
z/OS

MVS Program Management: Advanced

Facilities

SA22-7644-07

���

z/OS

MVS Program Management: Advanced

Facilities

SA22-7644-07

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

339.

Eighth Edition, September 2007

This is a revision of SA22-7644-06.

This edition applies to Version 1 Release 9 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xi

About this document . xiii

Required product knowledge . xiii

Required publications . xiii

Related publications . xiv

Referenced publications . xiv

Notational conventions . xiv

Using LookAt to look up message explanations xvi

Using IBM Health Checker for z/OS xvi

z/OS Wizards . xvii

Information updates on the web xvii

Summary of changes . xix

Chapter 1. Using the binder application programming interface 1

Understanding binder programming concepts 1

Symbol names in API calls . 5

Organization of data in the program module 7

Version number in an API call 8

Binder dialogs . 8

Processing intents . 10

Invoking the binder API . 11

Setting the invocation environment 11

Loading the binder . 11

Invoking the binder using the macros 11

Invoking the binder without the macros 12

Binder API common return and reason codes 13

Chapter 2. Binder API interface macros 15

Generating and mapping data areas 15

Using the IEWBUFF macro 15

FREEBUF: Free buffer storage 16

GETBUF: Get buffer storage 17

INITBUF: Initialize buffer header 18

MAPBUF: Map buffer declaration 18

Coding the IEWBIND macro . 20

Defining varying character strings 20

Defining section names . 21

Defining parameter lists . 21

Setting null values . 21

Chapter 3. IEWBIND function reference 23

ADDA: Add alias . 26

Processing notes . 27

Return and reason codes . 28

Parameter list . 28

ALIGNT: Align text . 29

Processing notes . 29

Return and reason codes . 29

Parameter list . 30

© Copyright IBM Corp. 1991, 2006 iii

ALTERW: Alter workmod . 30

Processing notes . 32

Return and reason codes . 33

Parameter list . 33

AUTOC: Perform incremental autocall 34

Processing notes . 35

Return and reason codes . 35

Parameter list . 35

BINDW: Bind workmod . 35

Processing notes . 36

Return and reason codes . 37

Parameter list . 38

CREATEW: Create workmod . 39

Processing notes . 39

Return and reason codes . 40

Parameter list . 40

DELETEW: Delete workmod . 40

Processing notes . 41

Return and reason codes . 41

Parameter list . 41

DLLR: Rename DLL modules 42

Processing notes . 43

Return and reason codes . 43

Parameter list . 44

ENDD: End dialog . 44

Processing notes . 44

Return and reason codes . 45

Parameter list . 45

GETC: Get compile unit list . 45

Processing notes . 47

Return and reason codes . 47

Parameter list . 47

GETD: Get data . 47

Processing notes . 49

Return and reason codes . 49

Parameter list . 50

GETE: Get ESD data . 50

Processing notes . 52

Return and reason codes . 53

Parameter list . 53

GETN: Get names . 54

Processing notes . 55

Return and reason codes . 55

Parameter list . 56

IMPORT: Import a function or external variable 56

Processing notes . 57

Return and reason codes . 58

Parameter list . 58

INCLUDE: Include module . 58

Processing notes . 62

Return and reason codes . 62

Parameter list . 64

INSERTS: Insert section . 65

Processing notes . 66

Return and reason codes . 66

Parameter list . 66

iv z/OS V1R9.0 MVS Program Management: Advanced Facilities

LOADW: Load workmod . 66

Processing notes . 68

Return and reason codes . 68

Parameter list . 69

ORDERS: Order sections . 69

Processing notes . 70

Return and reason codes . 70

Parameter list . 70

PUTD: Put data . 70

Processing notes . 72

Return and reason codes . 74

Parameter list . 75

RENAME: Rename symbolic references 75

Processing notes . 76

Return and reason codes . 76

Parameter list . 76

RESETW: Reset workmod . 77

Processing notes . 78

Return and reason codes . 78

Parameter list . 78

SAVEW: Save workmod . 79

Processing notes . 80

Return and reason codes . 81

Parameter list . 83

SETL: Set library . 83

Processing notes . 85

Return and reason codes . 85

Parameter list . 85

SETO: Set option . 86

Processing notes . 87

Return and reason codes . 88

Parameter list . 88

STARTD: Start dialog . 88

Passing lists to the binder . 91

Return and reason codes . 94

Environment variables . 94

Parameter list . 95

STARTS: Start segment . 95

Processing notes . 96

Return and reason codes . 96

Parameter list . 96

Binder API reason codes in numeric sequence 97

Chapter 4. Invoking the binder from a program 107

Chapter 5. Binder options for advanced facilities 111

Setting options with the binder API 111

Chapter 6. Fast data access 115

Using the fast data access service 115

Environment . 116

Parameter descriptions . 116

Buffer . 116

Class . 117

Count . 117

Cursor . 117

Contents v

DCBptr . 118

DDname . 118

DEptr . 118

Eptoken . 118

Member . 118

Mtoken . 119

Path . 119

Retcode . 119

Rsncode . 119

Section . 119

Interfaces . 119

The request code interface 120

The Unitary interface . 127

Error handling . 131

Return and reason codes . 132

Chapter 7. User exits . 135

Execution environment . 135

Registers at entry to the user exit routine 135

Message exit . 136

Save exit . 136

Interface validation exit . 138

Chapter 8. C/C++ APIs for program management 143

Using the Binder’s C/C++ API 144

Environment . 145

Binder API functions . 145

Binder API access functions 145

Binder API utility functions 164

Fast data functions . 167

Fast data access functions 167

Fast data utility functions . 173

Binder and fast data API common utility functions 175

__iew_api_name_to_str() – Convert API name into string 175

Binder API return and reason codes 176

Fast data access return and reason codes 176

Examples for Binder’s C/C++ API 177

Appendix A. Object module input conventions and record formats . . . 187

Input conventions . 187

Record formats . 188

SYM record . 188

ESD record . 189

Text record . 190

RLD record . 190

END record . 191

Extended object module (XOBJ) 192

XSD record format . 193

Notes . 194

Appendix B. Load module formats 195

Input conventions . 195

Record formats . 196

Appendix C. Generalized object file format (GOFF) 205

Guidelines and restrictions . 205

vi z/OS V1R9.0 MVS Program Management: Advanced Facilities

||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||

Incompatibilities . 206

GOFF record formats . 206

Conventions . 207

Module header record . 209

External symbol definition record 210

Text record . 220

Relocation directory record 224

Deferred element length record 228

Associated data (ADATA) record 229

End of module record . 230

Mapping object formats to GOFF format 231

Module header records . 232

Mapping object module ESD elements to GOFF format 232

Mapping object module XSD items to GOFF format 235

Mapping object module TXT items to GOFF format 235

Mapping object module RLD items to GOFF format 236

Mapping object module END items to GOFF format 236

Generating DLLs and linkage descriptors from GOFF object modules 238

Exports . 238

Imports . 238

Using linkage descriptors in non-DLL applications 239

Appendix D. Binder API buffer formats 241

Buffer header contents . 243

Version 1 buffer formats . 244

ESD entry (version 1) . 245

Binder identification data (version 1) 247

Language processor identification data (version 1) 248

User identification data (version 1) 249

AMASPZAP identification data (version 1) 250

RLD entry (version 1) . 251

Internal symbol table (version 1) 252

Text data buffer (version 1) 252

Binder name list (version 1) 253

Extent list (version 1) . 253

Version 2 buffer formats . 254

ESD entry (version 2) . 255

RLD entry (version 2) . 259

Binder name list (version 2) 261

Module map (version 2) . 262

Migration to version 2 buffers 263

Field correspondence for ESD records 264

ESD conversion notes (and PM1-PM2 differences) 265

Field correspondence for RLD records 268

RLD conversion notes (and PM1-PM2 differences) 269

Version 3 buffer formats . 269

ESD entry (version 3) . 270

RLD entry (version 3) . 274

PARTINIT entry (version 3) 276

Migration to version 3 buffers 276

Part initializers . 276

ESD conversion notes . 276

RLD conversion notes . 277

Version 4 buffer formats . 277

Binder name list (version 4) 277

Version 5 buffer formats . 278

Contents vii

PMAR entry (version 5) . 279

ESD entry (version 5) . 280

Version 6 buffer formats . 283

LIB entry (version 6) . 284

CUI entry (version 6) . 285

Binder name list (version 6) 287

Appendix E. Data areas . 289

PDS directory entry format on entry to STOW 289

Cross reference . 294

PDS directory entry format returned by BLDL 296

Cross reference . 301

PDSE directory entry returned by DESERV (SMDE data area) 303

Accessing program object class information 306

Module Map . 308

Structure of the module map 308

Example of record structure 309

Compile unit information . 309

Module map format . 309

Appendix F. Programming example for the binder API 313

Appendix G. Using the transport utility (IEWTPORT) 323

Executing IEWTPORT . 323

Defining the data sets . 323

Allocating space for the SYSUTn data sets 324

Transporting selected members 324

Sample IEWTPORT invocations 324

Convert a program object to a transportable program 325

Convert an entire program library 325

Convert a transportable program to a single program object 325

Messages, errors, and return codes 325

Messages and codes . 325

Errors . 325

Return codes . 326

Logical structure of a transportable file 326

Mapping macro IEWTFMT 327

Header . 328

Trailer . 329

Transportable program . 329

Appendix H. Establishing installation defaults 335

Appendix I. Accessibility . 337

Using assistive technologies 337

Keyboard navigation of the user interface 337

z/OS information . 337

Notices . 339

Programming interface information 340

Trademarks . 341

Index . 343

viii z/OS V1R9.0 MVS Program Management: Advanced Facilities

||
||
||
||
||

Figures

 1. Data items . 5

 2. Example of a variable length string parameter . 13

 3. IEWBUFF function summary . 15

 4. IEWBIND function call summary . 23

 5. Rename list . 43

 6. SYM input record . 188

 7. ESD input record . 189

 8. Text input record . 190

 9. RLD input record . 190

10. END input record–type 1 . 191

11. END input record–type 2 . 191

12. IDR data in an object module END record . 192

13. SYM record (load module) . 196

14. CESD record (load module) . 197

15. Scatter/Translation record . 198

16. Control record (load module) . 199

17. Relocation dictionary record (load module) . 200

18. Control and relocation dictionary record (load module) 201

19. Record format of load module IDRs–part 1 . 201

20. Record format of load module IDRs–part 2 . 202

21. Record format of load module IDRs–part 3 . 203

22. Current IDR data item (format 1) . 223

23. Extended IDR data item (format 2) . 223

24. IDR data item (format 3) . 223

25. Format for ESD entries . 245

26. Format for binder identification data . 247

27. Format for language processor identification data 248

28. Format for user identification data . 249

29. Format for AMASPZAP identification data . 250

30. Format for RLD entries . 251

31. Format for symbol table (SYM) entries . 252

32. Format for TXT entries . 252

33. Format for binder name list entries . 253

34. Format for contents extent list entries . 253

35. Format for ESD entries . 256

36. Format for RLD entries . 259

37. Format for binder name list entries . 261

38. Format for module map list entries . 262

39. Format for ESD entries . 271

40. Format for RLD entries . 274

41. Format for PARTINIT entries . 276

42. Format for binder name list entries . 278

43. Format for PMAR entries . 279

44. Format for ESD entries . 280

45. Format for LIB entries . 284

46. Format for CUI entries . 285

47. Format for binder name list entries . 287

48. Transportable file structure . 327

49. Transportable program structure . 329

50. Transportable program body structure . 330

51. Alias data record . 330

52. Attributes Data Record . 331

53. Item data record . 333

© Copyright IBM Corp. 1991, 2006 ix

x z/OS V1R9.0 MVS Program Management: Advanced Facilities

Tables

 1. Section names . 4

 2. Processing intent and calls . 10

 3. Common binder API reason codes . 14

 4. ADDA parameter list . 28

 5. ALIGNT parameter list . 30

 6. ALTERW parameter list . 33

 7. AUTOCall parameter list . 35

 8. BINDW parameter list . 38

 9. CREATEW parameter list . 40

 10. DELETEW parameter list . 41

 11. DLLRename parameter list . 44

 12. ENDD parameter list . 45

 13. GETC parameter list . 47

 14. GETD parameter list . 50

 15. GETE parameter list . 53

 16. GETN parameter list . 56

 17. IMPORT parameter list . 58

 18. INCLUDE parameter list . 64

 19. INSERTS parameter list . 66

 20. LOADW parameter list . 69

 21. ORDERS parameter list . 70

 22. PUTD parameter list . 75

 23. RENAME parameter list . 76

 24. RESETW parameter list . 78

 25. SAVEW parameter list . 83

 26. SETL parameter list . 85

 27. SETO parameter list . 88

 28. Binder list structure . 91

 29. SYSLIB data set DCB parameters . 92

 30. SYSPRINT DCB parameters . 92

 31. SYSTERM DCB parameters . 92

 32. STARTD parameter list . 95

 33. STARTS parameter list . 96

 34. All binder API reason codes . 97

 35. Setting options with the binder API . 111

 36. SB parameter list . 121

 37. SJ parameter list . 122

 38. SQ parameter list . 123

 39. SS parameter list . 123

 40. GC parameter list . 124

 41. GD parameter list . 125

 42. GE parameter list . 126

 43. GN parameter list . 126

 44. RC parameter list . 127

 45. EN parameter list . 127

 46. IEWBFDA parameter list . 131

 47. GOFF record-type identification prefix byte . 208

 48. Module header record . 209

 49. External symbol definition record . 210

 50. External symbol definition continuation record . 213

 51. Relationship of an element’s ESDIDs and parent ESDIDs 213

 52. Specifiable external symbol definition record items 213

 53. External symbol definition behavioral attributes 214

© Copyright IBM Corp. 1991, 2006 xi

54. Specifiable external symbol behavioral attributes 218

 55. Extended attribute information data structures . 219

 56. Data element descriptor data structures . 219

 57. Supported extended attribute type codes . 220

 58. Text record . 220

 59. Text continuation record . 222

 60. Identification record data field . 222

 61. Text encoding types . 224

 62. Relocation directory record . 224

 63. Relocation directory data element . 225

 64. Relocation directory continuation record . 225

 65. Relocation directory data element flags field . 226

 66. RLD-element referent and reference types . 228

 67. Deferred section-length record . 228

 68. Deferred element-length data item . 229

 69. Associated data (ADATA) record type assignments 229

 70. End-of-module record, with optional entry point request 230

 71. End-of-module (entry point name) continuation record 231

 72. Mapping OBJ ESD SD items to GOFF format . 233

 73. OBJ treatment of ESD PC items and blank names 233

 74. Mapping OBJ ESD LD items to GOFF format . 234

 75. Mapping OBJ ESD ER/WX items to GOFF format 234

 76. Mapping OBJ ESD PR items to GOFF format . 235

 77. Mapping OBJ TXT items to GOFF format . 236

 78. Mapping OBJ RLD items to GOFF format . 236

 79. Mapping OBJ END IDR items to GOFF format 237

 80. Mapping OBJ END section–length items to GOFF format 237

 81. Mapping OBJ END–entry items to GOFF format 237

 82. XPLINK ’call-by’name’ descriptor adcon offsets 239

 83. API buffer formats . 242

 84. API buffer definitions . 242

 85. Buffer header format . 243

 86. Buffer type format . 244

 87. Comparison of new and old ESD formats . 264

 88. ESD element usage . 267

 89. Comparison of new and old RLD formats . 268

 90. SMDE format . 303

 91. Directory entry name section . 305

 92. Directory entry notelist section (PDS only) . 305

 93. Directory entry token section (normal use) . 305

 94. Directory entry token section (system DCB) . 305

 95. z/OS UNIX System Services file descriptor section 305

 96. Directory entry primary name section . 305

 97. BLIT structure format . 306

 98. BLIT class entry format . 307

 99. Module map header . 309

100. Map entry format . 310

101. Compile unit information . 310

102. IEWTPORT return codes . 326

103. Transportable program record . 328

104. Transportable file header . 328

105. Transportable file trailer . 329

106. Transportable program descriptor map . 329

107. Transportable program alias data header . 331

108. Transportable program attributes data header . 332

109. Transportable program item data header . 333

xii z/OS V1R9.0 MVS Program Management: Advanced Facilities

||
||
||

About this document

This book is intended to help you learn about and use programming interfaces to

create, modify, or obtain information about program objects and load modules. It

contains general-use programming interface and associated guidance information.

