Differential Cryptanalysis of Salsa20/8

Yukiyasu Tsunoo', Teruo Saito?, Hiroyasu Kubo?,
Tomoyasu Suzaki?, and Hiroki Nakashima?

! NEC Corporation
1753 Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa 211-8666, Japan
tsunoo@BL. jp.nec.com
> NEC Software Hokuriku Ltd.
1 Anyoji, Hakusan, Ishikawa 920-2141, Japan
{t-saito@qh, h-kubo@ps, t-suzaki@pd, h-nakashima@vt}.jp.nec.com

Abstract. This paper presents a cryptanalysis of the Salsa20 stream ci-
pher proposed in 2005. Salsa20 was submitted to eSTREAM, the ECRYPT
Stream Cipher Project. The cipher uses bitwise XOR, addition modulo
232 and constant-distance rotation operations on an internal state of 16
32-bit words.

It is reported that there is a significant bias in the differential prob-
ability for Salsa20’s 4" round internal state. It is further shown that
using this bias, it is possible to break the 256-bit secret key 8-round
reduced Salsa20 model with a lower computational complexity than an
exhaustive key search. The cryptanalysis method exploits characteristics
of addition, and succeeds in reducing the computational complexity com-
pared to previous methods.

Key words: Salsa20, ECRYPT, eSTREAM, stream cipher, pseudo-
random number generator, key rocovery attack

1 Introduction

Recently, there have been efforts around the world to standardize encryption.
For example, the selection of AES as a standard cipher has been announced in
America [1], and the NESSIE project is hoping for adoption in Europe [11]. The
NESSIE project is aiming for the selection of secure encryption primitives, and
stream ciphers have been chosen as one member of that category. However, after
having undergone a 3-year evaluation phase, the stream ciphers offered by the
NESSIE project have been tackled by numerous cryptanalyses and ultimately
there is not even a single secure candidate stream cipher remaining. In response,
the design and analysis of stream ciphers has been receiving increasing attention.

In February 2004, ECRYPT was established with the objective of encourag-
ing cooperation among European researchers working on information security.
The ECRYPT Stream Cipher Project (henceforth “eSTREAM”) was established
in 2005 by the ECRYPT working group STVL, and new stream ciphers were
made public [7]. As a result 34 candidates were submitted to eSTREAM. The
first phase of evaluation for these ciphers was completed at eSTREAM in Febru-
ary 2006 and the second phase of evaluation is currently underway.

Salsa20 is one of the stream ciphers submitted to eSTREAM and was pro-
posed by Bernstein [3]. There are two types, handling secret keys of either 128
or 256 bits. With a 64-bit initial vector and a 64-bit counter as input, a 512-bit
keystream is generated. However, from a security standpoint Bernstein recom-
mends a 256-bit secret key [4]. Salsa20 is a stream cipher proposed for Profile
1 (SW) and Profile 2 (HW). The cipher uses bitwise XOR, addition modulo
232 and constant-distance rotation operations on an internal state of 16 32-bit
words. It currently remains a second phase candidate for both profiles.

Crowley reported a differential cryptanalysis of the 5-round Salsa20 model
in 2006 [6]. According to Crowley’s method, it is possible to recover the secret
key for the 256-bit secret key, 5-round Salsa20 model using 2'%° computational
complexity and 26 keystreams. Fisher et al. also reported a differential crypt-
analysis of the 6-round model in 2006 [8]. According to the method of Fisher et
al., it is possible to recover the secret key for the 256-bit 6-round Salsa20 model
using 2'77 computational complexity and 2'6 keystream pairs. Fisher et al. also
reported the potential applicability of related-key attacks on 256-bit 7-round
Salsa20.

This paper reports that there is a significant bias in the differential probabil-
ity for Salsa20’s 4*" round internal state. It is further reported that the Salsa20
reduced-round model was broken by means of this bias. Using the method in this
paper, 128-bit secret key 7-round Salsa20 was broken using less computational
complexity than required by an exhaustive key search. It is also possible to break
256-bit 8-round Salsa20 using less computational complexity than required by
an exhaustive key search. The necessary data are theoretically 21137 keystream
pairs. Bernstein proposed the 8-round model as a high-speed version of Salsa20
[5], but there is a problem with the security of the model when faced with the
attack described in this paper.

The Salsa20 stream cipher is explained in Section 2. The differential proba-
bility bias in the internal state of the 4** round of Salsa20 is reported in Section
3, and the method for recovering the secret key is explained in Section 4. The
paper is concluded in Section 5.

