
JUNE/JULY 1997 NOTICES OF THE AMS 671

An Introduction to
Computational
Group Theory

Ákos Seress

C
an one rotate only one corner piece in
Rubik’s cube? What are the energy
levels of the buckyball molecule? Are
the graphs on Figure 1 isomorphic?
What is the Galois group of the poly-

nomial x8 + 2x7 + 28x6 + 1728x + 3456? What
are the possible symmetry groups of crystals?
These are all questions which, directly or in a not
so obvious way, lead to problems in computa-
tional group theory.

Algebraic structures are well suited for ma-
chine computations. One reason for that is that
we can describe large objects very concisely by
a set of generators: for example, 50 bits are
enough to define GL5(2), a group of order
9999360, by two 0-1 matrices of size 5× 5.
Even more importantly, often we can find a gen-
erating set which reflects the structure of the
group so that structural and quantitative prop-
erties can be read off easily.

Computational group theory (CGT) is one of
the oldest and most developed branches of com-
putational algebra. Although most general-pur-
pose symbolic algebra programs can handle

groups to a certain extent, there are two systems
which are particularly well suited for computa-
tions with groups: GAP and Magma. Also, nu-
merous stand-alone programs and smaller sys-
tems are available.

GAP can be obtained by anonymous ftp from
servers on three continents; the addresses can
be found on the World Wide Web page
http://www-groups.dcs.st-and.ac.uk/.

For the availability of Magma, please see the
World Wide Web page http://www.maths.
usyd.edu.au:8000/comp/magma/.

The important subareas of CGT correspond
to the most frequently used representations of
groups: permutation groups, matrix groups, and
groups defined by generators and relators, as
well as to perhaps the most powerful tool for the
investigation of groups, representation theory.
Also, there are specialized and more efficient al-
gorithms for special classes such as nilpotent or
solvable groups. In this survey in each subarea
we attempt to indicate the basic ideas and the
size of jobs which can be handled by the current
systems on a reasonable machine. Of course, we
cannot be comprehensive here. Also, because of
space restrictions, our reference list consists
only of surveys, conference volumes, books, and
journal special issues. Individual results are ref-
erenced in the text only if they appear in these
volumes; most of the others can be traced back
from these sources. An extended version of this
article, with complete references, can be ob-
tained from http://www.math.ohio-
state.edu/˜akos/ or http://www.math.
rwth-aachen.de/˜Akos.Seress/. E. O’Brien’s
database of papers on group theory, including

Ákos Seress is associate professor of mathematics at The
Ohio State University, Columbus, Ohio. His e-mail ad-
dress is akos@math.ohio-state.edu.

Partially supported by NSF Grant CCR-9503430 and by
the Alexander von Humboldt Foundation.

Acknowledgement: the author is indebted to G. Havas,
D. Holt, W. Kantor, K. Lux, J. Neubüser, and E. O’Brien
for their helpful comments. The part of the section
“Polyclyclic Groups” about quotient group methods was
written by J. Neubüser.

seress.qxp 5/21/97 4:13 PM Page 671

http://www-groups.dcs.st-and.ac.uk/
http://www.maths.usyd.edu.au:8000/comp/magma/
http://www.maths.usyd.edu.au:8000/comp/magma/
http://www.math.ohio-state.edu/~akos/
http://www.math.ohio-state.edu/~akos/
http://www.math.rwth-aachen.de/~Akos.Seress/
http://www.math.rwth-aachen.de/~Akos.Seress/

672 NOTICES OF THE AMS VOLUME 44, NUMBER 6

a lot of references to CGT, is available via
http://www.math.auckland.ac.nz/
˜obrien/.

We start with some historical remarks. Algo-
rithmic questions permeated group theory from
its inception in the last century. As examples,
consider that Galois’s work was inspired by the
solvability of equations. Thirty years later, Math-
ieu announced the existence of the 5-transitive
group M24, but he needed twelve years to find
the “clarity and elegance necessary to present it.”
Had he access to a computer, this period could
probably have been shortened significantly. Jor-
dan, Hölder, Cole, and others could also have
used the machine in their quest to classify groups
of small order.

The “official” starting date of CGT may be
pinned down in 1911, when Dehn proposed the
solution of the word problem, Find an algorithm
to decide whether, in a group defined by a finite
set of abstract generators and relators, a word
in the generators represents the identity. Dehn’s
question was motivated by topological consid-
erations; even today it is hard to draw a sharp
border between combinatorial group theory and
topology. The flourishing of CGT started in the
sixties, when, for example, the basic methods for
permutation group manipulation and the com-
putation of character tables were established,
and term rewriting procedures were introduced.
Not much later, the first large applications, such
as Sims’s existence proof for Lyons’s sporadic
simple group, arose, and the development of
the first integrated system, the Aachen-Sydney
Group System, started. Since then the area has
been growing rapidly, both in terms of the design,
implementation, and application of algorithms,
as well as in the number of mathematicians in-
volved in this development. Nowadays, some of
the major lines of development are the integra-
tion of consequences of the classification of fi-
nite simple groups and methods suggested by
complexity theoretical considerations into prac-
tical algorithms and the systematic use of ran-
domization. A more detailed history is in [11].