The interfaces described here are provided by the program management

component of z/OS, including the program management binder, the linkage editor,

the batch loader, and the transport utility.

v Chapter 1 contains important background information as well as a general

introduction to the binder.

v Chapter 2 provides detailed information on the binder API interface macros.

v Chapter 3 provides complete information on all aspects of the IEWBIND function.

v Chapter 4 explains how to invoke the binder from within a program.

v Chapter 5 contains information about setting up binder options for advanced

facilities using the binder API.

v Chapter 6 provides details about extracting information from program objects

using either the IEFBFDA macro or parameter list calls and information about the

IEWBFDA fast data access macro.

v Chapter 7 explains how to define user exits.

v Appendix A contains information about object module input and record formats.

v Appendix B contains linkage editor load module formats.

v Appendix C has generalized object file format (GOFF) information.

v Appendix D provides information about API buffer formats.

v Appendix E provides information about IHAPDS data areas.

v Appendix F contains a programming example for the binder API.

v Appendix G provides information about using the transport utility.

v Appendix H provides information for users with physical disabilities.

Required product knowledge

To use this book effectively, you should be familiar with the following:

v A thorough understanding of program binder concepts, options, and control

statements. See z/OS MVS Program Management: User’s Guide and Reference.

v Familiarity with the types of parameter lists and data structures used in z/OS

programming.

v Some knowledge of z/OS assembler terminology.

Required publications

You should be familiar with the information presented in following publications:

 Publication Title Order Number

z/OS MVS Program Management: User’s Guide and Reference SA22-7463

HLASM Language Reference SC26-4940

© Copyright IBM Corp. 1991, 2006 xiii

Related publications

The following publications might be helpful:

 Publication Title Order Number

z/OS XL C/C++ Programming Guide SC09-4765

z/OS XL C/C++ User’s Guide SC09-4767

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS MVS JCL User’s Guide SA22-7598

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA22-7638

z/OS UNIX System Services Command Reference SA22-7802

HLASM Programmer’s Guide SC26-4941

Referenced publications

Within the text, references are made to other z/OS books and books for related

products. The titles and order numbers are listed in the following table:

 Publication Title Order Number

z/OS MVS Programming: Assembler Services Guide SA22-7605

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA22-7638

Notational conventions

A uniform notation describes the syntax of the control statements documented in

this publication. This notation is not part of the language; it is merely a way of

describing the syntax of the statements. The statement syntax definitions in this

book use the following conventions:

[] Brackets enclose an optional entry. You can, but need not, include the entry.

Examples are:

 [length]

 [MF=E]

| An OR sign (a vertical bar) separates alternative entries. You must specify

one, and only one, of the entries unless you allow an indicated default.

Examples are:

 [REREAD | LEAVE]

 [length|'S']

{ } Braces enclose alternative entries. You must use one, and only one, of the

entries. Examples are:

 BFTEK={S | A}

 {K | D}

 {address | S | O}

Sometimes alternative entries are shown in a vertical stack of braces. An

example is:

MACRF={{(R[C|P])}

 {(W[C|P|L])}

 {(R[C],W[C])}}

xiv z/OS V1R9.0 MVS Program Management: Advanced Facilities

In the preceding example, you must choose only one entry from the vertical

stack.

. . . An ellipsis indicates that the entry immediately preceding the ellipsis can be

repeated. For example:

 (dcbaddr,[(options)],. . .)

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the

next parameter.

UPPERCASE BOLDFACE

Uppercase boldface type indicates entries that you must code exactly as

shown. These entries consist of keywords and the following punctuation

symbols: commas, parentheses, and equal signs. Examples are:

 CLOSE , , , ,TYPE=T

 MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE

Underscored uppercase boldface type indicates the default used if you do

not specify any of the alternatives. Examples are:

 [EROPT={ACC | SKP | ABE}]

 [BFALN={F | D}]

Lowercase italic

Lowercase italic type indicates a value to be supplied by you, the user,

usually according to specifications and limits described for each parameter.

Examples are:

 number

 image-id

 count

REQUIRED KEYWORDS AND SYMBOLS

Entries shown IN THE FORMAT SHOWN HERE (notice the type of

highlighting just used) must be coded exactly as shown. These entries

consist of keywords and the following punctuation symbols: commas,

parentheses, and equal signs. Examples are:

 CLOSE , , , ,TYPE=T

 MACRF=(PL,PTC)

Note: The format (the type of highlighting) used to identify this type of entry

depends on the display device used to view a softcopy book. The

published hardcopy version of this book displays this type of entry in

uppercase boldface type.

DEFAULT VALUES

Values shown IN THE FORMAT SHOWN HERE (notice the type of

highlighting just used) indicate the default used if you do not specify any of

the alternatives. Examples are:

 [EROPT={ACC | SKP | ABE}]

 [BFALN={F | D}]

Note: The format (the type of highlighting) used to identify this type of entry

depends on the display device used to view a softcopy book. The

published hardcopy version of this book displays this type of entry in

underscored uppercase boldface type.

User specified value

Values shown in the format shown here (notice the type of highlighting just

used) indicate a value to be supplied by you, the user, usually according to

specifications and limits described for each parameter. Examples are:

About this document xv

number

 image-id

 count

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM®

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS® elements and features, z/VM®, z/VSE™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

xvi z/OS V1R9.0 MVS Program Management: Advanced Facilities

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

z/OS Wizards

If you’d like help with some of those complex tasks that you do infrequently, then

check out the z/OS wizards.

Our z/OS wizards are Web-based interactive assistants that ask you a series of

questions about the task you want to perform (for example, setting up a Parallel

Sysplex). The wizards simplify your planning and configuration needs by exploiting

recommended values and by building customized checklists for you to use. For

configuration tasks, our wizards also generate outputs like jobs, policies, or parmlib

members that you can upload to z/OS and use.

See if our z/OS wizards can work a little magic for you!

http://www.ibm.com/servers/eserver/zseries/zos/wizards/

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and

Documentation APARs for z/OS, see the online document at:

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are

incorporated into z/OS publications.

About this document xvii

http://www.ibm.com/servers/eserver/zseries/zos/wizards/
http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

xviii z/OS V1R9.0 MVS Program Management: Advanced Facilities

Summary of changes

Summary of changes

for SA22-7644-07

z/OS Version 1 Release 9

 The book contains information previously presented in z/OS MVS Program

Management: Advanced Facilities, SA22-7644-06, which supports z/OS Version 1

Release 8.

New information

v Appendix H, “Establishing installation defaults,” on page 335

v Chapter 8, “C/C++ APIs for program management,” on page 143

This book contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You may notice changes in the style and structure of some content in this book—for

example, headings that use uppercase for the first letter of initial words only, and

procedures that have a different look and format. The changes are ongoing

improvements to the consistency and retrievability of information in our books.

Summary of changes

for SA22-7644-06

z/OS Version 1 Release 8

 The book contains information previously presented in z/OS MVS Program

Management: Advanced Facilities, SA22-7644-05, which supports z/OS Version 1

Release 7.

New information

v The binder STORENX option that enables you to unconditionally prevent the

save of a non-executable module.

v The binder STRIPSEC option that enables you to remove unneeded sections

from a program object or load module.

v The binder STRIPCL option that enables you to remove unneeded classes from

a program object or load module.

v STARTD environment variables. See “Environment variables” on page 94.

This book contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You may notice changes in the style and structure of some content in this book—for

example, headings that use uppercase for the first letter of initial words only, and

procedures that have a different look and format. The changes are ongoing

improvements to the consistency and retrievability of information in our books.

Summary of changes

for SA22-7644-05

z/OS Version 1 Release 7

© Copyright IBM Corp. 1991, 2006 xix

The book contains information previously presented in z/OS MVS Program

Management: Advanced Facilities, SA22-7644-04, which supports z/OS Version 1

Release 6.

New information

v Change to COMPILEUNITLIST parameter of GETC. See “GETC: Get compile

unit list” on page 45.

v The new COMPAT and COMPRESS options can be requested through the API.

See Table 35 on page 111.

v Change to GOFF record formats. See “Conventions” on page 207.

v A new value is defined in the Reference Type field of the GOFF RLD record. See

“Relocation directory data element flags field” on page 225.

v A new field is defined in the RLD_TYPE field of the API RLD buffer format for an

external relative/immediate instruction operand. See “RLD entry (version 3)” on

page 274.

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

xx z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 1. Using the binder application programming

interface

This topic describes how an application program, system service, or utility can

request binder services under program control. Your program can use the binder

application programming interface to invoke individual services such as Include, Set

Option, Get Data, and Get ESD. By combining calls to these services in a logical

order, your program can perform operations on program modules.

The binder also provides two sets of higher level interfaces which perform all

operations in a single call, but without the same level of control or function. The

IEWBFDA service described in Chapter 6, “Fast data access,” on page 115 provides

a very efficient way to extract data from an existing program object. Invoking the

binder from a program (107) is similar to executing the binder as a batch program,

but with your program controlling options and DD names.

Much of the material in this chapter is useful regardless of the interface you choose

to use. The material in the two chapters which follow this one is specific to the low

level interfaces.

The low level binder application programming interface consists of assembler

macros and user exit points. The IEWBIND macro provides the invoking program

with access to the binder services. The IEWBUFF macro provides maps of data

areas passed as parameters on the IEWBIND macro invocation. The message user

exit allows you to suppress printing of a message. The save user exit allows you to

retry a failed attempt to store a member or alias name. The interface validation exit

allows your exit routine to examine descriptive data for both caller and called at

each external reference.

The binder can be called from programs written in assembler and in other

languages. If your program is written in a language other than assembler, you will

need to encode the parameter lists for each binder call. See “Invoking the binder

without the macros” on page 12 for tips on how to invoke the binder from

non–assembler language programs.

Understanding binder programming concepts

Before you begin designing programs for the binder application programming

interface, you should understand several of its programming concepts.

dialog

A programmed session with the binder is called a binder dialog. You begin

the session with a request to start a dialog. This request establishes the

environment for binder processing during that dialog, including obtaining

work space, initializing control blocks, and specifying DD names for the

standard data sets to be used.

 Your program can start more than one dialog and maintain more than one

dialog at the same time. The dialogs are independent. You can perform

operations on more than one dialog concurrently, but you cannot pass

binder data directly from one dialog to another.

 When any dialog is ended, all buffers and control information relating to that

dialog are deleted.

© Copyright IBM Corp. 1991, 2006 1

dialog token

Each dialog is identified by a unique dialog token. The dialog token is

created when you request a new dialog. You use the token corresponding

to a specific dialog when you request services, so the binder can perform

the services on the correct input and return the desired results to the

correct dialog. The token is invalidated when the dialog is ended.

workmod

An area of working storage used to create or operate on a program module

is called a workmod. After a dialog has been established, your program

issues requests to create a workmod, to reset a workmod to the null state,

or to delete a workmod. At least one workmod must be created before any

module operations can be requested.

 A dialog can have many workmods associated with it, but each workmod is

associated with only one dialog. Binder-generated data cannot be passed

between workmods. Ending a dialog causes any remaining workmods

associated with it to be deleted.

workmod token

Each workmod is identified by a unique workmod token. The workmod

token is created when the request for a new workmod is made. The

workmod token associates the workmod with a particular dialog. Your

program must pass the token as a parameter on all requests involving that

workmod. The token is invalidated when either the workmod is deleted or

the dialog is ended.

processing intent

Processing intent specifies the range of binder services that may be

requested for a workmod. The processing intent is set to either bind or

access when the workmod is created. Bind allows editing of the modules;

access does not. See “Processing intents” on page 10 for detailed

information.

element

An element is a named portion of module data in a workmod that is directly

addressable by the binder. Program modules logically consist of elements.

Each element is identified by its data class identifier and, optionally, a

section name.

class A class identifier is a required descriptor for each element. It identifies the

type and the format of the data element and determines the operations that

can be performed on it. The following binder-defined classes are valid:

B_TEXT

Relocatable text, including executable machine instructions,

constants, and, in the case of the nonreentrant programs, data

areas defined within the program. See also B_TEXT24 and

B_TEXT31.

B_PRV

Pseudoregister vector (a data area shared across compile units)

that is used by high-level languages and assembler code using

DXD and CXD instructions.

B_ESD

External Symbol Dictionary, a catalog containing all symbols that

are available to the binder. These symbols include section and

class names, as well as ordinary symbol definitions and references.

Using the API

2 z/OS V1R9.0 MVS Program Management: Advanced Facilities

B_RLD

Relocation dictionary, containing information used to adjust

addresses within the code based on where the module is loaded.

B_IDRB

Binder identification record, indicating the binder version, size, and

how and when the program object was created.

B_IDRL

Language processor identification record, indicating the compilers

that created the binder input, the date of compilation, and the

binder size.

B_IDRU

User-specified identification record, containing data provided on an

IDENTIFY control statement.

B_IDRZ

AMASPZAP identification record, for programs that have been

modified at the object level.

B_SYM

Internal symbol table records

B_MAP

Module map

B_TEXT24

Relocatable text loaded below the 16-meg line and used in place of

B_TEXT if RMODE=SPLIT is specified.

B_TEXT31

Relocatable text loaded above the 16-meg line and used in place of

B_TEXT if RMODE=SPLIT was specified.

B_LIT Load information table, containing data generated by the binder and

used by the Language Environment run time. For more information,

see “Accessing program object class information” on page 306.

B_IMPEXP

IMPORT/EXPORT table, containing data generated by the binder

and used by the Language Environment run time to support DLLs

and DLL applications.

B_PARTINIT

Part initializers, containing the initial data for parts in merge

classes. During bind processing, merge classes are mapped at the

module level and the initial data moved from B_PARTINIT to the

owning merge class.

B_DESCR

Linkage descriptors built by the binder for XPLINK support (Linkage

Descriptors may also exist in compiler-defined classes).

In addition to the binder defined classes shown above, compiler-defined

class names and class names that are defined by you (or your system

programmer) can be specified on all calls. Class names are limited to 16

characters. Class names beginning with C_ should be used only for

Language Environment-enabled applications.

section

A section name is a programmer-, assembler-, or compiler-assigned name

of a collection of one or more elements, where each element belongs to a

Using the API

Chapter 1. Using the binder application programming interface 3

specified class. All binder actions referring to sections affect all the

elements in that section. For control and common sections, the section

name is the CSECT or common section name.

 Some elements do not relate directly to any particular section (for example,

the binder identification records). The binder assigns these elements unique

section names.

 Unnamed sections (sections with names consisting of all blanks), and

sections whose names the user has designated as not visible to the other

sections in the module (’section scope’), are given unique binder–generated

names. Binder–generated names are fullword integers. They are printed in

binder listings as $PRIVxxxxxx, where xxxxxx is the printable representation

of the integer. The one exception is ’blank common’ whose name is

retained as a one-character blank.

Section names may be assigned by the user or by the binder. For each of the

binder-defined classes just described, the sources of the definitions for the section

names are shown in the following table:

 Table 1. Section names

Class Name Section Name

B_TEXT User specified

B_PRV User specified; binder retains them in binder-created section

X’00000003’

B_ESD User specified

B_RLD User specified

B_IDRB Binder-created class name, in binder-created section

X’00000001’

B_IDRL User specified

B_IDRU User specified

B_IDRZ User specified

B_SYM User specified

B_MAP Binder-created class name, in binder-created section

X’00000001’

B_TEXT24 User specified or binder-created

B_TEXT31 User specified or binder-created

B_LIT Binder-created class name, in binder-created section

IEWBLIT

B_IMPEXP Binder-created class name, in binder-created section

IEWBCIE

B_PARTINIT User specified

B_DESCR Binder-created class name, in binder-created section

X’00000003’

A program module can be visualized as a two-dimensional grid with the class type

on one axis and the section name on the other, as shown in Figure 1 on page 5.

Any class type can appear in more than one section, and any section can contain

elements in multiple classes. Some elements relate to the entire module, not to any

particular section, and do not have a section name.

Using the API

4 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Symbol names in API calls

The abbreviated names used in binder and AMBLIST listings are solely for

readability purposes. The full (non-abbreviated) name must be used in binder API

calls in section or symbol names in the API parameter lists.

The names which appear in binder and AMBLIST output listings as $PRIVxxxxxx,

where xxxxxx is a hexadecimal number, are printable representations of

binder-generated names. The actual names are fullword binary integers (for which

xxxxxx is the hexadecimal equivalent). The fullword integer must be used in binder

API calls.

Similarly, symbol names in GETD, GETE, or GETN buffers are always the true

internal names (not abbreviated, and fullword integers if they are generated names).

Program management support of class attributes

Starting with version 2, program objects support multiple text classes. Each class

has a name and a set of class attributes. Not all class attributes defined for GOFF

format object modules and program objects are supported by other z/OS operating

system components.

Classes may be combined into segments (based on class attributes) by the binder.

