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ommon wisdom has it that the theorem

classifying the finite simple groups was

proved around 1980. However, the proof

of the Classification is not an ordinary

proof because of its length and com-
plexity, and even in the eighties it was a bit con-
troversial. Soon after the theorem was established,
Gorenstein, Lyons, and Solomon (GLS) launched a
program to simplify large parts of the proof and,
perhaps of more importance, to write it down
clearly and carefully in one place, appealing only
to a few elementary texts on finite and algebraic
groups and supplying proofs of any “well-known”
results used in the original proof, since such proofs
were scattered throughout the literature or, worse,
did not even appear in the literature. However, the
GLS program is not yet complete, and over the last
twenty years gaps have been discovered in the
original proof of the Classification. Most of these
gaps were quickly eliminated, but one presented
serious difficulties. The serious gap has recently
been closed, so it is perhaps a good time to review
the status of the Classification. I will begin slowly
with an introduction to the problem and with some
motivation.

Recall that a group G is simple if 1 and G are
the only normal subgroups of G; equivalently
G = G/1 and 1 = G/G are the only factor groups
of G.
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Assume G is finite, and write H < G to indi-
cate that H is a normal subgroup of G. A normal
series for G is a sequence

1=Go < G1 < --- < Gp=¢G,

and the family of factors of the series is the
family

(Gi+1/Gi:0<i<n)

of factor groups arising in the sequence. Observe
the series is maximal (i.e. we cannot adjoin an extra
term between G; and Gj.1) precisely when each fac-
tor is simple. The maximal series are called com-
position series, and we have:

Jordan-Hdélder Theorem. All composition series
for G have the same length and the same (un-
ordered) family of simple factors.

The simple factors in a composition series for
G are called the composition factors of the group.
They do not determine G up to isomorphism, but
they do exert a lot of control over the gross struc-
ture of G. Thus the simple groups are analogous
to the primes in number theory, although one does
not quite have “unique factorization”.

Example. Recall G is solvable if each of its com-
position factors is of prime order. Recall also that
Galois’s Theorem says this is the class of groups
corresponding to polynomials solvable by radicals.
Further, by a result of Philip Hall, solvable groups
satisfy an important generalization of Sylow’s The-
orem, and indeed this property characterizes solv-
able groups. This generalization says: If G is solv-
able of order n and m is a divisor of n with
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(m,n/m) =1, then G has a subgroup of order m,
all subgroups of G of order m are conjugate in G,
and each subgroup of order dividing m is con-
tained in some subgroup of order m.

One can conceive of an analysis of the finite
groups based on a solution to the following two
problems:

The Classification Problem. Determine all finite
simple groups.

The Extension Problem. Given groups X and Y, de-
termine all extensions of X by Y; i.e. determine all
groups G with a normal subgroup H such that
H=XandG/H=Y.

In practice the Extension Problem is too hard,
except in special cases. It seems better not to look
too closely at the general finite group, but instead
when faced with a problem about finite groups, to
attempt to reduce the problem or a related prob-
lem to a question about simple groups or groups
closely related to simple groups. Then using the
Classification of the finite simple groups and knowl-
edge of the simple groups, solve the reduced prob-
lem. Note this procedure works only if one knows
enough about simple groups to solve the problem
for simple groups; this is where the Classification
comes in: it supplies an explicit list of groups which
can be studied in detail using the effective de-
scription of the groups supplied by the Classifica-
tion.

This approach to solving group theoretic prob-
lems has been in use since about 1980, when the
finite simple groups were deemed to have been clas-
sified. It has been extremely successful: virtually
none of the major problems in finite group theory
that were open before 1980 remain open today.
Moreover, finite group theory has been used to
solve problems in many branches of mathematics.

In short, the Classification is the most important
result in finite group theory, and it has become in-
creasingly important in other areas of mathemat-
ics.