Finitely Presented Groups
Let G = 〈E|R〉 be a presentation for a
group G : E = {g1, . . . , gn} is a finite set of
generators, and R = {r1 = 1, . . . , rm = 1} is
a set of defining relations. Each ri is a
word, using the generators in E and their
inverses. The basic questions are to de-
cide whether G is finite and to determine
whether a given word represents the iden-
tity of G .

By the celebrated result of Novikov and
Boone, these questions are undecidable:
they cannot be answered by a recursive al-
gorithm. Nevertheless, because of the prac-

tical importance of the problem, a lot of effort
is devoted to the development of methods for
investigating finitely presented groups.

One basic method is the Todd-Coxeter coset
enumeration procedure. Given G = 〈E|R〉 and
H = 〈h1, . . . , hk〉 , where H ≤ G and each hj is a
word in the generators of G and their inverses,
our goal is to compute the permutation repre-
sentation of G on the right cosets of H.

We set up a coset table: this is a matrix M,
where the rows are labelled by positive integers,
representing cosets of H, and the columns are
labelled by the elements of
E := {g1, . . . , gn, g−1

1 , . . . , g−1
n }. The entries (if

defined) are positive integers, M(k, g) = l , if we
know that kg = l for the cosets k, l and for
g ∈ E . Originally, we have a 1× |E| table with
no entries, where 1 denotes the coset H · 1. As
new cosets are defined, we add rows to the coset
table.

Of course, we have to detect when two words,
defining different rows of the table, actually be-
long to the same coset of H. To this end, for each
relation ri = gi1gi2 · · ·git, we also maintain a re-
lation table. This is a matrix Mi, with rows la-
belled by the cosets 1,2, . . . , as defined in M,
and columns labelled by the elements of the se-
quence (gi1 , gi2 , . . . , git). The entry Mi(k, gij) , if
defined, is the number of the coset kgi1 · · ·gij .
Initially, we have Mi(k, git) = k for each row num-
ber k, since ri = 1 in G . Whenever a new coset
is defined, we fill all entries of the relation ta-
bles that we can.

Finally, for each generator hj = gj1 · · ·gjt of
H, we maintain a subgroup table. This is a ma-
trix Sj with only one row, corresponding to the
coset H · 1, and columns labelled by the factors
of hj . The rule for filling entries is the same as
for the Mi ; originally, Sj (1, gjt) = 1, since
Hhj = H.

When the last entry is filled in a row of a re-
lation table or a subgroup table, we also get an
extra piece of information, kg = l , for some
cosets k, l and g ∈ E . This is called a deduction.
If the entry M(k, g) is not yet defined, then we
fill the entries M(k, g), M(l, g−1), and all possi-

Figure 1.

seress.qxp 5/21/97 4:13 PM Page 672

http://www.math.auckland.ac.nz/~obrien/
http://www.math.auckland.ac.nz/~obrien/

JUNE/JULY 1997 NOTICES OF THE AMS 673

ble entries in the relation
and subgroup tables; this
way, we may get further
deductions. If M(k, g) is
already defined but
l′ :=M(k, g) 6= l , then we
realize that l, l′ denote
the same coset of H. This
is called a coincidence. We
replace all occurrences of l, l′ by the smaller of
these two numbers and fill the entries of the ta-
bles that we can. This may lead to further de-
ductions and coincidences. The process stops
when all entries of the coset table, the relation
tables, and subgroup tables are filled.

We illustrate these ideas by enumerating
G = 〈g1, g2|g2

1 = 1, g2
2 = 1, (g1g2)3 = 1〉 ∼= S3 on

the cosets of the subgroup H = 〈g1g2g1g2〉 of
order 3. Since both generators are involutions,
we have E = E. Also, we maintain only one rela-
tion table, corresponding to (g1g2)3 = 1; the
other two relators tell us that at the definition
of new cosets, we should multiply previous
cosets by g1, g2 alternatingly. Figure 2 shows the
coset table CT, relation table RT, and subgroup
table ST after the definition of the cosets
1 := H,2 := 1g1,3 := 1g2,4 := 2g2. At that mo-
ment, the last entry (in the second column) of
ST is filled and we get the deduction 4g1 = 3,
which also implies 3g1 = 4. Then all entries in
CT are known, and we can complete RT; this
leads to the coincidences 1 = 4 and 2 = 3.

Taking minimal care in defining new cosets
(namely, if a coset k is defined, then sooner or
later we define kg for all g ∈ E), it is guaranteed
that the algorithm terminates if |G : H| <∞ .
However, there is no recursive function of |G : H|
and the input length which would bound the
number of cosets defined during the procedure.
It is easy to give presentations of the trivial
group such that no commonly used variant of
the Todd-Coxeter algorithm can handle them.
This, and different coset enumeration strate-
gies, are discussed, for example, in [13, Ch. 5].
A very accessible, elementary description of the
methods is in [10]. Success mostly depends on
the number of entries defined in the coset table
rather than |G : H|. There are instances of suc-
cessful enumeration with |G : H| > 106.

