" 

Figure 37 Recent solutions to the problem 
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classic nonattacking-queens problem. (This is the problem of placing n 
queens so that no queen attacks another.) It is always possible to do this 
with a pair of solutions that put the 2n queens on 2n cells. 

Instead of asking for the maximum number of counters that can be 
put on an order-n board, no three in line, let us ask for the minimum that 
can be placed such that adding one more counter on any vacant cell will 
produce three in line. This intriguing problem has not yet received much 
attention from the experts. 

If "line" is taken in the broadest sense-a straight line of any 
orientation-the problem is difficult. Figure 38 shows minimal solu- 
tions for n equals 3 through 10. The sequence of counters is 4, 4, 6, 6, 8, 
8, 8, 10. The last three patterns were found by the British statistician 
Stephen Ainley and included in his book Mathematical Puzzles (G.  Bell 
and Sons, 1977). The pattern for order 10 also suffices for order 11. 
Ainley found 12-counter solutions for orders 12, 13 and 14. 

The problem is also unsolved if "line" is restricted to orthogonals 
and diagonals. In other words, what is the smallest number of pawns you 
can put on a board of side n such that no pawn can be added without 
creating three in a row, a column or a diagonal? Another way to view the 
problem is to see it as a game in which two players alternately place a 
counter on a square board until one player loses by being forced to make 
three in an orthogonal or diagonal line. How short can such a game be? 
A puzzle asking for a solution on the order-8 board appeared in Technol- 
ogy Review (June 1967) in Allan J. Gottlieb's excellent "Puzzle Corner." 
This is the only publication known to me of a problem of this type. 

The solutions shown in Figure 38 for orders 3 through 7 are also 
solutions for the minimal problem when "line" is defined narrowly. 
Minimal solutions for orders 8 ,9  and 10 are shown in Figure 39. The last 
pattern also solves orders 11 and 12. These are far from unique patterns. 
There are dozens of solutions for n = 8, many with bilateral symmetry 
and others with twofold symmetry. If 10 is minimal, fourfold symmetry is 
ruled out because 10 is not evenly divisible by 4. 

ANSWERS 

Sam Loyd's solution to his Klondike puzzle is unique if the "troublesome 
2" is changed to 1. It is easy to show that any other nonzero digit in this 
cell provides an alternate escape route. Digits 4, 5, 6 ,  8 and 9 lead 
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Figure 38 Solutions to the minimum problem, "line" defined broadly 
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Figure 39 Solutions to minimum problem, "line" defined narrowly 

immediately to escape, 3 provides escape in two steps to the southwest 
and 7 offers escape in two steps due west. 

Ten marbles on a Chinese checkers board can be transferred to the 
opposite yard in 27 moves: 



The solution is palindromic: the second half is a mirror image of the 
first. 

ADDENDUM 

Numerous readers pointed out that Sam Loyd's solution to his Klondike 
puzzle has an alternate last move of the same length: A "bold strike" 
northwest also leads to freedom. Harold F. Bennett reminded me that he 
had written to me in 1966 to say that by using an ingenious hand 
technique he had found scores of alternate solutions. I had filed his letter 
and forgotten about it. Maxim G .  Smith also sent an excellent method of 
finding other paths without computer help. 

All alternate paths eventually reach a 4-cell that can be reached from 
the center in one move. It follows that Loyd's solution is the shortest. 
Perhaps Loyd had this in mind when he said his solution was unique. 

Will Shortz, a senior editor of Games magazine, located the first 
publication of the Klondike puzzle in the New York Journal and Adver- 
tiser, April 24, 1898, where it occupied a full page. Two cells bear 
numbers that differ from those in Loyd's Cyclopedia version. In row 
seven the tenth number from the left is 2, and in row nine the sixth 
number is 8. The Journal offered $10 for the "best answer received 
within two weeks." "Best," one assumes, meant shortest. In his answer 
(May 15) Loyd said 10,000 letters had been received, but "few of the 
clever pathfinders discovered the shortcut of seventeen steps." 

Unfortunately for Loyd, he overlooked the consequence of 8 in the 
cell mentioned above. A "Mr. Cauler" of Plainfield, N.J., won the prize 
with just five moves: 3 south, 1 northwest, 4 northwest, 1 east and 8 
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north. To eliminate this solution Loyd later changed the 8 to 1. I don't 
know why he changed the other cell from 2 to 3. Perhaps the 2 allowed 
still another unintended solution. 

Virginia F. Walters, Octave Levenspiel and Mrs. M. Reynolds low- 
ered the record for a transfer of six marbles on the order-4 Chinese 
checkers board from 18 to 17 moves. On these smaller boards you are 
not, of course, allowed to use holes beyond the borders if you are 
working on a standard-size board. 

The no-three-in-line problem brought a flood of letters. Many 
readers misinterpreted the problem, overlooking the statement that 

Figure 40 New solutions for the maximum no-three-in-line problem 



"line" is not confined to rows, columns or diagonals. Among those who 
understood the task, significant advances were made. 

Richard Byfield, Richard Jacobson, Anne De Lamper and Robert 
Van Clampitt each found by hand an order-13 solution. Michael Meier- 
ruth wrote a nonexhaustive computer program that turned out 29 solu- 
tions of order 13 and one of order 15. Later he found a solution for order 
14 and four solutions for order 16. Eric Jamin found by hand four 
order-14 solutions and one for order 16. Figure 40 shows sample pat- 
terns for 13, 14 and 16 and the only known pattern for 15. 

Solutions are now known for orders through 32. For a discussion of 
the problem, with some interesting conjectures and a bibliography, see 
Problem F4 in Richard Guy's Unsolved Problems in Number Theory. 

On the minimum no-three-in-line problem with lines of the queen type 
let n be the order of the square and p the minimal number of counters. 
John Harris was able to show that p is at least n except when n = 3 (modulo 
4), in which case p could be n - 1. Can p be odd? As far as I know, this has 
not been answered. 

B.C. by Johnny Hart O 1988, Creators Syndicate, Inc. 

"I've noticed that no three are alike" 
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The Oulipo 

Kltodes r,oama lciids to alf? 
Roads lead all to Rome, 
Lead all Rhodes to Rome. 
Rome-roacls lead to all? 
All roam roads to Leeds! 
Rornc. rclilc. all t o  1.eeds. 

Finnegans Wake continues to be the towering example of 
how serious literary intent can be combined with outrageous wordplay. 
Other notable instances are e e cummings' eccentric typography, Ger- 
trude Stein's nonsense verse and the constant wordplay in Vladimir 
Nabokov's fiction. 

For the past 15 years the most sophisticated and amusing examples 
of literary wordplay have been produced by a whimsical, slightly mad 
French group called the Oulipo. The name comes from Ouvroir de 
Litterature Potentielle (Workshop of Potential Literature). Although this 
chapter will be mostly about the Oulipo, I shall digress frequently to cite 
the work of comparable experts in English. 

Most of what follows derives from three sources: (1) La Litterature 
Potentielle (Creations Re-criations Rtcreations), a paperback by the Ou- 
lip0 (~di t ions Gallimard, 1973); (2) a marvelous article on the Oulipo by 
its only American member, Harry Mathews, which appeared in Word 
Ways, a quarterly journal of recreational linguistics, edited and pub- 
lished by A. Ross Eckler, obtainable from Eckler, Spring Valley Road, 
Morristown, NJ 07960; and (3) correspondence with Mathews, who lives 
part of the time in Paris. 

The Oulipo was founded in 1960 by two brilliant Frenchmen: Fran- 
~ o i s  Le Lionnais and the late Raymond Queneau. Le Lionnais is a mathe- 
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matician and author of many books, including six on chess. Queneau, 
who died in 1976 at the age of 73, was one of France's most influential 
writers. He is best known for his 1959 novel Zazie duns le Mdtro, about 
the adventures of an 11-year-old Parisian nymphet. (It was made into a 
popular motion picture by Louis Malle.) Another of Queneau's well- 
known works, Exercises in Style, consists of a trivial event-a man on a 
bus is pushed and later talks to a friend about adding a button to his 
overcoat-told in 99 different styles, one of them entirely in pig latin. 
Queneau studied mathematics in his youth. It remained a major interest 
that permeated his novels, poetry and criticism. For a good account of 
his work by John Updike, another writer knowledgeable about mathe- 
matics and given to wordplay, see Updike's Hugging the Shore, pages 
398 -409. 

The other French members of the Oulipo are, in alphabetical order, 
Noel Arnaud, Marcel Benabou, Jacques Bens, Claude Berge, Paul Braf- 
fort, Jacques Duchiiteau, Luc ~ t i enne ,  Paul Fournel, Jean Lescure, Mi- 
chele Metail (the only woman in the group), Georges Perec, Jean Queval 
and Jacques Roubaud. The foreign members are Andre Blavier (Bel- 
gium), Italo Calvino (Italy) and Mathews. All members are mathemati- 
cians or writers or both. 

Mathews was born in New York City in 1930. He was graduated from 
Harvard College in 1952 with a degree in music and has been living in 
Europe ever since. Apart from books of poetry he has written three wild 
and funny novels: The Conversions (Random House, 1962), Tlooth (Dou- 
bleday, 1966) and The Sinking of the Odradek Stadium and Other Novels 
(Harper & Row, 1975). The "other novels" are reprints of the two earlier 
ones. All three books are filled with quasi-Oulipian wordplay, notably a 
four-page scene in Tlooth where the pornography is obscured by contin- 
uous spoonerisms of mounting combinatorial complexity. 

Tlooth is a picaresque tale of blue, blasphemous, black humor. 
Nephthys Mary Allant is the bisexual catcher of the Baptist baseball team 
at Jacksongrad a Siberian labor camp. We do not learn her name or sex 
until 10 pages from the novel's end. (It is not until the very end of 
Conversions that the reader discovers that the narrator is a mulatto.) 
Mary had been a violinist until her former friend Evelyn Roak, a sur- 
geon, needlessly amputated two fingers of her left hand. Dr. Roak is 
also an inmate of the camp, having been sent there for selling her 
amputations to a delicatessen. She plays on a rival ball team. Mary tries 
unsuccessfully to kill her. An infection in Mary's finger stumps pre- 
vents her from practicing dentistry, the profession for which she is in 
training. 
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Evelyn is released from the camp, and Mary later escapes. After 
wandering though Asia and Europe looking for Evelyn, Mary (her infec- 
tion now cured by folk medicine) opens a dental office near Lyons. 
Evelyn shows up as a patient, Mary's finger bones dangling from her 
charm bracelet. Mary intends to finish her off in the chair, but Evelyn's 
gums disclose that she is dying of smallpox. Mary gives her medication 
and sends her off "to her stars." 

The book's title is an enigmatic word gasped by the warm mud of an 
oracular bog after Mary completed the ritual of inserting her bare leg in 
the ooze for 68 seconds at vespers, then withdrawing it quickly. The 
word has overtones of "Tooth," "Truth" and Tlooth Lautrec. Reading 
the book, said one critic, is "like riding a bumper car through a dictio- 
nary whose definitions are askew." 

Mathews is currently writing his fourth novel, which is based on 
what the Oulipo calls "Mathews' algorithm." In this procedure the ele- 
ments of a work are cyclically permuted in two ways to form two ma- 
trixes, which are then read by taking the columns of one matrix from the 
top down and the columns of the other matrix from the bottom up. The 
elements can be letters, words, sentences, paragraphs, chapters, ideas- 
anything you like. Unfortunately, there are no good examples in English. 

Mathews' first contribution to Word Ways  was a list of common 
words that are spelled the same in both French and English but have 
entirely distinct meanings. This short dictionary of " L ' E ~ ~ I  Franglais" 
was compiled to aid Oulipo members in producing ambivalent Anglo- 
French texts. Mathews' entire list, which was not meant to be exhaustive, 
is presented in Figure 41 for readers who would like to experiment with 
sentences that have one meaning in English and another in French. 

The Oulipo's first manifesto was Queneau's Cent Mille Milliards de 
Poemes (A Hundred Thousand Milliard Poems), published by ~di t ions  
Gallimard, where Queneau was a senior editor. The book consists of 10 
basic sonnets, each one on a right-hand page that is sliced into 14 strips 
(a strip for each sonnet line). By flipping strips to the left or right one can 
obtain 1014 (100,000 billion) sonnets, all structurally perfect and making 
sense. (Mechanical books for children have employed the same format 
to produce pictorial combinations of parts of animals or people, some- 
times also scrambling syllables of vertically printed names to get such 
bizarre beasts as the elepotamus and the kangaboon.) Flip the strips and 
you can read a sonnet that (probably) no one has read before and no one 
will ever read again. 

The lipogram, an ancient type of wordplay, is a sentence or a longer 
work that omits one letter or more of the alphabet. The major specimen 
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a cause fat lecture palace rude 
ache caution fee l'egal Pan 
ail chair fend legs pane sale 
allege champ fin Lent par sang 
amends chat fit lice pare saucer 
an choir fond lie Pat scare 
ante chose font l'imitation pate signet 
appoint coin for l'ion Pays singe 
are collier forage lit pester son 
as comment fore l'izard Pet sort 
at one con fort location Peter sot 
attend confection four loin pie spire 
audit corner fur longer pied stage 
averse cote l'oser pin stance 
axe courtier gale love pincer store 

crane gate pine sue 
Bade crisper gave ma plains suit 
bail cure gaze mail plate super 
ballot gene main plier supplier 
barber dam gent mange plies 
bard D'ane gourd manger plot tale 
baste d'are gout mare pour tape 
bat d'art grief mariner pries tenant 
be defiance grime men prone the 
beat defile groin mien these 
bee dent guise mince rang tiers 
Ben derive mire range tin 
bide design hair miser ranger tine 
bled d'etain hale moult rape tint 
blinder dime harder mute rate tire 
bond dire hate rave ton 
bore dive have n'est rayon toper 
borne don here net rebut tort 
bout don't hurler Nil reel tot 
bribes dot noise regain tout 
bride dresser if n'ose regal tries 
but drill n'ote rein 
butter d'un jars relent van 

d'une oil rend vent 
can labour on report venue 
cane edit lad once ride verge 
canner emu laid o r  qPe verse 
cap engraver l'air ours nver vie 
car enter lame robin viol 
carrier entrain l'ane pain rogue 
carter ere layer pair Roman 
case fade lecher pal rot 

Figure 41 Hawy Mathews' short dictionary of " ~ ' ~ ~ a l  Franglais" 

in English is Gadsby, a novel by Ernest Vincent Wright that was pub- 
lished in Los Angeles in 1939. It does not contain a single e ,  the letter 
that appears most frequently in both English and French. 

Experiments with lipograms by the Oulipo culminated in Georges 
Perec's novel La Disparition (The Disappearance), published in 1969 by 
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Denoel, Les Lettres Nouvelles. In it too e is the disappearing letter. The 
novel is much longer and better than Gadsby. Mathews describes it as an 
"elaborate, funny story of unbelievable virtuosity," so well written that 
some critics praised it without noticing anything strange! Perec consid- 
ered following it with another novel in which e is the only vowel. 

Perec is currently working on a novel called La Vie, Mode dlEmploi 
(Life and How to Use It) that is based on, among other things, a Greco- 
Latin Square of order 10. The great Leonhard Euler had conjectured that 
such a square could not exist, but one was found in 1959, and it provided 
a colorful cover for the November issue of Scientific American that year. 
Although Perec is a prolific French writer, only his first book, Les 
Choses: Une Histoire des Anntes Soixant, has been published in the 
United States. 

Perec is also responsible for the Oulipo's longest palindrome. It is 
about palindromes and contains more than 5,000 letters that begin and 
end: 

Trace l'inegal palindrome. Neige. Bagatelle, dira Hercule. Le brut 
repentir, cet ecrit nk Perec. L'arc lu pkse trop, lis a vice-versa. . . . Dksire 
ce trepas rive: Ci va! S'il porte, Skpulcral, ce repentir, cet kcrit ne 
perturbe le lucre: Haridelle, ta gabegie ne mord ni la plage ni l'kcart. 

Mathews translates this passage as follows: 

Trace the unequal palindrome. Snow. A trifle, Hercules would say. 
Rough penitence, this writing born as Perec. The read arch is too heavy: 
read vice versa. . . . Desire this dreamed-of decease: Here goes! If he 
carries, entombed, this penitence, this writing will disturb no lucre: Old 
witch, your treachery will bite into neither the shore nor the space between. 

The most skillful composer of English palindromes (in my opinion 
he is also England's best writer of comic verse) is J. A. Lindon. Word 
Ways has published many of his palindromic poems; others can be found 
in Howard W. Bergerson's Palindromes and Anagrams. Lindon's finest 
paIindromic achievement, a dialogue about the seduction of Eve, ap- 
pears in Figure 42. Every line is a letter-unit palindrome, and so is the 
title. 

A famous Oulipo algorithm called S + 7 (for "Substantif plus 7") was 
invented by Lescure. In English it is N + 7. The procedure is to replace 
each noun in a familiar prose passage with the seventh noun that follows 
it in a specified dictionary. N + 7 is a special case of the more general 
algorithm M + n, where M is any kind of mot (word) and n is any positive 
integer. In both the text and the dictionary unhyphenated compound 
words, such as "high school," are ignored. Here, for instance, are the 



In Eden, I 
ADAM: Madam- 

EVE: Oh, who- 
ADAM: (NO girl-rig on!) 

EVE: Heh? 
ADAM: Madam, I'm Adam. 

EVE: Name of a foeman? 
ADAM: 0 stone me! Not so. 

EVE: Mad! A maid I am, Adam. 
ADAM: Pure, eh? Called Ella? Cheer up. 

EVE: Eve, not Ella. Brat-star ballet on? Eve. 
ADAM: Eve? 

EVE: Eve, maiden name. Both sad in Eden? I dash to be manned, I am Eve. 
ADAM: Eve. Drowsy baby's word. Eve. 

EVE: Mad! A gift. I fit fig, Adam . . . 
ADAM: On, hostess? Ugh! Gussets? Oh, no! 

EVE: ??? 
ADAM: Sleepy baby peels. 

EVE: Wolf! LOW! 
ADAM: Wolf? Fun, so snuff "low." 

EVE: Yes, low! Yes, nil on, no linsey-wolsey! 
ADAM: Madam, I'm Adam. 

Named under a ban. 
A bared, nude man- 

Aha! 
EVE: Mad Adam! 

ADAM: Mmmmmmmm! 
EVE: Mmmmmmmm! 

ADAM: Even in Eden I win Eden in Eve. 
EVE: Pure woman in Eden, I win Eden in-a mower-up! 

ADAM: Mmmmmmmm! 
EVE: Adam, I'm Ada! 

ADAM: Miss, I'm Cain, a monomaniac. Miss, I'm- 
EVE: NO, son. 

Figure 42 A palindromic dialogue by J. A. Lindon 

first two sentences of Moby Dick, which I have altered N + 7 by using 
Webster's New Collegiate Dictionary: 

Call me islander. Some yeggs ago-never mind how long precisely- 
having little or no Mongol in my purulence, and nothing particular to 
interest me on shortbread, I thought I would sail about a little and see 
the watery partiality of the worriment. 

Another Lescure algorithm is to reverse the order of a given type of 
word, switching first and last instances, then the second from each end 
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ADAM: Name's Abel, a male base man. 
EVE: Name not so, 0 Stone man! 

ADAM: Mad as it is it is Adam. 
EVE: I'm a Madam Adam, am I? 

ADAM: Eve? 
EVE: Eve mine. Denied, a jade in Eden, I'm Eve. 

ADAM: NO fig. (Nor wrong if on!) 
EVE: ??? 

ADAM: A daffodil I doff, Ada. 
EVE: 'Tis a-what-ah, was it- 

ADAM: Sun ever! A bare Venus . . . 
EVE: 'S pity! So red, ungirt, rig-nude, rosy tips . . . 

ADAM: Eve is a sieve! 
EVE: Tu~-tut! 

ADAM: NOW a see-saw on . . . 
EVE: On me? ( 0  poem!) No! 

ADAM: Aha! 
EVE: I won't! 0 not now, I- 

ADAM: Aha! 
EVE: NO! 0 God, I-(Fit if I do?) Go on. 

ADAM: Hrrrrrrh! 
EVE: WOW! OW! 

ADAM: Sores? (Alas, Eros!) 
EVE: NO, none. My hero! More hymen, on, on . . . 

ADAM: Hrrrrrrrrrrrrrrrrrrrrh! 
EVE: Revolting is error. Resign it, lover. 

ADAM: NO, not now I won't. On, on . . . 
EVE: Rise, sir. 

ADAM: Dewy dale, cinema-game . . . Nice lady wed? 
EVE: Marry an Ayr ram! 

ADAM: Rail on, 0 liar! 
EVE: Live devil! 

ADAM: Diamond-eyed no-maid! 
BOTH: Mmmmmmmmmmmmmmmmmmmm! 

and so on. Applied to nouns in the first chapter of Moby Dick, the 
opening sentences are: 

Call me air. Some hills ago-never mind how long precisely-having 
little or no phantoms in my whale, and nothing particular to interest me 
on processions, I thought I would sail about a little and see the watery 
soul of the purpose. 

Queneau's booklet Les Fondements de la Litt6rature transforms 
David Hilbert's axioms for Euclidean geometry by replacing the words 
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"points," "lines" and "planes" respectively with "words," "phrases" and 
"paragraphs" to obtain a new set of axioms for which Queneau provides 
a witty commentary. Another Oulipo algorithm is to replace words with 
dictionary definitions or with freer definitions of the kind found in 
crossword puzzles. The new statement is transformed again by the same 
method until all original meaning is lost. A special challenge is to begin 
with two statements that have entirely different meanings and then 
transform them in the fewest number of steps until they are identical. 

Joining the first half of one proverb to the second half of another 
produces the "perverb," a form explored by Mathews in both French 
and English. His Selected Declarations of Dependence (Eternal Network, 
Toronto, 1976) consists of poems and prose pieces that explore 
hundreds of perverbs derived from 46 English proverbs. Here are some 
examples: 

"A rolling stone gets the worm." 

"A bird in the hand waits for no man." 

"The road to hell has a silver lining." 

"It's an ill wind that spoils the broth." 

One may also modify a proverb by substituting homophones- 
words that sound much the same but have different meanings. Two 
classic English examples are "There's no fuel like an oil fuel" and 
"There's no police like Holmes." Proverbs can also be changed in star- 
tling ways simply by truncating them: 

"People who live in glass houses shouldn't." 

"All work and no play makes jack." 

"Familiarity breeds." 

Lescure has experimented with sentences containing just four prin- 
cipal words by testing all 24 permutations. The goal is to maximize the 
number of permutations that make sense. Homophones are allowed. An 
English example by Mathews is shown in Figure 43. The list is incom- 
plete, he points out, because the remaining permutations are redundant. 

Lines of poems are permuted by the Oulipo in many carefully de- 
fined ways. Luc ~ t i e n n e  uses a Mobius strip to interweave the lines of a 
poem to make a different poem. Write half of the poem on one side of a 
strip and the other half (upside down) on the opposite side. Twist and 
join the ends. Reading around the single side of the Mobius band inter- 
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A Partial Survey of Western European Holiday Migrations 

EXODUS A RETURN A + B 

Leeds' roads roam to all? Rhodes roams leads to all? 
Rome's Leeds' road to all- Roads lead all to Rome, 
All Leeds rode to Rome. Lead all Rhodes to Rome. 

EXODUS B Rome-roads lead to all? 
All roam roads to Leeds! 

All Rome leads to roads. Rome rode all to Leeds. 
Rome leads all to roads, 
Leads Rome all to roads: SUMMARY 

"Roam all leads to roads!" All roads roam to Leeds 
Roads lead Rome to all? 
All leads roam to Rhodes, 
Lead all Rome to Rhodes. 

Figure 43 Mathews' permutations of a proverb 

laces the lines in the way that clasping your hands interlaces your 
fingers. The goal is to compose poems that have opposite meanings 
when they are read before and after the twist. 

The Mobius construction can be applied to two stanzas of the same 
length by different poets. The resulting poem is usually grotesque, but 
not always. In Figure 44 I have employed the Mobius transformation to 
combine Edna St. Vincent Millay's famous quatrain about candleburn- 
ing with the first quatrain of Elinor Wylie's beautiful lyric "Bells in the 
Rain." The composite poem can be read by starting either with Millay's 
quatrain or with Wylie's. 

Sleep Falls My Candle 
by Elinor Millay by Edna Wylie 

Sleep falls, with limpid drops of rain My candle bums at both ends. 
(My candle bums at both ends) Sleep falls with limpid drops of rain 
upon the steep cliffs of the town. (it will not last the night) 
It will not last the night. upon the steep cliffs of the town. 

Sleep falls, men are at peace again. But ah, my foes and oh, my friends, 
But ah, my foes and oh, my friends, sleep falls, men are at peace again. 
while the small drops fall softly down, It gives a lovely light 
It gives a lovely light. while the small drops fall softly down. 

Figure 44 Interwoven poems for a Mobius strip 



Oulipo members have written short stories and plays with junctures 
at which the reader or audience can choose between alternate transi- 
tions to obtain different plot combinations. (This technique should not 
be confused with the randomizing of fictional elements, as in the boring 
examples of Michel Butor's Mobile or the recent novels of William S. 
Burroughs.) Hopscotch, a novel by the Argentine expatriate (he too lives 
in Paris) Julio Cortazar, is closer to the Oulipo intent. Its 154 chapters 
are designed to be read in two ways. First you read conventionally from 
Chapter 1 through Chapter 56. Then you start at Chapter 73 and hop- 
scotch through the book by taking chapters in a sequence given by the 
number at the end of each chapter. Many chapters are read twice, and 
one is read four times. A translation from the Spanish was published by 
Pantheon in 1966. 

At the world's fair of 1967 in Montreal the Czechoslovak pavilion 
showed a motion picture that allowed audiences to vote on how to 
proceed at five binary forks. The offer was partly a fraud because there 
were just two films with plots designed so that they diverged only to 
come together again at the next juncture. According to Theodore H. 
Nelson, writing on "branching movies" in Dream Machines (half of a 
two-part book that he published in Chicago in 1974), the projectionist 
simply dropped an opaque slide in front of whichever portion of the film 
was not to be seen. Without self-intersection five genuine binary choices 
would produce Z5 = 32 different films, which would be a bit expensive 
for filmmakers, not to mention the excessive burden on the actors. 

"Homosyntaxism" is an Oulipian term for replacing all the words of 
a passage with new words while preserving the underlying syntax. Some- 
thing similar was done by Mortimer J. Adler in Diagrammatics, a curious 
little book of nonsense prose that he and Maude P. Hutchins (then the 
wife of Robert Maynard Hutchins) cooked up in 1932. Adler addled the 
text and Mrs. Hutchins provided illustrations. I had the pleasure of 
hearing Adler and Mrs. Hutchins give a joint lecture (with slides) about 
their book in Mandel Hall at the University of Chicago. Random House 
published the volume in a limited edition of 750 copies, copy one going 
to Gene Tunney, the prizefighter. You can read all about this book and 
how critics reacted to it in Adler's autobiography, Philosopher at Large 
(Macmillan, 1977), pages 157 - 159. 

It is sometimes possible to rearrange the words of a familiar passage 
of poetry to make an entirely different poem. Punctuation and capitaliza- 
tion can be varied. (A venture of this kind by Lindon and me appeared 
under the title "Pied Poetry" in Word Ways, May, 1973.) Here is one of 
my scramblings. Can you reconstruct the original? (The poet's name is 
an anagram of his real name.) 
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Prison Bloom and Withers? 
Poison the air-well? 
What good is there in that? 
It is only in deeds 
Vilest man 
Wastes like weeds. 

-S. WALDO RICE 

In February 1974, Word Ways  published a poem by Mary Young- 
quist, a frequent contributor, that is reproduced in Figure 45. What is so 
unusual about her poem? 

What happens when one poet writes a poem and then gives another 
poet an alphabetized list of all the words in it, whereupon the second 
poet uses them to write a new poem without seeing the original? Oulipo 
members have not tried this, but Word Ways  has published the remark- 
able results of several such experiments in what Eckler calls "vocabu- 
laryclept" poems. (See the issues for May 1969, August 1970, and May 
1975, also Eckler's column in Games and Puzzles, July 1976, and Chapter 
4 of Bergerson's book mentioned earlier.) It is surprising how good a 
new poem can be produced, with almost no resemblance to the original 
except in mood. Eckler has published some interesting statistical results 

Winter Reigns 

Shimmering, gleaming, glistening glow- 
Winter reigns, splendiferous snow! 
Won't this sight, this stainless scene, 
Endlessly yield days supreme? 

Eyeing ground, deep piled, delights 
Skiers scaling garish heights. 
Still like eagles soaring, glide 
Eager racers; show-offs slide. 

Ecstatic children, noses scarved- 
Dancing gnomes, seem magic carved- 
Doing graceful leaps. Snowballs, 
Swishing globules, sail low walls. 

Surely year-end's special lure 
Eases sorrow we endure, 
Every year renews shared dream, 
Memories sweet, that timeless stream. 

-Mary Youngquist Figure 45 
A poem with a hidden structure 
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that emerge from comparisons of the two poems. As one might expect, 
the shorter the original, the closer the convergence toward two identical 
poems. 

The 11 most frequently used letters in French can be arranged to 
spell ulctrations. (It has the same meaning in French as in English.) 
Perec has amused himself by writing what can be called isogrammatic 
poems-poems written entirely with these 11 letters. He has also pub- 
lished poems that contain the same 11 letters plus one "free" letter. The 
technique is shown in Figure 46. There the position of each free letter is 
indicated by a cross. Following that is Perec's poem after each cross has 
been replaced by a letter of his choice. Mathews translates: 

Believed a bastion, the wall is far off: this smarts-you skim over shut 
yesterday, your nakedness, the arch where you synchronously bound the 
indestructible courtyard to its short, denied knell, there received. Your 
story: white against the night, echoes. 

When the American linotype machine was invented, it was believed 
the 12 most commonly used letters in English, in decreasing order of 
frequency, are etaoin shrdlu. These two nonsense words are spelled by 
the first and second columns of the traditional linotype keyboard. Some- 
times a printer runs a finger down the columns to make a slug, for 

CRU-kASTIONLE 
+URESTLOINCA 
CUITONRASEL+ 
IERCLOSTANU+ 
ITELARCOUS+N 
C+RONETULIAS 
LACOURIN+EST 
RUCTI+LEASON 
+LASCOURTNIE 
RECULATON+IS 
TOIRE+LANCSU 
RLANUITEC+OS 

Cru bastion, le mur est loin: ca cuit, 
on rase l'hier clos, ta nudite, l'arc 
ou, synchrone, tu lias la cour 
indestructible a son glas court nie, 
reCu la. 

ton histoire: 
blanc sur la nuit, 

echos Figure 46 
An isogram by Georges Perec 
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marking purposes, that he intends to remove later. If he forgets, the 
cabalistic words may get printed. Perhaps readers can produce some 
etaoin-shrdlu poems with or without a free 13th letter. 

Only one English word is known that spells with the letters of etaoin 
shrdlu. It is "outlandisher," to be found in the New Standard Unabridged 
Dictionary. It is also possible to use the letters to make two words that 
name a region of a well-known country. Can you discover the region? 

The Oulipo has also worked on what in English are called "snowball 
sentences." Each word is one letter longer than its predecessor. 
Mathews gives a 22-word snowball beginning with 0 le bon sens and 
ending with pseudotransfigurations. A good English specimen, from 
Dmitri Borgmann's classic Language on Vacation, is the following 20- 
word snowball: 

I do not know where family doctors acquired illegibly perplexing 
handwriting; nevertheless, extraordinary pharmaceutical intellectuality, 
counterbalancing indecipherability, transcendentalizes 
intercommunications' incomprehensibleness. 

La Littkrature Potentielle is packed with many other kinds of linguis- 
tic play, but I have room for only a few more. Jacques Bens writes what 
he calls "irrational sonnets." The 14 lines are partitioned into five parts: 
three lines, one line, four lines, one line, five lines. These five digits, 
3 141 5, are the first five digits of pi, an irrational number-hence the 
name given to the sonnet. The rhyme scheme is aab, c, baab, c ,  cdccd. 
The two single lines must end with the same word. 

Noel Arnaud writes what he calls "heterosexual poems." They are 
poems in which lines with a masculine ending (stressed last syllable) 
alternate with lines that terminate in a feminine rhyme (unstressed last 
syllable). 

The Oulipo has developed a variety of algebraic formulas that the 
members apply effectively to the plot structures of novels, stories and 
plays. Claude Berge, an eminent graph theorist, has shown how directed 
graphs (graphs with arrows that give each edge a direction) can assist in 
analyzing literary structures. 

Les Horreurs de la Guerre (The Horrors o f  War) by Perec is a three-act 
play in which the entire dialogue is a recital of words that give in order a 
single recitation of the French alphabet. Word Ways has published a 
clever analogue in English by Eckler and the following remarkable 
passage by Mathews. It is spoken by a crow to a scarecrow: 

Hay, be seedy! He-effigy, hate-shy jaky yellow man, oh peek, you are 
rusty, you've edible, you ex-wise he! (For more examples, see Word 
Ways, May 1981, page 85.) 



Ingenious, I hear you say, but how frivolous, and what a sad waste of 
creative energy! Yet does it not bring home to us how a culture's lan- 
guage, with its mysterious blend of sound and meaning, is a structure 
with an independent life of its own? "The West is mad," writes Mathews 
in The Sinking. "I could not live without your words, no matter how you 
spell them." Had the crow's remark appeared somewhere in the bowels 
of Finnegans Wake,  can you imagine a Joyce buff who would have found 
it out of place or who would not have enjoyed discovering for himself the 
hidden underlying form of the passage? 

ANSWERS 

The scrambled poem is constructed from the following lines of Oscar 
Wilde's "The Ballad of Reading Gaol": 

The vilest deeds like poison weeds 
Bloom well in prison air: 

It is only what is good in Man 
That wastes and withers there. 

Catherine Hoff constructed five other excellent scrambled versions 
of Wilde's four lines. They appeared in Scientific American's Letters 
department (April 1977), credited to poets Oswald C. Ire, Rod I. Clawse, 
Eric 0. L. Daws, Dora S. Wilec and Rosa W. Clide. Sareen Gerson 
wondered why my S. Waldo Rice failed to scramble the rest of Wilde's 
stanza: 

Pale Anquish keeps 
The heavy gate, and the 
Warder is Despair. 

She completed the stanza with: 

The gate is heavy anguish. 
Despair and warder 
The pale keeps. 

The secret of Mary Youngquist's poem is that the last letter of every 
word is the initial letter of the next word. The property even extends to 
the poet's name at the end. Several readers suggested altering the 
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poem's title so that it begins with t ,  the last letter of "Youngquist," such 
as "This Snow, Winter Reigns," or "Then, Now, Winter Reigns," thereby 
making the hidden structure cyclical. Both those titles came from Bob 
Gregorac. 

The letters of etaoin shrdlu can be rearranged to spell South Ireland. 
John Rigney arranged the same letters to spell the advice given by a 
Spaniard about how to reach South Ireland: "Sail due North." Dolores 
Kozielski scrambled the letters to make the hyphenated word anti- 
shoulder. Richard Hawkins quoted a travel agent: "I handle tours." Tom 
Doyle reminded me that Etaoin Shrdlu is a character in Elmer Rice's 
play The Adding Machine. 

Etaoin shrdlu is now almost obsolete as linotype machines are being 
replaced by computer typesetting, but QWERTY is still with us as the 
first six letters of the standard typewriter keyboard. By the way, did you 
know that TYPEWRITER spells with the top row of letters on this 
keyboard? 

Many readers produced poems with lines formed entirely with the 
letters of etaoin shrdlu. One of the best, by Walter Leight, was published 
in the Letters department of Scientific American (April 1977). Titled 
"Sharon Dilute," it consisted of eight quatrains that begin: 

Old hunter, as I 
dash in to rule, 
insult a horde 
and so lie hurt, 

no adult heirs, 
riled, shout an 
oath: "Sin lured, 
had soul inert." 
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My column on the Oulipo led to an article about the group 
in Time (January 10, 1977), with a photograph of Franqois Le Lionnais 
leafing though the strips of Raymond Queneau's book of 1 014 sonnets. In 
Time's Letters department (January 31), readers suggested such per- 
verbs as "The worm is on the other foot" and "Time wounds all heels" 
and constructed two unusual snowball sentences. 

Le Lionnais wrote to tell me about other workshop groups he had 
founded: Oupeinpo (painting), Oumupo (music), Oucinepo (cinema) 
and Oulipopo (detective literature). In 1978 his dictionary of mathemat- 
ics was published and was soon followed by his anthology of remarkable 
numbers, Les Nombres Remarquables (1983), which lists and comments 
on some 500 unusual numbers. Plate 3 reproduces a photograph of 
Oulipo members in his garden, in 1975. He also reported that Claude 
Berge, Oulipo's graph theorist, had written a "vanishing line" sonnet 
modeled after the vanishing leprechaun paradox that I reproduced in 
Chapter 12 of my Wheels, Life, and Other Mathematical Amusements. 
When the sonnet is cut into three parts and rearranged, it changes from 
15 lines to 14, making sense of course in both forms. 

Georges Perec, who died from cancer in 1982 (age 46), was born in 
Paris of Jewish parents who left Poland in the twenties. His father lost his 
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life in the German invasion of France, and his mother died in a concen- 
tration camp. Of his more than a dozen books, his masterpiece, La Vie, 
Mode dlEmploi, published here in 1987 as Life: A User's Manual, deserves 
some comment. Its 581 pages are broken into 99 short chapters and an 
epilogue that describe in detail every room in a Paris apartment building 
and give an account of the life of each resident. The 100 rooms corre- 
spond to the cells of a 10 X 10 Graeco-Latin square (for a discussion of 
such squares see Chapter 14 of my New Mathematical Diversions). We 
visit each room in turn along the path of a chess knight that hops from 
cell to cell. The rooms also are depicted in an enormous painting of their 
100 interiors by an aged artist who has lived in the building for 55 years. 

The French original bristles with untranslatable wordplay, mathe- 
matical recreations, chess problems and concealed quotations from 
famous writers. Paul Auster, reviewing the novel for the New York Times 
Book Review (November 15, 1987), called the book's traps and allusions 
"prodigiously entertaining," and recorded his delight in knowing by 
chance that when Perec refers to a melody composed by Arthur Stanley 
Jefferson, he is purloining the real name of comedian Stan Laurel. The 
book has an index of proper names, a chronology of main dates and a 
checklist of plots. 

The 99 chapters interlock like pieces in a jigsaw puzzle, the novel's 
central symbol. For 10 years Percival Bartlebooth, a wealthy British 
resident of the Paris apartment, studies watercolor painting. During the 
next 20 years he travels around the world to paint 500 different seaports. 
Each picture is sent to another resident of the building, Gaspard 
Winckler, who turns each picture into a 750-piece jigsaw puzzle. After 
returning from his travels, Bartlebooth spends the next 20 years solving 
the puzzles. Each completed picture is then dipped in a solution that 
totally erases it. Unfortunately, while Bartlebooth is trying to solve his 
439th puzzle, he dies holding a piece shaped like a W, but the one 
remaining hole in the puzzle has the shape of an X. Reality defeats life. 
As Sven Birkerts puts it in his New Republic review (February 8, 1988), 
the ending is Perec's "sly elbow-poke at his own enterprise." Perec, 
declared fellow Oulipoist Italo Calvino, was "one of the most singular 
literary personalities in the world, a writer who resembled absolutely no 
one else." 

Calvino, himself a singular writer, was the Oulipoist who achieved 
the largest following in the United States. (He and Harry Mathews were 
both elected to the Oulipo on Valentine's Day, 1973). When he died in 
1985 (age 61), he was widely regarded as Italy's most distinguished 
novelist. Like the fiction produced by his Oulipo friends, Calvino's 
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novels and short stories are rich in humor, fantasy and bizarre ways of 
constructing plots. The three tales in Our Ancestors are about a knight 
who is split in half (one half living on as a benevolent man, the other as a 
cruel man); another knight who, like so many political leaders, has no 
existence inside his armor; and a nobleman who lives in trees. In The 
Castle o f  Crossed Destinies (published here in 1977), randomly played 
Tarot cards (their pictures are reproduced in the book's margins) pro- 
vide what Calvino called "a machine for constructing stories." (See John 
Updike's shrewd commentary "Card Tricks" in his collection of essays 
Hugging the Shore, pages 463 -470.) 

Calvino's last major work, If on a Winter's Night a Traveler (The 
United States edition appeared in 1981), is about itself-a novel that the 
Reader (a character in the story) purchases. Unfortunately, the book he 
buys is defective, its pages having become mixed at the bindery with the 
pages of a Polish novel by another author. The bookseller exchanges the 
garbled volume for what is supposed to be the Polish novel, but it too is 
defective. The bindery has alternated printed and blank pages. This is 
only the beginning of a story line of increasing confusion and complex- 
ity. There are 10 different plots, each ending with cliff-hangers, or what 
Mary McCarthy, reviewing the novel for the New York Review of Books 
(June 25, 1981), sees as "ten regulated instances of coitus interruptus in 
the art and practice of fiction." 

The most Oulipolian American novelist - though I don't know how 
much Oulipo writers have actually influenced him-is surely John 
Barth, with Thomas Pynchon, Robert Coover and Donald Barthelme 
close behind. Word and mathematical play is densest in Barth's Letters, 
but discussing this convoluted work here would take us too far afield. 

A plot that forks into two or more possible endings is not a new 
idea- it was used effectively in plays by Lord Dunsany and J. B. Priestley 
and, more recently, by John Fowles at the end of his novel The French 
Lieutenant's Woman. The Oulipo carried this technique to its ultimate by 
allowing readers to make their own choices of alternate plot lines at 
various points in a narrative. Queneau's Tale of Your Own Fashion starts 
out: "Do you wish to hear the story of the three alert beans? If yes, jump 
to 4. If not, jump to 2." If you pick 4, the tale continues: "Once there 
were three little beans. . . . If you like the description, jump to 5. If you 
prefer another description, jump to 9." And so on. 

Known as "interactive fiction," the genre became popular here in 
both juvenile and adult books and in a few motion pictures and stage 
shows. In the late seventies Bantam started a highly successful line of 
children's books called "Choose Your Own Adventure." In each story 
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the reader could make choices at some two dozen points that led to a 
large number of ~ossible endings. Other publishers got into the act in the 
eighties with similar books. Signet called its series "Lifegames for 
Adults." Each novel branches into 64 alternate last chapters, some 
happy, some terrible. Pocket Books was soon doing its "Which Way 
Books": Which Way Follow Your Heart Romances, Play-it-your Way 
Sports Books, Super Hero Which Way Books and Which Way Secret 
Door Books. Simon and Schuster came out with "Plot-your-own Horror 
Stories," and Lerner Publications introduced its "You are the Coach 
Books." 

None of these books had any lasting merit. Nothing is easier than 
choosing forking paths on a computer, and so it is hardly surprising that 
interactive "novels" began to appear on the market as computer soft- 
ware. The first, Adventure, was a treasure hunt through dungeons and 
caves. Murder mysteries were naturals for this sort of thing, unraveling 
in thousands of different ways and sometimes taking months to solve. 
Science fiction became popular. Ray Bradbury helped in the writing of 
an interactive version of his Fahrenheit 451. Arthur Clarke's Rendezvous 
with R a m  and Douglas Adams's Hitchhiker's Guide to the Galaxy were 
other top sellers. Michael Crichton wrote a new novel, Amazon, that 
involves a search for a lost city in the jungles of South America. Whether 
these computer "novels" will evolve into something that can be called 
literature or just be passing recreations on the comic-book level is still 
anybody's guess. 

