
DOI: 10.1007/s001450010010

J. Cryptology (2000) 13: 437–447

© 2000 International Association for
Cryptologic Research

Kangaroos, Monopoly and Discrete Logarithms

J. M. Pollard
Tidmarsh Cottage, Manor Farm Lane, Tidmarsh,

Reading RG8 8EX, England
jmptidcott@hotmail.com

Communicated by Andrew Odlyzko

Received 23 January 1998 and revised 27 September 1999
Online publication 10 August 2000

Abstract. The kangaroo method computes a discrete logarithm in an arbitrary cyclic
group, given that the value is known to lie in a certain interval. A parallel version has
been given by van Oorschot and Wiener with “linear speed-up”. We improve the analysis
of the running time, both for serial and parallel computers. We explore the variation
of the running time with the set of “jumps” of the kangaroos, and confirm that powers
of two are a good choice (we do not claim they are the best choice). We illustrate the
theory with some calculations of interest to Monopoly players, and the method itself
with a card trick due to Kruskal.

Key words. Discrete logarithms, Kangaroo method.

1. Introduction

Pollard [5] gave two method for discrete logs inGF(p), the “rho” method and the
“kangaroo” method (or “lambda method”). Both use very little storage, and can be
employed in any cyclic group, unlike the index calculus methods. For the rho method,
the order of the group,g say, must be known. The method runs in timeO(q1/2), where
q is the largest prime factor ofg.

In the kangaroo method, we do not need to knowg—instead, the discrete logarithm
must be known to lie in some interval. The time is nowO(w1/2), if w is the width of
the interval. We can takew = g (if g is known), but then the first method is best (see
below).

van Oorschot and Wiener [11] showed how to give efficient parallel versions of both
methods, achieving linear speed-up. Thus the running times becomeO(q1/2/P) and
O(w1/2/P), with P processors. This behaviour is not shared by the “rho” method for
factoring, where we gain only a factor ofP1/2 by using P processors, see [1]. The
algorithms of [11] in fact improve on those of [5] even in the serial case, but are slightly
more complex.

437

438 J. M. Pollard

Further improvements to the rho method have been made by Teske [8]–[10]. The rho
method in [8] and [10] is faster, and can find the order of the group, unlike that of [5].
The algorithm of [9] can find the structure of the group.

The best versions of the rho method take close to(πq/2)1/2 (expected) group opera-
tions. This compares with close to 2w1/2 expected operations for the kangaroo method
[11]. Thus, ifw = g = q, the kangaroo method is expected to take 1.60 times longer.

Here we aim to improve the analysis of the running time of the kangaroo method,
for both serial and parallel computers. Our serial algorithm is that of [11]. Our parallel
algorithm is different, and has the property that two kangaroos of the “same herd”
cannot meet. This is convenient for both implementation and analysis. It also allows us
to impose congruence conditions on the required discrete log (see Section 6). This might
sometimes be of value. The running times of the two parallel algorithms are thought to
be the same—experiments of Stein and Teske [7] seem to support this.

We confirm that the methods work well when the jumps of the kangaroos are powers of
two, as suggested in [5] and [11], or powers of another number. We are not claiming that
these are the only good choices. Possibly most sufficiently large sets are good choices.

The original name [5] was the “lambda method for catching kangaroos”. This lengthy
title matched that of the preceding section. We need a shorter name. Here we prefer
“kangaroo method” to “lambda method”. The latter is perhaps confusing since the parallel
version of the rho method is shaped like a lambda, not a rho.

The kangaroos came from a fascinating article [3] inScientific American—“Energetic
cost of locomotion, measured in terms of oxygen consumption at various speeds, was
determined by placing kangaroos on a treadmill. . . ” (The same issue contained Martin
Gardner’s exposition of the RSA method).

I am grateful to Michael Wiener for his comments and the numerical calculations
mentioned in Section 5, and to the referee for helpful comments. Sections 2 and 8 are
perhaps recreational mathematics, but do illustrate the algorithm and its analysis.