If we do not have a candidate for a small
index subgroup H in G , we may try programs
which find some or all subgroups of G with
index at most a given bound n. These programs
consider all coset tables with at most n rows and
use a backtrack search to eliminate those which
are not consistent with the given relators. De-
pending on the complexity of the presentation,
in some cases we can expect success for values
of n up to about 100.

An alternative method to coset enumeration
is the Knuth-Bendix term-rewriting procedure
[13]. We collect a list of pairs of words (u, v) such
that u, v represent the same element of G. These
pairs are called rewriting rules, since we can re-
place a word w1uw2 by w1vw2. The goal is to
collect a confluent system of rules: no matter in
which order the rules are applied, every word in
the generators is converted into a unique nor-
mal form. Although the usual problems of un-
decidability arise, Knuth-Bendix methods can
sometimes solve the word problem for infinite
groups, which can almost never be done by coset
enumeration techniques.

An interesting recent development is the de-
finition and the algorithmic handling of auto-
matic groups. These are groups with solvable
word problem and include important group
classes occurring in topology, such as the fun-
damental groups of compact hyperbolic and Eu-
clidean manifolds and of hyperbolic manifolds
of finite volume, word hyperbolic groups, and
groups satisfying various small cancellation
properties.

If a presentation for a subgroup H ≤ G is
needed, Schreier’s subgroup lemma may be used
to obtain generators for H.

Lemma 1.1. Let T be a right transversal for H
in G = 〈S〉 , and, for g ∈ G , let g denote the el-
ement of T such that g ∈ Hg. Then

{tsts−1 : t ∈ T, s ∈ S}
generates H.

Using the fact that words representing sub-
group elements can be rewritten as products of
Schreier generators, one may obtain a presen-
tation for H [13, Ch. 6]. This presentation is
usually highly redundant, and it can be shortened
by applying the so-called Tietze transformations
[13, Ch. 1]. It is often worthwhile to do Tietze
transformations interactively, guiding the com-
puter to the type of presentation we try to
achieve.

Polycyclic Groups
In the rest of this survey, we shall almost ex-
clusively deal with groups for which the unde-
cidability of the word problem vanishes. This will
clearly be the case with finite groups given, for
example, as permutation or matrix groups, but

Figure 2.

seress.qxp 5/21/97 4:13 PM Page 673

674 NOTICES OF THE AMS VOLUME 44, NUMBER 6

it is also the case for groups given by polycyclic
presentations.

A group is called polycyclic if it has a finite
subnormal series of the form

(1) G = G1 B G2 B · · · B Gn B Gn+1 = 1,

with cyclic factors Gi/Gi+1. If, for 1 ≤ i ≤ n , we
pick ai ∈ Gi \Gi+1 such that Gi = 〈Gi+1, ai〉,
then each g ∈ G can be written uniquely in the
form g = ae1

1 a
e2
2 · · ·aenn , where ei ∈ Z for infinite

cyclic factors Gi/Gi+1, and 0 ≤ ei < |Gi : Gi+1|
for finite factor groups. This description of g is
called a collected word for g. For finite poly-
cyclic groups, we also have

(2)

a|Gi :Gi+1|
i = aεi;i+1

i+1 a
εi;i+2

i+2 · · ·aεi;nn ,
for 1 ≤ i ≤ n,

ajai = aia
εi,j ;i+1

i+1 aεi,j ;i+2

i+2 · · ·aεi,j ;nn ,
for 1 ≤ i < j ≤ n.

These are the relators for the so-called power-
conjugate presentation (pcp) for G . (For infinite
polycyclic groups, similar relators have to be
added to (2) for the inverses of the ai of infinite
order.)

The pcp’s are very compact, but still rela-
tively easily manageable representations of poly-
cyclic groups. For finite solvable groups, as
shown by the work of Laue, Neubüser, and
Schoenwaelder in [1]; Celler; Eick in [7]; Glasby
and Slattery in [2]; Mecky; Neubüser; M. Smith;
and Wright, pcp’s can be used to determine vir-
tually all structural properties. Among others,
conjugacy classes of elements, complements to
normal subgroups, normalizers, and Frattini
subgroups can be computed, and it is possible
to find automorphism groups. For these tasks,
if there are algorithms in other representations
of groups, they can handle only groups of much
smaller order. There are examples of structural
exploration of polycyclic groups with log |G| in
the thousands; currently, groups of that size
cannot be handled in any other representation.

We indicate two basic methods, which are
used in almost all algorithms dealing with finite
solvable groups. The first one is to exploit analo-
gies with linear algebra. Each collected word can
be represented as an integer vector of length n,
the coordinates being the exponents of the ai .
The relators (2) imply that if w1, w2 are collected
words and the first m positions of w1 are 0, then
the first m positions in the collected word for
w1w2 are the same as in w2. Thus, given a list
of generators for a subgroup H ≤ G, a non-
commutative version of Gaussian elimination
can be used to obtain generators h1, . . . , hk for
H in row-echelon form. (Besides the usual steps
of row reduction, powers and commutators using

the newly obtained vectors have to be formed,
corresponding to the construction of Schreier
generators in Lemma 1.1.) Then each h ∈ H can
be written uniquely in the form

(3) h = h
di1
1 h

di2
2 · · ·hdikk ,

with exponents 0 ≤ dij < |Gij : Gij+1|. The pro-
cedure can be used for membership testing in
H as well, by attempting to factorize any given
g ∈ G as in (3). When membership testing is
available, we can compute normal closures of
subgroups and derived series and lower central
series, and handle homomorphisms. This
method can be extended to infinite polycyclic
groups, and we shall see an analogous procedure
for permutation groups in the next section.