In the late eighties several movies and plays allowed audiences to 
decide how the story should continue. The Mystery of Edwin Drood, 
produced in Manhattan in 1985, permitted audiences to vote on how the 
play should end after the point where Dickens had left his novel 
unfinished. 

Inspired by Oulipolian wordplay, readers sent in numerous per- 
verbs, such as this one from Carolyn Weyant: "In one ear and gone 
tomorrow." Proverbs can be altered simply by switching key words 
around, such as "The oboe is an ill wood wind that nobody blows good." 
In 1969 the wife of New York City mayor John Lindsay apologized on 
television for her husband's seconding of Spiro Agnew's nomination 
for vice president. "Politics," she said, "makes strange bedfellows." Told 
of his wife's remark, Mayor Lindsay replied (New York Times, De- 
cember 31): "Well, bedfellows make strange politics." "They also wait," 
wrote Robert Jenks on a postcard, "who only stand and serve." Proverbs 
altered by puns were passed along by Leonard Morgenstern: "Many are 
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cold but few are frozen"; "One's man Mede is another man's Persian." 
From John Gummere: "Too many crooks spoil the brothel." 

A1 Grand wrote to add bras to Mathews' French-English word list. 
When Grand's French classes sing "La Marseillaise," he said, the word 
always produces squeals of laughter from his sixth-grade girls. The lines 
"Mugir ces feroces soldats, ils viennent jusque duns nos bras . . ." meta- 
morphose in the minds of the girls, he wrote, as something like: "When 
these groaning soldiers get the 'blahs,' they come and try to snatch our 

,, bras. .  . . 
Gummere, headmaster emeritus of William Penn Charter School, 

Haverford, Penn., was inspired by Mathews' French-English words to 
compile a similar list of Latin words. Published in The Classical Outlook 
(MarchIApril 1931), it is here reproduced in Figure 47 with Gummere's 
permission. 

Will Shortz, writing about the National Puzzler's League in Games 
magazine (JanuaryIFebruary 1979), credited the following splendid ABC 
sentence to a lady puzzler who uses the pseudonym Mona Lisa: "A 
brilliant Chinese doctor exhorted four graduating hospital interns, 'Just 
keep looking, men - no other prescription quickly relieves sore throats, 
unless veterinarians willfully x-ray your zebras.' " 

a do2 is post 
acre dole it quid4 
age dote late re2 
ages ducat male rear 
ago eat mallet rue 
an era mane sere 
at ere mare sex 
boa fare mi' sil 
bone ferret miles sicS 
cadet fit mire sol1 
cane flare more sole6 
cave flat net stare 
clam for nix sue 
cur fore no sum 
dare fur pace tale 
date graves pane tam 
dens hem pellet time 
die his pone3 tot 
do' I possum violet 

(NOTES: 1, musical note; 2, to act; 3, corn pone; 
4, a chew; 5, urge to attack; 6, the fish) 

Figure 47 John Gummere's Latin-English list 
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Albert L. Ely, Jr., interwove the quatrains by Elinor Wylie and Edna 
St. Vincent Millay with A. E. Housman's "A Shropshire Lad" to obtain 
the following stanzas: 

With rue my heart is laden - 
My candle burns at both ends 
For golden friends I had. 
It will not last the night 
For many a rose-lipt maiden, 
But ah, my foes, and oh, my friends, 
And many a lightfoot lad, 
It gives a lovely light. 

By brooks too broad for leaping 
Sleep falls with limpid drops of rain. 
The lightfoot boys are laid 
Upon the steep cliffs of the town; 
The rose-lipt girls are sleeping; 
Sleep falls; men are at peace again 
In fields where roses fade 
While the small drops fall softly down. 

Dick Ringler, inspired by J. A. Lindon's palindromic dialogue be- 
tween Adam and Eve, composed the following pair of quatrains, each a 
word reversal of the other: 

DIPTYCH 

To Theseus: Finding No Minotaur 

Thread the chaos, pattern the despair. 
Shadows loom and worry you: 

Dead hope, and empty heaven, and now bare 
Meadows-fearful! but all perspective true. 

To Penelope: Weaving in Autumn 

True perspective all, but fearful! meadows 
Bare now, and heaven empty, and hope dead, 

You worry and loom shadows, 
Despair the pattern, chaos the thread. 

A correspondent who wishes to remain nameless asked if I was 
aware that Adam and Eve were not Jewish, but Irish. It seems that 
when they first met, each lifted up the other's fig leaf. "O'Hare!" ex- 
claimed Adam, while Eve shouted "O'Toole!" 
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Country Cooking and Other Stories, a collection of short tales by 
Harry Mathews, was published in 1980 by Burning Deck, a firm in 
Providence, R.I. The Review o f  Contemporary Fiction devoted its Fall 
1987 issue to Mathews (see bibliography), and that same year, November 
4 - 6, a literary colloquium on the Oulipo was sponsored by the Romance 
languages department of Baruch College in New York City. There were 
readings from Oulipo authors and lectures about and discussions of 
several recent Oulipo works, including Mathews' 1987 novel Cigarettes. 
This amusing, intricately plotted novel is unusual in lacking the con- 
cealed structures, subtle puzzles and outrageous wordplay of Mathews' 
earlier fiction and poetry. Robert Towers, reviewing Cigarettes in the 
New York Review o f  Books (January 21, 1988), called it "cool and ele- 
gant" and an "odd and gratifying novel." 
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Wythof's Nim 

An analysis of a simple two-person game can lead into 
fascinating corners of number theory. We begin with a charming, little- 
known game played on a chessboard with a single queen. Before we are 
through, we shall have examined a remarkable pair of number se- 
quences that are intimately connected with the golden ratio and general- 
ized Fibonacci sequences. 

The game, which has no traditional name, was invented about 1960 
by Rufus P. Isaacs, a mathematician at Johns Hopkins University. It is 
described briefly (without reference to chess) in Chapter 6 of the 1962 
English translation of The Theory of Graphs and Its Applications, a book 
in French by Claude Berge. (We met Berge in the previous chapter as a 
member of the Oulipo.) Let's call the game "Corner the Lady." 

Player A puts the queen on any cell in the top row or in the column 
farthest to the right of the board; the cells appear in gray in Figure 48. 
The queen moves in the usual way but only west, south or southwest. 
Player B moves first, then the players alternate moves. The player who 
gets the queen to the starred cell at the lower left corner is the winner. 

No draw is possible, so that A or B is sure to win if both sides play 
rationally. It is easy to program an HP-97 printing calculator or the 
HP-67 pocket calculator to play a perfect game. Indeed, a magnetic card 
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Figure 48 
The cornering game of Rufus P. Isaacs 

supplied with Hewlett-Packard's book HP-67/HP-97 Games Pac I pro- 
vides just such a program. 

Isaacs constructed a winning strategy for cornering the queen on 
boards of unbounded size by starting at the starred cell and working 
backward. If the queen is in the row, column or diagonal containing the 
star, the person who has the move can win at once. Mark these cells with 
three straight lines as is shown in part A of Figure 49. It is clear that the 
two shaded cells are "safe," in the sense that if you occupy either one, 
your opponent is forced to move to a cell that enables you to win on the 
next move. 

Part B of the illustration shows the next step of our recursive analy- 
sis. Add six more lines to mark all the rows, columns and diagonals 
containing the two previously discovered safe cells. This procedure 
allows us to shade two more safe cells as shown. If you occupy either 
one, your opponent is forced to move, so that on your next move you can 
either win at once or move to the pair of safe cells nearer the star. 

Repeating this procedure, as is shown in part C of the illustration, 
completes the analysis of the chessboard by finding a third pair of safe 
cells. It is now clear that Player A can always win by placing the queen 
on the shaded cell in either the top row or the column farthest to the 
right. His strategy thereafter is simply to move to a safe cell, which he 
can always do. If A fails to place the queen on a safe cell, B can always 
win by the same strategy. Note that winning moves are not necessarily 
unique. There are times when the player with the win has two choices; 
one may delay the win, the other may hasten it. 

Our recursive analysis extends to rectangular matrixes of any size or 
shape. In part D of the illustration, a square with 25 squares on a side is 
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Figure 49 (A, B, C) A recursive analysis of "Comer the Lady" (D) The first 
nine pairs of safe cells 



shown with all the safe cells shaded. Note that they are paired symmet- 
rically with respect to the main diagonal and lie almost on two lines that 
fan outward to infinity. Their locations along those lines seem to be 
curiously irregular. Are there formulas by which we can calculate their 
positions nonrecursively? 

Before answering let us turn to an old counter take-away game said 
to have been played in China under the name tsyan-shidzi, which means 
"choosing stones." The game was reinvented by the Dutch mathemati- 
cian W. A. Wythoff, who published an analysis of it in 1907. In Western 
mathematics it is known as "Wythoff's Nim." 

The game is played with two piles of counters, each pile containing 
an arbitrary number of counters. As in Nim, a move consists in taking 
any number of counters from either pile. At least one counter must be 
taken. If a player wishes, he may remove an entire pile. A player may 
take from both piles (which he may not in Nim), provided that he takes 
the same number of counters from each pile. The player who takes the 
last counter wins. If both piles have the same number of counters, the 
next player wins at once by taking both piles. For that reason the game is 
trivial if it starts with equal piles. 

We are ready for our first surprise. Wythoff's Nim is isomorphic with 
the Queen-Cornering game! When Isaacs invented the game, he did not 
know about Wythoff's Nim, and he was amazed to learn later that his 
game had been solved as early as 1907. The isomorphism is easy to see. 
As is shown in part D of Figure 49, we number the 25 columns along the 
x coordinate axis, starting with 0; the rows along the y coordinate axis 
are numbered the same way. Each cell can now be given an x/y number. 
These numbers correspond to the number of counters in piles x and y. 
When the queen moves west, pile x is diminished. When the queen 
moves south, pile y is diminished. When it moves diagonally southwest, 
both piles are diminished by the same amount. Moving the queen to cell 
010 is equivalent to reducing both piles to 0. 

The strategy of winning Wythoff's Nim is to reduce the piles to a 
number pair that corresponds to the number pair of a safe cell in the 
Queen game. If the starting pile numbers are safe, the first player loses. 
He is certain to leave an unsafe pair of piles, which his opponent can 
always reduce to a safe pair on his next move. If the game begins with 
unsafe numbers, the first player can always win by reducing the piles to a 
safe pair and continuing to play to safe pairs. 

The order of the two numbers in a safe pair is not important. This 
condition corresponds to the symmetry of any two cells on the chess- 
board with respect to the main diagonal: they have the same coordinate 
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numbers, one pair being the reverse order of the other. Let us take the 
safe pairs in sequence, starting with the pair nearest 010, and arrange 
them in a row with each smaller number above its partner, as in Figure 
50. Above the pairs write their "position numbers." The top numbers of 
the safe pairs form a sequence we shall call A. The bottom numbers form 
a sequence we shall call B. 

These two sequences, each one strictly increasing, have so many 
remarkable properties that dozens of technical papers have been written 
about them. Note that each B number is the sum of its A number and its 
position number. If we add an A number to its B number, the sum is an A 
number that appears in the A sequence at a position number equal to B. 
(An example is 8 + 13 = 2 1. The 13th number of the A sequence is 2 1 .) 

We have seen how the two sequences are obtained geometrically by 
drawing lines on the chessboard and shading cells according to a recur- 
sive algorithm. Can we generate the sequences by a recursive algorithm 
that is purely numerical? 

We can. Start with 1 as the top number of the first safe pair. Add this 
to its position number to obtain 2 as the bottom number. The top 
number of the next pair is the smallest positive integer not previously 
used. It is 3. Below it goes 5, the sum of 3 and its position number. For 
the top of the third pair write again the smallest positive integer not yet 
used. It is 4. Below it goes 7, the sum of 4 and 3. Continuing in this way 
will generate series A and B. 

There is a bonus. We have discovered one of the most unusual 
properties of the safe pairs. It is obvious from our procedure that every 
positive integer must appear once and only once somewhere in the two 
sequences. 

Is there a way to generate the two sequences nonrecursively? Yes. 
Wythoff was the first to discover that the numbers in sequence A are 
simply multiples of the golden ratio rounded down to integers! (He 
wrote that he pulled this discovery "out of a hat.") 

The golden ratio, as most readers of this book are aware, is one of the 
most famous of all irrational numbers. Like pi it has a way of appearing 
in unlikely places. Ancient Greek mathematicians called it the "extreme 
and mean ratio" for the following reason. Divide a line segment into 

Figure 50 The first 15 safe pairs in Wythof f s  Nim 
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parts A and B in such a way that the ratio of length A to length B is the 
same as the ratio of the entire line to A. You have divided the line into a 
golden ratio. Because this has been widely thought to be the most 
pleasing way to divide a line, the golden ratio has provoked a bulky 
literature (much of it crankish) about the use of the ratio in art and 
architecture. 

We can calculate the golden ratio by assigning a length of 1 to line 
segment B. Our method of dividing the line is expressed by (A + 1)/A = 
All, a simple quadratic equation that produces for A a positive value of 
(1 + &)/2 = 1.61803398 . . . , the golden ratio. Its reciprocal is 
0.61803398. . . . It is the only positive number that becomes its own 
reciprocal when 1 is taken from it and that becomes its own square when 
1 is added to it. Its negative reciprocal has the same properties. In 
Britain the golden ratio is usually signified by the Greek letter z (tau). I 
shall follow the American practice of calling it 4 (phi). 

The numbers in sequence A are given by the formula [ n 4 ] ,  where n  is 
the position number and the brackets signify discarding the fractional 
part. B numbers can be obtained by adding A numbers to their position 
numbers, but it turns out that they are rounded-down multiples of the 
square of phi. The formula for sequence B, therefore, is [ M $ ~ ] .  The fact 
that every positive integer appears once and only once among the safe 
pairs can be expressed by the following remarkable theorem: The set of 
integers that lie between successive multiples of phi and between suc- 
cessive multiples of phi squared is precisely the set of natural numbers. 

Two sequences of increasing positive integers that together contain 
every positive integer just once are called "complementary." Phi is not 
the only irrational number that generates such sequences, although it is 
the only one that gives the safe pairs of Wythoff's Nim. In 1926 Sam 
Beatty, a Canadian mathematician, published his astounding discovery 
that any positive irrational number generates complementary 
sequences. 

Let k  be the irrational number, with k  greater than 1. Sequence A 
consists of multiples of k ,  rounded down, or [ n k ] ,  where n  is the position 
number and the brackets indicate discarding the fraction. Sequence B 
consists of rounded-down multiples of k / ( k  - I), or [ n k / ( k  - I)]. Com- 
plementary sequences produced in this way are called Beatty sequences. 
If k  is phi, the second formula gives rounded-down multiples of 1.618 + 
/0.618+ = 2.618+, which, owing to the whimsical nature of phi, is the 
square of phi. Readers might like to convince themselves that Beatty's 
formulas do indeed produce complementary sequences by letting k  = a pi, e or any other irrational, and that rational values for k  fail to 
produce such sequences. 



Wythoff's Nim 109 

Whenever the golden ratio appears, it is a good bet that Fibonacci 
numbers lurk nearby. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 
34 . . . , in which each number after the first two is the sum of the two 
preceding numbers. A general Fibonacci sequence is defined in the 
same way, except that it can begin with any pair of numbers. A property 
of every Fibonacci sequence of positive integers is that the ratio of 
adjacent terms gets closer and closer to phi, approaching the golden 
ratio as a limit. 

If we partition the primary Fibonacci sequence into pairs, 112, 315, 
811 3 , 2  1/34 . . . , it can be shown that every Fibonacci pair is a safe pair 
in Wythoff's Nim. The first such pair not in this sequence is 417. If we 
start another Fibonacci sequence with 417, however, and partition it 417, 
11/18,29/47 . . . , all these pairs are also safe in Wythoff's Nim. Indeed, 
these pairs belong to a Fibonacci sequence of what are called Lucas 
numbers that begins 2, 1, 3, 4, 7, 11. . . . 

Imagine that we go through the infinite sequence of safe pairs (in the 
manner of Eratosthenes' sieve for sifting out primes) and cross out the 
infinite set of all safe pairs that are pairs in the Fibonacci sequence. The 
smallest pair that is not crossed out is 417. We can now cross out a 
second infinite set of safe pairs, starting with 417, that are pairs in the 
Lucas sequence. An infinite number of safe pairs, of which the lowest is 
now 6/10, remain. This pair too begins another infinite Fibonacci se- 
quence, all of whose pairs are safe. The process continues forever. 
Robert Silber, a mathematician at North Carolina State University, calls 
a safe pair "primitive" if it is the first safe pair that generates a Fibonacci 
sequence. He proves that there are an infinite number of primitive safe 
pairs. Since every positive integer appears exactly once among the safe 
pairs, Silber concludes that there is an infinite sequence of Fibonacci 
sequences that exactly covers the set of natural numbers. 

Take the primitive pairs 112,417, 6/10, 9/15 . . . in order and write 
down their position numbers, 1, 3, 4, 6. . . . Does this sequence look 
familiar? As Silber shows, it is none other than sequence A.  In other 
words, a safe pair is primitive if and only if its position number is r. 
number in sequence A.  

Suppose you are playing Wythoff's game with a very large number of 
counters or on a chessboard of enormous size. What is the best way to 
determine whether a position is safe or unsafe, and how do you play 
perfectly if you have the win? 

You can, of course, use the phi formulas to write out a sufficiently 
large chart of safe pairs, but this is hard to do without a calculator. Is 
there a simpler way comparable to the technique of playing perfect Nim 
by writing the pile numbers in binary notation? Yes, there is, but it uses a 
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more eccentric type of number representation called Fibonacci notation 
that has been intensively studied by Silber and his colleague Ralph 
Gellar and also by other mathematicians such as Leonard Carlitz of Duke 
University. 

Write the Fibonacci sequence from right to left as is shown in Figure 
5 1. Above it number the positions from right to left. With the aid of this 
chart we can express any positive integer in a unique way as the sum of 
Fibonacci numbers. Suppose we want to write 17 in Fibonacci notation. 
Find the largest Fibonacci number that is not greater than 17 (it is 13) 
and put a 1 below it. When we move to the right, we find the next 
number that, added to 13, gives a sum that does not exceed 17. It is 3, 
and so a 1 goes below 3. When we move to the right again, the next 
number that gets a 1 is the 1 in the second position. The unused Fibon- 
acci numbers get 0's. 

The result is 100 10 10, a unique representation of 17. To translate it 
back to decimal notation sum the Fibonacci numbers indicated by the 
positions of the 1's: 13 + 3 + 1 = 17. The 1 farthest to the right in the 
Fibonacci sequence is never used, so that all numbers in Fibonacci 
notation end in 0. It is also easy to see there are never two adjacent 1's. If 
there were, they would have a sum equal to the next Fibonacci number 
on the left, and our rules would give that number a 1 and give 0's to the 
original pair of adjacent 1's. 

In Fibonacci notation the sum of a safe pair is the B number with 0 
appended. From this it follows that the Fibonacci sequence is obtained 
by starting with 10 and adding 0's: 10, 100, 1000, 10000. . . . The same 
procedure gives any Fibonacci sequence generated by a primitive pair. 
For example, the Lucas sequence starting with 417 is 1010, 10100, 
101000, 1010000. . . . 

Every A number in Fibonacci notation has the 1 farthest to the right 
at an even position from the right. Every B number is obtained by adding 
0 to the right of its A partner. Therefore every B number has the 1 
farthest to the right in an odd position. Since every counting number is 
either an A number or a B number, we have a simple way of deciding 

Figure 51 Fibonacci notation for 17 
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whether a given position in Wythoff's Nim is safe or unsafe. Write the 
two numbers in Fibonacci notation. If the smaller one is an A number, 
and if adding 0 produces the other number, the position is safe; other- 
wise it is unsafe. 

An example of the method is 8/13 = 100000/1000000. The 1 in 
100000 is at position 6, an even position, so that 100000 is an A number. 
Adding 0 produces 1000000 = 13, the partner of 8. We know that 8/ 13 is 
safe. If it is your turn, your opponent has the win. If you think he cannot 
play peifectly, make a small random move and hope that he soon will 
make a mistake. 

If the pair is unsafe and it is your turn, how can you determine the 
safe position to which you must play? There are three cases to consider. 
In each case call the unsafe pair x/y, with x the smaller number, and 
write both numbers in Fibonacci notation. 

In the first case x is a B number. Move to reduce y to the number 
equal to the number obtained by deleting the right-hand digit of x.  For 
example, x/y = 10/15 = 100100/1000100. Since 100100 has the 1 far- 
thest to the right at an odd position, it is a B number. Delete its last digit 
to obtain 10010 = 6. The safe numbers you must produce (by removing 
from the larger pile) are 10 and 6. On a chessboard this corresponds to 
an orthogonal queen move. 

In the second case x is an A number, but y exceeds the number 
obtained by appending 0 to x.  Move to reduce the value of y to that 
number, for example, x/y = 9/20 = 100010/1010100. Because x's 1 far- 
thest to the right is in an even position, it is an A number. Appending 0 
produces 1000100 = 15. This is less than 20. Therefore the safe pair to 
play to is 9/15. On the chessboard this too is an orthogonal queen move. 

If the numbers do not conform to cases 1 and 2, do the following: 

1. Find the positive difference between x and y .  

2. Subtract 1, express the result in Fibonacci notation and 
change the last digit to 1. 

3. Append 0 to get one number. Append two 0's to get a second 
number. These two numbers are the safe pair you seek, even 
though the resulting Fibonacci numbers may be 
"noncanonical" in having consecutive 1's. 

An example of the third case is x/y = 24/32 = 10001000/10101000. 
The first and second cases do not apply. The difference between 24 and 
32 is 8. Subtracting 1 leaves 7. In Fibonacci notation 7 is 10100. Chang- 
ing the last digit to 1 produces 10101. Appending 0 and 00 yields the safe 



pair 10 10 1011 0 10 100 = 12/20. This result is reached by taking 12 from 
both piles. It corresponds to a diagonal queen move. 

It is impossible to go into the whys of Silber's bizarre strategy. 
Interested readers will find the proofs in Silber's 1977 paper, "Wythoff's 
Nim and Fibonacci Representations." Neither can I go into the ways in 
which Wythoff's game has been generalized, but a word or two should be 
added about the game's reverse, or misere, form: the last person to play 
loses. As T. H. O'Beirne makes clear in Puzzles and Paradoxes, misere 
Wythoff's Nim, like misere Nim, requires only a trivial alteration of the 
chart of safe pairs. Remove the first pair, 112, and substitute 011 and 212. 
The misere strategy is exactly like the standard strategy except that at the 
end you may have to play to 212 or 011 instead of 112. 

Let us modify Wythoff's Nim as follows. A player may take any 
positive number of counters from either pile, or he may take one 
counter from one pile and two counters from the other. Can the reader 
determine the chessboard model and the winning strategy? 

ANSWERS 

The task was to analyze a game (similar to Nim) in which players may 
take from either of two piles or take one counter from one pile and two 
counters from the other. The last person to play wins. In the un- 
bounded-chessboard model explained in the chapter, the first rule is 
equivalent to the move of a rook west or south and the second rule is 
equivalent to a knight jumping southwest. The take-away game is there- 
fore isomorphic with the game of cornering a chess piece that combines 
the powers of rook and knight. Among enthusiasts of unorthodox, or 
"fairy," chess such a piece is sometimes called a "chancelor" or some- 
times an "empress." 

If the piece moves only like a rook, the game on the chessboard is the 
same as standard Nim with two piles. Safe pairs are any two equal 
positive integers. They correspond to cells on the board's main diagonal 
that passes through corner cells 010 and 717. The player who places the 
rook (on the top row or the column farthest to the right) wins only by 
putting it on 717. Thereafter his strategy is always to move to the diago- 
nal. In the take-away game this means keeping the piles equal. The safe 
pairs are simply 111, 212, 313. . . . 

Surprisingly, giving the rook the additional power of a knight has no 
effect on this strategy. Applying the recursive technique explained ear- 
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lier, we find that the safe cells (or safe pairs) are exactly the same as in 
the rook game. 

The misere form of rook-knight Nim (the last person to play loses) is 
more interesting. The safe pairs are 011, 213, 415, 617. . . . On a chess- 
board these unordered pairs are the cells shown in gray in Figure 52. The 
"placer" has the win, but he must put the rook-knight on a cell adjacent 
to the cell in the top right corner. Thereafter he moves to occupy a safe 
cell. This procedure eventually brings him to 011 or 1/0, forcing his 
opponent to make the final move. 

Readers might enjoy analyzing the game on a standard chessboard 
when the placed piece has other chess powers, in each case limiting 
moves to west, south and southwest. A "superqueen" or "amazon" 
(combining queen and knight) means a loss for the placer in standard 
and reverse play. A king loses for the placer in standard play but wins in 
misere. The same result emerges if the piece is a king-knight or a king- 
rook. The placer wins in both types of play if the piece is a king-bishop. 

ADDENDUM 

Figure 53 shows in gray the safe cells for the king, rook and bishop Nim. 
The bishop game is trivialized by the fact that the bishop cannot legally 
move to the target from any square off the main diagonal. If we restrict 
the bishop to this diagonal, the second player obviously wins the stan- 
dard game and loses the reverse game. 

We can ignore combining the powers of queen and king, queen- 
bishop or queen-rook or combining rook and bishop, because such 

Figure 52 
Safe cells of reverse rook-knight Nim 
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Standard Reverse 

King 

Rook 

Bishop 

Figure 53 King, rook and bishop Nim 

pieces are clearly equivalent to the queen. Safe cells are shown in Figure 
54 for the superqueen or amazon (queen-knight), superking (king- 
knight), king-rook (in shogi, or Japanese chess, there is such a piece 
called the rya-ou) and the king-bishop (ryu-ma in shogi). In all cases we 
assume that a piece can move only west, south or southwest. 

Combining bishop and knight produces a piece known to some 
fairy-chess buffs as the "abbot," to others as the "princess." Christopher 
Arata sent a detailed analysis of Nimlike games to be played, under 
various rules, with this piece on an unlimited board. If we limit the 
playing field to those cells from which it is possible to move to the target 
square, the top of Figure 55 shows the safe cells for standard and reverse 
play. Arata suggested allowing the abbot to move southeast as well as 
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Standard Reverse 

King-bishop 

Figure 54 Pieces with combined powers 

southwest, in which case the safe cells become those shown at the 
bottom of the illustration. It is not known how to state rules that general- 
ize these patterns to unlimited boards. 

All these games have, of course, corresponding rules for playing Nim 
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Standard Reterse 

Figure 55 The abbot (bishop-knight) with S ,  W and SW moves (top), and SE  
added (bottom) 

with two piles of counters. For other ways of modifying Wythoff's game, 
readers are referred to papers listed in the bibliography. Many readers 
pointed out ways in which Silber's algorithm for calculating the winning 
strategy in Wythoff's Nim can be simplified for efficient computer 
programs. 
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1. POOL-BALL TRIANGLES 

Colonel George Sicherman of Buffalo tells me that about 
10 years ago, while he was watching a game of pool, the following 
problem occurred to him: Is it possible to form a "difference triangle" in 
arranging the 15 balls in the usual triangular configuration before the 
start of a game? In a difference triangle the numbers 1 through 15 are 
arranged in such a way that each number below a pair of numbers is the 
positive difference between that pair. 

It is evident from Figure 56 that the problem is trivial with the balls 
numbered 1 ,  2 and 3 and that two solutions can be obtained with them. 
The illustration also shows the four solutions for six balls and the four for 
ten balls. To Sicherman's surprise the 15 pool balls have only one basic 
solution. (It can, of course, be reflected.) Can you find it? 

Searching for the solution is considerably simplified by first explor- 
ing triangular patterns of even and odd to see which patterns have 
exactly eight odd and seven even spots. It does not take long to discover 
that there are only five arrangements for the triangle's top row: EEOEO, 
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Figure 56 Difference triangles for three, six and ten pool balls 

OEEEO, OOOEE, OOOOE and OOEEO. The 15 ball obviously must be in 
the top row and the 14 ball must be in the same row or below 15 and 1. 
Other dodges shorten an exhaustive analysis. 

The problem is related to one posed by Hugo Steinhaus in his book 
One Hundred Problems in Elementary Mathematics (Dover, 1979, a trans- 
lation from an earlier Polish edition). Given a triangular array with an 
even number of spots, is it always possible to form an even-odd differ- 
ence pattern in which the number of even spots equals the number of 
odd ones? The problem remained unsolved for more than a decade until 
Heiko Harborth, in the Journal of Combinatorial Theory (A), 12, 1972, 
pages 253-259, proved that the answer is yes. 

As far as I know, no work has been done on what we might call the 
general pool-ball problem. Given any triangular number of balls, num- 
bered consecutively from 1, is it always possible to form a difference 
triangle? If not, is there a largest triangle for which a solution is possible? 
If there is, what is it? We now know that odd-even patterns for such 
solutions exist for all triangles with an even number of balls. Do they also 
exist for all triangles with an odd number of balls? 

Let me add the following joke problem for readers who succeed in 
solving the 15-ball problem. Suppose the balls bear the 15 consecutive 
even numbers from 2 through 30. Is it possible to arrange the set in a 
difference triangle? 
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2.  T O R O l D A l  CANNIBALISM 

A torus is a surface shaped like a doughnut. Imagine a torus made of 
sheet rubber. It is well known that if there is a hole in such a toms, the 
torus can be turned inside out through the hole. 

John Stillwell, a mathematician at Monash University in Australia, 
poses the following problem. Two tomses, A and B, are linked as is 
shown in Figure 57. There is a "mouth" (a hole) in B. We can stretch, 
compress and deform either torus as radically as we please, but of 
course no tearing is allowed. Can B swallow A? At the finish B must have 
its original shape, although it will be larger, and A must be entirely inside 
it. 

3 .  EXP lORlNG TETRADS 

The most sensational news in recreational mathematics in 1976 was 
surely the announcement by two University of Illinois mathematicians 
that they had proved the four-color-map conjecture. This famous conjec- 
ture is often confused with a simpler theorem in topology, which is easily 
proved; it states that no more than four regions on the plane can have a 
mutual border. Michael R. W. Buckley, in the Journal of Recreational 
Mathematics, 8 (1975), proposed the name tetrad for four simply con- 
nected planar regions, each pair of which shares a finite portion of a 
common boundary. 

Figure 57 Can torus B swallow torus A? 
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Figure 58 A pair of tetrads 

The tetrad at the left in Figure 58 has no holes. Note that only three 
regions are congruent. The tetrad at the right has four congruent regions 
and a large hole. Is it possible, Buckley asked, to construct a tetrad with 
four congruent regions and no hole? 

This question has been answered affirmatively by Scott Kim, a stu- 
dent at Stanford University. His results have not been published, and I 
am grateful to him for his permission to give some of them here. 

Figure 59 shows a solution with four congruent hexagons. It is not 
known if a solution can be achieved with a polygon of fewer than six 
sides or if there is a solution with an outside border that is convex. 

Part A of Figure 60 shows a solution with congruent polyhexes of 
order 4. (A polyhex is a union of congruent regular hexagons.) It is easy 
to show that no solution with lower-order polyhexes is possible. 

Part B of the illustration shows a solution with congruent polyia- 
monds of order 10. (A polyiamond is a union of congruent equilateral 

Figure 59 A tetrad of congruent hexagons 
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Figure 60 Solutions for a variety of tetrads 

triangles.) It is not known whether there is a solution with lower-order 
polyiamonds. 

Part C of the illustration shows a solution with congruent polyomi- 
noes of order 12. (A polyomino is a union of congruent squares.) It is not 
known whether there is a solution with lower-order polyominoes. 

Part D of the illustration shows a solution with congruent pieces that 
have bilateral symmetry and a bilaterally symmetric border. Is there 
such a solution with polygons of fewer sides? 

It has been known since the 1870's that in three dimensions an 
infinite number of congruent solids can be put together so that every 
pair shares a common portion of surface. For readers who are unfamil- 
iar with this result, here is the problem in terms of polycubes. (A poly- 
cube is a union of identical cubes.) Show how an infinite number of 
congruent polycubes can be put together, with no interior hole, so that 
every pair shares part of a surface. Such a structure proves that an 
unlimited number of colors are required for coloring any three-dimen- 
sional "map." 

4.  KNIGHTS A N D  KNAVES 

Raymond Smullyan, a mathematician at the City University of New York 
whose remarkable chess problems are familiar to regular readers of my 
Scientific American column, is responsible for the following four charm- 
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ing logic puzzles involving knights and knaves and perhaps some other 
people. In all four problems a knight always tells the truth, a knave 
always lies. 

A says: "B is a knight." 

B says: "A is not a knight." 

Prove that one of them is telling the truth but is not a knight. 

A says: " B  is a knight." 

B says: "A is a knave." 

Prove either that one of them is telling the truth but is not a 
knight or that one is lying but is not a knave. 

In the above problems we must consider the possibility that a 
speaker is neither a knight nor a knave. In the next two problems each of 
the three people involved is either a knight or a knave. 

C says: " B  is a knave." 

B says: "A and C are of the same type [both knights or both knaves]." 

What is A? 

A says: "B and C are of the same type." 

C is asked: "Are A and B of the same type?" 

What does C answer? 

5. LOST-KING'S TOURS 

Several years ago Scott Kim proposed what he calls the "Lost-King's 
Tour." This is a king's tour of a small chessboard subject to the following 
conditions: 

First, the king must visit each cell once and only once. 
Second, the king must change direction after each move; that is, it 

cannot move twice consecutively in the same direction. 
Third, the number of spots where the king's path crosses itself must 

be minimized. 
Part A of Figure 61 shows the only possible tour on a 3 X 3 board 

from cell A to cell B. It has one crossing and is unique, except of course 
for reflection by the main diagonal. A closed tour is impossible on this 
board. Closed tours with no crossings are easily found on the 4 X 4 
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A B C 

Figure 61 Lost-king's tours on three boards of different sizes 

board. On the 5 X 5 board a closed tour probably requires two crossings. 
The problem is less interesting on larger chessboards because crossing- 
free closed tours and crossing-free open tours from any cell to any other 
cell are believed to be always possible. 

Here are two beautiful tour problems devised by Kim: 

On the order-4 board shown in part B of the illustration find a 
lost-king's tour from A to B with as few as three crossings. The 
solution is unique. 

On the order-5 board shown in part C of the illustration find a 
lost-king's tour from A to B with as few as two crossings. This 
problem is unusually difficult. Kim does not know whether the 
solution he found is unique or whether the problem can be 
solved with only one crossing. 

6 .  S T E l N E R  E L L I P S E S  

This oldie goes back to Jakob Steiner, a noted Swiss geometer of the 
nineteenth century. My excuse for reviving it is that it is one of the best 
examples I know of a problem that is difficult to solve by calculus or 
analytic geometry but is ridiculously easy if approached with the right 
turn of mind and some knowledge of elementary plane and projective 
geometry. 

We are given a 3 , 4 ,  5 triangle. Its area is six square units. We wish to 
calculate both the smallest area of an ellipse that can be circumscribed 
around it and the largest area of an ellipse that can be inscribed inside it. 



7. DIFFERENT DISTANCES 

It is easy to place three counters on the cells of a 3 X 3 checkerboard so 
no two pairs of counters are the same distance apart. We assume that 
each counter marks the exact center of a cell and that distances are 
measured on a straight line joining the centers. Discounting rotations 
and reflections, there are five solutions, which appear in the top part of 
Figure 62. 

It also is easy to put four counters on a 4 X 4 board so that all 
distances between pairs are different. There are 16 ways of doing it. On 
the 5 X 5 board the number jumps to 28. 

In the January 1972 issue of the Journal of Recreational Mathematics 
Sidney Kravitz asked for solutions to the order-5 and the order-6 squares. 
The solution for the order-6 square proved to be difficult because for the 
first time the 3, 4, 5 right triangle (the smallest Pythagorean triangle) 
enters the picture. The fact that an integral distance of 5 is now possible 
both orthogonally and diagonally severely limits the patterns. As readers 
of the journal discovered, there are only two solutions. They appear in 
the bottom part of Figure 62. 

For what squares of side n is it possible to place n counters so that all 
distances are different? As reported in the fall 1976 issue of the journal, 
John H. Muson proved (using a pigeonhole argument) that no solutions 
are possible on squares of order 16 and higher. Harry L. Nelson lowered 
the limit to 15. Milton W. Green, with an exhaustive-search computer 
program, established impossibility for orders 8 and 9 and found a unique 
solution for order 7. David Babcock, an editor of Popular Computing, 
confirmed these results through order 8. The problem was finally laid to 
rest in 1976 by Michael Beeler. His computer program confirmed the 
results indicated above and proved impossibility for orders 10 through 
14. 

The order-7 board, therefore, is the largest for which there is a 
solution. The solution is unique and extremely hard to find without a 
computer. Readers may nonetheless enjoy searching for it. 

8. A LIMERICK PARADOX 

An amusing variant of the old liar paradox appeared in the British 
monthly Games and Puules. It is presented here as the last of four 
"limericks." 
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Figure 62 A point-placement problem 

There was a young girl in Japan 
Whose limericks never would scan. 

When someone asked why, 
She said with a sigh, 

"It's because I always attempt to 
get as many words into the last 
line as I possibly can." 

Another young poet in China 
Had a feeling for rhythm much fina. 

His limericks tend 
To come to an end 

Suddenly. 

There was a young lady of Crewe 
Whose limericks stopped at line two. 

There was a young man of Verdun. 
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ANSWERS 

1. Pool-Ball Triangles 

Except for reflection, the only solution of the problem with the 15 pool 
balls is shown in Figure 63. Col. George Sicherman of the State Univer- 
sity of New York at Buffalo, who invented this problem, has found by 
computer that there are no solutions for similar triangles of orders 6, 7 
and 8. Sicherman also found a simple parity proof of impossibility for all 
orders 2" - 2 ,  where n is greater than 2. 

This is how the proof goes for order 6, the smallest case. Call the 
triangle's top row a, b, c, d ,  e, f .  Since addition is the same as subtraction 
(modulo 2 )  we can express the other numbers (modulo 2 )  by adding. The 
second row is a + b, b + c, c + d, d + e, e + f .  The next row begins 
a + 2b + c, b + 2c + d.  . . . Continue this way to the bottom number, 
which is a + 5b + 10c + 10d + 5e + f .  The triangle contains 6 a's, 20 b's, 
34 c's, 34 d's, 20 e's and 6 f's. All the numbers are even; therefore the 
triangle's parity is even. The triangle contains 1 1  odd and 10 even num- 
bers, however, giving it an odd parity, so that we have a contradiction. 

The above row of figures (6, 20, 34, 34, 20,  6) is the same as the 
seventh row of Pascal's triangle ( 1 ,  7, 21,  35, 35, 21 ,  7, 1 )  when the 
numbers are diminished by 1 .  Sicherman's general proof hinges on the 
well-known theorem that only rows numbered 2" - 1 of Pascal's triangle 
consist entirely of odd numbers. 

Charles W. Trigg has proved, among other things, that every abso- 
lute-difference triangle of consecutive numbers must have 1 as its lowest 
number. He conjectures that there are no such triangles other than the 
1 1 given last month and here. As a joke readers were asked to construct a 
difference triangle with 15 balls bearing the even numbers 2 through 30. 

Figure 63 
Solution of pool-ball problem 



Pool-Boll Triangles and Other Problems 129 

The unique pattern is obtained at once by doubling each number in the 
solution shown. 

2. Toroidal Cannibalism 

One torus can be inside another in two topologically distinct ways: the 
inside torus may surround the hole of the outside torus or it may not. 

If two toruses are linked and one has a "mouth," it cannot swallow 
the other so that the eaten torus is inside in the second sense. This result 
can be proved by drawing a closed curve on each torus in such a way 
that the two curves are linked in a simple manner. No amount of defor- 
mation can unlink the two curves. If one torus could swallow the other 
in the manner described, however, it could disgorge the eaten torus 
through its mouth and the two toruses would be unlinked. This result 
would also unlink the two closed curves. Because unlinking is impossi- 
ble, cannibalism of this kind is also impossible. 

The torus with the mouth can, however, swallow the other one so 
that the eaten torus is inside in the first sense explained above. Figure 64 
shows how it is done. In the process it is necessary for the cannibal torus 
to turn inside out. 

A good way to understand what happens is to imagine that torus A is 
shrunk until it becomes a stripe of paint that circles B. Turn A inside out 
through its mouth. The painted stripe goes inside, but in doing so it ends 
up circling B's hole. Expand the stripe back to a torus and you have the 
final picture of the sequence. 

3. Exploring Tetrads 

Figure 65 shows how two congruent polycubes (one shaded and one 
transparent) can be fitted together. By extension of the ends any finite 
number of such pieces can be nested in this manner so that every pair 
"touches" in the sense that they share a common surface and there are 
no interior holes. Extended to infinity, an infinite number of congruent 
polycubes, of order infinity, can mutually "touch." 

If we drop the requirement of congruency but add the requirement 
of convexity, it has been known since about 1900 that an infinite number 
of noncongruent convex solids can mutually "touch." It is not known 
whether an infinite number of congruent convex solids can mutually 
touch, but Scott Kim has recently shown (although not published) how 
this arrangement can be achieved with an arbitrarily large finite number 
of such solids. 
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1. Mouth starts 
to open. 

2. It lengthens to 
an enormous grin. 

Grin widens until 
torus becomes 
two attached bands. 

4. Horizontal band 
enlarges, vertical 
band shrinks. 

5. Vertical band 
widens and creeps 
around victim. 

6. Mouth closes. 

Figure 64 How one torus eats another 
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Figure 65 Solution of the polycube problem 

4. Knights and Knaves 

Raymond Smullyan's four logic problems are answered as follows: 

1. A is either telling the truth or not. Suppose he is. Then B is a 
knight and telling the truth when he says A is not a knight. In 
this case A is telling the truth but is not a knight. 

Suppose A is lying. Then B is not a knight. B, however, is 
telling the truth when he says A is not a knight. Hence in this 
case B is telling the truth but is not a knight. 

2. B is either telling the truth or not. Suppose he is. Then A is a 
knave and must be lying when he says B is a knight. In this 
case B is telling the truth but is not a knight. 

Suppose B is lying. Then B is surely not a knight; therefore 
A must be lying when he says B is a knight. Since B is lying, 
A is not a knave. In this case A is lying but is not a knave. 

3. B is either a knight or a knave. Suppose he is a knight. A and 
C must then be the same type, as B says. C is lying when he 
says B is a knave; therefore C is a knave. If C is a knave, A 
must be also. 

Suppose B is a knave. Then A and C are different. C is 
telling the truth when he says B is a knave, so that C must be 
a knight. Because A and C are different, A must be a knave. 
In either case A is a knave. 

4. Smullyan's solution of this problem is somewhat lengthy, and 
I shall content myself with a summary. A and B are either 



knight-knight, knave-knave, knight-knave or knave-knight. In 
each case analysis shows that C, whether he is a knight or a 
knave, must answer yes. 

5. Lost-King's Tours 

Solutions to the two lost-king's tours are shown in Figure 66. The first 
tour is unique. The second is almost unique. One other pattern is ob- 
tained by modifying the path in the lower left corner as indicated by the 
dotted lines. 

