I' AD-Al03 160 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB
Juﬁﬂsg VER3g33F6'Z REFERENCE MANUAL . (U) v F/6 5/8
J ILLs N WHYTE., M UBELL» P SIEG Y -
UNCLASSIFIED UCB/ERL-MT79/43 ! EL NOOO14-7B-C 0165

..... :

L~ |

Ne f
Py b
m INGKES VERSION 5.2 REFERENCE 1ANUAL
==
<7 by
a Jokn Woodfill, Nick Whyte, Mike Utell, Pslly Siegel
B < Tan Ries, Marc Meyer, Paula Hawikoru, Bol Epstein,
kick Berman, and Eric Allaan
1]
-l
WP: =
-~ an P
X = =35
s =%
. - j_ .
FE| =2 Memorandum No. UCE/ERL M79/43° DT
Paliae S~ =X n N H b
‘.v_- ‘/“;T‘ X }\s rj" . ’C
g - e ™
S =E =1 A ELECTE
- ey | as=m=I
. R SN2 oo 3
t -;*= L.,-- .
g ;_"\: *T= DISTRIBUTION STA A F s
. i N - == ! ‘ Approvad for public release; n~
' < s | Distribution Unlimited .
of

ELECTRONICS RESEARCH LABORATORY §

- College of Engineering Lo
'~ University of California, Bprkolog, CA 94720 %
fé‘ 351 8 19 038 A

DG FILE COPY

VERSION 6.2
| REFERENCE MANUAL ,

- o

7120179
by
- | (¢
(|0 ! John|Woodfill ; ’ -
| NickWhyte | .
. MiketUbell /
Polly/Siegel
Dan Ries
—Marc-Meyer— -
Paula Hawthorn
Bob Epstein _7Accession For
. Rick Berman NTIS GRA&I &
TR TR Eric Aliman DTIC TAB (i
, . Unanncunced 1)
Justific: ‘
ustific nlo A’;_’W
e 4 T o By
_Distribution/ _
uemoraxfixi_f UC?{}’JS: M79/43 | Avatlability Codes
' Avall and/or T
, 20 79 !
‘ ‘ | Julyde Dist ' Speeial
(; i [
L L

N¢‘J’f—~"“ ﬁ.._)-
/ Fii620 - '77 C-ol 78
ELECTRONICS RESEARCH LABORATORY
College of Engineering

University of California, Berkeley
94720

127550 .,

.
¢
i
i
¥
|

’;.

8

v

Research Sponsored by the Air Force Office of .Scientific Research /
Grant 78~3596, U. S. Army Research Office Grant DAAG29-76-G-0245 Y
Office of Naval Research Contract N0001l4~78-C-0185, National Science
Foundation Grant MCS75-03839-A0l1, and Joint Services Electronics
Program Contract F49620-79-C-0178.

NTRODUCTION (INGRES) 3/15/19 INTRODUCTION (INGRES)

This manual is a reference manual for the INGRES data base system. It documents the use of &
INGRES i a0 very terse nuinner. To learn how 10 use INGRES, refer 1o the document called "A ¢
Tutorial on INGRIS”, !
The INGRES reference manual is subdivided into four parts: T
Quel dcescribes the commands and features which are used inside of INGRES. {
Unix describes the INGRES programs which are executable as UNIX commands. ' 4

Files describes some of the important files used by INGRES.
Error lists all the user generatable error messages along with some elaboration as to what
they mean or what we think they mean. .

Each entry in this manual has one or more of the following sections:

NAME section .
This section repeats the name of the entry and gives an indication of its purpose.

SYNOPSIS section
This section indicates the form of the command (statement). The conventions
which are used are as follows:

it

Bold face names are used to indicate reserved keywords.

Lower case words indicate generic types of information which must be sup-
plied by the user; legal values for these names are described
in the DESCRIPTION section.

Square brakets ([]) indicate that the enclosed item is optional.

Braces ({}) indicate an optional item which may be repeated. In some cases
they indicate simple (non-repeated) grouping; the usage
should be clear from context.

When these conventions are insufficient to fully specify the legal format of a com-
mand a more general form is given and the allowable subsets are specified in the
DESCRIPTION section.

DESCRIPTION section
This section gives a detailed description of the entry with references to the generic
names used in the SYNOPSIS section.

EXAMPLE section
This section gives one or more examples of the use of the entry. Most of these ex-
amples are based on the following relations:
emp(name,sal,mgr.bdate)
and
newemp(name,sal,age)
and
parts(pnum, pname, color, weight, qoh)

SEE ALSO section
This section gives the names of entries in the manual which are closely related to .
the current entry or which are referenced in the description of the current entry. .

BUGS scction .

This section indicates known bugs or deficiencies in the command. !

To start using INGRES you must be entered as an INGRES user: this is done by the INGRES ad- 3

minisiritor who will enter you in the "users” file (sce users(files)). To start using ingres see the b

section on ingres{unix), quel(quel), and monitor(quel). 3

\CRNOWLEDGEMENTS 5

We would like 1o acknowledge the people who have worked on INGRES in the past:]
William Zook

Kare! Youssefi
Peter Rubinstein

INTRODUCTION (INGRES)

FOOTNOTE

Peter Kreps
Geraid Held
James Ford

3/15/19

UNIX is a trademark of Bell Laboratories.

INTRODUCTION (INGRES)

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS « NGRES)

APPEND(QUEL) — append tuples 10 a relation
append [to] reinume (target list) (where qual]

COPY (QUEL) — copy data into/from a relation from/into a UNIX file.
. copy relname (domname = format {, domname = format })
. direction "filename”

. CREATE(QUEL) - create a new relation
l create relname domname/ = format {, domname2 = format })

' DEFINE(QUEL) — define subschema
: define view name ttarget list) [where qual |
define permit oplist | on |of | te } var | (attlist))
to name [at term] { from time to time]
[on day to day] { where qual]
define integrity on var is qual

DELETE(QUEL) - delete tuples from a relation
delete tuple_variable {where quall

DESTROY (QUEL) — destroy existing relation(s)
destroy relname |, relname)
destroy [permit | integrity] relname linteger {, integer}| all]

HELP(QUEL) ~ get information about how 10 use INGRES or about relations in the database.
help [relname] ["section”} {, relname}{, "section”)
help view {relname {, reiname}]
help protect [relname |{, relname})
help integrity {relname {, relname}]

INDEX(QUEL) — create a secondary index on an existing relation.
index on relname is indexname (domain/ [,domain2})

INTEGRITY(QUEL) — define integrity constraints
define integrity on var is qual

MACROS(QUEL) — terminal monitor macro facility

MODIFY(QUEL) — convert the storage structure of a relation
modify relname to storage-structure
fon keyl [: sortorder) [[, key2 [: sortorder } } 1]
{ where [fillffactor = n) [, minpages = n]
{, maxpages = nn} |

MONITOR(QUEL) — interactive terminal monitor

PERMIT(QUEL) — add permissions to a relation
define permit oplist { on | of | to } var [(attlist) |
to name [at term] [from time to time]
[on day to day) [where qual]

PRINT(QUEL) — print relation(s)
print relname {, relname}

QUEL(QUEL) - QUEry Language for INGRES
RANGE(QUEL) — declare a variable to range over a relation
range of variable is relname

REPLACE(QUEL) — replace values of domains in a relation b
replace tuple_variable (1arget_list) [where qual]
RETRIEVE(QUEL) - retrieve tuples from a relation

retrieve {[into] relname] (target_list) {where quall
retrieve unique (target_list) {where qual]

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES) !

SAVE(QUEL) — save a relation until a date.
save relname until month day year

VIEW(QUEL) - define a virtual relation
define view name (target-list) [where qual]

COPYDB(UNIX) — create batch files to copy out a data base and restore it.
copydb [—uname | database full-path-name-of-directory | relation ...) !

CREATDB(UNIX) — create a data base .
creatdb | —uname} [—e] { —m][tc] [+q] dbname ‘

DESTROYDB(UNIX) — destroy an exisling database :,
destroydb [—~s) [—m] dbname

EQUEL(UNIX) — Embedded QUEL interface to C
equel { —d1{~f]{—r]fileq..

GEO-QUEL(UNIX) — GEO-QUEL data display system
geoquel [=s] [~d][—=a] [=tT] [~taT] dbname

HELPR(UNIX) — get information about a database.
helpr [—uname} [+w] database relation ...

INGRES(UNIX) — INGRES relational data base management system
ingres [flags | dbname [process_table |

PRINTR(UNIX) — print relations
printr [flags] database relation ...

PURGE(UNIX) — destroy all expired and temporary relations
purge [—fl [—p] [=al[—~s] [xw][database ...]

RESTORE(UNIX) — recover from an INGRES or UNIX crash.
restore [—a} [—=s] [£w] [database ...]

SYSMOD(UNIX) — modify system relations to predetermined storage structures.
sysmod [—s) [—w] dbname [relation] [attribute] indexes] [tree] [protect]
[integrities]

TIMEFIX(UNIX) — patch INGRES binary code for correct timezone.
timefix [—u) [=sN] [=tyyzzz} [—dX] filename ...

USERSETUP(UNIX) — setup users file
.../bin/usersetup [pathname |

DAYFILE(FILES) — INGRES login message

DBTMPLT(FILES) — database template

ERROR(FILES) — files with INGRES errors

GRAFILE(FILES) — GEO-QUEL login message

LIBQ(FILES) — Equel run-time support library
PROCTAB(FILES) — INGRES runtime configuration information
STARTUP(FILES) — INGRES startup file

TTYTYPE(FILES) — GEO-QUEL terminal type database
USERS(FILES) — INGRES user codes and parameters
INTRODUCTION(ERROR) — Error messages introduction

EQUEL(ERROR) — EQUEL efror message summary
Error numbers 1000 — 1999.

PARSER(ERROR) — Parser error message summary
Error numbers 2000 — 2999.

—

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS tINGRES)

QRYMOD(ERROR} - Query Modification error message summary
Error numbers 3000 — 3999,

OVQP(ERROR) — One Variable Query Processor error message summary
Error numbers 4000 — 4499,

DECOMP(ERROR) — Decomposition error message summary
Error numbers 4500 — 4999,

DBU(ERROR) ~ Data Base Ultility error message summary
Error numbers 5000 — 5999

. GEOQUEL(ERROR) — GEO-QUEL error message summary
Error numbers 30000 — 30999.

——ggr— = e

Ll

Oy Ty

£ NIk WA 1 S Ay

COPY (QUEL) 1/19/79 COPY (QUEL)

NAME

copy — copy data into/from a relation from/into a UNIX file.

SYNOPSIS

copy relname (domname = format |, domname = format })
direction "filename”

DESCRIPTION

Copy moves data between INGRES relations and standard UNIX files. Relname is the name of an
existing relation. In general domname identifies a domain in relname. Format indicates the for-
mat the UNIX file should have for the corresponding domain. Direction is either into or from.
Filename is the full UNIX pathname of the file.

On a copy from a file to a relation, the relation cannot have a secondary index, it must be
owned by you, and it must be updatable (not a secondary index or system relation).

Copy cannot be used on a relation which is a view. For a copy inte a UNIX file, you must either
be the owner of the relation or the relation must have retrieve permission for all users, or all
permissions for all users.

The formats allowed by copy are:
i1,i2,i4 — The data is stored as an integer of length 1, 2, or 4 bytes in the UNIX file.

f4.18 — The data is stored as a floating point number (either single or double precision) in the
UNIX file.

cl,c2,...,c255 — The data is stored as a fixed length string of characters.
¢0 — Variable length character string.
d0.dl,...,d255 — Dummy domain.

Corresponding domains in the relation and the uNix file do not have to be the same type or
length. Copy will convert as necessary. When converting anything except character to charac-
ter, copy checks for overflow. When converting from character to character, copy will blank pad
or truncate on the right as necessary.

The domains should be ordered according to the way they should appear in the UNIX file.
Domains are matched according to name, thus the order of the domains in the relation and in
the UNIX file does not have 1o be the same.

Copy also provides for variable length strings and dummy domains. The action taken depends
on whether it is a copy inte or a copy from. Delimitors for variable length strings and for dum-
my domains can be selected from the list of:

nl — new line character

tab — tab character

sp — space

nul or null — null character
coimma — comma

colon — colon

dash — dash

Iparen — left parenthesis
rparen — right parenthesis
x — any single character 'x’

The special meaning of any delimitor can be turned off by preceeding the delimitor with a "\".
The delimitor can optionally be in quotes ("delim”). This is usefully if you wish to use a single
character delimitor which has special meaning to the QUEL parser.

When the direction is from, copv appends data into the relation from the UNIX file. Domains in
the INGRES relation which are not assigned values from the UNIX file are assigned the default
value of zero for numeric domains, and blank for character domains. When copying in this

-1-

APPEND (QUEL) 1/26/79 APPEND (QUEL)

NAME
append — append tuples to a relation

S\ NOPSIS
append [to] relname Uarger list) [where quail

DESCRIPTION
Append adds tuples which satisfy the qualification 10 relname. Relname must be the name of an
existing relavion. The rarger_list specifies the values of the attributes to be appended to refiarme.
The domains may be listed in any order. Attributes of the result relation which do not appear
in the rarger_lst as result_attnames (either explicitly or by default) are assigned defauit values
| of 0. for numeric attributes, or blank, for character attributes.

Values or expressions of any numeric type may be used to set the value of a numeric type

domain. Conversion to the result domain type takes place. Numeric values cannot be directly

assigned to character domains. Conversion from numeric 1o character can be done using the
i ascii operator (see quel{quel)). Character values cannot be directly assigned to numeric
domains. Use the intl, int2, etc. functions to convert character values to numeric (see
quel{quel)).

! The keyword all can be used when it is desired to append all domains of a refation.

: An append may only be issued by the owner of the relation or a user with append permission on
the given relation.

FAAMPLE

/= Make new employee Jones work for Smith »/
range of n is newemp
append to emp(n.name.-n.sal, mgr = "Smith", bdate = 1975—n.age)

where n.name = “Jones”

/+ Append the newempl relation to newemp */
range of nl is newempl
append 1o newemp(nl.all)

SEE ALSO
copy(quel), permit(quel), quel(quel), retrieve{(quel)

DIAGNOSTICS
Use of a numeric type expression to set a character type domain or vice versa will produce diag-

nostics.

BL (.S
Dupticate tuples appended to a relation stored as a "paged heap” (unkeyed, unstructured) are

not removed.

T Te—

COPY (QUEL) 1/19/79 COPY (QUEL)

dirccnion the tollowing special meanings apphy

cOdeton — The data in the UNay file s o variable tength character string terminated by wie del-
mitor detom. W odelonis missing then the first comma. tab, or newline encountered
will terminate the stnng. The delimitor is not copied.

For example:
pnum=¢0 — string cnding in comma, tab, or nl.
" pnum=¢0nl — string ending in nl.
' pnum=c0sp — string ending in space.
pnum=¢0"Z" — string ending in the character "Z".
“ pnum=c0"%" — string ending in the character "%".

A delimitor can be escaped by preceeding it with a *\'. For example, using name =
cl, the string "Blow\, Joe." will be accepted into the domain as "Blow, Joe”.

d0dJeinn — The data in the UNIX file is a variable length character string delimited by defin. The
string is read and discarded. The delimitor rules are identical for ¢0 and d0. The
domain name is ignored.

d1.d2.....d255 — The data in the UNIX file is a fixed length character string. The string is read
and discarded. The domain name is ighored.

When the direction is inte, copy transfers data inte the UNiX file from the relation. If the file
already existed, it is truncated to zero length before copying begins. When copying in this
direction, the following special meanings apply:

¢0 — The domain value is converted to a fixed length character string and writied into the 1:NIX
file. For character domains, the length will be the same as the domain length. For
numeric domains, the standard INGRES conversions will take place as specified by the
‘=i, *—=f, and *—¢’ flags (see ingres(unix)).

eOdelim — The domain will be converted according to the rufes for ¢0 above. The one charac-
ter delimitor will be inserted immediately after the domain.

d1.d2,...,d255 — The domain name is taken to be the name of the delimitor. It is written into
the UNIX file 1 time for d1, 2 times for d2, etc.

d0 — This format is ignored on a copy into.

dOdelin — The delim is written into the file. The domain name is ignored.

If no domains appear in the copy command (i.e. copy reiname () into/from "filename”) then
copv automatically does a "bulk” copy of all domains, using the order and format of the domains
in the relation. This is provided as a convenient shorthand notation for copying and restoring
entire refations.

To copr into a relation, you must be the owner or all users must have all permissions set.
Correspondingly, 10 copy from a relation you must own the relation or all users must have at
lcast retrieve permission on the relation. Also, you may not copi a view.

ENAMPLE
/+ Copy data into the emp relation »/
copy emp (name =cl0.sal={4 . bdate =12.mgr=cl0,xxx=dl)
from "/mnt/me/myftile”

/+ Copy employee names and their salarics into a file =/
copy emp (name=c0,comma=dl sal=c0.nl=dl)
into "/mnt/you/yourfile”

/+ Bulk copy employee relation into file »/
copy emp ()
into "/mnt/ours/ourfile”

Y N,

-

PN N

COPY (QUEL) 1/19/79 COPY (QUEL)

/+ Bulk copy employee relation from file +/
copy emp ()
from "/mnt/thy/thyfile”

sEE ALSO
append(quel), create(quel), quel(quel), permit(quel), view(quel), ingres(unix)

Bl (IS
Copv stops operation at the first error.

When specifying filename, the entire UNIX directory pathname must be provided, since INGRES
operates out of a different directory than the user’s working directory at the time INGRES is in-
voked.