The other basic method is to consider larger
and larger factor groups of G . We construct a
subnormal chain (1), which is a refinement of a
chain of normal subgroups
G = N1 B N2 B · · · B Nm = 1, with Ni/Ni+1 ele-
mentary abelian. Then we use induction to ex-
tend information from G/Ni to G/Ni+1. Since
G/Ni acts as a group of linear transformations
on Ni/Ni+1, often linear algebra methods can be
used.

Given the usefulness of pcp’s, one may try to
construct one from other representations. In
most applications, the groups arise as finitely
presented groups, and there is a collection of al-
gorithms for finding pcp’s of certain factor
groups.

The first of these was Macdonald’s pQ-algo-
rithm for finding p-quotients of a finitely pre-
sented group. This was soon turned into a pow-
erful tool by Newman and used for the study of
Burnside groups. Let Fn be the free group of
rank n and q a power of a prime. The Burnside
group B(n, q) is the largest factor group of Fn
with all elements of order dividing q. B(n, q) may
be infinite, but, as was recently proved by Zel-
manov, it has a largest finite factor group B(n, q).
The first big success of the p-quotient method
was the determination of |B(4,4)| = 2422 by Al-
ford, Havas, and Newman. (In this particular in-
stance of Burnside groups, we have
B(4,4) = B(4,4).) For small primes p, present
implementations can determine quotients of
Burnside groups of order pk with k in the thou-
sands.

The family of available quotient group algo-
rithms nowadays includes an NQ-method that
determines possibly infinite nilpotent quotients
of a finitely presented group by Nickel, two dif-
ferent SQ-methods for finding finite solvable
factor groups by Plesken and Niemeyer, and a
PCQ-method for finding infinite polycyclic fac-
tor groups by Sims in [2] and by Lo in [7]. All of
these algorithms proceed by induction. As a

seress.qxp 5/21/97 4:13 PM Page 674

JUNE/JULY 1997 NOTICES OF THE AMS 675

first step, an epimorphism ϕ : G → G/G′ is con-
structed. A polycyclic presentation for G/G′ can
be obtained by adding to the relators of G that
all pairs of generators commute and computing
the cyclic decomposition of the resulting abelian
group. Suppose that an epimorphism ϕ is known
onto a nilpotent or polycyclic group H. Then an
attempt is made to lift ϕ to an epimorphism of
G onto an extension group K of H by a normal
subgroup N that is central in the case of pQ and
NQ or just abelian in the other cases.

The methods for finding such N and K and
for lifting ϕ differ in the various quotient meth-
ods. In the case of pQ , they amount to solving
linear equations over GF(p) that on one hand rep-
resent confluence conditions for the pcp pre-
sentation and on the other hand stem from the
relations for G . In the case of NQ , congruences
occur instead of equations, while in the case of
SQ’s, modular representations of H are con-
sidered. Finally, in the case of PCQ’s, Gröbner
basis techniques come into play. It should be no
wonder that the time requirement for NQ , and
especially for SQ and PCQ, is much higher than
for pQ , and so applications of these are far
more restricted.

Permutation Groups
The situation is quite satisfactory in the case of
permutation group algorithms as well: most
structural properties of permutation groups of
reasonable degree and order can be readily com-
puted. Working with permutation representa-
tions is usually the method of choice when study-
ing simple groups and their subgroup structure,
provided that the simple group has a permuta-
tion representation of sufficiently small degree.
“Reasonable” and “sufficiently small” degree, of
course, depend on the available software and
hardware; currently, it is in the low hundred
thousands, while the logarithm of the group
order may be in the low hundreds.

This is the area of CGT where the complexity
analysis of algorithms is the most developed. The
reason for that is the connection with the cele-
brated Graph Isomorphism Problem. The decisive
result in establishing the connection is Luks’s
polynomial time algorithm for the isomorphism
testing of graphs with bounded valence, where
the isomorphism problem is reduced to finding
setwise stabilizers of subsets in the permutation
domain of groups with composition factors of
bounded size. This result not only established
a link between complexity theory and CGT but
provided new methodology for permutation
group algorithms.

Because of the approach from two different
points of view, complexity theoretic and practi-
cal, algorithms for numerous tasks were devel-
oped independently in the two contexts. In the

last five years, a remarkable convergence of the
approaches occurred: for example, in GAP, most
of the permutation group library uses imple-
mentations of algorithms with the fastest known
asymptotic running times.

The basic ideas of permutation group ma-
nipulation are due to Sims. A base for
G ≤ Sym(Ω) is a sequence B = (β1, . . . , βm) of
points from Ω such that the pointwise stabilizer
GB = 1. The sequence B defines a subgroup
chain

(4) G = G[1] ≥ G[2] ≥ · · · ≥ G[m] ≥ G[m+1] = 1

where G[i] = G(β1,... ,βi−1). A strong generating set
(SGS) relative to B is a generating set S for G with
the property that

(5) 〈S ∩G[i]〉 = G[i] for 1 ≤ i ≤m + 1.

