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Abstract

Graph theory owes many powerful ideas and con�
structions to geometry� Several well�known families
of graphs arise as intersection graphs of certain ge�
ometric objects� Skeleta of polyhedra are natural
sources of graphs� Operations on polyhedra and
maps give rise to various interesting graphs� An�
other source of graphs are geometric con�gurations
where the relation of incidence determines the adja�
cency in the graph� Interesting graphs possess some
inner structure which allows them to be described
by labeling smaller graphs� The notion of covering
graphs is explored�

� Introduction

We assume that the reader is familiar with basic
mathematics� For instance� we will not give any
geometric introduction� We expect that the reader
is familiar with concepts such as group� graph� ma�
trix� and permutation� but we do not require any
advanced knowledge of any of these topics� We do
not give any rigorous de�nition of surface or map
on a surface�

Books listed among our references� ��� �� 	� 
� ���
��� �
� ��� �
� �
� ��� ��� ��� ��� �	� ��� ��� �	� �
�
provide a spectrum of bacground material spanned

�Work supported in part by the grants J������ and J��

���� of Ministry of Science and Technology of Slovenia�

between motivating and introductory chapters for
general readership and ranging up to advanced and
rigorous monographs that can be used as a follow�
up to those readers who would really like to special�
ize their knowledge in a particular theme that we
touch here�

� Intersection Graphs

Given a set of n points V � fv�� v�� � � � � vng in some
metric space and a positive number r � �� we may
draw n closed balls Bi �� B�vi� r�� i � �� �� � � � � n�
each ball Bi centered at vi and having radius r�
De�ne a graph G�V� r� as follows� The vertices are
the n selected points� Two vertices vi and vj are
adjacent i� the corresponding balls intersect� i�e� if
Bi �Bj �� �� The radius r will be called a unit and
the graph the unit sphere graph�
We will use the notation �D to represent the stan�

dard Euclidean plane and �D to represent Euclidean
��dimensional space� �D can be used to denote the
real line�
If we take the metric space �D or �D� we can

easily represent a unit sphere graph G in the space
itself� We represent the vertices by the points and
draw a line segment from vi to vj for any pair of
adjacent vertices of the graph G�
Here are some speci�c examples�

Example � Let us select the following points in
the Euclidean plane� �x� y�� x � f�� �� � � � � ag� y �

�
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Figure �� The grid graph Gr��� ��� This is the same
as the Cartesian product of paths P� and P��

f�� �� � � � � bg� Hence n � ab� Let r � ���� The
unit sphere graph is the well�known a� b grid graph
Gr�a� b�� The grid graph is also known in graph the�
ory as the Cartesian product of the paths Pa and Pb�
Figure � shows the case for a � � and b � ��

In order to understand better the nature of unit
sphere graphs� one can do at least two experiments�
One can keep the set of vertices V �xed and change
the unit r� For � � r � ��� we get the graph
consisting of ab isolated vertices and no edges� For
��� � r �

p
��� we get the grid graph �Figure ���

For
p
��� � r � � we get the graph that is obtained

fromGr�a� b� by adding the pair of diagonals in each
unit square �Figure ���

This graph is also known as the strong prod�
uct of paths Pa and Pb� Obviously a unit sphere
graph with a smaller value of r is a subgraph of
the unit sphere graph with a larger unit sphere
value� However� to determine the number of dis�
tinct unit sphere graphs even for regular con�g�
urations of points such as the grid con�guration
seems to be nontrivial� For a given pair of inte�
gers � � a � b one can write a computer program
that will determine the number t�a� b� of distinct
unit sphere graphs� For a given set V one can do
the same thing and determine the number of dis�
tinct unit sphere graphs t�V �� One way of getting
the result is to calculate the n � n symmetric dis�
tance matrix D�V � with � on the main diagonal in
which the entry in the i�th row and j�th column is
given as the distance between vi and vj � Then t�V �
is simply the number of distinct values in D�V ��
Since there are at most n�n����� edges in a graph
with n vertices� there are at most ��n�n����� dis�
tinct unit sphere graphs� If we select n points in the
real line �D with coordinates� �� �� 
� 
� � � � � �n�� we
can see that all n�n� ���� di�erences are distinct�
The points give rise to the maximum possible num�
ber of unit sphere graphs� If we select n equidistant

Figure �� The strong product of paths P� and P��

points on the line� we get only n distinct unit sphere
graphs� The reader may prove that we cannot re�
duce this number� In �D we can do much better
if we select the points as the vertices of the regular
n�gon� There are only ��bn��c unit sphere graphs�
For a given n� �nd the minimum in �D and also in
�D�
Unit sphere graphs admit various generalizations

and modi�cations� The most obvious one would be
that each point vi carries its own radius ri� The
balls Bi �� B�vi� ri� now have di�erent radii� how�
ever� the condition remains the same� One can
consider the case of n radio stations with di�erent
ranges broadcasting on various frequencies� There
is interference if a listener can listen to two dif�
ferent radio stations broadcasting on the same fre�
quency� We may model the situation by a sphere
graph� Each vertex of the graph is assigned a fre�
quency �color�� The broadcasting has no interfer�
ence if and only if the corresponding graph is prop�
erly colored �no two adjacent vertices are assigned
the same color�� Minimizing the number of frequen�
cies is equivalent to �nding the chromatic number
of the graph �i�e� the least number of colors used in
a proper coloring of the graph��
When setting up the model one has to select the

radii� There is a natural choice for the radius of
a vertex� let ri of the vertex vi be the distance to
the nearest neighbor of vi� This is how we get the
nearest neighbor graphs�
Here is another possible generalization� To each

point vi we associate two radii ri � Ri and two
balls bi �� B�vi� ri�� Bi �� B�vi� Ri�� Let b�i denote
the interior of the ball bi� The adjacency condition
now reads�

vi 	 vj if and only if b�i � b�j � � and Bi � Bj �� �
Here are two examples�

Example � Chemistry� We may model some
molecules by assigning radii to various atoms� By
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placing atoms in a plane �or space� we then au�
tomatically get the graph of the molecule� Several
computer programs for molecular dynamics such as
RasMol 	
�� use such models� see also 	

�� It can
be shown that all benzenoid graphs can be described
as unit sphere graphs in �D� A graph is called a
benzenoid graph� if it can be obtained by selecting a
connected subset of hexagons in an in�nite planar
hexagonal lattice �representing graphite��

Example � Touching coins and touching pennies�
	���� Given a set of coins c�� c�� � � � � cn in the plane�
we may de�ne the graph that has the n vertices in
the centers of c�� c�� � � � � cn and the i�th and j�th
vertices are adjacent if and only if the coins ci and
cj touch� In ���
 it was shown by Koebe that any
planar graph can be realized as a coin graph� If we
impose an additional condition that all coins have
equal radius we obtain the so�called penny graph�

Unit sphere graphs are a special case of intersec�
tion graphs� Given a family of sets fS�� S�� � � � � Sng
we de�ne a graph on n vertices as follows� the ver�
tex set is fS�� S�� � � � � Sng� Two vertices Si and Sj
are adjacent i� Si�Sj �� �� By selecting various geo�
metric objects we get interesting families of graphs�
For instance� the so�called interval graphs are inter�
section graphs of �nite families of line segments in
the �D line�
If we select a direction on each edge of graph

G the so�called directed graph or digraph D is ob�
tained� Each digraph D corresponds to a binary
relation R on the set of vertices of D� Two ver�
tices a and b are related by R if and only if there
is a directed arc in D from a to b� Graph G has
a transitive orientation if the binary relation corre�
sponding to the digraph is transitive�
Interval graphs are characterized by the follow�

ing structural theorem� where a cycle in a graph
is called chordless if it is an induced subgraph� no
diagonal is an edge of the graph�

Theorem � G is an interval graph if and only if
it has no chordless cycle Cn� for n � � and its
complement admits a transitive orientation�

Unit sphere graphs in �D are called unit interval
graphs� They were characterized by F� S� Roberts�
�����

�In chemistry a benzenoid graph is sometimes de	ned in a

slightly di
erent way� Namely� it is required to have at least

one Kekule structure� i�e� a perfect matching� Also� a long

string of hexagons that winds in a spiral may be considered

a benzenoid even though distinct hexagons may project to

the same hexagon in the graphite lattice�

Theorem � G is a unit interval graph if and only
if it is an interval graph and has no induced K���

subgraph� where Kn�m is the complete bipartite
graph with n vertices in one part and m vertices
in the other part�

It would be interesting and useful to characterize
the unit sphere graphs in �D and �D� For instance�
all platonic graphs arise as unit sphere graphs in
�D� One has to take the vertices of the correspond�
ing platonic solid and radius r the half of the edge
length� It appears that one cannot get the cube
graph Q� as a unit sphere graph in �D�

Finally� we de�ned a unit sphere graph for any
metric space� Any connected graph admits the
structure of a metric space� The points are ver�
tices and the distance is the length of the shortest
path from one vertex to another� It would be in�
teresting to see what unit sphere graphs arise from
a given connected graph� Let G be a graph and
let Gi denote the graph obtained from G by join�
ing two vertices u and v by an edge if and only if
the distance between u and v in G is at most i�
It can be shown that the unit sphere graphs aris�
ing from G are precisely all induced subgraphs of
Gi� i � �� �� � � � � Even among specialists in graph
theory it is not widely known that a graph can al�
low additional metrics� Besides the common short�
est path metric we also have the resistance distance
metric and other metric alternatives� see �
�� and
�
���

� Polyhedra and Graphs

In the previous section we found a way from a poly�
hedron to a graph via unit sphere graphs� There is
a much easier way of getting a graph from a polyhe�
dron� obtained by taking the one�skeleton� i�e� the
graph composed of vertices and edges of the polyhe�
dron� We keep the vertices and the edges and forget
all the other information �e�g� the facial structure
or metric structure�� This route is quite interesting
and gives among other things a very important fam�
ily of graphs� A graph G is ��connected if deletion
of any pair of vertices results in a connected sub�
graph� It is planar if it can be drawn in the plane
without crossings� Let us call a graph polyhedral if
it is a one�skeleton of a convex polyhedron�

Theorem � �Steinitz 	
���� The one�skeleton of
an arbitrary convex polyhedron is a planar ��
connected graph and each planar ��connected graph
is polyhedral�
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Figure �� Two alternative drawings of K����� �the
graph of the octahedron��

Example � The one�skeleton of the octahedron
is the complete tripartite graph K����� on 
 ver�
tices� One way of drawing this graph is to take
the so�called Schlegel diagram of the octahedron� A
Schlegel diagram of a convex polyhedron is obtained
by �rst selecting a face and then using a stereo�
graphic projection from the center of that face onto
a plane� Thus the selected face becomes the in�nite
face of the plane graph� which is the Schlegel dia�
gram� For aesthetic reasons the resulting drawing
is then homeomorphically changed in such a way
that the faces are not accumulated too much in the
center� However� we should always bear in mind
that the graph G does not carry explicit information
about the position of its vertices� We can represent
the same graph by di�erent drawings� see Figure ��

The route back from a graph to a polyhedron is
not so obvious� Recovering hidden or missing in�
formation is never as easy and obvious as throwing
away information�

If we allow non�convex polyhedra we may get
di�erent polyhedra giving the same one�skeleton�
The uniform polyhedron of Figure 
 is a model of a
projective plane� In ���� it is called a heptahedron�
However� it is better known as a tetrahemihexahe�
dron� see �
��� where you can �nd more information
about and illustrations of uniform polyhedra� It has
� vertices� �� edges� 
 triangles and � squares� Its
one�skeleton is again K������ see Figure ��

Figure � shows its embedding in the projective
plane� The antipodal points of the disk are identi�
�ed�

If we start with a cuboctahedron� we can obtain
two di�erent polyhedra depending on what type of
faces are replaced by hexagons�

By keeping all triangles and replacing the quadri�
laterals by main hexagons� we get an octahemioc�
tahedron whose map on torus is shown in Figure ��
On the other hand one may keep quadrilaterals and

Figure �� K����� embedded in the projective plane
with 
 triangles and � squares� The antipodal
points on the dotted border are identi�ed�

remove triangles� The polyhedron is called a cubo�
hemioctahedron �
��� It consists of � quadrilaterals
and 
 hexagons�
By keeping information about faces� we get the

so�called ��skeleton of a polyhedron� It has vertices�
edges� and faces and all the information about how
to glue the pieces together�
Informally� a map is a collection of fused poly�

gons� More rigorously� a map is a collection of poly�
gons with directed sides such that the total number
of sides is even together with an involution on the
set of sides without �xed points which determines
how the sides are pairwise glued �respecting the ori�
entation�� If the resulting complex is connected� we
get a surface� �For exact de�nition and more exam�
ples� see the book by Ringel ����� see also ��	���

� Operations on Maps

A map is a combinatorial representation of a closed
surface� There are several equivalent combinatorial
descriptions available for maps� In the computer
package Vega ��	�� we implemented a series of op�
erations on maps� This enables us to produce new
maps from old ones� In turn� we can get new poly�
hedra or new graphs�
Here we present some operations on maps� all of

them are explained via examples in the �gures� We
consider only connected maps�


 Du� Dual� This operation is well�known for
planar graphs� However� it can be generalized
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Figure 
� The heptahedron or tetrahemihexahedron is not convex� It is self�intersecting and even non�
orientable as a map in the projective plane� Its one�skeleton is the graph on Figure �� Octahemioctahedron
and cubohemioctahedron share with cuboctahedron the same one�skeleton shown on Figure ���

Figure �� The map of octahemioctahedron in torus
with 
 triangles and 
 hexagons� The arrows and
double arrows show how to identify the sides of a
rectangle in order to form the torus�

for maps in other surfaces� It is also known as
the Poincar�e dual� The dual map Du�M� is
built from the original map M as follows� we
put a vertex of Du�M� in the center of each
face of M � For each edge e of M we produce
its dual Du�e� so that Du�e� connects the ver�
tices corresponding to the faces ofM that have
e on the common boundary� We place the ver�
tex Du�M� in the same surface as M in such a
way that the faces of Du�M� correspond to the
vertices of M � This means that the dual edges
are traversed along faces in the same cyclic or�
der as the original edges are traversed cycli�
cally around a vertex� It can be shown that
Du�Du�M�� � M �

Let us consider three examples that will serve
us also for other operations�

�� The cube Q� in the sphere� v � 
� e � ���
f � �� The dual is the octahedral graph
K����� in the sphere� v � �� e � ��� f � 
�
see Figure 
�

A projection of a sphere�like polyhedron
on a plane is sometimes called a Schlegel
diagram� Such a projection is similar
to the so�called stereographic projection
in which exaclty one point on a sphere�
called the center� is mapped to in�nity� In
a polyhedron the center is usually taken
either at a vertex� at the center of an edge
or at a center of a face� see Figure 	�

�� The bouquetBn of n circles is a graph with
n loops attached to a single vertex� The
bouquet of one circle B� in the projective
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Figure 	� Schlegel diagrams of cube �a� centered at a vertex� �b� centered at an edge� �c� centered at a face�

Figure 
� The cube and its dual� the octahedron�

plane� v � �� e � �� f � �� It is self�dual�
v � �� e � �� f � ��

�� Another example of a self�dual map is the
tetrahedron K� in the sphere�


� K� in the torus� v � 
� e � �� f � ��
One face is a quadrilateral and the other
one is a hexagon� The dual graph has two
vertices� one vertex has a double loop and
there are four parallel edges between the
two vertices� v � �� e � �� f � 
� All
faces are triangles�

If v� e� f are the parameters of the original and
v�� e�� f � are the parameters of the transformed
map we have the relations�

v� � f

e� � e

f � � v�


 Su�� ��dimensional subdivision� This is the
simplest of all� We subdivide each edge by in�
serting a vertex at the midpoint of each edge
thus splitting the edge in two� see Figure ��

�� The cube Q� in the sphere� v � 
� e � ���
f � �� The ��dimensional subdivision has
the parameters� v � ��� e � �
� f � ��

�� The bouquet of one circle B� in the pro�
jective plane� v � �� e � �� f � ��
Its subdivision Su� is the cycle C� in the
same surface� v � �� e � �� f � ��
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Figure �� The subdivided cube�

�� K� in the torus� v � 
� e � �� f � �� The
subdivision graph has parameters v � ���
e � ��� f � �� All faces have twice as
many edges as before�

If v� e� f are the parameters of the original and
v�� e�� f � are the parameters of the transformed
map we have the relations�

v� � v � e

e� � �e

f � � f�


 Pa � Parallelization� Here we replace each
edge by a pair of parallel edges forming a digon
on the surface� Instead of giving this descrip�
tion we could de�ne Parallelization formally as�
Pa�M� �� Du�Su��Du�M���

v� � v

e� � �e

f � � e� f


 Si � Simpli�cation� This operation is in a sense
the inverse to the operation of Su�� It removes
all vertices of valence � but leaves the graph
�and the map� topologically the same� The
only exception is the bouquet B� which does
not allow further reductions�


 PSi � Parallel Simpli�cation� This operation is
in a sense the inverse to the operation of Pa�
It removes all digons by changing them into a
single edge� PSi�M� �� Du�Si�Du�M���

Figure ��� The cuboctahedron� the medial of the
cube�


 Me � Medial� This is probably the most im�
portant transformation of a map and is not so
simple� The new vertices are the midpoints
of the original edges� New vertices are adja�
cent if and only if the two original edges span
an angle� i�e� the two edges must be incident
and consecutive when traversing the rotation
about their common vertex in the map� The
medial graph is thus a subgraph of the line�
graph� For the de�nition of line�graph� see for
instance� ��
�� In the line�graph each original
vertex gives rise to a complete graph� in the
medial graph it only gives rise to a cycle�

If v� e� f are the parameters of the original and
v�� e�� f � are the parameters of the transformed
map we have the relations�

v� � e

e� � �e

f � � v � f

�� The cube Q� in the sphere� v � 
� e � ���
f � �� Its medial is the cuboctahedron
and has the parameters� v � ��� e � �
�
f � �
� see Figure ���

�� The bouquet of one circle B� in the pro�
jective plane� v � �� e � �� f � �� Its
medial is B� in the same surface� v � ��
e � �� f � ��

�� K� in the torus� v � 
� e � �� f � �� The
medial graph Me is obtained from K�����
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by doubling 
 edges with one endpoint in
the same color class with parameters� v �
�� e � ��� f � �� There are 
 triangles�
one quadrilateral and one octagon�

Medials have interesting properties�

� Each one is isomorphic to the medial of
the dual�

Me�G� � Me�Du�G��

� All are 
�valent and their duals are bipar�
tite�

� The structure of the map and its dual are
visible in the medial�

� Face lengths and vertex valencies are
readily visible in the medial�

� The map and its dual occur symmetrically
in the medial�


 Tr� Truncation

Truncation can be �rst described intuitively�
We cut o� the neighborhood of each vertex by
a plane �close� to the vertex that meets each
edge incident to the vertex� Using transfor�
mations from above we may de�ne truncation
Tr to be Tr�G� � PSi�Me�Su��G���� It is
the medial of a ��subdivided map� That would
introduce parallel edges and digons� That is
why we insist that the operation is followed by
parallel simpli�cation� Compare �����


 Su�� ��dimensional subdivision

The ��dimensional subdivision of a graph is ob�
tained by adding a vertex in the center of each
face and joining it by edges to the vertices of
the original face� see Figure ���

There is also an interesting connection between
truncation and the ��dimensional subdivision�
namely� Tr�Du�G�� � Du�Su��G��� see for in�
stance �
��� Therefore� Su� can be de�ned in
terms of truncation�

Su��G� � Du�Tr�Du�G���

� Du�PSi�Me�Su��Du�G������


 BS� Barycentric subdivision

The barycentric subdivision is a composite op�
eration� It is a ��dimensional subdivision of the
��dimensional subdivison�

BS�G� � Su��Su��G��

� Du�PSi�Me�Su��Du�Su��G�������

Figure ��� The two�dimensional subdivision of the
cube�

The barycentric subdivision has an important
role in topology and its dual is also very inter�
esting� as it is a cubic graph and thus much
easier to visualize�


 Pe� Petrie Dual

The Petrie dual is the �rst operation that keeps
the ��skeleton �xed and only changes the faces
of the map� New faces are composed of all
left�right walks on the surface� every two con�
secutive edges of the new faces are also consec�
utive edges of the old faces� However� no three
consecutive edges of new faces form consecu�
tive edges of the old faces� It can be shown
that it is indeed a �dual� in the sense that
Pe�Pe�G�� � G� The Petrie dual is a powerful
operation as it can turn an orientable surface
into a nonorientable one and vice versa�

For instance� the Petrie dual of the ordinary
cube Q� gives its embedding in the torus with
all hexagonal faces� However� there is another�
di�erent hexagonal embedding of Q� in torus�
see Figure ��� This may run counter our intu�
ition� since Q� in particular has only one draw�
ing in the sphere�


 R�� Rotation Square

The rotation square changes faces� It is well�
de�ned only for graphs that have all vertices
of odd valence� The map is completely de�
�ned if we specify its rotation scheme� i�e� at
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Figure ��� Two all�hexagonal drawings of the cube Q� on the torus�

each vertex we give the cyclic order of inci�
dent edges� Rotation square takes the square
of the overall permutation� If �e�� e�� � � � � es�
is the local rotation at a vertex� then we have
in the rotation square the following sequence
�e�� e�� e�� � � � � e�� e�� � � � �� That is why we need
s to be odd�


 S�� Embedded Square

The idea behind the embedded square is simi�
lar to the idea of the rotation square� however�
the construction is quite di�erent and the re�
sulting graph is quite di�erent from the origi�
nal� The graph is obtained by keeping the ver�
tices of the original and adding an edge at each
angle� If we have a face in the original that has
�v�� v�� � � � � vs� as a sequence of vertices then
the new edges are v� � v�� v� � v�� v� � v�� � � �


 Sn� and Sn�� Snub

There are two snub operations� First we take
two consecutive medials Me�Me�G��� The re�
sulting map is 
�valent and also equipped with
a collection of quadrilaterals� arising from ver�
tices of the �rst medial operation Me�G�� such
that each vertex ofMe�Me�G�� belongs to two
quadrilaterals� By inscribing a diagonal in one
of the quadrilaterals one induces diagonals in
all remaining quadrilaterals� If the other ini�
tial diagonal is selected the resulting map is
Sn��G� instead of Sn��G�� When Sn� and
Sn� are isomorphic we simply have a snub Sn�
For instance� for a tetrahedron T � Sn�T � �
Sn��T � � Sn��T � is topologically equivalent
to the icosahedron I but Sn��I� �� Sn��I��
There are �ve Platonic polyhedra� with all ver�
tices� all edges� and all faces mutually equiv�
alent� There are �� Archimedean polyhedra
in which all vertices are equivalent but neither

Figure �
� Evolution of the Platonic and
Archimedean polyhedra from the tetrahedron�

the edges nor the faces are� All Platonic and
Archimedean polyhedra can be obtained from
the tetrahedron T by some sequence of opera�
tions that we have introduced� see Figures ��
and �
�


 Le� Leapfrog

Leapfrog ���� is a term coined by chemists� It
represents a composite operation� It is the
truncation of the dual�

Le�G� � Tr�Du�G��

� PSi�Me�Su��Du�G�����

It can be described in an intuitive way� Recall
how we envision truncation� The process of
truncation involves a collection of planes� one
for each vertex� that cut o� parts of the poly�
hedron close to each vertex� If we �move� these
planes towards the center of polyhedron� each
original edge is diminished and is at a certain
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Symbol Polyhedron Operation Formula

T Tetrahedron Primitive �
O Octahedron Medial Me�T�
C Cube� Hexahedron � Dual Du�O� � Du�Me�T��
I Icosahedron Snub Sn�T�
D Dodecahedron Dual Du�Sn�T��

TT Truncated tetrahedron Truncation Tr�T�
TO Truncated octahedron Truncation Tr�O� � Tr�Me�T��
TC Truncated cube Truncation Tr�C� � Tr�Du�Me�T���
TI Truncated icosahedron Truncation Tr�I� � Tr�Sn�T��
TD Truncated dodecahedron Truncation Tr�D� � Tr�Du�Sn�T���
CO Cuboctahedron Medial Me�C� � Me�Me�T��
ID Icosidodecahedron Medial Me�I� � Me�Sn�T��
TCO Truncated cuboctahedron Truncation Tr�CO� � Tr�Me�Me�T���
TID Truncated icosidodecahedron Truncation Tr�ID� � Tr�Me�Sn�T���
RCO Rhombicuboctahedron Medial Me�CO� � Me�Me�Me�T���
RID Rhombicosidodecahedron Medial Me�ID� � Me�Me�Sn�T���
SC Snub cube Snub Sn�C� � Sn�Du�Me�T���
SD Snub dodecahedron Snub Sn�D� � Sn�Du�Sn�T���

Figure ��� Derivation of the Platonic and Archimedean polyhedra from the tetrahedron�

moment reduced to a single point� the mid�
point� The polyhedron obtained at that mo�
ment is the medial� If we continue the pro�
cess beyond that point� we obtain the leapfrog�
Similar intuitive processes can be applied to an
arbitrary map yielding the same result�

Patchwork

Consider the polyhedron with the seams of the tra�
ditional soccer ball as edges� This is the trun�
cated icosahedron� one of the trivalent Archimedean
polyhedra� having �� vertices and faces that are
pentagons and hexagons� Furthermore� the pen�
tagons are colored black and the hexagons white as
in the soccer ball� The black faces are vertex dis�
joint but each of the �� vertices lies on the bound�
ary of a black face� Such a collection of faces is
called a patchwork� There are many trivalent poly�
hedra with pentagonal and hexagonal faces� They
are called fullerenes� The name was suggested by
Harry Kroto� one of the ���� Nobel prize winners
and discoverers of C��� which is a novel allotropic
form of carbon di�erent from the well�known forms
graphite and diamond� They are named after the
architect Buckminster Fuller� in appreciation for
his pioneering work on design and construction of
huge domes based on geometrical considerations� A
fullerene with a patchwork is called a generalized
soccer ball� Note that in generalized soccer balls
in addition to black pentagons there will be some
black hexagons� The following is a characterization

���� of generalized soccer balls�

Theorem � A fullerene is a generalized soccer ball
if and only if it is a leapfrog of another fullerene�

It is known that fullerenes with abutted pen�
tagons are not chemically stable and are therefore
of little interest while generalized soccer balls have
no abutted pentagons�

Triangulations

If a polyhedron has some non�triangular faces� we
may introduce additional diagonals until all faces
are triangles� The corresponding graph is known
as a maximally planar graph or triangulation� Note
that introduction of any additional edge to such a
graph necessarily produces a non�planar graph� i�e��
a graph that cannot be drawn in the plane without
crossing of lines�

Diagonal �ips ����

It can be shown that any two triangulations on the
same number of vertices are equivalent under diag�
onal �ips� this means that one can start with one
triangulation and obtain any other by a series of
diagonal �ips�

The dual of a triangulation is a cubic polyhedron�
The dual operation of the diagonal �ip is sometimes
referred to in chemistry as the Stone�Wales trans�
formation�
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Figure ��� Two embeddings of a graph in the plane�

Before we leave the subject let us think a bit
about the analogy of a self�intersecting projective
planar polyhedron and a drawing of a non�planar
graph in the plane� In both cases topologists would
call such a phenomenon an immersion� If there are
no singularities �no self�intersections� then we speak
about embeddings� Clearly only planar graphs al�
low embeddings in the plane� Actually each pla�
nar graph without loops and parallel edges admits
a straight�line embedding in plane�this is known
as Fary�s Theorem�although the embedding is not
necessarily unique as shown in Figure ����

On the other hand� each graph can be embedded
in �D using only straight�line segments as edges�
We can pose the following optimization problem�
Let us take the three�dimensional grid of the shape
of the cube with n� n� n points� The problem is
to select k out of the n� points in such a way that
the vertices of the complete graphKk can be placed
on the selected points and that would result in the
embedding of Kk in �D with line�segments repre�
senting edges meeting only at points representing
vertices� For a given n what is the largest possible
k� For n � � it is obviously k � �� for n � � we get
k � �� It seems that for n � � we get k � �� What
is the value of k for n � 
�

� Symmetry and Orbits

Platonic and Archimedean polyhedra are highly
symmetric� Each of them has indistinguishable ver�
tices� However� the edges of Archimedean polyhe�
dra are not all alike� This phenomenon can be un�
derstood by the concept of orbits� We will explain
this concept �rst in graphs�
Let G � �V�E� be a graph with the vertex set

V and edge set E� A permutation � � V � V is

�By Whitney�s theorem� any planar ��connected graph

admits a unique embedding on the sphere� A graph G other

than the triangle K� is ��connected if the graph obtained by

deleting any two vertices from G remains connected�

an automorphism of G if it preserves adjacencies�
�u� v� � E if and only if ���u�� ��v�� � E� The
automorphisms of G form a group that we denote
by Aut�G�� Two vertices u and v of G are indistin�
guishable if one can be mapped to the other by some
graph automorphism� The set of indistinguishable
vertices form an orbit of Aut�G�� If all vertices of
G are indistinguishable we say that G is vertex�
transitive� We may also view automorphisms of G
acting on the edges of G�
The graph of a regular prism is obviously vertex�

transitive but in general not edge�transitive� It is
impossible to distinguish among the vertices� but
one can tell apart lateral edges from the base edges
unless the prism is a cube�
There are graphs that have all edges indistin�

guishable but do not have all the vertices alike� One
of the graphs is the so�called Folkman graph� The
Folkman graph is therefore edge�transitive but not
vertex�transitive� See Figure ���
There is another notion that we will use later�

it is called arc�transitivity� A graph G is called
arc�transitive if for any pair of edges �u� v� � E�
�u�� v�� � E one can �nd two automorphisms � and
�� such that ��u� � u�� ��v� � v� and ���u� � v�

and ���v� � u�� Hence the notion of arc�transitivity
is stronger than edge�transitivity� It means that
we can map any edge to any other edge in an ar�
bitrary direction� Clearly arc�transitivity implies
edge�transitivity�

� Con�gurations and Levi

Graphs

A con�guration of type �nr� bk� is an ordered
pair �P�B�� consisting of a set of n points P �
fp�� � � � � png and a collection of b lines �blocks�
B � fB�� � � � � Bbg with Bi � P � for each i �
�� � � � � n� and ��pj� �� fB � Bjpj � Bg� for each
j � �� � � � � n� such that

�� Each line contains k points� jBij � k� for each
i � �� � � � � b�

�� Each point lies on r lines� j��pj�j � r� for each
j � �� � � � � n�

�� Two di�erent points are connected by at most
one line� jBi � Bj j � �� for each i �� j� i �
� � � � � b� j � �� � � � � b�

The ordered pair �p�B� with p � P�B � B and
p � B is called a �ag� If k � r and hence n � b
�see� for instance ��
�� the con�guration is called
symmetric and its type is denoted by nk�
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Figure ��� The standard drawing of the Folkman
graph and another drawing of the same graph�

Let � �� f��p�jp � Pg� where � is de�ned above�
Clearly the ordered pair �B��� forms a con�gura�
tion which is called the dual of �P�B�� In the dual
con�guration we only reverse the role of points and
lines� Since there is a natural bijection � � P � �
we can write �B� P � instead� The term duality is
appropriate here since applying duality twice in a
row gives a con�guration that is isomorphic to the
original one� We can state that more formally as
follows�

Let C � �P�B� be a con�guration� A map
� � �P�B� � �P�B� with ��P � � B and ��B� � P
which respects the incidence structure� namely for
each p � P and for each B � B there is p � B
if and only if ��B� � ��p�� is called an anti�
automorphism� A con�guration which admits an
anti�automorphism is called self�dual� An anti�
automorphism of order � is called a polarity� A
con�guration which admits a polarity is called self�
polar�

Let C be a con�guration� then A�C� denotes
the group of all its automorphisms and anti�
automorphisms� while Aut�C� denotes the group of
its automorphisms� Then Aut�C� is a subgroup of
A�C�� If C is self�dual� it is a proper subgroup�
otherwise� Aut�C� � A�C��

If Aut�C� is transitive on points P � lines B� or
�ags� C is called point�� line�� or �ag�transitive re�
spectively�

A triangle of a con�guration consists of three
points� say a� b� and c� such that each of the three
pairs fa� bg� fb� cg� and fa� cg is contained in a line�
A con�guration that has no triangles is called a
triangle�free con�guration�

If there is a cyclic subgroup of Aut�C� which
acts transitively on P � the con�guration C is called
cyclic� Cyclic con�gurations can be described in a
concise way� We only have to specify the number
of points n and provide the ��th line� The i�th line
is then obtained by adding i �mod n� to the index
of each element of the ��th line�

The Levi graph L � L�P�B� of a con�guration
was introduced by Coxeter in ����� see ����� It is a
bipartite graph with �black� vertices P and �white�
vertices B and with an edge between p � P and
B � B if and only if p � B� Note that dual con�g�
urations have the same Levi graph but the roles of
black and white vertices are interchanged�

Complete information about the con�guration
can be recovered from its Levi graph with a given
black and white coloring of vertices� Hence count�
ing con�gurations can be done via careful count�
ing of Levi graphs� Two con�gurations �P�B� and
�P ��B�� are isomorphic if and only if there is an iso�
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morphism between their Levi graphs L�P�B� and
L�P ��B�� that maps black vertices into black ver�
tices�
It is well�known �see ����� that a graph G is a

Levi graph of some n� con�guration if and only if�

�� G is cubic

�� G is bipartite

�� The length of the shortest cycle in G� the girth�
is at least ��

Table �	 shows the correspondence between prop�
erties of con�gurations and their Levi graphs�
Recently the number of n� con�gurations up to

n � �
 was computed in �
��

Example � Each regular graph of valence k with�
out loops and multiple edges can be viewed as an
�nk� b�� con�guration of points and lines� Vertices
correspond to points and edges correspond to lines
�line segments�� The corresponding Levi graph is
the subdivision graph of the original graph�

Example � Take the equilateral triangle with all
three altitudes and the inscribed circle� The con�g�
uration consists of the � points� 
 line segments and
the circle� see Figure ��� The con�guration graph is
the well�known Heawood graph� see Figure ��� This
graph on �� vertices has shortest cycle of length 
�
The con�guration is interesting as it represents the
smallest model of a �nite projective plane� the well�
known Fano plane� This is the unique and smallest
con�guration of points and lines�

Any abstract con�guration can be described as
a collection of sets� The elements represent points
and the sets represent lines� The Fano con�guration
can thus be described as�

ff�� �� �g� f�� �� 
g� f�� �� �g� f�� 
� 	g�
f�� �� 	g� f�� �� 	g� f
� �� �gg

Clearly it is isomorphic to the con�guration�

ff�� �� �g� f�� 
� �g� f�� �� 	g� f�� 
� �g�
f�� �� 	g� f�� 
� 	g� f�� �� �gg

Since the Fano con�guration is cyclic� it can also
be generated by n � 	 and ��th row f�� �� �g�

ff�� �� �g� f�� �� �g� f�� 
� �g� f�� �� �g�
f
� �� �g� f�� �� 
g� f�� �� �gg

It can be veri�ed that the Fano con�guration is
self�dual� actually it is self�polar�

Figure �
� The Fano con�guration with 	 points
and 	 lines� The seventh line is drawn as a circle�

Figure ��� The Levi graph of the Fano con�gu�
ration� also known as the Heawood graph or the
��cage�
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Con�guration Levi graph
�P�B� L�P�B�

incidence structure bipartite graph
��con�guration 	
�� girth � 

nr� bk semi�regular� girth � 

n� bipartite� cubic� girth � 

points black vertices
lines �blocks� white vertices
no triangles girth � �
self�dual � � Aut�L� swaps black and white vertices
self�polar � � Aut�L� of order 
 swaps black and white vertices
indecomposable connected
incidence matrix bi�adjacency matrix
point�transitive all black vertices in the same orbit under Aut�L�
line�transitive all white vertices in the same orbit under Aut�L�
�ag�transitive edge�transitive
�ag�transitive� self�dual arc�transitive
point�transitive� self�dual vertex�transitive
cyclic Haar graph of girth � 


Figure �	� Properties of con�gurations and their Levi graphs�

Example 	 Take three lines a� b� and c forming
a triangle ABC� The corresponding con�guration
graph is the complete bipartite graph K���� In gen�
eral� each n�gon de�nes a self�dual con�guration of
type n��

Here is another example�

The M obius�Kantor con�guration is the only 
�
con�guration� It is also transitive and self�dual� It
can be shown that the M obius�Kantor con�gura�
tion cannot be realized in the real projective plane�
It can be realized in the complex projective plane�
Figure �� shows four drawings of its Levi graph�
The top left drawing reminds us of the well�known
Petersen graph� see Figure �	� That is why we in�
troduce the family of generalized Petersen graphs�

	 Generalized Petersen

Graphs and Haar Graphs

For a positive integer n 
 � and � � r � n��� the
generalized Petersen graph GP �n� r� has vertex set
fu�� u�� � � � � un��� v�� v�� � � � � vn��g and edges of the
form uivi� uiui��� vivi�r� i � f�� �� � � � � n � �g with
arithmetic modulo n�

In ���� the automorphism group of GP �n� r� was
determined for each n and r� With the exception
of the dodecahedron GP ���� ��� the generalized Pe�
tersen graph GP �n� r� is vertex transitive� if and
only if r� 	 ���mod n�� see also �
��� It was also
shown in ���� that GP �n� r� is arc�transitive if and

only if

�n� r� � f�
� ��� ��� ��� �
� ��� ���� ���
���� ��� ���� ��� ��
� ��g�

Note that GP �
� �� is the cube Q�� On the other
hand� GP ��� �� is the Petersen graph and GP �
� ��
is known as the M obius�Kantor graph �
�� since it is
the Levi graph of the unique 
� con�guration� Sim�
ilarly� GP ���� �� is the Levi graph of the Desargues
con�guration ��� and GP ���� �� is the Levi graph
of one of the ��� con�gurations of type ���� ��	��
Recall that any cyclic con�guration of type nk

can be described by n and the �rst line T �
f�� �� � � � � n� �g� jT j � k� � � T � This� in turn� can
be put in one�to�one correspondence with a positive
integer N via its binary notation�

N � b��
n�� � � � �� bn��� � bn��

by letting t � T if and only if bt � �� Hence the
complete information about a cyclic con�guration
and its Levi graph can be encoded by a positive
integer N � In this way we get a graph H�N� for
each integer N which is called the Haar graph of
N � see ��
�� ����� If its girth is at least � then H�N�
is a Levi graph of a cyclic con�guration�
In order to make the de�nition clear� let us

construct the Heawood graph as the Haar graph
H����� Since �� is written in binary as �������
we conclude that H���� contains 	 �black� ver�
tices� say� v�� v�� � � � � v� and seven �white� vertices
u�� u�� � � � � u�� Furthermore� vertex v� is adjacent
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Figure ��� Four views of the M obius�Kantor graph
GP �
� �� � H������ A modi�cation of the second
drawing can be found in �����

to vertices u�� u�� u� and vertex vi is adjacent to
the vertices u��i� u��i� u��i� where addition is taken
mod 	� Note that we constructed in passing the
Fano con�guration�

ff�� 
� �g� f�� �� �g� f�� �� �g� f�� �� �g�
f
� �� �g� f�� �� 
g� f�� �� �gg

Of course GP ��m � �� �� does not have a
Haar graph representation� whereas GP ��m� �� �
H���m�� � �� and GP �
� ��� the only other gener�
alized Petersen graph that is a Haar graph� is iso�
morphic to H������ Its automorphism group is of
interest in topological graph theory� see �����

We specialize the result from �
�� to Levi graphs
and combine it with common knowledge�

Proposition � 
����
 GP �
� �� is the only gener�
alized Petersen graph that is a Levi graph of a cyclic
con�guration� The other two generalized Petersen
graphs that are Levi graphs of point�transitive� self�
dual con�gurations are GP ���� �� and GP ���� ���

There are three �� con�gurations of points and
lines of type ��� see Figure ��� The most famous�
called the Pappus con�guration� is transitive and
self�dual�

There are �� con�gurations of points and lines of
type ���� Only one of the �� con�gurations is non�
realizable in �D �It is realizable over the quater�

Figure ��� The Levi graph of the Cremona�
Richmond con�guration�

nions!�� It is given as follows�

ff�� �� �g� f�� �� ��g� f�� 	� �g� f�� 
� ��g�
f�� �� �g� f�� 
� �g� f�� �� 	g�

f
� �� 
g� f�� 	� 
g� f
� �� ��gg�

The most important of the ten con�gurations is
the Desargues con�guration which is also transitive
and self�dual� see Figure ���

There are �� con�gurations of type ��� and ���
of type ���� These facts were established more than
hundred years ago by Daublebsky von Sterneck�
����� ��	�� although he missed one ��� con�gura�
tion� Only recently it has been shown ��
� that all
these con�gurations admit realizations in �D using
integer coordinates�

The Cremona�Richmond con�guration with ��
points and lines is the smallest n� con�guration
with no triangles ����� see Figure ���

For a more thorough introduction to the interest�
ing area of con�gurations the reader is referred to
the work of Harald Gropp� see� for instance� ��
��
����� ����� ����� Algorithmic aspects are covered in
��� and ��
��

Con�gurations used to play important role in ge�
ometry� For instance� the following Theorem is one
of the main results of a PhD thesis of renowned
German geometer E� Steinitz �����

Theorem � Each n� con�guration can be drawn
in a plane with at most one curved line�
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Figure ��� Levi graphs for the three �� con�gurations� The �rst one corresponds to the Pappus con�guration
while the second one is a Haar graph H������

Figure ��� The Levi graph of Desargues con�guration� This is the same as GP ���� ��� See also Figure ���
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Figure �
� The Gray graph� which is the Levi graph
of a �ag�transitive non�self�dual �	� con�guration�

For instance� the Fano con�guration cannot be
drawn with all lines straight� but not more than one
curved line is needed� see Figure �
� A modern ver�
sion of Theorem � can be found in algorithmic form
in ��� and has also been implemented as a computer
program ��	��

Alspach and Zhang ��� proved that every cubic
Cayley graph of a dihedral group is Hamiltonian�
Compare also ���� This result covers also cubic Haar
graphs� Hence it applies to cyclic con�gurations�

Proposition � 
Alspach and Zhang
 A Levi
graph of a cyclic n� con�guration is Hamiltonian�

One can show that all Levi graphs for cyclic
nr� r � � con�gurations have girth �� In other
words� all non�trivial cyclic con�gurations contain
triangles�
It is perhaps of interest to note that there exist

�ag�transitive� non�self�dual con�gurations� Figure
�
 depicts the Levi graph of one such con�gura�
tion� known as the Gray con�guration of type �	��
Since it has all �ags indistinguishable it must have
all points alike and all lines alike� However� if we
interchange the role of points and lines we do not
get the same con�guration�
As we mentioned earlier� the generalized Petersen

graph G���� �� is the Levi graph of the Desargues
con�guration� It is interesting that is appears in a
di�erent context�

Let us start with the �ve element set
fA�B�C�D�Eg partitioned into ��� element sets�

say AB�CDE� Two partitions are adjacent� if and
only if they have disjoint ��element sets� For in�
stance AB�CDE is adjacent to CD�ABE� CE�
ABD� and DE�ABC� The resulting graph shown
in Figure �� is the Petersen graph�

We may repeat this process but now we label the
vertices of a trigonal bipyramid� If we use labels
AB for the axial position and CDE for the equato�
rial position we construct the Petersen graph again�
This mechanism also allows for the occurrence of
the enantiomers �mirror image�� If we want to dif�
ferentiate the two we obtain GP ���� ��� the Levi
graph of the Desargues con�guration� see Figure
���


 Cages and Covering Graphs

The length of the shortest cycle in a graph G is
called the girth of G� For a simple graph the girth
is at least �� The smallest trivalent graph of girth
g is called a g�cage� Obviously K� is the unique
��cage and K��� is the only 
�cage� The Petersen
graph is the only ��cage�

It turns out that the ��cage is the Heawood
graph� see Figure ��� The 	�cage has �
 vertices
and is depicted on Figure ��� It was Tutte who
proved that the 
�cage is the graph of the Cremona�
Richmond con�guration� That is why this graph is
more often called the Tutte 
�cage�

It is interesting that the ��cage was not found
until quite recently� The search for the ��cage in�
volved a lot of computer checking and the result
came as a surprise� There are �
 non�isomorphic ��
cages� All smaller cages have regular structure and
are all unique� However� the ��cages do not show
any apparent structure� they are computed in �����

Balaban found one of the three ���cages which
is shown in Figure �
� It is perhaps of interest to
note that the ���cages were known before all the ��
cages were computed� The reason is simply in the
fact that the gap between easily proven lower bound
and the actual size of the cage is larger for the ��
cage than for the ���cage� One can prove that there
is no trivalent graph of girth � on 
� or less vertices
and that there is no such graph of girth �� on �� or
less vertices� Since the ��cage has �
 vertices and
the ���cage has 	� vertices the respective gaps are
�� for the ��cage and only 
 for the ���cage� For a
survey on cages� see �����

There is a way of describing certain large graphs
using labels on smaller ones� We will introduce this
method using the cages as examples�

Let us start with the 
�cage� the Petersen graph�



�
 Geometry at Work in Mathematics and Science

Figure ��� The Petersen graph GP ��� ���

Figure ��� GP ���� �� is the Kronecker double cover of GP ��� ���
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Figure �	� The ��� 
� and ��cages as covering graphs� At the bottom the corresponding voltage graphs are
shown�

Figure �
� Three views of Balaban�s ���cage�
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We will project the Petersen graph onto a hand�
cu� graph� The handcu� graph is not simple� It
has two loops attached to the endpoints of a sin�
gle edge� The outer circle is projected to one loop�
the inner pentagram is projected to the second loop
and the rims are projected to the edge between
the loops� We may direct the edges of the hand�
cu� graph and assign permutations on the edges as
shown in the �gure � � � The �rst loop gets permuta�
tion ��� �� �� 
� ��� the second loop gets ��� �� �� �� 
�
and the edge gets the identity ����������
����� The
assignment of the permutations on the edges of the
handcu� graph is called the permutation voltage as�
signment� Now we will show how to construct the
permutation derived graph� Above each vertex of
the handcu� graph we place �ve vertices one on
each layer� Above each edge of the handcu� graph
we place �ve edges� However� the edge that was
directed from a to b and having voltage p runs from
the vertex above a on layer i to the vertex above
b on layer p�i�� The resulting graph is clearly the
Petersen graph� In this case we have a shortcut�
Instead of permutations we can assign group ele�
ments from Z�� First loop gets �� second loop �
and the edge �� This is called the ordinary voltage
assignment�

Now we label the layers by group elements and
perform the operation again� getting the same re�
sult� The voltage graph is also called the base graph
and the derived graph is called the covering graph�
The terminology follows the one of covering spaces
in algebraic topology� The reader is referred to the
book by Gross and Tucker ��
� for further informa�
tion about graph coverings� The Petersen graph
obtained in this way can be labeled as GP ��� ���
This means that we are working in the group Z�

and that the voltage on the second loop is �� Note
that this process can be generalized Petersen graphs
GP �n� k� with group Zn and voltage k�

If the covering graph is trivalent then the base
graph must be trivalent as well� It may have loops
and parallel edges� Even though we assigned volt�
ages to directed edges� we get the same result if we
change the direction at an edge� We only have to
assign the inverse voltage to the reversely directed
edge� We may also have to allow halfedges in the
base graph� The only condition is the half�edge
must have an involutory voltage�

The ��cage is the covering graph over the graph
with a single vertex with a loop and a half edge�
The voltages are taken in Z�� The loop gets voltage
� and the half�edge gets the voltage ��

The ��cage is the ��fold covering graph over the
theta graph �with the voltages ����� in Z��

Figure ��� The theta graph� equipped with voltages
from Z	 for the ��cage�

Figure ��� The 	�cage with its voltage graph� This
is also known as the McGee graph�

Taking the theta graph and the voltages �� �� and
� in Z� we get the graph Q�� but the same voltages
in Z	 �see Figure ��� de�ne the 
�cage� i�e� the
Heawood graph�

The ��cage is an 
�fold covering graph over the
voltage graph on � vertices� see Figure ���

The ��cage can be represented as a ��fold covering
graph over a graph on � vertices� see Figure ���

We should mention two special constructions�
One is called the Kronecker double cover� For an
arbitrary graph G we may label all the edges with
�� the non�trivial element of the two�element group
Z�� This de�nes the double cover graph� G��� also
known as the tensor product by K�� Here are some
examples�

Figure ��� The 
�cage with its voltage graph� This
is also known as the Cremona�Richmond graph�
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Graph Kronecker double cover
Pn �Pn
C�n �C�n

C�n�� C�n��

K� Q�

G � bipartite �G
GP ��� �� GP ���� ��

Recall that GP �
� �� is the cube Q�� It turns out
that GP �
� ��� GP ���� �� and GP ��
� �� are its cov�
ers� �
�� On the other hand� GP ��� �� is the Petersen
graph whose canonical �Kronecker� double cover is
GP ���� ��� as clearly seen on Figures �� and ���
while GP ���� ��� the skeleton of the dodecahedron�
arises as a double cover of its pentagonal embed�
ding in the projective plane� An interesting project
would be to determine the Kronecker double covers
of all generalized Petersen graphs GP �n� k��
The simplest voltage graph G has the voltage

group Zn and has only two types of voltage labels�
the trivial � and the non�trivial �� In this case the
covering graph is called a rotagraph� The subgraph
M of G composed of those edges of G with triv�
ial voltages is called a monograph� see ���� for more
information on rotagraphs�
Many well�known graphs can be described as ro�

tagraphs� for example the prisms and antiprisms�
However� the Petersen graph is not a rotagraph al�
though it has a rotational symmetry� In this case
we need jumps of size one as well as jumps of size ��
Hence� we will call the covering graph obtained by
the cyclic group Zn a generalized rotagraph� The
main idea about generalized rotagraphs is that we
may easily keep the voltages and vary n� So we al�
ways get not only one graph but an in�nite family
of graphs of the same type� Viewing the Petersen
graph as a generalized rotagraph� we immediately
get the whole family GP �n� ���
The notion of cages can be generalized to other

regular graphs� A �d� g��cage is the smallest regular
d�valent graph with girth g�
In Figures �
������� and �
 are given some known

examples� perhaps drawn in a new way�
Recently Markus Meringer showed by computer

that there are exactly 
 ��� ���cages� His computer
program genreg� which can generate all connected
k�regular graphs with a given minimum girth� found
the fourth ��� ���cage and proved that there are no
other ones� �����

� Conclusion

Most of the �gures in this paper were created by
programs that are integrated in the system Vega

Figure ��� The �
����cage�

Figure ��� The �
����cage�

Figure �
� The fourth ������cage�
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��	�� For graph drawings� variations of the so�called
spring embedder were used�
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