[P

j
12
i
!
j
H
!
-]

CREATECQUEL) 17126779 CRLATE(QUEL)

NANE
create — oreate ¢ new relation

SYNOPSIS
create relname (domname / = format |. domname? = format |)

DESCRIPTION
Create will enter a new relation into the dita base. The relation will be “owned™ by the user and
will be set to exprre atter seven days. The name of the relation is refname and the domains are
named demmame !, dopmame?, cle. The domuains are created with the type specified by farmar.
Formats are described in the quel(quel) manual section.,

The relation is created as a paged heap with no data initially in it

A relation can have no more than 49 domains. A relation cannot have the same name as a sys-
tem relation.

FNAMPLE
/= Create relation emp with domains name. sal and bdate +/
create emp {(name = ¢l0, salary = {4, bdate = i2)

SFE ALSO
append(quel), copy(quel), destroy{quel), save(quel)

BLGS

e —..;P’—-“"_ —_

DEFINE (QUEL) 2/1779 DEFINE (QUEL)

NAME
define = define subschenta

SYNOPSIS
define view name (target list) | where qual |
define permit oplist | on|of |to } var [(atlis1))
to name | at term | [from time to time | !
[on day te day] | where qual)

define integrity on var is qual "
DESCRIPTION
The detine statement creates entries for the subschema definitions. See the manual sections . 4

listed below for complete descriptions of these commands.

SEE ALSO
integrity (quel), permit{quel), view(quel)

oaa s el ‘,VJ..’V_" R

o -

EO o e e e v

}
l i
DELETE (QUEL) 1726/79 DELETE (QUEL) i '
)
NAME i
delete — delete tuples from a relation H
SYNOPSIS h
delete tuple_variable [where guall '
DESCRIPTION 1
Delete removes tuples which satisty the qualification qual from the relation that they helong to. ‘
The wple_varable must have been declared to range over an existing relation in o previous i
range statement. Delere does not have o rarger_hsi. The delete command requires 1 tuple vari- 1
. able from a range statement, and not the actual relation name. If the qualification is not given,
. the effect is to delete all tuples in the relation. The result is a valid, but empty relation.
To delete tuples from a relation, you must be the owner of the refation. or have delere permis- !
sion on the relation. d
ENAMPLE
/» Remove all employees who make over $30,000 «/
range of e is emp
delete ¢ where ¢.sal > 30000
SEE ALSO
destroy(quel), permit(quel). quel{quel), range(quel)
BLGS
i
s
. ~
i
1

”: Rer . ¢ . A
i a1 s

- S PP 1+ TN TR IR IR LA Tt g, ey P L

DESTROY (QUEL) 221179 DESTRUY (QUEL)

NAME ‘
destroy — destroy existing refation(s)

SYNOPSES
destroy reiname {. reinamel
destroy [permit | integrity] relname [integer (. integer}| all]

DESCRIPTION ‘ ‘ .
Destroy removes relations from the data base, and removes constraints or permissions from a

relation. Only the relation owner may destroy u rclation or its permissions and integrity con-
straints. A relation may be emptied of tuples, but not destroyed, using the delete statement or
the modify statement.

if the relation being destroyed has sccondary indices on i, the secondary indices are also des-
troyed. Destruction of just a secondary index does not affect the primary relation it indexes.

To destroy individual permissions or constraints for a relation, the mreger arguments should be
those printed by a help permit (for destroy permit) or a help integrity {for destroy integrity)
on the same relation. To destroy all constraints or permissions, the all keyword may be used in
place of individual integers. To destroy constraints or permissions, cither the mireger argumenis
or the all keyword mus! be present.

EXAMPLE
/+ Destroy the emp relation »/
destroy emp
destroy emp, parts

/+ Destroy some pcrmissions on parts, and uall integrity
» constraints on employee
o/

destroy permit parts 0, 4, 5

destroy integrity employee

SEE ALSO
create(quel), delete(quel), help(quel), index(quel), modify{(quel)

HELPOQUEL) 2/21/79 HELP (QUEL)

NAME
help et mtormation about how Lo use INGRES or about refations in the databise.

SYNOPSIS
help [relnamel ("section’] 1. relname}], “section”}
help view {refname | relnamel}d
help protect [reiname |, reiname))
help integrity {relname | 1einamell

DESCRIPTION
Help may be used to oblain sections of this manual, information on the content of the current
data base, information about specific relations in the data base, view detinitions, or protection
and integrity constraints on a relation. The legal forms are as {ollow:

help "section ™ — Produces a copy of the specified section of the INGRES Reference Manual, and
prints it on the standard output device.

help — Gives information about all relations that exist in the current database.]
help relname |, retname} — Gives information about the specified relations. :
help "" — Gives the table of contents, -’
help view reiname {. rename] — Prints view definitions of specified views.
help protect relname |, relname] — Prints permissions on specified relations.
help integrity refname {, reinamel — Prints integrity constraints on specified relations.
The protect and integrity forms print out unigque identifiers for ecach constraint. These
identifices may be used to remove the constraints with the destrov statement.
FNAMPLE
help
help help /+ prints this page of the manual =/
help quel
help emp
help emp, parts, "help”, supply

help view overp_view
help protect parts, employee
help inlegrity parts, employee

SEE ALSO
destroy (quel)

BLGS

Alphabetics appearing within the section name must be in lower-case to be recognized.

[P

ST

|
|
|

——

S e awe

INDEX (QUEL) 27217719 INDEX (QUEL)

NAME

index — create a secondary index on an existing relation.

SYNOPSIS

index on reiname is indexname (domain/ | .domain2}))

DESCRIPTION

Index is used to create secondary indices on existing relations in order 1o make retrieval and up-
date with secondary keys more efficient. The secondary key is constructed from relname
domains 1, 2.....6 in the order given. Only the owner of a relation is allowed to create secon-
dary indices on that relation.

In order to maintain the integrity of the index, users will NOT be allowed to directly update
secondary indices. However, whenever a primary relation is changed. its secondary indices will
be automatically updated by the system. Secondary indices may be modified to furiher increasc
the access efficiency of the primary relation. When an index is first created, it is automatically
modified 10 an isam storage structure on all its domains. If this structure is undesirable, the
user may override the default isam structure by using the —n switch (see ingres(unix)), or by
entering a modifv command directly.

If a modify or destroy command is used on relname, all secondary indices on relname are des-
troyed.

Secondary indices on other indices, or on system relations are forbidden.

ENAMPLE

/+ Create a secondary index called **x’" on relation ‘“‘emp”’ »/
index on emp is x(mgr,sal)

SEE ALSO

BLGS

copy (quel), destroy(quel), modify(quel)

Al most 6 domains may appear in the key.
The copy command cannot be used to copy into a relation which has secondary indices.

The default structure isam is a poor choice for an index unless the range of retrieval is small.

R SO R M A o e I N e~ S

T s R T

DN AT e

INTEGRITY (QUEL) 27779 INTEGRITY (QUEL.)

NAME

integrity — define integrity constraints
SYNOPSIS

define integrity on var is qual
DESCRIPTION

The muegrine statement add. an integrity constraint for the relation specified by var. After the
constraint is placed. all updates to the relation must satisfy qual. Qual must be true when the
miegriy statement is issued or else a diagnostic 1s issued and the statement is rejected.

In the current implementation. miregriuy constraints are not flagged — bad updates are simply
{and silently) not performed.

Qual must be a single variable qualification and may not contain any aggregates.

miegrity statement may be issued only by the relation owner.

EXAMPLE
/= Ensure all employees have positive salaries +/
range of e is employee
define integrity on e is e.salary > 0

SEE ALSO
destroy (quel)

S byeta v

T

B e STt

e

MACROS (QUEL) 2/19/79 MACROS (QUEL)

NAME
macros — lerminal monitor macro facility

DESCRIPTION
The terminal monitor macro facility provides the ability to tailor the QUEL language to the
user's tastes. The macro facility allows strings of text to be removed from the query stream
and replaced with other text. Also, some built in macros change the environment upon execu-
tion.

Basic Concepts

All macros are composed of two parts, the template part and the replacement part. The template
part defines when the macro should be invoked. For example. the template “‘ret’’ causes the
corresponding macro o be invoked upon encountering the word ‘‘ret’’ in the input stream.
When a macro is encountered, the template part is removed and replaced with the replacement
part. For example, i the replacement part of the *‘ret” macro was “‘retrieve™ . then all in-
stances of the word “‘ret’’ in the input text would be replaced with the word “retricve™, as in
the statement

ret (p.ail)

Macros may have parameters, indicated by a dollar sign. For example, the template *‘get S1°°
causes the macro 1o be triggered by the word **get’" followed by any other word. The word fol-
lowing *“'get’’ is remembered for later use. For example, if the replacement part of the ‘‘get™
macro where

retrieve (p.all) where p.pnum = $l|
then typing “‘get 35" would retrieve all information about part number 35.
Defining Macros

Macros can be defined using the special macro called ‘*define’’. The template for the define
macro is (roughly)

{define; $1; $r)

where $t and $r are the template and replacement parts of the macro, respectively.

Let's look at a few examples. To define the **ret”” macro discussed above, we would type:
ldefine: ret: retrieve)

When this is read, the macro processor removes everything between the curly braces and up-
dates some tables so that “‘ret”” will be recognized and replaced with the word “‘retrieve™. The
define macro has the null string as replacement text, so that this macro seems to disappear.
A useful macro is one which shortens range statements. It can be defined with

{define; rg Sv $r: range of Sv is Sr

This macro causes the word “‘rg” followed by the next two words 1o be removed and replaced
by the words “‘range of™", followed by the first word which followed “‘rg™, followed by the word
“is'", followed by the second word which followed “‘rg"". For example, the inpul

rg p parts
becomes the same as
range of p is parts

Evaluation Times

When you type in a define stitement. it is not processed immediately. just as quernies are saved
rather than excecuted. No muacro processing is done until the query buffer is evaluated. The
commands \go, \list, and \eval evaluate the query buffer. \go sends the results 10 INGRIES. hist
prints them on your terminal, and \eval puts the result back into the gquery bufler,

» L

MACROS t QUEL) 2/19/79 MACROS (QUEL)

1t s important 1o evaluate any detine statements, or it will be exactly like you did rot type theon
inatall. A common way to define macros is 10 type

define ..)
\eval
\reset

It the \eval was left out. there is no effect at ail.

Quoting

Sometimes strings must be passed through the macro processor without being processed. In
such cases the grave and acute accent marks (" and) can be used 1o surround the literal text.
For example. 10 pass the word ““ret’” through without converting it 1o *‘retrieve’” we could type

ret’
Another use for quoting is during parameter collection. If we want to enter more than one
word where only one was expected, we can surround the parameter with accents.
The backslash character quotes only the next character (like surrounding the character with ac-
cents). In particulur, a grave accent can be used literally by preceeding it with a backslash.
Since macros can normally only be on one line, it is frequently useful to use a backslash at the
end of the line to hide the newline. For example, o enter the long “*get’” macro, you might
1ype:

{define: get $n: retrieve te.alh) \

where ¢.name = "$n"}
The backslash always quotes the next character even when it is a backslash. So, to get a real
backslash, use two backslashes.

More Parameters

Parameters need not be limited 1o the word following. For example, in the template descriptor
for define:

tdefine: St Sr}
the St parameter ends at the first semicolon and the $r parameters ends at the first right curly
brace. The rule is that the character which follows the parameter specifier terminates the

parameter, if this character is a space, tab, newline. or the end of the template then one word is
collected.

As with all good rules, this one has an exeeption. Since system macros are always surrounded
by curly hraces. the macro processor knows that they must be properly nested. Thus, in the
statement

tdefine: x: {svstnld

The first right curly brace will close the “systn™ rather than the detine™™. Otherwise this
would have 1o be typed

detine: x: Ssvsind’)
Words arc defined in the usual way, as stongs of letters and digits plus the underscore charae-
ler.
Other Builtin Macros

There are several other macros budt in w the macro processor In the following description,
some of the parameter specitiers are marked with two dollar signs rather than one: this will be
discussed m the section on prescanning below,

Idefine: $St: SSri defines a macro as discussed above. Special processing oceurs on the template
part which will be discussed in a later section,

MACROS (QUEL) 2/19/79 MACROS (QUEL)

frawdefine: SSt: $8r} is another form of define, where the special processing does not take
place.

iremove: 38n} removes the macro with name Sn. It can remove more than one Macro. since it
actually removes all macros which might conflict with $n under some circumstance. For exam-
ple. typing

\define: get part Sn; . . .}
ldefine. get emp $x. . . .}
iremove; get|

would cause both the get macros 1o be removed. A call 10
{remove. get part}

would have only removed the first macro.

fiype 38s) types $s onto the terminal.

tread $8s) types $s and then reads a line from the terminal. The line which was typed replaces
the macro. A macro called **{readcount}™ is defined containing the number of characlers read.
A control-D (end of file) becomes —1, a single newline becomes zero. and so forth.

{readdefine; $$n. $3s] also types $s and reads a line, but puts the line into a macro named $n.
The replacement text is the count of the number of characters in the line. {readcount] is still
defined.

lifsame; $8a; $8b. $1. $f} compares the strings Sa and $b. If they maich exactly then the re-
placement text becomes $t, otherwise it becomes $f.

lifeq: $Sa: $$b; St. $f} is similar. but the comparison is numeric.
tifgt: 8Sa: $8b: $1: $f} is like ifeq. but the test is for $a strictly greater than $b.

substr; $8f: $$t: $8s! returns the part of $s between character positions $f and $t. numbered
from one. [f $f or $t are out of range. they are moved in range as much as possible.

idump: $8n} returns the value of the macro (or macros) which match $n (using the same algo-
rithm as remove). The output is a rawdefine statement so that it can be read back in. |dump)
without arguments dumps all macros.

Metacharacters

Certain characters are used internally. Normally you will not even see them, but they can ap-
pear in the output of a dump command, and can sometimes be used 1o create very fancy mac-
ros.

| matches any number of spaces, tabs, or newlines. It will even match zero, but only between
words, as can occur with punctuation. For example, \| will match the spot between the last
character of a word and a comma following 11

" matches exactly one space, lab, or newline.
& maitches exactly zero spaces, 1abs, or newlines, but only between words.
The Define Process

When you define a macro using define, a lot of special processing happens. This Processing is
such that define is not functionaily complete. but still adeguate for most requirements. It more
power is necded. rawdefine can be used: however. rawdeline is particularly difficult 10 uze
vorrectly, and should only be used by gurus.

In define. all sequences of spaces. tabs, and newlines in the template, as well as all non-
spuces’™ beiween words, are turned into a single \| character. I the template ends with o
parameter, the \& character is added at the end.

If you want to match a real tab or newline, you can use \t or \n respectively. For example. a
macro which reads an entire line and uses it as the name of an employee would be defined with

S
i, oo

- | - B e S ——
‘. . a o b w——
MACROS { QUEL) 2/19/79 MACROS (QUEL) |

tdefine: get S\
ret teaall) where c.name = "Sn”

This macro might be used by typing
get *Swan®

10 get all information about everyone with a nume which included “*Stan’". By the way, notice

that it is ok to nest the “"ret’” macro inside the “'get”’ macro.

Parameter Prescan

Sometimes it is useful 1o macro process a parameter before using it in the replacement part.
This is particularly important when using certain builtin macros.

For prescan to occur, two things must be true: first, the parameter must be specified in the
template with two dollar signs instead of one, and second, the actual parameter must begin with
an “‘at” sign (@) (which is stripped off).

For an example of the use of prescan, see *Special Macros™ below.
Special Macros

Some special macros are used by the terminal monitor to contro! the environment and return
results to the user.

{begintrap} is executed al the beginning of a query.
{endtrap} is executed after the body of a query is passed o INGRES.

{continuetrap} is executed after the gquery completes. The difference between this and endtrap
is that endtrap occurs after the query is submitied, but before the query executes, whereas con-
tinuetrap is executed after the query executes.

feditor} can be defined 1o be the pathname of an editor 1o use in the \edit command.
{shell} can be defined to be the pathname of a shell to use in the \shell command.

{tuplecount] is set after every guery (but before continuetrap is sprung) 1o be the count of the
number of tuples which satistied the qualitication of the query in a retricve, or the number of
tuples changed in an update. It is not set for DBU functions. It multiple queries are run at
once, it is set to the number of tuples which satisfied the last query run.

For example. to print out the number of tuples touched autc matically after each query, vou
could enter:
tdefine: tbegintrap): {remove: {tuplecount}})
tdefine; lcontinuctrap}: \
lifsame: @ jtuplecount}; Ltuplecount):: \
fiype @{tuplecount} tuples touched)}

SEE ALSO
monitor{(quel)

MODIFY (QUEL) 2/23/79 MODIFY (QUEL)

NAME
modity — convert the storage structure of a relation

SYNOPSIS
modify relname to storage-structure | on keyl [@ sorrorder 1 [{ . kev2 [: sortorder 1} 1] |
where | fillfactor = 1} [, minpages = »] |, maxpages = n]]

DESCRIPTION
Relname is modified 1o the specified storage structure. Only the owner of a relation can modify
that relation. This command is used to increase performance when using large or frequently
referenced relations. The storage structures are specitied as follows:

isam — indexed sequential storage structure

cisam — compressed isam

hash — random hab storage structure

chash — compressed hash

heap — unkeyed and unstructured

cheap — compressed heap

heapsort — heap with tuples sorted and duplicates removed
cheapsort — compressed heapsort

truncated — heap with all tuples deleted

The paper **Creating and Maintaining a Database in INGRES™ (ERL Memo M77—71) discusses
how to select storage structures based on how the relation is used.

The current compression algorithm only suppresses trailing blanks in character fields. A more
effective compression scheme may be possible, but tradeoffs between that and a larger and
slower compression algorithm are not clear.