6. Steiner Ellipses 

The ellipse problem was given for a 3, 4, 5 triangle, but we shall solve it 
for any triangle. 

The largest ellipse that can be inscribed in an equilateral triangle is a 
circle, and the smallest ellipse that can be circumscribed around an 
equilateral triangle is also a circle. By parallel projection we can trans- 
form an equilateral triangle into a triangle of any shape. When that is 
done, the inscribed and circumscribed circles become noncircular 
ellipses. 

Parallel projection does not alter the ratios of the areas of the trian- 
gle and the two closed curves; therefore the ellipses that result will have 
the maximum and minimum areas for any triangle produced by the 
projection. In other words, the ratio of the area of the smallest ellipse 
that can be circumscribed around any triangle to the area of the triangle 
is the same as the ratio of a circle to an inscribed equilateral triangle. 
Similarly, the ratio of the area of the largest ellipse that can be inscribed 
in any triangle to the area of the triangle is the same as the ratio of a 
circle to a circumscribed equilateral triangle. 

Figure 66 Solutions of lost-king's tours 
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Figure 67 
Solution of the point-placement problem 

It is easy to show that the ratio of the inside circle to the triangle is 
11/36 and that the ratio of the outside circle to the triangle is four times 
that number. Applying this result to the 3, 4, 5 triangle, the area of the 
largest inside ellipse is 21116 and the area of the smallest outside ellipse 
is 8n/&. 

Readers who would like to have a more formal proof will find it in 
Heinrich Dorrie's 100 Great Problems of  Elementary Mathematics 
(Dover, 1965), page 378 ff. 

7. Different Distances 

Figure 67 shows the only way (not counting rotations and reflections) to 
place seven counters on an order-7 matrix so that all distances between 
pairs of counters are different. 

8. A Limerick Paradox 

The paradox of the fourth limerick arises when the limerick is com- 
pleted in one's mind: "Whose limericks stopped at line one." To com- 
plete it is to contradict what the limerick is asserting. The four paradoxical 
limericks prompted J. A. Lindon, the British comic versifier, to improvise 
the following new ones: 

A most inept poet of Wendham 
Wrote limericks (none would defend 'em). 

"I get going," he said, 
"Have ideas in my head. 

Then find I just simply can't." 

That things were not worse was a mercy! 
You read bottom line first 
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Since he wrote all reversed- 
He did every job arsy-versy. 
A very odd poet was Percy! 

Found it rather a job to impart 'em. 
When asked at the time, 
"Why is this? Don't they rhyme?" 

Said the poet of Chartham, "Can't start 'em." 

So quick a verse writer was Tuplett, 
That his limerick turned out a couplet. 

A three-lines-a-center was Purcett, 
So when he penned a limerick (curse it!) 
The blessed thing came out a tercet! 

Absentminded, the late poet Moore, 
Jaywalking, at work on line four, 

Was killed by a truck. 

So Clive scribbled only line five. 

ADDENDUM 

The generalization of the pool-ball problem to triangles of order n,  
bearing consecutive numbers starting with 1, has been solved. Herbert 
Taylor found an ingenious way to prove that no TAD (triangle of absolute 
differences) could be made with triangular arrays of order 9 or higher. 
Computer programs eliminated TAD'S of orders 6,7 and 8; therefore the 
unique solution for the 15 pool balls is the largest TAD of this type. 

Charles Trigg, in the paper "Absolute Difference Triangles," Journal 
of Recreational Mathematics (vol. 9, 1976 - 1977, pages 27 1 - 275), proves 
the uniqueness of the order-5 triangle and discusses some of its unusual 
characteristics, such as the five consecutive digits along its left side. On 
the basis of computer results and certain arguments he conjectures 
(correctly, as it turned out) that no absolute-difference triangles are 
higher than order 5. The only published proof known to me that the 
conjecture is true is given by G. J. Chang, M. C. Hu, K. W. Lih and T. C. 
Shieh in "Exact Difference Triangles," Bulletin of the Institute of Mathe- 
matics, Academia Sinica, Taipei, Taiwan (vol. 5, June 1977, pages 
191 - 197). 

Among other things, Trigg shows that any absolute-difference trian- 
gle of consecutive integers must begin with 1 and that each of the first n 
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consecutive integers (where n is the triangle's order) must lie in a 
different horizontal row. It follows that the number at the triangle's 
bottom corner cannot exceed n. 

Harry Nelson, who in 1977 edited the Journal of Recreational Mathe- 
matics, suggested a more general problem. Is there an absolute-differ- 
ence triangle of order 5 that is formed with integers from the set 1 
through 17? His computer program found 15 solutions. If the numbers 
are restricted to the interval 1 through 16, there are two solutions in 
addition to the 1-through-15 solution. With 8 missing, the top row is 5, 
14, 16, 3, 15. With 9 missing, the top row is 8, 15, 3, 16, 14. 

Solomon W. Golomb proposed three candidates for further 
investigation: 

1. If all numbers in a TAD of order greater than 5 are distinct 
but not consecutive, how big is the largest number forced to 
be? (Example: An order-6 TAD is possible with the largest 
number as low as 22.) 

2. Using all numbers from 1 to k, but allowing repeats, how big 
can k be in a TAD of order n? (Example: An order-6 TAD is 
possible with k as high as 20.) 

3. For what orders is it possible to form a TAD modulo m, 
where m is the number of elements in the triangle and the 
numbers are consecutive from 1 to m? Each difference is 
expressed modulo m. Such triangles can be rotated so that 
every element below the top row is the sum (modulo m) of 
the two numbers above it. Here, in rotated form, are the four 
order-4 solutions: 

A backtrack program by Golomb and Taylor found no solution for 
order 5. Col. George Sicherman, who invented the original pool-ball 
problem, reports a computer proof of impossibility for order 6. Higher 
orders remain open. 

Robert Ammann, Greg Frederickson and Jean L. Loyer each found 
an 18-sided polygonal tetrad with bilateral symmetry (see Figure 68), 
thus improving on the 22-sided solution I had published. 



Figure 68 
A bilaterally symmetric tetrad with 18 sides 

Paul Erdos called my attention to a paper he wrote with Richard 
Guy, "Distinct Distances Between Lattice Points," Elemente der Mathe- 
matik (vol. 25 ,  1970, pages 121 - 133), in which they give the solution for 
the order-7 matrix and prove that no solutions exist for higher orders. 
They raise several related open questions, such as: What is the minimum 
number of lattice points that give distinct distances and are placed so 
that no point can be added without duplicating a distance? 

When points are not confined to lattice points, we have a famous 
unsolved problem in combinatorial geometry. What is the smallest num- 
ber of distinct distances determined by n points on the Euclidean plane? 
Fan Chung, in her paper "The Number of Different Distances Deter- 
mined by n Points in the plane," Journal of Combinatorial Theory (series 
A, vol. 36, 1984, pages 342-354), cites earlier references going back to 
Erdos's proposal of the problem in 1946. A note added in proof gives the 
best-known lower bound as n4/5. The bound will be discussed in a forth- 
coming paper by Chung, E. Szemeredi and W. T. Trotter. 

When I ended the column with limericks of decreasing length, I 
referred to the one-line limerick as the "last of four." Draper L. Kauff- 
man, John Little, John McKay, Thomas D. Nehrer and James C. Vibber 
were the first of many who told me I should have called it the last-but- 
one of five. The fifth, of course, has no lines, which is why other readers 
failed to notice it. 

Tom Wright of Ganges, British Columbia, wrote: "I was interested in 
the limerick paradox, particularly in the decreasing two-line and one- 
line limericks. I wondered if you had, in fact, added the no-line limerick 
(about the man from Nepal), and I looked minutely to see if it wasn't 
there. On examination, my first impulse was to assume that it was indeed 
not there, since no space was provided, but further cogitation suggested 
that a no-line poem, requiring no space, might indeed be there. Unable 
to resolve this paradox by any logical proof, I am abjectly reduced to 
asking you whether or not a no-line limerick was not printed in the space 
not provided, or not." 



M athematical Induction 
and Colored Hats 

"Yes," he said, "a man has no need of eyes to 
perceive that." 

-PLATO, The Republic, Book V 

Will the sun rise on January l,2001? There is no way to be 
absolutely sure. It is always possible that the world will end before then 
by divine decree or by some natural calamity. Perhaps a giant comet (as 
in Immanuel Velikovsky's mythology) will cause the earth to stop rotat- 
ing and the sun to stand still upon Gibeon. The most we can say is that it 
is an excellent bet that on January 1, 2001, the sun will rise as usual.* 
Our jump from a finite set of past sunrises to an infinite future set, or at 
least to a future set with a large number of elements, is an empirical 
induction. 

*People like to say that some event is as certain as the sun rising tomorrow. "I like 
that phrase," wrote Charles Peirce (Collected Papers, vol. 1 ,  page 62) ,  "for its great 
moderation because it is infinitely far from certain that the sun will rise tomorrow." 
There is not a single truth of science, Peirce said, on which he would "bet more than 
about a million of millions to one." 
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Mathematicians have an analogous technique known as mathemati- 
cal induction or complete induction that also supports a jump from a 
finite set of cases to a larger or an infinite number of cases. Unlike 
empirical induction, the mathematical technique is entirely deductive. A 
"jump proof," as it is sometimes called, is as certain as any proof can be 
in mathematics. 

To prove something by mathematical induction we must first have a 
series of statements (usually an infinite series but not necessarily so) that 
can be put into a one-to-one correspondence with the sequence of 
positive integers. Second, we must establish that the statements are 
related to one another by what Bertrand Russell termed the "hereditary 
property." If any statement is true, its successor-the "next" statement 
-is true. Third, we must show that the first statement is true. It then 
follows with iron certainty that all the statements are true. 

Jump proofs have been likened to a row of bricks or dominoes that 
are standing on end and all topple over when you unbalance the first 
one. Hugo Steinhaus compared mathematical induction to a pile of 
envelopes, each containing a note that says: "Open the next envelope, 
read the order and carry it out." If you are committed to obeying the 
order in the first envelope, you must open all the envelopes and obey all 
the orders. 

Hundreds of classic problems in recreational mathematics are 
proved in the general case by mathematical induction. Into how many 
pieces can you cut a pie with n straight cuts? In how few moves can you 
transfer n disks in the Tower of Hanoi puzzle? In this chapter we discuss 
a class of mind-twisting logic puzzles for which the application of induc- 
tion to the general case is less well known and is fraught with curious 
perils. 

We begin with the old puzzle of the colored hats. Three men, A, B 
and C, close their eyes while someone puts on the head of each either a 
black hat or a red one. They open their eyes. Each man sees the two hats 
not his own. If he sees a red hat, he raises his hand. As soon as he knows 
the color of his own hat, he must say so. 

Suppose all three hats are red. The three men raise their hands. After 
a period of time C, who is smarter than the others, says: "My hat is red." 
How does he know? 

C reasons as follows. "Suppose my hat is black. A, seeing my black 
hat, will know at once that his own hat is red. Otherwise, why would B's 
hand be raised? B will reason the same way and also will know at once 
that his hat is red. Neither A nor B, however, has said anything. Their 
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hesitancy can only be explained if they see a red hat on me also. There- 
fore my hat is red." 

Consider now the case of four men, all with red hats. If the fourth 
man, D, is smarter than the rest, he will reason: "Suppose my hat is 
black. The other three men have their hands raised because they see red 
hats. This is precisely the preceding case. After a suitable lapse of time, 
C ,  the smartest of the three, will deduce that his hat is red and say so." D 
then waits to see if C says anything. Because C says nothing, D knows his 
own hat is red. 

Clearly this procedure generalizes. If there are five men. E will know 
his hat is red, because if it is black, the situation is reduced to the 
preceding case; after a suitable lapse of time D will know his hat is red. 
D's silence proves to E that all hats, including his own, must be red. And 
so it goes for any number of men. Mathematical induction forces us to 
conclude that if n men all have red hats, the smartest of them will 
eventually deduce that his own hat is red. 

This generalization usually provokes arguments because the prob- 
lem demands so many fuzzy assumptions about degrees of smartness and 
lengthening lapses of time that the problem becomes unreal. Presum- 
ably if there are 100 men, after a few hours the smartest will know his hat 
is red, then after a while the second-smartest will know and so on down 
to the two stupidest men. 

The fuzziness can be avoided by giving the same problem in a more 
precise form. There are three men, A, B and C ,  and five hats. Three hats 
are red and two are black. Each man is assumed to be honest and 
"rational" in the sense that he can quickly make any valid deduction no 
matter how complicated it is. As before, the men close their eyes, and an 
"umpire" puts a red hat on each man. The other two hats are hidden. 
Instead of being told to raise their hand if they see a red hat, the men are 
asked in order: "Do you know the color of your hat?" 

A truthfully answers no. B also says no. C says, "Yes, my hat is red." 
How does he know? 

A surprising aspect of this problem is that C can answer yes even 
though he is blind! Moreover, it is not necessary for B to see A's hat. 
Think of the three men as being seated in a row of chairs, as is shown in 
Figure 69. Each man sees only the hats on the men in front of him. C ,  
who is the man in the third chair, is blind in the sense that he sees no 
hats. 

C reasons as follows: "A can say yes only if he sees two black hats. His 
saying no proves that hats B and C are not both black. Suppose my hat is 



Figure 69 The problem of the colored hats (The red hats are shown as gray) 

black. B can see that it is. Therefore as soon as B hears A say no, he 
knows his own hat is red. (Otherwise hats B and C would be black and A 
would have said yes.) The fact that B also said no can be explained only if 
he sees my hat is red. Therefore I can answer yes." 

This problem, like the preceding one, generalizes easily to n men 
seated in a row of chairs, a supply of n red hats and n - 1 black hats. 
Assume that a fourth man, D, is seated ahead of C. All hats are red. D 
reasons that if his hat is black, the three men behind him will see his 
black hat and know that only two black hats are left for themselves. Thus 
the problem is reduced to the preceding case, which is solved. After A 
and B had said no, C would say yes. But C also says no, which proves to D 
that his own hat must be red. Mathematical induction at once extends 
the solution to n men. If all have red hats, all will say no except the nth 
man, who will know that his hat is red. 

A more difficult question can now be asked. Picture again three men 
in a row of chairs and assume that the umpire gives them any combina- 
tion of hats from the set of five. The men are questioned in order of 
increasing "blindness" (A, B, C). Will one of them always be able to 
answer yes? And does this situation generalize to n men and a set of n red 
and n - 1 black hats? Will there always be a yes answer on or before the 
nth question regardless of what hats are put on their heads? 

In most problems of this type we encounter a curious paradox. 
Consider the case of three men, all hats red and each man able to see the 
other two. A and B answer no, C answers yes. Why is it necessary to 
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question A? Before A is asked both B and C know that he must say no; B 
knows because he sees the red hat on C, and C knows because he sees 
the red hat on B. If B and C know how A will answer, how can asking A 
and hearing his reply add any significant new information? On the other 
hand, if the questioning begins with B, C is unable to make his deduc- 
tion. Can you explain this seeming paradox? 

Hats of two colors are equivalent to hats labeled 0 and 1, the integers 
in binary notation. There are dozens of problems, closely related to the 
hat ones, in which more than two colors are involved but that are easier 
to understand if instead of colors we use positive decimal integers. The 
following two-person game was sent to me in 1976 by David Gale, a 
mathematician at the University of California at Berkeley. 

The umpire chooses any pair of consecutive positive integers. A disk 
with one of the numbers is stuck to the forehead of one man and a disk 
with the other number is stuck to the forehead of the other man. Each 
man is honest and rational. Each one sees the other's number but not his 
own. Each knows (and knows the other knows) that the two numbers are 
consecutive. 

The umpire asks each man if he knows his number, and the question- 
ing continues back and forth until one man says yes. It is not hard to 
prove by the magic of induction that eventually the man with the higher 
number, n, will be the first to say yes, and that his yes will be in reply to 
question n or n - 1. Readers are invited to analyze the game and to state 
under what conditions the high man says yes to question n or to question 
n - 1. Only two variables need to be taken into account: whether the 
high man or the low man is asked first and whether the high number is 
odd or even. 

The paradox of the hat game appears here in even more striking 
form. I paraphrase from Gale's letter. Assume that the numbers are 99 
and 100 and that the man with 100 is asked first. He will say yes to the 
100th question. But why ask the first two? Each man knows before the 
questioning begins that the first two answers must be no. How then can 
asking the first two questions furnish significant information? After the 
first two are asked, the men seemingly will know nothing they did not 
know before; therefore they should be no nearer to deducing their 
number than before, and the game will never end. How can a ritual 
intoning of no, which both men know must occur, shorten the number 
of questions required before a yes answer can be made? The argument 
appears impeccable. 

Suppose we limit the integers to the counting numbers from 1 
through 100. Each pair of consecutive numbers (1,2; 2,3; . . . ; 99,100) 
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is written on a card. The umpire takes a card at random, puts its two 
numbers on the foreheads of two rational men and proposes the follow- 
ing game. The man with the lower number, k, must pay k dollars to his 
opponent. The umpire asks A if he wishes to play, and then he asks B. The 
payoff occurs only if both players say yes. 

We now prove that a payoff never takes place. IfA sees 100, he knows 
he has 99, and so he says no. If he sees 99, he reasons: "I am 98 or 100. If 
I am 100, then B (being rational) will say no and there will be no game. If 
I am 98, I surely should not play; therefore I must say no." If A sees 98, 
he reasons: "I am 97 or 99. If I am 99, then B will not play for the reasons 
given above. If I am 97, I shall lose; therefore I say no." And so on down 
even to seeing 1. If A sees 1, he knows he will win, but he also knows that 
if he says yes, B will say no. 

Suppose the set of cards is infinite, with no upper bound on the 
integers. We now prove that both men will say yes. A reasons: "I see the 
number k. My number is either k - 1 or k + 1. If I lose, I lose k - 1 
dollars. If I win, I win k dollars. It is equally probable that I shall win or 
lose, and since I stand to win more than I stand to lose, the game is in 
my favor. Naturally I agree to play." Of course B reasons the same way. 
But this situation is preposterous because the game cannot favor both 
men. 

The paradox can be magnified dramatically by taking a cue from J. E. 
Littlewood, who gives a version of the paradox in the first chapter of his 
Mathematician's Miscellany. Assume that there are 10" duplicates of each 
card, where n is the card's lower number. Thus 1,2 is on 10 cards, 2,3 is 
on 100 cards, 3,4 is on 1,000 cards, and so on. The game is played as 
before. If either player sees number n,  he knows there are 10 times as 
many cards with n + 1 as there are with n - 1. Therefore in addition to a 
win being a dollar more than a loss, the probability of winning seems to 
be for each player 10 times greater than losing! Littlewood attributes this 
"monstrous hypothesis" to the physicist Erwin Schrijdinger. 

I shall not resolve this paradox because I am not sure just how to do 
it. It is not enough to prove the game fair with a playoff matrix. Obviously 
it is fair. The task is to explain what is wrong with the reasoning of A and 
B. 

John Horton Conway has given this game a confusing and deep 
generalization. It is easy to generalize to n men and n consecutive 
integers, but Conway does away with the consecutive proviso. We allow 
any non-negative integer (including 0) to be placed on the forehead of n 
men, all honest and rational. On a blackboard, which all can see, are 
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chalked m different non-negative integers, just one of which is the sum of 
the numbers on the foreheads. Each man sees all the foreheads except 
his own. The umpire asks each man in turn, "Can you deduce the 
number on your head?" The questioning continues in cyclic order until 
a player concludes the game by saying yes. 

Conway has proved the following remarkable theorem. If m, the 
number of sums on the blackboard, is not greater than n, the game must 
terminate. For example, suppose each man has a 2 and the blackboard 
sums are 6 , 7  and 8. Conway asserts that the game ends with a yes to the 
14th question. 

Formulating a general algorithm for calculating when such games 
will terminate is, except for certain sets of numbers, extremely difficult 
and far from solved. Conway writes: "One gets into an infinite regress of 
the form 'A  knows that B knows that C knows that B knows that C 
knows . . . ' even before the first question is asked, so it is very difficult 
to get a measure of the information available to each player. Indeed, I 
felt at one time that these considerations might make the game not well 
defined, and that we'd get into paradox trouble. Now I don't think so. I 
do know it's fatally easy to make mistakes in assessing what information 
is available." 

Conway's game presents the same paradox we have considered be- 
fore. In the given example it is easy to show that before the game starts 
each man can predict that the first three answers will be no, and so it 
seems as if asking these questions can be dispensed with because after 
the first round the men will be no better informed than before. If the first 
round were eliminated, however, the same argument would apply to the 
next round, and the game would never end. 

Because mathematical induction often takes the form of "reducing 
to the preceding case," I close with an old joke. For a college freshman 
who cannot decide between physics and mathematics as his major sub- 
ject the following two-part test has been devised. In the first part the 
student is taken to a room that contains a sink, a small stove with one 
unlighted burner and an empty kettle on the floor. The problem is to boil 
water. The student passes this part of the test if he fills the kettle at the 
sink, lights the burner and puts the kettle on the flame. 

For part two the same student is taken to the same room, but now the 
kettle is filled and on the unlighted burner. Again the problem is to boil 
water. The potential physicist simply lights the burner. The potential 
mathematician first empties the kettle and puts it on the floor. This 
reduces the problem to the preceding case, which he has already solved. 
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ANSWERS 

Our problem concerned the game of three men, three red hats and two 
black hats. The men are seated in chairs so that A sees B and C, B sees 
only C and C sees no one. An umpire puts any three hats (from the set of 
five) on their heads. Each man is asked (in the order A, B, C) if he knows 
his hat's color. Will one of them always answer yes? 

The answer is yes. An analysis of all color combinations will show 
that if the ABC order of hats is RRR, RBR, BRR or BBR, then C will say 
yes. If the order is RRB or BRB, then B and C will say yes. If it is RBB, all 
three will say yes. This analysis generalizes to n men with n red and 
n - 1 black hats. Consider n = 4. D, the "blind" man, reasons: "If my hat 
is black, the other three men will see it and know that only two black 
hats are left for them. The case will then be the same as the preceding 
one, which has been solved. If no one says yes, it can only be because my 
hat is red, and so I will say yes." And so on for any n .  The first person to 
say yes is always the first one asked wearing a red hat and seeing no red 
hat. 

John Erbland, a mathematics student at Northeastern University, 
thought of an amusing variant. Suppose there are n men, n - 1 black 
hats and only one red hat. Conditions are the same as before. Will the 
man with the red hat always say yes? If not, at what positions will he 
know the color of his hat? 

The solution is curious. If A has the red hat, he will of course say yes 
because he sees n - 1 black hats. If B has the red hat, he will say no. 
Why? Because A must always answer yes; therefore his yes gives no 
information. If C has the red hat, he will say yes because he hears a yes 
from both A and B. If D has the red hat, he must say no because C's yes 
could result from a deduction that he, C, has the red hat. This process 
generalizes by mathematical induction to the conclusion that the man 
with the red hat says yes if and only if he is in an odd position from the 
back. If he is in an even position, the yes of the man directly behind him 
fails to give sufficient information for a valid deduction. 

The game of consecutive numbers on the foreheads of two men is 
analyzed as follows. Let H stand for the man with the higher number, L 
for the man with the lower one and Qn for the question number. 

Suppose the numbers are 1 and 2. If H is asked first, he answers yes 
to Q1. If L is asked first, he says no. Then H, seeing the 1, says yes to Q2.  

Suppose the numbers are 2  and 3 .  If H is asked first, he says no. L also 
says no. His answer proves that he does not see 1 on H, and so H knows 
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that he is 3 and says yes to Q3. If L is asked first, he says no. As before, 
this answer tells H that his number is 3,  and so he says yes to Q2. 

Suppose the numbers are 3 and 4. If H is asked first, he says no. L also 
says no. H can now reason: "If I am 2, the game is reduced to the 
preceding case of 2,  3, with L asked first. Therefore L would say yes to 
Q2. Since L said no, it proves I am 4." Therefore H says yes to Q3. If L is 
asked first, he says no. H says no to Q2, which reduces the situation to the 
previous case, as before. L's no to Q3 tells H that he is 4, and so he says 
yes to Q4. 

Continuing in this way, the situation always reduces to a previously 
solved case. Let n be the higher number. H always wins. If he is asked 
first, he wins on Q ( n  - 1) if n is even and on Q n  if n is odd. If he is asked 
second, he wins on Q n  if n is even and on Q(n  - 1) if n is odd. Note the 
curious fact that if the rule is that a player answer yes only if he knows he 
has the lower number, the game never ends! 

Now for the seeming paradox. In the case of three men, all with red 
hats, it is true that both B and C know in advance that A will say no. 
But-and this is the easily overlooked and crucial point- C does not 
know before the first question is asked that B knows that A will answer 
no. Before the questioning starts, for all C knows his own hat may be 
black. If this is the case, B has no way of knowing whether A will say yes 
or no. Not until A says no does C know that B knew in advance of the 
question that A had to say no. Therefore the first question does add new 
information that is essential to C's reasoning even though C knows in 
advance how A will answer. 

Once this relation is understood it is not hard to see how the paradox 
is resolved for the Gale and Conway games. Suppose you are a player in 
Gale's game. Each new "No" in a game of arbitrary length gives you 
necessary new information in the general form of "I now know that you 
know that 1 know . . . that you don't know my number." It is the same 
for Conway's game. Each "No" provides each player with similar infor- 
mation about what the others know. 

ADDENDUM 

I made no attempt to find the flaw in Littlewood's "monstrous" paradox 
about the infinite set of cards, each with a pair of consecutive integers, 
but more than 50 readers were quick to help me out. The paradox arises 
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from the false assumption that numbers can be randomly selected from 
the infinite set of positive integers in such a way that all numbers are 
equally likely. There are many ways to demonstrate the absurdity of such 
a procedure. Choose any number k. The probability is 0 that a "ran- 
domly" selected positive integer is equal to or less than k, and the 
probability is 1 that it is greater than k. In other words, the chances are 
zero of selecting a number small enough to be written on any finite 
surface with symbols of finite size, no matter how small. 

George Peter Wacktell made the point this way. You cannot shuffle 
an infinite deck of cards bearing all positive integers because if you 
could, the following contradictory theorem would hold: For any two 
cards taken from such a shuffled deck it is infinitely probable that each 
card bears a higher number than the other. In brief, the game in ques- 
tion cannot be played. Steven J. Brams, Elkan Halpern and Thomas 
Louis, Roger B. Lazarus, Frederick Mosteller and Herbert Robbins are 
among those who sent particularly detailed or interesting analyses of the 
problem. 

Assume that the deck of cards is finite, so that an umpire can indeed 
randomize them and pick a pair of consecutive numbers small enough to 
be written. The upper bound of the pairs is not known. At least one 
player will always refuse to play. I. Martin Isaacs, a mathematician at the 
University of Wisconsin, amplified and corrected my earlier remarks 
about this game as follows: 

"If the cards are numbered (1,2), (2,3), (3,4), . . . (possibly with 
some cards missing and others repeated, even allowing infinitely many 
cards and a method of random selection with a nonuniform probability 
distribution), then any player seeing an even number on his opponent 
should refuse to play. If he sees an odd number, he need not veto even 
(surprisingly) if the odd number he sees is known to be the highest 
number in the deck. This contradicts your analysis, which requires a 
person seeing the higher number to cast his veto even if the number is 
odd. He may agree to play, having confidence in the rationality of the 
other participant, who, seeing an even number, will not allow the payoff 
to occur. 

"To prove my assertion, note that a player seeing 1 can only win and 
so need not veto. Thus it is rational play to veto on all numbers greater 
than 1 and play on seeing 1. (Of course, this is not the only rational way 
to play.) ~ a c h  player, being rational, needs to protect himself against all 
possible rational strategies of his opponent. Thus if a player sees 2, he 
must veto to defend against the rational play of 'yes on 1, no on every- 
thing else' that his opponent might use. It now follows that 'yes on 3, no 
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on everything else' is rational, since if a player sees 3, he knows he is safe 
if he has 2 because his opponent must veto when he sees 2. As a protec- 
tion against the 'yes on 3 only' strategy, a rational player must veto on 
seeing 4, and this makes 'yes on 5 only' a rational plan. Continuing in this 
way, my assertion follows by induction. 

"There is something very curious here: If the card (1,2) is missing 
from the deck, the above analysis remains unchanged. However, if the 
umpire announces that (1,2) is missing, then the game is equivalent to 
the preceding situation except now one must veto on odd numbers. On 
the other hand, if each player secretly looks through the deck and 
discovers that (1,2) is missing but does not know that his opponent also 
has this information, then rationality still demands vetoing evens (except 
for 2). It is again a question about whether 'A knows that B knows. . . .' 
Throughout I am assuming that each player casts his veto by a secret 
ballot." 

The literature of recreational mathematics abounds with paradoxi- 
cal games that are related to Littlewood's paradox. Here is the simplest. 
Each player writes down a positive integer, and the person who writes 
the larger number wins a dollar. Each can reason: "Whatever number 
my opponent puts down, there will be only a finite number of smaller 
integers. Because there is an infinity of larger numbers, I am sure to 
win." Here again the fallacy lies in the impossibility of selecting a num- 
ber at random from the infinite set of integers. There is an obvious limit 
to the size of a number one can write down in a finite time on finite 
sheets of paper. If the game were actually played, it would never end. 
Each player would keep scribbling digits on more and more sheets. 

Suppose, however, we put an upper limit on the set of numbers. For 
example, each player has a spinner that selects a number from 1 through 
100. Both players spin, and the person who gets the larger number must 
give that amount in dollars to the other player. Each can reason: "I am as 
likely to win as lose, but since I stand to win more than lose, the game is 
in my favor." Of course, each can also reason: "If I lose, I stand to lose 
more than I would win; therefore the game is not in my favor." The game 
obviously is fair, but it is not easy to say exactly what is wrong with either 
line of reasoning. 

I first encountered this paradox in Maurice Kraitchik's Mathematical 
Recreations (Dover, 1953, pages 133 - 134), where it has the form of two 
strangers who agree to have the worth of their neckties evaluated. The 
person with the more expensive tie must give it to the other. In my Aha! 
Gotcha (W. H. Freeman and Company, 1982, page 106) I gave it the story 
line of two persons who compare the amounts of money in their wallets. 
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For a good analysis of this paradox, see Laurence McGilvery's 1987 
article. 

A more sophisticated version has recently been making the rounds, 
though I have not seen it in print. It goes like this. There are two players 
and two boxes. One box holds an unknown amount of dollars. The other 
contains twice that amount. A player is handed one box and told he may 
either keep it or exchange it for the other. He reasons: "The box I hold 
contains x dollars. If I exchange it for the other box, I will get (with equal 
probability) 2x or x/2 dollars. The expected value after the exchange is 
half of 2x + x/2, or 1 .25~.  If I don't exchange, the expected value is x. 
Hence it is to my advantage to exchange." The conclusion is absurd, but 
what's wrong with the reasoning? 

Anno's Hat Tricks (see the Bibliography), a delightful book for very 
bright children, is based entirely on mathematical induction puzzles 
about colored hats. The problems become increasingly difficult as you 
turn the pages, ending with the puzzle given here earlier about three 
players and five hats. 

Many readers pointed out the similarity in the inductive reasoning 
about hats and the reasoning in a paradox known as the "unfaithful 
wives." The paradox seems to have first been given by George Gamow 
and Marvin Stern in their little book Puzzle-Math (Viking, 1958, pages 
20-23). I cannot go into it here, but readers will find a version of it in my 
Puzzles From Other Worlds (Vintage, 1984, problem 37) and a full discus- 
sion in "Cheating Husbands and Other Stories" by Danny Dolev, Joseph 
Halpern and Yoram Moses, in an IBM Research Laboratory report of 
1985, reprinted in the Proceedings of the Fourth ACM Conference on 
Principles of Distributed Computing, 1985. 
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I?!!!!! 11 
Neaative Numbers 

Inhabitants of Nega look surprisingly like us. 
Their students seek a minus grade, they grumble 

at a plus. 
In minus-fours the golfer walks, he never adds 

his score. 
Meanwhile, non-minussed is his wife by prices at 

the store. 

-IRVING E. FANG, "A Tale of Star-crossed Lovers" 

When a child learns to talk, the names of the first few 
positive integers are almost as essential to his vocabulary as "dog," "cat" 
and "bird." Our primeval ancestors must have had a parallel experience. 
The counting numbers, sometimes called the natural numbers, were 
surely the first to be useful enough to require names. Today mathemati- 
cians apply the word "number" to hundreds of strange abstract beasts 
that are far removed from counting. 

The first small step in enlarging the meaning of "number" was the 
acceptance of fractions as numbers. Although many things in the world 
are not commonly experienced as fractions (stars, cows, rivers and so 
on), it is easy to grasp the meaning of half an apple or a third of 12 sheep. 
But the next step, the acceptance of negative numbers, was so formida- 
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ble that it was not until the seventeenth century that mathematicians 
began to feel truly comfortable about it. Many people are still uneasy 
with it, as is indicated by W. H. Auden's report of a jingle he was taught in 
school: 

Minus times minus equals plus. 
The reason for this we need not discuss. 

One must distinguish negative numbers from subtraction. A child or 
an uneducated herdsman has no difficulty taking 6 cows from 10 cows. A 
"negative cow," however, is harder to imagine than a ghost cow. A ghost 
cow has at least some kind of reality, but a negative cow is less real than 
no cow. A cow from a cow leaves nothing, but adding a negative cow to a 
positive cow, causing both to vanish like a particle meeting its anti-parti- 
cle, seems as ridiculous as the old joke about the individual whose 
personality was so negative that when he walked into a party, the guests 
would look around and ask, "Who left?" 

That was how the ancient Greeks felt about negative numbers. They 
loved geometry and liked to think of mathematical entities as things they 
could diagram. "Numbers" were the counting numbers and the positive 
integral fractions that could be modeled with pebbles or spots on a slate. 
The Greeks' primitive algebra had no zero and no negative quantities. 
They were even reluctant to call 1 a number because, as Aristotle put it, 
numbers measure pluralities, and 1 is the measuring unit, not a plurality. 

From B.C. by Johnny Hart. O 1988 Creators Syndicate, Inc 

It is important to realize that this attitude was to a large extent 
a matter of linguistic preference. Greek mathematicians knew that 
(10 -4)(8 - 2) equals (10X 8) - (4 X 8) - (2 X 10) + (2 X4). To recog- 
nize such an equality is to accept implicitly what later was called the law 
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of signs: The product of any two numbers with like signs is positive and 
the product of any two numbers with unlike signs is negative. It was just 
that the Greeks preferred not to call -n a number. To them it was no 
more than a symbol for something to be taken away. You can take 2 
apples from 10 apples, but taking 10 apples from 2 apples struck them as 
senseless. They knew that 4x + 20 = 4 gives x a value of -4, but they 
refused to write such an equation because its solution was "not a num- 
ber." For the same reason -& was not recognized as a legitimate square 
root of n. 

It is hard to know exactly how the earlier Babylonians regarded 
negative quantities, but they seem to have been more comfortable with 
them than the Greeks were. Chinese mathematicians before our era 
calculated rapidly with bamboo counting rods, using red rods for posi- 
tive numbers (cheng) and black rods for negative numbers ( fu ) .  The 
same colors were later used for positive and negative written numertils. 
Nine Chapters on the Mathematical Art, a famous work of the Han period 
(roughly 200 B.C. to A.D. 200), explains the rod procedures and is believed 
to contain the first appearance in print of negative numbers as such. It 
does not, however, recognize negative roots or the law of signs. 

A systematic algebra using zero and negative numbers did not de- 
velop until the seventh century, when Hindu mathematicians began to 
employ negative values for problems concerning credit and debts. Not 
only were they the first to use zero in a modern way but also they wrote 
equations in which negative numbers were symbolized by a dot or a tiny 
circle above the number. They explicitly formulated the law of signs and 
recognized that every positive number has two square roots, one positive 
and one negative. 

Most Renaissance mathematicians in Europe, following the Greek 
tradition, viewed negative quantities with suspicion. Here again one 
must remember that it was more a matter of language preference than a 
failure to understand. Renaissance algebraists knew perfectly well how 
to manipulate negative roots; they just called them "fictitious roots." 
They knew perfectly well how to solve equations with negative numbers; 
they just avoided applying the word "number" to quantities less than 
zero. 

By the seventeenth century a few bold mathematicians had altered 
their language to include negative numbers as legitimate numbers, but 
the practice continued to meet with resistance, sometimes from promi- 
nent mathematicians. Descartes spoke of negative roots as "false roots," 
and Pascal thought it nonsense to call anything less than zero a number. 
Pascal's friend Antoine Arnauld proved the absurdity of negative values 



as follows: The law of signs forces one to say that -111 = 1/ - 1. If this is 
taken as an equality between two ratios, we must assert that a smaller 
number is to a greater one as a greater number is to a smaller one. This 
seeming paradox, as Morris Kline points out in Mathematical Thought 
from Ancient to Modem Times, was much discussed by Renaissance 
mathematicians. Leibniz agreed that it was hard to resolve, but he de- 
fended negative numbers as useful symbols because they make possible 
correct calculations. 

Some leading mathematicians of the seventeenth and eighteenth 
centuries - John Wallis and Leonhard Euler, to name two -accepted 
negative numbers but believed they were greater than infinity. Why? 
Because a10 = a. Therefore if we divide a by a number smaller than 
zero, say -100, must we not produce a negative quotient that exceeds 
infinity? 

Symbols for addition and subtraction varied considerably during the 
Renaissance. Today's familiar plus and minus signs were first used in 
fifteenth-century Germany as warehouse marks. They indicated when a 
container held something that weighed over or under a standard weight. 
By the early sixteenth century German and Dutch algebraists were 
using + and - as operation signs, and the practice soon spread to En- 
gland. Robert Recorde, a physician to Edward VI and Queen Mary, 
wrote a popular arithmetic in 1541 that was the first in English to use 
plus and minus signs, although not as operations. "Thys figure +, which 
betokeneth too much, as this lyne -, plaine without a cross lyne, beto- 
keneth too lyttle" was how he explained them. A later book by Recorde 
was the first in England to use the modern sign for equality. "I will sette 
as I doe often in woorke use, a pair of paralleles . . . thus: = , be- 
cause noe 2 thynges, can be moare equalle." 

In the eighteenth century the algebraic use of negative numbers, 
identified by the minus mark, became common around the world. Nev- 
ertheless, most mathematicians remained discomfited. Their books in- 
cluded long justifications for the law of signs, and some authors went to 
extreme lengths rearranging equations to avoid multiplying two negative 
numbers. Here is a passage from Dissertation on the Use of the Negative 
Sign in Algebra (1758), by Baron Francis Maseres, a British barrister who 
served as attorney general in Quebec: 

A single quantity can never be . . . considered as either affirmative or 
negative; for if any single quantity, as b, is marked either with the 
sign + or with the sign -, without assigning some other quantity, as a, to 
which it is to be added, or from which it is to be subtracted, the mark 
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will have no meaning or signification: thus if it be said that the square of 
-5 . . . is equal to +25, such an assertion must either signify no more 
than that 5 times 5 is equal to 25 without any regard to the signs, or it 
must be mere nonsense and unintelligible jargon. 

The passage is quoted by Augustus De Morgan in A Budget of Para- 
doxes. Maseres, De Morgan tells us, was such an honest lawyer that he 
was not able to bear seeing his client victorious if he thought him guilty. 
As a result, writes De Morgan, Maseres's business gradually fell off. 

A few pages earlier De Morgan makes a blistering attack on The 
Principles of Algebra, by William Frend, a former clergyman who hap- 
pened to be his father-in-law. (Frend's noisy banishment from Cam- 
bridge for his Unitarian views became a cause celebre, passionately 
championed by Samuel Taylor Coleridge and Joseph Priestley.) Frend's 
two-volume work was probably the most ambitious algebra textbook 
ever written in which zero and all negative numbers were as unwelcome 
as Frend was at Cambridge. 

De Morgan reprints in full Frend's hilarious burlesque of Rabelais, in 
which Pantagmel gives a wild lecture on the uselessness of zero. A 
plaintive footnote quotes Mrs. De Morgan: "[My father's] mental clear- 
ness and directness may have caused his mathematical heresy, the rejec- 
tion of the use of negative quantities in algebraical operations; and it is 
probable that he thus deprived himself of an instrument of work, the use 
of which might have led him to greater eminence in the higher 
branches." 

How can one do algebra without negative numbers? First one must 
avoid any equation that leads to a negative number of real objects or 
assigns negative magnitudes to them. Even when an equation leads to a 
correct positive solution, it must be written so as to avoid a negative 
value for an unknown. For example: When is a 29-year-old mother twice 
as old as her 16-year-old daughter? We might write the problem as 
29 + x = 2(16 + x) ,  then discover, perhaps to our surprise, that x = -3. 
This result leads to the correct answer: The mother was  twice as 
old as her daughter when the mother was 26 and the daughter 
was 13. An eighteenth century algebraist, if he was repelled by negative 
numbers, would have avoided the -3 by rewriting the equation: 
29 - x = 2(16 - x).  This arrangement gives x the acceptable value of 3, 
which of course leads to the same answer as before. 

In past centuries, as it is today in beginning algebra classes, the main 
stumbling block to the acceptance of negative numbers was "seeing" 
how the product of two negative numbers can be positive. Positive times 



positive offers no difficulty. Put three pairs of oranges in an empty bowl 
and the bowl will contain six oranges. Positive times negative begins to 
get mysterious but is not hard to understand if you grant the abstract 
reality of a negative orange. Put three pairs of negative oranges in the 
bowl and you have six negative oranges. But what on earth does it mean 
to multiply two negative oranges by -3? You have two ghostly oranges 
to start with, all less than nothing, and then you do something negative to 
them. Where do the six genuine oranges come from? They seem to 
appear in the bowl as a result of magic. 

Trying to explain it by walking the number line, as is shown in Figure 
70, does not get very far with beginning students. It is easy to identify 
positive integers with unit marks to the right of zero and negative in- 
tegers with unit marks to the left. Addition is movement to the right and 
subtraction is movement to the left. To multiply 2 by 3 we go two units to 
the right and do this three times to arrive at 6. To multiply -2 by 3 we 
walk two units to the left and do this three times to arrive at -6. But what 
about -2 times -3? What paranormal force transports us abruptly from 
the left side of 0 to 6 on the right? 

It is easy to forgive mathematicians of earlier centuries for regarding 
this concept as being preposterous. Indeed, the process was not fully 
understood until such abstract structures as groups, rings and fields 
were carefully defined. This is not the place to explain them, and so I 
content myself with pointing out that when mathematicians found it 
desirable to enlarge the concept of number to take in zero and negative 
numbers, they wanted the new numbers to behave as much like the old 
ones as possible. 

One of the fundamental axioms of the old arithmetic is the distribu- 
tive law, which states that a(b + c )  = ab + ac; for example, 2(3 + 4) = 
(2 X 3) + (2 X 4). Change the 2 and 3 to negative numbers and the equal- 
ity will still hold only if we adopt the rule that the product of two 
negative numbers is positive. If the product were negative, the equation 
would reduce to -2 = -14, a contradiction. In modern terms, the in- 
tegers form a "ring" that is closed with respect to addition, subtraction 
and multiplication. This provision means that no matter how we add, 

Figure 70 The number line for integers 
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subtract or multiply integers, whatever their sign, the result is always an 
integer. All the old laws of arithmetic for positive integers still hold, and 
we never encounter a contradiction. (We cannot always divide because 
we might get a fraction, and fractions are not elements of the ring.) 