2 Salsa20

The Salsa20 stream cipher is explained in this section. For a more detailed de-
scription refer to the proposal [3], or cryptanalyses [6, 8].

2.1 Notation and Definition

The unit of processing in Salsa20 is a single 32-bit word, and the mapping from
words to bytes is little endian. In this paper bitwise XOR and bitwise AND are
denoted by @ and - respectively. Addition modulo 232 is denoted by +, and a
t-bit left-shift rotation on a word X is denoted X <« t. The individual bits in a
32-bit word X are identified as follows.

Xy = Xgo || X || -+ | X

Here, the || symbol indicates concatenation.

2.2 Round Function

Firstly, the round 1 processing in Salsa20 is now defined. Given a 4 x 4 word
matrix m,

Mg M1 Mz M3

myg M5 Me My

mg Mg 1Mo Mi1

My2 M3 Mi4 M5

the round function R(m) is defined as follows,

R(m) = (Q"(m))".

In this equation

ms Me M7 q1 q0 mo

Q’ _ | ™Mo Mip Mi1 q2 _la) _ Q My
T s mamisg |0 T | T ms
mi m2 M3 qo q3 mi2

The function @, of the 4-word input y = yo || y1 || y2 || y3, and 4-word output
z =2 || z1 || z2 || 23 effects the calculation below.

21 =1 D ((yo +y3) K7)
zo =92 @ ((21 + y0) K 9)
23 =ys® ((22 +21) K 13)
20 = Yo @ ((23 + 22) K 18)

2.3 Encryption Function

The Salsa20 encryption function is defined as follows,

co ko k1 ka
k3 c1 vy vy
ig i1 c2 Ky
ks ke k7 c3

Salsa20y(v,i) = H

Here, H is defined as a “hash function”, and carries out the following pro-
cessing.

H(m)=m+ R"(m)

where k = ko || k1 || -+ || k7 indicates the 256-bit secret key, and v = vg || v1
indicates the 64-bit initial vector. i = 4o || i1 represents a 64-bit counter, and
c=co | 1] e2 || cs represent 128-bit constants. However, when the secret key

length is 128-bits, the assignment (kq4, ks, ke, k7) = (ko, k1, ko, k3) is adopted.
The 128-bit constants vary depending on whether the secret key is 128-bit or
256-bit. ¢ = 7 or ¢ = o is chosen for each case, respectively. 7 and ¢ have
the values “expand 16-byte k”, and “expand 32-byte k”, respectively, as ASCII
coded values.

For the sake of convenience, in this paper the modified Salsa20 model with r
rounds is denoted by Salsa20/r. The models with 8 and 12 rounds that were pro-
posed for high speed with a focus on implementation are thus denoted Salsa20/8
and Salsa20/12, respectively.

2.4 Cryptanalysis of Salsa20 Variants

In 2006, Crowley proposed a differential attack on Salsa20/5. Crowley success-
fully obtained the secret key for Salsa20/5 by using differential characteristics
formed with a high probability in the internal state of round 3. Crowley utilizes
a characteristic of the algorithm that relies on the fact that for the inverse of
the function @ (denoted Q~1), part of the output data does not depend on the
input. Specifically, the function Q! is expressed using the equations below,

Yo = 20 B ((z2 + 2z3) <« 18)
ys = 23 B ((21 + 22) K 13)
Y2 = 22 @ ((yo + 21) K 9)
Y1 =21 ((yo +y3) K7)

and thus yg is not influenced by z7, and y3 is not influenced by zy. By using
this characteristic and conjecturing values for the secret key word required to
compute Q7! in round 1 and round 2, the candidates for the secret key are
narrowed down. According to Crowley’s method 256-bit secret key Salsa20/5
was broken with 2165 computational complexity and 2° keystreams.

Fisher et al. proposed a differential attack on Salsa20/6 in 2006. They de-
scribed an alternative LinSalsa20 model with addition modulo 232 replaced by
XOR, and introduced some ways of using a low-weight differential path. They
thus exposed the non-randomness of Salsa20 by showing that LinSalsa20 be-
haves the same as the actual Salsa20 model under the assumption that addition
does not yield a carry. According to Fisher et al.’s method, 256-bit secret key
Salsa20/6 was broken in 2177 computational complexity with 2¢ keystreams.
When they allowed related-key attacks, Fisher et al. also reported that 256-bit
secret key Salsa20/7 could be broken, and mentioned that non-randomness exists
in the round 7 output.