Each segment will be loaded into contiguous storage by the program management

loader. The criteria used by the binder to combine classes into segments may

CLASS

B_ESDB_IDRL B_TEXTB_RLDB_IDRB

MAINMAIN MAINMAIN

SUBASUBA SUBASUBA

SUBB SUBB

MAIN

SUBA

SUBB

Not
section
related

S
E
C
T
I
O
N

Figure 1. Data items. The workmod shown in this example contains three sections, MAIN,

SUBA, and SUBB. The B_IDRB item shown does not relate to a particular section. Note that

items do not need to exist for all class and section combinations.

Using the API

Chapter 1. Using the binder application programming interface 5

change from release to release. The only criteria currently used for dividing a

program into segments are class loading behavior (initial/defer) and rmode.

The following section discusses the current level of binder support for the more

important class attributes defined for the ED record in GOFF object modules:

alignment

The binder supports doubleword, quadword and page alignments for

classes. A class is assigned the most restrictive alignment of any element

or part comprising the class, but at least doubleword. The loader supports

doubleword and page alignment. A segment containing any classes which

are quadword–aligned are marked as page–aligned.

rmode

The binder supports rmodes 24, ANY, or 64. If a save is done to a PDS

load module, all rmode 64 fields in ESDs are changed to rmode ANY.

rmode 64 is treated as rmode ANY by the LOADW API call and the batch

loader interfaces. If a save is done to a program object, the ESDs remain

as rmode 64 in the saved module, but the loader honors rmode 64 only for

a deferred load class.

class loading attributes

Do not load with module and Deferred are fully supported and are used

when combining classes into segments. Movable,Shareable and Read

only attributes are stored in the saved program object but do not currently

have any effect on processing.

descriptive or text

Descriptive classes are never loaded with the module and cannot contain

adcons. Examples are B_ESD or user-defined ADATA classes.

binding method

Catenate classes are ordinary text classes. Merge classes are composed

of parts defined by PR (part reference) records and are mapped into a

single element at the module level. For example, PR records of the same

name from different input sections are mapped to a single module-level PD

(part definition)

data or code (executable or non-executable)

This attribute is saved in the program object but has no effect on

processing.

namespace

The namespace of a class must be the same as the namespace of all

symbols (LD/ER/PR ESD names) in that class. namespace 1 is used for all

non-merge classes. namespace 2 and namespaces 3 are valid only for

merge classes. namespace 2 is used for pseudoregisters and namespace

3 is used for parts. See Chapter 2 in z/OS MVS Program Management:

User’s Guide and Reference for more information.

fill Defines a fill byte used for all areas of the class that have no initializing

data.

usability attributes

Usability attributes in ED records (RENT, REUS, and so on) are not

supported by the binder

Using the API

6 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Organization of data in the program module

The following information about the location and order of the data in a program

module is provided to assist in the design of programs using the GETE or GETD

API calls to extract data from a program module, or PUTD API calls to add data.

Module level information

Data which does not pertain to a particular section is kept in module level sections

which have binder-generated names.

Section 1 (X'0000001') contains the sole elements of classes B_IDRB and B_MAP.

It also contains PR and ER ESD records for symbols which are not the target of

any adcon.

Section 3 (X'0000003') contains the ESD items (parts) which map the MRG text

classes. Examples are B_PRV (the PL/I pseudoregister vector table) and C_WSA

(writable static which is used for data items in reentrant C or C++ programs).

Although the parts comprising a MRG class may come in from different input

sections, the entire class will be mapped as a single element under the appropriate

class name in section 3. In addition to the ESDs, section 3 contains any

initialization data for the parts in these classes.

Multiple-text class modules, load segments and ESD offsets

In a multi-text class module (supported in PO2 and later program object formats)

the binder collects all the text for each class into a contiguous area. If a section has

text elements in more than one class, these elements will each be placed in the

appropriate class. Thus the text for a given section might no longer reside in a

single contiguous area, and section offset is no longer a meaningful term.

Therefore, for version 2 and higher buffers, offset information can no longer be

obtained from an SD ESD record.

Each section contains ED records which define the characteristics of the text

classes in that section. Since a section name and class name together define an

element, these ED records can also be thought of as describing the attributes of an

element. ED records are generated by the binder for load module input, and for

traditional and XOBJ object modules. They are generated by the language

translator for GOFF format input. The ESD_CLASS_OFFSET field in version 2 and

greater buffers contains the offset of the element from the start of its containing

class, and the ESD_LENG fields contains the length of the element. This

information replaces the CSECT length and offset information in the SD record of a

traditional one-dimensional program module.

For object module and load module input, the binder will generate an LD ESD

record for each CSECT, with the same name as the CSECT, in class B_TEXT. The

offset in the LD record will be the same as the offset in the B_TEXT ED record for

the section. For XOBJ format input, the generated LD will be in class C_CODE.

Furthermore, the binder may collect text classes with compatible attributes into load

segments. A given load segment will be loaded into contiguous virtual storage. The

offset field (ESD_CLASS_OFFSET) in an ESD record in an ESD buffer is the offset

from the start of the containing class, not the offset from the start of the segment.

For a load segment which contains more than one class, you may want the

segment offset rather than the class offset (for example if your intent is to produce a

map of the module in virtual storage you will create an incorrect map if you use the

class offset).

Using the API

Chapter 1. Using the binder application programming interface 7

To compute the segment offset, you should first use the GETN API call to obtain the

segment ID and the starting offset of each class from the start of the containing

segment. For each ESD record, ESD_RES_CLASS will have the name of the class

containing the symbol (the resident class). Then the segment offset can be

computed by adding ESD_CLASS_OFFSET to the starting offset of the class within

the segment. Segment 1 will always be the segment containing the entry point (the

primary and any secondary entry points). In many cases it will be the only segment.

Version number in an API call

The version of an API call determines the format of the parameter list. Although

many of the parameter lists are the same for all versions, the formats documented

here are specifically for version 6. For earlier formats, please see the notes under

the description of the version parameter for each call. Earlier formats may support a

shorter version of the parameter list. For those API calls that pass data buffers, the

version number in the buffer header must match the version number in the

parameter list. The version in the buffer header determines the format of the data in

the buffer. The default is VERSION=1.

For new programs, we recommend that VERSION=6 be used. There is no

requirement that the buffer version match the program object version. However, you

may lose data if the target program object has contents not supported by the data

buffer format you are using. Version 2 (and higher) data buffers support all possible

contents of a PO2 format program object. Version 4 (and higher) data buffers

support all possible contents of a PO3 format program object. Version 6 data

buffers support all currently defined contents (as of z/OS 1.3) of a PO4 format

program object.

Binder dialogs

Your program conducts a dialog with the binder using either the IEWBIND and

IEWBUFF assembler macros or the equivalent definitions and statements for other

programming languages.

Assembler coding summaries of the IEWBIND and IEWBUFF macros are provided

in Figure 4 on page 23 and Figure 3 on page 15. Certain function calls are required

to establish and terminate the dialog, workmod, and buffers. You select among the

remaining calls according to the needs of your program. The following sequence of

function calls is recommended:

 1. Use STARTD to begin the dialog and to establish a processing environment. A

dialog token is returned.

 2. Use CREATEW to create a workmod and associate it with the dialog. You pass

the dialog token received from the STARTD call and receive a workmod token

in return. You specify processing intent on CREATEW as either ACCESS or

BIND.

 3. Use SETO for setting options and module attributes. You pass either the dialog

token or the workmod token. If a dialog token is passed, the options and

attributes become the defaults for all workmods attached to that dialog. If a

workmod token is specified, any specified options apply only to that workmod.

 4. Use INCLUDE to bring one or more modules into the workmod. All control

statements and object and program modules are brought into a workmod via

the INCLUDE call. If INTENT=ACCESS, one and only one program module

can be included in the workmod at a time. Before including another program

module, the workmod must be reset.

 5. Use ALTERW to make selective changes to symbols or sections in modules

already in the workmod or yet to be included. By choosing either the IMMED

Using the API

8 z/OS V1R9.0 MVS Program Management: Advanced Facilities

or NEXT mode of operation, you indicate whether the alteration is applied

globally to all modules in the workmod or only to the next module included into

the workmod.

 6. Several of the function calls do not take place immediately, but are deferred

until later in the processing cycle. ALIGNT, INSERTS, ORDERS, and STARTS

affect the overall structure of the module and are deferred until BINDW. ADDA

provides for specification of aliases and is deferred until SAVEW. You can

request these functions in any order, but they must be received prior to the

BINDW call.

 7. Use the GETC or GETN function calls to get a list of sections or classes for

use in subsequent calls. Use the GETD or GETE function calls to extract data

from a program module, or use the PUTD function call to add data to it. Before

you can use these function calls, your program must define and allocate

buffers. Use the GETBUF and INITBUF functions of the IEWBUFF macro to

allocate and initialize storage areas to contain the data. Use the MAPBUF

function to define DSECT mappings of the areas.

 8. Use the BINDW function to instruct the binder to resolve all external references

and calculate relocatable address constants. Automatic library call resolves any

unresolved external references. Text alignment, ordering, and overlay

segmentation are all done at this time.

Use SETL to specify special call libraries for resolving external references or to

indicate that certain references are not to be resolved. SETL requests must

precede BINDW.

If INTENT=BIND, you may issue the BINDW request before any LOADW or

SAVEW for a module. LOADW and SAVEW automatically perform bind

processing if you did not issue a separate BINDW call previously. If

INTENT=ACCESS, a BINDW request is rejected. Binding is required if more

than one module has been included, or if other changes have taken place that

would affect the size or structure of the module, such as reordering sections.

Once binding has taken place, no further modifications to the workmod are

allowed.

 9. Use LOADW or SAVEW to dispose of the module in workmod. LOADW

requests that the module be loaded into virtual storage in a format suitable for

execution. SAVEW requests that the module be saved in a data set. You can

issue both requests for a module in either order.

10. Use DELETEW to delete the workmod and free all associated resources. Use

RESETW to free all of the module data in the designated workmod, but to

retain the workmod structure. RESETW is functionally equivalent to issuing

DELETEW and CREATEW requests in sequence.

Delete and reset requests are rejected if the workmod is in an altered state.

You can force the deletion of an altered workmod by specifying PROTECT=NO

on the DELETEW request.

11. When your program is finished processing all of the data obtained from the

workmod, use the IEWBUFF FREEBUF function to free the storage for the

data.

12. Use ENDD to end the dialog and to free all remaining resources. An ENDD

request is rejected if any modified workmods remain, but can be forced by

specifying PROTECT=NO.

See Appendix F, “Programming example for the binder API,” on page 313 for a

typical assembler language application of the binder APIs.

Using the API

Chapter 1. Using the binder application programming interface 9

|

Processing intents

Each time you create or reset a workmod, you associate it with a processing intent.

The intent determines the services and options that are valid for the workmod.

CREATEW and RESETW require you to specify the processing intent using the

INTENT parameter. The two values are:

BIND The workmod is bound before being saved or loaded. All binder functions

can be requested.

ACCESS

The workmod is not bound before being saved or loaded. No services that

might alter the size or structure of the program module can be requested.

Table 2 lists each call and indicates whether it is required, optional, or not allowed

within a workmod of either processing intent.

 Table 2. Processing intent and calls

FUNCTION INTENT=BIND INTENT=ACCESS

ADDA Optional Optional

ALIGNT Optional Not allowed

ALTERW Optional Not allowed

AUTOCALL Optional Not allowed

BINDW Required Not allowed

CREATEW Required Required

DELETEW Optional Optional

DLLR Optional Optional

ENDD Required Required

GETC Optional Optional

GETD (see note 1) Optional Optional

GETE (see note 2) Optional Optional

GETN (see note 3) Optional Optional

IMPORT Optional Not allowed

INCLUDE (see note 4) Required Required

INSERTS Optional Not allowed

LOADW Optional Optional

ORDERS Optional Not allowed

RENAME Optional Not allowed

RESETW Optional Optional

SAVEW Optional Optional

SETL Optional Not allowed

SETO (see note 5) Optional Optional

STARTD Required Required

STARTS Optional Not allowed

Notes:

1. If INTENT=BIND, the module must be bound before GETD calls can be

executed.

Using the API

10 z/OS V1R9.0 MVS Program Management: Advanced Facilities

2. If INTENT=BIND, the module must be bound before GETE calls can be

executed.

3. If INTENT=BIND, the module must be bound before GETN calls can be

executed.

4. If INTENT=ACCESS, only one module can be included in a workmod. If

INTENT=BIND, DDNAME and optionally MEMBER must be specified.

5. If INTENT=ACCESS, many of the options can be ignored.

Invoking the binder API

Setting the invocation environment

All binder API calls associated with a given binder dialog must be issued from the

same TCB.

Your program’s environment must have the following characteristics before invoking

the API:

v Enabled for I/O and external interrupts

v Holds no locks

v In task control block (TCB) mode

v With PSW key equal to the job step TCB key

v In primary address space mode

v In 31-bit addressing mode

v In either supervisor or problem program state

v With no FRRs on the current FRR stack.

You can call the binder in both problem program and supervisor state and in any

PSW storage key.

If your program is written in a high-level programming language, you must ensure

that your program is in 31-bit addressing mode before calling the IEWBIND service.

If your program is written in assembler language, the IEWBIND macro takes care of

any addressing mode changes in a transparent manner.

All requests are synchronous. The binder returns control to your program after the

completion of the requested service. Services cannot be requested in cross-memory

mode.

Loading the binder

The IEWBIND macro issues the LOAD macro for the IEWBIND entry point on the

STARTD call and the DELETE macro at the completion of an ENDD call. In order to

retain addressability to the binder on subsequent calls, the entry point address is

saved as the first word in the dialog token. This token must not be modified in any

way between binder calls.

If your program does not use the IEWBIND macro, you must cause the binder to be

loaded for entry point IEWBIND. Subsequently, each function call is executed by

calling the IEWBIND entry point with a parameter list.

Invoking the binder using the macros

Assembler language programs are expected to use the IEWBIND and IEWBUFF

macros. Sections “Coding the IEWBIND macro” on page 20 and Chapter 3,

“IEWBIND function reference,” on page 23 contain the details for coding the

Using the API

Chapter 1. Using the binder application programming interface 11

|
|

IEWBIND macro. Section “Generating and mapping data areas” on page 15

describes the coding details of the IEWBUFF macro.

The IEWBIND macro generates standard linkage code to transfer control to the

binder, so register 13 must contain the address of an 18-word register save area.

Invoking the binder without the macros

If you want to invoke the binder without using the macros (for example, from

nonassembler language programs), provide the services and generate the code

equivalent to that provided by the macros.

Providing buffer areas

For programs that create or access module data through binder function calls

(GETC, GETD, GETE, GETN, PUTD) you must acquire the buffers and create the

record map for each record type you plan to access. Functions GETC, GETD,

GETE, GETN and PUTD have a data buffer parameter defining the location of the

buffer to be used. This location is the address of the buffer header as described in

“Generating and mapping data areas” on page 15. See the following for a

discussion of the IEWBUFF and its associated macros for the specifications:

v “Generating and mapping data areas” on page 15

v Appendix D, “Binder API buffer formats,” on page 241

v “Using the IEWBUFF macro” on page 15

Providing the environment

Your program must have the execution environment defined in “Setting the

invocation environment” on page 11. If the addressing mode is not 31-bit, your

program must switch to 31-bit addressing mode before calling the binder. Upon

return from the binder, your program can restore the 24-bit addressing mode.

Obtaining the address of the binder program

You load the binder using its IEWBIND entry point and save the entry point

address. If your compiler does not support a LOAD function, call an assembler

subroutine to issue the LOAD macro and return the entry point address. You can

use the first word of the dialog token and/or the workmod token to save the entry

point address. When your program is complete, you cause the DELETE macro to

be issued to delete the binder from your execution environment.

Providing the parameter lists

Your program defines and sets each variable, then creates the parameter list for

each function call. The parameter list for each function call is provided in a figure at

the end of the function call description. See Chapter 3, “IEWBIND function

reference,” on page 23.

Don’t forget to set the high-order bit in the last address of the list to the number 1.

This bit signifies to the binder the end of the list of addresses.

Your program is responsible for all of the variables. You must ensure the integrity of

the dialog and workmod tokens between calls. Check that all varying character

strings have a halfword prefix containing the correct length of the data (not including

the prefix). The 2 byte length field is a binary number which immediately precedes

the data and is the length of the data only (that is, the length does not include the

two bytes where it resides). See Figure 2 on page 13 for a visual representation of

a variable length string parameter.

Using the API

12 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Invoking the binder

Your program calls the binder using MVS linkage conventions:

v Register 1 contains the address of the parameter list.

v Register 13 contains the address of an 18-word register save area.

v Register 14 contains the return address.

v Register 15 contains the IEWBIND entry point address.

Upon return from the binder, you can examine the return and reason codes.

Fullword return and reason codes are returned in registers 15 and 0, respectively.

They are also saved in the storage areas identified by the RETCODE and

RSNCODE addresses in the parameter list if those addresses are nonzero.