If the on phrase is omitted when modifying 1o isam, cisam, hash or chash. the relation will au-
tomatically be keyed on the first domain. When modifying 1o heap or cheap the on phrase must
be omitted. When modifying to heapsort or cheapsort the on phrase is optional.

When a relation is being sorted (isam, cisam. heapsort and cheapsort), the primary sort keys
will be those specitied in the on phrase (if any). The first key after the on phrase will be the
most significant sort key and each successive key specified will be the next most significant sort
key. Any domains not specified in the on phrase will be used as least significant sort keys in
domain number sequence.

When a relation is modified to heapsort or cheapsorl, the sortorder can be specified 10 be as-
cending or descending. The defuult is always ascending. Each key given in the on phrase can
be optionally modified to be:

key:descending

which will cause that key to be sorted in descending order. For completeness, ascending can
be specified after the colon), although this is unnecessary since it is the default. Descend-
ing can be abbreviated by a single ‘d” and. correspondingly, ascending can be abreviated by a
single "a”.

Fillfactor specifies the percentage (from 1 1o 100) of each primary data page that should be filled
with tuples, under ideal conditions. Fellfacior may be used with isam. cisam, hash and chash.
Care should be taken when using large fillfactors since a non-uniform distribution of key values
could cause overflow pages to be created, and thus degrade access performance for the relation.
Munpages specities the mimmum number of primary pages a hash or chash relation must have
Maxpages specifies the maximum number ol primary pages a hash or chash relation may have
Alhnpages and maxpages must be at least one. 11 both minpages and maspages arc speciticd
modiy, minpages cannot cxceed maxpages.

Detault values for fillfactor, minpages. and maxpages are as follows:

- !
MODIFY (QUEL) 2/23/79 MODIFY (QUEL) . j
-
L 1CTOR VIINPAGES MAXPAGLES
hash <0 10 no limit 1
chash 73 1 no limit
isam 80 NA NA
cisam {00 NA NA
ENAMPLES »]
- /* modify the emp relation to an indexed P
sequential storage structure with 5
"name” as the keyed domain */

{
modify emp to isam on name l‘

/* if "name” is the first domain of the emp relation, D
the same result can be achieved by */ 4

modify emp 10 1sam

/* do the same modify but request a 60% occupancy
on all primary pages */

modify emp to isam on name where fillfactor = 60

/* modity the supply relation to compressed hash
; storage structure with "num” and "quan”
: as keyed domains */

modify supply to chash on num. quan

/* now the sume modify but also request 75% occupancy
on all primary, & minimum of 7 primary pages
pages and a maximum ot 43 primary pages */ 1

modify supply to chash on num, guan
where fillfactor = 75, minpages = 7.
maxpages = 43

/* again the same modify but only request a minimum
of 16 primary pages */

modify supply to chash on num, quan
where minpages = 16

/* modify parts to a heap storage structure */

modify parts 1o heap

/* modify parts 10 a heap again, but have tuples
sorted on "pnum” domaimn and have any duplicate
tuples removed */

modify parts to heapsort on pnum

/* modity employee in ascending order by munager. E
descending order by saliry and have any
duplicate tuples removed */
modify employee to heapsort on manager. salaryv:descending P
SEF ATSNO]
sysmod(unmix)

WM-”-WMN,-or*~ B T R
v a hd P e 2 2 CEs v

i et

MONITOR (QUEL) 2/23/79 MONITOR (QUEL)

NAME

monitor — interactive terminal monitor

DESCRIPTION

The interactive terminal monitor is the primary front end to INGRES. [t provides the ability to
formulate & query and review it before issuing it to INGRES. If changes must be made. one of
the UNIX text editors may be called to edit the query buffer.

Messages and Prompts.

The terminal monitor gives a variety of messages to keep the user informed of the status of the
monitor and the query buffer.

As the user logs in, a login message is printed. This typically tells the version number and the
login time. It is followed by the dayfile, which gives information pertinant o users.

When INGRFS is ready to accept input, the message "go” is printed. This means that the guery
buffer is empty. The message "conlinuc” means that there is information in the guery buffer.
Alter a \go command the query bufter is automatically cleared if another guery is typed in. un-
less a command which affects the query buffer is typed first. These commands are happend,
\edit. \print, \list, \eval, and \go. For example, typing

help parts

\go

print parts
results in the query buffer containing
print parts
whereas

help parts

\go

\print

print parts
results in the guery buffer containing

help parts

print parts
An asterisk is printed at the beginning of each line when the monitor is waiting for the user to
type input.

Commands

There are a number of commuands which may be entered by the user to affect the query buffer
or the user’s environment. They are all preceeded by a backslash ("\"), and all are executed
immediately (rather than at execution time likc queries).

Some commands may take a filename, which is defined as the first significant character after the
end of the command until the end of the line. These commands may have no other commands
on the line with them. Commands which do not tuke a filename may be stacked on the line:
for example

\date\go\date

will give the time before and after execution of the current query buffer.

\r

\reset Erase the entire query (reset the query buffer). The former contents of the buffer
are irretrieveubly lost.

\p . ~ ~ .

\print Print the current query. The contents of the buffer are printed on the user’s termi-
nal.

\

\lisi Print the current guery as it will appear after macro processing. Any side effects of

macro processing, such as macro definition, will occur.

D

o APy

R I T

- ————,

MONITOR € QUEL) 2/23/79 MONITOR (QUEL)

eval

\C
\\\.'(l
\edit

\editor

\g
\go

\d
\append

\time
\date
\s
\sh
\shell

\q
\quit
\ed
\chdir
\i
\include
\read

\w

\write
\branch

\mark

Macro process the query butfer and replace the query bufler with the result. This s
just like ist except that the output is put into the query butler instead of to the ter-
minal.

Enter the vy text editor (see ED in the UNIx Programmer’s Manual): use the ED
commund ‘w’ tollowed by 'q" to return 10 the INGRES monitor. If .. filename 15
given, the editor is called with that file instead of the query buffer. If the sacro
“feditor]™ iy defined. that macro is used as the pathname of an editor. otherwise
“/bin/ed™ is used. 10 important that you do not use the "¢" command inside the
editor; it you do the (obscure) nume of the query buffer will be forgotien.

Process the current query. The contents of the buffer dre mucro processed.
transmitled o INGRES, and run.

Append to the query butfer. Typing \u after completion of a query will override the
auto-clear feature and guarantees that the query buffer will not be reset.

Print out the current time of day.

Escape to the UNIX shell. Typing a control-d will cause you to exit the shell and re-
turn 1o the INGRES monitor. If there is a filename specified, that filename is taken as
a shell file which is run with the query buffer as the parameter "$1". If no filename
is given, an interactive shell is forked. If the macro ‘‘{shell}’" is defined. it i1s used
as the pathname of a shell; otherwise, **/bin/sh’" is used.

Exit from INGRES.

Change the working directory of the monitor to the named directory.

Switch input to the named file. Backslash characters in the file will be processed as
read.

Write the contents of the query buffer to the named file.
Transfer control within a \include file. See the section on branching below,

Set a label for \branch.

Y <<any other character>

Macros

lgnore any possible special meaning of character tollowing * ° This allows the ™ 7 o
be input as a hieral character. (Sec also quellquel) - strings). Teas important 1o
note that backslash escapes are sometimes caten up by the macro processor also; in
general, send two backslashes if you want a backslash sent (even this is oo simphis-
tic Isighl — try 1o avoid using backslashes at alb).

Por simplicity, the macros are described in the section macrostquel).

Branching

The branch and imark commands permit arbitrary branching within a Vinclude file tamilar 1o
the “poto’™ and 77 commands in the shell). \mark should be followed with a label branch

s e

e

MONITOR (QUELD 2/23/79 MONITOR (QUEL)

should be tollowed with cither a label, indicating unconditional branch, or an expression pre-
ceeded by g guestion miark, followed by u label, indicating a conditonal branch. The branch 1s
taken if the eapression s greater than zero. |or example,

Abranch ?{tuplecount} < =0 notups
branches to fabel “notups™ if the “*{uplecount]™ macro is less than or equal to zero

The expressions usable in \branch statements are somewhat restricted. The operators +. —, .
fo<=,>=_<, > =_uand '= are all defined in the expected way. The left unary operator
< can be used as to indicate logical neganon. There may be no spaces in the expression.
since a space terminates the expression.

e v e —————————

Initialization

At initialization (login) time a number of ininalizations take place. First, a macro calted " {path-
name}” is defined which expands 10 the pathname of the INGRES subtree (normally
"/mnt/ingres™): it is used by system routines such as demodb. Sccond, the iniualization file
. SBles/startup is read. Thas file is intended 10 define system-dependent parameters. such as
the default editor and shell. Third, a user dependent initialization file, specified by a field in
the users file, is read and exccuted. This is normally set (o the file ““.ingres’™ in the user’s
home directory. The startup file might be used 1o define certain macros, execute common
range statements, and soforth. Finally, control is turned over to the user’s terminal.

An interrupt while executing either of the initialization files restarts execution of that step.
Flags

Certain flags may be included on the command line to INGRES which affect the operation of the
terminal monitor. The ~a flag disables the autoclear function. This means that the query
buffer will never be automatically cleared: equivalently, it is as though a \append command
were inserted after every \go. Note that this means that the user must explicitly clear the query
buffer using \reset after every query. The —d flag turns off the printing of the dayfite. The —s
flag turns off printing of all messages (except errors) from the monitor, including the login and
logout messages, the dayfile, and prompts. [t is used for executing "canned queries”, that is.
queries redirected from files.

SEE ALSO
ingres(unix), quet{quel), macros(quel)

DINGNOSTICS

g0 You may begin a fresh query.
) continue The previous query is finished and you are back in the monitor.
Executing . . . The query is being processed by INGRES.
> >ed You have entered the UNIX text editor.
> >sh You have escaped to the uNix shell.

Funny character nnn converted to blank
INGRES maps non-printing ASCII characters into blanks. this message in-
dicates that one such conversion has just been made.

INCOMPATIBILITIES
Note that the construct
\rprint parts
tintended to reset the query buffer and then cnter “print parts™) no longer works, since “rprint”
appears 1o be one word.

Bl GS

Fyor

o

PRINT t QUEL) 1726/79 PRINT (QUEL)

NAMY
print ~ pnnt relationts)

SYNOPSIS
print relname {. relname)

DESCRIPTION
Prou displays the contents of cach relation specified on the terminal {standard output). The
formats for various types of domains can be defined by the use of switches when mgres is in-
voked. Domain names are truncated to it into the specibed width.
To print a relation one must either be the owner of the relation, or the relation must have “re-
trieve 10 all* or “all to alf” permissions.

See ingres(quel) for details.

FNAMPLE
/* Print the emp relation */
print emp
print cmp, parts

SYE ALSO
permit{guel), retricvelquel), ingres(unix}, printrCunix) handle long lines of output correctly —
no wrap around.

Print should have more formating features to make printouts more readable.

Print should have an option to print on the ling printer.

"
,
4

PERMIT { QUFL) 2/7/79 PERMIT (QUEL)

NAME

permit — add pernussions (o i relation

SYNOPSIS

detine permit oplist | on{of | to } var [Gatthst) |
to name { at term | [from time to time |
[on day to day | | where qual |

DESCRIPTION

The permt statement extends the current pernussions on the relation specified by sar. Ophist is
a comma separated tist of possible operations. which can be retrieve, replace. delete, append,
or all; a/lis a special case meaning all permissions. Name is the login name of a user or the
word all. Termis a terminal name of the form “ttyx® or the keyword all: omitting this phrase is
equivalent 1o specifying all. Tunes are of the form *hh:mm’™ on a twenty-four hour clock which
limit the times of the day during which this permission applies. Days are three-character abbre-
viations for days of the week. The qual is appended 1o the qualification of the guery when it is
run.

Separate parts of a single pernut statement are conjoined (ANDed). Difterent permur statements
are disjoined (ORed). For example, if you include

... toeric at 1yd ...
the pernnt applies only to eric when logged in on t1y4, but if you include two pernut statements

... toericatall ...

.o toallatuyd |
then when enc logs in on tiyd he will get the union of the permissions specitied by the two
statements. I eric logs in on Uyd he will get only the permissions specified in the first permn
statement, and it bob logs in on ttvd he will get only the permissions specified in the second
permnt statment.,
The pernut statement may only be issued by the owner of the relation. Although a user other
than the DBA may issue a pernur statement, it is useless because noone else can access her rela-
HoNs anyway.

Pernut statements do not apply 1o the owner of a relation or to views.
The statements

define permit all on x to all
define permit retrieve of A to all

with no further gualification are handled as special cases and are thus particularly efficient.

ENAMPLES

range of e is employee

defing permit retrieve of ¢ (name, sal) to mare
at tyd from 8:00 10 17:00
on Mon 1o Fri
where eomgr = "mard”

range of pis parts
deline permit retricve ol ¢ to all

SEE A SO

dostroy (quel)

P

DT e

A et e AN it . .

QUEL (QUEL) 2/23/779 QUEL (QUEL)

NG
quel - QUErR Language Yor INGRES

DESCRIPTION
The foltowing is a description of the general syntax ol QUEL. Individual QUEL statements and
commands are treated separately in the document. this section describes the syntactic classes
from which the constituent parts of QUiL statements are drawn.

1. Comments

A comment is an arbilrary sequence of characters bounded on the feft by /<™ and on the night
by e/

/+ This is a comment »/
2 Nomes

Names in QUEL are sequences of no more than 12 alphanumeric characters, starting with an al-
phabetic. Underscore () s considered an alphabetic. All upper —case alphabetics appeanng
anywhere except in strings are automatically and silently mapped into their lower —case coun-

terparts,

3. Kevwords

The following identifiers are reserved for use as keywords and may not be used otherwise:

abs alt and
any append ascii
at atan avg
avgu by concat
copy cos count
countu create define
delete destroy exp
floatd floaty from
gamma help in
index intl int2
intd integrity into
is fog max
min mod modify
not of on
onto or permit
print range replace
retrieve save sin
sqrt sum sumuy
to unique until
view where

4. Conshants

Ihere are three (ypes of constants, corresponding 1o the three data tvpes avatlable QUi tor
data storage.

4.1 String constants

Strings 0 QUL are sequences of no more than 253 arhitrary. ASCH characters bounded by dou-
ble quotes " "1 Upper case alphabetios withm strings are accepted Iiterally - Ao, iy order 1o
unbed quotes withim strmgs, it is accessary to prefin them with - 7 0 The same comvention ap-
phies 1o 4 asell,

Onhy printng characters are allowed within stimgs. Non-printing characters Ge control chatae-
ters) are converted (o blanks.

il

QUEL (QULEL) 2/23/79 QUEL (QUEL)

42 Integer constants

Integer constants i QUEL range from —2,147 483,647 to +2.147 483,647, Integer constants

beyond that range will be converted to floating point. I the integer is greater than 32,767 or
. less than —32.767 then it will be left as a two byte integer. Otherwise it is converted 1o a four
H byle integer.

4.3. Floating point constants

Floating constants consist of an integer part. a decimal point, and a fraction part or scientitic

' notation of the following format:
| t<dig>} [<dig>] [o]E [+]-] {<dig>1]
" Where <dig> is a digit, [] represents zero o one, {} represents zero or more. and | represents
. alternation. An exponent with a missing mantissa has a mantissa of 1 inserted. There may be
E no extra characters embedded in the string. Floating constants are taken 10 be double-precision
quantities with a range of approximately — 10™ 10 10™ and a precision of 17 decimal digits.
S. Attributes
An attribute is a construction of the forn:
i variable. domain

Farahle identifies a particulur relation and can be thought of as standing for the rows or tuples
of that refation. A variable iy associated with a relation by means of 4 range statement. Daomawn
is the name of one of the columns of the relation over which the variable ranges. Together
they make up an attribute, which represents values of the named domain.

6. Arithmetic operators

Arithmetic operators take numeric type cxpressions as operands. Unary operators group right
to left; binary operators group left to right. The operators (in order of descending precedence)

are:
+.- (unary) plus, minus
*« exponentiation
«/ multiplication, division
+.- (binary) addition, subtraction

Parentheses may be used for arbitrary grouping. Arithmetic overflow and divide by zero are
not checked on integer operations. Floating point operations are checked for overflow.,
underflow, and divide by scro only it the appropriate machine hardware exists and has been en-
abled.

7. Expressions (a_expr)
An expression is one of the following:

constant
attribute
functional expression :
aggregate or aggregate function . .
a4 combination of numeric expressions and arithmetic operators

For the purposes of this document, an arbitrary cxpression will be refered to by the name
a_expr.

ot aondbidh o

A

' £ Formus

Fyers a oy bas a format denoted by i letter (e, i or £, for character, integer, or floating data
Bpes respectively) and a number indicating the number of bytes of storage occupied. Formats
currently supported are listed below. The ranges of numeric tvpes are indicated in parentheses.

34 e e Ao il

QUEL (QUEL) 2/23/79 QUEL (QUEL)
el — 255 character data of length - 255 characters
il L-byte anteger € 128 10 4127
12 2-bvie integer (- 32768 1o +32767)
14 d4-byte integer (—2,147 483,648 10 +2,147.483,647)
4 4-byte Noating (-10™% 10 +10™, 7 decimal digit precision)
4 8-byte Noating (—10™ 10 +10™, 17 decimal digit precision)

One numeric format can be converted to or substituied for any other numeric format.
9. Tyvpe Conversion.

When operating on two numeric domains of different types, INGRES converts as necessary 1o
make the types identical.