Now it is time to state the:

Classification Theorem. Each finite simple group
is isomorphic to one of the following groups:

1. A group of prime order.

2. An alternating group.

3. A group of Lie type.

4. One of 26 sporadic groups.

Observe that the statement of the Classifica-
tion Theorem given above is deceptively simple. In
order for it to have real content, one must define
what one means by “group of Lie type” and “spo-
radic group”. Constraints on space preclude in-
cluding such definitions here, so instead I will
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make the following observation: With the exception
of some of the sporadic groups, each group G ap-
pearing in the theorem can be regarded as essen-
tially the group of automorphisms of some fairly
accessible mathematical object X. The existence of
X gives an existence proof for G, but, more im-
portant, the representation of G on X gives a means
for studying G and obtaining information about
representations of the simple groups in various cat-
egories, most particularly representations as per-
mutation groups (i.e. subgroup structure of G) and
linear groups. The verification of some special
property of such representations is usually the
sort of extra input necessary to apply the Classi-
fication to solve a given problem.

Indeed some such information was necessary to
prove the Classification in the first place. That is
to say, in proving the Classification Theorem, one
begins with the list K of simple groups appearing
in the statement of the theorem and considers a
minimal counterexample to the Classification
Theorem: A finite simple group G minimal subject
to G ¢ K. Thus each proper subgroup J of G is a
XK-group:if K < H < J with H/K simple, then the
section H/K is in K. The proof of the Classifica-
tion depends very heavily on facts about the
subgroup structure and linear representations of
XK-groups.

During this article I will be discussing two dif-
ferent efforts: The “original proof” of the Classifi-
cation and work done since about 1980 aimed at
improving, simplifying, and writing down carefully
in one place a proof of the Classification. The orig-
inal proof sought only to make sure the literature
actually contains all the pieces of some program
purporting to prove the Classification Theorem. The
second effort aims to produce a more readable
treatment that inspires a higher level of confi-
dence.

There is a two-volume exposition of part of the
original proof by Gorenstein in [G1] and [G2]. Goren-
stein’s books do not attempt to give details of the
proof, but only to give an outline of what is entailed.
Further, Gorenstein died before completing the
third volume of the series.

The largest part of the second effort is the pro-
gram begun by Gorenstein, Lyons, and Solomon
(GLS). While this program does not attempt to ad-
dress all parts of the proof, if completed as envi-
sioned, it would deal with most parts. The work is
being published by the American Mathematical So-
ciety (AMS), and at the time I write this article, five
volumes in the series have appeared in [GLS]. In
[GLS] you will also find references to other parts
of the second effort.

I have described the Classification as a theorem,
and at this time I believe that to be true. Twenty
years ago I would also have described the Classi-
fication as a theorem. On the other hand, ten years
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ago, while I often referred to the Classification as
a theorem, I knew formally that that was not the
case, since experts had by then become aware that
a significant part of the proof had not been com-
pletely worked out and written down. More pre-
cisely, the so-called “quasithin groups” were not
dealt with adequately in the original proof. Steve
Smith and I worked for seven years, eventually
classifying the quasithin groups and closing this
gap in the proof of the Classification Theorem. We
completed the write-up of our theorem last year;
it will be published (probably in 2004) by the AMS.
Later I will state the result; it should be viewed as
part of both the original proof and the second ef-
fort.

It is time for some specifics: The proof of the
Classification proceeds by studying the so-called
local subgroups of G. Let p be a prime. A p-local
subgroup of G is the normalizer of a nontrivial
p-subgroup of G.

Let G be our minimal counterexample. The proof
of the Classification can be thought of as made up
of two steps:

Step 1. Prove the local structure of G resembles
that of some G € XK.

Step 2. Use the resemblance in Step 1 to prove
G=aG.

Step 2 for the sporadic groups is one of the
parts of the second effort that [GLS] does not ad-
dress. However, there has been quite a bit of
progress in improving the treatment of Step 2 since
the original proof. Many of the original proofs of
the existence and uniqueness of the sporadic
groups were machine aided, and the mathematics
involved was often unnecessarily complicated. In
the last twenty years, methods with the flavor of
combinatorial group theory and/or algebraic topol-
ogy have emerged that provide simpler, more con-
ceptual, treatments of uniqueness in Step 2 and
have eliminated almost all computer calculations.
I believe, however, that some of the old computer-
aided existence and uniqueness proofs have not
been superseded; e.g. the proof of the uniqueness
of Thompson’s group and the existence proof for
O’Nan’s group are probably still machine aided. I
will not say more than that about Step 2 but instead
will focus on Step 1.