2. A Card Trick

Gardner [4] describes the following trick, which he calls “Kruskal’s principle”. It has
a remarkable resemblance to the kangaroo method. Take a well-shuffled single pack of
cards. Deal it face up in a row, from left to right. Place a coin on a card near the right-hand
end, apparently chosen at random. Ask a friend to choose a number between 1 and 10. If
he chooses 4, count to the fourth card from the left. If this is a 7, count on a further seven
cards. Continue in this way. When you land on a picture, count five cards. Hopefully
you will land on the coin.

The trick does not always succeed! It only works with probability “about 5/6”, accord-
ing to [4]. My recent experiments [6] confirm this. At the end of the paper, we explain
how to do the trick.

3. The Kangaroo Method on a Serial Computer

Given a cyclic groupG, we aim to solve an equation:

r z = q, L ≤ z≤ U. (1)

Kangaroos, Monopoly and Discrete Logarithms 439

Putw = U − L. We can use the “baby-step giant-step” method of Shanks (see [2]) to
find z in time and spaceO(w1/2). The method requires us to find the common member
of two sets of aboutw1/2 group elements. We give two ways. In the first, we compute
the first set, storing it in a hash table. Then we compute the second, one member at a
time, checking to see if it is in the table. On average, we do 3w1/2/2 group operations.

The second way is slightly faster, but may require up to twice the storage. Compute
members of both sets alternately, storing all of them in the same hash table. On average,
this will require only 4w1/2/3 group operations. The constant4

3 arises for the following
reason. If two random numbersx andy are chosen in the interval [0, 1], the expected
value of max(x, y) is 2

3.
The kangaroo method (of [11]) can solve (1) in about 2w1/2 expected operations, but

with a very small storage requirement. The earlier version of [5] is expected to take 1.64
times longer [11, p. 13].

We choose a small set of positive integers:

S= (s1, . . . , sk), (2)

the set of “jumps” of the kangaroos. The integers, which may contain repetitions, are
listed in nondecreasing order. The main purpose of this paper is to explore the effect of
this choice. The meanm of the set will be comparable withw1/2.

We compute the elements:

Ri = r si , i = 1, . . . , k.

Let h(x) be a (conventional) hash function mappingG into the interval [1· · · k]. Finally,
let D be a subset ofG, the set of “distinguished points”. It will be appropriate to take

|D|/|G| = c/w1/2,

wherec is a constant,cÀ 1.
A kangaroo is a sequence of elements ofG of the form

xi+1 = xi ∗ Rh(xi), i = 1,2, . . . , (3)

starting from a givenx0. We also define a sequencedi , puttingd0 = 0 and

di+1 = di + sh(xi), i = 1,2,

Thusdi is the “distance” travelled by the kangaroo in its firsti jumps, and

xi = x0 ∗ r di , i = 0,1,

We give a brief account of the original kangaroo method of [5]. There are two kanga-
roos. Our “tame” kangarooT starts at the right-hand end of the interval, i.e.x0 = r U .
After N = O(w1/2) jumps, he stops and we store the pair(xN,dN). His final position
is our “trap”. The “wild” kangarooW starts at at unknown position in the interval, with
x′0 = q. If his path meets that ofT , he continues down that path and falls into the trap,
i.e. x′i = xN . Then we can computez in (1). Indeed we havez = U + dN − d′i . The
method succeeds with a probability which depends onN.

440 J. M. Pollard

Now we give the improved algorithm of [11] (for a serial computer). The two kangaroos
now make alternate jumps, andT starts at themiddleof the interval, i.e.x0 = r M , where
M = [(L + U)/2]. Wheneverxi falls in D, we store the pair(xi ,di) together with
the name of the kangaroo (T or W). This information may be stored in a hash table,
hashing onxi . When somexi is stored for the second time, having been reached by both
kangaroos, we can compute the solution of (1). Thus, ifxi (for T) = x′j (for W), we
havez= M + di − d′j .

In this version, unlike [5], we do not know which kangaroo is in the lead, but the idea
is the same. When the back kangarooB lands on the path of the front kangarooF , he
continues along that path until he reaches a point ofD, when the algorithm stops.This
algorithm is almost certain to succeed ifw ¿ p.

4. Approximate Analysis

We estimate the time in terms of group operations. The algorithm falls into three stages:

Stage1. B must catch up to the starting point ofF . This involves travelling an expected
distancew/4, in steps of meanm. The expected time isw/2m (since both kangaroos
jump alternately).