Given an SGS, the orbits βG
[i]

i and transversals
Ri for G[i] mod G[i+1] can be easily computed. As
an analogue of (3) in the section “Polycyclic
Groups”, every g ∈ G can be written uniquely in
the form

(6) g = rmrm−1 · · · r1
with ri ∈ Ri . Factorizing elements in this form
is called sifting and may be considered as a per-
mutation group version of Gaussian elimina-
tion. It can be used for membership testing;
computing normal closures of subgroups, de-
rived series, and lower central series; handling
homomorphisms; and finding the pointwise sta-
bilizer of any subset of Ω.

We sketch the basic idea of an SGS construc-
tion. Given G = 〈T〉 , we maintain a sequence
B = (β1, . . . , βk) of already-known elements of a
base and approximations Si for a generating set
of the stabilizer G(β1,... ,βi−1). We say that the data
structure is up-to-date below level j if

(7) 〈Si〉βi = 〈Si+1〉

holds for all j < i ≤ k . It is easy to see that
⋃
Si

is an SGS for G if and only if it generates G and
the data structure is up-to-date below level 0.

In the case when the data structure is up-to-
date below level j, we compute a transversal Rj
for 〈Sj〉 mod 〈Sj〉βj. Then we test whether (7)
holds for i = j . By Lemma 1.1, this can be done
by sifting the Schreier generators obtained from
Rj and Sj in the group 〈Sj+1〉. If all Schreier gen-
erators are in 〈Sj+1〉, then we say that the data
structure is up-to-date below level j − 1; other-
wise we add a nontrivial Schreier generator h to
Sj+1 and say that the data structure is up-to-date
below level j + 1. In the case j = k, we also choose
a new base point βk+1 from the support of h.

seress.qxp 5/21/97 4:13 PM Page 675

676 NOTICES OF THE AMS VOLUME 44, NUMBER 6

We start the algorithm by choosing β1 ∈ Ω
which is moved by at least one generator in T
and setting S1 := T. At that moment, the data
structure is up-to-date below level 1; the algo-
rithm terminates when the data structure be-
comes up-to-date below level 0.

A second generation of algorithms uses di-
vide-and-conquer techniques by utilizing the im-
primitivity block structure of the input group,
thereby reducing the problems to primitive
groups. We mention Luks’s and P. Neumann’s re-
sults on computing a composition series, the
Sylow subgroup constructions by Kantor, and the
asymptotically fastest deterministic SGS con-
struction by Babai, Luks, and Seress. The latter
runs almost a factor n2 faster than the asymp-
totically fastest versions of Sims’s original
method. The required group-theoretic arsenal for
these algorithms includes consequences of the
classification of finite simple groups and, in the
case of the Sylow subgroup constructions, de-
tailed knowledge of the classical simple groups.
(We mention, however, that a composition series
can be computed without using the simple group
classification by a result of Beals.)

The running time of most algorithms for
G = 〈S〉 ≤ Sn does not depend only on the input
length |S|n but also on the order of G . More-
over, in groups of current interest, it frequently
happens that the degree of G is in the tens of
thousands or even higher, so even a Θ(n2) al-
gorithm may not be practical. On the other hand,
log |G| is often small. Therefore, a recent trend
is to search for algorithms with running time of
the form O(n|S| logk |G|) . These are called
nearly linear algorithms, since their running
time is O(n logc n) if log |G| is bounded from
above by a polylogarithmic function of n. This
happens, for example, for all permutation rep-
resentations of finite simple groups except the
alternating ones.

There is a large library of nearly linear algo-
rithms by Babai, Beals, Cooperman, Finkelstein;
Luks and Seress in [7]; Morje in [7]; and Schön-
ert. Roughly, everything that can be done in
polynomial time can also be done in nearly lin-
ear time in groups which do not have composi-
tion factors of exceptional Lie type. The price we
pay for the speedup is that most algorithms are
random Monte Carlo: they may return an incor-
rect answer, with probability of error bounded
by the user. Although there is a recent theoret-
ical result by Kantor and Seress that upgrades
all nearly linear time algorithms to Las Vegas (i.e.,
to guaranteed correct output) for groups with no
exceptional Lie type composition factors, the
practicability of this method is not demonstrated
yet.

At present there are no polynomial time al-
gorithms for some important tasks such as com-

puting the centralizer of elements, the inter-
section of two subgroups, or setwise stabilizers
of subsets of the permutation domain. These
tasks are polynomially equivalent, and graph
isomorphism can be reduced to them (see Luks
in [6]). Therefore, it is suspected that no poly-
nomial time algorithms exist.

Practical algorithms for these problems use
backtrack methods. Let B be a fixed base of G .
The images of base points uniquely determine
the elements of G , while the image of an initial
segment of B defines a coset of some G[i] (cf.
(4)). The images of all initial segments define a
partial order by inclusion, which is called the
search tree for G . Traditional backtrack meth-
ods systematically examine the elements of the
search tree. Especially valuable is when a node
close to the root can be eliminated, because all
elements of G less than this node (i.e., elements
of the appropriate coset) can be excluded at
once. A new generation of backtrack methods
was developed by Leon in [3], based on ideas
from B. McKay’s graph isomorphism testing pro-
gram nauty. Nowadays centralizers can be com-
puted in groups of degree in the tens of thou-
sands, provided that they have a small base.
The computation of normalizers of subgroups
seems to be harder: in theory, polynomial time
equivalence with centralizers is not known, and
practical computation is much more compli-
cated.