The generic finite simple group is a finite group
of Lie type. Each such group G is described via a
representation as a linear group, say G < GL(V) for
some finite-dimensional vector space V over some
finite field F. Thus G has a characteristic which is
a prime: The characteristic p of F. Similarly the Lie
rank of G is a measure of the “size” of G, and for
our purposes we can think of the Lie rank as roughly
the dimension of V. Finally, given a prime r, the r-
local structure of G is qualitatively different when
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r =p from when r # p. To implement Step 1 we
must translate these notions for linear groups into
related notions defined in abstract groups.

Let p be a prime, G a finite group, and H a
p-local subgroup of G. Define H to be of charac-
teristic p if

Cu(Op(H)) < Op(H),

where Op(H) is the largest normal p-subgroup of
H and for U < G, Cy(U) is the subgroup of all el-
ements of G commuting with each element of U.
Define G to be of characteristic p-type if each p-local
subgroup of G is of characteristic p, and define G
to be of even characteristic if for each 2-local sub-
group H of G containing a Sylow 2-subgroup of G,
H is of characteristic 2. It turns out that each group
of Lie type and characteristic p is of characteristic
p-type.

For reasons I will not go into, the prime 2 plays
a special role in the local theory of finite simple
groups. (For example, by the Feit-Thompson The-
orem [FT], nonabelian finite simple groups are of
even order.) Thus in the original proof the follow-
ing partition appears:

Case I. The minimal counterexample G is of char-
acteristic 2-type.

Case II. G is not of characteristic 2-type.

The generic group appearing in Case Iis a group
of Lie type and characteristic 2, while almost all
other simple groups appear in Case II.

There is also a partition according to size that
corresponds roughly to the notion of size for
groups of Lie type: Given a prime p and a finite
group G, define the p-rank my(G) of G to be the
maximal dimension of an abelian subgroup of G
of exponent p, regarded as a vector space over the
field of order p. In Case II the “size” of G can be
taken to be the 2-rank m»(G) of G.In Case I the size
is the parameter e(G) defined by Thompson in the
n-group paper [T] (the model for all later work on
Case I):

e(G) = max{mp(H) : H is a 2-local of G and
p is an odd prime}.

Define G to be quasithin if e(G) < 2. The “small”
groups in Case I are the quasithin groups. Thus in
the original proof we have four blocks in our par-
tition corresponding to the large and small groups
of characteristic 2-type and to the large and small
groups not of characteristic 2-type. The quasithin
groups of characteristic 2-type constitute one of the
four blocks.

In the GLS program, one of the partitions is
changed by altering the definition of “characteris-
tic”. Iwill not give the GLS definition, since it is tech-
nical. However, to accommodate the GLS change,
Steve Smith and I also work with a different notion
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of characteristic in our study of quasithin groups:
Recall that G is of even characteristic if
Cr(02(H)) < O2(H) for each 2-local containing a
Sylow 2-subgroup of G. Define a finite group G to
be a QTKE-group if G is quasithin of even charac-
teristic and each proper simple section of G is in
X.

Classification of QTKE Groups. (Aschbacher-Smith)
Let G be a nonabelian simple QTKE-group. Then G
is isomorphic to one of the following:

1. A group of Lie type of characteristic 2 and Lie rank
at most 2, but not Us(q).

2. L4(2), L5(2), Spe(2), or Us(4).
3. The alternating group Ag.

4. Lo(p) for p a Mersenne or Fermat prime, L3(3),
Us(3), L4(3), U4(3), or G2(3).

5. One of 11 sporadic groups: a Mathieu group, a
Janko group other than J1, HS, He, or Ru.

The proof of this theorem will be published by
the AMS in two volumes in [AS]. It is roughly 1,200
pages in length. In part this reflects the complex-
ity of the proof, but it also reflects a style of ex-
position that includes more detail than one usually
finds in the original proof of the Classification,
and it reflects our decision to keep our treatment
as self-contained as possible. Indeed, one of the two
volumes is devoted to group-theoretic infrastruc-
ture, such as proofs of folk theorems and facts
about K-groups.