When operating on an integer and a floating point number, the integer is converted to a floating
point number before the aperation. When operating on two integers of different sizes, the
smaller is converted to the size of the larger. When operating on two floating point number of
different size, the larger is converted to the smaller,

The following table summarizes the possible combinations:
il 12 i4 4 f8

it - i2 i4

i2 — i2 i4

4 - | i4 id

f4a - f4 4

f8§ — 8 {8
INGRES provides five type conversion operators specifically for overriding the default actions.
The operators are:

intl{(a_expr) result 1ype il
in2(a_expr) result type i2
int4(a_expr) result type i4
float4(a_expr) result type (4
float8(a_expr) result type 8

The type conversion operators convert their argument a_expr to the requested type. 4 _expr can
be anything including character. If a character value cannot be converted, an error occures and
processing is halted. This can happen only if the svatax of the character value is incorrect.

Overflow is not checked on conversion,

10. Target list

A target hist is a parenthesized, comma separated list of one or more elemenis | each of which
must be of ene of the following forms:

a) result antname is a_expr

Resudt anname is the name of the atiribute 1o be created (or an alrcady existing attribute name
i the case of update statements.) The equal sign ¢ ="") may be used interchangeably with is.
In the case where ¢ ey is anything other than a single attribute. this form must be used 10 as-
sign a result name o the expression.

b)Y atirhuie

In the case of a retrweve, the resultant domain will acquire the same name as that of the attribule
bemyg retrieved. In the case of update statemenis Cappend, replaced . the relation being updated
must have a domain with exactly that name.

Inside the target list the keyword all can be used to represent all domaims. For example:

riunge of ¢ s employee
retricve (el where esalary > 10000

ey + S AT T IR . 1 3 (A, rWE"R'VWﬁ"\‘\!:’W"J" A

o

QUEL (QUEL) 2/23/79 QUEL (QUEL)

will retrieve all domains of employee for those wuples which satisly the qualification. Al can be
uscd in the target hist of a rermeve or an append. The domains will be inserted in their “create™
order. that is, the same order they were listed in the create statement.

11, Comparison operators
Comparison operators take arbitrary expressions as operands.

{less than)

(lesy than or equal)
(greater than)

(greater than or equal)
(equal to)

= (not equal 10)

il

It VVAA

They are all of equal precedence. When comparisons are made on character attributes, all
blanks are ignored.

12. Logical operators
Logical operators take clauses as operands and group lefi-to-right:

not (logical not; negation)
and (logical and; conjunction)
or (logical or; disjunction)

Not has the highest precedence of the three. And and or have equal precedence. Parcentheses
may be used for arbitrary grouping.
13. Qualification (qual)
A qualification consists of any number of clauses connected by logical operators. A clause is a
pair of expressions connected by a comparison operator:
4_expr comparison_operator a_expr

Parentheses may be used for arbitrary grouping. A qualification may thus be:

clause

not qual

qual or qual

qual and qual
(qual)

14, Functional expressions

A funcuonal expression consists of a function name followed by a parenthesized (list of)
operand(s). Functional expressions can be nested to any level. In the following list of func-
tions supported (n) represents an arbitrary numeric type expression. The format of the result is
indicated on the right.

abs() — same as n (absolute value)

ascii{n) — character string (converts numeric to character)
atan(») — 8 (arctangent)

concat(u.p) — character (character concatenation. See 16.2)
cos(n) —~ f8 (cosine)

expln) — 8 (cxponential of n)

gamma(n) — 18 (log gamma)

log(n) ~ 8 (natural logarithm)

mod{n h) — same as b (2 modulo A nand h must be i1, i2. or i4)
sin() — f8 (sinc)

sqrt(n) — f8 (squarc root)

15. Aggregate expressions
Aggregate cxpressions provide a way to aggregate a compuled expression over a set of tuples.

- ‘
Py — -

S

g P O ey > Ae——————- s -

QUEL (QUEL) 2/23/79 QUEL (QUEL)

15 1. Aggregation operators

The definitions of the aggregates are listed below

count — (4) count of gceurrences

countu — (i4) count of unigue occurrences

sum — summation

sumuy — summation of unique values

avg — (18) average (sum/count)

avgy — (18) unique average (sumu/countu)

max — nmaximum

min — minimum

any — (12) value is | if any wuples satisfy the qualification, else itis 0

15.2. simple aggregale
aggregation_operator (a_expr | where qual])

A simple aggregate evaluates to a single scalar value. 4_expr is aggregated over the set of tu-
ples satisfying the qualification (or all tuples in the range of the expression if no qualification is
present). Operators swm and avg require numeric type a_cxpr; count, anv, max and min permit a
character type attribute as well as numeric type a_expr.

Sunple aggregates are completely local. That is, they are logically removed from the query, pro-
cessed separately, and replaced by their scalar value.

15.3. “any™” aggregate

It is sometimes uscful to know if any tuples satisfy a particular qualification. One way of doing
this is by using the aggregate count and checking whether the return is zero or non-zero. Using
anv instead of counr is more efficient since processing is stopped, if possible, the first time a tu-
ple satisfies a qualification.

Anv returns | if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregation_operator (a_cxpr by by_domam
{, bv_domain} [where qual])

Aggregate functions are extensions of simple aggregates. The by operator groups (ie. parti-
tions) the set of qualifying tuples by by _domain values. For more than one by domam, the
values which are grouped by are the concatenation of individual bv_domain values. 4 _expris as
in simple aggregates. The aggregate function evaluates 1o a set of aggregate results, one for
cach partition into which the set of qualifying tuples has been grouped. The aggregate value
used during evaluation of the guery is the value associated with the partition into which the tu-
ple currently being processed would fal).

Unlike simple aggregates, aggregate functions are not completely local. The b lne, which
differentiates aggregate functions from simple aggregates, is global 1o the query. Domains in
the by hisrare automatically linked to the other domains in the query which are in the same re-
lation.
I xample:

/+ retrieve the aserage salary for the employees

working for cach manager -/

range of e is employee

retrieve (e.manager, avesal=avgle.salary by c.manager))

15 5 Aggregates on Unigue Values,

It is occasionally necessary 1o aggregate on unigue values of an expression. The aven. s,
and cownn aggregates all remove duplicate values before performing the aggregation. For ox-
ample:

QUEL (QUEL) 2/23/79 QUEL (QUEL)

count(e.manager)
would tell you how many occurrences of ¢.manager exist. But
countu{e.manager) "
would tell you how many unique values of ¢.manager exist.
16. Special character operators
There are three special features which are particular 1o character domains. .
16.1 Pattern matching characters

There are four characters which take on special meaning when used in character constants
(strings):

* matches any string of zero or more characters.
? matches any single character.
[.] matches any of characters in the brackets.

These characters can be used in any combination to form a variety of tests. For example:

where e.name = "+" — muiches any name.

where e.name = "E+" — matches any name starting with "E".

where e.name = "»ein” — maiches all names ending with "ein"

where e.name = "+[aeioul*" — matches any name with at least one vowel.

where e.name = "Alinian?" — matches any seven character name slarting with “Aflman”.
where e.name = "[A—J]*" — matches any name starting with A,B,...J.

povapgt

The special meaning of the pattern matching characters can be disabled by preceding them with

a "\". Thus "\+" refers to the character "»". When the special characters appear in the target list
they must be escaped. For example:

title = "\#\#* ingres \«\#\s"
is the correct way to assign the string "»*» ingres +++" 10 the domain "title".
16.2 Concatenation

There is a concatenation operator which can form one character string from two. Its syntax is
“concat(field1, field2)". The size of the new character string is the sum of the sizes of the origi-
nal two. Trailing blanks are trimmed from the first field, the second field is concatenated and
the remainder is blank padded. The result is never trimmed to 0 length, however. Concat can
be arbitrarily nested inside other concats. For example:

| ST A W VAP (< PNy
!

g

"o

name = concat{concat(x.lastname, "."), x.firstname)
will concatenate x.lastname with a comma and then concatenate x.firstname to that.

16.3 Ascii (numeric to character translation)

The ascii function can be used to convert a numeric field to its character representation. This
can be useful when it is desired to compare a numeric value with a character value. For exam-
ple:
retrieve (...)
where x.chardomain = ascii{x.numdomain)

Ascit can be applied 10 a character value. The result is simply the character value unchanged.
The numeric conversion formats are determined by the printing formats (see ingres(unix)).

SEE ALSO
append{quel), deletetquel), range(quel), repliace(quel), retrieve{quel). ingres{unix)

BLGS

The maximum number of variables which can appear in one query is 10.

:

QUEL (QUEL) 2/23/79

Numeric overflow, underflow, and divide by zero are not detected.
When converting between numeric types, overflow is not checked.

QUEL (QUEL)

PO W N

Py

SV T ST T AR WP B

RANGE (QUEL) 2/29/79 RANGE (QUEL)

NAME
runge — declare a variable to range over a relation
SYNOPSIS
range of variable is relname
DESCRIPTION) .
Range is used to declare vanable_s which will be used in subsequent QUEL statements. The var-
able is associated with the relation specified by relname. When the variable is used in subse-
quent statements it will refer 10 a tuple in the named relation. A range declaration remains in
effect for an entire INGRES session {(until exit from INGRES), until the variable is redeclared by a
subsequent range statement. or until the relation is removed with the destroy command.
EXAMPLE
/+ Declare tuple variable e to range over relation emp +/
range of e is emp
SEE ALSO
quel{quel), destroy(quel)
BUGS

Only 10 variable ‘declarations may be in effect at any time. After the 10th range statement, the
least recently referenced variable is re —used for the next range statement.

ER

o7 o, R NG . SRS

*
3
A

REPLACE (QUEL) 2/29/79 REPLACE (QUEL)

N AN
replace = replace values of domams in a relation

SAYNOPSIS
replace tuple_variable (arget list) [where qual)

DESCRIPTION
Replace changes the values of the domains specitied in the rarger_list for all tuples which sutisty
the qualification qual. The wple_variable must have been declared to range over the relation
which is to be modified. Note that a tuple variable is required and not the relation name. Only
domains which are 0 be modified need appear in the target_list. These domains must be
specified as result_attnames in the rarger_list cither explicitly or by default (see quel(quel)).

Numeric domains may be replaced by values of any numeric type (with the exception noted
below). Replacement values will be converted to the type of the result domain.

Only the owner of a relation, or a user with replace pemission on the relation can do replace.
If the wuple update would violate an integrity constraint (see integrity(quel)), it is not done.

EXAMPLE
/*= Give all employees who work for Smith a 10% raise «/
range of e is emp
replace e(sal = 1.1 » e.sal) where e.mgr = "Smith"

SEE ALSO
integrity (quel), permit{quel), quel(quel), range{quel)

DIAGNOSTICS

Use of a numeric lype expression to replace a character type domain or vice versa will produce
diagnostics.

BLGN

RETRIEVE (QUEL) 2/29/79 RETRIEVE (QUEL)

NAME
retnieve — reineve tuples from a relabon

SYNOPSIS
retrieve [linto) relnamel (target)ist) [where qual)
retrieve unique (target_list) (where quall

DESCRIPTION) .
Retrieve will get all tuples which satisty the qualitication and either display them on the terminal
(standard output) or store them in a new rclation.

If a relname is specitied, the result of the query will be stored in a new relation with the indi-
cated name. A relation with this name owned by the user must not already exist. The current
user will be the owner of the new relation. The relation will have domain names as specitied in
the rarger_list result_atinames. The new relation will be saved on the system for seven (7) davs
unless explicitly saved by the user until a later date.

If the keyword unique is present, tuples will be sorted on the first domain, and duplicates will
be removed, before being displayed.

The keyword all can be used when it is desired to retrieve all domains.

If no result refname is specified then the result of the query will be displayed on the terminal
and will not be saved. Duplicate tuples are not removed when the result is displayed on the
terminal.

The format in which domains arc printed can be defined at the time ingres is invoked (sce
ingres{unix)).

If a result relation is specified then the default procedure is to modify the result relation to an
cheapsort storage structure removing duplicate tuples in the process.

If the default cheapsort structure is not desired, the user can override this at the time INGRIS is
invoked by using the -r switch (see ingres(unix)).

Only the relation’s owner and users with retrieve permission may rerieve from it.

ENAMPLE
/» Find all employees who make more than their manager */
range of e is emp
range of m is emp
retrieve (e.name) where e.mgr = m.name
and e.sal > m.sal
/* Retrieve all domains for those who make more
than the average salary +/
retrieve into temp (c.all) where e.sal > avgle.sal)
/= retrieve emplovees's names sorted +/
retrieve unique (¢.name)

~EE AMLSO
modify(guch), permitlquel), queltguel), rangelquel), savetque!), ingrestuniv)

DINGNOSTIUS

BLGN

Y~

SAVE (QUEL) 3/10/77 SAVE (QUEL)

NANME
save - save o relation antid o date.

SYNOPSIS
save relname until month day year

DESCRIPTION
Save is used 1o keep relations beyond the default 7 day hife span. 1
Month can be an integer from 1 through 12, or the name of the month, either abbreviated or
spelled out.
Only the owner of a relation can save that relation. There is an INGRES process which typically
removes a relation immediaiely after s expiration date has passed.
The actual program which destroys relations is called purge. It is not automatically run. his 4
local decision when expired relations are removed.

System relations have no expiration date.

FAAMPLE
/* Save the emp relation until the end of February 1987 */

save emp until feb 28 1987

ey

SEF \LSO
create(quel). retrieve{quel), purge(unix)

TV D T YN T 5 gy g

- hen

R G e L T

4
X_,

VIEW (QUEL) 2/7/79 VIEW (QUEL)

NAME ¢
view — define a virtual relation :

SYNOPSIS]

define view name (target-list) [where qual |

DESCRIPTION
The syntax of the wew statement is almost identical 1o the rereve mio statment, however, the

data is not retrieved. Instead, the definition is stored. When the relation name is later used.
the query is converted to operate on the relations specified in the rarger-hist.

All forms of retrieval on the view are fully supported, but only a limited set of updates are sup-
ported because of anomolies which can appear. Almost no updates are supporied on views
which span more than one relation. No updates are supported that affect 4 domain in the
qualification of the view or that affect a domain which does not translate into a simple attribute.

In general, updates are supported if and only if it can be guaranteed (without looking at the ac-
tual data) that the result of updating the view is identical to that of updating the corresponding
real relation.

The person who defines a view must own all relations upon which the view is based.

ENXAMPLE
range of ¢ is employee
range of d is dept
define view empdpt (ename = e.name, ¢.sal. dname = d.name)
where e.mgr = d.mgr

~EE ALSO
retrieve(quel), destroy(quel)

v ee vt el

Rl S

2
-1 - 3
3
3
g
Pt

COPYDB (UNIX) 314/79 COPYDB (UNIX)

NAME
copydb — create batch files to copy out a data base and restore it.

SYNOPSIS
copydb [—uname | database full-path-name-of-directory [relation ...

DESCRIPTION

Copydb creates two INGRES command files in the directory: Copy.out, which contains Quel in-
stuctions which will copy all relations owned by the user into files in the named directory, and
copy.in, which contains instructions 1o copy the files into relations, create indexes and do
modifies. The files will have the same names as the relations with the users INGRES id tacked
on the end. (The directory MUST NOT be the same as the data base direclory as the files have
the same names as the relation files.) The —u flag may be used to run copydb with a different
user id. (The fact that copydb creates the copy files does not imply that the user can necessarily
access the specified relation). If relation names are specified only those relations will be includ-
ed in the copy files.

Copydb is written in Equel and will access the database in the usual manner. It does not have
to run as the INGRES user.

EXAMPLE
chdir /mnt/mydir
copydb db /mnt/mydir/backup
ingres db <backup/copy.out
tp rl backup
rm —r backup

tp x1
ingres db <backup/copy.in

DIAGNOSTICS
Copvdb will give self-explanatory diagnostics. If ‘‘too many indexes™ is reported it means that
more than ten indexes have been specified on one relation. The constant can be increased and
the program recompiled. Other limits are set to the system limits.

BLGS
Copydb assumes that indexes which are ISAM do not need to be remodified. Copydb cannot teli

if the relfation was modified with a fillfactor or minpages specification. The copy.in file may be
cdited 1o reflect this.

|
|
|
4
?

NAME

CREATDB (UNIX) 3/14/79 CREATDB (UNIX)

creatdb — create a data base

SYNOPSIS

creatdb [—uname] [—e]{ —=m] { £c] | +q | dbname

DESCRIPTION

Crealdb creates a new INGRES database, or modifies the status of an existing database. The per-
son who executes this command becomes the Database Administrator (DBA) for the database.
The DBA has special powers not granted to ordinary users.

Dbname is the name of the dalabase 10 be created. The name must be unique among all
INGRES users.

The flags +c¢ and +q specify options on the database. The form +x turns an option on, while
~x turns an option off. The —c¢ flag turns off the concurrency control scheme (default on).
The +q flag turns on query modification (defaul off).

Concurrency control should not be turned off except on databases which are never accessed by
more than one user. This applies even if users do not share data relations, since system rela-
tions are still shared. If the concurrency control scheme is not installed in UNiX, or if the spe-
cial file /dev/lock does not exist or is not accessible for read-write by INGRES, concurrency con-
trol acts as though it is off (although it will suddenly come on when the lock driver is installed
in UNIX).

Query modification must be turned on for the protection, integrity, and view subsystems to
work, however, the system will run slightly slower in some cases if it is turned on. It is possi-
ble to turn query modification on if it is already off in an existing database, but it is not possible
to turn it off if it is already on.

Databases with query modification turned off create new relations with all access permitted for
all users, instead of no access except to the owner, the default for databases with query
modification enabled.

Database options for an existing database may be modified by stating the —e flag. The database
is adjusted to conform to the option flags. For example:

creatdb —e +q mydb
turns query modification on for database ‘‘mydb’* (but leaves concurrency control alone). Only
the database administrator (DBA) may use the —e flag.