Representation Theory
As John Conway writes in the introduction of the
Atlas [5], “the ordinary character table is be-
yond doubt the most compendious way of con-
veying information about a group to the skilled
reader.” However, computing a character table
from scratch is not an easy task. Therefore, GAP
contains tables for the most frequently used
groups, including all tables in the Atlas and ta-
bles for most of the maximal subgroups of spo-
radic groups.

A basic idea for computing the complex ir-
reducible characters of a group G is due to
Burnside. In the group algebra CG of G , the
sum SC of the elements of a conjugacy class C
is in the center of CG; in fact, taking these sums
for all conjugacy classes, we get a basis for
Z(CG). For a fixed conjugacy class C, the prod-
ucts SCSCi decompose as a linear combination
of the SCj’s, and the coefficients, taken for all
possible Ci, define a matrix MC . Since the SCj’s
are in Z(CG), the matrices MCj commute and are
simultaneously diagonalizable. The irreducible
characters can be easily computed from the en-
tries in the diagonal forms.

To perform the computation sketched above,
we must know the conjugacy classes and the
class-multiplication coefficients, which boils

seress.qxp 5/21/97 4:13 PM Page 676

JUNE/JULY 1997 NOTICES OF THE AMS 677

down to an algorithm to determine which con-
jugacy class a given group element belongs to.
Dixon performs the diagonalization over prime
fields Zp for (large) primes p, and the result is
lifted back to C. Schneider in [2] introduces
strategies to select a small collection of the MCj’s
from which the new basis for the diagonal form
can be computed. The Dixon-Schneider method
can be used for groups of moderate order (about
|G| < 109) and with not too many conjugacy
classes (in the low hundreds).

For larger groups, we may try to compute the
character table interactively (see Neubüser,
Pahlings, Plesken in [1], and [9]). We may know
some (not necessarily irreducible) characters
from a matrix or a permutation representation
of G , and there are machine commands to in-
duce characters of subgroups, restrict characters
of overgroups, and extend characters of factor
groups. We may also take products of known
characters (corresponding to tensor products
of representations), and, if the power maps for
conjugacy classes are known, we can compute
the generalized characters defined by
χ(n)(g) := χ(gn) .

Once a set of characters is collected, the hunt
for the irreducible ones may begin. Taking scalar
products, we may subtract multiples of the
known irreducible characters to decrease the
norms of the characters in our collection. Ear-
lier methods tried to split characters as the sum
of characters with smaller norms. Nowadays the
most effective method seems to be the applica-
tion of Lovász’s basis reduction algorithm to
the set of known characters to obtain a basis of
the lattice L of the generalized characters which
consists of elements of small norm. Then, fol-
lowing an idea of W. Plesken, we may consider
embeddings of the basis vectors of L into the
lattice Zm as vectors with the indicated norm and
find the standard basis of Zm, which corre-
sponds to the irreducible characters, as linear
combinations of the basis vectors of L. Quite re-
markably, despite the numerous possibilities
for the embedding, this method usually quickly
produces some irreducible characters.

The method of generating characters by hunt-
ing for irreducibles can be iterated: when a larger
collection of irreducible characters is known, it
may be worthwhile to induce characters of
smaller subgroups or compute higher tensor
powers. Initially, we may restrict the computa-
tions to rational characters because of the cost
of handling the irrational numbers. When irra-
tional characters are finally computed, we can
use the fact that if n is the order of some g ∈ G ,
then each character value on g can be written
as an integer linear combination of the powers
of a primitive nth root of unity.

The other large area of representation theory
is the theory of modular representations. Brauer
characters are even harder to compute than or-
dinary ones, so GAP also contains a library of
Brauer character tables, including all tables in the
modular extension of the Atlas [8].

In the case of representations over the com-
plex numbers, most computations deal only with
the character tables. On the other hand, over fi-
nite fields, the emphasis is also on the compu-
tation with the representations themselves. One
of the reasons is that modular representations
occur naturally in different areas of CGT: for ex-
ample, when considering groups acting on the
elementary abelian factors (section “Polycyclic
Groups”) or when studying matrix groups (sec-
tion “Matrix Groups”).

Dealing with a modular representation
G ≤ GLd(F), a fundamental problem is to find in-
variant submodules or to prove that G acts ir-
reducibly. This can be done, for example, using
a generalization by Holt and Rees of R. Parker’s
idea, the so-called Meat-Axe. Also, in studying the
structure of large dimensional modules, some-
times the condensation method (see Ryba in [2],
and [9]) can be applied. This means that given
G ≤ GLd(F), we find a subalgebra A ≤ FG and an
A-module N of possibly much smaller dimen-
sion than M such that the submodule lattices of
M and N are isomorphic. For example, Cooper-
man, Hiss, Lux, and Muller recently condensed
a 976841775-dimensional module of the spo-
radic simple Thompson group to 1403 dimen-
sions.