3 Differential Characteristics

3.1 Differential Probabilities of Addition
Firstly, with @, y,z € GF(2)"™, consider the function f for addition modulo 2™,

flz,y) =2+ y =z (mod 2").

Next, with z*,y*, z2* € GF(2)", call the difference values for each of z,y, z,
Ax =zxPx™, Ay = yPy*, Az = 2P z*, respectively. According to the differential
probabilities of addition, DPy(Ax, Ay, Az) is defined as follows.

Definition 1.

DPy(Ax, Ay, Az) = P(f(2,y) @ f(z & Az,y & Ay) = Az

Y

Next, the difference values Ax;, Ay;, Az; of the " bits x;,y;, z; are defined
in the same way. The carry of the i*" bit is denoted by ¢;. When z,y yield differ-
ences, a difference is also yielded by each bit. In such cases the difference value
of the it" bit’s carry, ¢;, is written Ac;. Since the carry of the least significant
bit is always 0, ¢,_1 = Ac,,—1 = 0.

Theorem 1, Theorem 2 and Corollary 1 are expressed below [9, 10].

Theorem 1. For0 <i<n—1,
Ax; @ Ayz @ Ac; = Az;.

Theorem 2. For 1 <i<n —2, and given values for (Ax;, Ay;, Ac;), Aci—1 is
determined as follows.

’ (Azx;, Ay;, Acy) ‘ Ac;_1 ‘ Probability ‘
) 0 1

) 0/1 | 05/05
) 0/1 0.5/0.5
) 0/1 | 05/05
) 0/1 0.5/0.5
)

)

)

0/1 05 /05
0/1 05/05
I 1

Corollary 1. Given values for (Axy,_1, Ayn—1), Acn_o is determined as
follows.

’ (Axp_1, AYp_1) ‘ Acp—_o ‘ Probability ‘

(0, 0) 0 1

(0, 1) 0/1 05/05
(1,0) 0/1 05/05
(1, 1) 0/1 05/05

Theorem 3 and Corollary 2 below are formulated similarly.

Theorem 3. For 1 <i<n—2, and given values for (Ax;, Ay;, Ac;), Az is
determined as follows.

’ (Ax;, Ay;, Ac;) \ Az \ Probability

(0, 0 0) 0 1
(0,0, 1) 1 1
(0, 1, 0) 1 1
0,1, 1) 0 1
(1,0, 0) 1 1
(1,0, 1) 0 1
(1, 1, 0) 0 1
(1,1, 1) 1 1

Corollary 2. Given (Axp—1, Ayp—1), Az,—_o is determined as follows.

’ (Azp—1, AYn—1) \ Azy_o \ Probability ‘
0, 0) 0 1

) 1 1
1,0) 1 1
) 0 1

3.2 Round 4 Differential Probabilities

In this section, the differential probabilities for each bit in the round r internal
state data (i.e., the data before applying the addition immediately prior out-
putting the keystream) for Salsa20 (0 < r < 20) are obtained rigorously, based
on the differential probabilities occurring during addition that were revealed in
Section 3.1. r = 0 denotes the initial value for internal state.

Firstly, a difference is introduced for an arbitrary bit of the initial vector v
or counter 4. In this case the differential probability for the bit with the differ-
ence is 1. The differential probabilities for the other bits are 0. The differential
probabilities for each bit of internal state in round r of Salsa20 were calculated
for such input using the theorems in Section 3.1. If the output bit is random,
then the corresponding differential probability is 1/2.

In the result, a bias was found in the differential probabilities for the round
4 internal state. Writing the round r internal state as

mg My my Mg

| myomp omg m

Mg My Mig My

Miy Mig My Mis
the relationships among the input-output bits with the most biased differ-
ential probabilities are (m 4o, M7 47) and (Mg 4o, Mg 4,7). The probabilities
that each 1 bit difference in the round 4 internal state are 1, P[Am‘i#17 =

1] Amg’#o =1], P[Amé#17 =1 Amg)#o = 1] are

P[Améll,#n =1| Am%#o =1]= P[Amé)#n =1 Amg,#o = 1]

(1—27524),

~
~

N

In this expression the N difference values Am‘i#17 are each independent and
form a binary sequence obeying a distribution Dpjag with the bias mentioned
above. The amount of data, IV, needed to break Salsa20 is shown by Theorem 4
below [2,12] where Dy n; denotes a uniform distribution.