Binder API common return and reason codes

A return code, indicating the completion status of the requested function, is returned

in register 15 and in the fullword designated by the keyword RETCODE, if provided.

Return codes are interpreted as follows:

0 Successful completion of the operation.

4 Successful completion, but an unusual condition existed. One or more

warning level messages have been issued, and the reason code has been

set to indicate the nature of the problem or situation.

8 Error condition detected. Invalid data might have been discarded. Corrective

action has been taken by the binder, but results might require inspection.

12 Severe error encountered. Requested operation could not be completed,

but the dialog is allowed to continue.

16 Terminating error. Dialog could not be continued. Either a program error

occurred in the binder, or binder control blocks have been damaged. The

integrity of binder data cannot be assured.

A reason code is returned in register 0 and in the fullword designated by the

keyword RSNCODE, if provided.

The reason code identifies the nature of the problem. It is zero if the return code

was zero, a valid reason code otherwise. Reason codes are in the format

83eegggg. ee is 00 except for logic errors and abends when it is EEor FF

respectively. gggg contains an information code.

Reason codes are described with the individual function descriptions. A few reason

codes are common to many functions and described in Table 3 on page 14. All the

binder API reason codes, and the API function that calls them are shown in “Binder

API reason codes in numeric sequence” on page 97.

See z/OS MVS Program Management: User’s Guide and Reference for a complete

list of binder return codes.

length data

0 2 length+2

Figure 2. Example of a variable length string parameter

Using the API

Chapter 1. Using the binder application programming interface 13

Table 3. Common binder API reason codes

Return Code Reason Code

(hex)

Explanation

00 00000000 Normal completion.

08 83000813 Data incompatible with buffer version. Request rejected.

12 83000001 Invalid workmod token. Request rejected.

12 83000002 Invalid dialog token. Request rejected.

12 83000003 Binder invoked from within user exit. Request rejected.

12 83000004 Invalid function code specified. Request rejected.

12 83000005 Invalid parameter. Request rejected.

12 83000006 A function not allowed during PUTD input mode

operation was requested. The request is rejected.

12 83000007 Passed symbol contains characters outside the range

acceptable to the binder.

12 83000008 Wrong number of arguments specified. Request rejected.

12 83000009 Parameter list contains invalid address, or refers to

storage that is not accessible by the binder. Request

rejected.

12 83000010 Parameter list is not addressable by the binder. Request

rejected.

12 83000101 Improper combination of parameters. Request rejected.

16 83000050 Storage limit established by workspace option exceeded.

Dialog terminated.

16 83000051 Insufficient storage available. Dialog terminated. Increase

REGION parameter on EXEC statement and rerun job.

16 83000060 Operating system not at correct DFSMS/MVS level. No

dialog established, function not processed.

16 83000FFF IEWBIND module could not be loaded. Issued only by

IEWBIND macro.

16 83EE2900 Binder logic error. Dialog terminated. Normally

accompanied by a 0F4 abend.

16 83FFaaa0 Binder abend occurred. Dialog terminated. aaa is the

system abend completion code. If the binder is invoked

through one of the batch entry points, no attempt is

made to intercept x37 abends (indicating out-of-space

conditions in SYSLMOD).

Using the API

14 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 2. Binder API interface macros

This topic is specifically for users of the IEWBIND and IEWBUFF macros. It

includes a complete description of the use of IEWBUFF, as well as supplemental

material on the IEWBIND macro. If you are calling the binder API from languages

other than assembler or IBM’s internal PL/X, you must follow the instructions

presented in “Invoking the binder without the macros” on page 12 together with the

IEWBIND interface parameter details given in Chapter 3, “IEWBIND function

reference,” on page 23.

Generating and mapping data areas

The binder uses a standardized buffer structure to pass data to and from calling

programs. Each buffer begins with a header containing the following information:

1. A doubleword containing an identifier

2. A fullword containing the length of the buffer (including the header)

3. A one-byte version identifier followed by three bytes of zeroes

4. A fullword containing the length of each entry in the buffer ('1' if the buffer holds

TEXT data)

5. A fullword containing the number of bytes (for TEXT data) or records (for other

data types) the buffer can hold.

This section describes how to use the IEWBUFF macro to generate and initialize

buffers and to obtain and release the necessary storage. The record layouts for

each buffer type are illustrated in Appendix D, “Binder API buffer formats,” on page

241.

Using the IEWBUFF macro

The IEWBUFF macro generates, initializes, and maps the data buffers used during

binder processing. The IEWBUFF macro provides four functions:

v MAPBUF to generate a buffer declaration for one data type

v GETBUF to acquire storage for one buffer

v INITBUF to initialize a buffer header for one buffer

v FREEBUF to release storage for one buffer.

 IEWBUFF TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL | IDRZ | IDRB |

 SYM | TEXT | NAME | XTLST | PINIT | PMAR}

 ,FUNC=MAPBUF

 {,SIZE=size | BYTES=bytes}

 [,HEADREG={headreg | USERHEADREG}]

 [,ENTRYREG={entryreg | USERENTRYREG}]

 [,VERSION=version]

 [,PREFIX=prefix_chars]

 ,FUNC=GETBUF

 [,GM_RETCODE=gm_retcode]

 ,FUNC=INITBUF

 ,FUNC=FREEBUF

 [,FM_RETCODE=fm_retcode]

Figure 3. IEWBUFF function summary

© Copyright IBM Corp. 1991, 2006 15

MAPBUF provides a mapping macro for the buffer header and for one entry record.

It also defines constant values, in the calling program, associated with the specified

data type. These are used by the GETBUF, INITBUF, and FREEBUF calls to

determine the interface version and number of records or bytes in the buffer.

Note: If it is necessary to have more than one copy of a particular buffer in your

program (for example, both Version 1 and Version 2 buffers), you must code

the PREFIX parameter to vary the generated data names.

GETBUF and INITBUF are used to prepare a buffer for use, and FREEBUF is used

to release the buffer after usage. GETBUF and FREEBUF are not needed if you

specifically provide storage for the buffer.

A single block of storage can be used for different buffer types if it is as large as the

largest buffer type used and the buffer header is initialized for the correct data type

before the buffer is used. When multiple buffers are to share the same storage you

should specify the buffer capacity in bytes rather than SIZE. Some buffer types

(such as ESD and RLD) vary considerably from release to release. You should

specify the latest buffer version to be sure that all new binder features are available.

The default is VERSION=1.

This section describes the parameters for each function call. No separate return

codes, other than those generated by GETMAIN and FREEMAIN, are returned by

the IEWBUFF macro. The invocation environment is the same as that of the

IEWBIND macro (see “Setting the invocation environment” on page 11).

FREEBUF: Free buffer storage

The syntax of the FREEBUF call is:

 [symbol] IEWBUFF FUNC=FREEBUF

 ,TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL |

 IDRZ | IDRB | SYM | TEXT | NAME |

 XTLST | MAP | PINIT | PMAR}

[,FM_RETCODE=fm_retcode]

[,PREFIX=string]

FUNC=FREEBUF

Requests that the buffer storage be released and the base pointers for the

buffer mappings be set to zero.

TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL | IDRZ | IDRB | SYM | TEXT | NAME

| XTLST | MAP | PINIT | PMAR}

Specifies a record buffer for B_CUI, B_ESD, B_LIB, B_RLD, B_IDRU, B_IDRL,

B_IDRZ, B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer

for B_TEXT and PMAR data; a record buffer for name lists (NAME) (see

“GETN: Get names” on page 54); a data buffer for an extent list (B_XTLST) that

is returned to the caller after a program module is loaded (see “LOADW: Load

workmod” on page 66); and a record buffer for part initializers (B_PARTINIT)

(see binder-defined class B_PARTINIT on page 3). ADATA and all

compiler-defined text classes must use TEXT for buffer type.

FM_RETCODE=fm_retcode — RX-type address or register (2-12)

Specifies the location of a fullword that is to receive the return code from the

FREEMAIN request issued by IEWBUFF. If not specified, an unconditional

FREEMAIN will be issued.

Binder API interface macros

16 z/OS V1R9.0 MVS Program Management: Advanced Facilities

PREFIX=string

Specifies that each generated symbol in the buffer declaration is prefixed with

the provided string, followed by an underscore(_). The PREFIX value is needed

for differentiating the field names of two versions of the same record type. For

instance, if you use Version 2 and Version 3 of the ESD mapping in the same

program, you can use "V2" and "V3" respectively, for each PREFIX. The

mappings are generated with the differentiating prefixes and are used when

multiple MAPBUF declarations exist for the same TYPE to identify which of the

declarations should be used for this request.

Note: The PREFIX value should not be enclosed by apostrophes and must not

exceed 32 bytes.

GETBUF: Get buffer storage

The syntax of the GETBUF call is:

 [symbol] IEWBUFF FUNC=GETBUF

 ,TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL |

 IDRZ | IDRB | SYM | TEXT | NAME |

 XTLST | MAP | PINIT | PMAR}

[,GM_RETCODE=gm_retcode]

[,PREFIX=string]

FUNC=GETBUF

Requests that storage for a buffer be obtained and that the sections for the

buffer header and the first buffer entry be mapped. This macro initializes the

HEADREG and ENTRYREG specified by IEWBUFF FUNC=MAPBUF.

TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL | IDRZ | IDRB | SYM | TEXT | NAME

| XTLST | MAP | PINIT | PMAR}

Specifies a record buffer for B_CUI, B_ESD, B_LIB, B_RLD, B_IDRU, B_IDRL,

B_IDRZ, B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer

for B_TEXT and PMAR data; a record buffer for name lists (NAME) (see

“GETN: Get names” on page 54); a data buffer for an extent list (B_XTLST) that

is returned to the caller after a program module is loaded (see “LOADW: Load

workmod” on page 66); and a record buffer for part initializers (B_PARTINIT)

(see binder-defined class B_PARTINIT on page 3). ADATA and all

compiler-defined text classes must use TEXT for buffer type.

GM_RETCODE=gm_retcode — RX-type address or register (2-12)

Specifies the location of a fullword that receives the return code from the

GETMAIN request issued by IEWBUFF.If not specified, an unconditional

GETMAIN will be issued.

PREFIX=string

Specifies that each generated symbol in the buffer declaration is prefixed with

the provided string, followed by an underscore(_). The PREFIX value is needed

for differentiating the field names of two versions of the same record type. For

instance, if you use Version 2 and Version 3 of the ESD mapping in the same

program, you can use "V2" and "V3" respectively, for each PREFIX. The

mappings are generated with the differentiating prefixes (for example,

V2_ESD_TYPE and V3_ESD_TYPE), and you can then refer to any field name

in either mapping without ambiguity.

Note: The PREFIX value should not be enclosed by apostrophes and must not

exceed 32 bytes.

Binder API interface macros

Chapter 2. Binder API interface macros 17

INITBUF: Initialize buffer header

The syntax of the INITBUF call is:

 [symbol] IEWBUFF FUNC=INITBUF

 ,TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL |

 IDRZ | IDRB | SYM | TEXT | NAME |

 XTLST | MAP | PINIT | PMAR}

[,PREFIX=string]

FUNC=INITBUF

Requests that the buffer header be initialized.

TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL | IDRZ | IDRB | SYM | TEXT | NAME

| XTLST | MAP | PINIT | PMAR}

Specifies a record buffer for B_CUI, B_ESD, B_ LIB, B_RLD, B_IDRU, B_IDRL,

B_IDRZ, B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer

for B_TEXT and PMAR data; a record buffer for name lists (NAME) (see

“GETN: Get names” on page 54); a data buffer for an extent list (B_XTLST) that

is returned to the caller after a program module is loaded (see “LOADW: Load

workmod” on page 66); and a record buffer for part initializers (B_PARTINIT)

(see binder-defined class B_PARTINIT on page 3). ADATA and all

compiler-defined text classes must use TEXT for buffer type.

PREFIX=string

Specifies that each generated symbol in the buffer declaration is prefixed with

the provided string, followed by an underscore(_). The PREFIX value is needed

for differentiating the field names of two versions of the same record type. For

instance, if you use Version 2 and Version 3 of the ESD mapping in the same

program, you can use "V2" and "V3" respectively, for each PREFIX. The

mappings are generated with the differentiating prefixes and are used when

multiple MAPBUF declarations exist for the same TYPE to identify which of the

declarations should be used for this request.

Note: The PREFIX value should not be enclosed by apostrophes and must not

exceed 32 bytes.

MAPBUF: Map buffer declaration

The syntax of the MAPBUF call is:

 [symbol] IEWBUFF FUNC=MAPBUF

 ,TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL |

 IDRZ | IDRB | SYM | TEXT | NAME |

 XTLST | MAP | PINIT | PMAR}

,{SIZE=nnn | BYTES=nnnn}

[,HEADREG={headreg | USERHEADREG}]

[,ENTRYREG={entryreg | USERENTRYREG}]

[,VERSION=1|2|3|4]|5] | 6

[,PREFIX=string]

FUNC=MAPBUF

Requests a declaration of the buffer header and its entries. This function is

required if any other IEWBUFF functions are used and may be specified only

once per TYPE and PREFIX combination in the assembler source module

containing the macro expansion.

Binder API interface macros

18 z/OS V1R9.0 MVS Program Management: Advanced Facilities

TYPE={CUI | ESD | LIB | RLD | IDRU | IDRL | IDRZ | IDRB | SYM | TEXT | NAME

| XTLST | MAP | PINIT | PMAR}

Specifies a record buffer for B_CUI, B_ESD, B_LIB, B_RLD, B_IDRU, B_IDRL,

B_IDRZ, B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer

for B_TEXT and PMAR data; a record buffer for name lists (NAME) (see

“GETN: Get names” on page 54); a data buffer for an extent list (B_XTLST) that

is returned to the caller after a program module is loaded (see “LOADW: Load

workmod” on page 66); and a record buffer for part initializers (B_PARTINIT)

(see binder-defined class B_PARTINIT on page 3). ADATA and all

compiler-defined text classes must use TEXT for buffer type.

SIZE=nnn | BYTES=nnnn

SIZE=nnn Specifies the size of the buffer in bytes for text data buffers and in

records for all other buffer types.

 BYTES=nnnn Specifies the maximum number of bytes available for the buffer,

including the header, regardless of the TYPE specified. This parameter is an

alternative to the SIZE parameter and is used when a single block of storage is

shared by several different buffers.

 Code the values for SIZE and BYTES as integer values in the range 0-2**31.

Note: Values provided here should be treated as estimates of the amount of

data that can be returned. The macro will add additional space for

overhead, but that, too, is only an estimate. The amount of data actually

returned is always reported by the entry count in the output parameter

list and the entry length as defined in the buffer header for each type of

buffer.

HEADREG={headreg | USERHEADREG}

Specifies a value from 1-15 indicating the register number to equate to the base

register used for the buffer header dummy section (DSECT). If the default,

USERHEADREG, is used, IEWBUFF does not use a specific register to base

the buffer header DSECT. Instead, you define a symbol named

IEWBxyz_BASE, where xyz is 3 characters representing the TYPE, as the base

register for the DSECT. The following codes must be substituted for xyz in the

register names, depending on the TYPE= keyword value used.

TYPE: CUI IDRB IDRL IDRU IDRZ LIB NAME PINIT TEXT XTLST PMAR

xyz: CUI IDB IDL IDU IDZ LIB BNL PTI TXT XTL PMR

ENTRYREG={entryreg | USERENTRYREG}

Specifies a value from 1-15 indicating the register number to equate to the base

register used for the buffer entry DSECT. If the default, USERENTRYREG, is

used, IEWBUFF does not use a specific register to base the buffer entry

DSECT. Instead, you define a symbol named xyz_BASE, where xyz represents

the TYPE (see the codes under HEADREG), as the base register for the

DSECT. The PREFIX value is needed for differentiating the field names.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Each version of the binder API supports all earlier buffer format versions, so

you do not need to modify your program to call a more recent level of the

binder API. It is recommended that new programs specify the latest VERSION

available when they are written because the default is VERSION=1. Using the

default, or any older version, is likely to make it impossible for the binder to

return all of the data in the requested record; only compatible fields will contain

returned data.

 New buffer versions were introduced in the following releases:

v VERSION=1 DFSMS/MVS Release 1

Binder API interface macros

Chapter 2. Binder API interface macros 19

v VERSION=2 DFSMS/MVS Release 3

v VERSION=3 DFSMS/MVS Release 4

v VERSION=4 OS/390 DFSMS Version 2 Release 10

v VERSION=5 z/OS Version 1 Release 3

v VERSION=6 z/OS Version 1 Release 5

Note: The version number of the buffer and the version number of the API call

must be in agreement.