Matrix Groups
Matrix groups are important and very compact
representations of groups, but pose serious com-
putational problems. For groups over the inte-
gers, the membership problem is undecidable al-
ready in four dimensions. (However, on the
positive side, the finiteness of matrix groups
over Z can be determined by a practical poly-
nomial time algorithm of Babai, Beals, and Rock-
more.) There are difficulties with matrix groups
defined over finite fields as well. Rewriting ma-
trix groups as permutation groups on the un-
derlying vector space, which was the early ap-
proach, results in an exponential blowup of the
input size. Moreover, two basic ingredients,
which were crucial for the efficient handling of
solvable and permutation groups, are missing:
there may be no subgroup chain with small in-
dices, analogous to (1) or (4), and it is not clear
how to generalize Gaussian elimination. Large
fields also cause problems, since the discrete log-
arithm problem arises already for 1× 1 matri-
ces. Nevertheless, despite all these difficulties,
there is a concentrated attack from both the
practical and theoretical sides to determine the

seress.qxp 5/21/97 4:13 PM Page 677

678 NOTICES OF THE AMS VOLUME 44, NUMBER 6

structure of matrix groups over finite fields.
Currently, this is the most active area of CGT.

Most effort concentrates on the matrix recog-
nition project: given a matrix group G ≤ GLd(q)
by a list of generators, find at least one category
of Aschbacher’s classification to which G be-
longs. Aschbacher’s theorem classifies sub-
groups of GLd(q) into nine categories: roughly,
modulo scalars G is an almost simple group or
isomorphic to a subgroup of GLd(q′) for some
q′|q, or there is a normal subgroup of G natu-
rally associated with the action of G on the un-
derlying vector space. Once a category is found,
it can be used to explore the structure of the
group further. For example, if the group acts im-
primitively and we find a decomposition
V = V1 ⊕ V2 ⊕ · · · ⊕ Vm of the underlying vector
space such that the Vi are permuted by G , then
we can construct a homomorphism ϕ : G → Sm.
The image of ϕ is a permutation group of low
degree, so it can be handled easily. In this case,
the “naturally associated” normal subgroup is the
kernel of ϕ; we can obtain generators for it and
apply our methods recursively to the action on
the lower-dimensional vector spaces Vi.

The first subproblem solved both in theory
and practice is the recognition of the classical
almost simple groups in their natural represen-
tation. Neumann and Praeger introduced the
basic ideas. We say that a number is ppd(q, d)
if it has a prime divisor p such that p|qd − 1 and
p 6 |qi − 1 for 1 ≤ i ≤ d − 1. Neumann and
Praeger give precise estimates for the proportion
of elements in groups G ≥ SLd(q) whose order
is ppd(q, d) and for those whose order is
ppd(q, d − 1). It turns out that among 5.5d ran-
domly and independently chosen elements, both
types occur with probability >0.99. On the other
hand, the (short) list of subgroups containing
both types of elements but not containing SLd(q)
is determined, and special tests are devised to
eliminate them. This method was extended by
Niemeyer and Praeger in a highly nontrivial way
to the other classical groups. An alternative ap-
proach is described by Celler and Leedham-
Green in [7]. Here, random elements of G are cho-
sen, their order is determined, and groups of the
Aschbacher classification which cannot contain
elements of this order are eliminated.

The classical matrix groups can also be rec-
ognized constructively; the output is not only a
proof that G is a classical group, but every ele-
ment of G can be expressed effectively in terms
of the given generating set. Celler and Leedham-
Green handle the case G ≥ SLd(q) in the natural
representation; Cooperman, Finkelstein, and Lin-
ton in [7] handle the case G = SLd(2) in any rep-
resentation; while Kantor and Seress handle all
classical groups in any representation.

Concerning the other cases of the Aschbacher
classification, the Meat-Axe (cf. section “Repre-
sentation Theory”) can be used to test irre-
ducibility and absolute irreducibility of G . There
are also programs by Holt, Leedham-Green,
O’Brien, and Rees computing imprimitivity and
tensor decompositions. The exploration of
groups beyond classifying them in one of the As-
chbacher classes has also started. The imple-
mentations of the algorithms indicated in the
previous three paragraphs can handle groups of
dimension in the low hundreds over moderately
sized fields (q < 216).

While randomization can often be used to
speed up permutation group algorithms, it seems
to be an indispensable tool for the study of ma-
trix groups. In theory, concerning polynomial
time construction the situation is satisfactory:
Babai gives a Monte Carlo algorithm which, after
a preprocessing phase consisting of O(log5 |G|)
group operations, constructs independent,
nearly uniformly distributed elements at a cost
of O(log |G|) group operations per random ele-
ment. (Nearly uniform means that each element
of G is selected with probability between
(1− ε)/|G| and (1 + ε)/|G| for some small ε.) In
practice, the heuristic product replacement al-
gorithm of Celler, Leedham-Green, Murray,
O’Brien, and Niemeyer is used. This starts with
a list (g1, g2, . . . , gm) of generators; at each step,
two indices i, j are selected randomly and one
of gi, gj is replaced by the product gigj. After
K replacements as preprocessing, we start to out-
put the newly created elements of the list as ran-
dom elements of G . It is shown that if m is at
least twice the size of a minimal generating set
of G , then the limit distribution of the sequence
(g1, g2, . . . , gm) is uniform among all generating
sequences of length m, and computational evi-
dence shows that in applications for matrix
groups of dimension in the low hundreds, K
can be chosen around 100. Although the con-
structed random elements are not independent,
the ratio of elements with properties relevant for
the algorithms (for example, the ppd property)
seems in experimental tests to be close to the
ratio of such elements in the group.