Theorem 4. When the input to the optimal distinguisher is a binary random
variable z; (0 < i < N) obeying the Dpjas distribution, in order to achieve an
advantage greater than 0.5, it is necessary to have at least as many samples of
the optimal distinguisher as given by the following equation.

N =0.4624 x M> where
1

Pppias [ZZ = 1] — Ppyy, [ZZ = 1] = M
It is thus possible to estimate using Theorem 4, that the amount of data IV,
needed to judge that the difference value Amj ., is biased with respect to a
uniform distribution is theoretically 2'1-37 keystream pairs. In short, by assigning
differences to an initial vector such that Am% »o = 1 and accumulating 211.37
keystream pairs, a significant bias was detected in the difference value Am‘f#n.

A cryptanalysis method using this bias is discussed in the next section.

4 Key Recovery Method

4.1 Key Conjectures in Word Units

This section describes cryptanalysis methods for Salsa20/5 and Salsa20/6 using
the differential characteristics of round 4 revealed in Section 3.2. When using
the bias in Am‘i 417 that was revealed in Section 3.2 to calculate data traced
back 1 round from the keystream, it is necessary to conjecture values for 32 bits
(ks). Calculating data traced back 2 rounds from the keystream requires that
224 bits must be conjectured (ko, k1, k2, k4, ks, k¢, k7).

Thus for 128-bit secret keys and 256-bit secret keys, it is possible to recover
a part of the key for Salsa20/5 by using conjectures for 32 key bits and 2!1-37
keystream pairs. It is also possible to recover a part of the 256-bit secret key for
Salsa20/6 by using conjectures for 224 key bits and 2!1-37 keystream pairs. For
the bits which cannot be obtained through conjecture, an exhaustive key search
is appropriate. The computational complexity of an exhaustive key search is not
exceeded.

4.2 On the Optimization of the Key Recovery Method

In this section the efficiency-optimization of the key recovery method is inves-
tigated with reference to the characteristics of addition and the construction of
Salsa20.

First consider addition modulo . When computing the function Q! it
is necessary to conjecture a full 32 bits of input in order to obtain a single bit

232

according to the method in Section 4.1. However, one of the characteristics of
addition is that when calculating output bit ¢ (0 < 4), the information in the
higher bits (in positions j, such that (0 < j < %) is not required. Thus it is
unnecessary to make a conjecture for the whole 32 bits of input, except in the
case that the bit calculated is the most significant bit.

Furthermore, when addition modulo 232 is expressed using single bit vari-
ables, each bit of the output can be expressed as a polynomial of order at most
31. When an individual bit is expressed as a polynomial, the probability that the
higher order terms are zero increases with the order. In particular, it is possible
to ignore the d" order term except in the case that d parameters have value 1.
Indeed, the d*" order term may be ignored with probability 1 — 2%, There is
thus the possibility of a low order polynomial approximation.

Having considered these two factors, we anticipated the possibility of reducing
the computational complexity by making conjectures for bit units rather than
for word units. The results of analyzing Salsa20 using these ideas are reported
in the next section.

4.3 Key Conjectures in Bit Units

This section describes a method for reducing the number of conjectures needed
to compute the function Q! according to Section 4.2. Firstly, three types of
approximation to addition modulo 232 are made below.

274 order approximation

When calculating z = x + y, approximate using
2

zi = Zz(=2 @y ® 2 yisa

When ¢ = 31 approximate using z; = 2

2 1
3"* order approximation

When calculating z = x + y, approximate using
(3) (2)
=%z 2

Zi = @© Tit1 - Tit2 Yi+2 O Yit1 - Tit2 - Yito.

When ¢ = 30, 31 approximate using z; = zi(g) = zi(2).
4t* order approximation

When calculating z = x + y, approximate using
(4) (3)
= Z’i = Z’i

Zi D@ Tit1 - Tit2 Tit3 - Yi+3 D Tit1 - Yit2 " Ti+3 - Yi+3 D Yit1 - Tiy2 -
Ti4+3 * Yit3 D Yit1 - Yit2 - Ti+3 " Yit3-

When 7 = 29, 30, 31 approximate using z; = W= ZZ-(S).

The number of key bits needed to trace back to m‘i#w was obtained for
Salsa20/r (6 < r < 8) using these approximations. The addition immediately
prior to the output of the keystream was also considered. The results for 128-bit
and 256-bit secret keys are shown in Tables Table 1 and Table 2.