Stage2. B must land on the path ofF . We have the following simple argument. This
path includes a fraction 1/m of the integers. ThusB lands on the path with probability
1/m at each jump, and takes an expectedm jumps to do so. (We see later that this is
generally optimistic). Thus Stage 2 takes time about 2m units.

Stage3. B continues until he reaches a point ofD. This takes an expected time 2w1/2/c.
The expected total time is

E = w/2m+ 2m+ 2w1/2/c.

The best choice ofm isw1/2/2, giving

E = 2w1/2(1+ 1/c), (4)

or if c is large,E ' 2w1/2. Equation (4) is given in [11]. We see that the expected
time varies fromw1/2 when z is near the middle of the interval, to 3w1/2 when it is
near the ends. Ifz is outside the interval, the algorithm will still work but will take
longer.

The value ofc decides the storage requirement. The number of pairs(xi ,di)we expect
to store isEc/w1/2 = 2(c+ 1).

5. Improved Analysis

We say that Stage 1 ends when the back kangarooB lands beyond the starting point of the
front kangarooF (by an amounti , say), or lands on this point(i = 0). The probability

Kangaroos, Monopoly and Discrete Logarithms 441

distribution of i,q(i) say, is easily found. We haveq(0) = 1/m. For i ≥ 1, we must
multiply by the probability that the last jump exceedsi . Thus

q(i) = n(i)/mk, i = 0, . . . , sk − 1,

wheren(i) = #{ j, sj > i } (that is, the number of elements ofSgreater thani).
Now fix i > 0. We must find the expected numbers of jumps,f (i) andb(i) say, of

the front and back kangaroos up to the point when their paths meet (f refers to the one
which is now in front). It is convenient here to imagine that it is always the hindmost
kangaroo which moves, jumping a distance which is a random choice from the setS.
We stop when both are on the same point. Then their numbers of jumps will give the
required functions.

It is interesting to extend these functions to the casei = 0. Let f (0) = b(0) denote
the expected number of jumps when both kangaroos start at the same point. Their first
jumps are now independent random choices fromS, and may or may not be the same.
We state the

Theorem 1.

f (0) = b(0) = m.

We give a proof in Section 7. A short informal proof is also possible (see Section 8). For
the other values, it seems that there is in general no such simple answer. By considering
one jump we get the sparse equations:

f (i) = 1

k

{∑
sj<i

f (i − sj)+
∑
sj>i

b(sj − i)

}
, i = 1 · · · sk, (5)

b(i) = 1+ 1

k

{∑
sj<i

b(i − sj)+
∑
sj>i

f (sj − i)

}
, i = 1 · · · sk. (6)

In the same way we find

m= f (0) = 1+ 1

k

k∑
j=1

f (sj) = 1

k

k∑
j=1

b(sj). (7)

We can solve (5) and (6) by the relaxation method. Then (7) gives a check on the
result. A better method is to use (7) to speed-up the convergence. After each step of the
relaxation method, multiply all the values ofb(i) and f (i) by the factorm/X, whereX
is the last expression in (7).

We can now given an improved estimate for the time for Stage 2, namely, 2m · A(S),
where

A(S) = 1

m

sk−1∑
i=1

q(i) ∗ f (i).

Now the best choice form is m = {w/A(S)}1/2/2, giving an improved estimate for
the expected total time

E = 2w1/2{B(S)+ 1/c},

442 J. M. Pollard

whereB(S) = {A(S)}1/2. If we again assumec is large,

E ' 2w1/2 · B(S). (8)

So our previous estimate 2w1/2 has been multiplied byB(S). This assumes thatA(S) is
known. If not, we takem= w1/2/2 as before, and find that the time is multiplied by the
factor B′(S) = {A(S)+ 1}/2. Of course,B(S) andB′(S) are close whenA(S) is close
to 1.

Example 1. S= (1, . . . , k),m= (k+ 1)/2.
In this simple case, we can give exact formulae:

b(i) = k/2+ i /(k+ 1), i = 1, . . . , k− 1,

f (i) = k/2− i /(k+ 1), i = 1, . . . , k− 1,

A(S) = (3k− 2)(k− 1)/3(k+ 1)2,

so A(S)→ 1 andB(S)→ 1 ask→∞. Of course, such a large set is not acceptable.