It is therefore not correct to say mathematicians can "prove" that 
the product of two negatives is a positive. It is rather a case of agreeing 
on rules that allow the negative numbers to obey all the old rules for 
counting numbers. If integral fractions are also included, the ring en- 
larges to a "field" that is closed under all four arithmetic operations. 

Although there is no "proof" that -2 X -3 = 6 ,  it is easy to think of 
ways in which the law of signs applies to real situations. Indeed, it 
applies to all situations involving numbers on a scale that has two oppo- 
site directions or senses: east and west, up and down (as on a thermome- 
ter), forward and backward in time (or clockwise and counterclockwise 
on a clock), profit and loss and hundreds of others. It is because of these 
applications that the "signed numbers" are sometimes called "directed 
numbers." 

In applying the law of signs to these examples we must always 
distinguish the quantities from the operations performed on them. The 
distinction is ~articularly necessary when we consider the multiplica- 
tion of a signed quantity by a negative number. It is easy to understand 
what it means to take a positive or a negative quantity n times, but what 
does it mean to take it -n times? The clearest way to think about this 
mystifying operation is to break it into two parts: 

1. Duplicate the quantity n times. 

2. Convert the result to its inverse with respect to zero. In other 
words, change the sign. 

On the number line the second step is the same as reflecting a spot 
by a mirror on the zero mark. Imagine a bug at -2. To multiply its 
position by 3 there is no difficulty. We simply duplicate -2 three times to 
carry the bug to -6. But if the bug is at 2 and we wish to multiply by -3, 
our operation is to duplicate 2 three times, putting the bug at 6, and then 
invert. This procedure transports the bug to the mirror-image spot at -6. 
If the bug is at -2, multiplication by -3 operates the same way. We 
duplicate -2 three times, taking the bug to -6, and then inversion 
carries it to 6. 

This may look like sorcery on the number line, but when we apply 
the procedure to many other situations, it seems quite normal. For 
example, suppose a man loses $10 a day gambling. The future is defined 



as being positive and the past as being negative. Three days from now he 
will have lost $30 (3 X -10 = -30). Three days ago he had $30 more 
than he has today (-3 X -10 = 30). Equivalent situations arise on any 
directed scale. If water is sinking in a tank at a rate of three centimeters 
per minute, the level two minutes ago was -3 X -2 = 6 centimeters 
higher. If the bug crawls west on the number line three centimeters per 
second, then two seconds ago it was -3 X -2 = 6 centimeters east of its 
present position. 

The most familiar property of objects that lends itself to negative 
magnitudes is weight. Add one-gram weights to your pockets and you are 
heavier. Attach helium-filled balloons to your body, each lifting with a 
force of one gram, and you are lighter. Remove three pairs of balloons 
and your weight increases by -2 X -3 = 6 grams. 

"Imagine a town where good people are moving in and out," wrote 
Roy Dubisch (The Mathematics Teacher, December 197 I), "and bad 
people are also moving in and out. Obviously, a good person is + and a 
bad person -. Equally obvious, moving in is + and moving out is -. Still 
further, it is evident that a good person moving into town is a + for the 
town; a good person leaving town is a -; a bad person moving into town 
is a -; and, finally, a bad person leaving town is a +." If three pairs of bad 
people move out, the town gains -2 X -3 = 6 points. One can model the 
situation with poker chips of two colors and a spot to represent the town. 

Other models for teaching children the operations that can be done 
on the ring of integers have been proposed. Here is one of my own, so 
simple that others have surely thought of it before. It consists of a square 
board one centimeter thick in which 100 holes have been drilled in a 
square array. Each hole is fitted with a peg one centimeter long. The peg 
can be in one of three positions: flush with the board (0), projecting 
upward half a centimeter (+I) or projecting downward half a centimeter 
(-1). If all the pegs are flush, the board is in state 0. If k pegs are up, it is 
in state k; if k pegs are down, it is in state -k. (See Figure 71.) 

To add n to the state of the board, push n pegs up, always pushing 
down pegs up (if there are any down pegs) before moving to flush pegs. 
To subtract n from the board's state, push n pegs down, taking first the 
up pegs (if there are any) before moving to flush pegs. 

To multiply the state of the board by n, duplicate the state n times. If 
the state is 0, there is nothing to do. If k pegs are up, push up n - 1 more 
sets of k pegs. If k pegs are down, push down n - 1 more sets of k pegs. 
To multiply the board's state by -n, first multiply by n (as above) and 
then turn the board over. 

A model that is probably easier to make is a board with little switches 
that can be in the up (+), middle (0) or down (-1) position. In this case 
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Figure 71 The pegboard that keeps track of signs 

multiplying by a negative number ends with rotating the board 180 
degrees. (See Figure 72.) 

If Aristotle were alive today and had 20 years to study modern 
algebra, he might still prefer to use "number" only for the counting 
numbers greater than 1. (There is a sense in which all "artificial num- 
bers" are no more than constructions of the natural numbers.) This is 
one of those arguments over words that get nowhere. The point is that 
rings and fields, in which every element has its inverse or negative twin, 
are applicable to an enormous variety of natural objects and 
phenomena. 

We may get into serious trouble trying to apply negative numbers 
and the law of signs to cubes and other "things" in the real world, as in J. 
A. Lindon's poem, (Figure 73), but sometimes the application is unex- 
pectedly appropriate. Ignoring radiation, the pegboard is not a bad 
model of P. A. M. Dirac's famous theory about particles and antiparticles, 
a theory that predicted the existence of the positron! 

ADDENDUM 

Lawrence Gilbert and Jack Bigelow, in a letter to Mathematics Teacher 
(vol. 79, February 1986), suggested a novel motion-picture model for 
multiplying by negatives. Imagine a movie of a car traveling down a 
road. Its movement forward along the road is positive; its backward 
motion, negative. Running the projector forward is a positive operation; 
running it backward is a negative operation. If the car is photographed 
moving forward along the road, multiplying it by positive corresponds to 
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Figure 72 Switchboard model for the law of signs 

running the film forward to show the car still moving forward. Multiply- 
ing its motion by negative corresponds to running the same film back- 
ward, showing the car going backward. Now suppose the car was origi- 
nally photographed moving backward down the road. Multiplying by 
positive is to run the film forward, which shows the car still going 
backward. To multiply by negative, the film is run backward, which 
shows the car moving forward. 

Judith Kohn wrote to propose what strikes me as the best way to 
teach arithmetic operations to school children: a model that uses poker 
or bingo chips of two colors and an overhead projector. She later ex- 
plained the model in a 1978 article (see the Bibliography). 
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r A Positive Reminder 

I by J. A. Lindon 

A carpenter named Charlie Bratticks, So now he had, just for his sins, 
Who had a taste for mathematics, Two cubes as like as deviant twins; 
One summer Tuesday, just for fun, And feeling one should know the worst, 
Made a wooden cube side minus one. He placed the second in the first. 

Though this to you may well seem wrong, 
He made it minus one foot long, 
Which meant (I hope your brains aren't 

frothing) 
Its length was one foot less than nothing. 

In width the same (you're not asleep?) 
And likewise minus one foot deep; 
Giving, when multiplied (be solemn!), 
Minus one cubic foot of volume. 

With sweating brow this cube he sawed 
Through areas of solid board; 
For though each cut had minus length, 
Minus times minus sapped his strength. 

A second cube he made, but thus: 
This time each one foot length was plus; 
Meaning of course that here one put 
For volume: alus one cubic foot. 

One plus, one minus-there's no doubt 
The edges simply cancelled out; 
So did the volume, nothing gained; 
Only the surfaces remained. 

Well may you open wide your eyes, 
For these were now of double size, 
On something which, thanks to his skill, 
Took up no room and measured nil. 

From solid ebony he'd cut 
These bulky cubic objects, but 
All that remained was now a thin 
Black sharply-angled sort of skin 

Of twelve square feet-which though not 
small, 

Weighed nothing, filled no space at all. 
It stands there yet on Charlie's floor; 
He can't think what to use it for! 

Figure 73 On the mystery of 12 square feet 

Walter Penney defended the claim by Euler and Wallis that negative 
numbers exceed infinity. He suggested visualizing the number line as a 
circle of infinite radius, with infinity at the top, zero at the bottom, pos- 
itive integers increasing in value counterclockwise from zero to 
infinity and negative numbers growing in the opposite direction from 
zero to infinity. If we define "greater than" to mean "farther in a coun- 
terclockwise direction," then the negative numbers lie on the far side of 
infinity. 

Charles Rissanen sent a series of drawings to illustrate what happens 
in Lindon's poem. The carpenter starts with a large block of ebony. His 
negative cube is a hole cut out of this block. When his positive cube is 
placed inside the hole, the two cubes vanish and the original block is 
restored. 

Confusion about multiplication frequently arises from a failure to 
distinguish quantities from operations. You can add two apples to three 
apples, but you can't multiply or divide two apples by three apples. 
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Figure 74 A square paradox 

Consider, for example, the following paradox that occurred to me. A 
square drawn on the Cartesian plane (Figure 74) has an area of - (xy) .  By 
the Pythagorean theorem the diagonal AC is a positive number and 
similarly for diagonal BD. A familiar theorem of geometry says that the 
area of a square is half the product of its diagonals, and so if the diago- 
nals are positive, the square's area must be positive, contradicting the 
prior result proving it negative. The fallacy springs from the fact that you 
can no more multiply by negative lengths than you can multiply by 
negative apples. 

Richard Feynman, the eminent Cal Tech physicist, sent me a surpris- 
ing document that has not, so far as I know, been published. I had 
pointed out in my column that although the real world does not contain 
such things as negative cows, negative numbers are useful in algebraic 
calculations about cows provided you don't end by asserting that so 
many negative cows are grazing in a pasture. Feynman's paper was a 
similar defense of the startling concept of negative probabilities. I can- 
not go into technical details, but essentially what he said was this: Situa- 
tions arise in physics in which calculations are expedited by using nega- 
tive probabilities provided you are careful not to assert that any actual 
event in the real world has a negative probability of occurring. 
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Cutting Shupes 
into N Congruent Ports 

So the Wizard lost no more time, but leaping 
forward he raised the sharp sword, whirled it 
once or twice around his head, and then gave a 
mighty stroke that cut the body of the sorcerer 
exactly in two. 

Dorothy screamed. . . . 
-L. FRANK BAUM, Dorothy and the Wizard in Oz 

A popular type of puzzle, often found in old puzzle books, 
is to divide a given shape into two, three or more equal parts. Sometimes 
"equal" means congruent; sometimes it means no more than equal in 
area. Readers of my earlier books may remember many problems of this 
type: enumerating the ways a chessboard can be cut along lattice lines 
into two or four congruent pieces, bisecting the yin-yang symbol (with 
one straight line) into four parts of equal area, dividing a square cake 
into n slices of equal volume, cutting "rep-tiles" into congruent copies 
of themselves and numerous others. 
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In this chapter we look at a variety of new problems of dividing 
shapes into equal parts. Some of them lead into significant areas of 
modern mathematics. 

Let us begin with the simplest of the problems: cutting a plane shape 
into two, congruent parts. (Mirror images are considered congruent.) 
You might think that all such problems would be easy to solve, but they 
can be annoyingly difficult. As far as I know, there is no algorithm for 
deciding in general whether a shape can be divided into two or more 
congruent parts, and interesting theorems about such divisions are cur- 
iously scarce. 

9 10 11 12 

Figure 75 Shapes to be cut into congruent halves 
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The reader is invited to try his skill at cutting each of the 12 shapes in 
Figure 75 into two identical pieces. There are no catches. Each half is 
connected simply (there are no holes or parts joined at single points). 
Some of these figures are from a French magazine column on recre- 
ational mathematics by Pierre Berloquin. (Scribner's has published 
translations of three of Berloquin's popular puzzle books.) The shape 
with the hole is difficult and suggests an unexplored region of puzzle- 
dom: shapes with holes that are to be cut into congruent pieces. 

Note that the only kind of symmetry possessed by the tourth shape is 
bilateral, the axis of symmetry passing vertically down the middle. Any 
plane or solid figure with bilateral symmetry obviously can be sliced into 
congruent halves by cutting along its axis or plane of symmetry. Figure 
76 shows how the Wizard of Oz bisected an evil Mangaboo into con- 
gruent parts while Eureka, Dorothy's pet cat, watched. (The scene 
occurs in the Glass City, below the earth's surface, where the inhabitants 
are vegetables.) Is it always necessary to cut along an axis or a plane of 
symmetry to divide a bilaterally symmetric figure into congruent parts? 
The answer is no, and the fourth shape proves it. You are asked to solve 
this figure in a way other than the obvious one. 

Dividing a shape into n congruent parts usually becomes more diffi- 
cult as n increases, particularly if the shape of the part is specified. The 
12 pentominoes in Figure 77 pose an interesting quartering problem. (I 
am obliged to mention that "pentominoes" was registered as a trade- 
mark in 1975 by Solomon W. Golomb, who coined the term.) How many 
of the pentominoes can be dissected into four congruent pieces? All 
except three. I was surprised to discover that the nine with solutions can 
all be solved by using the same component shape-a smaller 
pentomino-and that this shape is unique. Can the reader discover it 
and identify the three impossible pentominoes? 

Let us drop the requirement of congruence, demanding only that the 
n parts have equal area. It seems intuitively clear that any plane shape 
can be cut into halves of equal area by a straight line. It is perhaps not so 
immediately obvious that the line can be parallel to any given line 
outside the figure. To prove this relation we make use of a famous 
theorem: If there is a continuous one-variable function in a closed 
interval from A to B, then the function has a minimum value and a 
maximum value and all real values in between. 

Let me give an example. You are walking up a mountain along a 
crooked path from A to B. Your altitude at any moment is a continuous 
function of your position on the path. The theorem tells us that on the 
path there is at least one point (there may be more than one if the path 



Figure 76 The Wizard o f  Oz bisects a Mangaboo 

goes up and down) of minimum altitude, at least one point of maximum 
altitude and at least one point for every real value in between. The 
theorem seems obvious to the point of triviality, and yet it has fantastic 
power in proving theorems that are not at all obvious. 

Consider the shaded region at the left in Figure 78. Outside it is an 
arbitrary line x. We want to prove that a line parallel to x can be drawn 
through the figure that will exactly bisect its area. Imagine a line moving 



Cutting Shopes into N (ongruent Ports 169 

Figure 77 The 12 pentominoes 

slowly, always parallel to x ,  in the perpendicular direction indicated by 
the broken arrow. The line touches the region at A and leaves it at B. As 
the line moves over the region the area below it is a continuous function 
of the distance it has moved from A. The area of side A is zero at A and 
maximum at B. According to our theorem, somewhere in between is a 
point where the area is just half of the maximum. That is the point at 
which the line bisects the area. 

The proof is so general that it applies not only to any connected 
shape, including one with holes, but also to disconnected regions. A 
glance at the right-hand part of Figure 78 should convince you that a line 
parallel to a given line can be drawn through any number of regions in 

Figure 78 Proof o f  a theorem on bisecting an area 
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such a way that the total area on one side of the line equals the total area 
on the other side. 

Suppose you have two regions of any kind in the plane, as is shown in 
Figure 79. Is it always possible to draw a straight line that will simulta- 
neously divide each region into parts of equal area? We can prove that it 
is. First bisect the white region with a line that misses the gray one. 
Rotate the line, always preserving the bisection of the white region. (We 
know we can do this from the above theorem.) As the illustration shows, 
the turning line will touch the gray region at point A and leave it at point 
B. As the line sweeps from A to B the area on side A will vary contin- 
uously from zero to the maximum. Hence there is a spot in between at 
which the area on side A is half of the total area. 

We have proved for the plane a famous theorem that generalizes to 
all higher spaces. In 3-space the volumes of any three solids can be 
bisected by a plane; in 4-space the hypervolumes of any four figures can 
be bisected by a hyperplane of N - 1 dimensions. The 3-space theorem is 
sometimes called the "ham-sandwich theorem" because it applies to a 
generalized ham sandwich consisting of two pieces of bread and one 
piece of ham. No matter how the pieces are shaped or how they are 
placed in space, there is a plane that simultaneously halves all three. 

The generalization to N-space requires high-powered mathematics, 
but in 2- and 3-space the proofs follow easily from our fundamental 

Figure 79 Proving the ham-sandwich theorem in the plane 
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theorem. Both proofs provide in a sense a way of finding a bisecting line 
or plane, but in practice it is not easy to find such a bisection. Connect- 
ing centroids (centers of gravity) will not do it because a straight line (or 
a plane) through the centroid of a plane (or a solid) figure does not 
necessarily bisect it into halves of equal area (or volume). 

Given a simply connected figure, not necessarily convex, is there 
always a straight line that simultaneously bisects both the area and the 
boundary? There is, and the proof is much like the last one. Draw a line 
that bisects the boundary at P and Q, as is shown in Figure 80. If this line, 
extended, also bisects the area, there is no more to do. 

Assume that the line does not bisect the area. Attach to the line an 
arrow that points into the side of smaller area. Now move points Q and P 
clockwise around the boundary, always preserving the boundary's bisec- 
tion. This maneuver will cause the line going through P and Q to alter its 
orientation in a continuous way. As it does so, the ratio of the areas on 
each side will vary continuously. After the line has rotated 180 degrees, it 
will coincide with its original position, but now the arrow will point into 
the larger of the two regions. 

Consider the difference obtained by subtracting the area on the 
arrow side of the line from the other area. At the start it is positive. At 
the finish it is negative. This value clearly is a continuous function of the 
line's angle, and so there must be an angle at which the value is zero and 
the two areas are equal. The theorem also generalizes to higher spaces. A 
solid can be bisected in volume by a plane that bisects the surface area, 
and in general an N-space solid can be bisected in hypervolume by an 
N - 1 hyperplane that bisects its hypersurface. 

Figure 80 Proof of a theorem on bisecting a boundary and area 
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Another beautiful theorem, equally far from obvious, states that any 
region-again it need not be connected simply or even connected- 
can always be exactly quartered by two perpendicular lines. The stan- 
dard proof is both subtle and marvelous. 

Imagine you have a sheet of transparent paper larger than the re- 
gion. The sheet is divided into four quadrants by perpendicular lines X 
and Y. The quadrant at the upper left is dark gray and the one at the 
upper right is light gray. Place the sheet over the region with the horizon- 
tal line below the region and the vertical line to the right. Slide the sheet 
up until line Xbisects the region, then slide the sheet to the left (letting X 
slide along itself) until Y likewise bisects the region. Label (on the 
region, not on the transparent sheet) the four parts of the figure A, B, C 
and D. The arrangement is shown in the top part of Figure 81. 

By construction A plus B equals C plus D and A plus C equals B plus 
D. Subtracting the second equation from the first one results in B - C = 
C - B, or 2B = 2C. Therefore B equals C and A equals D. 

If A equals B, the region is quartered. Assume that it is not quartered 
and that region B is larger than A. Therefore the area of the region's dark 
gray part, subtracted from the region's light gray part, is a positive 
number. 

Rotate the sheet 90 degrees counterclockwise, always maintaining 
the double bisection of the region by X and Y. Their intersection point 
may wander here and there. After the rotation is completed, the two 
lines necessarily return to their former position, as is shown in the 
bottom part of the illustration, except that now X and Y have exchanged 
places. 

The light gray area of the region equals A. The dark gray area equals 
C, and because C equals B, the dark gray area also equals B. Thus the 
areas of the dark gray and light gray regions have also exchanged places. 
Consequently if we subtract the larger dark gray area from the smaller 
light gray area, we now get a minus number. 

It is easy to see how our fundamental theorem applies. The value 
obtained by taking the area of the dark gray region from the area of the 
light gray region is a continuous function of the angle of rotation as it 
varies from 0 to 90 degrees. Since the former value goes from plus to 
minus, there must be a value in between at which the difference is zero 
and the areas are equal. When that value is attained, the perpendicular 
lines precisely quarter the region. 

This theorem also generalizes to higher spaces. Any solid can be 
divided into eight equal parts by three mutually perpendicular planes. In 
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Figure 81 H o w  a n y  region c a n  be quartered by t w o  perpendicular lines 

general any N-dimensional solid can be cut into 2" parts of equal "vol- 
ume" by n perpendicular "planes." 

As in the preceding examples, the theorem is not much help in the 
practical problem of quartering nonsymmetric figures. We know, for 
instance, that a triangle of sides 3,4,5 can be quartered by two perpen- 
dicular lines, but the task of constructing those lines is an altogether 
different matter. Indeed, I know of no easy way to do it. 

Figure 82 presents four equal-division problems for which the con- 
structions are much less difficult than quartering the 3,4,5 triangle. They 
are nonetheless tricky enough to call for a considerable amount of 
ingenuity. 
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Figure 82 Four problems in equal division 

The first problem is to divide the entire region of nine squares into 
two parts of equal area with a straight line that goes through corner P. 

The second problem is to halve the total area of the five circles by 
drawing a straight line through P, which is the point at the center of the 
circle farthest to the left. 

The third problem is to trisect the area of a regular hexagon with two 
straight lines that go through P. 

The fourth problem is to bisect an equilateral triangle with a curve of 
minimum length. The illustration of the triangle shows the shortest 
bisecting straight line, but there is a bisecting curve that is shorter. 

ANSWERS 

Figure 83 shows how the 12 shapes given in Figure 75 can be divided 
into congruent halves. Figure 84 shows how nine of the 12 pentominoes 
can be dissected into the same four congruent parts. The three blank 
pentominoes cannot be cut into four congruent parts of any shape. 

Figure 85 answers the four problems at the end of the chapter. To 
bisect the nine squares draw the 10th square shown with broken lines. 
Rule AB to get point C ,  then join P to C .  If the squares have sides of 
length 1, then CD equals 114 and it is easy to see that PC bisects the 
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Figure 83 Answers to bisection problems 

original figure. To bisect the five circles add three additional circles as 
shown by the broken lines. The line through the centers of two circles 
obviously halves the total area. (Both problems are from A Problem a 
Day, by R. M. Lucey, Penguin Books, 1937.) 

The hexagon at the bottom is trisected by joining P to C and D, the 
midpoints of two sides. Assume that the equilateral triangles have areas 
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Figure 84 Dividing pentominoes into four congruent parts 

of 1. The area of PAB is 1; therefore the area of PBE is 2 and the rest 
follows. I was unable to find any comparably simple way to trisect a 
regular pentagon with a line through a corner. 

The middle two hexagons show how Leo Moser proved that the 
minimum-length curve bisecting an equilateral triangle is the arc of a 
circle. Whatever the shape of the bisecting curve, it will form a closed 
curve if the triangle is reflected around one vertex as is shown. Such a 
curve cuts the hexagon in half, and it has a fixed area. The figure of 
minimum perimeter that encloses a given area is the circle; therefore 
the minimum-length bisecting curves inside each triangle are arcs of a 
circle. (This exercise is from Mathematical Quickies, by Charles W. 
Trigg, McGraw-Hill, 1967.) 
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Figure 85 Solutions to four equal-division problems 

ADDENDUM 

My solution to the bisection of the five circles required the construction 
of a sixth circle. Many readers sent in a construction that doesn't use a 
sixth circle (Figure 86). It is obvious from the illustration that the solid 
line bisects the five circles. Max Gordon Phillips, of Sunnyvale, Califor- 
nia, then improved the improvement by eliminating all prior construc- 
tions. As he pointed out, a line drawn through the point where two 
circles touch will bisect the area of the two circles regardless of how it is 
rotated. If this line also passes through the center of a third circle, with 
the remaining two circles on opposite sides of the line, all five circles 
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I \ 

Figure 86 Improved solutions to a bisection problem 

will have their total area bisected. There are five such lines, each passing 
through the center of one of the circles. One is shown by the dotted line 
in the illustration. 

I stated that I knew no easy way to trisect a pentagon with lines 
extending from one corner. Carl F. Von Mayenfeldt of Vancouver sup- 
plied the trisection shown in Figure 87. Assume that the pentagon has 
sides of length 1. 

Figure 87 
Trisecting the area of a pentagon 
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After proving that a pair of perpendicular lines divide the area of any 
figure into quarters, I called attention to the difficulty of constructing 
such a pair of lines for the right triangle of sides 3,4,5. Von Mayenfeldt 
was the first to send the solution and to prove it unique. The same 
construction, too complicated to give here, was later sent by Windschitl 
and Cecil G. Phipps. 

Although no reader found a general algorithm for solving all prob- 
lems that involve cutting any shape into two congruent halves (when 
possible), many readers found procedures that apply to many such prob- 
lems. For example, such problems can sometimes be solved by tracing 
the shape to be divided on transparent paper and then turning the 
tracing to intersect the original figure in various ways. Abel Bomberault, 
Robert W. Davis, James R. Fienup, David Fleming, Allen J. Schwenk, 
Daniel Sleator, Laszlo M. Vesei and Marcel Vinokur were the first to 
send suggestions of this kind. 

Don Taylor proposed an amusing bet derived from the fixed-point 
theorem on which the possibility proofs I gave were based. Bet someone 
you can draw a line exactly 1 inch long. You win by drawing a line about 
3 inches long. Because the length varies continually from less than an 
inch to more than an inch, there must be a point along the line where it 
is precisely 1 inch from that point to an end. 

We saw how two figures on the plane can always be bisected by a 
straight line. In Mathematical Snapshots (Third Edition, Oxford Univer- 
sity Press, 1969, page 145) Hugo Steinhaus asserts that any three figures 
on the plane can always have their combined areas bisected by a suitably 
placed circle. No proof is given, but a footnote refers to a paper by 
Steinhaus in Fundamenta Mathernatica (vol. 33, 1945, pages 245-263). 

Since this chapter first appeared in Scientific American, many prob- 
lems of cutting a figure into n congruent parts have appeared in mathe- 
matical journals and popular magazines such as Games (published here 
by Playboy) and Juegos and Cacumen, two Argentine periodicals. 
Springer-Verlag's Mathematics Calendar for 1979 featured an essay on 
such tasks and a page of nine extremely difficult bisection puzzles. 

In Figure 88 I have a sampling of bisection problems. The grid lines 
are there only to make clear the shape, not to suggest that the bisecting 
line must be confined to the grid. The last figure, invented by S. W. 
Golomb, is the hardest. As a hint, I will say that in this case (as in some 
others) the bisecting line does follow the grid. 

The top illustration of Figure 89 is one of three trisection problems 
in the British journal Eureka (Spring 1984). Show how to cut it into three 
congruent polyominoes. The bottom illustrations are quartering prob- 
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Figure 88 More bisection problems 

lems from Manjunath Hegde of India. The first shows how a figure is 
easily divided into four congruent triangles. Your task is to divide it a 
different way into four congruent parts, each containing one of the four 
spots. Hegde's second puzzle is to divide the figure into four congruent 
shapes. In all three problems the divisions are made along grid lines. It 
would diminish the solving fun if I provided answers to these three tasks, 
as well as answers to the six bisection problems. 

I find in my files a newspaper clipping of January 21, 1983. An 
Associated Press dispatch from Central City, Kentucky, reports a judge's 
restraining order barring Virgil M. Everhart from bisecting his house. It 
seems that his wife's divorce action demanded an equal property settle- 
ment. Mr. Everhart, using drills and saws, began slicing his house into 
two equal parts which he called "His" and "Hers." 
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Figure 89 Trisection problem (top) and quartering problems (bottom) 

"Functions and Limits." Richard Courant and Herbert Robbins, in What is 
Mathematics? Oxford University Press, 194 1. 

"Generalized 'Sandwich' Theorems." A. H. Stone and J. W. Tukey, in Duke 
Mathematical Journal, 9, June 1942, pp. 356-359. 

"Cuts and Congruence." Mathematics Calendar. Springer-Verlag, 1979. 
"On a Quadrisection Problem of M. Gardner." Sin Hitotumatu, in Research Activi- 

ties, Vol. 4, 1992, pp. 1-4. A construction is given for the quadrisection of any 
right triangle by two perpendicular lines. 

"Geometric Dissections." Nob Yoshigahara, in Puzzle World, Vol. 1 ,  Summer 1992, 
pp. 48-51. 
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Plate 1 The king's empire 



Plate 2 A computer generated earthlike planet, seen above an imaginar~ 
moonscape 



Plate 3 Members o f  the Oulipo 
Standing, left to right: Jean Fournel, Michele Metail, Luc Etienne, Georges 
Perec, Marcel Renabou, Jean Lescure, Jaques Duchateau 
Seated, left to right: Ztalo Calvino, Harry Mathews, Fran~ois Le Lionnais, 
Raymond Queneau, Jean Queval, Claude Berge 
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Plate 4 A critical three-coloring of K,,, a complete graph on 16 points 



Trapdoor Ciphers 

Few persons can be made to believe that it is not 
quite an easy thing to invent a method of secret 
writing which shall baffle investigation. Yet it 
may be roundly asserted that human ingenuity 
cannot concoct a cipher which human ingenuity 
cannot resolve. 

The upward creep of postal rates accompanied by the 
deterioration of postal service is a trend that may or may not continue, 
but as far as most private communication is concerned, in a few decades 
it probably will not matter. The reason is simple. The transfer of infor- 
mation will surely be much faster and much cheaper by "electronic 
mail" than by conventional postal systems. Before long it should be 
possible to go to any telephone, insert a message into an attachment and 
dial a number. The telephone at the other end will print out the message 
at once. 

Government agencies and large businesses will presumably be the 
first to make extensive use of electronic mail, followed by small busi- 
nesses and private individuals. When this starts to happen, it will become 
increasingly desirable to have fast, efficient ciphers to safeguard infor- 
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mation from electronic eavesdroppers. A similar problem is involved in 
protecting private information stored in computer memory banks from 
snoopers who have access to the memory through data-processing 
networks. 

It  is hardly surprising that in recent years a number of mathemati- 
cians have asked themselves: Is it possible to devise a cipher that can be  
rapidly encoded and decoded by computer, can be  used repeatedly 
without changing the key and is unbreakable by sophisticated cryptana- 
lysis? The surprising answer is yes. The breakthrough is scarcely two 
years old, yet it bids fair t o  revolutionize the entire field of secret com- 
munication. Indeed, it is so revolutionary that all previous ciphers, 

A CIPHER THAT DEFEATED POE 

GE JEASGDXV, 
ZIJ GL MW, LAAM, XZY ZMLWHFZEK EJLVDXW KWKE TX LBR ATGH LBMX 

AANU BAI VSMUKKSS PWN VLWK AGH GNUMK WDLNZWEG JNBXW OAEG ENWB 

ZWMGY MO MLW WNBX MW AL PNFDCFPKH WZKEX HSSF XKIYAHUL. MK NUM 

YEXDM WBXY SBC HV WYX PHWKGNAMCUK? 

In 1839, in a regular column Edgar Allan Poe contributed to a Philadel- 
phia periodical, Alexander's Weekly Messenger, Poe challenged readers to 
send him cryptograms (monoalphabetic substitution ciphers), asserting 
that he would solve them all "forthwith." One G .  W. Kulp submitted a 
ciphertext in longhand. It was printed as shown above in the issue of 
February 26, 1840. Poe "proved" in a subsequent column that the cipher 
was a hoax-"a jargon of random characters having no meaning 
whatsoever." 

In 1975 Brian J. Winkel, a mathematician at Albion College, and Mark 
Lyster, a chemistry major in Winkel's cryptology class, cracked Kulp's 
cipher. It is not a simple substitution-Poe was right-but neither is it 
nonsense. Poe can hardly be blamed for his opinion. In addition to a major 
error by Kulp there are 15 minor errors, probably printer's mistakes in 
reading the longhand. 

Winkel is an editor of a new quarterly, Cuyptologia, available from Albion 
College, Albion, MI 49224. The magazine stresses the mathematical and 
computational aspects of cryptology. The first issue (January 1977) tells the 
story of Kulp's cipher and gives it as a challenge to readers. So far only 
three readers have broken it. I shall give the solution in the answer section. 
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together with the techniques for cracking them, may soon fade into 
oblivion. 

An unbreakable code can be unbreakable in theory or unbreakable 
only in practice. Edgar Allan Poe, who fancied himself a skilled cryptan- 
alyst, was convinced that no cipher could be invented that could not also 
be "unriddled." Poe was certainly wrong. Ciphers that are unbreakable 
even in theory have been in use for half a century. They are "one-time 
pads," ciphers that are used only once, for a single message. Here is a 
simple example based on a shift cipher, sometimes called a Caesar 
cipher because Julius Caesar used it. 

First write the alphabet, followed by the digits 0 through 9. (For 
coding purposes 0 represents a space between words, and the other 
digits are assigned to punctuation marks.) Below this write the same 
sequence cyclically shifted to the right by an arbitrary number of units, 
as is shown in Figure 90. Our cipher consists in taking each symbol in 
the plaintext (the message), finding it in the top row and replacing it with 
the symbol directly below it. The result is a simple substitution cipher, 
easily broken by any amateur. 

In spite of its simplicity, a shift cipher can be the basis of a truly 
unbreakable code. The trick is simply to use a different shift cipher for 
each symbol in the plaintext, each time choosing the amount of shift at 
random. This is easily done with the spinner shown in Figure 91. Sup- 
pose the first word of plaintext is THE. We spin the arrow and it stops on 
K. This tells us to use for encoding T a Caesar cipher in which the lower 
alphabet is shifted 10 steps to the right, bringing A below K as is shown in 
the illustration. T, therefore, is encoded as J. The same procedure is 
followed for every symbol in the plaintext. Before each symbol is en- 
coded, the arrow is spun and the lower sequence is shifted accordingly. 
The result is a ciphertext starting with J and a cipher "key" starting with 
K. Note that the cipher key will be the same length as the plaintext. 

To use this one-time cipher for sending a message to someone -call 
him Z-we must first send Z the key. This can be done by a trusted 
courier. Later we send to Z, perhaps by radio, the ciphertext. Z decodes 

A B C D E  F G H I  J K L M N O P Q R  
0 1 2 3 4  5 6 7 8 9 A B C D E F G H  

S T U V W X Y Z 0 1  2 3 4  5 6  7 8 9  
l J K L M N O P Q R S T U V W X U Z  

Figure 90 
A Caesar cipher 
with a 10-shift 



Figure 91 Randomizer for encoding a "one-time pad" 

it with the key and then destroys the key. The key must not be used again 
because if two such ciphertexts were intercepted, a cryptanalyst might 
have sufficient structure for breaking them. 

It is easy to see why the one-time cipher is uncrackable even in 
principle. Since each symbol can be represented by any other symbol, 
and each choice of representation is completely random, there is no 
internal pattern. To put it another way, any message whatever having the 
same length as the ciphertext is as legitimate a decoding as any other. 
Even if the plaintext of such a coded message is found, it is of no future 
help to the cryptanalyst because the next time the system is used the 
randomly chosen key will be entirely different. 

One-time pads are in constant use today for special messages be- 
tween high military commanders, and between governments and their 
high-ranking agents. The "pad" is no more than a long list of random 
numbers, perhaps printed on many pages. The sender and receiver must 
of course have duplicate copies. The sender uses page 1 for a cipher, 
then destroys the page. The receiver uses his page 1 for decoding, then 
destroys his page. When the Russian agent Rudolf Abel was captured in 
New York in 1957, he had a one-time pad in the form of a booklet about 
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the size of a postage stamp. David Kahn, who tells the story in his 
marvelous history The Codebreakers, says that the one-time pad is the 
standard method of secret radio communication used by the U.S.S.R. 
The famous "hot line" between Washington and Moscow also makes use 
of a one-time pad, the keys being periodically delivered through the two 
embassies. 

If the one-time pad provides absolute secrecy, why is it not used for 
all secret communication? The answer is that it is too impractical. Each 
time it is employed, a key must be sent in advance and the key must be at 
least as long as the anticipated message. "The problem of producing, 
registering, distributing and canceling the keys," writes Kahn, "may 
seem slight to an individual who has not had experience with military 
communications, but in wartime the volumes of traffic stagger even the 
signal staffs. Hundreds of thousands of words may be enciphered in a 
day; simply to generate the millions of key characters required would be 
enormously expensive and time-consuming. Since each message must 
have its unique key, application of the ideal system would require ship- 
ping out on tape at the very least the equivalent of the total communica- 
tions volume of a war." 

Let us qualify Poe's dictum by applying it only to ciphers that are 
used repeatedly without any change in the key. Until recently all cipher 
systems of this kind were known to be theoretically breakable provided 
the code breaker has enough time and enough ciphertext. Then in 1975 a 
new kind of cipher was proposed that radically altered the situation by 
supplying a new definition of "unbreakable," a definition that comes 
from the branch of computer science known as complexity theory. 
These new ciphers are not absolutely unbreakable in the sense of the 
one-time pad, but in practice they are unbreakable in a much stronger 
sense than any cipher previously designed for widespread use. In princi- 
ple these new ciphers can be broken, but only by computer programs 
that run for millions of years! 

The three men responsible for this remarkable breakthrough are 
Whitfield Diffie and Martin E. Hellman, both electrical engineers at 
Stanford University, and Ralph Merkle, then an undergraduate at the 
University of California, Berkeley. Their work was partly supported by 
the National Science Foundation in 1975 and was reported by Diffie and 
Hellman in their 1976 paper "New Directions in Cryptography". In it 
Diffie and Hellman show how to create unbreakable ciphers that do not 
require advance sending of a key or even concealment of the method of 
encoding. The ciphers can be efficiently encoded and decoded, they can 
be used over and over again and there is a bonus: The system also 
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provides an "electronic signature" that, unlike a written signature, can- 
not be forged. If Z receives a "signed" message from A, the signature 
proves to Z that A actually sent the message. Moreover, A's signature 
cannot be forged by an eavesdropper or even by Z himself! 

These seemingly impossible feats are made possible by what Diffie 
and Hellman call a trapdoor one-way function. Such a function has the 
following properties: (1) it will change any positive integer x to a unique 
positive integer y; (2) it has an inverse function that changes y back to x; 
(3) efficient algorithms exist for computing both the forward function 
and its inverse; (4) if only the function and its forward algorithm are 
known, it is computationally infeasible to discover the inverse 
algorithm. 

The last property is the curious one that gives the function its name. 
It is like a trapdoor: easy to drop through but hard to get up through. 
Indeed, it is impossible to get up through the door unless one knows 
where the secret button is hidden. The button symbolizes the "trapdoor 
information." Without it one cannot open the door from below, but the 
button is so carefully concealed that the probability of finding it is 
practically zero. 

Before giving a specific example, let us see how such functions make 
the new cryptographic systems possible. Suppose there is a group of 
businessmen who want to communicate secrets to one another. Each 
devises his own trapdoor function with its forward and backward algo- 
rithms. A handbook is published in which each company's encoding 
(forward) algorithm is given in full. The decoding (inverse) algorithms 
are kept secret. The handbook is public. Anyone can consult it and use it 
for sending a secret message to any listed company. 

Suppose you are not a member of the group but you want to send a 
secret message to member Z. First you change your plaintext to a long 
number, using a standard procedure given in the handbook. Next you 
look up Z's forward algorithm and your computer uses it for rapid 
encoding of the ciphertext. This new number is sent to Z. It does not 
matter at all if the ciphertext is overheard or intercepted because only Z 
knows his secret decoding procedure. There is no way a curious cryp- 
tanalyst, studying Z's public encoding algorithm, can discover Z's de- 
coding algorithm. In principle he might find it, but in practice that 
would require a supercomputer and a few million years of running time. 

An outsider cannot "sign" a message to 2, but any member of the 
group can. Here is the devilishly clever way the signature works. Sup- 
pose A wants to sign a message to Z. He first encodes the plaintext 



number by using his own secret inverse algorithm. Then he encodes the 
ciphertext number a second time, using 2's public algorithm. After Z 
receives the ciphertext, he first transforms it by applying his own secret 
decoding algorithm, then he applies A's public encoding algorithm. Out 
comes the message! 

Z knows that only A could have sent this doubly encoded ciphertext 
because it made use of A's secret algorithm. A's "signature" is clearly 
unforgeable. Z cannot use it to send a message purporting to come from 
A because Z still does not know A's secret decoding algorithm. Not only 
that, but if it were to become necessary at some future time to prove to a 
third party, say a judge in a court of law, that A did in fact send the 
message, this can be done in a way that neither A,  Z nor anyone else can 
dispute. 

Diffie and Hellman suggested in their paper a variety of trapdoor 
functions that might be used for such systems. None is quite what is 
desired, but early in 1977 there was a second breakthrough. Ronald L. 
Rivest, Adi Shamir and Leonard Adleman, computer scientists at the 
Massachusetts Institute of Technology, developed an elegant way to 
implement the Diffie-Hellman system by using prime numbers. 

Rivest obtained his doctorate in computer science from Stanford 
University in 1973 and is now an associate professor at M.I.T. Once he 
had hit on the brilliant idea of using primes for a public cipher system, 
he and his two collaborators had little difficulty finding a simple way to 
do it. Their work, supported by grants from the NSF and the Office of 
Naval Research, appears in A Method of Obtaining Digital Signatures and 
Public-Key Cryptosystems (Technical Memo 82, April 1977), issued by the 
Laboratory for Computer Science, Massachusetts Institute of Technol- 
ogy, 545 Technology Square, Cambridge, MA 02139. 

To explain Rivest's system we need a bit of background in prime- 
number theory. The fastest-known computer programs for deciding 
whether a number is prime or composite (the product of primes) are 
based on a famous theory of Fermat's stating that if p is prime, and a is 
any positive number less than p, then ap-' = 1 (modulo p). Suppose we 
want to test a large odd number n (all primes except 2 are of course odd) 
for primality. A number a is selected at random and raised to the power 
of n - 1, then divided by n. If the remainder is not 1, n cannot be prime. 
For example, 2*' - ' = 4 (modulo 21); therefore 2 1 is composite. What, 
however, is the connection between 2 (the randomly chosen a )  and 3 
and 7, the two prime factors of 21? There seems to be no connection 
whatever. For this reason Fermat's test is useless in finding prime fac- 



tors. It does, however, provide a fast way of proving that a number is 
composite. Moreover, if an odd number passes the Fermat test with a 
certain number of random a's, it is almost certainly prime. 

This is not the place to go into more details about computer algo- 
rithms for testing primality, which are extremely fast, or algorithms for 
factoring composites, all of which are infuriatingly slow. I content my- 
self with the following facts, provided by Rivest. They dramatize the 
staggering gap in the required computer time between the two kinds of 
testing. For example, to test a 130-digit odd number for primality re- 
quires at the most (that is, when the number actually is prime) about 
seven minutes on a PDP-10 computer. The same algorithm takes only 45 
seconds to find the first prime after 2200. (It is a 61-digit number equal to 
2200 + 235.) 

Contrast this with the difficulty of finding the two prime factors of a 
125- or 126-digit number obtained by multiplying two 63-digit primes. If 
the best algorithm known and the fastest of today's computers were 
used, Rivest estimates that the running time required would be about 40 
quadrillion years! (For a good discussion of computer methods of factor- 
ing into primes, see Donald E. Knuth's Seminumerical Algorithms, Sec- 
tion 4.5.4.) It is this practical impossibility, in any foreseeable future, of 
factoring the product of two large primes that makes the M.I.T. public- 
key cipher system possible. 

To explain how the system works, the M.I.T. authors take as an 
example of plaintext a paraphrase of a remark in Shakespeare's Julius 
Caesar (Act 1, Scene 2): ITS ALL GREEK TO ME. 