When query modification is turned on, new relations will be created with no access, but previ-
ously created relations wilt still have all access to everyone. The desiroy command may be used
to remove this global permission, after which more selective permissions may be specified with
the permit command.

The INGRES user may use the ~u flag to specify a different DBA: the flag should be immediate-
ly followed by the login name of the user who should be the DBA.

The —m flag specifies that the UNIX directory in which the database is 10 reside already exists.
This should only be needed if the directory if a mounted file system, as might occur for a very
large database. The directory must exist (as .../data/base/dbname), must be mode 777, and
must be empty of all files,

The user who executes this command must have the U_CREATDB bit set in the status field of
her entry in the users file.

The INGRES superuser can create a file in .../data/base containing a single line which is the full

pathname of the location of the database. The file must be owned by INGRES and be mode 644,

When the database is created, it will be created in the file named, rather than in the directory

.../data/base. For example, if the file .../data/base/ericdb contained the line
/mni/eric/database

then the database called ‘‘ericdb” would be physically stored in the directory

/mnt/eric/database rather than in the directory .../data/base/ericdb.

CREATDB (UNIX) 3/714/79 CREATDB (UNIX)

ENAMPLE
creatdb demo
creatdb —ueric —q erics_db
creatdb —e +q —c¢ —uav encs_db

FILES

... [files/dbimpli6.2

... /files/data/base/*

.../tiles/datadir/* (for compatibility with previous versions)
SEE ALSO

demodb(unix), destroydb(unix), users{files), chmod(l). destroydb(quel), permitiquel) - -
DIAGNOSTICS

No database name specified.
You have not specified the name of the database to create (or modify) with the com-
mand.
You may not access this database
Your entry in the users file says you are not authorized to access this database.
You are not a valid INGRES user
You do not have a users file entry, and can not do anything with INGRES at all.
You are not allowed this command
The U CREATDB bit is not set in your users file entry.
You may not use the —u flag
Only the INGRES superuser may become someone else.
<name> does not exist
With —e or —m, the directory does not exist.
<name> already exists
Without either —e or —m, the database (actually, the directory) already exists.
<name> is not empty
With the —m flag, the directory you named must be empty.
You are not the DBA for this database
With the —e flag, you must be the database administrator.

DESTROYDB (UNIX) 3/14/79 DESTROYDB (UNIX)

NAME
destroydb — destroy an existling dalabase

S) NOPSIS
destroydd { —s] { —m | dbname

DESCRIPTION
Destroydb will remove all reference to an existing database. The directory of the database and

all files in that directory will be removed.

To execute this command the current user must be the database administrator for the database
in question, or must be the INGRES superuser and have the —s flag stated.

The —m flag causes destroydb not to remove the UNIX directory. This is useful when the direc-
tory is a separale mounted UNIX file system.

ENAMPLE
destroydb demo
destroydb —s erics_db

FILES
.../data/base/*
.../datadir/* (for compatibility with previous versions)

SEE ALSO
creatdb(unix)

DIAGNOSTICS

invalid dbname — the database name specified is not a valid name.

you may not reference this database — the database may exist, but you do not have permission
to do anything with it.

you may not use the —s flag — you have tried to use the —s flag, but you are not the INGRES
superuser.

you are not the dba — someone else created this database.

database does not exist — this database does not exist.

2 e g

!
EQUEL (UNIX) 3/14/79 EQUEL (UNIX) ‘
i

i

NAME b

equel — Embedded QUEL interface to C b
SYNOPSIS

equel [=d]1[=f]1~r]fileq..

DESCRIPTION
Fquel provides the user with a method of interfacing the general purpose programming language
**C*" with INGRES. It consists of the EQUEL pre-compiler and the EQUEL runtime library.

Compilation
The precompiler is invoked with the statement:
equel [<flags>] filel.q [<fags>] file2.q ...

where filen.q are the source input file names, which must end with .q. The output is written 1o

: the file “*filen.c”’. As many files as wished may be specified.

H The flags that may be used are:

! —d Generate code to print source listing file name and line number when a run-time error oc-

! curs. This can be useful for debugging, but takes up process space. Defaults to off.

—f Forces code 10 be on the same line in the output file as it is in the input file to ease inter-
preting C diagnostic messages. EQUEL will usually try to get all C code lines in the output
file on the same lines as they were in the input file. Sometimes it must break up queries
into several lines to avoid C-preprocessor line overflows, possibly moving some C code
ahead some lines. Wilh the —f flag specified this will never happen and, though the line
buffer may overflow, C lines will be on the right line. This is useful for finding the line in

! the source file that C error diagnostics on the output file refer to.

—r Resets flags to default values. Used 1o supress other flags for some of the files in the ar-
gument list.

The output files may than be compiled using the C compiler:
cc filel.c file2.c ... ~lq
The —lq requests the use of the EQUEL object library.

All EQUEL routines and giobals begin with the characters "II", and so all globals variables and
procedure names of the form llxxx are reserved for use by EQUEL and should be avoided by
FQUEL users.

TP V.

Basic Syntax

FOUEL commands are indicated by lines which begin with a double pound sign (“*##'). Other
lines are simply copied as is. All normal INGRES commands may be used in £QULL and have the
same effect as if invoked through the interactive terminal monitor. Only retrieve commands
with no result relation specified have a different syntax and meaning.

i i o £ . i

The format of retrieve without a result relation is modified 1o:
retricve (C-variable = a_fen | | C-variable = a_fen)

e

optionally Tollowed Gmmeditely) by

#Hi [where qual) = -
| ST T e
/s C-code «/

#t)

This statement causes the C-code™ 1o be executed once for cach tuple retnieved. with the 1
“C-variable’'s set approprimtely. Numeric values of any type are converted as necessary. No 3
conversion is done between numeric and character values. (The normal INGRES @ser funclion

may be used for this purpose.)

|
EQUEL (LINIX) 3/14/79 EQUEL (UNIX) |
i
|

Also, the following EQUEL commands are permitted. }

ingres [ingres flags] data_base_name
This command starts INGRES running, and directs all dynamicaily foilowing queries T
to the database data_base_name. It is a run-time error to execute this command
twice without an intervening “‘## exit’’, as well as to issue queries while an ““##
ingres’’ statement is not in effect. Each flag should be enclosed in quotes to avoid
confusion in the EQUEL parser:

ingres "—f4r10.2" "—i212" demo

exit
Exit simply exits from INGRES. It is equivalent to the \q command to the telelype

monitor.

Parametrized Quel Statements

Quel statements with target lists may be ‘‘parametrized’”. This is indicated by preceding the
statement with the keyword ‘‘param’’. The target list of a parametrized statement has the form:

; (t_var, argv)

; where 1[_var is taken to be a string pointer at execution time (it may be a string constant) and
‘ interpreted as follows. For any parametrized EQUEL statement except a retrieve without a result
relation (no “‘into rel™) (i.e. append, copy, create, replace, retrieve into) the string 1/_var is tak-
 { en 10 be a regular target list except that wherever a ‘%" appears a valid INGRES type (f4, f8, i2,
{ i4, ¢) is expected to follow. Each of these is replaced by the value of the corresponding entry
| into argv (starting at 0) which is interpreted to be a pointer to a variable of the type indicated
. by the ‘%’ sequence. Neither argv nor the variables which it points to need be declared to FQL -
EL. For example:

char sargv(10];

argv[0] = &double_var:;
argv[l] = &int_var,
param append 1o rel
("dom1l = %f8, dom2 = %i2", argv)
#H# /+ 10 escape the "% <ingres_type>" mechanism use "%%" »/
/+ This places a single ‘%" in the string. «/

On a retrieve to C-variables, within ¢/ _var, instead of the C-variable to retrieve into, the same
“ih' escape sequences are used to denote the type of the corresponding argv entry into which
the value will be retrieved.

The qualification of any query may be replaced by a string valued variable, whose contents is
interpreted at run time as the text of the qualification.

The copv statement may also be parametrized. The form of the parametrized copy is analogous
1o the other parametrized statements: the target list may be parametrized in (he same manner as
the append statements, and furthermore, the from/into keyword may be replaced by a sirnng -
valued variable whose content at run time should be into or from. .

Declarations e

Any valid C variable declaration on a line beginning with a “##°° declares a C-variable that

- may be used in an FQUEL statement and as a normal variable. All variables must be declared
before being used. - Anywhere a constant may appear in an INGRES command, a C-variable may :
appear. The value of the C-variable is substituted at execution time.

s

Neither nested structures nor variables of type char (as opposed to pointer to char or array of
char) are allowed. Furthermore, there are two restrictions in the way variables arc referenced
wilhin LQUFL statements. All variable usages must be dereferenced and/or subscripted (for ar-
rays and pointers), or selected (for structure variables) to yield Ivalues (scalar values). (ha
variables are used by EQUEL as a means to use strings. Therefore when using a char array or

, EQUEL (UNIX) 3/14/79 EQUEL (UNIX)
| '
i'i
f {
; pomter it must be dereferenced only 1o a ““c¢har +*°. Also. variables may not have parentheses 4’
} m their references. For example:
| ## struct xxx 3
| 1
-int i 3
int *ip; i
] wsstruct_var; 1
/* not allowed +/

delete p where p.ifield = +(sstruct_var)->ip
/* allowed «/
delete p where p.ifield = sstruct_var{0]->ip p

C variables declared to EQUEL have either global or local scope. Their scope is local if their de-
claration is within a free (not bound to a retrieve) block declared to EQUEL. For example:

i

/» globals scope variable »/
int Gint,

func(i)
int I
|
/* local scope variable */
int *gintp;

#i#)

If a variable of one of the char types is used almost anywhere in an EQUEL statement the con-
tent of that variable is used at run time. For example:

char +dbname[MAXDATABASES + 1J;
int current_db;

dbnamelcurrent_db] = "demo”;
ingres dbnamelcurrent db)

will cause INGRES 10 be invoked with data base ““demo’. However, if a variable's name is to be
used as a constant, then the non-referencing operator *#° should be used. For example:

char «demo;
demo = "my_database”:

/+ ingres —d my_database «/
ingres "—d" demo

N
/* ingres —d demo +/
#H# ingres " —d" #demo

The C-preprocessor’s #include feature may be used on files contaming equel statements and
declarations if these hles are named amvthimg.g.h. An 1QUEL processed version of the tile,
which will be #included by the C-preprocessor. is left in amvthing.c.h.

Errors and Interrupts

INGRES and run-time tQUEL errors cause the routine Tlerror to be called. with the error number
and the parameters to the error in an array of string pointers as m a C language mam routing
The error message will be looked up and printed. before printing the errar message. the routing
tellprint crr)) ay called with the error number that ocurred as s single argument. The crror
message corresponding 1o the error number returned by Cellprint orr) O will be primed Primt-
ing will be supressed i teliprnt_err) O returns 0. Hprint_err may be reassigned 1o, and 18 use-

-
T i ot e e e -

EQUEL (UNIX) 3/14/79 EQUEL (UNIX)

ful for programs which map INGRES errofs into their own error messages. In addition, if the
©=—d"" flag was set the file name and line number of the error will be printed. The user muy
write an llerror routine to do other tasks as long as the setting of Ierrflag is not modifiecd as
this is used to exit retrieves correctly.

Interrupts are caught by equel if they are not being ignored. This insures that the rest of
INGRES is in sync with the EQUEL process. There is a function pointer, Hinterrupt, which poinis
10 a function to call after the interrupt is caught. The user may use this to service the interrupt.
It is initialized 1o "exit()" and is called with —1 as its argument. For example:

extern int («llinterrupt) O;
extern reset();

setexit();
Hinterrupt = reset,
mainloop();

To ignore interrupts, signal() should be called before the ## ingres satatement is executed.

FILES
; .../fles/error6.2 »
;’ Can be used by the user to decipher INGRES error numbers.
/lib/libq.a
Run time library.
SEE ALSO
.../doc/other/equeltut.q, C reference manual, ingres(UNIX), quel{QUEL)
BLGS

The C-code embedded in the tuple-by-tuple retrieve operation may not contain additional
QUEL statements or recursive invocations of INGRES.

There is no way to specify an il format C-variable.

Includes of an equel file within a parameterized target list, or within a C variable’s array sub-
scription brackets, isn’t done correctly.

HELPR (UNIX) 3/14/79 HELPR (UNIX)

NAME -
helpr — get information about a database. 3

syNoPsis

helpr [—uname] [+w] database relation ...

DESCRIPTION
Helpr gives information about the named relation(s) out of the database specified, exactly like

the help command.

Flags accepted are —u and tu. Their meanings are identical to the meanings of the same flags
in INGRES. 3

SEE ALSO F
ingres(unix), help(quel)

DIAGNOSTICS
bad flag — you have specified a flag which is not legal or is in bad format.
you may not access database — this database is prohibited to you based on status information in
the users file.
cannol access database — the database does not exist.

v

INGRES (UNIX) 3/14/79 INGRES (UNIX)

NAME

ingres = INGRtS relational data base management system

SYANOPSIS

ingres | flags | dbname [process table |

DESCRIPTION

This is the UNIX command which is used to invoke INGRES. Dbname is the name of an existing
data base. The optional flags have the following meanings (s ** ="' means the flag may be stat-

ed "'+ to set option x or *— X" 1o clear option x. ‘*—'" alone means that ‘*—x"" must be
stated to get the x function):
+U Enable/disable direct update of the system relations and secondary indicies. You

must have the 000004 bit in the status field of the users file set for this flag 1o be ac-
cepted. This option is provided for system debugging and is strongly discouraged for
normal use.

—uname Pretend you are the user with login name name (found in the users file). If name is
of the form :xx, nxis the two character user code of a user. This may only be used
by the DBA for the database or by the INGRES superusers.

—cN Set the minimum field width for printing character domains to N. The default is 6.
—iiN Set integer output ficld width to N. /may be 1, 2, or 4 for il’s, i2's, or i4’s repec-
tively.

—f{IxM.N Set floating point output field width to M characters with N decimal places. /may be
4 or 8 to apply 10 (4’s or f8's respectively. x may be e, E. f, F,. g, G, n, or N to
specify an output format. E is exponential form, F is floating point form, and G and
N are identical to F unless the number is too big to fit in that field, when it is output
in E format. G format guarantees decimal point alignment: N does not. The de-
fault format for both is n10.3.

-vX Set the column seperator for retrieves 10 the terminal and print commands to be X.
The default is vertical bar.
-rM Set modify mode on the remrieve command to M. M may be isam, cisam, hash,

chash, heap, cheap, heapsort, or cheapsort, for ISAM, compressed ISAM, hash
table, compressed hash table, heap, compressed heap, soried heap, or compressed
sorted heap. The default is *‘cheapsort™.

—nM Set modify mode on the mdex command to M. M can take the same values as the
—r flag above. Default is “‘isam’.

+a Set/clear the autoclear option in the terminal monitor. It defaults to set.

+b Set/reset baich update. Users must the 000002 bit set in the status field of the users

file 1o clear this flag. This flag is normally set. When clear, queries will run slightly
faster, but no recovery can take place. Queries which update a secondary index au-
tomatically set this flag for that query only.

+d Print/don’t print the dayfile. Normally set.

+s Print/don’t print any of the monitor messages. including prompts. This flags is nor-
mally set. 1f cleared. it also clears the —d flag.

+w Wait/don't wait for the database. If the +w flag is present, INGRES will wan if cer-

tain processes are runntng (purge.restore, and/or sysmod) on the given data base.
Upon completion of those processes INGRES will proceed. 1f the —w flag is present.
a message s returned and execution stopped if the data base is not available. If the
+w flag is omitted and the data base is unavailable. the error message is returned if
INGRES IS running in foreground (more precisly if the standard input is from a ter-
minal), otherwise the wail option is invoked.

Process table 18 the pathname of a CNix file which may be used to specify the run-time
configuration of INGRES. This feature is intended for use in system maintenance only, and its
uncnhghtencd use by the user community is strongly discouraged.

Note 1t s possible 1o run the monitor as a batch-processing interface using the *<', *>" and |’
operators of the UNIX shell, provided the input file is in proper monitor-format.

INGRES (UNIX) 3/14/79 INGRES (UNIX)

FXAMPLE
ingres demo
mgres —d demo
mgres —s demo < baichfile
ingres —f4gl2.2 —il3 +b —rhash demo

FILES
.../files/users — valid INGRES users
.../data/base/* — data bases
.../datadir/* — for compatability with previous versions
.../files/proctab6.2 — runtime configuration file
SEE ALSO
monitor(quel)
DIAGNOSTICS

Too many options 10 INGRES — you have stated too many flags as INGRES options.

Bad flag format — you have stated a flag in a format which is not intelligible, or a bad flag en-
tirely.

Too many parameters — you have given a dalabase name, a process table name, and “‘some-
thing else™” which INGRES doesn’t know what to do with.

No database name specified

Improper database name — the database name is not legal.

You may not access database name — according to the users file, you do not have permission to
enter this database.

You are not authorized 1o use the flag flag — the flag specified requires some special authoriza-
tion. such as a bit in the users file, which you do not have.

Database name does not exist

You are not a valid INGRES user — you have not been entered into the users file, which means
that you may not use INGRES at all.

You may not specify this process table — special authorization is needed to specify process
tables.

Database temporarily unavailable — someone else is currently performing some operation on
the database which makes it impossible for you to even log in. This condition shouild
disappear shortly.

r—

GEO-QUEL (UNIX) 3/14/79 GEO-QUEL (UNIX) I

NAME
geoquel — GEO-QUEL data display system
SYNOBSIS
geoquel [—~s]) [—d} | —a} [—t7T] [—tnT]) dbname

DESCRIPTION
GEO-QUEL is a geographical interface 10 INGRES.

Dbname is the name of an existing data base.