Example 2. S= (1, x), (x odd),m= (x + 1)/2.
Here the values off (i) are very variable, e.g.

f (1) = x/2− 1/(x + 1),

f (m) = (x − 1)(x + 3)/8.

We find thatA(S) ∼ m/3 asm→ ∞. This means that the running time is no longer
O(w1/2) (at best it isO(w2/3)).

Now we give some numerical results for a case of serious interest, namely,

S= (1, x, x2, . . . , xk−1).

The use of powers of two was suggested in [5] and [11]. The results below were mainly
calculated by Wiener [12]. The corresponding functionB(S) we now write asC(x, k):

k C(2, k) C(4, k) C(8, k) C(16, k)

3 0.62736 1.00813 1.27473 1.48462
4 0.79627 1.10292 1.22768 1.28447
5 0.90913 1.12056 1.16814 1.18001
6 0.98075 1.11126 1.12674 1.12885
7 1.02337 1.09610 1.10033
8 1.04657 1.08212
9 1.05741 1.07082

10 1.06081 1.06198
11 1.06005 1.05503
12 1.05717
13 1.05340
14 1.04943
16 1.04210
20 1.03157

Kangaroos, Monopoly and Discrete Logarithms 443

We conjecture that each column tends to 1, indeed thatC(n, k) → 1 ask → ∞, for
anyn.

Possibly even smaller sets might be used. An interesting question is the behaviour
of C(x,3),C(x,4), . . . asx → ∞. More numerical calculations of Wiener [12] show
these to be increasing functions, but possibly tending to limits. Note thatC(x,2) was
discussed above.

6. The Kangaroo Method on a Parallel Computer

Again we want to solve (1). A bad method is to divide the interval [L ,U] into P equal
parts, and use each ofP processors to search one part, using the serial method. This will
take timeO((w/P)1/2).

van Oorschot and Wiener [11] employ two herds of kangaroos in a method which
runs in timeO((w1/2/P)). We analyse a variation of their method, which avoids the
possibility of “collisions” between members of the same herd.

The numbers of kangaroos in the herds will be coprime integersu andv, nearly equal,
with u + v ≤ P. Thus if P = 4p, we could takeu = 2p+ 1 andv = 2p− 1. Their
jumps will all be multiples ofuv, say

S′ = (uvs1, . . . ,uvsk).

As before letM = [(L + U)/2]. The tame kangaroos, known asT0, . . . , Tu−1, start
at positions

M,M + v, . . . ,M + (u− 1)v.

The wild kangaroosW0, . . . ,Wv−1 start at positions

z, z+ u, . . . , z+ (v − 1)u.

The appropriate values ofx0 can be found from (1).
Now consider the equation

M + i v = z+ ju (moduv), 0≤ i ≤ u− 1, 0≤ j ≤ v − 1. (9)

There is a unique solution which we could find, if we knewz, by solving fori (modu)
and j (mod v). Thus there is a pair,Ti andWj , which move in the same residue class
(moduv). This is the only pair whose paths can meet. The others are wasting their time
and ours! Sadly, we do not know which pair matters and have to run them all.

We describe the algorithm. The kangaroos all advance simultaneously, one on each of
u+v processors. Whenever a processor computes a valuexi in D, the pair(xi ,di) is sent
to a special processor, together with the name of the kangaroo(Ti or Wj). When some
xi has been stored twice, necessarily by kangaroos of different types, we can compute
the solution of (1).

As we said, there is a single pairTi andWj which matters. To analyse the algorithm,
we can suppose we know which it is. We estimate the total number of jumps of this pair.
This is just the time of the serial algorithm with intervalw/uv, and set of stepsS in (2).

444 J. M. Pollard

Thus we should choosem ' (w/uv)1/2/2 and obtain the required result from (8),
withw/uv forw. Finally, the expected time of the parallel algorithm is half of this, since
Ti andWj run simultaneously, and is

Ep = (w/uv)1/2 · B(S),
whereB(S) is the correction factor for the serial algorithm with setSas in (2).