This is first changed to a single number, using the standard key: 
A = 0 1, B = 02, . . . , z = 26, with 00 indicating a space between words. 
The number is 0920190001 12 120007 180505 1 100201 5001 305. 

The entire number is now encoded by raising it to a fixed power s, 
modulo a certain composite number r. The composite r is obtained by 
randomly selecting (using a procedure given in the M.I.T. memoran- 
dum) two primes, p and q, each of which is at least 40 digits long, and 
multiplying them together. The number s must be relatively prime to 
p - 1 and q - 1. Numbers s and r are made public, to be used in the 
encoding algorithm. The encoding operation can be done very effi- 
ciently even for enormous values of r; indeed, it requires less than a 
second of computer time. 

The two prime factors of r are withheld, to play a role in the secret 
inverse algorithm. This inverse algorithm, used for decoding, consists in 
raising the ciphertext number to another power t, then reducing it 
modulo r. As before, this takes less than a second of computer time. The 
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number t, however, can be calculated only by someone who knows p 
and q, the two primes that are kept secret. 

If the message is too long to be handled as a single number, it can be 
broken up into two or more blocks and each block can be treated as a 
separate number. I shall not go into more details. They are a bit techni- 
cal but are clearly explained in the M.I.T. memo. 

To encode ITS ALL GREEK TO ME, the M.I.T. group has chosen s = 9007 
and r =  1143816257578888676692357799761466120102182967212423 
62562561842935706935245733897830597123563958705058989075147 
599290026879543541. 

The number r is the product of a 64-digit prime p and a 65-digit 
prime q, each randomly selected. The encoding algorithm changes the 
plaintext number (09201 . . . ) to the following ciphertext number: 
199935131497805100452317122740260647423204017058391463103703 
717406259716089489275043099209626725826750128935544613538237 
69748026. 

As a challenge to Scientific American readers the M.I.T. group has 
encoded another message, using the same public algorithm. The cipher- 
text is shown in Figure 92. Its plaintext is an English sentence. It was first 
changed to a number by the standard method explained above, then the 
entire number was raised to the 9007th power (modulo r) by the shortcut 
method given in the memorandum. To the first person who decodes this 
message the M.I.T. group will give $100. 

To prove that the offer actually comes from the M.I.T. group, the 
following signature has been added: 167 1786 1 15038084424601527 1 
389168398245436901032358311217835038446929062655448792237114 
490509578608655662496577974840004057020373. 

The signature was encoded by using the secret inverse of the encod- 
ing algorithm. Since the reader has no public encoding algorithm of his 
own, the second encoding operation has been omitted. Any reader who 

Figure 92 
A ciphertext challenge worth 4100 



has access to a computer and the instructions in the M.I.T. memoran- 
dum can easily read the signature by applying the M.I.T. group's public 
encoding algorithm, that is, by raising the above number to the 
power of 9,007, then reducing it modulo r. The result is 0609181 
920001915122205180023091419001514050008211404180504000415121 
201 18 19. It translates (by the use of the standard key) to FIRST SOLVER WNS 

ONE HUNDRED DOLLARS. This signed ciphertext could come only from the 
M.I.T. group because only its members know the inverse algorithm by 
which it was produced. 

Rivest and his associates have no proof that at some future time no 
one will discover a fast algorithm for factoring composites as large as the 
r they used or will break their cipher by some other scheme they have 
not thought of. They consider both possibilities extremely remote. Of 
course, any cipher system that cannot be proved unbreakable in the 
absolute sense of one-time pads is open to sophisticated attacks by 
modern cryptanalysts who are trained mathematicians with powerful 
computers at their elbow. If the M.I.T. cipher withstands such attacks, as 
it seems almost certain it will, Poe's dictum will be hard to defend in any 
form. 

Even in the unlikely event that the M.I.T. system is breakable, there 
are probably all kinds of other trapdoor functions that can provide 
virtually unbreakable ciphers. Diffie and Hellman are applying for pat- 
ents on cipher devices based on trapdoor functions they have not yet 
disclosed. Computers and complexity theory are pushing cryptography 
into an exciting phase, and one that may be tinged with sadness. All over 
the world there are clever men and women, some of them geniuses, who 
have devoted their lives to the mastery of modern cryptanalysis. Since 
World War I1 even those government and military ciphers that are not 
one-time pads have become so difficult to break that the talents of these 
experts have gradually become less useful. Now these people are stand- 
ing on trapdoors that are about to spring open and possibly drop them 
completely from sight. 

ANSWERS 

In spite of the many errors in the published version of the cipher Poe 
could not solve, about a dozen readers, including 16-year-old James H. 
Andres, were able to crack it. The plaintext is as follows: 
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MR. ALEXANDER, 

HOW IS IT, THAT, THE MESSENGER ARRIVES HERE AT THE SAME TIME WITH THE 

SATURDAY COURIER AND OTHER SATURDAY PAPERS WHEN ACCORDING TO THE DATE 

IT IS PUBLISHED THREE DAYS PREVIOUS. IS THE FAULT WITH YOU OR THE POSTMASTERS? 

The cipher is a polyalphabetic substitution cipher working with 12 
alphabets keyed by the words "United States." Each letter indicates the 
degree of shift for a Caesar cipher. Thus the alphabet key for M, the first 
letter of the plaintext, is A = u, B = v, c = w and so on. For R, the second 
letter of the plaintext, the key is A = N, B = o, c = P and so on. 

There were 16 errors in the published cryptogram: first, J was given 
as the third letter instead of I, and second, the fifth letter in the message 
was omitted. If the second mistake had not been made, Poe might have 
guessed the opening to be "Mr. Alexander" and the solution would have 
followed easily. 

As for the $100 challenge cipher, no one has cracked it. Rivest told 
me in 1988 that he no longer has a record of the message or the primes 
he used. However, since I gave the public key, he will be able to verify a 
solution if he receives one. 
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When I wrote the preceding chapter for a column in the 
August 1977 issue of Scientific American, I certainly had not anticipated 
the intense furor it would arouse. As I reported, Ronald Rivest had 
offered to send a copy of the M.I.T. memo giving details about what soon 
came to be known as the RSA cryptosystem (after the initials of the three 
mathematicians) to anyone who sent M.I.T. a stamped self-addressed 
envelope. This offer prompted Joseph Meyer, an angry employee of NSA 
(National Security Agency), to fire off threatening letters to the leaders of a 
coming symposium on cryptography, warning them that public disclosures 
of trapdoor systems violated national security laws. 

M.I.T. had been flooded with some 7,000 requests from all over the 
world for its trapdoor-cipher memo, but Meyers's letter put a stop to the 
mailing. It was almost a year before M.I.T. attorneys concluded that 
the memo violated no laws and allowed the mailing to be resumed. 
Since then an uneasy truce has prevailed between NSA and researchers 
on public-key cryptosystems. There has been no outright censorship and 
no one has gone to jail, but there has been much voluntary censorship by 
mathematicians. High-level research within NSA remains top secret, and 
it is impossible for outsiders such as myself to know what NSA knows. 
The acronym NSA, it has often been said, stands for "Never Say Any- 
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thing" or (reflecting NSA's efforts to keep out of the limelight) "No Such 
Agency." 

It is not hard to understand why NSA became so jittery. Publication 
of seemingly break-proof ciphers obviously allows other nations to adopt 
codes that NSA might be unable to crack, and, as long as there is 
freedom here to publish techniques for breaking such ciphers, any na- 
tion using a breakable code would at once stop using it. Moreover, as I 
implied, if truly unbreakable codes become common around the world, 
it would almost put NSA out of business." 

For many years U.S. banks and corporations have been protecting 
their communications with a system called Data-Encryption Standards 
(DES), developed by IBM and approved by the National Bureau of Stan- 
dards. The DES is a "symmetric" system, meaning that it codes and 
decodes by the same procedure, not an "asymmetric" trapdoor system. 
Nevertheless, it is extremely difficult to break if its key uses a large 
number of bits. There is evidence that NSA persuaded IBM to hold its 
key size down to 56 bits so that in case foreign governments chose to 
adopt DES, NSA could still break their codes. Although DES is still being 
used, Bell Telephone rejected it for security reasons, and it has come 
under heavy fire, especially from Diffie and Hellman, who consider it too 
weak to survive many more years. 

Chief rivals to the RSA system have been the so-called knapsack 
systems. Knapsack problems are a large family of combinatorial tasks 
that involve finding among a set of numbers a subset that will "fit," 
subject to various constraints, inside a hypothetical "knapsack." The 
simplest example, known as the subset-sum problem, is to select from a 
set of integers a subset that will add to a specified value. Subset-sum 
problems are common in the puzzle books of Sam Loyd and Henry 
Dudeney, often in the form of a target whose concentric rings are as- 
signed different numerical values. The task is to determine how shots 
can be fired at the target to obtain hits that add exactly to a given sum. 
Such puzzles are not hard to solve by trial and error when the set of 
numbers is small, but they become enormously difficult as the set in- 
creases in size. 

A combinatorial task is called "hard" if it can be shown that no 
computer algorithm can solve it in "polynomial time." This results from 

*A good discussion of the pros and cons of the debate between NSA's desire for 
security and the mathematical community's desire for openness will be found in David 
Kahn's 1983 book, Kahn on Codes, pp. 198-203. 
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the fact that as a certain parameter of the problem increases, the time 
required to solve the problem grows at an exponential, or "nonpolyno- 
mial," rate. Studies of such problems belong to a new branch of mathe- 
matics and computer science called "complexity theory." A great deal of 
work has been done and is continuing on a special class of problems 
called NP-complete (NP for nondeterministic-polynomial). There are now 
hundreds of such problems, all believed to be hard (though no proof has 
yet been found), and all related so that if an algorithm is found for solving 
one of them in polynomial time, it will at once solve all of them. The 
subset-sum problem is NP-complete. 

Ralph Merkle was the first to base a knapsack system on subset-sum, 
and for a short time it was preferred to RSA because it was faster to code 
and decode. Then in 1982 Adi Shamir, the Israeli member of the M.I.T. 
team, found an algorithm that solved "almost all" knapsack systems in 
polynomial time. Ralph Merkle had offered a $100 prize to anyone 
breaking his system, and Shamir collected it. Merkle then increased the 
complexity of his system to what he called a "multiply iterated" version, 
offering $1,000 to anyone who could break it. Ernest Brickell of Sandia 
Laboratories won the second prize in 1984. The subset-sum problem 
continues, however, to be NP-complete, and it is possible that new 
cipher systems based on it or on other knapsack problems will withstand 
the onslaught of new algorithms. Rivest and B. Chor have proposed a 
knapsack system based on the logarithms of large primes that has not so 
far been cracked by the Sandia techniques. It has been reported that NSA 
thought of knapsack codes about a decade before Merkle did but, in 
keeping with its "Never Say Anything" policy, has kept mum about it. 

The factoring of large numbers is not in the NP-complete family, but 
it is thought to be hard, and so far no one has found a way to factor large 
numbers in polynomial time. However, such techniques have been 
steadily improving along with methods of testing the primality of big 
numbers. Fast procedures for testing primality in "near polynomial 
time" were discovered in the 19801s, and in 1982 a team at Sandia Labs, 
under the direction of Gustavus Simmons, succeeded (with a Cray su- 
percomputer) in factoring the Mersenne number 2521 - 1, an integer of 
157 digits. It took the Cray about 32 hours to find the number's three prime 
factors. Until this breakthrough, mathematicians had estimated that a Cray 
computer would need millions of years to factor a number with more than 
100 digits. 

In view of these new factoring techniques, no one can rule out the 
possibility of a polynomial-time algorithm that would topple the RSA 
system. When the system was first announced, numbers of 80 digits were 
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recommended for the two primes p and q. It is now recommended that 
each of these primes be at least 100 digits. It is best that they be nearly 
the same size, that p plus or minus 1 and q plus or minus 1 should each 
have at least one large prime factor and that the greatest common 
divisor of p - 1 and q - 1 be fairly small. Up to now the RSA system has 
remained secure. Computer chips for fast coding and decoding are 
available from RSA Data Security, Inc., 10 Twin Dolphin Drive, Red- 
wood City, CA 94065. 

A variety of fascinating spin-offs have resulted from the basic ideas 
behind trapdoor codes. It occurred at once to Robert Floyd, a computer 
scientist at Stanford, that such systems could be used by two people in 
communication by mail (paper or electronic) to make random decisions 
in ways that are immune to cheating. For example, two people in touch 
by telephone can agree on the outcome of a random flip of a coin or the 
outcome of a die toss. In June 1978 Floyd sent me a letter outlining how 
two persons could play backgammon by mail or telephone. Picking up 
Floyd's cue, Rivest, Shamir and Adleman wrote a paper on "mental 
poker" in which they explained how two players who did not trust each 
other can actually play a fair game of poker over the phone without using 
any cards." 

Another spin-off was the development of ingenious systems for mak- 
ing secure the transmission of scientific data over electronic networks. 
Consider, for instance, research conducted by instruments that have 
been landed on Mars. Researchers need to be sure that when they link to 
these instruments, they are not linked to some other data source and that 
no one else can alter the data being transmitted or can alter their 
instructions to the instruments. In brief, they need to be assured of the 
network's authenticity, integrity and secrecy.t 

The most startling, almost unbelievable, spin-off has been the devel- 
opment of what are called "zero-knowledge proofs." Suppose a mathe- 
matician discovers a proof of a certain theorem. He wants to convince 
his colleagues that he actually has the proof but doesn't want to disclose 
the proof itself. In 1986 it was shown that this could be done with special 

*"Mental Poker" was first published in 1979 as a technical report of the M.I.T. 
Laboratory of Computer Science. It is reprinted in The Mathematical Gardner, edited 
by David Klarner (Prindle, Weber, and Schmidt, 1981). On coin flipping, see "Coin 
Flipping by Telephone," Manuel Blum, SIGACT News, 15, 1983, pp. 23-27. 
tFor a good summary of recent developments in this area of "telescience," see Peter 
Denning's "Security of Data in Networks," in American Scientist, 75, JanuaryJFebruay 
1987, pp. 12-14. For more detailed information see Dorothy Denning's book 
Cryptography and Data Security (Addison-Wesley, 1982). 
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cases of NP-complete problems. For example, consider the NP-complete 
task of finding a Hamiltonian circuit-a path that goes through all 
points of a graph just once and returns to the starting point. Suppose that 
for a given graph with a large number of points it is not known whether it 
has a Hamiltonian circuit. A mathematician wishes to convince his 
colleague that he has found such a circuit, but he doesn't want to reveal 
the actual circuit. It is hard to comprehend, but there are now tech- 
niques by which he can do this. 

In 1986 Manuel Blum, a computer expert at the University of Califor- 
nia, Berkeley, found a way to apply zero-knowledge proofs to any mathe- 
matical problem! The procedure consists essentially of a dialogue be- 
tween the "prover" and the "verifier" who wants to be convinced that 
the proof exists. The verifier asks a series of random questions, each to 
be answered by yes or no. After the first question, the verifier is con- 
vinced that the prover has a 112 chance of being wrong. After the second 
question, he is convinced the prover has a 114 chance of being wrong. 
After the third question, the probability drops to 118, and so on, with the 
denominators increasing in a doubling series. After, say, 100 questions 
the chance that the prover is lying or doesn't have a proof becomes so 
close to zero that the verifier is convinced beyond any shadow of a 
doubt. After 300 questions the denominator is Z3O0, which is more than 
the number of atoms in the universe. There is never absolute certainty 
that the proof exists, but it is so close to certainty that all doubt vanishes. 
See the Bibliography for some nontechnical pieces about this surprising 
new development. 

Do zero-knowledge proofs have practical applications beyond satis- 
fying the egos of mathematicians who want to announce a discovery 
before anyone else does and before they have published the details? They 
do indeed. Adi Shamir, now at the Weizman Institute in Israel, found a 
way to make use of zero-knowledge methods for creating unforgeable ID 
cards, Think of a computer chip within such a card that can engage in 
rapid dialogue with a computer chip in an instrument used for verifying 
the ID. Within a few seconds enough random questions have been asked 
and answered to convince the verifier "beyond any shadow of a doubt," 
even though the verification cannot be absolutely certain. There have for 
decades been methods of showing that large numbers are almost cer- 
tainly prime, such as by using probabilistic techniques, but finding simi- 
lar methods for validating an ID card came as a big surprise. 

The implications of unforgeable ID cards for military as well as 
civilian use are so enormous that when Shamir applied for a U.S. patent, 
the Army ordered that all documents and materials related to such cards 
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be destroyed. This aroused such a storm of protest from the mathemati- 
cal community that the government quickly rescinded the order, giving 
as its reason that it could not impose such restraints on a mathematician 
who was not a U.S. citizen. No one knows if NSA had any role in this 
attempt at censorship. For a good account of the flap, see the New York 
Times 1987 article cited in the Bibliography. 

Inventions of new public-key cryptosystems and new ways to break 
them, as well as their applications to the security of networks and to 
identification techniques, are occurring so rapidly that by the time you 
read this chapter, much of it may be out of date. The science of crypto- 
logy is undergoing a curious revolution, and no one can predict just 
where it will lead. Let me close with some whimsical dialogue from 
Romanoff and Juliet, a play by Peter Ustinov first produced in New York 
City in 1957. 

The scene occurs at the close of the second act. The General (played 
by Ustinov) is president of what is identified only as the smallest nation 
in Europe. Hooper Molesworth is the country's American ambassador. 
Vadim Romanoff is the Russian ambassador. Molesworth's daughter 
Juliet and Romanoff's son Igor are lovers. 

In the American Embassy, the General says to Molesworth: 

"Incidentally, they [the Russians] know your code." 

Molesworth replies: "We know they know our code. We only give 
them things we want them to know." 

Crossing over to the Russian Embassy, the General remarks to 
Romanoff: 

"Incidentally, they [the Americans] know you know their code." 

Romanoff says: "That does not surprise me in the least. We have 
known for some time that they knew we knew their code. We 
have acted accordingly - by pretending to be duped." 

Returning to the American Embassy, the General says to 
Molesworth: 

"Incidentally, you know-they know you know they know you 
know. . . . ,, 

Molesworth is now genuinely alarmed. 
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"What? Are you sure?" 

"I'm positive." 

"Thank you-thank you! I shan't forget this." 

The General is amazed. 

"You mean you didn't know?" 
"No!" 

In 1957 a dialogue like this was at least believable. Could it occur 
today? Maybe NSA knows. 
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Hyperbolas 

Lewis Carroll once wrote (in The Dynamics of a Parti-cle): 
"What mathematician has ever pondered over an hyperbola, mangling 
the unfortunate curve with lines of intersection here and there, in his 
efforts to prove some property that perhaps after all is a mere calumny, 
who has not fancied at last that the ill-used locus was spreading out its 
asymptotes as a silent rebuke, or winking one focus at him in contemptu- 
ous pity?" 

Put a large sphere, say a basketball, on a light-colored tabletop in a 
darkened room. Shine a flashlight directly down on the ball as is shown 
at A in Figure 93. The ball's shadow is, of course, a circle. Its center is the 
point where the ball touches the surface of the table. 

Move the flashlight toward the east as at B in the illustration. The 
shadow stretches to an ellipse. The center of the circle has now split into 
two points that are the foci of the ellipse. The sphere rests on the focus 
closer to the light source. As you move the light farther east, the other 
focus moves west, increasing the eccentricity of the ellipse. 

Lower the light source until it is level with the top of the ball (C). The 
ball still rests on the eastern focus, but now the western focus has 
traveled to infinity. The outline of the shadow is a parabola. 

Move the light until it is below the top of the ball (D). The curve 
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Circle Ellipse 

Figure 93 Shadow experiment displays four conicsection curves 

of the shadow becomes a hyperbola. The sphere still touches the table at 
the focus of the hyperbola but now something delightful has happened to 
the missing focus. 

Imagine that in all four pictures there is a counterball, identical with 
the sphere on the table but placed on the other side of the light source 
the same distance away. The counterball is shown with a broken line 
in the last picture (D). Note that it casts a shadow cone identical with the 
one produced by the ball on the table but turned the other way. The 
apexes of the cones meet at the light. 

In the first three pictures the counterball's shadow lies above the 
plane of the tabletop. When the light source moves below the top of the 
ball, however, the countershadow falls on the plane to form a counter- 
curve that is the eastern branch of the hyperbola under the ball. The 
missing focus has, so to speak, traveled around infinity to return on the 
other side! Since the two ends of infinity are one and the same point, they 
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are comparable to the extremities of a ring that has been cut and opened 
out into a straight line. This infinite, unmutilated ring is the geometric 
metaphor behind Henry Vaughan's famous couplet "I saw Eternity the 
other night / Like a great Ring of pure and endless light." 

Imagine the counterball in the last picture moving away from the 
light source but continuously expanding so that it always touches the 
sides of the countercone. When the counterball is large enough to touch 
the tabletop, it will rest on the focus of the counterbranch of the hyper- 
bola. These two spheres of unequal size, nested in the cones and touch- 
ing the cutting plane at the foci of the hyperbola, provide an old, elegant 
proof that the curves are indeed branches of a hyperbola. The proof is 
clearly explained on pages 8 and 9 of Geometry and the Imagination, by 
David Hilbert and S. Cohn-Vossen. If both spheres are placed in the same 
cone, a similar proof can be used (see Chapter 15 of my New Mathemati- 
cal Diversions from Scientific American) to show that a curve is an 
ellipse. 

The shadow experiment I have been describing is a way of displaying 
the four curves as conic sections. The plane of the tabletop is the plane 
that cuts the cones. It is apparent that the circle is a limiting case of the 
ellipse. The parabola is a limit of both ellipse and hyperbola. Like the 
circle, it has only one shape, although the shape can be enlarged or 
diminished. Both the ellipse and the hyperbola, however, are infinite 
families of different shapes. 

Astronomers often find it difficult to decide whether a comet or a 
meteor is traveling an elliptical, parabolic or hyperbolic path. It is easy 
to see why. Vary the parabola ever so slightly one way and it becomes an 
ellipse. Vary it ever so slightly the other way and it becomes a hyperbola. 
Comets in permanent orbit around the sun move on ellipses. Those that 
enter the inner solar system and then leave, never to return, move on 
parabolas or hyperbolas. 

Since the hyperbola is a kind of ellipse split in half by infinity, it is not 
surprising that the two curves are related to each other in many inverse 
ways. An ellipse is the locus of all points whose distances from two fixed 
points have a constant sum. The two fixed points are called the foci of 
the curve. This is the basis for the ancient method of drawing an ellipse 
with a pencil and a loop of string that goes around two pins. 

The hyperbola is the locus of all points whose distances from two 
fixed points have a constant difference. Figure 94 shows a string device 
for drawing one branch of a hyperbola. The pencil at P keeps the string 
taut and pressed against the rod as the rod rotates around its fixed end at 
focus A.  The string is attached to focus B and to the rod's free end, C. 



Figure 94 
String method of drawing a hyperbola 

BP  + PC is constant; therefore AP - BP must also be constant. Since AP 
and BP are the distances of P from the two foci, we have proved that the 
curve must be a hyperbola. 

Ellipses and hyperbolas are also easily produced by a paper-folding 
method that points up the inverse kinship of the curves. Draw a circle on 
a sheet of translucent paper such as waxed paper or tracing paper. Mark 
a spot anywhere inside the circle that is not at the circle's center. Fold 
the paper in a variety of ways each of which brings the spot onto the 
circumference of the circle. Each fold line is tangent to an ellipse. When 
enough folds have been made, the ellipse will take shape as the "enve- 
lope" of the tangents. The spot and the center of the circle are the two 
foci of the ellipse. To fold a hyperbola follow the same procedure with a 
spot anywhere outside rather than inside the circle. Both branches of the 
hyperbola appear in Figure 95. Again the spot and the center of the circle 
are the two foci of the curve. 

Will a spot on the circumference of the circle give rise to a parabola? 
Unfortunately it will not. We can blame this perversity on the parabola's 
lost focus. Each fold line goes through the center of the circle and is 
therefore tangent to a degenerate ellipse whose length is the circle's 
radius and whose width is zero. To get a parabola we need a circle 
expanded to infinity so that its circumference is a straight line. Rule a 
line on the paper and pick a point off the line; now the same folding 
technique will produce a splendid parabola. The missing focus is the 
"center" of the infinite circle. 
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Figure 95 Folding a hyperbola 

Of the four conic curves, the hyperbola is the curve least often 
observed in everyday life. Circles and ellipses are everywhere. We see 
parabolas whenever we water a lawn with a hose or watch the flight of a 
baseball.* One of the few times we see a complete hyperbola is when a 
lamp with a cylindrical or conical shade, open at both ends, throws 
shadows on a nearby wall. Our forebears saw a branch of a hyperbola on 
a wall when they held near the wall a candle burning in a candlestick 
with a circular base. 

Scientists and mathematicians are constantly seeing hyperbolas as 
the graphs of various second-degree equations. Even the simple equation 
ab  = c, where c is a constant, graphs as a hyperbola. It is the equation of 

*Many readers quite properly chided me for saying that tossed objects follow paths 
that are parabolas. The paths are very close to parabolas, but strictly speaking (and 
ignoring air resistance) a tossed object follows an elliptical orbit around the earth's 
center of gravity. 
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hundreds of physical laws (Boyle's law and Ohm's law, to mention two) 
and also the equation of many economic functions. A simple experiment 
to display ab  = c can be made with two rectangular sheets of glass. Place 
them together at one pair of edges and separate the opposite edges by a 
tiny distance with a short strip of cardboard or a pair of matches. Rubber 
bands will keep the plates fixed in this position. Stand the device in 
colored water. Capillary action will make the hyperbola shown in 
Figure 96. 

A typical hyperbola is shown in Figure 97. The two gray lines are the 
curve's asymptotes, or the unreachable limits the curve's branches ap- 
proach as they are extended. If the asymptotes, are perpendicular to 
each other (they are not here), the hyperbola is called equiangular or 
rectangular. 

The arms of a parabola quickly become almost indistinguishable 
from parallel lines. In contrast, the arms of a hyperbola rapidly widen on 
their way to infinity, although they are forever confined within the angle 
of their asymptotes. It is this beautiful property that has inspired many 
poetic and theological metaphors. Miguel de Unamuno, the Spanish 
philosopher, called the hyperbola a tragic curve. "I believe that if the 
geometrician were to be conscious of this hopeless and desperate striv- 
ing of the hyperbola to unite with its asymptotes," Unamuno wrote, "he 
would represent the hyperbola to us as a living being and a tragic one!" 

In his essay "The Immortality of the Soul," however, Joseph Addison 
regarded the metaphor with optimism. After death the soul moves ever 
closer to God without ever becoming God. "We know not yet what we 
shall be, nor will it ever enter into the heart of man to conceive the glory 
that will be always in reserve for him. The soul, considered with its 

Figure 96 
Hyperbola produced by 
capillary action 
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Figure 97 A typical hyperbola 

Creator, is like one of those mathematical lines that may draw nearer to 
another for all eternity without a possibility of touching it." 

Hyperbolas have a dramatic application in range-finding. To under- 
stand how this works consider a person A who fires a rifle at a distant 
gong B. Assuming that the ground is flat, where must one stand to hear 
the sound of the gun and the sound of the gong simultaneously? 

Let x be the distance sound travels in the length of time it takes the 
bullet to travel from the gun to the gong. A and B are the foci of countless 
hyperbolas. The person who hears the sounds simultaneously must stand 
on a branch of a hyperbola (the one nearest the target) that is the locus of 
all points the difference of whose distances from A and B is n. 

A distant sound can be located by two pairs of listening posts: A and 
B, C and D. Listeners at A and B record the time they hear the sound. 
Their clocks are synchronized so that they can obtain a precise differ- 
ence between the two times. Call the difference x. The sound must come 
from a branch of a hyperbola (the one nearest the sound) that is the 
locus of all points the difference of whose distances from A and B is x. 
This curve is drawn on a map. Listeners at C and D do the same thing and 
plot a branch of another hyperbola on the same map. The spot where the 
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two curves intersect, nearer the sound's origin, gives the "fix" of the 
origin. 

Hyperbolic navigation systems such as loran, which was developed 
during World War 11, operate by a reverse procedure. Somewhere on the 
shore a pair of stations A and B-one is called the master station, the 
other the slave station-send out simultaneous radio signals. Another 
pair of master and slave stations, C and D, do the same thing from 
another shore position. A ship or an airplane at sea, using the time 
differences in receiving the signals from both pairs of stations, can plot 
two hyperbolas that intersect on the map to fix its location. 

Mirrors with a hyperbolic cross section are found (usually with other 
kinds of mirrors) in some reflecting telescopes and special-purpose cam- 
eras and behind the light sources of flashlights and searchlights. If a light 
source is at one focus of an elliptical mirror, all the reflected rays 
converge on the other focus. If the light source is at the focus of a 
parabola, the reflected rays are parallel as they seek the lost focus at 
infinity. A hyperbolic mirror causes the reflected rays to diverge as is 
shown in Figure 98. If, however, we extend these diverging rays back- 
ward as is shown by the broken lines, they obligingly converge on the 

Figure 98 Reflected rays from light at one focus of 
a hyperbola find the other focus 
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Figure 99 Cylindrical string model (left) twists into a hyperboloid (middle) 
and a double cone (right) 

other focus. In a sense they have traversed the infinite and found the lost 
focus at a point just behind their origin. 

A lovely hyperbolic surface with many remarkable properties is the 
"hyperboloid of one sheet," first described by Archimedes. A string 
model of this surface is shown in the middle of Figure 99. Vertical cross 
sections of the surface are hyperbolas and horizontal cross sections are 
ellipses. If the horizontal sections are circles, it is a "hyperboloid of 
revolution of one sheet," so called because it is generated by spinning a 
hyperbola around its conjugate axis. (If a hyperbola is rotated around its 
transverse axis, it generates a hyperboloid of rotation of two sheets: a 
pair of domelike structures separated by a finite distance.) 

In 1669 Christopher Wren, the architect who designed St. Paul's 
Cathedral, reported an extraordinary discovery about the hyperboloid of 
one sheet. He showed that the hyperboloid of one sheet is what mathe- 
maticians now call a ruled surface, a surface consisting of an uncount- 
able infinity of perfectly straight lines! 

A cylinder, for example, is a ruled surface of parallel straight lines. A 
cone is a ruled surface of straight lines that meet at the apex of the cone. 
The hyperboloid is a ruled surface of two distinct families of straight 
lines. In the middle of Figure 99 you see some members of one set all 
slanting the same way with no two lines intersecting. The other family 
(which is not shown) is a mirror-image set, slanting the other way. Each 
line of one set, when extended, intersects each extended line of the 



other. A straight line from each set passes through every point on the 
hyperboloid. The pair of lines through a point defines the plane tangent 
to the surface at that point. 

It is easy to see from the string model that a hyperboloid of one sheet 
is generated by the rotation around an axis of a straight line segment that 
is skew to the axis; that is, the line incorporating the segment does not 
intersect the axis. (If the rotating line segment is parallel to the axis, it 
generates a cylinder; if its extension intersects the axis, it generates part 
of a cone.) This suggests a simple experiment with a pencil and a paper 
clip. Open the paper clip to form an acute angle and then push one end 
through the eraser of the pencil, as shown in Figure 100. Turn the wire 
so that AB, the upright part, is skew to the vertical axis of the pencil. 
Place the pencil between your palms and spin it by sliding your hands 
rapidly back and forth. With the right lighting, the rotating skew line will 
form a transparent hyperboloid. 

If a cube is spun on one corner, its six skew lines generate a similar 
surface. With a little practice you can snap a die between your finger and 
your thumb and make it spin on a corner. Lower your head to view the 
spinning cube from the side. You will see in profile a hyperboloid 
between two cones, as shown in Figure 101. 

Making the string model of Figure 99 is not difficult. Simply thread a 
string back and forth through holes evenly spaced around the rim of two 
cardboard or plywood disks. Spots of glue placed over the holes will 
keep the cord from sliding. When the disks are held apart to stretch the 
cord vertically, as they are at the left in the illustration, they model a 
cylinder. Twist one of the disks 180 degrees clockwise and the strings 
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Figure 101 
Hyperboloid between cones from 
spinning cube 

model two cones as shown at the right. Between these two limits, twists 
produce an infinite family of hyperboloids such as the one shown in the 
middle of the illustration, ruled with straight strings that slant one way. 
Twist the disk counterclockwise and you can run through the mirror- 
image set of hyperboloids, ruled by strings slanting the other way. 

A much more difficult model to make, built of rigid wires instead of 
strings, is described in Geometry and the Imagination, pages 16 and 17. 
The pair of wires at each intersection are joined by a universal joint that 
allows rotation but not sliding. You would expect such a structure to be 
rigid. Instead it is flexible in a curious way. If the model is compressed in 
one direction, the elliptical cross section degenerates into a straight line 
and the rods fold up into a vertical plane on which they form the 
envelope of a hyperbola. If the model is collapsed the other way, the rods 
fold down into a horizontal plane on which they form the envelope of an 
ellipse. Figure 102, based on a photograph in Geometry and the Imagina- 
tion, shows how two hyperboloids of revolution can provide a gear 
transmission between two skew axes. The cogs of each gear are one of its 
sets of generating straight lines. This is only one of many ways that 
hyperboloids have been used in mechanical linkages. 

A striking architectural use of a hyperboloid of revolution of one 
sheet is provided by the McDonnell Planetarium at Forest Park in St. 
Louis (see Figure 103). The designer, Gyo Obata, chose the surface 
because the hyperbolic paths of certain comets suggest, as he put it, "the 
drama and excitement of space exploration." Note the straight line of the 
shadow thrown by the circular roof as sunshine slants down on the 
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Figure 102 Hyperboloidal gears transmit motion to 
a skew shaft 

Figure 103 The McDonnell Planetarium in St. Louis, Mo. 
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planetarium. Is this shadow line one of the generating straight lines of 
the surface, or is it a space curve that appears straight only when viewed 
from the angle shown? 

ANSWERS 

Does the straight-line shadow on the photograph of the McDonnell Plan- 
etarium in St. Louis corresponds to one of the straight lines that rule 
the surface of the structure's hyperboloid of revolution of one sheet? The 
answer is yes. At those times when the line containing the edge of 
the shadow intersects the sun, the edge of the shadow on the side of the 
planetarium coincides with a generating line of the surface. That line is a 
projection of a single point on the circumference of the circular top of 
the planetarium, not a projection of the entire circumference. When the 
sun is at any other elevation, the edge of the shadow will be a curved line 
and not a generating line of the surface. 

A D D E N D U M  

Pierre Bezier wrote from Paris to tell me that hyperboloids of one sheet 
are often used for the construction of cooling towers at power stations. 
Because the concrete sides can be reinforced by straight steel bars (as in 
the model explained earlier), the structure is unusually sturdy. The 
conning towers of old battleships, Clyde Holvenstot informed me, were 
also often built the same way. He sent me a photograph from the New 
York Times Book Review (October 2, 1977) showing two such hyperbo- 
loid towers on the battleship USS  Michigan before the Navy scrapped 
her. 

Derek Ball, in a 1980 paper (see the Bibliography), discusses an 
unexpected appearance of hyperbolas in constructions involving lines 
that cut the area of an equilateral triangle into integral fractions. For 
example, if you draw across the triangle all straight lines that exactly 
bisect its area, the envelope of the lines is the small delta-shaped figure 
shown in Figure 104. Its sides are hyperbolas. 

In my remarks about how to fold a circle to produce ellipses and 
hyperbolas and why such folding will not produce a parabola, I failed to 
acknowledge letters from Walter Cibulskis of the Illinois Institute of 
Technology, who called these facts to my attention. 
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Figure 104 
Three hyperbolas form the envelope 
of bisecting lines 
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The New Eleusis 

I shall always consider the best guesser the best 
Prophet. 

-CICERO De Divinatione 

Don't never prophesy-onless ye know. 

-JAMES RUSSELL LOWELL, The Biglow Papers 

In June 1959, I had the privilege of introducing in Scien- 
tific American a remarkable simulation game called Eleusis. The game, 
which is played with an ordinary deck of cards, is named for the ancient 
Eleusinian mysteries, religious rites in which initiates learned a cult's 
secret rules. Hundreds of ingenious simulation games have been devel- 
oped for modeling various aspects of life, but Eleusis is of special interest 
to mathematicians and scientists because it provides a model of induc- 
tion, the process at the very heart of the scientific method. My first 
column on Eleusis was reprinted in The 2nd Scientific American Book of 
Mathematical Puzzles & Diversions (Simon and Schuster, 196 1). Since 
then Eleusis has evolved into a game so much more exciting to play than 
the original version that I feel I owe it to readers to bring them up to 
date. I will begin, however, with some history. 
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Eleusis was invented in 1956 by Robert Abbott of New York, who at 
the time was an undergraduate at the University of Colorado. He had 
been studying that sudden insight into the solution of a problem that 
psychologists sometimes call the "Aha" reaction. Great turning points in 
science often hinge on these mysterious intuitive leaps. Eleusis turned 
out to be a fascinating simulation of this facet of science, even though 
Abbott did not invent it with this in mind. In 1963 Abbott's complete 
rules for the game appeared in his book, Abbott's New Card Games 
(hardcover, Stein & Day; paperback, Funk & Wagnalls). 

Martin D. Kruskal, a distinguished mathematical physicist at Prince- 
ton University, became interested in the game and made several impor- 
tant improvements. In 1962 he published his rules in a monograph titled 
Delphi: A Game o f  Inductive Reasoning. Many college professors around 
the country used Eleusis and Delphi to explain scientific method to 
students and to model the Aha process. Artificial intelligence scientists 
wrote computer programs for the game. At the System Development 
Corporation in Santa Monica, research was done on Eleusis under the 
direction of J. Robert Newman. Litton Industries based a full-page adver- 
tisement on Eleusis. Descriptions of the game appeared in European 
books and periodicals. Abbott began receiving letters from all over the 
world with suggestions on how to make Eleusis a more playable game. 

In 1973 Abbott discussed the game with John Jaworski, a young 
British mathematician who had been working on a computer version of 
Eleusis for teaching induction. Then Abbott embarked on a three-year 
program to reshape Eleusis, incorporating all the good suggestions he 
could. The new game is not only more exciting, its metaphorical level 
has been broadened as well. With the introduction of the roles of 
Prophet and False Prophet the game now simulates the search for any 
kind of truth. Here, then, based on a communication from Abbott, are 
the rules of New Eleusis as it is now played by aficionados. 

At least four players are required. As many as eight can play, but 
beyond that the game becomes too long and chaotic. 

Two standard decks, shuffled together are used. (Occasionally a 
round will continue long enough to require a third deck.) A full game 
consists of one or more rounds (hands of play) with a different player 
dealing each round. The dealer may be called by such titles as God, 
Nature, Tao, Brahma, the Oracle (as in Delphi) or just Dealer. 

The dealer's first task is to make up a "secret rule." This is simply a 
rule that defines what cards can be legally played during a player's turn. 
In order to do well, players must figure out what the rule is. The faster a 
player discovers the rule, the higher his score will be. 
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One of the cleverest features of Eleusis is the scoring (described 
below), which makes it advantageous to the dealer to invent a rule that is 
neither too easy to guess nor too hard. Without this feature dealers 
would be tempted to formulate such complex rules that no one would 
guess them, and the game would become dull and frustrating. 

An example of a rule that is too simple is: "Play a card of a color 
different from the color of the last card played." The alternation of 
colors would be immediately obvious. A better rule is: "Play so that 
primes and nonprimes alternate." For mathematicians, however, this 
might be too simple. For anyone else it might be too difficult. An exam- 
ple of a rule that is too complicated is: "Multiply the values of the last 3 
cards played and divide by 4. If the remainder is 0, play a red card or a 
card with a value higher than 6. If the remainder is 1, play a black card or 
a picture card. If the remainder is 2, play an even card or a card with a 
value lower than 6. If the remainder is 3, play an odd card or a 10." No 
one will guess such a rule, and the dealer's score will be low. 

Here are three examples of good rules for games with inexperienced 
players: 

1. If the last legally played card was odd, play a black card. Otherwise 
play a red one. 

2. If the last legally played card was black, play a card of equal or 
higher value. If the last card played was red, play a card of equal or lower 
value. (The values of the jack, queen, king and ace are respectively 11, 
12, 13 and 1.) 

3. The card played must be either of the same suit or the same value 
as the last card legally played. 

The secret rules must deal only with the sequence of legally played 
cards. Of course, advanced players may use rules that refer to the entire 
pattern of legal and illegal cards on the table, but such rules are much 
harder to guess and are not allowed in standard play. Under no circum- 
stances should the secret rule depend on circumstances external to the 
cards. Examples of such improper rules are those that depend on the sex 
of the last player, the time of day, whether God scratches his (or her) ear 
and so on. 

The secret rule must be written down in unambiguous language, on 
a sheet of paper that is put aside for future confirmation. As Kruskal 
proposed, the dealer may give a truthful hint before the play begins. For 
example, he may say "Suits are irrelevant to the rule," or "The rule 
depends on the two previously played cards." 

After the secret rule has been recorded, the dealer shuffles the dou- 
ble deck and deals 14 cards to each player and none to himself. He 



places a single card called the "starter" at the extreme left of the playirlg 
surface, as is indicated in Figure 105. To determine who plays first the 
dealer counts clockwise around the circle of players, starting with the 
player on his left and excluding himself. He counts until he reaches 
the number on the starter card. The player indicated at that number 
begins the play that then continues clockwise around the circle. 

A play consists of placing one or more cards on the table. To play a 
single card the player takes a card from his hand and shows it to every- 
one. If according to the rule the card is playable, the dealer says "Right." 
The card is then placed to the right of the starter card, on the "main line" 
of correctly played cards extending horizontally to the right. 

If the card fails to meet the rule, the dealer says "Wrong." In this 
case the card is placed directly below the last card played. Vertical 
columns of incorrect cards are called "sidelines." (Kruskal introduced 
both the layout and the terminology of the main line and sidelines.) Thus 
consecutive incorrect plays extend the same sideline downward. If a 
player displays a wrong card, the dealer gives him two more cards as a 
penalty, thereby increasing his hand. 

If a player thinks he has discovered the secret rule, he may play a 
"string" of 2, 3 or 4 cards at once. To play a string he overlaps the cards 
slightly to preserve their order and shows them to everyone. If all the 
cards in the string conform to the rule, the dealer says "Right." Then all 
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Figure 105 A typical round of Eleusis at a n  early stage 
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the cards are placed on the main line with no overlapping, as if they were 
correctly played single cards. 

If one or more cards in a string are wrong, the dealer declares the 
entire string wrong. He does not indicate which cards do not conform to 
the rule. The wrong cards are left overlapping to keep their identity as a 
string and the entire string goes below the last card played. The player is 
then dealt twice as many cards as there are in the string. 

The layout shown in Figure 105 demonstrates all the rules of Eleusis 
mentioned so far. The dealer's secret rule for this layout is the first of the 
three given above. 

Players improve their score by getting rid of as many cards as possi- 
ble, and of course they can do this best if they guess the secret rule. At 
the start of a round there is little information to go on, and plays are 
necessarily random. As the round continues and more and more infor- 
mation is added to the layout, the rule becomes steadily easier to guess. 

It may happen that a player thinks he knows the secret rule but finds 
he has no card that can be legally played. He then has the option of 
declaring "No play." In this case he shows his hand to everyone. If the 
dealer declares him right and his hand contains four cards or less, the 
cards are returned to the deck and the round ends. If he is right and has 
five or more cards, then his cards are put back into the deck, and he is 
dealt a fresh hand with four fewer cards than he previously held. 