We mention that some of the algorithms de-
scribed in this section work in the more general
context of black box groups (cf. the extended ver-
sion of this survey on the World Wide Web).

Applications
We finish this survey by briefly mentioning some
available databases, applications of CGT, and
stand-alone programs.

In the nineteenth century a central problem
of group theory was the classification of groups
of a given order. Currently, GAP contains a library
of the 174366 groups of order at most 1000, but

seress.qxp 5/21/97 4:13 PM Page 678

JUNE/JULY 1997 NOTICES OF THE AMS 679

not 512 or 768 constructed by Besche and Eick.
Among these, the 56092 groups of order 256
were found by O’Brien, and it is expected that
there are more than a million groups of order
512.

The 42038 transitive permutation groups of
degree at most 31, constructed by Hulpke, are
also available. In principle this list can be used
to compute Galois groups; the computations are
practical up to degree 15. Nonaffine primitive
permutation groups are listed up to degree 1000
by Dixon and Mortimer and solvable permuta-
tion groups up to degree 255 by Short. The list
of 4-dimensional space groups by Brown, Bülow,
Neubüser, Wondratschek, and Zassenhaus and
conjugacy class representatives of irreducible
maximal finite subgroups of GLn(Q) for n ≤ 24
by Nebe and Plesken are now also online. In the
section “Representation Theory” we already men-
tioned the availability of ordinary and modular
character tables. Probably just the sizes of these
databases indicate the computational difficulties
obtaining them.

The applications of CGT in group theory are
too numerous to list here. We just mention one
of them: the construction of some of the sporadic
finite simple groups by Sims and Norton.

Both GAP and Magma support the application
of CGT to related fields such as other areas of
abstract algebra, graph theory, and coding the-
ory. Magma covers other areas of symbolic com-
putation as well; it has a particularly strong
number theory component. Finally, we mention
two stand-alone programs that may be used to
investigate finitely presented groups. QUOTPIC
by Holt and Rees is a user-friendly graphical in-
terface to display factor groups of fp-groups,
while the system Magnus, in the beta-release
stage, works with infinite fp-groups.

References
[1] Michael D. Atkinson, ed., Computational group

theory, Academic Press, London, New York, 1984;
Durham, 1982.

[2] John Cannon, ed., Computational group theory I,
J. Symbolic Comput. 9 (5-6) (1990).

[3] ——— , Computational group theory II, J. Symbolic
Comput. 12 (4-5) (1991).

[4] John Cannon and George Havas, Algorithms
for groups, Australian Comput. J. 24 (1992), 51–60.

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A.
Parker, and R. A. Wilson, Atlas of finite groups,
Clarendon Press, Oxford, 1985.

[6] Larry Finkelstein and William M. Kantor, eds.,
Groups and computation, DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., vol. 11, Amer. Math.
Soc., Providence, RI, 1993.

[7] ——— , Groups and computation II, DIMACS Ser. Dis-
crete Math. Theoret. Comput. Sci., vol. 28, Amer.
Math. Soc., Providence, RI, 1997.

[8] Christoph Jansen, Klaus Lux, Richard Parker,
and Robert Wilson, An atlas of Brauer charac-

ters, London Math. Soc. Monographs (N. S.), vol. 11,
Clarendon Press, Oxford, 1995.

[9] Klaus Lux and Herbert Pahlings, Computational
aspects of representation theory of finite groups
(G. O. Michler and C. M. Ringel, eds.), Represen-
tation Theory of Finite Groups and Finite-Di-
mensional Algebras, Progr. Math., vol. 95,
Birkhauser-Verlag, 1991, pp. 37–64.

[10] J. NeubÜser, An elementary introduction to coset
table methods in computational group theory (C. M.
Campbell and E. F. Robertson, eds.), Groups – St.
Andrews 1981, London Math. Soc. Lecture Note
Ser., vol. 71, Cambridge Univ. Press, 1982, pp.
1–45.

[11] ———, An invitation to computational group the-
ory (C. M. Campbell, T. C. Hurley, E. F. Robertson,
S. J. Tobin, and J. J. Ward, eds.), Groups ‘93 – Gal-
way/St. Andrews, London Math. Soc. Lecture Note
Ser., vol. 212, Cambridge Univ. Press, 1995, pp.
457–475.

[12] Ákos Seress, Nearly linear time algorithms for per-
mutation groups: An interplay between theory
and practice, Acta Appl. Math. (1997), to appear.

[13] Charles C. Sims, Computation with finitely pre-
sented groups, Cambridge Univ. Press, 1994.

seress.qxp 5/21/97 4:13 PM Page 679