PREFIX=string

Specifies that each generated symbol in the buffer declaration is prefixed with

the provided string, followed by an underscore (_). The PREFIX value is

needed for differentiating the field names of two versions of the same record

type. For instance, if you use Version 2 and Version 3 of the ESD mapping in

the same program, you can use "V2" and "V3" respectively, for each PREFIX.

The mappings are generated with the differentiating prefixes (for example,

V2_ESD_TYPE and V3_ESD_TYPE), and you can then refer to any field name

in either mapping without ambiguity.

Note: The PREFIX value should not be enclosed by apostrophes and must not

exceed 32 bytes.

Coding the IEWBIND macro

Each IEWBIND call contains a function code keyword, an optional version number,

two optional keywords indicating where the return and reason codes are to be

placed after completion of the function, and either a dialog or a workmod token. The

function code identifies the requested service. Other parameters vary according to

the function requested.

The VERSION parameter on each call indicates the format of the parameter list.

For data calls (GETC, GETD, GETE, GETN and PUTD) the version specified or

defaulted on the API call must match the version of the buffer mapped by the

IEWBUFF macro invocation. For new programs, specify VERSION=6 to be sure

new binder features are available. If you do not specify VERSION, it defaults to

VERSION=1.

IEWBIND supports inline parameter list generation (MF=S) and the list (MF=L) and

execute (MF=E) forms of assembler macros. The generated parameter list is

documented for each IEWBIND function call.

Defining varying character strings

Many character string variables are coded as varying-length character strings.

Varying-length strings are defined for user-defined names (section, class, ddname,

member, symbol, part), lists of codes that must appear as a single parameter, and

other parameter values that might vary in length. Varying-length character strings

have a halfword length in the first two bytes of the string that contains the current

length of the string not counting the length field itself. In the function call

specifications in Chapter 3, “IEWBIND function reference,” on page 23, the length

value associated with the string (for example, "1024-byte varying ...") indicates the

maximum data length allowed in the length field.

Binder API interface macros

20 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Defining section names

Section names must be 1 to 32767 bytes in length, consisting entirely of EBCDIC

characters in the range X'41' through X'FE', plus X'0E' and X'0F' (for double-byte

character set (DBCS) support.

Defining parameter lists

A parameter list is generated for each IEWBIND function call. The first three

parameter addresses point to a fullword containing a halfword function code and the

halfword parameter list format, an optional fullword return code, and an optional

32-bit reason code. The remaining parameters vary in number and sequence

according to the requested function. Bit zero is set in the last parameter address to

indicate the end of the parameter list.

Setting null values

The IEWBIND macro generates the necessary null and default values for any

omitted parameters. Parameters not coded on the macro are passed as null values,

rather than omitting the parameter altogether. Null values for the parameters are as

follows:

 Parameter Null value

Varying length character strings Two bytes of zeros.

Fixed length character strings Blank

Fullword or halfword integers Zero, unless zero is a valid value for that

parameter (such as OFFSET); then use –1

Doubleword integers (RELOC) Two words of zeros.

Return and reason codes Zero parameter address

Data buffers (AREA, XTLST) Doubleword of zero

Lists (FILES, EXITS, OPTIONS) Fullword of zero

Addresses Zero

Tokens Fullword or doubleword of zero depending

upon the token length. DIALOG, WORKMOD,

and EPTOKEN are 8 bytes; use a

doubleword

WKSPACE (workspace) parameter Doubleword of zero

Binder API interface macros

Chapter 2. Binder API interface macros 21

Binder API interface macros

22 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 3. IEWBIND function reference

This topic describes each function that you can specify on the IEWBIND macro and

the associated parameters.

 IEWBIND [,VERSION=1 | 2 | 3 | 4 | 5 | 6]

 [,RETCODE=retcode]

 [,RSNCODE=rsncode]

 [,MF=S] Macro standard form

 [,MF=(L,mfctrl[,{0F | 0D}])] Macro list form

 [,MF=(E,mfctrl)] Macro execute form

 FUNC=ADDA Add alias

 ,WORKMOD=workmod

 ,ANAME=aname

 [,ATYPE={A | S | P}]

 [,ENAME=ename]

 [,AMODE=amode]

 FUNC=ALIGNT Align text

 ,WORKMOD=workmod

 ,SECTION=section

 FUNC=ALTERW Alter workmod

 ,WORKMOD=workmod

 ,OLDNAME=oldname

 ,ATYPE={CHANGE | C}

 ,NEWNAME=newname

 ,ATYPE={DELETE | D}

 ,ATYPE={EXPAND | E}

 ,COUNT=count

 [,CLASS=class]

 ,ATYPE={REPLACE | R}

 ,NEWNAME=newname

 [,MODE={NEXT | N |IMMED | I}]

 FUNC=AUTOC Autocall

 ,WORKMOD=workmod

 ,{CALLIB=callib | PATHNAME=pathname}

 FUNC=BINDW Bind workmod

 ,WORKMOD=workmod

 [,CALLIB=callib]

 FUNC=CREATEW Create workmod

 ,DIALOG=dialog

 ,WORKMOD=workmod

 ,INTENT={BIND | B | ACCESS | A}

 FUNC=DELETEW Delete workmod

 ,WORKMOD=workmod

 [,PROTECT={YES | Y | NO | N}]

 FUNC=DLLR DLL rename

 ,WORKMOD=workmod

 ,RENAMEL=renamelist

Figure 4. IEWBIND function call summary (Part 1 of 4)

© Copyright IBM Corp. 1991, 2006 23

FUNC=ENDD End dialog

 ,DIALOG=dialog

 [,PROTECT={YES | Y | NO | N}]

 FUNC=GETC Get compile unit list

 ,WORKMOD=workmod

 [,SECTION=section]

 ,AREA=area

 ,COMPILEUNITLIST=compileunitlist

 ,CURSOR=cursor

 ,COUNT=count

 FUNC=GETD Get data

 ,WORKMOD=workmod

 ,CLASS=class

 [,SECTION=section]

 ,AREA=area

 ,CURSOR=cursor

 ,COUNT=count

 ,RELOC=reloc

 FUNC=GETE Get ESD

 ,WORKMOD=workmod

 [,SECTION=section]

 [,RECTYPE=rectype]

 [,{OFFSET=offset | SYMBOL=symbol}]

 [,CLASS=class]

 ,AREA=area

 ,CURSOR=cursor

 ,COUNT=count

 FUNC=GETN Get names

 ,WORKMOD=workmod

 [,AREA=area]

 ,CURSOR=cursor

 ,COUNT=count

 ,TCOUNT=tcount

 [,NTYPE={CLASS | C | SECTION | S}]

 FUNC=IMPORT Import symbol

 ,WORKMOD=workmod

 ,ITYPE={CODE | C | DATA | D}

 ,DLLNAME=dllname

 ,INAME=iname

 [,OFFSET=offset]

Figure 4. IEWBIND function call summary (Part 2 of 4)

IEWBIND function reference

24 z/OS V1R9.0 MVS Program Management: Advanced Facilities

FUNC=INCLUDE Include

 ,WORKMOD=workmod

 ,INTYPE={NAME | N}

 ,DDNAME=ddname[,MEMBER=member]

 | ,PATHNAME=pathname

 ,INTYPE={POINTER | P}

 ,DCBPTR=dcbptr

 ,DEPTR=deptr

 ,INTYPE={TOKEN | T}

 ,EPTOKEN=eptoken

 ,INTYPE={DEPTR | D}

 ,{DDNAME=ddname | DEPTR=deptr}

 ,INTYPE={SMDE | S}

 ,{DDNAME=ddname | DEPTR=deptr}

 [,ATTRIB={NO | N | YES | Y}]

 [,ALIASES={NO | N | YES | Y}]

 [,IMPORTS={NO | N | YES | Y}]

 FUNC=INSERTS Insert section

 ,WORKMOD=workmod

 ,SECTION=section

 FUNC=LOADW Load workmod

 ,WORKMOD=workmod

 ,EPLOC=eploc

 ,IDENTIFY={NO | N}

 ,XTLST=xtlst

 ,IDENTIFY={YES | Y}

 [,XTLST=xtlst]

 [,LNAME=lname]

 FUNC=ORDERS Order section

 ,WORKMOD=workmod

 ,SECTION=section

 FUNC=PUTD Put workmod data

 ,WORKMOD=workmod

 ,CLASS=class

 ,SECTION=section

 [,AREA=buffer,COUNT=count]

 [,CURSOR=cursor]

 [,NEWSECT={NO | YES}]

 [,ENDDATA={NO | YES}]

Figure 4. IEWBIND function call summary (Part 3 of 4)

IEWBIND function reference

Chapter 3. IEWBIND function reference 25

Note: List and Execute form parameters are defined in detail in the IEWBIND2

macro.

ADDA: Add alias

ADDA allows you to specify an alias to be added to a list of alias names.

The syntax of the ADDA call is:

 [symbol] IEWBIND FUNC=ADDA

 [VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,ANAME={alias | pathname}

[,ATYPE={A | S | P}]

[,ENAME=ename]

[,AMODE=amode]

 FUNC=RENAME Rename symbol

 ,OLDNAME=oldname

 ,NEWNAME=newname

 FUNC=RESETW Reset workmod

 ,WORKMOD=workmod

 ,INTENT={BIND | B | ACCESS |A}

 [,PROTECT={YES | Y | NO | N}]

 FUNC=SAVEW Save workmod

 ,WORKMOD=workmod

 [,MODLIB={ddname | pathname}]

 [,SNAME=sname]

 [,REPLACE={NO | N | YES | Y}]

 FUNC=SETL Set library

 ,WORKMOD=workmod

 [,SYMBOL=symbol]

 [,LIBOPT={CALL | C | NOCALL | N | EXCLUDE |E}]

 [,CALLIB=ddname | PATHNAME=pathname]

 FUNC=SETO Set options

 {,DIALOG=dialog | ,WORKMOD=workmod}

 ,OPTION=option

 ,OPTVAL=optval

 [,PARMS=parms]

 FUNC=STARTD Start dialog

 ,DIALOG=dialog

 [,FILES=files]

 [,EXITS=exits]

 [,OPTIONS=options]

 [,PARMS=parms]

 [,ENVARS=envars]

 FUNC=STARTS Start segment

 ,WORKMOD=workmod

 ,ORIGIN=origin

 [,REGION={NO | N | YES | Y}]

Figure 4. IEWBIND function call summary (Part 4 of 4)

IEWBIND function reference

26 z/OS V1R9.0 MVS Program Management: Advanced Facilities

FUNC=ADDA

Specifies that you are adding an alias.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

Note: If VERSION is defaulted or if specified as 1, 2, or 3, then ATYPE cannot

be specified as a macro keyword.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request.

ANAME={alias | pathname} — RX-type address or register (2-12)

Specifies the location of a 1024–byte varying character string that contains the

alias or alternate entry point name to be added to the directory of the output

program library. This is an alias name if ATYPE=A, or a path name if ATYPE=S

or ATYPE=P.

ENAME=ename — RX-type address or register (2-12)

Specifies the location of a varying character string up to 32767 bytes long that

contains the name of the entry point that is to receive control when the program

module is accessed by the name specified in ANAME. If the name specified for

ENAME is not a defined label in the ESD, the program will be entered at its

primary entry point. If no value is provided for ENAME, the value defaults to the

value specified in ANAME. ENAME is ignored if ATYPE is S or P.

ATYPE={A | S | P}

Specifies what type of value is pointed to by ANAME. ATYPE is not supported if

VERSION is defaulted or is specified as less then 4. ATYPE can be:

A Regular alias (default)

S The pathname for a symbolic link

P Sympath - ANAME is the pathname to be stored in all symbolic links.

AMODE=amode — RX-type address or register (2-12)

Specifies the location of a varying character string that contains the addressing

mode for the entry point specified. This value overrides any other AMODE value

already specified for this entry point without affecting other entry points. The

values that can be specified for AMODE are 24, 31, 64, ANY, and MIN. AMODE

is ignored if ATYPE is S or P. For a detailed description of addressing modes,

see z/OS MVS Program Management: User’s Guide and Reference.

Processing notes

The ADDA function has no immediate effect on the output module. Instead, the

symbol is added to a list of symbols that is used to generate aliases when the

module is saved. If the specified symbol appeared on an earlier ADDA call or an

ALIAS control statement, a warning message is issued and the latter specification

replaces the original one. This list is used when the program module is saved in a

program library to update the directory of the target library.

IEWBIND function reference

Chapter 3. IEWBIND function reference 27

If the name you specify matches a symbol already defined in the ESD of the

program module, it is processed as an alternate entry point instead of a true alias.

Alternate entry points are not supported for program objects that reside in z/OS

UNIX System Services files. If a z/OS UNIX System Services path name is

specified, that name becomes a true alias of the primary entry point.

Call sequence is significant for the ADDAlias function call. If multiple ADDA calls

specify the same alias or alternate entry point name, the most recent specification

prevails. If a subsequent INCLUDE function call specifying ALIASES=YES includes

an alias to the same name, the included specification takes precedence. To be sure

that the ADDA specification is used, it should follow all INCLUDE function calls

specifying ALIASES=YES. If the module contains multiple text classes, the primary

and alternate entry points must be defined in the same class.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Symbol added to the list of aliases.

04 8E000114 An attempt to change module attributes failed. Symbol

added to the list of aliases.

04 83000711 Alias name has already been assigned. This request will

replace the previous request for this alias name.

Parameter list

If your program does not use the IEWBIND macro, place the address of the ADDA

parameter list in general purpose register 1.

 Table 4. ADDA parameter list

PARMLIST DS 0F

DC A(ADDA) Function code + version

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(ANAME) Alias Name

DC A(ENAME) Entry point name

DC A(AMODE) amode

DC A(ATYPE) (optional) alias type

ADDA DC H’30’ ADDA function code value

DC H’version’ Parameter list version number

DC C’A’ (optional) type of alias:

’A’ = regular alias:

’S’ = path name for a symbolic link:

’P’ = path name to store in the link

Note: X’80000000’ must be added to either the AMODE parameter (for Version

less than 54) or the ATYPE parameter.

IEWBIND function reference

28 z/OS V1R9.0 MVS Program Management: Advanced Facilities

ALIGNT: Align text

ALIGNT allows you to specify 4KB page alignment for a control section or named

common area during the current binding operation. The alignment specification is

not changed in the ESD record of the control section.

The syntax of the ALIGNT call is:

 [symbol] IEWBIND FUNC=ALIGNT

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,SECTION=section

FUNC=ALIGNT

Specifies that the control section is aligned at a page boundary.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request.

SECTION=section — RX-type address or register (2-12)

Specifies the location of a varying character string that contains the name of the

control section or common section to be page aligned.

Processing notes

An ALIGNT request is valid only when the processing intent is BIND.

If the section does not appear, a message will be issued.

The page_aligned attribute is set for the target workmod and, when the module is

saved, in the output directory.

Page alignment requests remain in effect only for the current bind. The alignment

specification in the ESD record is not changed.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Section will be aligned during bind

operation.

12 83000104 Function not allowed for INTENT=ACCESS. Request

rejected.

IEWBIND function reference

Chapter 3. IEWBIND function reference 29

Return Code Reason Code Explanation

04 83000710 Duplicate alignment request. A request to page align this

section has already been processed. This request is

ignored.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

ALIGNT parameter list in general purpose register 1.

 Table 5. ALIGNT parameter list

PARMLIST DS 0F

 DC A(ALIGNT) Function code

 DC A(RETCODE) Return code

 DC A(RSNCODE) Reason code

 DC A(WORKMOD) Workmod token

 DC A(SECTION+X'80000000') Section name and end-of-list indicator

ALIGNT DC H’31’ ALIGNT function code

 DC H’version’ Interface version number

ALTERW: Alter workmod

ALTERW allows you to change or delete symbols, control sections, or common

areas and lengthen sections in a program module. The value specified on the

MODE parameter determines whether the request is performed on all items

currently in the workmod, or delayed to be performed only on the next program

module included in the workmod.

The ALTERW request with MODE=NEXT should be followed by an include request

for an object module or program module. If it is not, any pending alterations for the

next included data set are ignored.

The syntax of the ALTERW call is:

 [symbol] IEWBIND FUNC=ALTERW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,ATYPE={CHANGE | DELETE | EXPAND | REPLACE}

[,MODE={IMMED | NEXT}]

,OLDNAME=oldname

[,NEWNAME=newname]

[,COUNT=count]

[,CLASS=class]

FUNC=ALTERW

Specifies that you are changing or deleting a symbol or control section or

lengthening a section within the workmod.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

IEWBIND function reference

30 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Note: If VERSION=1 is specified for the ALTERW call, CLASS cannot be

specified as a macro keyword. The parameter list ends with the COUNT

parameter (with the high-order bit set). This exception is for Version 1

only.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request.