If the player is wrong in declaring no play, the dealer takes one of his 
correct cards and puts it on the main line. The player keeps the rest of 
his hand and, as a penalty, is dealt five more cards. A player who thinks 
he has no correct play but has not figured out the secret rule should 
realize that the odds are against his using the no play option successfully. 
He would do better to play a card at random. 

When a player thinks he knows the secret rule, he has the opportu- 
nity to prove it and increase his score. He does so by declaring himself a 
Prophet. The Prophet immediately takes over the dealer's duties, calling 
plays right or wrong and dealing penalty cards when the others play. He 
can declare himself a Prophet only if all the following conditions prevail: 

1. He has just played (correctly or incorrectly), and the next 
player has not played. 

2. There is not already a Prophet. 

3. At least two other players besides himself and the dealer are 
still in the round. 

4. He has not been a Prophet before in this round. 



When a player declares himself a Prophet, he puts a marker on the 
last card he played. A chess king or queen may be used. The Prophet 
keeps his hand but plays no more cards unless he is overthrown. The 
play continues to pass clockwise around the players' circle, skipping the 
Prophet. 

Each time a player plays a card or string, the Prophet calls the play 
right or wrong. The dealer then either validates or invalidates the 
Prophet's statement by saying "Correct" or "Incorrect." If the Prophet is 
correct, the card or string is placed on the layout-on the main line if 
right or on a sideline if wrong-and the Prophet gives the player what- 
ever penalty cards are required. 

If the dealer says "Incorrect," the Prophet is instantly overthrown. 
He is declared a False Prophet. The dealer removes the False Prophet's 
marker and gives him five cards to add to his hand. He is not allowed to 
become a Prophet again during the same round, although any other 
player may do so. The religious symbolism is obvious, but as Abbott 
points out, there is also an amusing analogy here with science: "The 
Prophet is the scientist who publishes. The False Prophet is the scientist 
who publishes too early." It is the fun of becoming a Prophet and of 
overthrowing a False Prophet that is the most exciting feature of New 
Eleusis. 

After a Prophet's downfall the dealer takes over his former duties. He 
completes the play that overthrew the Prophet, placing the card or string 
in its proper place on the layout. If the play is wrong, however, no 
penalty cards are given. The purpose of this exemption is to encourage 
players to make unusual plays - even deliberately wrong ones - in the 
hope of overthrowing the Prophet. In Karl Popper's language, it encour- 
ages scientists to think of ways of "falsifying" a colleague's doubtful 
theory. 

If there is a Prophet and a player believes he has no card to play, 
things get a bit complicated. This seldom happens, and so you can skip 
this part of the rules now and refer to it only when the need arises. There 
are four possibilities once the player declares no play: 

1. Prophet says, "Right"; dealer says, "Correct." The Prophet 
simply follows the procedure described earlier. 

2. Prophet says, "Right"; dealer says, "Incorrect." The Prophet 
is immediately overthrown. The dealer takes over and handles 
everything as usual, except that the player is not given any 
penalty cards. 
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3. Prophet says, "Wrong"; dealer says, "Incorrect." In other 
words, the player is right. The Prophet is overthrown, and the 
dealer handles the play as usual. 

4. Prophet says, "Wrong"; dealer says, "Correct." In this case 
the Prophet now must pick one correct card from the player's 
hand and put it on the main line. If he does this correctly, he 
deals the player the five penalty cards and the game goes on. 
It is possible, however, for the Prophet to make a mistake at 
this point and pick an incorrect card. If that happens, the 
Prophet is overthrown. The wrong card goes back into the 
player's hand and the dealer takes over with the usual 
procedure, except that the player is not given penalty cards. 

After 30 cards have been played and there is no Prophet in the game, 
players are expelled from the round when they make a wrong play, that 
is, if they play a wrong card or make a wrong declaration of no play. An 
expelled player is given the usual penalty cards for his final play and then 
drops out of the round, retaining his hand for scoring. 

If there is a Prophet, expulsions are delayed until at least 20 cards 
have been laid down after the Prophet's marker. Chess pawns are used as 
markers so that it is obvious when expulsion is possible. As long as there 
is no Prophet, a white pawn goes on every 10th card placed on the 
layout. If there is a Prophet, a black pawn goes on every 10th card laid 
down after the Prophet's marker. When a Prophet is overthrown, the 
black pawns and the Prophet's marker are removed. 

A round can therefore go in and out of the phase when expulsions 
are possible. For example, if there are 35 cards on the layout and no 
Prophet, Smith is expelled when he plays incorrectly. Next Jones plays 
correctly and declares herself a Prophet. If Brown then plays incor- 
rectly, she is not expelled because 20 cards have not yet been laid down 
after the Prophet's marker. 

A round can end in two ways: (1) when a player runs out of cards or 
(2) when all players (excluding a Prophet, if there is one) have been 
expelled. 

The scoring in Eleusis is as follows: 

1. The greatest number of cards held by anyone (including the 
Prophet) is called the "high count." Each player (including 
the Prophet) subtracts the number of cards in his hand from 
the high count. The difference is his score. If he has no 
cards, he gets a bonus of four points. 
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2. The Prophet, if there is one, also gets a bonus. It is the 
number of main-line cards that follow his marker plus twice 
the number of sideline cards that follow his marker, that is, a 
point for each correct card since he became a Prophet and 
two points for each wrong card. 

3. The dealer's score equals the highest score of any player. 
There is one exception: If there is a Prophet, count the 
number of cards (right and wrong) that precede the Prophet's 
marker and double this number; if the result is smaller than 
the highest score, the dealer's score is that smaller number. 

If there is time for another round, a new dealer is chosen. In princi- 
ple the game ends after every player has been dealer, but this could take 
most of a day. To end the game before everyone has dealt, each player 
adds his scores for all the rounds played plus 10 more points if he has not 
been a dealer. This compensates for the fact that dealers tend to have 
higher-than-average scores. 
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Black pawn +A I 

Figure 106 Layout at the end of a round of Eleusis includes a main line, several 
sidelines and various markers. White chess pawns are placed on every 
tenth card played in the round and black pawns on  every tenth card 
played after a Prophet's marker 

The layout in Figure 106 shows the end of a round with five players. 
Smith was the dealer. The round ended when Jones got rid of her cards. 
Brown was the Prophet and ended with 9 cards. Robinson was expelled 
when he incorrectly played the 10 of spades; he had 14 cards. Adams had 
17 cards at the end of the game. 

The high count is 17. Therefore Adams' score is 17 minus 17, or 0. 
Robinson's score is 17 minus 14, or 3. Jones receives 17 minus 0, or 17, 
plus a 4-point bonus for having no cards, so that her score is 21. Brown 
gets 17 minus 9, or 8, plus the Prophet's bonus of 34 (12 main-line and 11 
sideline cards following his marker), making a total score of 42. This is 
the highest score for the round. Twice the number of cards preceding 
the Prophet's marker is 50. Smith, the dealer, receives 42 because it 
is the smaller of the two numbers 42 and 50. 

Readers are invited to look over this layout and see if they can guess 
the secret rule. The play has been standard, and so that the rule is 
confined strictly to the main-line sequence. I shall give the secret rule in 
the answer section. 
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Some miscellaneous advice from Abbott should help inexperienced 
Eleusis players. Since layouts tend to be large, the best way to play the 
game is on the floor. Of course a large table can be used as well as 
miniature cards on a smaller table. If necessary, the main line can be 
broken on the right and continued below on the left. 

Remember that in Eleusis the dealer maximizes his score by choos- 
ing a rule that is neither too easy nor too difficult. Naturally this depends 
both on how shrewdly the dealer estimates the ability of the players and 
how accurately he evaluates the complexity of his rule. Both estimates 
require considerable experience. Beginning players tend to underesti- 
mate the complexity of their rules. 

For example, the rule used in the first layout is simple. Compare it 
with: "Play a red card, then a black card, then an odd card, then an even 
card and repeat cyclically." This rule seems to be simpler, but in prac- 
tice the shift from the red-black variable to the even-odd variable makes 
it difficult to discover. Abbott points out that in general restrictive rules 
that allow only about a fourth of the cards to be acceptable on any given 
play are easier to guess than less restrictive rules that allow half or more 
of the cards to be acceptable. 

I shall not belabor the ways in which the game models a search for 
truth (scientific, mathematical or metaphysical) since I discussed them 
in my first column on the game. I shall add only the fantasy that God or 
Nature may be playing thousands, perhaps a countless number, of simul- 
taneous Eleusis games with intelligences on planets in the universe, 
always maximizing his or her pleasure by a choice of rules that the lesser 
minds will find not too easy and not too hard to discover if given enough 
time. The supply of cards is infinite, and when a player is expelled, there 
are always others to take his place. 

Prophets and False Prophets come and go, and who knows when one 
round will end and another begin? Searching for any kind of truth is an 
exhilarating game. It is worth remembering that there would be no game 
at all unless the rules were hidden. 

ANSWERS 

The problem was to guess the secret rule that determined the final layout 
for a round in the card game Eleusis. The rule was: "If the last card is 
lower than the preceding legally played card, play a card higher than the 
last card, otherwise play a lower one. The first card played is correct 
unless it is equal to the starter card." 
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ADDENDUM 

Two unusual and excellent induction games have been invented since 
Eleusis and Delphi, both with strong analogies to scientific method. For 
Sid Sackson's board game Patterns, see Chapter 4 of my Mathematical 
Circus (Knopf, 1979). Pensari, using 32 special cards, was the brainchild 
of Robert Katz. His Pensari Guide Book (1986), which accompanies the 
cards, runs to 42 pages. Full-page advertisements for Pensari appeared in 
Science News in a number of 1987 issues. 

A few years ago, reading The Life and Letters of Thomas H. Huxley, 
edited by his son Leonard (vol. 1, Appleton, 1901, page 262), I came 
across the following delightful paragraph. It is from a letter Huxley sent 
to Charles Kingsley in 1863. 

This universe is, I conceive, like to a great game being played out, and 
we poor mortals are allowed to take a hand. By great good fortune the 
wiser among us have made out some few of the rules of the game, as at 
present played. We call them "Laws of Nature," and honour them 
because we find that if we obey them we win something for our pains. 
The cards are our theories and hypotheses, the tricks our experimental 
verifications. But what sane man would endeavour to solve this problem: 
given the rules of a game and the winnings, to find whether the cards 
are made of pasteboard or goldleaf? Yet the problem of the 
metaphysicians is to my mind no saner. 
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Ramsey Theory 

Prove that at a gathering of any six people, some 
three of them are either mutual acquaintances 
or complete strangers to each other. 

-PROBLEM E 1321, The American Mathematical 
Monthly, June- July, 1958 

This chapter was originally written in 1977 to honor the 
appearance of The Journal of Graph Theory, a periodical devoted to one 
of the fastest growing branches of modern mathematics. Frank Harary, 
the founding editor, is the author of the world's most widely used intro- 
duction to the subject. The current managing editor is Fan Chung of Bell 
Communications Research. 

Graph theory studies sets of points joined by lines. Two articles in the 
first issue of the new journal dealt with Ramsey graph theory, a topic that 
has a large overlap with recreational mathematics. Although a few 
papers on Ramsey theory, by the Hungarian mathematician Paul Erdos 
and others, appeared in the 19301s, it was not until the late 1950's that 
work began in earnest on the search for what are now called Ramsey 
numbers. One of the great stimulants to this search was the innocent- 
seeming puzzle quoted above. It was making the mathematical-folklore 
rounds as a graph problem at least as early as 1950, and at Harary's 
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suggestion it was included in the William Lowell Putnam Mathematical 
Competition of 1953. 

It is easy to transform this puzzle into a graph problem. Six points 
represent the six people. Join every pair of points with a line, using a red 
pencil, say, to indicate two people who know each other and a blue 
pencil for two strangers. The problem now is to prove that no matter 
how the lines are colored, you cannot avoid producing either a red 
triangle (joining three mutual acquaintances) or a blue triangle (joining 
three strangers). 

Ramsey theory, which deals with such problems, is named for an 
extraordinary University of Cambridge mathematician, Frank Plumpton 
Ramsey. Ramsey was only 26 when he died in 1930, a few days after an 
abdominal operation for jaundice. His father, A. S. Ramsey, was presi- 
dent of Magdalene College, Cambridge, and his younger brother Michael 
was archbishop of Canterbury from 1961 to 1974. Economists know him 
for his remarkable contributions to economic theory. Logicians know 
him for his simplification of Bertrand Russell's ramified theory of types 
(it is said that Ramsey Ramseyfied the ramified theory) and for his 
division of logic paradoxes into logical and semantical classes. Philoso- 
phers of science know him for his subjective interpretation of probability 
in terms of beliefs and for his invention of the "Ramsey sentence," a 
symbolic device that greatly clarifies the nature of the "theoretical lan- 
guage" of science. 

In 1928 Ramsey read to the London Mathematical Society a now 
classic paper, "On a Problem of Formal Logic." (It is reprinted in The 
Foundations of Mathematics, a posthumous collection of Ramsey's 
essays edited by his friend R. B. Braithwaite.) In this paper Ramsey 
proved a deep result about sets that is now known as Ramsey's theorem. 
He proved it first for infinite sets, observing this to be easier than his next 
proof, for finite sets. Like so many theorems about sets, it turned out to 
have a large variety of unexpected applications to combinatorial prob- 
lems. The theorem in its full generality is too complicated to explain 
here, but for our purposes it will be sufficient to see how it applies to 
graph-coloring theory. 

When all pairs of n points are joined by lines, the graph is called a 
complete graph on n points and is symbolized by K,. Since we are 
concerned only with topological properties, it does not matter how the 
points are placed or the lines are drawn. Figure 107 shows the usual 
ways of depicting complete graphs on two through six points. The lines 
identify every subset of n that has exactly two members. 
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Figure 107 Complete graphs on two through six points 

Suppose we arbitrarily color the lines of a K,, graph red or blue. We 
might color the lines all red or all blue or any mixture in between. This is 
called a two-coloring of the graph. The coloring is of course a simple way 
to divide all the two-member subsets of n into two mutually exclusive 
classes. Similarly, a three-coloring of the lines divides them into three 
classes. In general, an r-coloring divides the pairs of points into r mutu- 
ally exclusive classes. 

A "subgraph" of a complete graph is any kind of graph contained in 
the complete graph in the sense that all the points and lines of the 
subgraph are in the larger graph. It is easy to see that any complete graph 
is a subgraph of any complete graph on more points. Many simple graphs 
have names. Figure 108 shows four families: paths, cycles, stars and 
wheels. Note that the wheel on four points is another way of drawing K,. 
It is often called a tetrahedron because it is a planar projection of the 
tetrahedron's skeleton. 

Consider now the following problem involving six pencils of differ- 
ent colors. To each color we assign any kind of graph we like. For 
example: 



Figure 108 Four important families of simple graphs 

Points 

2 

1. Red: a pentagon (five-point cycle) 

2. Orange: a tetrahedron 

3. Yellow: a seven-point star 

4. Green: a 13-point path 

5. Blue: an eight-point wheel 

6. Purple: a bow tie (two triangles sharing just one point) 

We now ask a curious question. Are there complete graphs that, if 
their lines are arbitrarily six-colored, are certain to contain as a sub- 
graph at least one of the six graphs listed above? In other words, no 
matter how we color one of these complete graphs with the six pencils 
are we certain to get either a red pentagon or an orange tetrahedron or a 
yellow seven-point star, and so on? Ramsey's theorem proves that 
beyond a certain size all complete graphs have this property. Let's call 
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the smallest graph of this infinite set the Ramsey graph for the specified 
set of subgraphs. Its number of points is called the Ramsey number for 
that set of subgraphs. 

Every Ramsey graph provides both a game and a puzzle. For our 
example, the game is as follows. Two players take turns picking up any 
one of the six pencils and coloring a line of the Ramsey graph. The first 
person to complete the coloring of one of the specified subgraphs is the 
loser. Since it is a Ramsey graph, the game cannot be a draw. Moreover, 
it is the smallest complete graph on which a draw is not possible. 

The related puzzle involves a complete graph with one fewer point 
than the Ramsey graph. This obviously is the largest complete graph on 
which the game can be a draw. Such a graph is called the critical 
coloring for the specified set of subgraphs. The puzzle consists in finding 
a coloring for the critical graph in which none of the subgraphs appears. 

I have no idea what the Ramsey number is for the six subgraphs 
given. Its complete graph would be so large (containing hundreds of 
points) that playing a game on it would be out of the question, and the 
associated puzzle is far too difficult to be within the range of a feasible 
computer search. Nevertheless, Ramsey games and puzzles with smaller 
complete graphs and with pencils of just two colors can be quite 
entertaining. 

The best-known Ramsey game is called Sim after mathematician 
Gustavus Simmons who was the first to propose it. (The game was 
discussed in a column reprinted as Chapter 9 in my Knotted Doughnuts 
and Other Mathematical Entevtainments.) Sim is played on the complete 
graph with six points (K,), which models the problem about the party of 
six people. It is not hard to prove that 6 is the Ramsey number for the 
following two subgraphs: 

1. Red: triangle (K,) 

2. Blue: triangle (K,) 

In "classical" Ramsey theory it is customary to use solitary numbers 
for complete graphs, and so we can express the above result with this 
compact notation: R(3,3) = 6. The R stands for Ramsey number, the first 
3 for a triangle of one color (say, red) and the second 3 for a triangle of 
another color (say, blue). In other words, the smallest complete graph 
that forces a "monochromatic" (all red or all blue) triangle when the 
graph is two-colored is 6. Thus if two players alternately color the K6 red 
and blue, one player is certain to lose by completing a triangle of his 



color. The corresponding and easy puzzle is two-color the critical graph,
K5, so that no monochromatic triangle appears.

It turns out that when K6 is two-colored, at least two monochromatic
triangles are forced. (If there are exactly two and they are of opposite
color, they form a bow tie.) This raises an interesting question. If a com-
plete graph on n points is two-colored, how many monochromatic trian-
gles are forced? A. W. Goodman was the first to answer this in a 1959
paper, “On Sets of Acquaintances and Strangers at Any Party.”
Goodman’s formula is best broken into three parts: If n has the form 2u,
the number of forced monochromatic triangles is u(u – 1)(u – 2). If n

is 4u + 1, the number is 2u(u – l)(4u + 1). If n is 4u + 3, it is

2u(u + 1)(4u – 1). Thus for complete graphs of 6 through 12 points the
numbers of forced one-color triangles are 2, 4, 8, 12, 20, 28 and 40.

Random two-coloring will usually produce more monochromatic tri-
angles than the number forced. When the coloring of a Ramsey graph
contains exactly the forced number of triangles and no more, it is called
extremal. Is there always an extremal coloring in which the forced tri-
angles are all the same color? (Such colorings have been called blue-
empty, meaning that the number of blue triangles is reduced to zero.)
In 1961 Leopold Sauvé showed that the answer is no for all odd n,
except for n = 7. This suggests a new class of puzzles. For example, draw
the complete graph on seven points. Can you two-color it so that there
are no blue triangles and no more than four red triangles? It is not easy.

Very little is known about “classical” Ramsey numbers. They are the
number of points in the smallest complete graph that forces a given set
of smaller complete graphs. There is no known practical procedure for
finding classical Ramsey numbers. An algorithm is known: One simply
explores all possible colorings of complete graphs, going up the ladder
until the Ramsey graph is found. This task grows so exponentially in dif-
ficulty and at such a rapid rate, however, that it quickly becomes com-
putationally infeasible. Even less is known about who wins—the first
player or the second—if a Ramsey game is played rationally. Sim has
been solved (it is a second-player win), but almost nothing is known
about Ramsey games involving larger complete graphs.

So far we have considered only the kind of Ramsey game that Harary
calls an avoidance game. As he has pointed out, at least three other kinds
of game are possible. For example, in an “achievement” game (along the
lines of Sim) the first player to complete a monochromatic triangle wins.
In the other two games the play continues until all the lines are colored,
and then either the player who has the most triangles of his color or the
player who has the fewest wins. These last two games are the most

1
3

1
3

1
3
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difficult to analyze, and the achievement game is the easiest. In what 
follows "Ramsey game" denotes the avoidance game. 

Apart from R ( 3 , 3 )  = 6 ,  the basis of Sim, only the following seven other 
nontrivial classical Ramsey numbers are known for two-colorings: 

R(3,4) = 9. If K, is two-colored, it forces a red triangle (K,) or 
a blue tetrahedron (K,). No one knows who wins if this is 
played as a Ramsey game. 

R(3,5) = 14. 

R(4,4) = 18. If K,, is two-colored, a monochromatic 
tetrahedron (K,)  is forced. This is not a bad Ramsey game, 
although the difficulty of identifying tetrahedrons makes it 
hard to play. The graph and its coloring correspond to the 
fact that at a party of 18 people there is either a set of four 
acquaintances or four total strangers. 

R(3,6) = 18. At the same party there is either a set of three 
acquaintances or six total strangers. In coloring terms, if a 
complete graph of 18 points is two-colored it forces either a 
red triangle or a blue complete graph of six points. 

R(3,7) = 23. 

R ( 3 , 8 )  = 28. 
R ( 3 , 9 )  = 36. 
R ( 4 , 5 )  = 25. 
R ( 6 , 7 )  = 298. 

As of March 1996, here are known bounds for eight other Ramsey 
numbers: 

What is the smallest number of people that must include either a set 
of five acquaintances or a set of five strangers? This is equivalent to 
asking for the smallest complete graph that cannot be two-colored with- 



238 Chapter 17 

out producing a monochromatic complete graph with five points, which 
is the same as asking for the Ramsey number of R(5,5). So great is the 
jump in complexity from R(4,4) to R(5,5) that Stefan Burr, a leading 
expert on Ramsey theory who now teaches computer science at City 
College of the CUNY in New York City, thinks it possible that the number 
will never be known. Even R(4,5) ,  he believes, is so difficult to analyze 
that it is possible its value also may never be found. 

Only one other classical Ramsey number is known, and it is for three 
colors. R(3) = 3 is trivial because if you one-color a triangle, you are sure 
to get a one-color triangle. We have seen that R(3,3) equals 6. R(3,3,3) 
equals 17. This means that if K,, is three-colored, it forces a monochro- 
matic triangle. Actually it forces more than one, but the exact number is 
not known. 

R(3,3,3) = 17 was first proved in 1955. The Ramsey game for this 
graph uses pencils of three different colors. Players alternately color a 
line, using any color they want to, until a player loses by completing a 
monochromatic triangle. Who wins if both players make their best possi- 
ble moves? No one knows. The corresponding Ramsey puzzle is to 
three-color K,,, the critical graph, so that no monochromatic triangle 
appears. Plate 4, reproduced from Graphs and Hypergraphs by the 
French graph theorist Claude Berge, shows one of the two essentially 
different solutions. ("Different" is used here in a combinatorial sense 
deeper than mere exclusion of rotations and reflections.) 

What about R(3,3,3,3), the minimum complete graph that forces a 
one-color triangle when it is four-colored? It is unknown, although an 
upper bound of 64 was proved by Jon Folkman, a brilliant combinator- 
ialist who committed suicide in 1964 at the age of 31, following an 
operation for a massive brain tumor. The best lower bound, 51, was 
established by Fan Chung, a mathematician at Bell Communications 
Research who gave the proof in her Ph.D. thesis. 

Classical Ramsey theory generalizes in many fascinating ways. We 
have already considered the most obvious way: the seeking of what are 
called generalized Ramsey numbers for r-colorings of complete graphs 
that force graphs other than complete ones. Vaclav Chvatal and Harary 
were the pioneers in this territory, and Burr has been mining it for the 
past 15 years. Consider the problem of finding Ramsey numbers for 
minimum complete graphs that force a monochromatic star of n points. 
Harary and Chvatal were the first to solve it for two-coloring. In 1973 
Burr and J. A. Roberts solved it for any number of colors. 

Another generalized Ramsey problem is to find Ramsey numbers for 
two-colorings of K,, that force a specified number of monochromatic 
"disjoint" triangles. (Triangles are disjoint if they have no common 
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point.) In 1975 Burr, Erdos and J. H. Spencer showed the number to be 
5d, where d is the number of disjoint triangles and is greater than two. 
The problem is unsolved for more than two colors. 

The general case of wheels is not even solved for two colors. The 
Ramsey number for the wheel of four points, the tetrahedron, is, as we 
have seen, 18. The wheel of five points (a wheel with a hub and four 
spokes) was shown to have a Ramsey number of 15 by Tim Moon, a 
Nigerian mathematician. The six-point wheel is unsolved, although its 
Ramsey number is known to have bounds of 17 to 20 inclusive, and there 
are rumors of an unpublished proof that the value is 17. 

Figure 109, a valuable chart supplied by Burr and published for the 
first time in my 1977 column, lists the 113 graphs with no more than six 
lines and no isolated points, all of which have known generalized Ram- 
sey numbers. Note that some of these graphs are not connected. In such 
cases the entire pattern, either all red or all blue, is forced by the 
complete graph with the Ramsey number indicated. 

Every item on Burr's chart is the basis of a Ramsey game and puzzle, 
although it turns out that the puzzles-finding critical colorings for the 
critical graphs-are much easier than finding critical colorings for clas- 
sical Ramsey numbers. Note that the chart gives six variations of Sim. A 
two-coloring of K, not only forces a monochromatic triangle but also 
forces a square, a four-point star (sometimes called a "claw"), a five- 
point path, a pair of disjoint paths of two and three points (both the same 
color), a square with a tail and the simple "tree" that is 15 on Burr's 
chart. The triangle with a tail (8), the five-point star (12), the Latin cross 
(27) and the fish (51) might be worth looking into as Ramsey games 
on K,. 

Ronald L. Graham of Bell Laboratories, one of the nation's top 
combinatorialists, has made many significant contributions to general- 
ized Ramsey theory. It would be hard to find a creative mathematician 
who less resembles the motion-picture stereotype. In his youth Graham 
and two friends were professional trampoline performers who worked 
for a circus under the name of the Bouncing Baers. He is also one of the 
country's best jugglers and former president of the International 
Juggler's Association. The ceiling of his office is covered with a large net 
that he can lower and attach to his waist, so that when he is practicing 
with six or seven balls, any missed ball obligingly rolls back to him. 

In 1968 Graham found an ingenious solution for a problem of the 
Ramsey type posed by Erdos and Andras Hajnal. What is the smallest 
graph of any kind, not containing K,, that forces a monochromatic 
triangle when it is two-colored? Graham's unique solution is the eight- 
point graph shown in Figure 110. The proof is a straightforward reductio 
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ad absurdurn. It begins with the assumption that a two-coloring that 
avoids monochromatic triangles is possible and then shows that this 
forces such a triangle. At least two lines from the top point must be, say, 
gray, and the graph's symmetry allows us to make the two outside lines 
gray with no loss of generality. The endpoints of these two lines must 
then be joined by a colored line (shown dotted) to prevent the formation 
of a gray triangle. Readers may enjoy trying to complete the argument. 

What about similar problems when the excluded subgraph is a com- 
plete graph other than K,? The question is meaningless for K, because K3 
is itself a triangle. K, is unsolved. The best-known solution is a 16-point 
graph discovered by two Bulgarian mathematicians. K4 is even further 
from being solved. Folkman, in a paper published posthumously, proved 
that such a Ramsey graph exists, but his construction used more than 2 f 
f f 2901 points. This is such a monstrous number that there is no way to 
express it without using a special arrow notation. The notation is intro- 
duced by Donald E. Knuth in his article "Mathematics and Computer 
Science: Coping with Finiteness" in Science (December 17, 1976). The 
number has since been lowered to a more respectable size. 

Imagine the universe tightly packed with spheres the size of elec- 
trons. The total number of such spheres is inconceivably smaller than 
the number occurring in Folkman's graph. Erdos has a standing offer of 
$100 to anyone finding a graph for this problem that has fewer than a 
million points. 

Folkman's graph dramatically illustrates now enormously difficult a 

Figure 110 
Graham's solution to a problem by Erdos 
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Ramsey problem can be even when the problem's statement mentions 
no graph with more than four points. But as A1 Jolson liked to say, you 
ain't heard nothin' yet. Graham has found an even more mind-boggling 
example. 

Consider a cube with lines joining every pair of corners. The result is 
a complete graph on eight points, except now we have added a Euclid- 
ean geometric structure. Imagine the lines of this spatial K ,  arbitrarily 
colored red and blue. Can it be done in such a way that no monochro- 
matic K4 results that lies on a plane? The answer is yes, and it is not hard 
to do. 

Let us generalize to n-dimensional cubes. A hypercube has 2" 
corners. On the four-dimensional hypercube, it also is possible to two- 
color the lines of the complete graph of Z4, or 16, points so that no 
one-color complete planar graph of four points results. The same can be 
done with the 25 hypercube of 32 points. This suggests the following 
Euclidean Ramsey problem: What is the smallest dimension of a hyper- 
cube such that if the lines joining all pairs of corners are two-colored, a 
planar K4 of one color will be forced? Ramsey's theorem guarantees that 
the question has an answer only if the forced K4 is not confined to a 
plane. 

The existence of an answer when the forced monochromatic K4 is 
planar was first proved by Graham and Bruce L. Rothschild in a far- 
reaching generalization of Ramsey's theorem that they found in 1970. 
Finding the actual number, however, is something else. In an unpub- 
lished proof Graham has established an upper bound, but it is a bound so 
vast that it holds the record for the largest number ever used in a serious 
mathematical proof. 

To convey at least a vague notion of the size of Graham's number we 
must first attempt to explain Knuth's arrow notation. The number writ- 
ten 3 ? 3 is 3 X 3 X 3 = 33 = 27. The number 3 ? ? 3 denotes the expres- 
sion 3 7 (3 3). Since 3 ? 3 equals 27,  we can write 3 f ? 3 as 3 ? 27 or 327. 
As a slanting tower of exponents it is 

The tower is only three levels high, but written as an ordinary number it 
is 7,625,597,484,987. This is a big leap from 27, but it is still such a small 
number that we can actually print it. 

When the huge number 3 ? ? ? 3 = 3 ? (3 f ? 3) = 3 f ? 327 is written 
as a tower of 3's, it reaches a height of 7,625,597,484,987 levels. Both the 
tower and the number it represents are now too big to be printed 
without special notation. 
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Consider 3 f f f f 3 = 3 f f (3 f f f 3). Inside the parentheses is the 
gigantic number obtained by the preceding calculation. It is no longer 
possible to indicate in any simple way the height of the tower of 3's that 
expresses 3 f f f f 3. The height is another universe away from 3 f ? f 3. 
If we break 3 f f f f 3 down to a series of the double-arrow operations, it 
is 3 T T (3 f (3 T T . . .  T T (3 7 T 3) . . .  )), where the number of steps 
to be iterated is 3 f f f 3.  As Knuth says, the dots "suppress a lot of 
detail." 3 ? ? f f 3 is unimaginably larger than 3 f f f 3, but it is still small 
as finite numbers go, since most finite numbers are very much larger. 

We are now in a position to indicate Graham's number. It is repre- 
sented in Figure 11 1. At the top is 3 f f T 7 3. This gives the number of 
arrows in the number just below it. That number in turn gives the 
number of arrows below it. This continues for 26, or 64, layers. It is the 
bottom number that Graham has proved to be an upper bound for the 
hypercube problem. 

Now hold on to your hat. Ramsey-theory experts believe the actual 
Ramsey number for this problem is probably 6. As Stanislaw M. Ulam 
said many times in his lectures, "The infinite we shall do right away. The 
finite may take a little longer." 

ANSWERS 

Figure 112 (note the color symmetry) shows how to two-color the com- 
plete graph on seven points so that it is blue-empty (gray lines) and 
contains four (the minimum) red triangles (black lines). If you enjoyed 

Figure 111 Graham's upper bound for the solution to a Euclidean Ramsey 
problem 
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Figure 112 
Solution to a Ramsey graph puzzle 

working on this problem, you might like to tackle K8 by two-coloring the 
complete graph on eight points so that it is blue-empty and has eight (the 
minimum) red triangles. 

Garry Lorden, in his 1962 paper, "Blue-Empty Chromatic Graphs," 
showed that problems of this type are uninteresting. If the number of 
points n is even, Goodman had earlier shown that the graph can be made 
blue-empty extremal simply by coloring red two complete subgraphs of 
n/2 points. If n is odd, K,  is (as I said earlier) the only complete graph 
that can be made blue-empty extremal by two-coloring. When two-color- 
ing complete graphs where n is odd and not 7, how do you create a 
blue-empty graph that is not extremal but has the smallest number of red 
triangles? Lorden showed that this is easily done by partitioning the 
graph into two complete red subgraphs, one of (n + 1)/2 points, the 
other of (n - 1)/2 points. Some extra red lines may be required, but 
their addition is trivial. 

ADDENDUM 

Since this chapter first appeared in Scientific American in 1977, such 
rapid progress has been made in Ramsey theory that a bibliography of 
papers would run to more than a thousand titles and any effort to 
summarize here even the main results would be impossible. Fortunately, 
two excellent books are now available as introductions to the general 
field (of which Ramsey graph theory is only a part): Ronald Graham's 
Rudiments of Ramsey Theory and Ramsey Theory, a book Graham 
coauthored with two colleagues. 
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Ramsey theory now includes, among many other things, problems 
involving the partitioning of lines in any graph or the partitioning of 
points in any space. Euclidean Ramsey theory, pioneered in the 1970's 
by Graham, Erdos and others, concerns the k-coloring of all points in a 
given Euclidean space and determining what patterns are forced. For 
example, no matter how the points on the plane are two-colored, the 
coloring will force the vertices of a monochromatic triangle of any 
specified size and shape except the equilateral triangle. (The plane can 
be colored with stripes of two alternating colors of such widths that no 
equilateral triangle, say of side 1, can have all its corners the same 
color.) 

If all the points in Euclidean three-dimensional space are two-col- 
ored, will it force an equilateral triangle of any size? Yes. Consider the 
four points of any regular tetrahedron. No matter how the points are 
two-colored, at least three must be the same color, and of course those 
three will form a monochromatic equilateral triangle. For other 
theorems of this type, much harder to prove, see the 1973 paper by 
Erdos, Graham and others. 

During the past decade Frank Harary and his associates have been 
analyzing Ramsey games. Only a small fraction of their results have been 
published, but Harary is planning a large book on what he calls achieve- 
ment and avoidance games of the Ramsey type. 

In Stefan Burr's chart (Figure 109) showing all graphs with six or 
fewer lines, you will see that in the interval of integers 2 through 18, only 
4 and 16 are missing as generalized Ramsey numbers. There are three 
graphs of seven lines each that have generalized Ramsey numbers of 16, 
but there is no graph that has a generalized Ramsey number of 4. Is every 
positive integer except 4 (ignoring 1, which is meaningless) a general- 
ized Ramsey number? In 1970 Harary showed that the answer is yes. The 
impossibility of 4 is easily seen by inspecting Burr's chart. The tetrahe- 
dron (complete graph for four points) cannot be the smallest graph that 
forces a subgraph because every possible subgraph of a tetrahedron has 
a Ramsey number higher or lower than 4. 

What is the smallest complete graph which, if two-colored, will force 
a monochromatic complete graph for five points? In other words, what 
is the generalized Ramsey number R(5,5)? In 1975 Harary offered $100 
for the first solution, but the prize remains unclaimed. 

"Ramsey theory is only in its infancy," writes Harary in his tribute to 
Ramsey in the special 1983 issue of The Journal of Graph Theory cited in 
the bibliography and adds: "There is no way that Frank Ramsey could 
have foreseen the theory his work has inspired." D. H. Mellor, in another 
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tribute to Ramsey in the same issue, has this memorable sentence: 
"Ramsey's enduring fame in mathematics . . . rests on a theorem he 
didn't need, proved in the course of trying to do something we now 
know can't be done!" 
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From Burrs 
to Berrocal 

We then fell into a disquisition whether there is 
any beauty independent of utility. The General 
maintained there was not. Dr. Johnson 
maintained that there was; and he instanced a 
coffee-cup which he held in his hand, the 
painting of which was of no real use, as the 
cup would hold the coffee equally well if plain; 
yet the painting was beautiful. 

-JAMES BOSWELL, Life of Samuel Johnson 

The purpose of this chapter is to introduce readers to 
Miguel Berrocal, the foremost living Spanish sculptor. Berrocal is al- 
ready a cult figure in Europe with a steadily growing following, but he is 
surprisingly little known in the U.S. Before detailing Berrocal's remark- 
able achievement, however, and explaining why his sculpture should be 
discussed in a book on recreational mathematics, we must consider one 
of the oldest categories of mechanical puzzles. 
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Is there any reader who has not at some time held one of those 
puzzles made of wood pieces so cleverly interlocked that they are quite 
difficult to separate? These objects are usually called Chinese puzzles, 
and once they have been taken apart, putting them back together again 
can be even more challenging. There is usually a single piece, called the 
key, that must be removed first in order to disassemble the puzzle. In 
many such puzzles the pieces must be replaced in a certain sequence in 
which the key is always inserted last to lock the other pieces firmly in 
place. Hundreds of differently structured puzzles of this type have been 
sold around the world for centuries, most of them invented anony- 
mously (even though hundreds of patents for unmarketed variations on 
the puzzles have been issued). 

Almost nothing is known of the early history of these puzzles, but 
"Chinese puzzles" is probably a misnomer. East Asian countries were 
certainly producing puzzles of this kind as early as the eighteenth cen- 
tury, but so were European countries. Moreover, other kinds of mechan- 
ical puzzles of unquestionably Western origin were also called Chinese 
puzzles. As Joseph Needham writes in Volume I11 of Science and  Civili- 
zation in  China: "Perhaps Europeans were inclined to ascribe to puzzles 
the name of what was, to them, a puzzling civilization." 

Chinese puzzles can have as few as three pieces, but the simplest 
nontrivial model is the popular six-piece puzzle shown in Figure 113. 

Figure 113 A six-piece "burr" puzzle 
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The six pieces are shown below the assembled puzzle as they were 
depicted by "Professor Hoffmann" (the pseudonym of Angelo Lewis) in 
his 1893 book on mechanical puzzles, Puzzles Old and New.  The un- 
notched bar at the far left is the key. A different set of six pieces appeared 
earlier in The Magician's O w n  Book, an anonymous work first published 
in the U.S. in 1857. Anthony S. Filipiak, in 100 Puzzles: HOW to Make and 
Solve Them (A. S. Barnes and Co., 1942), calls such an assembly a 
"six-piece burr puzzle," presumably because it looks like a seed burr. 
The name "burr" is now commonly applied to all puzzles of this kind. 

Manufactured versions of the six-piece burr are seldom alike. This 
fact suggested to Filipiak a surprisingly difficult problem in geometric 
combinatorics. Imagine that the middle part of the puzzle's unnotched 
key piece is divided into 12 unit cubes as shown in Figure 1 14. The sides 
of each cube are equal to half the depth of the key. There are four more 
cubes under the cubes numbered 2 , 3 , 6  and 7, but only two of them, 11 
and 12, can be seen in the illustration. Each piece of any six-piece burr 
can now be described by stating which of the 12 unit cubes have been 
removed. 

Since each unit cube is either present or absent in a piece of the 
puzzle, there are 212, or 4096, possible patterns in all. Those that divide 
the bar into separate pieces must of course be eliminated. Among the 
remaining pieces, simple rotations and end-for-end turns may account 
for as many as eight repetitions of any single pattern. Therefore for each 
pattern seven duplicates can be eliminated. (Mirror reflections of asym- 
metric configurations are not excluded.) Finally, there are some patterns 
that for mechanical reasons will not combine with any other pattern to 

Figure 114 Pattern for the pieces of a burr puzzle 



form an interlocking structure. These patterns can also be eliminated. 
After the above exclusions have been made, how many configurations 
remain? In other words, how many of the 4096 patterns can be utilized 
in a six-piece burr puzzle? Filipiak believed there were 432. 

In recent years three mathematicians have employed computer pro- 
grams to attack the problem. They are William H. Cutler of Wartburg 
College in Waverly, Iowa, Robert H. Mackay of London and C. Arthur 
Cross of Cheshire in England. Cutler and Cross now agree that the 
number of usable pieces is 369. Of these, 112 can be utilized with 
duplicates and 2 can be utilized with triplicates, making a set of 485 
pieces in all. Twenty-five of them are called "notchable" in the sense that 
they can be cut with a table saw and can be used to make puzzles without 
interior holes. Excluding interlockings that are impossible to put to- 
gether or take apart (without going through four-dimensional space) and 
omitting structures with internal holes because they hold together 
poorly, how many distinct burr puzzles can be made with 6 pieces 
selected from the set of 485? Computer programs by Cutler and others 
have found the number to be 119,979. 

I know of only two places where more elaborate kinds of burr 
puzzles can be obtained. In England, Pentangle (Over Wallop, Hants, 
England SO20 8JA) will send a catalogue of their mechanical-puzzle line, 
which includes several handsome wood puzzles of the burr type. The one 
called "Grandpa Chuck" has 96 pieces. In the U.S. if readers send a 
stamped and self-addressed business envelope to Stewart T. Coffin (Old 
Sudbury Road, R.F.D. 1, Lincoln, MA 01773), he will send back a bro- 
chure for his unusual line of original burr puzzles. His prices are high 
because all the puzzles are handcrafted from hardwoods. For several 
years Coffin issued an occasional newsletter, Puzzle Craft, that dealt with 
the history and construction of mechanical puzzles. 

From time to time Chinese puzzles have been manufactured to re- 
semble familiar objects: a car, a pistol, a battleship, an airplane, a pa- 
goda, a barrel, an egg and various animals. Most interlocking wood 
puzzles are not designed to represent anything, yet because of their 
symmetries they are always pleasing to look at. It is the representational 
models that are usually low in aesthetic appeal. This brings me to Berro- 
cal. As far as I know, he is the first person to combine the interlocking 
Chinese puzzle with high art. 

Berrocal was born in 1933 into a middle-class Spanish family in 
Malaga. He studied mathematics and architecture at the University of 
Madrid and then art in Paris and Rome before settling in Negrar, a 
suburb of Verona. He lives there today in a palatial villa with his second 
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wife, Princess Cristina. (She is the granddaughter of the last king of 
Portugal.) Berrocal presides over a 200-employee foundry in Negrar that 
casts not only his own work but also much work of other European 
sculptors. "I am the boss of the sculptors' Mafia," he once said. Like 
Pablo Picasso and Salvador Dali, the most notable Spanish painters 
of the twentieth century, Berrocal is a virtuoso who combines a prodi- 
gious output with skillful public relations and a dazzling, immodest 
personality. 

It is impossible to appreciate the unique combination of values in 
Berrocal's work-visual beauty, tactile pleasure, humor and the intel- 
lectual stimulation of a three-dimensional combinatorial puzzle -until 
one has taken a Berrocal apart and put it back together several times. 
For example, consider the two Berrocals shown stacked together in 
Figure 115. The head, called Portrait de Michkle, consists of 17 separate, 
curiously shaped elements, each one designed to be an individual piece 
of abstract sculpture and also pleasing to the fingers. The body, called La 
Totoche (The Plump Lady), is one of several bodies onto which the head 
can be fitted. It can be broken down into 12 pieces. 