Thus the parallel algorithm speeds up the serial one by a factor 2(uv)1/2. Sinceu ∼
v ∼ P/2, this is close toP, as claimed.

Usually, as we said, we do not know which pair of kangaroos will meet. However,
suppose that the required integerz is known to lie in a certain set ofu′ residue classes
(modu). Then (9) restricts the possible values ofi to a set ofu′ values, and onlyu′ tame
kangaroos need be used. Similarly, a restriction on the values ofz(modv) reduces the
number of wild kangaroos.

Suppose now we have information onz modulo a number of small primes. Then we
divide the primes into two sets with roughly equal products, and take these asu andv.
The final algorithm can be implemented on a serial computer if required.

The situation just described arises if we wish to implement Fermat’s method of
factoring with kangaroos (see [5]). However, we believe it may have more topical
applications.

7. Proof of the Theorem

As in Section 5, imagine that the hindmost kangaroo jumps by a random amount from
the setS of (2). If we cease to distinguish between the kangaroos, we have a Markov
process whose state is just the size of the gap, with values 0, . . . , sk. From statei , we
move to|i − sj |, where j is random in 1, . . . , k. In this statement, we allowi = 0, i.e.
we allow the process to continue indefinitely.

The process has a steady-state probability distributionp(i), i = 0, . . . , sk, given by

p(0) = 1

k
·

k∑
j=1

p(sj),

p(i) = 1

k
·
{ ∑

i+sj≤sk

p(i + sj)+
∑
sj≥i

p(sj − i)

}
, i = 1, . . . , sk,

and
sk∑

i=0

p(i) = 1.

The solution is found to have a simple form. LetN(i) be the number of occurrences
of i in S, let n(i) be the number ofsj greater thani (as above), and let

s= s1+ · · · + sk = km.

Then

p(0) = 1/2m,

p(i) = (N(i)+ 2n(i))/2s, i = 1, . . . , sk.

Kangaroos, Monopoly and Discrete Logarithms 445

Thus state 0 recurs after a mean time 1/p(0) = 2m. This is equivalent to our theorem.

Example 3. S= (1,2,4,8), s= 15,m= 15
4 .

p(0) = 2
15,

p(1) = 7
30,

p(2) = 5
30,

p(3) = 4
30,

p(4) = 3
30,

p(5) = p(6) = p(7) = 2
30,

p(8) = 1
30.

Note that thep(i) are always nonincreasing fori > 0, as here. The distributionp(i) is
quite similar to butnot the same as the distributionq(i) of Section 5. The latter describes
the width of the gap immediately after a crossing (or meeting) of the kangaroos.

8. Coda for Monopoly Players

In Monopoly the players move round a circular board of 40 squares, according to the
totals of two dice. We ignore special rules such as “going to jail”, and unwind the board,
numbering the squares 0,1,2, The players start on square 0.

We consider first a single player. What is the chance that he lands on squaren?
The mean throw of two dice is 7, being twice the mean throw of a single dice(7

2).
Thus for largen, p(n) ' 1

7. Clearly, this is not true for smalln. Thus p(1) = 0 and
p(2) = 1

36.
To calculate exact values we use the equation

p(i) = 1
36 p(i − 2)+ 2

36 p(i − 3)+ · · · + 1
36 p(i − 12),

where the coefficients1
36,

2
36, . . . ,

7
36,

6
36, . . . ,

1
36 are the probabilities of throwing

2, . . . ,12. The initial conditions arep(0) = 1 and p(i) = 0 for i < 0. We find p(i)
shows decreasing oscillations about the value1

7 = 0.1429:

p(1) = 0,

p(2) = 0.0278,

p(3) = 0.0556,

p(4) = 0.0841,

p(5) = 0.1142,

p(6) = 0.1466,

p(7) = 0.1822, first peak(and maximum value),

p(8) = 0.1663,

p(9) = 0.1555,

446 J. M. Pollard

p(10) = 0.1478,

p(11) = 0.1413,

p(12) = 0.1342,

p(13) = 0.1247, first trough,

p(14) = 0.1386,

p(15) = 0.1458,

p(16) = 0.1484, second peak,
...

p(40) = 0.1428.