ATYPE={CHANGE | DELETE | EXPAND | REPLACE}

Specifies the type of alteration that is made on the designated workmod. The

value for ATYPE can be abbreviated as: C, D, E, or R.

 The alteration is performed either on the next module included in the workmod

or on all modules currently in the workmod, depending on the argument

specified on the MODE parameter. The possible arguments are as follows:

CHANGE

Changes an external symbol of any ESD type from OLDNAME to

NEWNAME. The symbol is changed in the target module(s). Occurrences of

the symbol in other modules, other workmods, or in directory entries are not

affected.

 If NEWNAME is already a defined symbol in the workmod, the existing

NEWNAME is deleted when this function begins processing. A warning

message is issued. Note that the results of the CHANGE operation can

differ from those of the linkage editor in this situation,

DELETE

Deletes an external symbol in the target module(s). If you specify an entry

name, the symbol definition is removed from the ESD and symbol

references are unaffected. If you specify a control section or common

section name, any items in the workmod with that section name are

deleted. any external references in the workmod to the deleted symbol are

unresolved.

EXPAND

Expands the length of the text of a section. The COUNT parameter is

required and indicates the amount by which the section should be

expanded. The same rules that apply to usage of the EXPAND control

statement are in effect; see the EXPAND statement in z/OS MVS Program

Management: User’s Guide and Reference for more information.

REPLACE

Allows you to delete a symbol (OLDNAME) and change any references to

that symbol to a new name (NEWNAME). If you specify a symbol that

refers to a section, all items having that name are deleted from the

workmod. If you specify a symbol, this operation is the same as the

CHANGE alteration. Any external references to the deleted section within

the workmod are changed to the new name.

MODE={IMMED | NEXT}

Specifies when the operation is to take place. The values are as follows:

IEWBIND function reference

Chapter 3. IEWBIND function reference 31

IMMED

The operation is to take place on all modules currently in the workmod.

NEXT

The operation is to take place on the next module included in the workmod.

This value is the default.

 The value for MODE can be abbreviated as I or N.

OLDNAME=oldname — RX-type address or register (2-12)

Specifies the location of a varying character string that contains the section

name or symbol to be changed, deleted, or replaced, or the name of the section

to be expanded. If OLDNAME is left blank, it is assumed to be a reference to a

blank common section. The maximum length of OLDNAME is 32767 bytes.

NEWNAME=newname — RX-type address or register (2-12)

Specifies the location of a varying character string that contains the new symbol

name for a change or replace operation. NEWNAME must not contain all

blanks. The maximum length of NEWNAME is 32767 bytes.

COUNT=count — RX-type address or register (2-12)

Specifies the location of a fullword that contains the number of bytes by which

to lengthen a section for an expand operation.

CLASS=class — RX-type address or register (2-12)

Specifies the name of a 16-byte varying character string variable containing the

class name of the item to be EXPANDed. If you specified anything other than

EXPAND for the ATYPE parameter, this parameter is ignored. If CLASS is not

specified, the default is B_TEXT.

Processing notes

An ALTERW request is valid only when the processing intent is BIND.

NEWNAME is required for change and replace alterations. It is ignored on delete

and expand alterations.

The scope of the requested operation is the designated workmod or the next

module to be included into the workmod by the binder, regardless of its source. An

included module refers to the next object or program module to enter the

designated workmod; the first END record (object module) or end-of-module

indication (program module) delimits the scope of ALTERW. Alter Workmod does

not affect any module(s) residing in other workmods or that enter the workmod

following the target module.

If an ALTERW request is not followed by an INCLUDE, such that a BINDW,

LOADW or SAVEW request is received and alterations are pending, the alterations

are not applied to the first autocalled module but are ignored. Similarly, if one or

more alterations are pending as a result of a CHANGE or REPLACE control

statement encountered in an autocalled member and an end-of-file is encountered,

those alterations are not applied to the next autocalled member.

ALTERW has no effect on symbols or section names appearing in previous or

subsequent deferred function requests, such as ADDA, ALIGNT, INSERTS,

ORDERS, or SETL.

IEWBIND function reference

32 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Module altered or deferred request

accepted.

04 83000702 OLDNAME not found. For an immediate-mode change or

replace request, no ESD entries in the module contained

the specified name.

04 83000706 Duplicate name. For an immediate mode request, the

replacement name already exists as an external symbol

in the target workmod. The old name or section will be

deleted if necessary, and the requested change will be

made.

08 83000550 A section for which an expand request was made is not

in the target workmod. Workmod is unchanged.

08 83000551 The name on an expand request matched a symbol in

workmod that was not a section name. Workmod is

unchanged.

08 83000552 The name on a change or replace request is blank.

Workmod is unchanged.

08 83000553 Expand request for more than 1 gigabytes was made.

Workmod is unchanged.

08 83000554 The class name specified or defaulted does not exist in

the section you specified. The element cannot be

expanded. Workmod is unchanged.

08 83000555 Designated class is not a text class. The element cannot

be expanded. Workmod is unchanged.

12 83000104 INTENT=ACCESS specified for workmod. Module could

not be altered.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

ALTERW parameter list in general purpose register 1.

 Table 6. ALTERW parameter list

PARMLIST DS 0F

DC A(ALTERW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(ATYPE) Alter type

DC A(MODE) Alter mode

DC A(OLDNAME) Old name

DC A(NEWNAME) New name

DC A(COUNT) Number of bytes

DC A(CLASS) Class (optional)

ALTERW DC H’50’ ALTERW function code

DC H’version’ Interface version number

IEWBIND function reference

Chapter 3. IEWBIND function reference 33

Table 6. ALTERW parameter list (continued)

ATYPE DC C’C’ Alter type:

 ’C’ = Change

 ’D’ = Delete

 ’E’ = Expand

 ’R’ = Replace

MODE DC C’N’ Alter mode:

 ’I’ = Immediate

 ’N’ = Next

Note: X'80000000' must be added to either the COUNT parameter (for Version 1)

or the CLASS parameter (for Version 2 or higher).

AUTOC: Perform incremental autocall

Perform immediate (incremental) autocall, using the given library name as the

CALLIB. Incremental autocall attempts to resolve any unresolved symbols at the

time the call is made, using a single library or library concatenation. Incremental

autocall does not cause immediate binding.

The syntax of the AUTOC call is:

 [symbol] IEWBIND FUNC=AUTOC

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

{,CALLIB=callib | ,PATHNAME=pathname}

FUNC=AUTOC

Requests incremental autocall.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned by the binder on the CREATEW request. You must not modify this

token.

CALLIB=callib — RX-type address or register (2-12)

Specifies the name of an 8-byte varying character string containing the ddname

of the library or library concatenation to be searched during autocall processing.

Either CALLIB or PATHNAME must be specified, but not both.

PATHNAME=pathname — RX-type address or register (2-12)

Specifies the name of a 1023-byte varying character string that contains the

path name of the z/OS UNIX System Services file to be searched during

IEWBIND function reference

34 z/OS V1R9.0 MVS Program Management: Advanced Facilities

autocall processing. The path name must begin with “/” (absolute path) or “./”

(relative path), followed by the path name up to a maximum of 1023 significant

characters. Either PATHNAME or CALLIB must be specified, but not both.

Processing notes

If pathname represents a z/OS UNIX System Services file, the binder will assume

that the file is a z/OS UNIX System Services archive file. If it is a z/OS UNIX

System Services directory file, the file names in the directory will be used for

symbol resolution during autocall.

Incremental autocall does not perform all of the normal autocall functions.

Messages relating to unresolved references are not issued. RENAME control

statements are not processed, and C library renames and the renames associated

with the UPCASE option are not performed. The interface validation is not called.

Incremental autocall is not performed if the NCAL processing option is in effect

Return and reason codes

The binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Autocall processing was successful

and the symbol(s) was resolved.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

AUTOCall parameter list in general purpose register 1.

 Table 7. AUTOCall parameter list

PARMLIST DS 0F

DC A(AUTOC) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(CALLIB+X'80000000') Autocall library DDname or path name

AUTOC DC H’51’ AUTOCall function code

DC H’version’ Interface version number

BINDW: Bind workmod

BINDW requests binding of the current workmod. Binding performs the following

services:

v Resolving references between control sections

v Resolving unresolved external references from designated libraries

v Ordering sections as specified on any ORDERS and INSERTS calls

v Completing requests for page alignment

v Calculating any relocatable address constants

v Updating the RLD and ESD.

IEWBIND function reference

Chapter 3. IEWBIND function reference 35

The syntax of BINDW is:

 [symbol] IEWBIND FUNC=BINDW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,CALLIB=ddname]

FUNC=BINDW

Requests a bind of the workmod into a program module.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request.

CALLIB=ddname — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains the

ddname of the library or library concatenation to be used for automatic library

call.

Processing notes

A BINDW request is valid only when the processing intent is BIND.

The processing rules for resolving external references are:

1. If the symbol was specified on a previous SETL call, one of the following

occurs:

v If the SETL specified a library ddname, that library should be searched. If the

member could not be located, no attempt is made to resolve the symbol from

the autocall libraries.

v If the SETL specified either the no callor exclude option, the symbol remains

unresolved and the ESD entry is marked accordingly.

2. If the symbol was not specified on a previous SETL call and the RES option is

in effect, attempt to resolve the symbol from the link pack area.

Note: If any symbols are resolved from the link pack area, the module cannot

be saved on external storage.

3. If the above two conditions are not true, attempt to resolve the symbol from the

appropriate autocall library:

v If the CALLIB parameter was specified on the BINDW call, attempt to resolve

the symbol from that library.

v If a library was specified as a CALLIB option from STARTD or SETO, attempt

to resolve the symbol from that library.

v Otherwise, the reference is not resolved.

IEWBIND function reference

36 z/OS V1R9.0 MVS Program Management: Advanced Facilities

4. Once the module has been bound, no further modifications can be applied. To

make additional changes it is necessary to save the existing module, reset the

workmod, and include the saved module.

Sections are ordered in order of inclusion unless this order is overridden by

INSERTS or ORDERS calls.

Return and reason codes

The binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Workmod has been bound.

04 83000300 Unresolved external references exist. NCAL, NOCALL or

NEVERCALL specified. Workmod has been bound.

04 83000308 Unresolved external references exist. A member

matching the unresolved reference was included during

autocall, but did not contain an entry label of the same

name. Workmod has been bound.

04 83000316 The overlay option was specified, but there is only one

segment. The workmod is bound, but not in overlay

format.

04 83000314 At least one valid exclusive call was found in a module

bound in overlay format. The XCAL option was specified.

Workmod has been bound.

08 83000301 Unresolved external references exist. The referenced

symbols could not be resolved from the autocall library.

Workmod has been bound.

08 83000302 Unresolved external references exist. No autocall library

specified. Workmod has been bound.

08 83000303 Unresolved external references exist. The member(s)

were located in the autocall library, but an error occurred

while attempting to include one or more of the members.

References to the member(s) that could not be included

remain unresolved. Workmod has been bound.

08 83000304 The name in an insert request was not resolved, or was

not resolved to a section name.

08 83000305 An ORDER request was processed for a symbol that is

not a label in the ESD. Ordering of that symbol has been

ignored. The workmod has been bound.

08 83000307 The module was bound successfully, but the module

map and/or cross reference table could not be produced.

08 83000309 An ALIGN request was processed for a symbol that is

not a label in the ESD. Alignment of that symbol has

been ignored. The workmod has been bound.

08 83000310 One or more alteration requests were pending upon

entry to autocall. The alterations were ignored. Workmod

has been bound.

08 83000311 Workmod has more than one segment, but OVLY was

not specified. The overlay structure was ignored, but the

workmod has been bound.

IEWBIND function reference

Chapter 3. IEWBIND function reference 37

Return Code Reason Code Explanation

08 83000313 A V-type address constant of less than four bytes, and

that references a segment other than the resident

segment, has been found in an overlay structure.

Workmod has been bound.

08 83000315 At least one invalid exclusive call was found in a module

bound in overlay format. Workmod has been bound, but

the adcon for the invalid call will not be properly

relocated.

08 83000317 At least one valid exclusive call was found in a module

bound in overlay format. Workmod has been bound.

08 83000318 There are no calls or branches from the root segment of

an overlay module to a segment lower in the tree

structure. Other segments cannot be loaded. Workmod

has been bound.

08 83000321 Overlay specified with COMPAT=PM2 or COMPAT=PM3.

Overlay is ignored.

08 83000501 One or more control statements were included during

autocall processing. The statements have been ignored.

08 83000816 Classes C_WSA and C_WSA64 are both present in the

module. z/OS Language Environment does not support

the presence of these two classes in the same program

object, and the resulting module will not execute

correctly.

12 83000104 INTENT=ACCESS specified for workmod. Module could

not be rebound.

12 83000312 There are no sections or only zero-length sections in the

root segment of an overlay module, and the module

probably cannot be executed. Workmod has been

bound.

12 83000320 An autocall library is unusable. Either it could not be

opened or the directory could not be processed. Autocall

processing continues without using this library.

12 83000322 Conflicting attributes encountered within a class. The

module cannot be bound.

12 83000415 Module contains no ESD data, and could not be bound.

12 83000719 Module contained no text after being bound, and is

probably not executable. Processing continues.

Parameter list

If your program does not use the IEWBIND macro, place the address of the BINDW

parameter list in general purpose register 1.

 Table 8. BINDW parameter list

PARMLIST DS 0F

DC A(BINDW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(DDNAME+X'80000000') Library ddname and end-of-list indicator

BINDW DC H’70’ BINDW function code

DC H’version’ Interface version number

IEWBIND function reference

38 z/OS V1R9.0 MVS Program Management: Advanced Facilities

CREATEW: Create workmod

CREATEW initializes a workmod and initializes the module options to the defaults

for the dialog. CREATEW also specifies the processing intent that determines the

functions that can be performed on the workmod.

The syntax of the CREATEW call is:

 [symbol] IEWBIND FUNC=CREATEW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,DIALOG=dialog

,INTENT={BIND | ACCESS}

FUNC=CREATEW

Specifies that a workmod is created and initialized.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that is to receive the workmod token for

this request.

DIALOG=dialog — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains a dialog token for which

the workmod is requested. The dialog token is obtained using the STARTD call

and must not be modified.

INTENT={BIND | ACCESS}

Specifies the range of binder services that can be requested for this workmod.

The values are as follows:

BIND

Specifies that the processing intent for this workmod is bind. The workmod

will be bound and all binder functions can be requested.

ACCESS

Specifies that the processing intent for this workmod is access. The

workmod will not be bound, and no services that alter the size or structure

of the program module can be requested. See “Processing intents” on page

10 for a list of services that are not allowable.

 The value for INTENT can be abbreviated as B or A.

Processing notes

None.

IEWBIND function reference

Chapter 3. IEWBIND function reference 39

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Workmod and workmod token

created.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

CREATEW parameter list in general purpose register 1.

 Table 9. CREATEW parameter list

PARMLIST DS 0F

DC A(CREATEW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(DIALOG) Dialog token

DC A(WORKMOD) Workmod token

DC A(INTENT+X'80000000') Processing intent and end-of-list indicator

CREATEW DC H’10’ CREATEW function code

DC H’version’ Interface version number

INTENT DC CL1’A’ Processing intent

 ’A’ = Access

 ’B’ = Bind

DELETEW: Delete workmod

DELETEW deletes a workmod. You must issue either the SAVEW or LOADW

function call before the DELETEW unless PROTECT=NO has been specified.

DELETEW resets the workmod token to the null state.

The syntax of the DELETEW call is:

 [symbol] IEWBIND FUNC=DELETEW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,PROTECT={YES | NO}]

FUNC=DELETEW

Specifies that a workmod is deleted.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

IEWBIND function reference

40 z/OS V1R9.0 MVS Program Management: Advanced Facilities

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

PROTECT={YES | NO}

Specifying PROTECT=N allows the binder to delete a workmod that has been

altered but not yet saved or loaded.

 The value for PROTECT can be abbreviated as Y or N.

Processing notes

The binder is sensitive to the state of the DCB pointed to by the DCBPTR in an

INCLUDE call. The DCB must not be closed and reopened while the binder

accesses the corresponding data set during a dialog. Once it is opened initially for

an INCLUDE call, it must remain open until after the binder’s ENDD call takes

place.

Note that if you do alter your DCB as described above, using DELETEW is not

enough to reaccess your data set at a later time during the same binder dialog.

This only causes the data set’s information to remain with the dialog, and such

information is no longer valid once the DCB is closed. An attempt to reuse the

altered DCB in the same binder dialog might produce unpredictable results. To

avoid this, end your dialog (ENDD) and start a new one (STARTD).

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Workmod has been deleted.

12 83000707 The workmod was in an altered state, and

PROTECT=YES was specified or defaulted. The delete

request is rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

DELETEW parameter list in general purpose register 1.