Berrocal introduced the term "multiples" for the mass-produced 
copies that he casts of each of his works. His edition of Portrait de 
Michde is typical: 6 multiples in solid gold, 500 in sterling silver and 
9500 in nickel-plated bronze. Each copy is numbered and signed and 
flawlessly crafted with engineering precision. In every Berrocal the 
pieces must be separated and reassembled in a certain order. To disas- 
semble Portrait de Michkle one must first remove an element in the neck. 
Chinese burr puzzles tend to fall apart as soon as a few pieces are 
removed, but a Berrocal holds firmly together until the last two pieces 
are separated. In many cases the assembled model is completely solid- 
that is, there are no interior holes-and until piece n is removed, it is 
impossible to remove piece n + 1. The interlockings are so ingenious 
that sometimes a piece cannot be taken out until the positions of other 
pieces have been slightly altered. Every multiple comes with a hardcover 
instruction book illustrated by Berrocal. Each stage of assembly is de- 
picted on a separate page with the piece to be moved shown in color. At 
the end, an isometric drawing displays the outline of all the pieces (in 
transparent form) after they are in place. Even when the instruction 
book is consulted, however, it may take several days to master the 
technique of taking apart and reassembling a Berrocal. 

The number of pieces in a Berrocal varies from 3 to almost 100. 
Exquisite finger rings and bracelets, all wearable, are elements in many 
of the sculptures. For example, the pupil of Michele's eye is the aquama- 
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rine stone of a ring. Mini David, the torso shown in Figure 116, left, is 
another popular Berrocal. One of its 22 pieces is the ring shown in 
Figure 117, top. The genitals of the torso hang below the gem of the ring. 
The entire edition of this work has been sold. It consists of 6 solid gold, 
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Figure 116 Mini David (left) and Mini Cariatide (right) 

500 gold-plated bronze and 9500 nickel-plated bronze multiples. In the 
gold-plated set the gem of the ring is green jade; in the nickel-plated set it 
is sapphire. Berrocal often produces "micro" versions of his works 
designed as pendants. There is a Micro  D a v i d  that includes a ring with a 
mesh band and a blue heart of lapis lazuli. The internal structure of a 
micro work is always completely different from that of its mini 
counterpart. 

Mini Maria,  shown in Figure 118, can be disassembled only when a 
ball bearing on one leg is pressed. This sculpture is made of 23 pieces. 
One of them is a ring with a moonstone that forms one of Maria's breasts. 
Inside the figure there is a male sex organ, appearing at the left in Figure 
119, that comes apart in five pieces, two of which are steel balls. The 
corresponding element in the pendant Micro  Maria has a tiny aquama- 
rine on the tip of the organ. The gem is attached to a ring with a mesh 
band. 
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Figure 117 Rings from Mini David (top) and Mini Cariatide (bottom) 

Another reclining figure, Mini Zoriade, opens when one shoe is 
rotated. Zoriade's breasts are the moonstones of a ring. Mini Cariatide 
appears at the right in Figure 116. The mons veneris of the figure is on 
the gold ring appearing at the bottom in Figure 117. 

Goliath, shown in Figure 120, is Berrocal's most complicated work. 
All 80 of its elements appear in Figure 121. Figure 122, a partially 
disassembled Richelieu, shows how a Berrocal is a striking work of 
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Figure 118 Berrocal's Mini Maria 

Figure 119 An interior element of Mini Maria (left) and its five pieces (right) 



Figure 120 Miguel Berrocal's Goliath 

abstract sculpture at any stage of its assembly. When the torso of Goliath 
is completely assembled, its fig leaf can be rotated to expose the genita- 
lia. Actually there are two pieces representing genitalia, one circum- 
cised and one not, and the torso can be assembled with either one 
exposed. 
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Figure 121 The 80 pieces of Goliath 

Berrocal's coffin for Romeo and Juliet appears in Figure 123, to- 
gether with an earlier 16-piece work that depicts the ill-fated lovers 
intertwined. Inside the lovers is a surprise more suitably described in a 
sex manual. The coffin is even more surprising. It disassembles into 84 
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Figure 122 Richelieu partially disassembled 

pieces that can be refitted to make complete place settings for two: 23 
pieces of silverware, 4 wine goblets, 4 candlesticks, 4 ashtrays, a man's 
dinner ring, a woman's dinner ring and a chafing dish that is larger than 
the coffin. 

Columbia Jet, shown in Figure 124, was commissioned by Iberia 
Airlines as a gift for its executives. The bird is Picasso's dove of peace. Its 
body is a water pitcher that pours from the dove's beak when a handle is 
raised. The ornate pedestal is a drinking glass. Unfold the dove's wings 
and landing gears descend from the wing tips. Another useful Berrocal is 
Paloma Box, a sculpture that is about a foot high and wide and opens into 
a jewel case with 16 felt-lined drawers. A circular mirror can be raised 
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and then opened to reveal a sculpture of the head of Picasso's daughter 
Paloma. The pieces making up the head include two bracelets and two 
belts. Berrocal's I1 Cavallo, shown in Figure 125, has a different kind of 
flexibility. The 14-piece horse has legs articulated so that it can assume 
different positions. 

I have described only a small portion of Berrocal's work. His largest 
sculpture is his Homage to Picasso, which is 18 feet long and weighs 18 
tons. It is now on permanent display in the Picasso Gardens in Malaga. A 
miniature bronze version, Siextasis, consists of 20 pieces locked to- 
gether by 20 small magnets. Another large sculpture, Berrocal's tribute 

Figure 123 A sculpture of Romeo and Juliet on top of another sculpture 
depicting their coffin 
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Figure 124 Bewocal's Columbia Jet 

to his good friend Dali, is in Madrid. A miniature bronze version, called 
Dalirium Tremens, was made later. 

There are no screws or bolts in any Berrocals except the pendants. 
The pendants hang by a key piece that screws in to prevent the pendant 
from accidentally dropping off its chain. All gold and sterling-silver mini 
multiples have key pieces that lock into place with an ordinary key so 
that the sculpture cannot be disassembled without the owner's 
cooperation. 

Let me anticipate an objection. What, you may ask, does the fun of 
taking sculpture apart and putting it together again like a Chinese puzzle 
have to do with art? In a sense the answer is "Nothing," but that is not 
the whole story. The visual beauty of art has always been combined in 
countless ways with other values: the sexual emotions aroused by nudes; 
the sentiments evoked by landscapes, seascapes and family portraits; the 
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rhetorical function of political and religious art; the didactic value of 
textbook illustration; the humor of comic art; the physical comfort of 
chairs, beds and sofas that are designed to be beautiful; the utility of 
tables, vases, bottles, cups, dishes, silverware, cars, houses, quilts, ships, 
watches, tools and so on. Berrocal's unique achievement is the combin- 
ing of visual and tactile pleasures with the intellectual play of a mechan- 
ical puzzle. If you do not enjoy that particular combination, then a 
Berrocal is not for you. 

In the Quadling region of Oz (as described in The Emerald City of Oz) 
the city of Fuddlecumjig is inhabited by a whimsical race of people 
called the Fuddles. Each Fuddle is made of hundreds of fantastically 
shaped pieces of painted wood that fit together like a three-dimensional 
jigsaw puzzle. Whenever a visitor approaches, a Fuddle clatters into a 
heap of disconnected parts so that the visitor will have the fun of fitting 
him or her together again. 

"Those are certainly strange people," Dorothy's Aunt Em said when 
she met the Fuddles, "but I really can't see what use they are, at all." 

"Why, they amused us all for several hours," responded the Wizard. 
"That is being of use to us, I'm sure." 

Figure 125 Berrocal's 11 Cavallo 
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"I think they're more fun than playing solitaire or mumbletypeg," 
added Uncle Henry. "For my part, I'm glad we visited the Fuddles." 

ADDENDUM 

For a full description of the 119,979 possible pieces for the burr puzzle, 
see Cutler's article cited in the Bibliography. For information about his 
computer programs for the burr and various puzzles that can be made 
with sets of six pieces, you can write to Cutler at his present address, 405 
Balsam Lane, Palantine, IL 60067. A particularly fiendish version, which 
he calls Bill's Baffling Burr, is described by A. K. Dewdney in his Scien- 
tific American column, also cited in the Bibliography. It requires four 
shifts of pieces before the key piece can be removed. Dewdney chal- 
lenged his readers to construct a similar puzzle in two dimensions and 
printed the best one received in his January 1986 column. 

In 1980 Pentangle, the British puzzle-making firm, introduced The 
Chinese Cross Puzzle, designed by C. A. Cross. It is a boxed set of 42 
mahogany pieces with instructions for making 314 different six-piece 
burr puzzles. 
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Sicherman Dice, 
the Kruskal Count 
and 0 ther Curiosities 

The equipment used in familiar games-dice, chessmen, 
checkers, cards and so on-has always been a rich source of problems 
in recreational mathematics. Here are some recent examples of such 
problems, chosen for their variety and elegance. Most of the questions 
are answered here, but I am withholding one solution for the answer 
section. 

I shall begin with dice. Is it possible to number the faces of a pair of 
cubes in a way completely different from that of standard dice so that the 
cubes can be used in any dice game and all the odds will be exactly the 
same as they are when standard dice are used? 

As far as I know, Col. George Sicherman of Buffalo was the first to 
pose and solve this question. The answer is yes, and the weird pair of 
dice illustrated in Figure 126 show the only way it can be done if we 
assume that each face must bear a positive integer. It does not matter 
how the six numbers are arranged on each die. Sicherman has placed 
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Figure 126 Sicherman dice 

the numbers so that opposite sides of the left die total five and opposite 
sides of the right die total nine. 

At the left in Figure 127 is the familiar matrix that displays all the 
ways each sum from 2 through 12 can be made with a pair of standard 
dice. There are 36 combinations. To determine the probability of throw- 
ing a given sum, n, count the number of n's on the chart and divide by 
36. For example, there are three 4's, and so the probability of throwing a 
4 is 3/36, or 1/12. The corresponding chart for Sicherman dice is at the 
right in the illustration. It proves that the odds for each sum are exactly 

Figure 127 Chart of odds for standard dice (left) and Sichemtan dice (right) 
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the same as with ordinary dice. A casino could use Sicherman dice on 
the crap table without altering any of its betting rules or changing the 
vigorish (house percentage), although it might be hard to convince 
customers that the probabilities were unaltered. 

To demonstrate that there is no other way to construct such a chart 
with positive integers takes a bit of doing that I shall not go into here. 
Sicherman also found that it is impossible to redesign a set of three or 
more dice that have the same odds as ordinary dice without utilizing his 
two dice. For example, Sicherman's pair plus one conventional die have 
the same odds as three ordinary dice, two pairs of Sicherrnan dice 
behave like four ordinary dice and so on. 

The standard way numbers are arranged on Western dice (opposite 
sides total 7, and 1, 2 and 3 go counterclockwise around a corner) is 
involved in many puzzles and magic tricks and even in bits of numero- 
logy. The 4 edges of each face of a die represent the 4 seasons. The 12 
edges of the cube stand for the 12 months. There are three pairs of digits 
on a die that add up to 7, the number of days in a week. If 7 X 7 X 7 is 
added to 7 + 7 + 7, the sum is 343 + 21, or 364. Adding 1 for the die 
gives 365, the number of days in a year. 

A die can be held so that one, two or three faces are visible. Is it 
possible to turn the die in different ways so that what is seen adds up to 
every number from 1 through 15? Curiously, only the unlucky 13 is 
impossible. Multiplying 13 by 4 (for the four corners of a face) gives 52, 
the number of weeks in a year and the number of cards in a deck. 

Karl Fulves, a New Jersey magician, writer and computer scientist, 
recently invented an unusual extrasensory-perception trick based on the 
way the digits are arranged on a die. The magician hands someone a die, 
turns his back and gives the following instructions. The subject is asked 
to place the die on a table with any face uppermost. If the top number is 
even, he must give the die a quarter turn to the east (to his right). If the 
top number is odd, he must give the die a quarter turn to the north (away 
from him). This procedure is repeated sequentially, always obeying the 
rule: Turn east if the top face is even, turn north if it is odd. Every time 
the subject moves the die he calls out, "Turn." He does not, of course, 
reveal the number he started with or any subsequent top number. 

After a few turns the magician tells the subject to stop as soon as 1 
appears on top. The subject is then asked to give the die one additional 
turn (in compliance with the rule) and next to concentrate on the 
number this brings uppermost. It seems as though the number could be 
any one of four possibilities. Nevertheless, with his back still turned, the 
magician names the number 
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A little experimentation discloses the secret. After at the most three 
turns the die enters the following loop: 1-4-5-6-3-2, 1-4-5-6-3- 
2. . . . Therefore the number following 1 is always 4. After three moves 
it is always safe to tell the subject to stop when 1 appears on top. It is safe 
after just two moves, except when the starting position is 6 up and 5 
facing the subject. 

The following combinatonal problem was sent to me several years 
ago by Christer Lindstedt, a correspondent in Sweden. Imagine a three- 
by-three-by-three cube formed with 27 standard dice. There are 54 pairs 
of face-to-face numbers in such a configuration. Multiply each pair of 
numbers and then add the 54 products. What is the minimum sum that 
can be achieved by a suitable arrangement of the dice? What is the 
maximum sum? I do not know the answer to either question, and I do 
not see any good way to find the answers without a computer. I am not 
even sure of the maximum and minimum sums for a cube of eight dice. 
The best results I have obtained are 306 and 40. 

Here is a little-known chess task problem with a special case that 
provides a pretty puzzle, although the general case is unsolved. Can five 
queens of one color and three of another color be placed on a five-by-five 
chessboard so that no queen of one color attacks a queen of the other 
color? You can sketch the board on paper and use pawns or coins for 
queens. Surprisingly, there is only one solution (not counting rotations 
and reflections). 

On the same order-5 board (a board with five cells on a side) it is 
impossible to place five queens so that more than three cells are unat- 
tacked or to place three queens so that more than five cells are unat- 
tacked. This fact suggests the more general problem. Given a board of 
order M and k queens of one color, what is the maximum number of 
unattacked cells that can be produced by a suitable arrangement? Of 
course, queens of a different color can be placed on the unattacked cells, 
so that this problem is the same as asking for the maximum number of, 
say, white queens that can be placed along with k black queens on an 
order-n board so that no queen of one color attacks a queen of t;he other 
color. 

The general problem is meaningless for boards of orders 1 and 2, 
and it is easy to see that on the order-3 board a queen can be put on a 
corner or side cell to leave a maximum of two cells unattacked. The 
problem starts to get interesting when n equals 4. It is not known 
whether there are unique patterns for k queens on boards of order 
higher than 5, and finding a formula for the general problem seems 
difficult, if not impossible. 
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There are dozens of classic chess task problems involving knights. 
Some of them are given in Chapter 14 of my Mathematical Magic Show. 
Scott Kim has proposed the following knight task, which I have not seen 
before. Can 16 knights be placed on the standard chessboard so that each 
knight attacks just 4 others? Figure 128 displays the beautifully syrnmet- 
ric solution. The black lines, which show all the attacks, form a planar 
projection of the skeleton of the hypercube. 

In 1977, Jan Mycielski, a mathematician at the University of Colo- 
rado, wrote to ask if the following problem, suggested by his colleague 
Richard J. Laver, is new. Can a finite set of equal-sized squares be drawn 
on the plane in such a way that every corner of every square is also a 
corner of at least one other square? The squares may overlap. Mycielski 
had found a set of 576 squares that solves the problem, and he wondered 
if that number could be reduced. Shortly thereafter he reported that 
another colleague had found a solution with 40 squares, and then that 
two other colleagues had independently brought the number down to 12 
(see Figure 129). Finally, Andrzej Ehrenfeucht, a professor of computer 
science at the university, found a solution with eight squares. 

I mentioned the problem to Kim without telling him of any of the 
above results. He staggered me by saying instantly, "It can be done with 
eight." He had, of course, remembered his 16-knight problem that solves 
Laver's problem with eight squares. There is surely no solution less than 
eight, but I have no proof of that. In three dimensions the problem can 
be solved with three squares. On the plane six identical equilateral 
triangles can be arranged so that every corner belongs to two triangles 
but no edge belongs to two triangles (see Figure 130). The solution is a 

Figure 128 
Hypercube solution to 
Kim's knight problem 
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Figure 129 A 12-square solution to Richard J .  
Laver's problem 

Figure 130 Projection of a four-dimensional 
polytope that solves a triangle problem 
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planar projection of a four-dimensional polytope called a "triangular 
double prism." 

David L. Silverman, author of Your Move (a splendid collection of 
puzzles based on games), invented a novel board game, not included in 
his book, involving a nonstandard chess piece that is usually called the 
amazon. An amazon combines the power of a queen and a knight. The 
game is played on a standard chessboard with two amazons and a supply 
of counters. Queens can be employed as amazons, but it is important to 
remember that each such piece also has the power of a knight. 

White opens the game by placing his amazon on any cell. Black then 
places his amazon on any unattacked cell. From that point on the players 
take turns, each player transferring his amazon to any vacant cell not 
under attack by the other amazon. An amazon is not moved like a queen 
or a knight. It is simply picked up and placed on any cell that is not 
threatened. After each move a counter, say a penny, is placed on the 
vacated cell. A cell with a counter is out of play (henceforth no amazon 
can occupy it), but the counter does not block any attack. As the game 
~roceeds  the cells slowly fill with pennies until eventually a player is 
unable to find a safe spot for his amazon. The last player to move wins. 

If Silverman's amazon game is played on an order-5 board, the first 
player wins immediately by occupying the center square. Since all cells 
are attacked, the second player cannot even put his amazon on the 
board. On the standard chessboard the second player can always win by 
Silverman's clever pairing strategy. He mentally divides the board into 
four eight-by-two rectangles and numbers the cells of each rectangle as 
is shown in Figure 13 1. (Each number from 1 to 8 appears twice in each 

41 Figure 1.31 A pairing strategy far the 
amazon game 
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rectangle.) After each play by White, Black simply occupies the cell that 
is in the same rectangle as, and that has the same number as, the cell 
occupied by White. The game is an excellent example of the extraordi- 
nary power of a trivial pairing strategy to win a game that appears to be 
quite difficult to analyze. The pairing strategy obviously applies to any 
board of an even order higher than 4, and it is easy to devise slightly 
more complicated pairing patterns for first-player wins on all boards of 
odd order higher than 5. 

Ross Honsberger's Mathematical Gems 11 (Mathematical Association 
of America, 1976), as exciting a collection as his earlier volume, dis- 
closes for the first time a remarkable result in checker jumping that was 
discovered by the University of Cambridge mathematician John Horton 
Conway. Imagine a standard checkerboard divided in half as is shown in 
Figure 132. The bottom half is shaded and the rows of the unshaded half 
are numbered (from bottom to top) 1 through 4. Now imagine a fifth row 
just beyond the top edge. If a checker jumps off this edge, it is considered 
to have jumped to row 5. 

All jumps must be orthogonal, that is, horizontal and vertical but not 
diagonal. As in checkers, pieces that have been jumped over are re- 
moved. The problem is to determine the minimum number of checkers 
that can be placed on the shaded half of the board in such a way that a 
sequence of jumps will place a checker on row n. 

It is obvious that two is the minimum number of checkers required 
for getting a piece to row 1. They are placed as is shown at the top left in 
Figure 133, and one jump does it. Four is the minimum number of 

Figure 132 
John Horton Conway's 
checker problem 
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Figure I33 How to get a checker to rows 1 ,  2, 3 and 4 

checkers needed to get to row 2. They can be placed as is shown at the 
top right in the illustration. The bottom checker jumps to row 1, and 
then the checker farthest to the left makes two jumps to end on row 2. To 
get to row 3 eight checkers must be placed in the starting position shown 
at the bottom left in the illustration. So far the minimum numbers are in 
a doubling sequence, but to get to row 4 the sequence is broken. At least 
20 checkers are required. They can be arranged as is shown at the 
bottom right in the illustration. The arrows show how the jumps begin, 
and it should not be difficult to find a way to continue that will get a 
checker to row 4. 

How many checkers are needed to get to row 5, that is, to jump one 
checker off the board? Astonishingly, no arrangement of checkers on the 
shaded cells will get a checker to row 5. The situation is even more 
hopeless. No matter how far the shaded section is extended downward 
and to the left and right, no pattern of checkers, however large, will 
boost a piece to row 5. Interested readers will find Conway's ingenious 
impossibility proof given in detail in Chapter 3 of Honsberger's book. 
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Turning to playing cards, there are so many new puzzles and magic 
tricks based on mathematical principles that it is agonizing to have space 
for only one. A few years ago Martin D. Kruskal, a physicist at Princeton 
University, made a strange discovery that is now known among card 
magicians as Kruskal's principle or the Kruskal count. 

The ~ r i n c i ~ l e  is best explained by describing the card trick to which 
Kruskal first applied it. The subject shuffles a deck of cards and then 
thinks of any number from 1 to 10. He deals the cards slowly from the 
top, placing each card face up in a pile. As he deals, he counts to himself, 
noting the value of the card dealt at the chosen number. 

Assume that he thought of 7 and the seventh card is a 5. Without 
hesitating in his deal he mentally calls the next card 1, and as he deals, he 
counts silently from 1 to 5. Suppose the fifth card is a 10. As before, the 
next card is mentally called 1, and as he deals, he counts silently from 1 
to 10. This procedure is repeated until all 52 cards have been dealt. The 
cards at the end of each count, which determine how high the next count 
goes, are called "key cards." The last key card of the counting chain 
must be remembered by the magician's subject. It is the "chosen card" 
that has been selected by this randomized counting procedure. 

It is unlikely, of course, that the final count will end on the last card. 
It is more likely that it will not be possible to complete the final count. 
The subject is cautioned to deal the cards slowly, in a regular rhythm, so 
that no hesitations in dealing will give away the key cards. If the final 
count cannot be completed, he still must remember the last key card, 
but in order not to reveal it he must continue dealing to the end. 

To make the counting easier, the magician explains, all face cards 
are given a value of 5 .  Thus if a count ends on, say, a queen, the next 
count is not to 12 but to 5. To make the procedure clear Figure 134 
shows a typical chain with the values of all the key cards indicated. The 
subject began by thinking of 4. The chosen card, which he remembers, is 
the jack of hearts. It has a value of 5 ,  but because there are only three 
cards after it, the last count cannot be completed. It is obvious that this 
procedure, performed with a shuffled deck, can select any of the last 10 
cards. 

After the counting is finished and the subject has his chosen card in 
mind, the magician takes the deck, picks a card from the last 10 and 
places it face down on the table. The subject names his card. The magi- 
cian's card is turned over, and it is probably the chosen card. 

I have italicized "probably" to emphasize the strange way Kruskal's 
trick differs from almost all other tricks in which a magician finds a 
selected card. In this trick the magician cannot know the card with 
certainty. The probability that he will know the card is about 516. 
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Jack of Hearts 

Figure 134 Typical chain for a trick based on 
Kruskal's principle 

Now for the curious secret. As the subject deals, the magician notes 
any fairly low card among the first few that are dealt. He treats this card 
as the first key of a chain that he counts silently to himself while the 
subject is counting his own chain. Kruskal's counterintuitive discovery 
is that about five times out of six the last key card of the magician's chain 
will be the same as the last card of the subject's chain! To put it another 
way, the probability is about 516 that any two arbitrarily started chains 
will intersect at a key card. Once this happens, the chains will be identi- 
cal from that point on. 

Giving face cards a value of 5 increases the number of keys in an 
average chain and thereby increases the probability of intersection. By 
starting his count on a low card among the first few (instead of picking 



an arbitrary number from 1 to lo), the magician adds slightly to the 
probable number of keys in his chain. This raises the odds of success a 
trifle more. If the trick is done with two decks shuffled together, a failure 
is extremely unlikely. 

One of the best variations on Kruskal's trick comes from Cy Endfield 
of London. The trick is first performed as I have described it and is 
presented as a feat of telepathy. When the magician removes the (proba- 
bly) chosen card, he notes the card immediately under it. If that card is 
low enough to allow another count, he continues the silent counting and 
remembers the last key card. The removed card is not returned to the 
deck. 

The magician then hands the 51-card pack to the subject (without 
shuffling it) and asks him to repeat the trick, using a different starting 
number. "This time," the magician says, "I shall try to name your card 
by precognition." He writes a prediction on a sheet of paper that is 
folded and put aside. What he writes, of course, is the card he is remem- 
bering. Since the structure of the deck has not been altered, it is likely 
(with the same odds of about five to one) to be the second chosen card. 

It should also be possible to program a computer to play the role of 
the psychic. Fifty-two punched cards would bear the names of the play- 
ing cards. The subject shuffles, selects a card by the Kruskal count and 
feeds the deck to the computer. The computer is programmed to guess 
the card and simultaneously to remember the card most likely to be 
chosen when the trick is repeated. If the first guess is correct, the chosen 
card is removed from the computer's deck and the trick is done again 
with a new starting number. This time the computer prints out the name 
of the card without examining the deck. 

Even a computer will not always be right, but the fact that the trick 
sometimes fails makes it all the more impressive. When Uri Geller failed 
on the Johnny Carson show a few years ago (Carson, a former magician, 
guarded the test materials carefully before going on camera), Merv 
Griffin declared that the failure proved to him that Geller's powers were 
genuine. Magician's tricks, Griffin explained, always work. We all know 
how the "force" comes and goes. Why should a psychic robot control it 
any better than a humanoid? 

ANSWERS 

The eight-dice problem was to put them together to form a cube so that 
the sum of the 12 products of the 12 pairs of touching faces is (1) 
minimum and (2) maximum. My figures of 40 and 306 were correct. 
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William Funkenbush pointed out that if four of the dice are mirror 
images of standard dice (as they are in Japan), the minimum remains 40 
but the maximum rises to 308. Minimum and maximum solutions are 
shown in Figure 135. 

The same problem with 27 dice is answered with a minimum of 294 
and a maximum of 1028. Solutions are shown in Figure 136. The mini- 
mum is unique except for two possible orientations of the central die. 
Kenneth Jackman was the first to solve this difficult task, followed by 
Leonard Lopow, David Vanderschel, Alan Cuthberton and Paul Stevens. 
Lopow and Vanderschel solved the problem without computer aid. 

The chess task on the order-5 board has the unique solution (exclud- 
ing rotations and reflections, of course) shown in Figure 137. I had given 
this problem in slightly different form in a 1972 column on chess tasks 
that is reprinted in my Wheels, Life, and Other Mathematical Amuse- 
ments. In that chapter's addendum I discuss the general problem of 
placing k queens on order-n boards to maximize the number of unat- 

Bottom Bottom 

Figure 135 Minimum (40) and maximum (306) 
solutions to the eight-dice problem. 
Large number is top face, small number 
is the side facing north. 



278 Chapter 19 

Top 

Middle 

Bottom 

Figure 136 Minimum (294) and maximum (1028) 
solutions to the 27-dice problem. Large 
number is the top face, small number is 
the side facing north. 

Figure 137 Solution to chess task 
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tacked cells. The general problem remains unsolved, but Ronald Gra- 
ham and Fan Chung at Bell Labs are continuing to work on it with 
surprising results that they hope to publish eventually. 

A D D E N D U M  

I said that Sicherman dice could be used in any dice game without 
altering the odds, but this is not true. Gary Goodman pointed out that in 
backgammon, for example, doubles are treated as special cases. Odds for 
Sicherman-dice doubles are not the same as for standard dice; it is not 
even possible to throw a double 2. William Funkenbush wrote to say that 
even at casino crap tables Sicherman dice cannot be used for side bets 
such as making a certain sum "the hard wayw-that is, with identical 
numbers on both dice. Two hard-way bets, 4 and 10, obviously cannot be 
made at all. 

Many readers sent algebraic proofs of the uniqueness of Sicherman 
dice, all essentially the same as Sicherman's proof-by way of generat- 
ing polynomials and their unique factorization. Two published papers 
generalized Sicherman's discovery to k dice, each with m faces. The 
generalized dice can be modeled with Platonic solids, rolling cylinders 
with rn faces, spinners with rn numbers or urns with m balls. See "Re- 
numbering of the Faces of Dice" by Duane Broline in Mathematics 
Magazine (vol. 52, 1979, pages 3 12 - 3 15) and "Cyclotomic Polynomials 
and Nonstandard Dice" by Joseph Gallian in Discrete Mathematics (vol. 
27, 1979, pages 245 - 259). For a later rediscovery of essentially the same 
results, see "Dice with Fair Sums" by Lewis Robertson, Rae Shortt and 
Stephen Landry in American Mathematical Monthly (vol. 95, 1988, pages 
316-328). 

Can a pair of dice be renumbered with positive integers so that every 
possible sum is tossed with equal probability? This, too, has only one 
solution. See the chapter on dice in my Mathematical Magic Show.  Karl 
Fulves's dice trick is in his privately printed Faro Possibilities (1970, 
pages 33 - 34), where it is followed by a similar but more complicated die 
trick involving a cycle of 24 steps. 

I said I knew of no proof that eight squares are minimal for the 
problem of placing squares so every corner of each square is a corner of 
at least one other square. Karl Scherer of West Germany provided a 
lengthy proof. The problem generalizes to the placing of n-sided poly- 
gons in any number of dimensions, and several readers sent letters about 



it. The generalization plunges into the fascinating structures of polytopes 
in higher spaces. The polytope whose projection solves the triangle-plac- 
ing problem belongs to a class called "Hessian polytopes." They are 
discussed in H. S. M. Coxeter's classic work, Regular Complex Polytopes, 
now happily available in a Dover paperback edition. 

Conway's checker theorem was generalized to 3-space by Eugene 
Levine and Ira Papick in "Checker Jumping in Three Dimensions" in 
Mathematics Magazine (vol. 52, September 1979, pages 227 -23 1). The 
authors show that a checker cannot jump higher than level seven on the 
cubical board. 

Card magicians interested in tricks based on Kruskal's principle will 
find articles on them in two magic periodicals: "The Kruskal Principle" 
by Karl Fulves and myself in The Pallbearers Review (June 1975) and 
Charles Hudson's "Card Corner" column in The Linking Ring (De- 
cember 1976, pages 82-87), containing a variety of ideas from the 
Chicago card expert Ed Marlo. The same column (December 1957 and 
March 1978) discusses related card tricks based on what is called the 
"Kraus principle." 

Rereading "The Disappearance of Lady Frances Carfax," a Sherlock 
Holmes tale in the book His Last Bow, I was startled to encounter a 
remark of Holmes that seems to anticipate the Kruskal count: "When 
you follow two separate chains of thought, Watson, you will find some 
point of intersection which should approximate to the truth." 



Roymond Smullyon's 
logic Puzzles 

"I now introduce Professor Smullyan, who will 
prove to you that either he doesn't exist or you 
don't exist, but you won't know which." 
-MELVIN FITTING, introducing Raymond Smullyan 

to an undergraduate mathematics club 

Raymond M. Smullyan's What Is the Name of This Book? 
(Prentice Hall, 1978) is the most original, most profound and most 
humorous collection of problems in recreational logic ever written. It 
contains more than 200 brand-new puzzles, all concocted by the inge- 
nious author and interspersed with mathematical jokes, lively anecdotes 
and mind-bending paradoxes. The book culminates with a remarkable 
series of story problems that lead the reader into the core of the late Kurt 
Godel's revolutionary work on undecidability. 

Who is Smullyan? He was born in 19 19 in New York, studied philos- 
ophy under Rudolf Carnap at the University of Chicago and received his 
Ph.D. in mathematics at Princeton University. He is currently a professor 
of philosophy at Indiana University in Bloomington and professor emeri- 
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tus of mathematics and philosophy at Lehman College and CUNY Gradu- 
ate Center in New York City. 

Among experts on logic, recursion theory, proof theory and artificial 
intelligence he is best known as the author of two elegant little treatises: 
First-Order Logic (Springer-Verlag, 1968) and Theory of Formal Systems 
(Princeton University Press, 1961). His article in The Encyclopedia of 
Philosophy on Georg Cantor's famous continuum problem is a marvel of 
lucid compression. In 1977 Harper & Row published his first nontechni- 
cal work, The Tao Is Silent, one of the best introductions to Taoism I 
have seen. 

Smullyan's main hobbies are music (he is an accomplished classical 
pianist), magic (in his youth he was a part-time professional) and chess. 
He has recently finished work on two collections of remarkable chess 
problems, Chess Mysteries of Sherlock Holmes and Chess Mysteries of the 
Arabian Knights, in which each problem is embedded in an appropriate 
pastiche. Add an enticing literary style, a huge sense of humor and a 
Carrollian love of paradox and you have the flavor of What Is the Name o f  
This Book? 

The book opens with a true story that introduces one of Smullyan's 
central themes. On April Fool's Day, when Smullyan was six, his older 
brother  mile told him he was going to be fooled as he had never been 
fooled before. All day long Smullyan waited for the prank, and he lay 
awake that night still waiting for it. Finally   mile revealed the joke: 
Raymond had expected to be fooled and so, by not doing anything,   mile 
had fooled him. 

"I recall lying in bed long after the lights were turned out." Smullyan 
writes, "wondering whether or not I had really been fooled. On the one 
hand, if I wasn't fooled, then I did not get what I expected, hence I was 
fooled. . . . But with equal reason it can be said that if I was fooled, then 
I did get what I expected, so then, in what sense was I fooled?. . . . I 
shall not answer this puzzle now; we shall return to it in one form or 
another several times in the course of this book." 

After an introductory section on some classic brainteasers, many 
with amusing new twists, Smullyan introduces three types of people 
who will participate in most of the problems that follow: "knights," who 
always tell the truth; "knaves," who always lie; and "normals," who 
sometimes tell the truth and sometimes lie. 

It is amazing how much can be deduced from just a few lines of 
dialogue with these individuals. For example, on an island inhabited 
only by knights and knaves Smullyan comes on two men resting under a 
tree. He asks one of them: "Is either of you a knight?" When the man- 
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call him A - responds, Smullyan instantly knows the answer to his ques- 
tion. Is A a knight or a knave? What is the other man? 

It seems as though there is not enough information to solve this 
problem, but the key lies in the fact that A's answer enabled Smullyan to 
find the solution. If the answer had been yes, Smullyan would have 
learned nothing. (If A is a knight, one or both of the men could be 
knights, and if A is a knave, both of them could be knaves.) Therefore A 
must have said no. Now, if A were a knight, he would have had to say yes, 
but since he said no he must be a knave. Because he is a knave his no is 
false; therefore at least one knight must be present. Hence the other man 
is a knight. 

Lewis Carroll's Alice soon enters the book. We find her wandering 
around in the Forest of Forgetfulness, where she is unable to remember 
the day of the week (see Chapter 3 of Through the Looking-Glass). In the 
forest she meets the Lion and the Unicorn. The Lion lies on Monday, 
Tuesday and Wednesday and the Unicorn lies on Thursday, Friday and 
Saturday. At all other times both animals tell the truth. "Yesterday was 
one of my lying days," says the Lion. "Yesterday was one of my lying days 
too," says the Unicorn. Alice, who is as smart as Smullyan, is able to 
deduce the day of the week. What is it? 

Enter more Looking-Glass characters: the Tweedle brothers, the 
White King, Humpty Dumpty and the Jabbenvock. Tweedledee behaves 
like the Unicorn, Tweedledum like the Lion. After Alice has solved a 
number of problems based on conversation with the Tweedles, Humpty 
Dumpty discloses a well-kept Looking-Glass secret: There is a third 
brother, identical in appearance with Dum and Dee, named Tweedle- 
doo. Doo always lies. Alice is now dreadfully upset because all her 
previous deductions may be wrong. On the other hand, Humpty may be 
lying, and Tweedledoo may not exist. Four accounts are given of what 
happens next, and the reader is asked to deduce which one is correct and 
whether or not Tweedledoo exists. 

The scene then shifts to Shakespeare's The Merchant of Venice and 
that famous puzzle occasion when Portia presents her suitor with three 
caskets, gold, silver and lead, each of which bears a different inscription. 
Only one casket contains Portia's portrait, and if the suitor guesses it 
correctly, Portia will marry him. (It is not generally realized, by the way, 
that Portia gives her suitor a whopping hint by singing, "Tell me where is 
fancy bred. / Or in the heart or in the head?" The last words of both lines 
rhyme with lead, the correct choice.) 

By varying the inscriptions on the caskets Smullyan creates a series 
of remarkable problems that lead the reader closer and closer to Godel's 
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discovery. The fir& problem is shown in Figure 138. Portia, who never 
lies, explains to her suitor that at most one inscription is true. Which 
casket should he choose? 

Smullyan improvises clever variations on the Portia theme. In some 
problems each casket bears two inscriptions. We also learn that there 
are two casket makers: Bellini, who always puts true inscriptions on his 
caskets, and Cellini, who always puts on false ones. 

Consider another casket problem, shown in Figure 139. The gold 
casket bears the inscription "The portrait is not in here" and the silver 
casket bears the inscription "Exactly one of these two statements is 
true." The two inscriptions present a logical dilemma of enormous 
importance in the history of modern semantics. The suitor reasons: If 
the silver statement is true, then the gold one is false. If the silver 
statement is false, then the inscriptions are either both true or both false. 
They cannot both be true if the silver statement is false, and so they are 
both false. In either case the gold statement is false; therefore the gold 
casket must contain the portrait. The suitor triumphantly opens the gold 
casket but finds to his horror that it is empty. The portrait is in the other 
casket. What is wrong with his reasoning? 

The error he makes is in assuming that the statement on the silver 
casket is either true or false. This problem involves us in the modern 
concept of metalanguages. It is only permissible to discuss the truth 
values of a particular language in a larger language, or metalanguage, 
that contains the first language as a subset of its terms. When a language 
refers to its own truth values, the result is often a logical contradiction. 
Without metastatements about the truth or falsity of the casket inscrip- 

The portrait is in The portrait is not The portrait is not 
this casket. in this casket. in the gold casket. 

Gold Silver Lead 

Figure 138 Portia's first casket test 
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The portrait is Exactly one of these 
not in here. two statements is true. 

Gold Silver 

Figure 139 Where is Portia's portrait? 

tions or information about how their truth values are related the inscrip- 
tions can be meaningless. 

Inspector Leslie Craig of Scotland Yard now strides into the book, 
and Smullyan gives us a variety of mysteries from the inspector's files 
that can be solved by careful logical deduction. The first one is the 
simplest: 

An enormous amount of loot had been stolen from a store. The criminal 
(or criminals) took the heist away in a car. Three well-known criminals, 
A, B and C, were brought to Scotland Yard for questioning. The 
following facts were ascertained: 

(1). No one other than A, B and C was involved in the robbery. 

(2). C never pulls a job without using A (and possibly others) as an 
accomplice. 

(3). B does not know how to drive. 
Is A innocent or guilty? 

In the pages that follow Smullyan is concerned with such practical 
tasks as how to avoid werewolves, how to choose a bride, how to defend 
yourself in court and how to marry a king's daughter. For instance, 
suppose you want to convince a prospective bride who is unusually fond 
of knaves that you are a rich knave. (You must be rich or poor.) Can it be 
done with a single sentence? Yes. You have only to say, "I am a poor 
knave." The girl knows at once that you cannot be a knight because a 
knight would not lie and say he is a poor knave. Since you are a knave 
your statement must be false; therefore you are a rich knave. Suppose 



the girl is attracted only to knights. What sentence will convince her you 
are a rich knight? 

The next section introduces logic puzzles based on the conditional 
statement of the form "If P is true, then Q is true." The two statements 
are connected by the relation of implication, an understanding of which 
is absolutely indispensable in understanding the propositional calculus. 
Smullyan plays with the familiar paradoxes of implication and then gives 
18 ingenious puzzles no reader can think through without acquiring a 
firm grasp on the logical principles involved. 

The next setting is the Island of Baal, the only place on the earth 
where someone knows the answer to the superultimate metaphysical 
question: "Why is there anything at all?" The island is inhabited only by 
knights and knaves. After a series of encounters with the local folk 
Smullyan proves that the Island of Baal cannot exist. 

The proof of nonexistence does not apply to the next island Smullyan 
visits: the Island of Zombies. Here there is no easy way to distinguish the 
zombies, who always lie, from the human beings, who always tell the 
truth. Life is further complicated by the fact that all yes-or-no questions 
are answered with either "bal" or "da," but we do not know which 
means yes and which means no. Suppose you ask a native whether "bal" 
means yes and he answers "bal." You cannot determine what "bal" 
means, but can you tell whether the speaker is a human being or a 
zombie? Is it possible to find out what "bal" means in just one yes-or-no 
question? 

Transylvania is equally confusing. Here the human beings (truth- 
tellers) do not look different from the vampires (liars) and half of the 
inhabitants are insane. The insane believe all true propositions are false 
and all false propositions are true. Thus there are four types of Transylva- 
nians: sane human beings, insane human beings, sane vampires and 
insane vampires. Anything a sane human being says, of course, is true 
and everything an insane human being says is false. Conversely, anything 
a sane vampire says is false and anything an insane vampire says is true. 
Luckily all questions are answered in English. How can you determine in 
one yes-or-no question whether a Transylvanian is a vampire? How can 
you find out in one yes-or-no question whether he is sane? 

Smullyan, eager to know whether Dracula is alive or dead, puts the 
question to various Transylvanians. The reader is asked to deduce the 
answer from the dialogue. This section culminates in a grand ball at 
Count Dracula's castle, where the complexities are compounded by the 
fact that all questions are answered with "bal" and "da," as on the Island 
of Zombies. A S  a result there are three variables to worry about: Is the 
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speaker sane, is he human and what does "bal" mean? Smullyan eventu- 
ally discovers that Dracula is alive but insane. 

One chapter of the book is titled "How to Prove Anything." After 
examining a sophistry in Plato's dialogue Euthydemus in which one 
speaker proves that another speaker's father is a dog, Smullyan discusses 
a number of curious devices by which one can seemingly prove that 
anything - God, Satan, unicorns, Santa Claus and so on - exists. One of 
the devices is derived from the traditional ontological argument for God. 
Some of the others are variants of a subtle method discovered by the 
mathematical logician J. Barkley Rosser. 

For example, consider the following sentence: "If this sentence is 
true, then Santa Claus exists." Smullyan writes: "If the sentence is true, 
then surely Santa Claus exists (because if the sentence is true, then it 
must also be true that if the sentence is true, then Santa Claus exists, 
from which it follows that Santa Claus exists); hence what the sentence 
says is the case, so the sentence is true. Hence the sentence is true, and if 
the sentence is true, then Santa Claus exists. From this it follows that 
Santa Claus exists." The argument is unsound, but without an under- 
standing of the role of metalanguages it is not easy to explain exactly 
why. 

The penultimate chapter introduces the familiar "liar paradox" 
("This statement is false") and its many disguises and variants. Smullyan 
presents some of the deepest paradoxes of logic and set theory in a way 
that makes them clearer than they have ever been made before. For 
instance, here is his explanation of the famous paradox, known as Rich- 
ard's paradox, that is the basis for Godel's undecidability proof. 

A mathematician has a book called The Book of Sets. On each page 
he lists or describes a set of counting numbers. The pages are numbered 
consecutively. Can we describe a set of positive integers that cannot be 
listed in the book? 