For a 128-bit secret key, it was found that the number of bits needed to
trace back Salsa20/8 was 128, so the result was omitted from Table 1. As can
be seen from Table 1 and Table 2, if the secret key candidates can be narrowed

Table 1. Number of bits needed to trace back with a 128-bit secret key

2" order 3" order 4™ order
approximation approximation approximation
31 bits 50 bits 61 bits
93 bits 115 bits 119 bits

Table 2. Number of bits needed to trace back with a 256-bit secret key

2" order 374 order 4" order
approximation approximation approximation
35 bits 62 bits 83 bits
117 bits 171 bits 199 bits
228 bits 247 bits 250 bits

down correctly using these approximations, then a part of the secret key can be
obtained more efficiently than with an exhaustive key search.

In the next section it is confirmed that the conjectured secret key candidates
can be narrowed down to correct values, and the legitimacy of the discussion in
Section 4.2 is examined.

4.4 Cryptanalysis Experiments

This section discusses an experimental confirmation of whether cryptanalysis
based on the approximations in Section 4.3 is applicable. However, it is compu-
tationally problematic to conjecture all the key bits needed to trace back, so it
was confirmed whether the solution could be correctly narrowed down from set
of randomly selected candidate keys. Also, only 256-bit secret keys were used for
the experiments in this section. The experimental procedure was as follows.

1. Set a 256-bit secret key KEY .

2. Set the initial vector V to 0.

3. Apply the difference Amg’ 4o = 1 to the vector V' in step 2, yielding the
initial V* vector.

4. Produce an N x 64 byte keystream K S with (KEY,V,I) as input, for 0 <
I <N.

5. Produce an N x 64 byte keystream KS* with (KEY,V* I) as input, for
0<I<N.

6. Set AKFEY such that the number of conjectured bits shown in Table 2 are
randomly assigned, and the bits whose values are not subject to conjecture
are set to 0.

7. Trace back to m‘i#w from K S using (AKEY,V,I). Perform the calculation
for each of the N cases.

10.

11.

12.

. Trace back to m‘llf‘#n from K S* using (AKEY,V*,I). Perform the calcula-

tion for each of the N cases.

. Perform each of the N difference value calculations Am{ p17 = m‘i 217 D

m‘llj‘#w and count the number of times the result is 0.

Attempt the AKEY conjectured in step 6. Repeat steps 7 to 9 with a dif-
ferent AKEY 2 times. One repetition is performed with the same value as
KFEY except that all of the bits not subject to conjecture are also set to 0.
Confirm whether K FY is contained among the AK FY candidates for which
the counter obtained in step 9 is maximal. If KFEY is contained among
the AKEY candidates then cryptanalysis is considered successful, otherwise
cryptanalysis is considered a failure.

Change the KEY set in step 1 a total of 100 times. Repeat steps 2 to 11 for

each and calculate the success rate.

Experimental results are shown in Table 3 ~ Table 5.

Table 3. Cryptanalysis success rate for Salsa20/6

N 2" order 374 order 4" order
approximation approximation approximation
2'° 0% 15 % 47 %
2! 0% 23 % 56 %
2'? 0% 34 % 62 %
2'? 0% 45 % 65 %
2t 0% 53 % 67 %
Table 4. Cryptanalysis success rate for Salsa20/7
N 2" order 374 order 4" order
approximation approximation approximation
210 0% 27 % 59 %
2! 0% 45 % 64 %
2'2 0 % 57 % 67 %
2'® 0 % 61 % 69 %
21 0 % 64 % 73 %

It can be seen from Table 3 ~ Table 5 that increasing the order of the

approximation improves the success rate of cryptanalysis. Thus, as discussed
in Section 4.2, it is possible to perform analysis using approximations, but the

Table 5. Cryptanalysis success rate for Salsa20/8

N 2" order 374 order 4" order
approximation approximation approximation

210 0% 57 % 60 %

ot 0% 61 % 63 %

212 0% 63 % 66 %

213 0% 65 % 67 %

21 0 % 72 % 73 %

cryptanalysis accuracy varies according to the order of the approximation. Using
a relatively high order approximation yields a high cryptanalysis success rate,
but the number of key bits needed to trace back increases accordingly, so care
should be taken regarding the computational complexity.