 Table 10. DELETEW parameter list

PARMLIST DS 0F

DC A(DELETEW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(PROTECT+X'80000000') Protect flag and end-of-list indicator

DELETEW DC H’15’ DELETEW function code

 DC H’version’ Interface version number

PROTECT DC C’Y’ Protection flag

 ’Y’ = Yes

 ’N’ = No

IEWBIND function reference

Chapter 3. IEWBIND function reference 41

DLLR: Rename DLL modules

DLLRename allows you to rename a list of DLL names. When a module has been

bound with processing option DYNAM(DLL) in effect, a table containing information

about imported and exported symbols is created. The information about imported

symbols includes the name of the DLL from which those symbols are to be

imported. The DLLR API takes a list of existing and replacement DLL names and

makes any necessary substitutions in said table.

The syntax of the DLLR call is:

 [symbol] IEWBIND FUNC=DLLR

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,RENAMEL=renamel

FUNC=DLLR

Requests the DLL rename function.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request. You must not modify this token.

RENAMEL=renamel — RX-type address or register (2-12)

Specifies the name of a list of fullword addresses. The list consists of a count

field, followed by one or more field trios, consisting of an old DLL name,

followed by a new DLL name, followed by a code that indicates whether or not

the binder successfully renamed the old name to the new name. (Figure 5 on

page 43 shows the list format).

 The 4-byte address of each name in the list points to a varying-length character

string, which can be up to 255 bytes in length. The first two bytes in such string

indicate the length of the string, excluding the first two bytes. The 255 character

length is provided for the support of z/OS UNIX System Services files, primary

DLL names in PDSE libraries.

 The 4-byte address of each rename code points to a full word field.

IEWBIND function reference

42 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Processing notes

The binder scans the DLL member names in the Import/Export table of the current

workmod. If one of the DLL members in the binder table matches an OLDNAME_x

entry in the passed rename list, the DLL name in the table is replaced with the

corresponding new name from the list. When this happens, the RENAME_CODE_x

is set to zero, meaning that the renaming function was successful for the

corresponding name pair in the list. Otherwise, the rename code is set to 4

(warning), meaning that the renaming did not take place for said name pair.

This API provides the functional equivalent of the IBM C/C++ DLLRENAME utility in

support of DLL processing by the binder.

In an application, you might want to verify whether an Import/Export table exists

before attempting the DLLR call. You can do so by coding a binder GETData call,

with CLASS=B_IMPEXP and a TEXT buffer (refer to GETData and IEWBUFF in this

chapter). GETData indicates whether the class (the Import/ Export table) exists or is

empty. Since DLL support was not added until DFSMS Version 1 Release 4,

program objects produced in earlier releases will not contain Import/Export tables.

When you bind a module in batch mode and specify the MAP processing option, a

class entry of B_IMPEXP in the output listing reveals the existence of an

Import/Export table.

Note: DLLR only affects the member names stored in the Import/Export table and

does not affect the external symbols in the ESD or the directory entries for

the module. DLLR does not cause the module to be rebound.

Return and reason codes

The binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. The call completed successfully.

However, you still need to verify your RENAMEList to

ensure that the DLL names were indeed changed. Refer

to the DLLR processing notes and the format of the

DLLRename parameter list to understand what you need

to verify.

04 The module that you are processing does not contain an

Import/Export table; therefore, there are no DLL names

to rename. Refer to the DLLR processing notes for more

details.

 Off Len

 0 4 A(COUNT) Number of trios

 4 4 A(OLDNAME_1)

 8 4 A(NEWNAME_1)

 12 4 A(RENAME_CODE_1)

 16 4 A(OLDNAME_2)

 20 4 A(NEWNAME_2)

 24 4 A(RENAME_CODE_2)

 ...

Figure 5. Rename list

IEWBIND function reference

Chapter 3. IEWBIND function reference 43

Parameter list

If your program does not use the IEWBIND macro, place the address of the

DLLRename parameter list in general purpose register 1.

 Table 11. DLLRename parameter list

PARMLIST DS 0F

DC A(DLLR) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(RENAMEL+X'80000000') Rename list & end-of-list indicator

DLLR DC H’17’ DLLR function code value

DC H’version’ Interface version number

ENDD: End dialog

ENDD ends the specified dialog and releases all associated storage resources.

Attached workmods are deleted, data sets are closed, storage obtained on behalf of

the caller is released, and the dialog token is invalidated.

The syntax of the ENDD call is:

 [symbol] IEWBIND FUNC=ENDD

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,DIALOG=dialog

[,PROTECT={YES | NO}]

FUNC=ENDD

Specifies that a dialog is ended.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

DIALOG=dialog — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the token for the dialog to

be terminated.

PROTECT={YES | NO}

Specifying PROTECT=NO allows the binder to end the dialog even if any

remaining workmods have been altered but not yet saved or loaded.

 The value for PROTECT can be abbreviated as Y or N. YES is the default.

Processing notes

None.

IEWBIND function reference

44 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Dialog ended normally.

04 83000700 One or more workmods were in an active state but they

were not protected (PROTECT=NO in ENDDialog).

Dialog ended normally.

08 83000704 An unexpected condition occurred while ending the

dialog. The dialog is terminated, but some resources

might not have been released.

12 83000708 One or more workmods were in an ″active″ state, and

PROTECT=YES was specified or defaulted. The dialog

is not terminated.

Parameter list

If your program does not use the IEWBIND macro, place the address of the ENDD

parameter list in general purpose register 1.

 Table 12. ENDD parameter list

PARMLIST DS 0F

DC A(ENDD) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(DIALOG) Dialog token

DC A(PROTECT+X'80000000') Protection flag and end-of-list indicator

ENDD DC H’5’ ENDD function code

DC H’version’ Interface version number

PROTECT DC CL1’Y’ Protection flag

 ’Y’ = Yes

 ’N’ = No

GETC: Get compile unit list

GETC returns data which is mapped to a new CUI buffer format (Version 6). The

COMPILEUNITLIST parameter determines which data is returned.

The syntax of the GETC call is:

 [symbol] IEWBIND FUNC=GETC

 ,VERSION=version

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,COMPILEUNITLIST=compileunitlist]]

,AREA=buffer

,CURSOR=cursor

,COUNT=count

FUNC=GETC

Requests that data from items in a workmod be returned to a specified location.

IEWBIND function reference

Chapter 3. IEWBIND function reference 45

VERSION=6

Specifies the version of the parameter list to be used (6 or higher).

Note: This version must match the version you specify with the IEWBUFF

macro when you define the buffer passed on this call.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte field that is to receive the reason code

returned by the binder. Reason codes are documented as a sequence of 8

hexadecimal digits.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

COMPILEUNITLIST=compileunitlist

Determines which data is returned. If COMPILEUNITLIST is specified, one

record for each compile unit in a list of compile units will be returned. If

COMPILEUNITLIST is omitted, one record of each of all compile units will be

returned. The header record, the first compile unit record, is built when the

cursor is zero.

 The compile unit list is a structure:

Count DC F’5’ List with 5 entries

List DS 5F Returned by GETN

Note: compileunitlist must be composed of values returned in

BFNL_6_SECT_CU resulting from a GETN

TYPE=SECTION,VERSION=6 API call.

 When INTENT=ACCESS is specified in the CREATEW API call, information

about the input module (the target module of the GETC call) is placed in the

header record. This information includes the program object version and the

source of the input module (data set name or path name, ddname, and member

name).

AREA=buffer — RX-type address or register (2-12)

Specifies the location of a CUI buffer to receive the data. The binder returns

data until either this buffer is filled or the specified items have been completely

moved. See “Generating and mapping data areas” on page 15 for information

on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)

Specifies the location of a fullword integer that contains the position within the

item(s) where the binder should begin processing. Specifying a zero for the

argument causes the binder to begin processing at the start of the item. The

cursor value is specified in bytes for items in the TEXT class, in records for all

other classes. The value is relative to the start of the item. The cursor value is

modified before returning to the caller.

COUNT=count — RX-type address or register (2-12)

Specifies the location of a fullword that is to receive the number of bytes of

TEXT or the number of entries returned by the binder.

IEWBIND function reference

46 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Processing notes

The CURSOR value identifies an offset into the requested data beginning with 0. It

is both an input and output parameter. On input to the service, the cursor specifies

the first byte to return. On exit from the service, it is updated to the next byte for

continued sequential retrieval if not all data has yet been retrieved.

For load modules and program object formats at a compatability level prior to z/OS

V1R5 , a compile unit is the same as a section. For z/OS V1R5 compatible

modules, a compile unit corresponds to a single object module. Each compile unit

in a workmod is assigned a unique number; however, this assigned number may

change when a module is rebound. Furthermore, the compile unit number will be

zero for all binder generated sections (IEWBLIT or section 1, for example).

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. There might be additional data that

did not fit in the buffer.

04 83000800 End of data. Some data might have been returned in the

buffer, but no more is available.

04 83000801 No section names exist. No data was returned.

04 83000810 Cursor is negative or beyond the end of the specified

item. No data was returned.

08 83002342 Some of the passed compile unit numbers do not exist in

workmod. Data for the valid compile units is returned.

12 83000102 Workmod was in an unbound state.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETC

parameter list in general purpose register 1.

 Table 13. GETC parameter list

PARMLIST DS 0F

DC A(GETC) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(CULIST) Compile unit list

DC A(BUFFER) Data buffer

DC A(CURSOR) Starting position

DC A(COUNT+X'80000000') Data count

GETC DC H’64’ GETC function code

DC H’6’ Interface version number

GETD: Get data

GETD returns data from items in a workmod. The values of the CLASS and

SECTION parameters determine which item is returned. If SECTION is omitted, all

sections are returned as a single unit. This service can only be performed on a

bound workmod.

IEWBIND function reference

Chapter 3. IEWBIND function reference 47

The syntax of the GETD call is:

 [symbol] IEWBIND FUNC=GETD

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,CLASS=class

[,SECTION=section]

,AREA=buffer

,CURSOR=cursor

,COUNT=count

[,RELOC=reloc]

FUNC=GETD

Requests that data from items in a workmod be returned to a specified location.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

Note: This version must match the version you specify with the IEWBUFF

macro when you define the buffer passed on this call.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

CLASS=class — RX-type address or register (2-12)

Specifies the location of a 16-byte varying character string containing a class

name. The class name might have been defined by the binder, a compiler, or

an end user. See “Understanding binder programming concepts” on page 1 for

binder class names. B_PMAR is also accepted as a class name although it is

not an actual class in a binder workmod.

SECTION=section — RX-type address or register (2-12)

Specifies the location of a varying character string that contains the name of the

section to be processed. If omitted, this defaults to a concatenation of all

sections in the specified class. If the processing intent is bind, the sections are

ordered by virtual address. If the processing intent is access, they are returned

in the same order that they were included in the workmod.

AREA=buffer — RX-type address or register (2-12)

Specifies the location of a buffer to receive the data. The binder returns data

until either this buffer is filled or the specified items have been completely

moved. See “Generating and mapping data areas” on page 15 for information

on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)

Specifies the location of a fullword integer that contains the position within the

item(s) where the binder should begin processing. Specifying a zero for the

argument causes the binder to begin processing at the start of the item. The

IEWBIND function reference

48 z/OS V1R9.0 MVS Program Management: Advanced Facilities

cursor value is specified in bytes for items in the TEXT class, in records for all

other classes. The value is relative to the start of the item. The cursor value is

modified before returning to the caller.

COUNT=count — RX-type address or register (2-12)

Specifies the location of a fullword that is to receive the number of bytes of

TEXT or the number of entries returned by the binder.

RELOC=reloc

Specifies a base address to be used for relocation. You can only use this

parameter with VERSION=6 or higher. You will need to know the load segment

for the data you are requesting. You can map text classes into load segments

using GETN. reloc is a single 8–byte address. The relocation address will

relocate the adcons in the returned text buffer as though the program segments

had been loaded at the designated address. If you do not use the RELOC

parameter, it should set to zero.

Processing notes

The CURSOR value identifies an index into the requested data beginning with 0 for

the first data item. Each of the buffer formats defined in Appendix D, “Binder API

buffer formats,” on page 241contains an entry length field in its header. Multiplying

the cursor value by the entry length provides a byte offset into the data. Note that

CUI, LIB, PMAR, and text data is always treated as having entry length 1. The

CURSOR value is both an input and output parameter. On input to the service, the

cursor specifies the first item to return. On exit from the service, it is updated to an

appropriate value for continued sequential retrieval if not all data has yet been

retrieved. For text data, this may or may not be the next byte after the last one

returned, because pad bytes between sections and uninitialized data areas within

sections may have been skipped. Any data skipped should be treated by the calling

application as containing the fill character (normally X’00’).

On the next GETD request, the binder begins processing where the last request left

off.

If you interrupt a series of successive GETD calls, you should reset the value of the

cursor before continuing. Otherwise, the cursor value might be invalid and the

results of a GETD request are unpredictable.

If a section name is not passed on a GETD API invocation for a text class and the

target is an overlay module, the cursor is interpreted as an offset into the module

and laid out sequentially in segment order, using the alignment as specified in the

object modules.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000800 Normal completion. Some data might have been

returned in the buffer, and an end-of-data condition was

encountered. There is no message associated with this

condition.

04 83000801 The requested item did not exist or is empty. No data

has been returned.

IEWBIND function reference

Chapter 3. IEWBIND function reference 49

|
|
|
|

Return Code Reason Code Explanation

08 83000750 The buffer is not large enough for one record. No data is

returned.

08 83000813 The buffer version is not compatible with the module

content. No data is returned.

08 83002349 Not all adcons were successfully relocated. This

condition could occur because relocation addresses for

all the segments were not passed, or because the adcon

length was insufficient to contain the address.

12 83000102 Workmod was in an unbound state. GETD request could

not be processed.

12 83002375 The class was not a text class.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETD

parameter list in general purpose register 1.

 Table 14. GETD parameter list

PARMLIST DS 0F

DC A(GETD) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(CLASS) Class name

DC A(SECTION) Section name

DC A(BUFFER) Data buffer

DC A(CURSOR) Starting position

DC A(COUNT+X'80000000') Data count and end-of-list indicator

DC A(RELOC) Relocation address

GETD DC H’61’ GETD function code

DC H’version’ Interface version number

GETE: Get ESD data

GETE returns data from ESD items. GETE must be used on a bound workmod.

Four optional parameters allow you to specify selection criteria for the ESD items to

be returned: section name, ESD record type, offset in the section or module, and

symbol name. Only ESD records that meet all of the selection criteria will be

returned. Multiple selection criteria can be specified to retrieve exactly the records

you need.

IEWBIND function reference

50 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The syntax of the GETE call is:

 [symbol] IEWBIND FUNC=GETE

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,SECTION=section]

[,RECTYPE=rectype]

[,CLASS=class]

[,{OFFSET=offset | SYMBOL=symbol}]

,AREA=buffer

,CURSOR=cursor

,COUNT=count

FUNC=GETE

Requests that data from ESD items in a workmod be returned to a specified

location.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

Notes:

1. If VERSION=1 is specified for the GETE call, CLASS cannot be specified as

a macro keyword. The parameter list ends with the COUNT parameter (with

the high-order bit set). This exception is for Version 1 only.

2. This version must match the version you specify with the IEWBUFF macro

when you define the buffer passed on this call.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

SECTION=section — RX-type address or register (2-12)

Specifies the location of a 16-byte varying character string that contains the

name of the section to be processed. This argument can be set to blanks to

indicate blank common area. Sections will be retrieved in the same order that

they were included in the workmod.

 The default value is all sections. If this parameter is specified, only the indicated

section is searched.

RECTYPE=rectype — RX-type address or register (2-12)

Specifies the location of a varying character string that contains a list of the

ESD record types to be returned. If you do not specify this argument, all record

types are returned.

 Record types must be identified by one- or two-character codes, separated by

commas and enclosed in parentheses. Embedded blanks are not allowed. Valid

record types are:

SD Section definition

ED Element definition

IEWBIND function reference

Chapter 3. IEWBIND function reference 51

LD Label definition

PD Part definition

PR Part reference

ER External reference

CM Common

ST Segment table

ET Entry table

DS Dummy section definition

CM Common section definition

ET ENTAB

ST SEGTAB

PC Private code section definition

WX Weak external reference

 In addition, you can use a generic code to reference more than one ESD type:

S Section definition records (SD, CM, ST, ET, PC, and DS)

U Unresolved external references (ER, ESD_STATUS=unresolved)

CLASS=class — RX-type address or register (2-12)

Specifies the location of a 16-byte varying character string containing the name

of the text class referenced by the ESD record to be selected. If class has not

been specified, ESD records are returned without regard to class.