The format of the graphic output depends upon the type of terminal in use. GEO-QUEL will look
up the terminal type at login time and produce output appropriate for that terminal. If the ter-
minal in use is incapable of drawing graphic output then a display list is generated for a Tek- .
tronix 4014 but will only be displayed if the results are saved with SAVEMAP and then re-
displayed.)

The flags are interpreted as follows:

-s Don’t print any of the monitor messages, including prompts. This is inclusive of the
dayfife.
~d Don’t print the dayfile. .
—a Disable the autoclear function in the terminal monitor. %
—tT Set the terminal type to 7. T can be gt40, gt42, or 4014 for DEC’s GT40-GT42, and
Tektronix’s 4014 respectively.
—tn7 Do not display output but prepare the display list for a terminal of type 7, where Tis
from the above list.

PN

EXAMPLE
geoquel demo
geoquel —d demo
geoquel —s demo < batchfile

FILES 5
.../files/grafile6.2
.../files/ttytype

SEE ALSO
GEO-QUEL reference manuai

DIAGNOSTICS
The diagnostics produced by GEO-QUEL are intended to be self-explanatory. Occasional mes-
sages may be produced by INGRES; for an explanation of these messages see the INGRES system
documentation.

PRINTR (UNIX) 3/14/79 PRINTR (UNIX)

NAME
printr — print relations

Y \OPSIS
printr | Hags) database relation ...

DESCRIPTION
Prour prints the named relation(s) out of the database specified, exactly like the print command.
Retrieve permission must be granted to all people (o execute this command.

Flags accepted are —u, +w, —¢, ~i, —f, and —v. Their meanings are identical 10 the mean-
ings of the same flags in INGRES.

SEE ALSO
ingres(unix), print(quel)

DIAGNOSTICS
bad flag — you have specified a flag which is not legal or is in bad format.
you may not access database — this database is prohibited to you based on status information in
the users file. :
cannot access database — the database does not exist.

1 alida

PR

PURGE (UNIX) 3/14/79 PURGE (UNIX)

NAME
purge — destroy all expired and temporary relations

SYNOPSIS
purge [—f] [—pl [—a]l—s} [xw][database ...]

DESCRIPTION
Purge searches the named databases deleting system temporary relations. When using the ~p
flag, expired user relations are deleted. The —f flag will cause unrecognizable files to be delet-
ed, normally purge will just report these files.

Only the database administrator (the DBA) for a database may run purge, except the INGRES
superuser may purge any database by using the ~s flag.

If no databases are specified all databases for which you are the DBA will be purged. All data-
bases will be purged if the INGRES superuser has specified the —s flag. The —a flag will cause
purge to print a message about the pending operation and execute it only if the response if a

.

'y". Any other response is interpreted as ‘‘no’”.

Purge will lock the data base while it is being processed, since errors may occur if the database
1s active while purge is working on the database. If a data base is busy purge will report this and
go on to the next data base, if any. If standard input is not a terminal purge will wait for the
data base to be free. If —w flag is stated purge will not wait, regardiess of standard input. The
+w flag causes purge to always wait.

ENAMPLES
purge —p +w tempdata
purge —a —f

SEE ALSO

save(quel), restore(unix)

DIAGNOSTICS
who are you? — you are not entered into the users file.
not ingres superuser — you have tried to use the —s flag but you are not the INGRES su-
peruser.
you are not the dba — you have tried to purge a database for which you are not the DBA.
cannot access database — the database does not exist.

BLGS

If no database names are given, only the databases located in the directory data/base are
purged, and not the old databases in datadir. Explicit database names still work for databases
in either directory.

i
!

NAME

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

restore — recover from an INGRES or UNIX crash.

SYNOPSIS

restore | ~a) [—s] [£w] [database ... |

DESCRIPTION

Restore is used 10 restore a data base after an INGRES or UNIX crash. It should always be run
after any abnormal termination to ensure the integrity of the data base.

In order to run restore, you must be the DBA for the database you are restoring or the INGRES
superuser and specify the ~s flag.

If no databases are specified then all databases for which you are the DBA are restored. All da-
tabases will be restored if the INGRES superuser has specified the —s flag.

If the —a flag is specified you will be asked before restore takes any serious actions. It is advis-
able to use this flag if you suspect the database is in bad shape. Using /dev/null as input with
the —a flag will provide a report of problems in the data base. If there were no errors while
restoring a database, purge will be called, with the same flags that were given to resrore, to re-
move unwanted files and system temporaries. Restore may be called with the —f and/or —p
flags for purge. Unrecognized files and expired relations are not removed uniess the proper
flags are given. In the case of an incomplete destroy, create or index restore will not delete files
for partially created or destroyed relations. Purge must be called with the —f flag to accomplish
this.

Resrore locks the data base while it is being processed. If a data base is busy resrore will report
this and go on to the next data base. If standard input is not a terminal resiore will wait for the
data base to be free. If the —w flag is set restore will not wait regardless of standard input. If
+w is set it will always wait.

Restore can recover a database from an update which had finished filling the batch file. Updates
which did not make it to this stage should be rerun. Similarly modifies which have finished re-
creating the relation will be completed (the relation relation and attribute relations will be up-
dated). [If a destroy was in progress it will be carried to completion, while a create will almost.
always be backed out. Destroying a relation with an index should destroy the index so restare
may report that a secondary relation has been found with no primary.

If interrupt (signal 2) is received the current database is closed and the next, if any, is pro-
cessed. Quit (signal 3) will cause restore to terminate.

EXAMPLE

restore —f demo
restore —a grants < /dev/null

DIAGNOSTICS

All diagnostics are followed by a tuple from a system relations.

*No relation for attribute(s)™ — the attributes listed have no corresponding entry in the rela-
tion relation
“No primary relation for index’™ — the wple printed is the relation tuple for a secondary index

for which there is no primary relation. The primary probably was destroved the
secondary will be.

No tndexes entry for primary relation”” — the tuple is for a primary relation, the ref'ndxd
domain will be sel to zero. This is the product of an incomplete destroy.

No indexes entry for index™ — the tuple is for a secondary index, the index will be destroved.
This is the product of an incomplete destroy.

“refname is index for”” — an index has been found for a primary which is not marked as in-
dexed. The primary will be so marked. This is probably the product of an incom-
plete index command. The index will have been created properly but not moditied.

“No file for”” — There is no data for this relation tuple, the tuple will be deleted. If. under the

—a option, the tuple is not deleted purge will not be called.

RESTORE (UNIX) 3/14/79 RESTORE (UNIX)

“*No secondary index for indexes entry'’ — An entry has been found in the indexes relation for
which the secondary index does not exist (no relation relation tuple). The entry will
be deleted.

SEE ALSO
purge (unix)

BLGS

If no database names are given, only the databases located in the directory data/base are re-
stored, and not the old databases in datadir. Explicit database names still work for databases in
either directory.

SYSMOD (UNIX) 3/14/79 SYSMOD (UNIX)
NAME
sysmod — modify system relations to predetermined storage struciures.
SYNOPSIS
sysmod | —s) [—w)} dbname [relation] [attribute] [indexes] [tree | [protect] [integri-
ties |

DESCRIPTION
Svsmiod will modify the relation, attribute, indexes, lree, protect, and integrities relations to
hash unless at least one of the relation, attribute, indexes, tree, protect, or integrities parame-
ters are given, in which case only those relations given as parameters are modified. The system
relations are modified 1o gain maximum access performance when running INGRES. The user
must be the data base administrator for the specified database, or be the INGRES superuser and
have the —s flag stated. ,

Svsmod should be run on a data base when it is first created and periodically thereafter to main-
tain peak performance. 1f many relations and secondary indices are created and/or destroyed,
svsmod should be run more often.

If the data base is being used while sysmod is running, errors will occur. Therefore, sysmod will
lock the data base while it is being processed. If the data base is busy, sysmod will report this.
If standard input is not a terminal sysmod will wait for the data base to be free. If —w flag is
stated sysmod will not wait, regardless of standard input. The +w flag causes sysmod to always
walit.

The system relations are modified to hash; the relation relation is keyed on the first domain,
the indexes. attribute, protect, and integrities relations are keyed on the first two domains, and
the tree relation is keyed on domains one, two, and five. The relation and attribute relations
have the minpages option set at 10, the indexes relation has a minpages value of §.

SEE ALSO
madify{(quel)

TIMEFIX (UNIX) 3/14/79 TIMEFIX (UNIX)

NAME

timefix — patch INGRES binary code for correct timezone.

S} NOPSIS

timefix [—ul [=sN] | —tyyyzzz) [—dX] filename ...

DESCRIPTION

Timefix can be used to change the INGRES system to use local time. As delivered, the INGRES
system assumes it is in the Pacific Time Zone, eight hours behind Greenwich Mean Time.
Timefix can automatically patch the necessary INGRES code to reflect the true timezone of your
installation.

INGRES uses the UNIX supplied routine ctime(Ill) for converting the UNIX base time to local
time. Timefixis first compiled on your system in order to get the ctime routine for your installa-
tion. It then can correct the necessary INGRES programs at which point your INGRES system will
be correct and not have to be changed again.

To use rimefix you must be logged in as ingres and then use the setup command:
setup timefix

This command performs the following steps: (1) compiles timefix.c, (2) runs timefix on the
necessary INGRES programs.

If for any reason, timefix.c cannot be compiled on your system, another method exists for up-
dating INGRES. Timefix can be run with the local time expressed using the ~s —t and —d flag
options. Their meanings are:

—sN N is the number of seconds ahead/behind GMT.
=tywnozz yvy and zzz are the two, three character timezone names.
—dX if X is 0, then daylight savings time is disabled, otherwise daylight savings time

will occur according to the rules specified in ctime(1Ii).

The flags can be given in any order. You must be logged in as ingres and then use the serup
command giving the proper time conversions. For example, in Hartford, Connecticut you
would type:

setup timefix —s18000 —tESTEDT —dl

If the —u flag is specified then zimefix reports what it would do bul does not actually update the
files.

EXAMPLES

setup timefix
setup timefix —s18000 —tESTEDT —dli

DIAGNOSTICS

BLGS

Tmmefix depends on the existence of a namelist. If the namelist (i.e. symbol table) is not
present then an error message is given. If all the symbols related to the ciime routine cannot be
found then it is assumed that the file need not be corrected. If the file cannot be opened for
reading and writing then an error message is issued.

Timepiy will not work for timezones which are =10 or =11 hours from GMT.

SEE VLSO
chiimeHD

USERSETUP (UNIX) 3/14/719 USERSETUP (UNIX) ;,
-
NAME ¥
usersetup — setup users file b
SYNOPSIS |

.../bin/usersetup [pathname]

DESCRIPTION } ﬁ
The /etc/passwd file is read and reformatied 10 become the INGRES users file, stored into
.../files/users. If pathname is specified, it replaces **..."". If pathname is **~", the result is !

written to the standard output.

The user name, user, and group id’s are initialized 1o be identical 1o the corresponding entry in
the /etc/passwd file. The status field is initialized 10 be zero, except for user ingres, which is
initialized 1o all permission bits set. The *‘initialization file’’ parameter is set 1o the file .ingres |
in the user’s login directory. The user code field is initialized with sequential two-character |
codes. All other fields are initialized to be null.

Afler running userserup, the users file must be edited. Any users who are to have any special
authorizations should have the status field changed, according to the specifications in
users(files). To disable a user from executing INGRES entirely, completely remove her line
from the users file.

As UNIX uvsers are added or deleted from the /etc/passwd file, the users file will need to be
editted to reflect the changes. For deleted users, it is only necessary to delete the line for that
user from the users file. To add a user, you must assign that user a code in the form "aa" and
enter a line in the users file in the form:
name:cc:uid:gid:status:flags:proctab:initfile::databases

where name is the user name (1aken from the first field of the /etc/passwd file entry for this
user), cc is the user code assigned, which must be exactly two characters long and must not be
the same as any other existing user codes, wid and gid are the user and group ids (taken from
the third and fourth fields in the /etc/passwd entry), status is the status bits for this user, nor-
mally 000000, flags are the default flags for INGRES (on a per-user basis), proctab is the default
process table for this user (which defaults to =proctab6.2), and databases is a list of the data-
bases this user may enter. [f null, she may use all databases. If the first character is a dash
(**=""), the field is a comma separated list of databases which she may not enter. Otherwise, it
is a list of databases which she may enter.

The databases field includes the names of databases which may be created.
Usersetup may be executed only once, to initially create the users file.

.../files/users
/eic/passwd

SEF ALSO
ingres(unix), passwd(V), users(files)

BLGS
it should be able to bring the users file up to date.

"y

DAYFILE (FILES) 3/14/79 DAYFILE (FILES)

NAME
.../files/dayfile6.]1 — INGRES login message

DESCRIPTION
The contents of the dayfile reflect user information of general system interest, and is more or
less analogous to fetc/motd in UNIX. The file has no set format; it is simply copied at login
time to the standard output device by the monitor if the —s or —d oplions have not been re-
quested. Moreover the dayfile is not mandatory, and its absence will not generate errors of any
sort; the same is true when the dayfile is present but not readable.

DBTMPLT (FILES) 3/14/79 DBTMPLT (FILES)

.

NAME
tiles/dbimplt6.2 — database template

DESCRIPTION
This file contains the template for a database used by creardb. It has a set of entries for each

relation to be created in the database. The sets of entries are separated by a blank line. Two
blank lines or an end of file terminate the file.

The first line of the file is the database status and the default relation status, separated by a
colon. The rest of the file describes relations. The first line of each group gives the relation
name followed by an optional relation status, separated by a colon. The rest of the lines in each
group are the attribute name and the type, separated by a tab character.

All the status fields are given in octal, and have a syntax of a single number followed by a list
of pairs of the form

+xxN
which says that if the + x flag is asserted on the creardb command line then set (clear) the bits
specified by M.

The first set of entries must be for the relation catalog, and the second set must be for the attri-
bute catalog.

EXAMPLE
3—c~1+q+2:010023
relation:—~¢c—20

R

4 relid cl2
relowner c2

. relspec il

attribute: —c—20

attrelid cl2

attowner c2

attnamecl2

(other relation descriptors)
SEE ALSO

creatdb(unix)
<
i
4
‘7 4
| 4
:
;
1

P SRRV T P VE SRR

T

e o WAl - M

ERROR (FILES) 3/14/79 ERROR (FILES) 1

NAME
..[iles/error6.2_? — files with INGRFS errors

DESCRIPTION
These files contain the INGRES error messages. There is one file for each thousands digit;
hence, error number 2313 will be in file error6.2_2.
Each file consists of a sequence of error messages with associated error numbers. When an er-
ror enters the front end, the appropriate file is scanned for the correct error number. If found,
the message is printed; otherwise, the first message parameter is printed.
Each message has the format

errnum <TAB> message tilde.

Messages are terminated by the tilde character (*’). The message is scanned before printing.
If the sequence %n is encountered (where # is a digit from 0 to 9), parameter # is substituted,
where %0 is the first parameter.
The parameters can be in any order. For example, an error message can reference %2 before it
references %0.

SEE ALSO
error(UTIL)

EXAMPLE

1003 line %0, bad database name %1~
1005 In the purge of %1,

a bad %0 caused execution to halt”

1006 No process, try again.”

O S

e = e

o

GRAFILE (FILES) 314/79 GRAFILE (FILES)

NAME
-./tiles/grafile6.2 —~ GEO-QUEL login message

DESCRIPTION
The contents of the grafile (GEO-QUEL dayfile) reflect user information of generai system in-
lerest, and is more or less analogous to /etc/motd in UNIX. The file has no set format: it is
simply copied at login time to the standard output device by GEO-QUEL if the —s or —d options
have not been requested. Moreover the grafile is not mandatory, and its absence will not gen-
crate errors of any sort; the same is true when the grafile is present but not readable.

)
i
:
if
f

2B

iy

chiachesloint,

S A,

LIBQ(FILES)

NAME

libg — Equel run-time support library

DESCRIPTION
Libyg alt

be specified when loading equel pre-processed object code. It may be referenced on the com-
mand line of cc by the abbreviation —lIq.

Several

may be employed by the equel programmer o avoid code duplication. They are:

3/14/79 LIBQ (FILES)

the routines necessary for an equel program to foad. It resides in /lib/libq.a, and must

useful routines which are used by equel processes are included in the library. These

int Iatoi(buf, 1)
char *buf;
int i
char *llbmove(source, destination, ien)
char *source, *destination;
int len;
char *liconcatv(buf, argl, arg2, ..., 0) t
char *buf, *argl, ... :
char *llitos(i)
int i
13
int Hsequal(sl, s2) i
char *sl, *s2; :
int Illength(string) %
char *string;
lIsyserr{string, argl, arg2, ...); _
char “*string,
-
latoi Ilatoi is equivalent to atoi(UTIL). :
[Ibmove Moves len bytes from source to destination, returning a pointer to the location after
the last byte moved. Does not append a null byte.
llconcatv Concatenates into bu/ all of its arguments, returning a pointer to the null byte at
the end of the concatenation. Bu/ may not be equal to any of the arg-n but argl.
llitos Ilitos is equivalent 10 itoa(lll).
lisequal Returns 1 iff strings sl is identical to s2.
illength Returns max(length of srring without null byte at end. 255)
Hsyserr Hsyserr is diferrent from syserrfuiil) only in that it will print the name in

[lproc_name. and in that there is no 0 mode. Also. it will always call exit(~])
after printing the error message.

There are also some global Equel variables which may be manipulated by the user:

mt
vhar
char
mnt
mt

Herrflag:
*Hmainpr.
*Hprint_err)();
lret_err():
Hno_err():

LIBQ{FILES) 3/14/79 LIBQ (FILES)

Herrtlag Set on an error from INGRES to be the error number (see the error message sec- j
tion of the “INGRES Reference Manual'") that ocurred. This remains valid from
the time the error occurrs to the time when the next equel statement is issued.
This may be used just after an equel statement to see if it succeded.