When all the additions are approximated with a 3"¢ order polynomial, the
computational complexity required to cryptanalyze Salsa20/8 with a 256-bit
secret key exceeds that of an exhaustive key search. However, it is also possible
to reduce the computational complexity by modeling some additions with a 274
order polynomial and modeling the rest using 3"¢ order polynomials. As an
example of this kind of method, we selected the additions immediately prior to
the output of the keystream for 2"¢ order approximations, and the additions of
the function Q! for 3" order approximations. As a result, for Salsa20/8 it was
confirmed that the correct key was narrowed down from random candidates with

a 44% success rate by conjecturing 245 key bits and using 2'° keystream pairs.
1

5 Conclusion

This paper presented a cryptanalysis of the Salsa20 stream cipher proposed
in 2005. We discovered a significant differential probability bias in the Salsa20
round 4 internal state, yielded by assigning single bit differences to the initial
vector which may be freely chosen by an attacker.

Further more, we have used this bias to attack Salsa20/r (5 < r < 8). Using
our method, Salsa20/7 with a 128-bit secret key and Salsa20/8 with a 256-bit
secret key were broken using less computational complexity than required for
an exhaustive key search. The amount of data needed for both cryptanalyses
is theoretically 21137 keystream pairs. Our method of attack uses a new tech-
nique of approximating polynomials of addition, and succeeds in the reducing
the computational complexity compared to previous methods.

! In this example, the computational complexity becomes approximately 225° (= 2245 x
210 % 2 x %) times of Salsa20/8 encryption and it is lower than 2% of exhaustive

key search.

Finally, Bernstein proposed Salsa20/8 and Salsa20/12 as models paying con-
sideration to implementation, but faced with our attack the security of Salsa20/8
is insufficient, and even considering implementation, a model of at least 12 rounds
should be used. However, the attack in this paper does not directly threaten the
security of the full-round Salsa20/20 specification, although caution is still re-
quired regarding the issue of whether there is a sufficient margin of safety.

Acknowledgement

The authors would like to thank the anonymous referees of SASC 2007 whose
helpful remarks that improved the paper. The authors also would like to thank
Etsuko Tsujihara for her useful comments.

References

1. AES, the Advanced Encryption Standard, NIST, FIPS-197.
Available at http://csrc.nist.gov/CryptoToolkit/aes/

2. T. Baigneres, P. Junod, and S. Vaudenay: “How Far Can We Go Beyond Linear
Cryptanalysis?,” Advances in Cryptology - Asiacrypt 2004, LNCS 3329, pp.432-
450, 2004.

3. D.J. Bernstein: “The Salsa20 Stream Cipher,” SKEW 2005 - Symmetric Key En-
cryption Workshop, 2005, Workshop Record.

Available at http://www.ecrypt.eu.org/stream /salsa20p2.html

4. D.J. Bernstein: “Notes on the Salsa20 Key Size,” eSTREAM, the ECRYPT Stream
Clipher Project, Report 2005/066, 2005.

Available at http://www.ecrypt.eu.org/stream/salsa20.html

5. D.J. Bernstein: “Salsa20/8 and Salsa20/12,” eSTREAM, the ECRYPT Stream
Cipher Project, Report 2006,/007, 2006.

Available at http://www.ecrypt.eu.org/stream/salsa20.html

6. P. Crowley: “Truncated Differential Cryptanalysis of Five Rounds of Salsa20,”
SASC 2006 - Stream Ciphers Revisited, Workshop Record, pp.198-202, 2006.
Available at http://www.ecrypt.eu.org/stvl/sasc2006/

7. eSTREAM, the ECRYPT Stream Cipher Project.

Available at http://www.ecrypt.eu.org/stream/

8. S. Fischer, W. Meier, C. Berbain, J.-F. Biasse, and M. Robshaw: “Non-Randomness
in eSTREAM Candidates Salsa20 and TSC-4,” Progress in Cryptology - Indocrypt
2006, LNCS 4329, pp.2-16, Springer-Verlag, 2006.

9. H. Lipmaa and S. Moriai: “Efficient Algorithms for Computing Differential Prop-
erties of Addition,” Fast Software Encryption, FSE 2001, LNCS 2355, pp.336-350,
Springer-Verlag, 2001.

10. S. Moriai: “Cryptanalysis of Twofish (I),” In Proceedings of the Symposium on
Cryptgraphy and Information Security, SCIS 2000, No. A01, 2000. (In Japanese)

11. NESSIE, the New European Schemes for Signatures, Integrity, and Encryption.
Available at https://www.cosic.esat.kuleuven.ac.be/nessie/

12. S. Paul, B. Preneel, and G. Sekar: “Distinguishing Attacks on the Stream Ci-
pher Py,” Fast Software Encryption, FSE 2006, LNCS 4047, pp.405-421, Springer-
Verlag, 2006.