We can. If a number n belongs to the set listed on page n, call it an 
extraordinary number. If n does not belong to the set on page n, call it an 
ordinary number. Now consider the set of all ordinary numbers, Assume 
that this set is listed on a certain page. The number of the page cannot be 
ordinary because if it were, that number would be on the page and 
consequently it would be extraordinary. On the other hand, it cannot be 
extraordinary because in that case it would have to appear on the page 
and we assumed that the page lists only ordinary numbers. This contra- 
diction forces us to abandon the assumption that the set of ordinary 
numbers can be listed. Therefore there is a set of positive integers that 
cannot be listed in the book. 
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Now we are ready for Smullyan's climactic chapter on Godel's dis- 
covery; this final chapter is the best introduction I know to that great 
watershed in the history of the study of the foundations of mathematics. 
Since the days of Leibniz mathematicians have dreamed that someday all 
mathematics would be united in one vast system in which every state- 
ment that could be formulated could be proved true or false. Leibniz 
even extended the dream to philosophical disputes. "If controversies 
were to arise," he wrote, "there would be no more need of disputation 
between two philosophers than between two accountants. For it would 
suffice to take their pencils in their hands, to sit down to their slates, and 
to say to each other (with a friend to witness, if they liked): Let us 
calculate." 

This dream was shattered forever by Godel's paper of 193 1. In the 
paper the 25-year-old Godel showed that the deductive system of Alfred 
North Whitehead and Bertrand Russell's Principia Mathernatica, as well 
as related systems such as standard set theory, contains undecidable 
statements, that is, statements that are true but cannot be proved true 
within the system. More precisely, Godel showed that if a system like that 
of Principia Mathernatica satisfies certain reasonable conditions such as 
consistency (freedom from contradiction), then it allows the formation 
of sentences that are undecidable. At the same time he showed that if 
such a system is consistent, there is no way to prove the consistency 
within the system. 

These results apply to any deductive system rich enough to contain 
arithmetic. Even in ordinary arithmetic there are statements that are 
true but unprovable. (Very simple systems, such as arithmetic without 
multiplication, are free from any undecidable statements.) Moreover, it 
is not possible to prove the consistency of arithmetic within arithmetic. 

One can, of course, enlarge arithmetit by adding new axioms so that 
the enlarged system allows proof of any formerly undecidable statement. 
Alas, the situation is as hopeless as it was before. It can be shown by 
Godel's same arguments that the enlarged system will contain new un- 
decidable statements and that the consistency of the enlarged system 
cannot be proved within it. This construction of increasingly larger 
systems can go on forever, but it will never reach a level where undecid- 
able statements can be banished from a system or a consistency proof 
can be devised within the system. 

There is a famous unsolved problem in arithmetic called Goldbach's 
conjecture. It asserts that every even number greater than 2 is the sum of 
two primes. No one has proved it or found a counterexample. It is 
possible that Goldbach's conjecture is Godel-undecidable. If that is so, it 
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means the conjecture is true but unprovable within arithmetic. It is true 
because if it were false, a counterexample would exist, and that would 
make the conjecture decidable. 

An even more disturbing aspect of this situation is the lack of any 
constructive way of showing that number theorists will not someday find 
an arithmetical proof that Goldbach's conjecture is true and also a proof 
that it is false! Mathematicians hope and believe it will never happen to 
any arithmetical theorem because if it does, it would reduce arithmetic 
and all higher mathematics to a shambles. (It is easy to show that if a 
deductive system, in which proofs by contradiction are valid, contains 
even one contradiction, then it is possible to prove any statement what- 
soever in the system.) Platonist mathematicians who regard the axioms 
of arithmetic as being true and the rules of reasoning as being correct 
have no such worries because they believe no contradictions can arise. 
The purely constructive formalists, however, have no such guarantees. 

Godel's undecidable statements are undecidable only within a given 
system. In 1936 papers by A. M. Turing and Alonzo Church established 
the existence of problems that are undecidable in a deeper sense. They 
proved the existence of problems for which there is no finite algorithm, 
or step-by-step procedure, that will solve them. Examples of these abso- 
lute undecidables include the famous halting problem of Turing-ma- 
chine theory, the color-domino problem in tiling theory, problems in 
John Horton Conway's game of Life and many more. At no time in the 
future will it be possible in any logically consistent world to build a 
computer, however powerful, that by twiddling symbols will be able to 
solve such problems in a finite number of steps. 

Since 1936 all kinds of ways of establishing Godel's results and the 
related Church-Turing results have been devised, some of them simpler 
than Godel's original method. Smullyan presents Godel's proof in a 
delightful way by imagining a Godel island inhabited only by knights and 
knaves. Knights who have "proved themselves" to be knights are called 
established knights. Knaves who have proved themselves to be knaves 
are called established knaves. The inhabitants have formed clubs for 
which the following conditions hold: 

1. The set of all established knights forms a club. 

2. The set of all established knaves forms a club. 

3. Every club C has its complement: a club consisting of all 
people on the island who are not in club C. 

4. Given any club, there is at least one inhabitant who professes 
to be a member of that club. 
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Smullyan is now able to show in just three paragraphs of simple, 
nontechnical argument that there is at least one unestablished knight on 
the island and at least one unestablished knave. If we regard the knights 
as being true sentences, the established knights as being provably true 
sentences, the knaves as being false sentences and the established knaves 
as being provably false sentences, the results of Smullyan's argument 
correspond to Godel's results. In only three more sentences Smullyan 
establishes a related theorem of Alfred Tarski's, that neither the set of 
knaves nor the set of knights forms a club. 

There is a well-known version of the old liar paradox where instead 
of a single sentence there are two sentences, one on each side of a card. 
One sentence states, "The sentence on the other side of this card is true." 
The other states, "The sentence on the other side of this card is false." 
Neither sentence refers to itself and yet the contradiction is obvious. 
Similarly, Smullyan imagines what he calls "doubly Godelian islands" of 
knights and knaves that satisfy the following condition: Given any two 
clubs C1 and C,, there are inhabitants A and B such that A claims that B is 
a member of C1 and B claims that A is a member of C,. The study of such 
double islands is one of Smullyan's favorite hobbies. He discusses sev- 
eral of his discoveries about them and gives some new problems that 
have not yet been solved. 

The book ends with a truly astonishing version of Godel's construc- 
tion of an unprovable sentence. Consider the following statement: "This 
sentence can never be proved." "If the sentence is false," writes Smul- 
lyan, "then it is false that it can never be proved, hence it can be proved, 
which means it must be true. So, if it is false, we have a contradiction, 
therefore it must be true. 

"Now, I have just proved that the sentence is true. Since the sen- 
tence is true, then what it says is really the case, which means that it can 
never be proved. So how come I have just proved it?" 

The fallacy, Smullyan explains, is that it has not been made clear just 
what is meant by provable. Consider a revised version of the sentence: 
"This sentence is not provable in system S." The paradox magically 
vanishes! "The interesting truth is that the above sentence must be a true 
sentence which is not provable in system S." (It is assumed, of course, 
that everything provable in S is true.) In this form the sentence is "a 
crude formulation of Godel's sentence X, which can be looked at as 
asserting its own unprovability, not in an absolute sense, but only within 
the given system." 

At this point Smullyan suddenly remembers that he has not yet 
answered the question "What is the name of this book?" The name 
is. . . . But see the book's last page for the answer. 
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ANSWERS 

1. The Lion can say "I lied yesterday" only on two days: Monday 
and Thursday. The Unicorn can make the same statement 
only on Thursday and Sunday. Therefore the only day on 
which both the Unicorn and the Lion can make the statement 
is Thursday. 

2. The inscriptions on the gold and lead caskets say the opposite, 
so that one of them must be true. Since at most only one 
statement is true, the statement on the silver casket is false. 
The portrait is therefore in the silver casket. 

3. If B is innocent, then we know (by fact 1) that either A or C 
is guilty. If B is guilty, he must have had an accomplice 
because he cannot drive; therefore again A or C must be 
guilty. Consequently A or C or both are guilty. If C is 
innocent, A must be guilty. If C is guilty, then (by fact 2) A is 
also guilty. Therefore A is guilty. 

4. You say "I am not a poor knight." The girl reasons that if 
you were a knave, you would indeed not be a poor knight; 
therefore your statement would be true. Since a knave never 
makes a true statement, the contradiction eliminates the 
assumption. Hence you are a knight. Knights speak truly, and 
so you are not a poor knight. 

5. An inhabitant on the Island of Zombies has replied "Bal" to 
the question, "Does bal mean yes?" If bal means yes, then bal 
is the truthful answer; therefore the speaker is human. If bal 
means no, then that too is truthful; therefore the speaker is 
human. It is not possible to determine what "Bal" means, but 
the answer does prove that the islander is human. 

6. To determine in one yes-no question what "Bal" means ask 
the islander if he is human. Since both human beings and 
zombies answer yes to such a question, if the islander 
answers, "Bal," the word means yes. If the islander answers 
"Da," then "Da" means yes and "Bal" means no. 

7. To tell whether a Transylvanian is a vampire by asking one 
yes-no question, ask him if he is sane. A vampire will say no 
and a human being will say yes. (I leave the proof to the 
reader.) To tell whether the Transylvanian is sane ask him if 
he is a vampire. 
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ADDENDUM 

Since I reviewed Smullyan's first book of logic problems, he has written 
other nontechnical books that you will find listed in the bibliography. I 
have also cited a perspicacious review of What Is the Name of This Book? 
by the eminent philosopher Willard Van Orman Quine and an entertain- 
ing article about Smullyan that appeared in Smithsonian magazine. 

James Kennedy reminded me in a letter that a title of an earlier 
book, similar in self-reference to the title of Smullyan's book, was a book 
of magic tricks by the American magician Ted Annemann. He called it 
The Book Without a Name. 

BIBLIOGRAPHY 

Puule books by Raymond Smullyan 

The Chess Mysteries of Shevlock Holmes. Knopf, 1979. 
The Chess Mysteries of the Arabian Knights. Knopf, 1981. 
The Lady or the Tiger? Knopf, 1982. 
Alice in Puzzle-Land. Morrow, 1982. 
To Mock a Mockingbird. Knopf, 1985. 
Forever Undecided: A Puule Guide to Godel. Knopf, 1987. 

Philosophical works by Smullyan 

The Tao Is Silent. Harper & Row, 1977. 
This Book Needs No Title. Prentice-Hall, 1980. 
Five Thousand B.C. and Other Philosophical Fantasies. St. Martin's, 1983. 
Incompleteness and Undecidability. Oxford University Press, forthcoming. 

About Smullyan 

"Knights and Knaves." Willard Van Orman Quine, in the New York Times Book 
Review, May 28, 1978. 

"The Puzzling and Paradoxical Worlds of Raymond Smullyan." Ira Mothner, in 
Smithsonian, 13, 1982, pp. 115- 128. 

About Godel and undecidability 

Computability and Unsolvability. Martin Davis, McGraw-Hill, 1958. 
Godel's Proof. Ernest Nagel and James Newman. New York University Press, 

1959. 
The Undecidable. Martin Davis, ed. Raven Press, 1965. 



The Return 
o f  Dr. Matrix 

It's still the same old story. 

-HERMAN HUPFELD AS Time Goes By* 

In the last chapter of The Magic Numbers of Dr. Matrix 
(Prometheus, 1985), I reported the sad news of the death of my old 
friend, the famous numerologist Dr. Irving Joshua Matrix. I had last seen 
him and his half-Japanese daughter, Iva, in Istanbul in 1980. Disguised as 
an Arab named Abdul Abulbul Amir, Dr. Matrix was then on a top-secret 
mission for the CIA. When I returned to New York, I learned of his tragic 
rendezvous on the banks of the Danube, near Izmail, with a Russian KGB 
agent named Ivan Skavinsky Skavar. The two men, said the New York 
Emes, apparently fired their revolvers simultaneously. Skavar's body 
was tossed by the Russians into the Black Sea. Amir was buried near 
Izmail in the Reichenbach Falls Cemetery. 

*Copyright 1931 Warner Bros. Inc. O (Renewed) All rights reserved. Used with 
permission. 
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Early in 1987 I attended an international conference on fractal ge- 
ometry, held at the posh Ritz Hotel in Lisbon. During lunch with Benoit 
Mandelbrot, the father of fractals and the conference's honored guest 
and keynote lecturer, a loudspeaker on the wall summoned me to a 
telephone. 

To my astonishment and delight, it was Iva! She refused to say how 
she knew 1 was in Lisbon, but she asked if it would be possible for me to 
visit her in Casablanca. After all, she said, Casablanca was only a short 
plane hop from Lisbon. She had, she added, some startling information 
to disclose about her father. 

We arranged to meet for dinner at Rick's Place, Casablanca's well- 
known gambling casino, restaurant and bar. It is the same spot that was 
the setting for the 1942 motion picture Casablanca starring Ingrid Berg- 
man, Humphrey Bogart, Claude Raines and Paul Henreid. As most afi- 
cionados of this classic cult film know, it was based on an unproduced 
play called "Everybody Comes to Rick's" -a play in turn based on real 
people. Readers may be interested to learn what happened to these 
people. In 1943 Ilsa's husband, Victor Laszlo, was assassinated by a 
revenging Nazi. A few years later Ilsa Lund and Richard Blaine were 
reunited in Paris, where they were married, with Rick's friend Captain 
Louis Renault as best man. They had one child, Richard, Jr. 

After Richard senior died in 1957, Ilsa returned to Stockholm with 
her son. They lived there until her death in 1982. In 1983 Rick, Jr. 
bought the Cafe-Americain that his father had once owned, named it 
"Rick's Place" and has been managing it ever since. 

Casablanca, a bustling port city of almost 3 million, was what I had 
expected-a city sharply bifurcated into regions of great wealth and 
abject poverty. Tall white office buildings with fashionable French shops 
gleamed in the bright African sun. Not far from El Mansour, my hotel, 
were the mean, dirty, gloomy streets of the poor, festering with crime, 
drugs, disease and misery. As my taxi rolled past one of the Soaks (old 
markets), I could smell the spices and the smoke from kabobs cooking 
on open fires. 

Rick's Place, just beyond the Souk, was noisy, smoky and jammed 
with European tourists and native Muslims, most of them speaking 
French. Rick himself, chain-smoking like his father, led me to the table 
where Iva smiled and waved. She had aged some but looked as stunning 
as ever. A tall white-haired man sat opposite her, his back to me. When I 
circled the table and saw his face, I almost collapsed. It was Dr. Matrix! 
His hawk-like visage was sombre as he stood up to buss me on both 
cheeks, but his emerald eyes, one of them behind a monocle, glinted 
with amusement. 



The Return of  Dr. Matrix 295 

I was totally at a loss for words while Iva filled me in on what had 
happened. The Russian agent died instantly from a bullet through his 
brain, but Abdul, or rather Dr. Matrix, had fallen unconscious after 
Ivan's bullet grazed his left temple. Agents from the CIA were nearby. 
Their helicopter carried Dr. Matrix to Morocco, where he quickly recov- 
ered and was given a new identity. Two peasants from Izmail were paid 
handsomely to testify that they had witnessed the deaths of both men. 
After a sham funeral, an empty casket was buried. 

Dr. Matrix said little until Iva finished. He assured me that all danger 
of retaliation by the KGB had passed, but he was currently on another 
hush-hush assignment about which he could give no information beyond 
the fact that he was living in Casablanca as an expatriate poet from 
Indiana named Jasper Whitcomb Lundy. Iva, using a stage name she 
asked me not to divulge, was working as a belly dancer at a nightclub in 
the nearby resort town of Ain Diab. "It's my uncover," she said. 

"Jasper Whitcomb Lundy," I repeated. "Why such an odd name?" 
"No two letters are alike," said Dr. Matrix. "That's quite rare in such 

a long name. Observe also that its six vowels are in AEIOUY order." 
"Your silver belt buckle," I remarked. "I see engraved on it the 

ancient Chinese lo shu, or magic square, with its odd digits on gray 
cells." (See Figure 140.) 

Figure 140 Dr. Matrix's lo shu belt buckle 
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"Yes. All even numbers are yin, all odd numbers yang. The central 5 
is identified with the earth. Metal is indicated by 4 and 9, fire by 2 and 7, 
water by 6 and 1 and wood by 8 and 3. Each doublet has a yin-yang 
balance. The lo shu is the only way, as you know, aside from rotations 
and reflections, to arrange the nine digits so the sum of each row, 
column and main diagonal is the same. I think you gave a simple proof of 
uniqueness in one of your columns." 

I nodded. "In my January 1976 column on magic squares and cubes. 
The lo shu has always impressed me as one of the most elegant patterns 
in the history of combinatorial number theory." 

"It has many astonishing properties," said Dr. Matrix, "only a few of 
which I recall your mentioning." 

I whipped a notepad and pencil from a pocket. 
"For example, imagine the lo shu on a torus, its surface divided into 

nine cells. If you prefer, think of the plane square of three-by-three cells 
as torus-connected. Each pair of adjacent cells in the top row is consid- 
ered joined to the two cells on the bottom row directly beneath. Each 
pair of adjacent cells in the left column is considered attached to the 
corresponding pair in the right column." 

"And," I interrupted, "the four corner cells are also joined." 
"Precisely. Altogether the toroidal matrix has nine two-by-two 

squares." 
''SO?" 
"The sums of the four digits in each of the nine squares not only are 

all different, they are the consecutive numbers 16 through 24." 
"Weird!" I exclaimed. "I didn't know that." 
"I'm not surprised," said Dr. Matrix. "I discovered it when I was 

seven, but I've never written about it." 
I jotted all this down, then asked: "Does the lo shu have any other 

curious properties I should know about?" 
"Hundreds," Dr. Matrix answered. "Let me describe one I discov- 

ered 30 years ago. It's been rediscovered since, though few mathemati- 
cians know it. Consider the three-digit numbers given by the three rows. 
Square each number and add the squares. Do this with the three num- 
bers formed by taking the same triplets in reverse. The two sums are 
identical." 

I took out my pocket calculator. Dr. Matrix was right: 

"There is more," said Dr. Matrix, adjusting his monocle. "The same 
result holds for the three-digit numbers formed by the three columns." 
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"How about the diagonals?" 
"Oui, mon ami. The main and broken diagonals have the same 

identities. Of course, they are all straight diagonals on the torus. Take the 
three diagonals that go down and right. Square each number and add. 
The sum equals the sum of the squares of the same three numbers 
reversed. This holds true also for the three diagonals that go down and 
left." 

I verified this on my calculator: 

Dr. Matrix pressed a concealed button at the base of his belt buckle, 
and the silver disk dropped into his palm. He turned it over and placed it 
beside my plate. Figure 141 (left) shows the square engraved on the 
back. 

"You are looking," said Dr. Matrix, "at one of the most incredible 
magic squares ever discovered. It was found a few years ago by my friend 
Lee Sallows. He calls it the li shu." 

"I can see it is magic," I said, "but it must have some other unusual 
property." 

"It does indeed." 
Dr. Matrix sketched an empty nine-cell matrix on my notepad. In 

each cell he put a number that counted the number of letters in the 
English word for each corresponding number on the li shu. Thus "five" 
has four letters, and so a 4 goes into the top left corner, and similarly for 
the other cells (Figure 141 right). I could hardly believe it. Not only was 
the new square magic, but its numbers were consecutive from 3 to 1 l! 

Later I learned that "alphamagic" is Sallows' term for magic squares 
that translate in this preposterous way, in any given language, to another 

Figure 141 Lee Sallows' li shu (left) and its 
alphamagic partner (right) 
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magic square. Results of his in-depth computer investigations of alpha- 
magics of all sizes and in more than 20 languages were reported in 1986 
in his two-part article "Alphamagic Squares." Sallows is a British elec- 
tronics engineer who works for the University of Nijmegen in Holland. 

Iva had been listening with a faint smile. "Perhaps," she said to her 
father, "you can give Mr. Gardner some lo shu-related puzzles that 
would entertain his readers if he writes about you again." 

Without hesitation Dr. Matrix proposed a dozen problems from 
which I selected the following: 

1. Construct a three-by-three magic square using nine 
consecutive whole numbers (nonnegative integers) that has a 
constant of 666, the Bible's notorious "number of the beast." 

2. Figure 142 (left) shows a matrix on which 8 is on a side 
instead of in a corner as on the lo shu. Add eight whole 
numbers to the vacant cells, no two of the nine numbers 
alike, to form a magic square with the lo shu's constant of 15. 

3. Construct a magic square with nine prime numbers, no two 
alike, that has the lowest possible magic constant. The number 
1 is excluded because today it is not considered a prime. The 
number 2 also is unusable. (Proof: Assume 2 appears on an 
n-by-n prime magic square, and that n is odd. Because 2 is 
the only even prime, all rows and diagonals would have an 
odd sum except those containing 2, which would be even. If 
n is even, all rows and diagonals would have an even sum 
except those containing 2, which would be odd.) 

4. Adopting the simple code of A = 1, B = 2 and so on, translate 
the lo shu digits into the nine letters shown in Figure 142 
(right). Imagine a chess king placed on a cell. Make seven 

Figure 142 Two lo s h u  puzzles 
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king moves to spell a hyphenated eight-letter word, no two 
letters alike, counting the letter where the king starts as the 
word's first letter. 

Dr. Matrix replaced the silver disk on his belt buckle. "By the way," 
he said, leaning back in his chair and adjusting his monocle, "the three 
horizontal numbers on the lo shu, as they appear on my lo shu's orienta- 
tion, are interesting. Take 276, the top number. It's the sum of the fifth 
powers of 1, 2 and 3. The middle number 951 is the difference between 
the squares of consecutive numbers 475 and 476; 475 is the difference 
between the squares of consecutive numbers 237 and 238; and 237 is the 
difference between the squares of consecutive numbers 118 and 119. 

"My head spins," I said, as I jotted this down. "Is there anything 
remarkable about 438, the bottom number of your lo shu?" 

"It is the most remarquable of all," said Dr. Matrix. "It's a Smith 
number." 

I looked blank. "What the blazes is a Smith number?" 
Smith numbers, Dr. Matrix explained, were discovered by Harold 

Smith, a brother-in-law of a mathematician at Lehigh University in Beth- 
lehem, Pennsylvania, Albert Wilansky. One day Smith, who is not a 
mathematician, noticed that if his phone number were written as a 
single number 4,937,775, it had a whimsical property. Add all the digits 
in its prime factors 3, 5, 5, 65,837, and you get 42, which is also the sum 
of the digits in the phone number. Wilansky called any composite num- 
ber with this property a Smith number and wrote a short note about it 
for the Two-Year College Mathematics Journal. Later Wayne McDaniel at 
the University of Missouri proved that there is an infinity of Smiths. 

The smallest Smith number is 4. Among the first million integers 
there are 29,928 Smiths. This is almost 3 percent, and it is believed that 
this percentage holds approximately for any interval of a million in- 
tegers. The chart in Figure 143 lists the Smiths less than 2000. Note that 
666 is a Smith number, as is 1776. Dr. Matrix called my attention to the 
curious coincidence that 1776 is both the publication date of Adam 
Smith's The Wealth of Nations, the bible of capitalism, and the date of the 
founding of the world's most capitalist nation. 

Dr. Matrix digressed to explain a curious property of 1776 that he 
had discovered. He asked me to select any digit N and then punch the N 
key of my calculator three times to put NNN in the readout. I was asked 
to multiply NNN by 16 and then divide the product by N. Result: 1776! 

Two consecutive Smiths, such as 728 and 729 (the next highest pair 
is 2964 and 2965), are called Smith brothers. It is not known if the 
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Figure 143 Smith numbers to 2000. 

number of Smith brothers is infinite. It has been shown, however, that 
there is an infinity of what Dr. Matrix called Psmiths (Iva preferred the 
term Smithtims)-palindromic Smiths that read the same in both 
directions. 

Figure 144 copies a sketch by Dr. Matrix of a magic square made 
with nine Smiths. The constant 822, he assured me, was the lowest 
possible for such a square. Halve each number in this square, and you 
get a square made with nine different primes and a constant of 41 1. 

Dr. Matrix reminded me that 22, the second Smith, is the number on 
which Rick, in the movie Casablanca, advised a patron in dire financial 
need to place his bets at the roulette table. The gaffed wheel stopped 
three times on 22. The fifth Smith, 85, Dr. Matrix added, is the sum of the 
letters in MATRIX, using the A + 1, B = 2 code. 

Dr. Matrix referred to his friend Samuel Yates, a retired computer 
scientist now living in Delray Beach, Florida, as the world's top expert 
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Figure 144 The lowest three-by-three 
Smith magic square 

on Smith numbers. Smiths are related to what are called repunits- 
numbers consisting entirely of 1's. From every repunit whose prime 
factors are known one can construct a Smith number. Since repunits are 
infinite, the infinity of Smiths follows. Yates has long been an authority 
on repunits, having published many papers and one entire book about 
them. 

Only five repunit primes are known: R2, R19, Rz3, R3,, and R,,,,. The 
subscripts, which also must be prime, indicate the number of 1's in the 
repunit prime. In 1987 Yates obtained from R1031 the largest known 
Smith, a number of 10,694,985 digits. It is the product of 

"Are there other Smiths on the lo shu?" I asked. 
"Incredibly, yes," Dr. Matrix replied. "The two diagonals, taking the 

digits right to left, are both Smiths. The prime factors of 654 (2, 3 and 
109) have digits that add to 15, and the same is true of 852 and its factors 
2, 2, 3 and 71." 

"Do the vertical numbers of the lo shu have any strange properties?" 
"My dear Gardner," Dr. Matrix said in a patronizing tone, "no num- 

ber exists that does not have strange properties. Consider, for instance, 
your hotel room in Lisbon. Iva told me its number was 243. A most 
unusual number. Because its prime factors are 3, 3, 3, 3 and 3, it is 
written as 100000 in ternary notation. Do you know what its reciprocal is 
in decimal notation?" 

I shook my head. 
Dr. Matrix put on his monocle to write on my notepad: 
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"Dick Feynman told me about that crazy fraction when I was at Los 
Alamos during the Second World War to check some numbers involved 
in the construction of the atom bomb."" 

"Did you know Feynman before then?" 
"His teacher," replied Dr. Matrix, "was my pupil. By the way, are you 

aware that flatcar is an anagram of fractal? But I digress. Every three- 
digit number on the lo shu, taking any row, column or diagonal in either 
direction, has the following extraordinary property. Add the number to 
itself, multiply it by itself, subtract it from itself and divide it by itself. 
When you add the four results, you always get a perfect square." 

I selected 654 at random. Sure enough, my calculator showed that 
(654 + 654) + (654 - 654) + (654 X 654) + (654 +- 654) = 429,025, the 
square of 655. It was not until several days later that I realized how I had 
been flimflammed. The property holds for any number whatever. Here's 
a simple algebraic proof: 

I don't want to give the impression that Iva was left out of our 
conversation. The three of us talked about many things during dinner 
and later in the gambling area, where Dr. Matrix won a sizable amount of 
money at vingt-et-un (twenty-one), as the French call what American 
casinos call blackjack. Here I have given space only to material related 
to word and number play. 

I aimed my pencil at Dr. Matrix's silver belt buckle. "That circle and 
the two inscribed squares intrigue me." 

"Good you mentioned it," said Dr. Matrix. "Your fans might enjoy an 
amusing puzzle based on the design. Assume the circle's radius is 7 units. 
How quickly can you determine the length of the side of the smaller 
square?" 

*The fraction is mentioned on page 116 of Richard Feynman's autobiography, Surely 
You're Joking, Mr. Feynman (Norton, 1985). "It goes a little cockeyed after 559," 
Feynman comments, ". . . but it soon straightens itself out and repeats itself nicely." 
Feynman recalls writing about the fraction in a letter when he was working at Los 
Alamos. The project's censor returned the letter because he thought the number might 
be a code. Feynman sent the censor a note explaining that it couldn't be a code 
"because if you actually do divide 1 by 243, you do, in fact, get all that, and therefore 
there's no more information in the number 0.0041 15226337 . . . than there is in the 
number 243-which is hardly any information at all." 
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"Hmmm. I'll have to do some calculations based on Euclid's Pythag- 
orean theorem." 

"Au contraire," Dr. Matrix said while Iva grinned. "The answer is 
obvious." 

We had just been served our after-dinner wine. To cover my em- 
barras I touched my glass to Dr. Matrix's glass. "I know that the prob- 
lems of three little people don't amount to a hill of beans," I said, trying 
to sound like Bogart, "nevertheless, permit me, Mr. Lundy, to wish you a 
long and happy revivification." 

An elderly black man at the piano was playing "As Time Goes By." 
Iva, simulating a look of pain, clinked her glass against mine and said, in 
a much better imitation of Bogie, "Here's looking at you, clid." 

ANSWERS 

1. The "beast" square (Figure 145, top left) is obtained by 
adding (666 - 15)/3 = 2 17 to each cell of the 
lo shu. 

Figure 145 Solutions to problems 



2. The only solution is shown at top right, Figure 145. 

3. The unique solution is at bottom left, Figure 145. The constant 
is 177. 

4. The word is "big-faced." 

The question about the geometrical design on Dr. Matrix's belt 
buckle is answered as follows. The side of the smaller square is 7, the 
same as the circle's radius. The bottom right drawing in Figure 145 is the 
"look-see" proof. 

ADDENDUM 

I find in my notes that Dr. Matrix had called my attention to the follow- 
ing connection between the li shu square and the "number of the beast." 
Add 100 to each cell, and do the same for its partner. When correspond- 
ing cells of the two squares are added, the result is a magic square with a 
constant of 666. 

In working on problems involving three-by-three magic squares, the 
algebraic structure shown in Figure 146 is useful. Nine numbers will 
form a magic square if and only if they can be grouped in three sets of 
triplets, each triplet an arithmetic progression with the same common 
difference for all three progressions and with the smallest numbers of 
the triplets in another arithmetic progression. The triplets are distin- 
guished in the illustration by different shades of gray. 

Any real numbers can be substituted for a, b and c .  The central 
number a is always one-third of the magic constant. Thus if the constant 
is pi, a must be one-third of pi. Of course, proper values have to be 
chosen if you want a magic square with no duplicate numbers. If the 
numbers are to be consecutive positive integers, the constant must be a 
multiple of 3, a must be 5 or greater, b must be 1 and c must be 3 .  

In 1987, in an article on prime magic squares for a 1988 Mathemati- 
cal Sciences Calendar (Rome Press, 1987), I offered $100 to the first 
person who could construct a three-by-three magic square with consecu- 
tive primes. I repeated the challenge at the close of my Riddles of the 
Sphinx (Mathematical Association of America, 1987). Early in 1988 
Harry Nelson, using a Cray computer at the University of California and 
an ingenious program, won the prize with 22 solutions of which the one 
with the lowest constant is shown in Figure 147. The program did not 
prove that this is the lowest possible, although the probability is almost 
certain that it is. 



a – c a – b + c a + b

a – b – caa + b + c

a – b a + b – c a + c
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Penrose tiles are now commercially available. From Kadon 
Enterprises, 1227 Lorene Drive, Pasadena, Maryland, 21 122, you can pur- 
chase a set of darts and kites, a set of fat and thin diamonds, and a set 
of two kinds of birds, based on Penrose tiling, that are called "Perplex- 
ing Poultry." The birds are also available in England from Pentaplex, Ltd., 
Royal House, Brighouse, West Yorkshire, HD6 ILQ. 

In his 1994 book Shadows of the Mind (page 32) Roger Penrose re- 
ports on his discovery, based on tiles found by Robert Ammann, of three 
polyominoes that tile the plane only nonperiodically. They are shown in 
Figure 1. Penrose also reveals an asymmetric polyomino he found that 
tiles periodically, but only when all eight of its orientations are used. 

Penrose became famous among nonmathematicians and nonphysi- 
cists in 1989 when Oxford University Press published his Emperor's New 
Mind and the book became a best seller. It is a smashing attack on A1 (artifi- 
cial intelligence) enthusiasts who think that very soon computers will cross 

Figure 1 



a threshold of complexity, and become self aware, with minds capable of 
doing everything a human can do. I had the honor of writing the book's 
foreword. 

Penrose followed the book in 1994 with Shadows of the Mind, also 
published by Oxford. It defends his view in greater depth. Penrose does 
not deny that the mind is a function of the brain, but he believes that our 
brains operate in ways not yet understood. No computer, in his opinion, 
will ever become conscious of what it is doing so long as it operates solely 
by algorithms that tell switches how to divert electrical currents here and 
there. In brief, computers of the sort we know how to build, differ in 
principle only from mechanical calculating machines in the speed by which 
they twiddle symbols. Penrose is convinced that no computer will rival 
human intelligence until we know more about how quantum mechanics, 
and perhaps phenomena deeper than quantum mechanics, are used by 
our mysterious brains. Both his books have been severely savaged by A1 
leaders, but this is a long story, too remote from mathematics to discuss 
further. 

On pages 21-22 I gave the misleading impression that the continued 
fraction was a discovery of Conway's. Jeffrey Shallit imformed me that it 
was known at least as early as 1926 when P. E. Bohrner discussed it in a 
German paper. See J. L. Davison, "A Series and Its Associated Continued 
Fraction," in the Proceedings of the American Mathematical Society, vol. 65 
(1977), pages 194-98. 

Benoit Mandelbrot has become increasingly famous, with many new 
honors given to him, for his work on fractals. Since I wrote about fractals, 
the new field of chaos theory, intimately related to fractals, has exploded 
on the mathematical scene. In the chapter's bibliography I have tried to 
select the most accessible books on chaos and fractals out of an enormous, 
rapidly proliferating literature. 

Martin Kruskal, now a mathematician at Rutgers University, became 
fascinated by Conway's surreal numbers. For many years he has been work- 
ing on their clarification and elaboration, and their potential applications 
to other fields of mathematics. For an introduction to this exciting work, 
see the last two entries, by Polly Shulman and Robert Matthews, in the 
chapter's bibliography under the subhead of "Surreal Numbers." 

Will Shortz, now crossword puzzle editor of The New York Emes, is 
planning a book about Sam Loyd and the history of his puzzles. It will 
contain hundreds of Loyd puzzles not in the famous Cyclopedia. Shortz 
sent me a copy of an 1899 trade card advertising Pond's Extract, a patent 
medicine pain killer. It contains Loyd's Klondike puzzle with the two digits 
altered. Loyd correctly announces a solution in nine steps. The "trouble- 



some 2" remains on the card. Loyd's solution is indeed "best" if that means 
shortest, but he was wrong in the Cyclopedia to call it unique. 

David Fabian, of Houston, tackled the problem of searching for the 
shortest possible Chinese checkers game on boards with ten or fifteen 
marbles per side. Using the notation in Figure 2, he found these solutions: 

FIFTEEN MARBLES 

F1-F3 10. E8-E2 
F2-F4 11. B9-D3 
14-E4 12. B7-H3 

G3-A5 13. C8-C4 
13-C9 14. A6-A4 
11-E9 15. A8-G2 

GI-A9 16. D8-D7 
H3-Dl 17. B6-F4 
15-A7 18. B8-F8 

19. 13-12 

TEN MARBLES 

1. C8-D8 H2-H4 
2. D9-D7 14-G4 
3. A7-E7 GI-G5 
4. A8-E6 H3-F3 
5. E6-F6 HI-E3 
6. D7-C6 G4-A8 
7. A6-E4 12-A6 
8. A9-C5 F1-D9 
9. C5-D5 C3-A9 

10. B8-H2 13-A7 
11. C9-G3 H4-B8 
12. B7-B6 G2-C8 
13. B9-F5 G5-C9 
14. F5-F4 F3-B9 
15. E4-D4 HI-B7 

/-\ 

Figure 2 
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Richard Guy and Patrick Kelly have conjectured that the no-3-in-line 
patterns shown in Figure 36, for orders 2 , 4 ,  and 10, are the only patterns 
with the symmetry of a square. This has been verified up to 12 = 60. 
Achim Flammenkamp, in a 1992 paper listed in the bibliography, gives 
solutions for orders 38, 40, 42, 44, and 46, and new solutions for many 
other orders. 

G. M. Hamilton, I. T. Roberts, and D. G. Rogers consider the general- 
ized pool-ball problem in depth in their paper "Regular Perfect Systems 
of Sets of Iterated Distances," A Curtin University of Technology 
Research Report, 1993. A sequel by the same three authors, "Uniform 
Perfect Systems of Sets of Iterated Differences of Size 4" appears in 
Discrete Matlzematics, (vol. 162, 1996, pp. 133-150) and "The Problem of 
Irregular Perfect Systems of Sets of Iterated Distances," by Ramsey and 
Rogers, is in Graphs and Cofnbinatorics (vol. 13, 1977). 

In discussing Scott Kim's tetrads I said it was not known if one exist- 
ed with polygons of order less than 12. Walter Trump, of West Germany, 
answered yes with the order-1 1 polyomino shown in Figure 3. Trump 
also sent the tetrad of congruent hexagons (Figure 4) which has the 
property that any pair of hexagons u~ill form a square. 

Figure 3 



Figure 5 shows Trump's two-hole tetrad made with polygons that are
bilaterally symmetric in two directions, and having a border with the
symmetry of an equilateral triangle. Figure 6 shows his tetrad without
holes, made of bilaterally symmetric polygons. This pattern was inde-
pendently sent by Karl Scherer, also of West Germany.

The paper by Chung, Szemerádi, and Trotter, cited on page 136,
appeared in Discrete and Computational Geometry, volume 7, number 2,
1992. Michael Beeler’s computer results, mentioned on page 126, were
published in the Journal of Recreational Mathematics, vol. 10, number 1,

Figure 4

Figure 5 Figure 6
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1977-78. See also "Distinct Distances Determined by Subsets of a Point 
Set in Space," by David Avis, Paul Erdos, and JAnos Pach, in 
Computational Geometry I (Elsevier, 199 1). 

Richard Feynman's paper on negative probability was published in 
Quantum Implications: Essays i n  Honour ofDavid Bohm, edited by B. J. 
Hiley and F. David Peat, Routledge and Kegan Paul, London, 1987, pages 
235-248. An example of the use of negative probability is given in 
Concrete Mathematics, second edition (1994), by Ronald Graham, 
Donald Knuth, and Oren Patashnik (Addison-Wesley Publishing 
Company). 

Surprising developments in trapdoor ciphers have taken place since I 
broke the news about them in my August 1977 Scientific American col- 
umn. In 1990 a 155-digit composite number was factored into its three 
primes by a team headed by Arjen Lenstra, of Bellcore, and Mark 
Manasse, of Digital Equipment Corporation. The task required the use 
of a thousand computers working together over several months. This 
does not make trapdoor ciphers based on the difficulty of factoring obso- 
lete. However, users of one such code, known as the RSA system, may 
now want to shift to larger composite numbers, say of 200 digits. 

Four years later, in 1994, Lenstra did it again. The message I had pub- 
lished as a challenge, with $100 to the first to crack it, was solved by 
Lenstra and his associates. The message proved to be "The magic words 
are squeamish ossifrage." Rivest had selected the last two words at ran- 
dom, and soon forgot what they were. His $100 check went to Lenstra. 
Breaking the ciphertext required factoring a 129-digit composite num- 
ber known as RSA-129. The task required some 600 persons using 1,600 
computers, linked by the Internet, that worked on the factoring for eight 
months. 

The following references deal with Lenstra's remarkable achievement: 

"To Break the Unbreakable Number," William Booth, in The Washington 
Post, June 25, 1990, page A3. 

"The Assault . ..." Gina Kolata, in The New York Times, March 22, 1994. 
"Small Army of Code-Breakers Conquers a 129-digit Giant." Gary 

Taubes, in Science, vol. 264, May 6, 1994, pages 776-77. 
"Team Sieving Cracks a Huge Number," Ivars Peterson, in Science News, 

vol. 14, May 7, 1994, page 292. 
"The Magic Words are Squeamish Ossifrage." Brian Hayes, in American 

Scientist, vol. 8, July/August 1994, pages 3 12-3 14. 
"Superhack." Kristin Leutwyler, in Scientific American, July 1994, pages 

17-20. 
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"The Magic Words are Squeamish Ossifrage." Barry Cipra, in SIAM 
News, vol. 27, July 1994. 

"Wisecrackers." Steven Levy, in Wired, March 1996, page 129ff. 

Two recent papers on how to play games over the phone using such 
randomizers as coin flips, dice, and cards, are: "Flipping a Coin Over the 
Telephone," by Charles Vanden Eynden, in Mathematics Magazine, vol. 
62, June 1989, pages 167-72, and "Mathematical Entertainments: 
Playing Games Over the Telephone," by David Gale, in The Mathematical 
Intelligencer, vol. 14, no. 3, 1992, pages 60-64. 

Later references on zero-knowledge proofs include: "Zero Knowledge 
Proofs," by Catherine McGeoch, in The American Mathematical Monthly, 
August-September 1993, pages 682-685; and "Proof of Purchase on the 
Internet," by Ian Stewart, in Scientific American, February 1996, pages 
124-125. 

Another astonishing development has been the discovery that 
unbreakable codes are theoretically possible using computers that oper- 
ate on quantum mechanical principles. No such computers are likely to 
be built in the near future, but their possibility is currently generating a 
large number of technical papers by Charles Bennett, of IBM, and oth- 
ers. 

The discovery that Ramsey Number R(4,5) equals 25 was first 
announced in 1993 by the Rochester Democrat and Chronicle because 
one of the discoverers, Stanislaw Radziszowski, was a professor at the 
Rochester Institute of Technology. Someone using the initials B.V.B. 
reported this to Ann Landers who published the letter in her syndicated 
advice column on June 22, 1993. B.V.B. put it this way: 

Two professors, one from Rochester, the other from Australia, have 
worked for three years, used 110 computers and communicated 
10,000 miles by electronic mail, and finally have learned the answer 
to a question that has baffled scientists for 63 years. The question 
is this: If you are having a party and want to invite at least four peo- 
ple who know each other and five who don't, how many people 
should you invite? The answer is 25. Mathematicians and scientists 
in countries worldwide have sent messages of congratulations. 

I don't want to take anything away from this spectacular 
achievement, but it seems to me that the time and money spent on 
this project could have been better used had they put it toward 
finding ways to get food to the millions of starving children in war- 
torn countries around the world. 
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Miss Landers replied as follows: 

Dear B.V.B.: There has to be more to this "discovery" than you 
recounted. The principle must be one that can be applied to solve 
important scientific problems. If anyone in my reading audience 
can provide an explanation in language a lay person can under- 
stand, I will print it. Meanwhile I am "Baffled in Chicago." 

I sent Miss Landers this letter: 

You asked (June 22)  for an explanation of the proof that 25 people 
are required at a party if at least four are mutually acquainted, and 
at least five are mutual strangers. This is a theorem in what is 
called Ramsey theory. It can be modeled by points on paper, each 
point representing a person. Every point is joined to every other 
point by a line. 

If a line is colored red it means that its two points are persons 
who know each other. If a line is blue, it means its two persons are 
strangers. We now can ask: what is the smallest number of points 
needed so that no matter how the lines are bicolored, there is sure 
to be either four points mutually joined by red lines, or five mutu- 
ally joined by blue lines? The answer, 25 ,  was not proved until 
recently. For the problem's background, see the chapter on Ramsey 
theory in my book Penrose Tiles to Trapdoor Ciphers (W. H .  
Freeman, 1989). 

As far as I know, the letter was not printed. Perhaps Miss Landers 
remained baffled as to what earthly use this result could possibly have. 

Radziszowski and his associate Brendon McKay published their proof 
in a paper titled " R ( 4 , 5 )  = 25" in The Journal of Graph Theory, vol. 19, no. 
3 ,  1995, pages 309-321. 

On page 173 I said that I knew of no simple way to determine how the 
area of a 3 ,  4 ,  5 ,  right triangle can be quartered by two perpendicular 
lines. Sin Hitotumatu showed how to do it in his paper "On a 
Quadrisection Problem of M. Gardner," in Research Activities, Vol. 4 ,  
1992, pages 1-4, published in English by the Faculty of Science and 
Engineering, Tokyo Denki University. 
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