To my knowledge the main theorem of [AS]
closes the last gap in the original proof, so (for the
moment) the Classification Theorem can be re-
garded as a theorem. On the other hand, I hope I
have convinced you that it is important to complete
the program by carefully writing out a more reli-
able proof in order to minimize the chance of other
gaps being discovered in the future. Thus our dis-
cussion of the status of the Classification would not
be complete without some indication of what re-
mains to be done in that program.

Recall that the condition that G be of even char-
acteristic is weaker than the condition that G be
of characteristic 2-type; thus if one changes the par-
tition in the original proof to a division based on
the even characteristic condition, more groups ap-
pear in Case L. GLS work with so-called groups of
even type; again, this condition is weaker than the
characteristic 2-type condition, so more groups
also appear in Case I in their partition, and hence
this part of the problem becomes more difficult.
However, as a corollary to our main theorem, Steve
Smith and I also determine in [AS] the quasithin
groups of even type, the result on quasithin groups
required in the GLS approach to the Classification.
Thus any difficulties involved in treating the larger
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class of groups in the extended Case I have at least
been overcome for the small groups in Case L.

In the original proof of the Classification, chrono-
logically Case Il was treated before Case I, more time
was spent dealing with Case II, and more people
worked on this case. Probably as a result, the treat-
ment of Case II in the original proof is in better
shape than the treatment of Case I. Volume 6 in the
[GLS] series treats the small groups in (their rede-
fined) Case II. After a certain point, GLS treat the
large groups in Cases I and II together; this work
is begun in volume 5 of [GLS] and will be completed
in the next few volumes. Thus the part of the sec-
ond effort that is furthest from completion is the
initial phase of Case 1.

The approach used to treat large groups in
Case Iis to focus on p-locals for odd primes p but
to keep 2-locals in the picture. This leads us to the
following definitions: Given a 2-local H, define

o(H) = {p : p is an odd prime and my(H) > 2},

and let o be the union of the sets o(H), as H varies
over the 2-locals of G. We work with p-locals for
p € 0.

In the original proof, two problems in Case I re-
quired special treatment:

A. The uniqueness case: There exists a 2-local H
with o(H) # @ and H strongly p-embedded in G for
each p € o(H); that is, |H n HY| is prime to p for
eachge G-H.

B. The case e(G) = 3.

Initially GLS hoped that new methods devel-
oped after 1980 (e.g. the so-called amalgam
method) could be used to treat both cases (A) and
(B) for the larger class of groups of even type, and
their program was based on the assumption that
specialists in those methods would handle the two
cases. However, to date this has not happened, so
the treatment of cases (A) and (B) in groups of
even type remains as perhaps the greatest obsta-
cle to the completion of the second effort. The
work on these cases in groups of characteristic
2-type in the original proof is available as a model,
but it is not clear how much more difficult the
problems are in groups of even type. Gernot Stroth
and Inna Korchagina have done preliminary work
on (A) and (B), respectively, under the hypothesis
that G is of even type. Case (B) requires special treat-
ment, because different signalizer functors (cf.
Volumes 1 and 2 of [GLS]) are used in p-rank 3 and
p-rank greater than 3.

Finally, in addition to the original proof of the
Classification and the second-generation approach
of GLS, there is also a third-generation program in-
volving a number of people, particularly Ulrich
Meierfrankefeld, Bernd Stellmacher, and Gernot
Stroth, that would treat all groups of characteris-
tic 2-type (and perhaps eventually all groups of even
characteristic) using the amalgam method. Steve
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Smith and I made use of variations of this method
AMS SHORT COU RSE in our work in [AS]. It is possible that this approach
will give a better treatment of Case I or at least of
Case (B).

The Radon Transform and
Applications to Inverse Problems
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Tomagraphy is important in pure and applied mathematics,
as well as in several branches of applied sciences, in partic-
ular diagnostic radiology, nondestructive evaluation, and
other forms of image reconstruction. The Short Course
will cover the basic mathematics behind tomography and
will describe important applications. The talks will be aimed
ata general audience, beginning with elementary facts about
the Radon transform and then introducing important current
research areas, including impedance imaging, local tomog-
raphy, wavelet methods, regularization and approximate in-
verse, and emission tomography. Several special sessions at
the AMS meeting will continue the themes introduced in the
Short Course.
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