Himainpr This is a string which determines which ingres 10 call when a "## ingres” is is-
sued. Initially it is "/usr/bin/ingres”.

Hprint_err This function pointer is used to call a function which determines what (f any) er- 1
ror message should be printed when an ingres error occurs. It is called from ller- ;
ror() with the error number as an argument, and the error message corresponding ‘
to the error number returned will be printed. If (*llprint_err)(<errno>) returns [
0. then no error message will be printed. Initially Iprint_err is set to Ilret_err()
to print the error that ocurred.

IIret_err Returns its single integer argument. Used to have (*Ilprint_err)() cause printing
of the error that ocurred.

i

Py

lIno_err Returns 0. Used to have (*llprint_err)() suppress error message printing.
Ilno_err is used when an error in a parametrized equel statemenr occurs to
suppress printing of the corresponding parser error.

SEE ALSO

atoi(util), bmove(util), cc(l), equel(unix), exit(Il), itoa(Ill), length(util}), sequal(util),
syserr(util) .

PROCTAB (FILES) 3/14/79 PROCTAB (FILES)

NAME

.../tiles/proctab6.2 — INGRES runtime configuration information

DESCRIPTION

The file .../files/proctab6.2 describes the runtime configuration of the INGRES system.

The process table is broken up into logical sections, separaied by lines with a single dollar sign.
The first section describes the configuration of the system and the parameters to pass to each
system module. All other sections contain strings which may be macro-substituted into the first
section.

Each line of the first section describes a single process. The lines consist of a series of colon-
separated fields.

The first field contains the pathname of the module to be executed.

The second field is a set of flags which allow the line to be ignored in certain cases. If this field
is null, the line is accepted; otherwise, it should be a series of items of the form “*+—=X"",
where any of **+ —="" may be omitted, and X is a flag which may appear on the INGRES com-
mand line. The characters **+ —="" are interpreted as the sense of the flag: **+"* will accept
the line if the flag **+ X" is stated on the command line, **—"" will accept if *‘— X ™ is stated,
and **="" will accept if the ** X"’ flag is not stated at all. These may be combined in the forms
“4+="and ‘‘—="". For example, the field:

+=&

will acept the line if the EQUEL flag (‘&™) is stated as **+&" or is not stated, but the line will
be ignored if the ** ~&’" flag is stated.

If any flag item rejects the line, the entire line is rejected.

The third field is a status word. The number in this word is expressed in octal. The bits have
the following meaning:

000010 close diagnostic output

000004 close standard input

000002 run in user’s directory, not database
000001 run as the user, not as INGRES

The fourth field is a file name to which the standard output should be redirected. It is useful
for debugging.

The fifth field describes the pipes which should be connected to this process. The field must be
six characters long, with the characters corresponding to the internal variables R_up, W_up,
R_down, W_down, R_front, and W_front respectively. The characlers may be a question mark,
which leaves the pipe closed: a digit, which is filled in from the file descriptors provided by the
EQUEL flag or the “*@"" flag: or a lower case letter, which is connected via a pipe with any oth-
er pipes having the same letier; this last action is done on the fly to conserve file descriptors.

The sixth and subsequent fields are arbitrasy parameters 1o be sent to the modules. There must
be a colon after the fifth field even if no parameters are present. but there need not be a colon
after the last parameter.

The last module executed (usually the last line in the first section} becomes the parent of all
the other processes.

The second through last sections of the process table consist of a single line which names the
section followed by arbitrary text. The pathname field and all parameter fields of each line of
the tirst section are scanned for strings of the form “*Sname ™. this siring is replaced by the text
from the corresponding section. For convenience. the name Spathname is automatically
defined to be the pathname of the root of the INGRES subtree.

The DBU routines want 1o see two parameters. The first parameter is the pathname of the
“ksort " routine. The second parameter is a series of lines of the form:

SEELL PNV GNPy e T O

PROCTABUFILES) 3/14/79 PROCTAB (FILES)

command_name:place_list

where command_name is the name of one of the possible INGRES commands executed by the
DBU routines, and place _list is o comma-separated list of the actual location(s) of that com-
mand. Each “‘place’™ is a two-character descriptor: the first characier is the overlay in which
thiat command resides, and the second character is the function within that overlay. If a com-
mand is in more than one place, INGRES will try to avoid calling in another overlay. For exam-
ple:

create:al, mi
means that the create command may be found in overlay ‘'a’’ function O or in overlay “m"

Y9 L)

function 1. If already in overlay *‘a’” or **'m’’ the create command resident in that overlay will
be called; otherwise, overlay ‘*a” will be called.

EXAMPLE

The following example will execute a three process system unless the ‘&’ flag is specified (as
**— &), when a two-process system will be executed with the monitor dropped out and the cal-
ling (EQUEL) program in its place. Notice that there are two lines for the parser entry, one for
the EQUEL case and one for the non-EQUEL case. In the EQUEL case, output from the
parser is diverted to a file called ‘‘debug.out’.

' $pathname/bin/overlaya::000014::bc??23:$pathname/bin/ksort:$dbutab
$pathname/bin/parser: + = &:000014::adcb?7:
$pathname/bin/parser: — &:000014:debug.out:01cb??:
$pathname/bin/monitor: + = &:000003::? 7da? ?:$pathname/files/startup
$

dbutab

create:a0,m1

destroy:al,m2

modify:mQ

help:a2

$

o T FAS SV A O UMLAMENRR TS e T At v

STARTUP (FILES) 3/14/79 STARTUP (FILES)

.

NAME
Jtiles/startup — INGRES startup file

DESCRIPTION
This file is read by the monitor at login time. It is read before the user startup file specified in

the users file. The primary purpose is to define a new editor and/or shell 10 call with the \e or
\s commands.

SEE ALSO
monitor{quel), users{files)

2l

e P I

TIYTYPL (FILES) 3/28/19 TTYTYPE (FILES)

NAME
iles/uvtype — GEO-QUEL terminal type database

DESCRIPTION)
The ttytype file describes each terminal on your system. GEO-QUEL will not attempt to display
graphical output on terminals that are not capable of displaying it. There is a sample of the file
i .../geoquel/ttytype.sample. This is a copy of the file in use on the Berkeley system.

The ttytype file consists of a series of lines; the first character is the terminal id, and the rest of
the hine tells the type of the werminal. The first of these characters is a terminal class, and the
rest signify the brand, or some other more descriptive indication. A completely blank line ter-
minates the useful part of the file, after which comments may appear unrestricted. In the sam-
ple file the currently recognized (defined) terminal types are listed as comments.

BLGS
The current version of GEO-QUEL only looks for terminals of graphic nature and therefore only
the graphic terminals need be in this database. If any other system or sub-system wishes to use
this fife, all terminals must be kept up to date.

P N .."Bi’ﬂ\» FEP

.
" R— -~ - 2

IR

F AR A

TN

USERS (FILES) 3/14/719 USERS (FILES)

NAME
.../filesfusers — INGRES user codes and parameters

DESCRIPTION
This file contains the user information in fields seperated by colons. The fields are as foliows:
* User name, taken directly from /etc/passwd file.
* User code, assigned by the INGRES super-user. It must be a unique two character code.
* UNIX user id. This MUST match the entry in the /etc/passwd file.
* UNIX group id. Same comment applies.
* Status word in octal. Bit values are:

0000001 creatdb permission

0000002 permits batch update override
0000004 permits update of system catalogs
0000020 can use trace flags

0000040 can turn off grymod

0000100 can use arbitrary proctabs
0000200 can use the =proctab form
0100000 ingres superuser

* A list of flags automatically set for this user.

* The process table to use for this user.

* An initialization file to read be read by the monitor at login time.

* Unassigned.

* Comma seperated list of databases. If this list is null, the user may enter any database. If it
begins with a *—", the user may enter any database except the named databases. Oth-
erwise, the user may only enter the named databases.

EXAMPLE
ingres:aa:5:2:177777. —d: =special:/mnt/ingres/ .ingres::
guest:ah:35:1:000000:::::demo,guest

SEE ALSO
initucode (util)

INTRODUCTION (ERROR) 3/30/79 INTRODUCTION (ERROR)

NAME
Error messages introduction

DESCRIPTION
This document describes the error returns which are possible from the INGRES data base system
and gives an expianation of the probabie reason for their occurrence. In all cases the errors are
numbered mox where 2 indicates the source of the error, according to the following table:

1 = EQUEL preprocessor

2 = parser

3 = query modification

4 = decomposition and one variable query processor
§ = data base utilities

30 = GEO-QUEL errors

For a description of these routines the reader is referred to The Design and Implementation of
INGRES. The xxxin an error number is an arbitrary identifier.

The error messages are stored in the file .../files/error6.2_n, where n is defined as above. The
format of these files is the error number, a tab character, the message to be printed, and the
tilde character (**=**) to delimit the message.

In addition many error messages have “‘%/" in their body where /is a digit interpreted as an
offset into a list of parameters returned by the source of the error. This indicates that a param-
eter will be inserted by the error handler into the error return. In most cases this parameter
will be salf explanatory in meaning.

Where the error message is thought 10 be compietely self explanatory, no additional description
is provided.

EQUEL (ERROR) 3/30/79 EQUEL (ERROR)
7z

NAME

EQUEL error message summary

SYNOPSIS

Error numbers 1000 — 1999,

DESCRIPTION

The following errors can be generated at run time by EQUEL programs.

ERRORS
1000

1001

1002

1003

1004

In domain %0 numeric retrieved into char fieid.

Equel does not support conversion at run-time of numeric data from the data base 1o
character string representation. Hence, if you attempt to assign a domain of numeric
type to a C-variable of type character string, you will get this error message. To con-
vert numerics to characters use the "ascii” function in QUEL.

~ Numeric overflow during retrieve on domain %0.

You will get this error if you attempt to assign a numeric data base domain to a C-
variable of a numeric type but with a shorter length. In this case the conversion
routines may generate an overflow. For example, this error will resuit from an attempt
10 retrieve a large floating point number into a C-variable of type integer.

In domain %0, character retrieved into numeric variable.
This error is the converse of error 1000.

Bad type in target list of parameterized retrieve "%0".
Valid types are %f8, %f4, %id, %i2, %c.

Bad type in target list of parameterized statement "%0".
Valid types are %f8, %f4, %id4, %i2, %il, %c.

s

PARSER (ERROR) 3/30/79 PARSER { ERROR) i

NAME
Parser error message summary

SYNOPSIS ;
Error numbers 2000 — 2999. E

DESCRIPTION !

The following errors can be generated by the parser. The parser reads vour query and translates

it into the appropriate internal form: thus, aimost all of these errors indicate synwax or type
conflict problems.

ERRORS
2100 line %0, Attribute ‘%1’ not in relation %2’

This indicates that in a given line of the execuied workspace the indicated attribute
name is not a domain in the indicated relatioa.

2103 line %0, Function type does not maich type of atribute %1’

This error will be returned if a function expecting numeric data is given a character
siring or vice versa. For example. it is illegal 1o take the SIN of a character domain.

2106 line %0, Data base utility command buffer overflow

This error will result if a utility command is too long for the buffer space allocated 10 it
in the parser. You must shorten the command or recomnpile the parser. {

2107 line %0, You are not allowed to update this relation: %l

This error will be returned if you attempt to update any system relation or secondary
index directly in QUEL (such as the RELATION relation). Such operations which
compromise the integrity of the data base are not allowed.

2108 line %0, Invalid result relation for APPEND ‘%1’

This error message will occur if you execute an append command to a relation that f
does not exist, or that you cannot access. For example. append to junk(...) will fail if 5
junk does not exist. '

2109 line %0, Variable %1’ not declared in RANGE statement

Here. a symbol was used in a QUEL expression in a place where a tuple variable was
expected and this symbol was not defined via a RANGE statement.

2111 line %0, Too many attributes in key for INDEX

A secondary index may have no more than 6 keys.
2117 line %0, Invalid relation name %1" in RANGE statement

You are declaring a tuple variable which ranges over a relation which does not exist. :
2118 line %0, Out of space in query tree - Query {00 long .‘i

You have the misfortune of creating a query which is too long for the parser to digest. ,
The only options are to shorten the query or recompile the parser to have more buffer
space for the query tree.

2119 line %0, MOD operator not defined for floating point or character attributes
The mod operator is only defined for integers.
2120 line %0. no pattern match operators allowed in the target list
Pattern match operators (such as ***"’) can only be used in a qualification.
2121 line %0. Only character tvpe domains are aliowed in CONCAT operator

1

PARSER (ERROR) 3/30/79 PARSER (ERROR)

2123

2125
2126
2127

2128

2129

2130

2132

2133

2134

2135

2136
2137
2138

2139

2500

line %0, "%1.all" not defined for replace

line %0, Cannot use aggregates ("avg” or "avgu”) on character values

line %0. Cannot use aggregates ("sum” or "sumu”) on characier values

line %0. Cannot use numerical functions (ATAN., COS, GAMMA, LOG, SIN, SQRT,
EXP. ABS) on character values

line %0, Cannot use unary operators ("+" or "~") on character values

line %0, Numeric operations (+ = * /) not allowed on character values

Many functions and operators are meaningless when applied 10 character values.
line %0, Too many result domains in targe: list

Maximum number of result domains is MAXDOM (currently 49).

line %0, Too many aggregates in this query

Maximum number of aggregaies allowed in a query is MAXAGG (currently 49).
line %0, Type conflict on relational operator

It is not legal to compare a character type to a numeric type.

line %0, "%1° is not a constant operator.
Only ‘dba’ or ‘usercode’ are allowed.

line %0, You cannot duplicate the name of an existing relation(%]1)

You have tried to create a relation which would redefine an existing relation. Choose
another name.

line %0, There is no such hour as %1, use a 24 hour clock system
line %0, There is no such minute as %1, use a 24 hour clock system
line %0, There is no such time as 24:%1. use a 24 hour clock system

Errors 2136-38 indicate that you have used a bad time in a permit statement. Legal
times are from 0:00 10 24:00 inclusive.

line %0, Your database does not support query modification

You have tried to issue a query modification statement (define), but the database was
created with the =-g flag. To use the facilities made available by query modification.
you must say:

creatdb —e +q dbname
10 the shell,

svatax error on line %0
last symbol read was: %1

A 2500 error is reported by the parser if it cannot otherwise classify the error. One
common way to obtain this error is to omit the required parentheses around the target
list. The parser reports the last symbol which was obtained from the scanner. Some-
times, the last symbol is far ahead of the actual place where the error occurred. The
string "EOF" is used for the last symbol when the parser has read past the query.

line %0, The word ‘%1°, cannot follow a RETRIEVE command, therefore the com-
mand was not executed.

line %0. The word "% 1°, cannot follow an APPEND command, therefore the command
was not executed.

line %0, The word ‘%1, cannot follow a REPLACE command, therefore the command
was not executed.

line %0, The word "%1°. cannot follow a DELETE command, therefore the command
was not executed.

line %0. The word “%1’, cannot follow a DESTROY command. therefore the com-
mand was not sxecuted.

line %0. The word “%1°, cannot foliow a HELP command. therefore the command was

.2.

LT T s 47 s I VTR

e e

I

PARSER (ERROR) 3/30/79 PARSER (ERROR)

2508
2509
2510
2511
2512
2513
2514
2515

2700

2701

2702

2703

2704

2705

2707

2709

not executed.

line %0, The word “%1°, cannot follow a MODIFY command, therefore the command
was not executed.

line %0, The word ‘%1°, cannot follow 2 PRINT command. therefore the command
was not executed.

line %0, The word ‘%1°, cannot follow a RETRIEVE UNIQUE command, therefore
the command was not executed.

line %0, The word ‘%1°, cannot follow a DEFINE VIEW command, therefore the
command was not executed.

line %0, The word “%1°, cannot follow a HELP VIEW, HELP INTEGRITY, or HELP
PERMIT command. therefore the command was not executed.

line %0, The word “%]1°, cannot follow a DEFINE PERMIT command. therefore the
command was not executed.

line %0, The word “%1°, cannot follow a DEFINE INTEGRITY command, therefors
the command was not executed.

line %0, The word %1, cannot follow a DESTROY INTEGRITY or DESTROY PER-
MIT command, therefore the command was not executed.

Errors 2502 through 2515 indicate that after an otherwise valid query, there was some-
thing which could not begin another command. The query was therefore aborted.
since this could have been caused by misspelling where or something equally as
dangerous.

line %0, non-terminated string
You have omitted the required string terminator (*).
line %0, string too long

Somehow, you have had the persistence or misfortune 10 enter a character string con-
stant longer than 255 characters.

line %0, invalid operator

You have entered a character which is not alphanumeric. but which is not a defined
operator, for example, "?".

line %0, Name too long ‘%1’

In INGRES relation names and domain names are limited to 12 characters.

line %0, Out of space in symbol table - Query too long

Your query is too big to process. Try breaking it up with more \go commands.
line %0, non-terminated comment

You have left off the comment terminator symbol (‘*s/"").

line %0, bad floating constant: %1

Either your floating constant was incorrectly specified or it was too large or 100 small.
Currently, overflow and underflow are not checked.

line %0, control character passed in pre-converted string

In EQUEL a controi character became embedded in a string and was not caught until the
scanner was processing it.

line %0, buffer overflow in converting a number

Numbers cannot exceed 256 characters in length. This shouldn't become a problem
until number formats in INGRES are increased greatly.

oy,

QRYMOD (ERROR) 3/30/79 QRYMOD (ERROR)
NAME
Query Modification error message summary
SYNOPSIS
Error numbers 3000 — 3999,
DESCRIPTION

These error messages are generated by the Query Modification module. These errors inciude
syntactic and semantic problems from view, integrity. and protection definition, as well as run
time errors — such as inability to update a view, or a protection violation.