It is of interest to know the probability of landing on one (or more) squares of an
“estate” (or colour group). These are of two kinds:

(i) Those of two squares of formn andn + 2. Assumingn is large, the required
probability is 1

7 + 1
7 − 1

7 ∗ 1
36 = 0.2811.

(ii) Those of three squares of formn,n+ 1 andn+ 3 ORn, n+ 2 andn+ 3. These
are mirror images, and have the same probability (for largen) which is found to
be 5

12 = 0.4167.

Note. These values assume that you are currently standing on square 0—if you are on
squaren− 1 the probabilities are much smaller!

Now we consider two players, starting on square 0. How soon will they land
on the same square (not necessarily after the same numbers of turns)? Suppose they
both land on squaren, after t1 and t2 turns, respectively. Then we have the expected
values

E(t1) = E(t2) = m= 7, (10)

E(n) = m2 = 49. (11)

The first statement is just the theorem of Section 5. The second easily follows. For
each player expects to move a distancem2 in m turns. Of course, the probability that
both players do land on square 49 is small, close to 1/49.

We can also prove (10) and (11) directly, at least in an informal way, and deduce
the theorem. For largen, both players land on squaren with probability close to 1/m2.
Thus a fraction 1/m2 of all squares have this property. The expected distance between
two consecutive squares of this kind ism2, giving (11). However, each player takes an
expectedm turns to travel a distancem2, giving (10).

Now suppose the players start a small distancei apart. We again ask how soon they
will land on the same square. The expected numbers of turns of the front and back players
are now the functionsf (i) andb(i) of Section 5. We now take

S= (2,3,3,4,4,4, . . . ,12), m= 7.

Kangaroos, Monopoly and Discrete Logarithms 447

We find that both are “V-shaped” with minimum ati = 7. Here are a few values:

b(1) = 7.0941, f (1) = 6.9512,

b(7) = 6.7079, f (7) = 5.7079,

b(12) = 7.7388, f (12) = 6.0245.

The functions are in fact related:

b(i) = 1+ f (14− i), i = 2, . . . ,12.

For completeness we giveA(s) = 0.7831,m · A(S) = 5.4814.
Finally we explain the card trick of Section 2. Start a tame kangaroo at the first card.

It is quite easy to follow his path as the cards are dealt. Thus, if the first card is a 5, count
silently up to 5 as the next five cards are dealt. Without a pause, note the value of the last
card and start another count. Place the coin on the last card of the last completed count.
For more about the trick, see [6].

References

[1] R. P. Brent, Parallel algorithms for integer factorisation, in J. H. Loxton (ed.),Number Theory and
Cryptography, LMS Lecture Note Series 154, Cambridge University Press, Cambridge, 1990, pp. 26–
37.

[2] H. Cohen,A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138,
Springer-Verlag, Berlin, 2nd printing, 1995.

[3] T. J. Dawson, Kangaroos,Scientific American, August 1977, pp. 78–89.
[4] M. Gardner, Mathematical games,Scientific American, Feb. 1978, pp. 19–32.
[5] J. M. Pollard, Monte Carlo methods for index computation (modp), Math. Comp., 32 (1978), 918–924.
[6] J. M. Pollard, Kruskal’s card trick,Math. Gaz., 84 (July 2000), 46–49.
[7] A. Stein and E. Teske, Catching kangaroos in function fields,Proceedings of the Conference on the

Mathematics of Public-Key Cryptography, Toronto, June 1999.
[8] E. Teske, Speeding up Pollard’s rho method for computing discrete logarithms,ANTSIII (1998), Lecture

Notes in Computer Science, Vol. 1423, Springer-Verlag, Berlin, 1998, pp. 541–554.
[9] E. Teske, A space efficient algorithm for group structure computation,Math Comp., 67 (1998), 1637–

1663.
[10] E. Teske, On random walks for Pollard’s rho method,Math. Comp., posted on February 18, 2000, PII: 5

0025-5718(00)01213-8 (to appear in print).
[11] P. C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic applications,J. Cryp-

tology, 12 (1999), 1–28.
[12] M. J. Wiener, Personal communications, 6 Oct. and 6 Nov. 1997.