ERRORS
3310 %0 on view %!: cannot update some domain

You tried to perform operation %0 on a view: however, that update is not defined.
3320 %0 on view %]: domain occurs in qualification of view

It is not possible to update a2 domain in the qualification of a view, since this could
cause the tuple 1o disappear from the view.

3330 %o on view %1: update would result in more than one query

You tried to perform some update on a view which would update two underlying rela-
tions.

3340 %0 on view %1: views do not have TID’s

You tried to use the Tuple IDentifier field of a view, which is undefined.
3350 %0 on view %1: cannot update an aggregate value

You cannot update a value which is defined in the view definition as an aggregate,
3360 %0 on view %1: that update might be non-functional

There is a chance that the resulting update would be non-functional, that is. that it
may have some unexpected side effects. INGRES takes the attitude that it is betier 10
not try the update.

3490 INTEGRITY on %l: cannot handle aggregates yet

You cannot define integrity constraints which include aggregates.
3491 INTEGRITY on %1: cannot handle multivariable constraints

You cannot define integrity constraints on more than a single variable.
3492 INTEGRITY on %1: constraint does not initially hold

When vou defined thg constraint, there were alreadv tuples in the relation which did
not satisfy the constraint. f.’ou must fix the relation so that the constraint holds before
you can declare the constraint.

3493 INTEGRITY on %l: is a view

You can not define integrity constraints on views.
3494 INTEGRITY on %!1: You must own “%1°

You must own the relation when you declare integrity constraints.
3500 %0 on relation %1: protection violation

You have tried 10 perform an operation which is not permitied to you.
3590 PERMIT: bad terminal identifier "%2"

In a permu staiement, the terminal identifier field was improper.

e . . e TS . A ae e e e

'Y

A

QRYMOD (ERROR ; 3/30/79 QRYMOD (ERROR)

PERMIT: bad user name "%2"

You have used a user name which is not defined on the system.
PERMIT: Relation ‘%1’ not owned by vou

You must own the relation before issuing protection constraints.
PERMIT: Relation “%1° must be a real relation (not a view)
You can not define permissions on views.

PERMIT on %!]1: bad day-of-week %2’

The day-of-week code was unrecognized.

PERMIT on %1: only the DBA can use the PERMIT statement

Since only the DBA can have shared relations, only the DBA can issue permir state-
ments.

Tree buffer overflow in query modification
Tree build stack overflow in query modification

Bad news. An internal buffer has overflowed. Some expression is too large. Try mak-
ing your expressions smaller.

OVQP (ERROR) 3730/79 OVQP (ERROR)

NAME

One Variable Query Processor error message summary
SYNOPSIS

Error numbers 4000 ~ 4499,
DESCRIPTION

These error messages can be generated at run time. The One Variable Query Processor actually
references the data, processing the tree produced by the parser. Thus. these error messages are
associated with type conflicts detected at run time.

ERRORS
4100 OVQP query list overflowed

This error is produced in the unlikely event that the internal form of your inleraciion
requires more space in the one variable query processor than has been allocated for a
query buffer. There is not much you can do except shorien your interaction or recom-
pile OVQP with a larger query buffer.

4101 aumeric operation vsing char and numeric domains not aliowed

Occasionaily. you will be notified by OVQP of such a type mismatch on arithmetic
operations. This only happens if the parser has not recognized the problem.

4102 unary operators are not allowed on character values

4103 binary operators cannot accept combinations of char and numeric fields
4104 cannot use aggregate operator "sum" on character domains

4108 cannot use aggregate operator "avg" on character domains

These errors indicate type mismatches — such as trying to add a number to a character
string.

4106 the interpreters stack overflowed -- query too long
4107 the buffer for ASCIl and CONCAT commands overflowed

More buffer overflows.

4108 cannot use arithmetic operators on two character fields
4109 cannot use numeric values with CONCAT operator

You have tried to perform a numeric operation on character fieids.
4110 floating point exception occurred.

If you have floating point hardware instead of the floating point sofiware inierpreter,
you will get this error upon a floating point exception (underflow or overflow). Since
the software interpreter ignores such exceptions, this error is only possibie with float-
ing point hardware.

4111 character value cannot be converied to numeric due to incorrect syntax.

When using intl, int2. int4, floatd, or float8 1o convert a character 10 value !0 2
numeric value, the character value must have the proper syntax. This error will occur
if the character value contained non-numeric characters.

4112 ovqp query vector overflowed
Similar to error 4100.

4199 vou must convert your 6.0 secondary index before running this query'

The internal format of secondary indices was changed between versions 6.0 and 6.1 of
INGRES. Before deciding to use a secondary index OVQP checks that it is not a 6.0 in-
dex. The solution is to destroy the secondary index and recreate it.

DECOMP (ERROR) 3/30/79 DECOMP (ERROR)

NAME
Decomposition error message summary

SYNOPSIS
Error numbers 4500 ~ 4999.

DESCRIPTION
These error messages are associated with the process of decomposing a multi-variable query
in1o a sequence of one variable queries which can be executed by OVQP.

ERRORS
4602 query involves too many relations to create aggregate function intermediate rasuit.

In the processing of aggregate functions it is usually necessary to creaie an intermedi-
ate relation for each aggregate function. However, no query may have more than ten
variables. Since aggregate functions implicitly increase the number of variables in the
query, you can exceed this limit. You must either break the interaction apart and pro-
cess the aggregai - functions separately or you must recompile INGRES (0 support more
variables per query.

4610 Query too long for available buffer space (gbufsize).
4611 Query too long for available buffer space (varbufsiz)
4612 Query too long for avaiiable buffer space (sqsiz)
4613 Query too long for available buffer space (stacksiz)
4614 Query too long for available buffer space (agbufsiz).

These will happen if the internal form of the interaction processed by decomp is oo
long for the available buffer space. You must either shorten your interaction or
recompile decomp. The name in parenthesis gives the internal name of which buffer
was 100 small.

4615 Aggregate function is too wide or has too many domains.

The internal form of an aggregate function must not contain more than 49 domains or
be more than 498 bytes wide. Try breaking the aggregate function into two or more
parts.

4620 Target list for "retrieve unique” has more than 49 domains or is wider than 498 bytes.

DBU (ERROR ! 3/30/79 DBU (ERROR
NAME .
Dara Base Utility error message summary
SYNOPSIS
Error numbers 5000 — 5999
DESCRIPTION

The Dauwa Base Utility functions perform aimost all tasks which are not directly associated with
processing queries. The error messages which they can generate result from some svnlax
checking and a considerable amount of semantic checking.

ERRORS
5001 PRINT: bad relation name %0

You are trying 1o print a refation which doesn’t exist.
5002 PRINT: %0 is a view and can’t be printed

The oniy way to print a view is by retrieving it.
5003 PRINT: Relation %0 is protected.

You are not authorized 10 access this relation.
3102 CREATE: duplicate relation name %0

You are irving to create a relation which already exists.
5103 CREATE: %0 is a sysiem relation

You cannet create a relation with the same name as a system relation. The sysiem
depends on the fact that the system relations are unique.

5104 CREATE %0: invalid attribute name %]

This will happen if you try to create a relation with an attribute longer thar (2 charac-
ters.

5105 CREATE %0: duplicate attribute name %]

Attribute names in a relation must be unique. You are trying to create one with a du-
plicated name.

5106 CREATE %0: invalid attribute format "%2" on atiribute %1

The allowed formats for a domain are ¢l ~¢255, il, i2, i4, f4 and f8. Any other for-
mat will generate this error.

5107 CREATE %0: excessive domain count on attribute %]

A relation cannot have more than 49 domains. The origin of this magic number is ob-
scure. This is very difficult to change.

5108 CREATE %0: excessive relation width on attribute %1

The maximum number of bytes allowed in a tupie is 498. This results from the deci-
sion that a tupie must fit on one UNIX "page”. Assorted pointers require the {4 bytes
which separates 498 from 512. This "magic number” is very hard to change.

3201 DESTROY: %0 is a system relation

The system would immediately stop working if you were allowed to do this.
5202 DESTROY: %0 does not exist or is not owned by you

To destroy a relation, it must exist, and you must own it.
5203 DESTROY: %0 is an invalid integrity constraint identifier

Integers given do not identify integrity constraints on the specified relation. For exam-
pie: If you were 10 type "destroy permit parts 1, 2, 3", and 1. 2. or 3 were not the

DBU (ERROR) 3/30/79 DBU (ERROR)

[numbers "help permit parts” prints out for permissions on parts. you would get this er-
' ror. '

5204 DESTROY: %0 is an invalid protection constraint identifier

Integers given do not identify protection constraints on the specified relation. Example
as for error 5203.

5300 INDEX: cannot find primary relation
The relation does not exist — check vour spelling. v
5301 INDEX: more than maximum number of domains [1
A secondary index can be created on at most six domains. !
5302 INDEX: invalid domain %0 ‘
You have tried to create an index on a domain which does not exist.
3303 INDEX: relation %0 not owned by you
You must own relations to put indicies on them.
5304 INDEX: relation %0 is already an index
INGRES does not permit tertiarv indicies.
5305 INDEX: relation %0 is a system relation
Secondary indices cannot be created on sysiem relations.
5306 INDEX: %0 is a view and an index can’t be built on it

Since views are not physically stored in the database, vou cannot build indicies on
them.

5401 HELP: relation %0 does not exist
5402 HELP: cannot find manual section "%0"

Either the desired manual section does not exist. or your system does not have any
on-line documentation.

5403 HELP: relation %0 is not a view

Did a “help view" (which prints view definition) on a nonview. For exampie: "help
view overpaidv" prints out overpaidv's view definition.

5404 HELP: relation %0 has no permissions on it granted
5405 HELP: relation %0 has no integrity constraints on it

You have tried to print the permissions or integrity constraints on a relation which has
none specified.

5410 HELP: tree buffer overflowed
5411 HELP: tree stack overflowed

Still more buffer overflows.
3500 MODIFY': relation %0 does not exist
3301 MODIFY: you do not own relation %0

You cannot modify the storage structure of a reiation you do not own.
2302 MODIFY %0: you may not provide keys on a heap

Bv definition, heaps do not have keys.

MODIFY %0: 100 many keys provided

“ sy zan onlv have 49 kevs on any rejation.

DBU (ERROR)

5504

5507

5508

5513
3516

5517
5518

5519

W
(¥
~
o

3600

5601
5602
3603

3/30/79 DBU (ERROR)

MODIFY %0: cannot modify system relation

System relations can only be modified by using the svsmod command to the sheil: for
exampie

sysmod dbname
MODIFY %0: duplicate key "%1"
You may oniv specify a domain as a key once.
MODIFY %0: key width (%1) too large for isam

When modifying a relation to isam, the sum of the width of the key felds cannot
exceed 245 byvies.

MODIFY %0: bad storage structure "%1"

The valid storage structure names are heap, cheap, isam, cisam, hash, and chash.
MODIFY %0: bad attribute name "%1"

You have specified an attribute that does not exist in the relation.

MODIFY %0: "%1" not allowed or specified more than once

You have specified a parameter which conflicts with another parameter, is inconststant
with the slorage mode. or which has already been specified.

MODIFY %0: flifactor value %1 out of bounds

Fillfacior must be between 1 and 100 percent.

MODIFY %0: minpages value %1 out of bounds

Minpages must be greater than zero.

MODIFY %0: "%1" should be "fillfactor”, "maxpages”, or "minpages”
You have specified an unknown parameter to modify.

MODIFY %0: maxpages vaiue %1 out of bounds

MODIFY %0: minpages value exceeds maxpages value

MODIFY %0: invalid sequence specifier "%1" for domain %2.

Sequence specifier may be “‘ascending’’ (or **a"") or ‘‘descending’ (or *‘d"") in a modij-
A. For example:

modify parts to heapsort on
pnum:ascending,
pname:descending

MODIFY: %0 is a view and can't be modified
Only physical rejations can be modified.

MODIFY: %0: sequence specifier "%1" on domain %2 is not allowed with the specified
storage structure.

Sortorder may be subplied only when modifying to heapsort or cheapsort.
SAVE. cannot save system relation "%0”

Sysiem relations have no save date and are guaranteed 1o siay for the lifetime of the
data base.

SAVE: bad month "%0"
SAVE: bad day "%0"
SAVE: bad year "%0"

DBU (ERROR) 3/30/79 DBU (ERROR) |
{

This was a bad month, bad day. or maybe even a bad year for INGRES. j

5604 SAVE: relation %0 does not exist or is not owned by you 4

5800 COPY: relation %0 doesn’t exist)

5801 COPY: attribute %0 in relation %1 doesn’t exist or it has been listed twice " 1

5805 COPY: too many attributes ; J

Each dummy domain and real domain listed in the copy statement count as one attfi- f
bute. The limit is 150 attributes. i

5804 COPY: bad length for attribute %0. Length="%]"
5805 COPY: can't open file %0 1
; On a copy "from”, the file is not readable by the user.
'} 5806 COPY: can't create file %0

] On a copy "into". the file is not creatable by the user. This is usually caused by the
! user not having write permission in the specified directory.

5807 COPY: unrecognizable dummy domain "%0"

On a copy "into". a dummy domain name is used to insert certain characters into the
unix file. The domain name given is not valid.

5808 COPY: domain %0 size too small for conversion.
There were %2 tuples successfully copied from %3 into %4

When doing any copy excep! character to character, copy checks thai the field is large }
enough to hold the value being copied. ‘ !
{
}

A

5809 COPY: bad input string for domain %0. Input was "%1". There were %2 tuples suc-
cessfully copied from %3 into %4

{

1

This occurs when converting character strings to integers or floating point numbers.]

The character string contains something other than numeric characters (0-)
9,+,—,blank.etc.).)

5810 COPY: unexpected end of file while filling domain %0. ‘
There were %! tuples successfully copied from %2 into %3 b

5811 COPY: bad type for atiribute %0. Type="%1"
The only accepted types are i. f, ¢, and d.

5812 COPY: The relation "%0" has a secondary index. The index(es) must be destroved be-
fore doing a copy "from”

Copy cannot update secondary indices. Therefore. a copy "from” cannot be done on
an indexed relation.

5813 COPY: You are not allowed to update the relation %0 ‘
You cannot copy into a system relation or secondary index.
5814 COPY: You do not own the relation %0.

You cannot use copy o update a relation which you do not own. A copy "into” is al-
iowed but a copy "from” is not.

1 5815 COPY: An unterminated "c0" field occurred while filling domain %0. There were %]
: tuples successfully copied from %2 into %3 ﬂ

A string read on a copy “from” using the "c0" option cannot be longer than 1024 char-
acters.

381¢ COPY: The full pathname must be specified for the file %0

DBU (ERROR}

5817

5818

5819

5820
5821

5822

3/30/79 DBU (ERROR)

The file name for copy must start with a /",
COPY: The maximum width of the output file cannot exceed 1024 bvies per tuple

The amount of data to be output to the file for each tuple exceeds 1024. This usually
happens only if a format was mistyped or a lot of large dummy domains were specified.

COPY: %0 is a view and can’t be copied

Only physical relations can be copied.

COPY: Warning: %0 duplicate tuples were ignored.

On a copy "from". duplicate tuples were present in the reiation.

COPY: Warning: %0 domains had control characters which were converted to blanks.
COPY: Warning: %0 ¢0 character domains were truncated.

Character domains in ¢O format are of the same length as the domain length. You had
a domain vaiue greater than this length, and it was truncated.

COPY: Relation %0 is protected.
You are not authorized to access this relation.

. wagps e - - o e "
= bl Nl S habe L A o, EAS TS T W4

9 oo i

i

il o -

GEOQUEL (ERROR) 3/30/19 : GEOQUEL (ERROR)

NAME

GEO-QUEL error message summary

SYNOPSIS

Error numbers 30000 — 30999.

DESCRIPTION

The foillowing errors can be generated by the GEO-QUEL subsystem of INGRES. These errors are
all associated with errors in the graphics processor.

ERRORS
30210

30300

30301
30310
30330
30331
30332
30340

30341

30342
30350
30400
30401
30402
30410
30420
30421
30422
30423
30424
30425

GEO-QUEL is creating a MAPRELATION relation

line %0, In attempting to do a MAP, SHADE, or OVERLAY the relation %1’ does
not exist or is not owned by vou

line %0, Failed 10 obtain information to put a tuple in MAPRELATION refation
line %0. Failed to complete MAP

line %0, Failed while building temporary relation in SHADE command

line %0, Maximum polygon value is 0.0 which causes floating point exception
line %0, Too many sides (maxside) in polygon (zoneid: %1, groupid: %2}

line %0, Failed while trying to obtain range limits for axes in POINTGRAPH or LINE-
GRAPH

line %0, The linetype specified (%1) in the linegraph command does not make sense
for the device

line %0, %I does not exist ur cannot be accessed by you

line %0. There is no current center definition for this map: %l

line %0, Error in creating destination file "%1" in SAVEMAP

line %0, Too many domains for SHADE (shadedoms)

line %0, Too many domains for POINTGRAPH of LINEGRAPH (graphdoms)
line %0, Error in creating destination file ‘%1" in SAVEMAP

line %0, You may specifv only one boundary when using ‘celicount” and "cellwidth’
line "0, Only one cellwidth per command has meaning

line %0. Only one ceilcount per command has meaning

line %0, Only one upper bound per command has meaning

line %0, Oniy one lower bound per command has meaning

line %0, %1 does not exist or cannot be accessed by vou

S 1 NI A v e