OFFSET=offset — RX-type address or register (2-12)

Specifies the location of a fullword integer that contains the offset within the

specified section. If a section name has not been specified, a module offset is

assumed. If you specify OFFSET you cannot specify SYMBOL but must specify

CLASS.

SYMBOL=xsymbol — RX-type address or register (2-12)

Specifies the location of a varying character string that contains a symbol to be

used as a selection criterion. If you specify SYMBOL you cannot specify

OFFSET.

 If neither OFFSET nor SYMBOL is provided, processing begins at the start of

the item.

AREA=buffer — RX-type address or register (2-12)

Specifies the location of a buffer to receive the data. This buffer must be

allocated and initialized in ESD format. See “Generating and mapping data

areas” on page 15 for information on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)

Specifies the location of a fullword integer that indicates the position within the

section or module where the binder should begin processing. Specifying a zero

for this argument causes the binder to begin processing at the first ESD entry.

Offsets are specified in records and are relative to the start of the selected ESD

item(s).

COUNT=count — RX-type address or register (2-12)

Specifies the location of a fullword integer in which the binder will store the

number of entries it has returned.

Processing notes

The binder returns ESD records that meet the selection criteria specified on the call:

v If SECTION is specified, only that section of the ESD will be searched. All

sections is the default.

IEWBIND function reference

52 z/OS V1R9.0 MVS Program Management: Advanced Facilities

v If RECTYPE is specified, only ESD records of the types appearing in the

supplied list are returned.

v If OFFSET is specified and rectype=“S”, the ESD record for the control section

(or common area) containing the specified offset, is returned. If OFFSET is

specified and rectype=“LD”, the ESD record for the symbol defined at or before

that location (within the containing section) is returned.

If OFFSET is specified, CLASS must also be specified.

v If SYMBOL is specified, all ESD records of the type(s) specified with that symbol

name are returned. If CLASS is specified, only ESD records that define locations

in that class are returned. Some records, such as SD and ER, are not associated

with any class and are never returned if class is specified.

The CURSOR value identifies an index into the requested ESD data beginning with

0 for the first ESD. The ESD buffer formats defined in Appendix D, “Binder API

buffer formats,” on page 241 contain an entry length field in their headers.

Multiplying the cursor value by the entry length provides a byte offset into the data.

CURSOR is an input and output parameter. On input to the service, the cursor

specifies the first item to return. On exit from the service, it is updated to the index

of the next sequential ESD if not all data has yet been retrieved.

The binder will typically return multiple entries in a single call, dependent on the

size of the buffer. Data is reformatted, if necessary, to conform to the version

identified in the caller’s buffer. The COUNT parameter is set to the number of

records actually returned in the buffer.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000705 The specified symbol could not be located in the

workmod. No data is returned in the buffer.

04 83000800 An end-of-data condition was detected. Some data might

have been returned in buffer. There is no message

associated with this condition.

04 83000801 The requested item was not found in the workmod, or

was empty, or no records met the specified criteria. No

data returned.

04 83000812 The specified offset was negative or beyond the end of

the designated item or module. No data is returned in

the buffer.

12 83000101 OFFSET and SYMBOL have both been specified.

Request rejected.

12 83000102 Workmod is unbound. GETE request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETE

parameter list in general purpose register 1.

 Table 15. GETE parameter list

PARMLIST DS 0F

DC A(GETE) Function code

IEWBIND function reference

Chapter 3. IEWBIND function reference 53

Table 15. GETE parameter list (continued)

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(SECTION) Section name

DC A(RECTYPE) ESD record type(s)

DC A(OFFSET) Offset in module or section. If not a selection

criterion, set to -1.

DC A(SYMBOL) Symbol name

DC A(BUFFER) Data buffer

DC A(CURSOR) Starting position

DC A(COUNT) Data count

DC A(CLASS) Text class

GETE DC H’62’ GETE function code

DC H’version’ Interface version number

RECTYPE DC H’7’,CL7’(SD,CM)’ Sample varying string

Note: X'80000000' must be added to either the COUNT parameter (for Version 1)

or the CLASS parameter (for Version 2 or higher).

GETN: Get names

GETN returns the names of each section or class in the workmod, a count of the

total number of sections or classes, and the compile unit (CU) numbers for each

section. The names returned also include names generated by the binder to

represent private code sections, unnamed common, SEGTAB and ENTAB sections

for overlay programs, and any other sections created by the binder. GETN can only

be performed on a bound workmod.

The syntax of the GETN call is:

 [symbol] IEWBIND FUNC=GETN

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,AREA=buffer]

,CURSOR=cursor

,COUNT=count

,TCOUNT=tcount

[,NTYPE={SECTION | CLASS}]

FUNC=GETN

Specifies that a count of the number of sections in a workmod and, optionally,

the names of each section, be returned to a specified location.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

Note: This version must match the version you specify with the IEWBUFF

macro when you define the buffer passed on this call.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

IEWBIND function reference

54 z/OS V1R9.0 MVS Program Management: Advanced Facilities

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

AREA=buffer — RX-type address or register (2-12)

Specifies the location of a buffer to receive the names. This buffer must be in

the format for section names (TYPE=NAME). See “Generating and mapping

data areas” on page 15 and Appendix D, “Binder API buffer formats,” on page

241 for information on buffer definition.

 Section names will be moved until either the buffer is filled or all names have

been moved. This keyword is optional. If it is not specified, only the number of

section names in the workmod will be returned.

CURSOR=cursor — RX-type address or register (2-12)

Specifies the location of a fullword integer that contains the position relative to

the start of the list of names where the binder should begin processing.

Specifying a zero for this argument causes the binder to begin processing at

the beginning of the list. Offsets are specified in records and are relative to the

start of the list. The cursor value is modified before returning to the caller.

COUNT=count — RX-type address or register (2-12)

Specifies the location of a fullword integer in which the binder will indicate the

number of names actually returned in the buffer.

TCOUNT=tcount — RX-type address or register (2-12)

Specifies the location of a fullword integer in which the binder will indicate the

total name count. TCOUNT indicates the total number of sections or classes in

the workmod, not just those returned in the buffer.

NTYPE={SECTION | CLASS}

Specifies the type of names to be returned and counted. SECTION causes the

names of all sections in the workmod, including special sections, to be returned.

In addition, the compile unit CU numbers are provided for buffer version 6 or

higher. CLASS causes the names of all classes in the workmod containing data

to be returned. The value for NTYPE can be abbreviated as S or C. SECTION

is the default.

Processing notes

The CURSOR value identifies an index into the requested data beginning with 0 for

the first name list entry. The name list buffer formats defined in Appendix D, “Binder

API buffer formats,” on page 241 contain an entry length field in their headers.

Multiplying the cursor value by the entry length provides a byte offset into the data.

CURSOR is both an input and output parameter. On input to the service, the cursor

specifies the first item to return. On exit from the service, it is updated to the index

of the next sequential name list entry if not all entries have yet been retrieved.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

IEWBIND function reference

Chapter 3. IEWBIND function reference 55

Return Code Reason Code Explanation

04 83000800 An end-of-data condition was detected. Some data might

have been returned in buffer. There is no message

associated with this condition.

04 83000801 No section names exist. No data was returned.

08 83000750 The buffer is not large enough for one record. No data is

returned.

04 83000810 Cursor is negative or beyond the end of the specified

item. No data was returned.

12 83000102 Workmod is unbound. GETN request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETN

parameter list in general purpose register 1.

 Table 16. GETN parameter list

PARMLIST DS 0F

DC A(GETN) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(BUFFER) Data buffer

DC A(CURSOR) Starting position

DC A(COUNT) Data count

DC A(TCOUNT) Total count

DC A(NTYPE+X'800000000') Name type to return and end-of-list indicator

GETN DC H’60’ GETN Function code

DC H’version’ Interface version number

NTYPE DC CL1’C’ ’C’ = class; ’S’ = section

IMPORT: Import a function or external variable

IMPORT describes a function or external variable to be imported and the library

member where it can be found.

The syntax of the IMPORT call is:

 [symbol] IEWBIND FUNC=IMPORT

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,ITYPE=itype

,DLLNAME=dllname

,INAME=iname

[,OFFSET=offset]

FUNC=IMPORT

Requests import of a function or external variable.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

IEWBIND function reference

56 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Note: If Version = 1, 2, or 3 is specified for the IMPORT call, then OFFSET

cannot be specified as a macro keyword. The parameter list ends with

the XINAME parameter (with the high-order bit set).

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request. This token must not be changed.

ITYPE=CODE | DATA | CODE64 | DATA64

Specifies whether the imported symbol represents code (a function entry point,

for example) or a data item. CODE64 and DATA64 are used in conjuction with

64-bit addressing.

DLLNAME=dllname — RX-type address or register (2-12)

Specifies the name of an area containing a halfword length field followed by the

member or alias name of the module containing the imported function or

variable. The length field defines the number of characters in the member name

and must not be larger than 8 bytes for a directory member or alias, or 1024

bytes for a z/OS UNIX System Services filename.

INAME=iname — RX-type address or register (2-12)

Specifies the name of an area containing a halfword length field followed by the

name of the symbol to be processed. The length field defines the number of

characters in the symbol name and must not be larger than 32767.

OFFSET=offset — RX-type address or register (2-12)

Specifies the name of an area containing a fullword integer. This value is not

interpreted by the binder, but will be stored in the import-export table entry for

the symbol if the import is for CODE and it is determined that the symbol

specified on the IMPORT statement is to be dynamically resolved.

Processing notes

If DLLNAME was not specified, the IMPORT statement will be ignored. Otherwise, if

the symbol is unresolved at the end of autocall and all references have SCOPE=X,

the IMPORT request will be converted to an entry in binder class B_IMPEXP. A bind

job for a DLL application should include an IMPORT control statement for any DLLs

that application expects to use. Otherwise if the DLL name is unresolved at static

bind time it will not be accessible at run time (cannot be loaded).

Typically, a library of DLLs has an associated side file of IMPORT control

statements, and you can include this side file when statically binding a module that

imports functions or variables from that library. You can also edit the records in the

side file or substitute your own IMPORT control statements so that some symbols

are imported from DLLs in a different library.

IEWBIND function reference

Chapter 3. IEWBIND function reference 57

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. The import request has been added

to the binder’s Import/Export list successfully.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

IMPORT parameter list in general purpose register 1.

 Table 17. IMPORT parameter list

PARMLIST DS 0F

DC A(IMPORT) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(ITYPE) Import type

DC A(DLLNAME) DLL Name

DC A(INAME) Section name

DC A(OFFSET) Function descriptor offset

IMPORT DC H’38’ IMPORT function code

DC H’4’ Interface version number

ITYPE DC CL1’C’ Import Type

 ’C’ = Code

 ’D’ = Data

 ’E’ = Code64

 ’F’ = Data64

DLLNAME DC H’nnn’,CLnnn’dllname’ DLL containing symbol

INAME DC H’nnn’,CLnnn’iname’ Imported function or variable

Note: The OFFSET parameter is an addition for Version 4, and X’80000000’ must

be added to either the NAME parameter (for Version 1 through 3) or the

OFFSET parameter (for Version 5).

INCLUDE: Include module

INCLUDE brings data into the workmod. The source is usually a data set that can

contain a program object, a load module, or a combination of object modules and

control statements. In some cases, the program module might be included from

virtual storage rather than an external data set. Multiple INCLUDE calls cause all

included program objects, load modules, and object modules to be merged in the

specified workmod. You can specify a z/OS UNIX System Services file as the

DDNAME parameter value on an INCLUDE statement.

IEWBIND function reference

58 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The syntax of the INCLUDE call is:

 [symbol] IEWBIND FUNC=INCLUDE

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,INTYPE={NAME | POINTER | TOKEN}

,{{{,DDNAME=ddname[

,MEMBER=member]){ | PATHNAME }

 {,DCBPTR=dcbptr,DEPTR=deptr}

 {,EPTOKEN=eptoken}}

[,ATTRIB={YES | NO}]

[,ALIASES={YES | NO}]

[,IMPORTS={YES | NO}]

FUNC=INCLUDE

Specifies the source of modules to be included in a workmod.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

INTYPE={NAME | DEPTR | SMDE | POINTER | TOKEN}

Specifies whether the input is identified by a name, a PDS2 directory entry

pointer, an SMDE format directory entry pointer, a DCB pointer, or an entry

point token.

 The parameters applicable for each INTYPE are:

INTYPE=DEPTR

 DDNAME=ddname

 DEPTR=deptr

INTYPE=NAME

 DDNAME=ddname

 MEMBER=memberIO

 PATHNAME=pathname

INTYPE=POINTER

 DCBPTR=dcbptr

 DEPTR=deptr

INTYPE=SMDE

 DDNAME=ddname

 DEPTR=deptr

INTYPE=TOKEN

 EPTOKEN=eptoken

 The values are as follows:

IEWBIND function reference

Chapter 3. IEWBIND function reference 59

NAME

The input is obtained from a sequential data set, a program library, or a

z/OS UNIX System Services file.

 The DDNAME-MEMBER parameter combination, or PATHNAME, must be

specified when INTYPE=NAME.

v If DDNAME refers to a program library, MEMBER must also be specified.

NAME is required when INTENT=BIND.

v If PATHNAME is specified, it must be an absolute or relative z/OS UNIX

System Services pathname that resolves to the desired file (member)

name. Note that MEMBER cannot be specified with PATHNAME.

DEPTR

The input is accessed using DDNAME and DEPTR. The directory entry is in

PDS2 format.

SMDE

The input is accessed using the DDNAME and DEPTR. The directory entry

is in SMDE format.

POINTER

The input is obtained from a member in a partitioned data set. DCBPTR

and DEPTR must both be specified. This value is only valid when the

processing intent specified on the CREATEW call is ACCESS.

TOKEN

The input is represented by a token from the CSVQUERY macro.

EPTOKEN must be specified. This value is only valid when the processing

intent specified on the CREATEW call is ACCESS. The program module

has already been loaded into virtual storage. Use this option instead of

POINTER for modules in PDSE libraries.

 The values for INTYPE can be abbreviated as N, D, S, P, or T .

DDNAME=ddname — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains the

ddname associated with the sequential data set or program library to be

included in the workmod. If a program library is specified, MEMBER must also

be specified. The DDNAME-MEMBER parameter combination is mutually

exclusive with PATHNAME.

MEMBER=member — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains the

member name or alias of the library member to be included in the workmod.

PATHNAME=pathname — RX-type address or register (2-12)

Specifies the location of a 1023-byte varying character string that contains the

absolute or relative path name of a z/OS UNIX System Services file. The path

name must begin with “/” (absolute path) or “./” (relative path) and is limited to a

maximum of 1023 characters. Note that PATHNAME must resolve to the file

that is included. PATHNAME is mutually exclusive with the DDNAME-MEMBER

parameter combination.

DCBPTR=dcbptr — RX-type address or register (2-12)

Specifies the location of a 4-byte pointer that contains the address of a DCB for

the partitioned data set or PDSE containing the input module to be included.

You code the DCB with the parameters DSORG=PO, MACRF=R, and

RECFM=U | F. The DCB must be opened for input or update before calling the

INCLUDE function.

IEWBIND function reference

60 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Notes:

1. The binder is sensitive to the state of the DCB pointed to by the DCBPTR.

The DCB must not be closed and reopened while the binder accesses the

corresponding data set during a dialog. Once it is opened initially for an

INCLUDE, it must remain open until after the binder’s ENDD call takes

place.

2. Note that when you alter your DCB as described above, using RESETW (or

DELETEW followed by CREATEW) is not enough to reaccess your data set

at a later time during the same binder dialog. This only causes the data

set’s information to remain with the dialog, and such information is no longer

valid once the DCB is closed. An attempt to reuse the altered DCB in the

same binder dialog can produce unpredictable results.

3. In addition to a caller-created DCB, the following three specific

system-provided DCBs can be used here:

v A linklist DCB (from CVTLINK or DLCBDCB@)

v A tasklib DCB (from TCBJLB)

v An EXEC PGM=*.referback DCB (from the top of the DEB chain)

DEPTR=deptr — RX-type address or register (2-12)

Specifies the location of a 4-byte pointer that contains the address of a single

directory entry for the partitioned data set or PDSE member to be included. The

directory entry can be in the PDS2 format or in the SMDE format. If INTYPE=S,

it must be SMDE. If INTYPE=D or P, it must be PDS2. The PDS2 format is

returned by BLDL while the SMDE format is returned by DESERV. The DEPTR,

when used with DCBPTR, will only locate the first data set in a concatenated

DD. INTYPE=D or S must be used to locate other data sets in a concatenated

DD. This parameter is required for INTYPEs of D, S, or P. DEPTR is valid only

if INTENT=ACCESS.

Note: When specifying a directory entry pointer for a directory entry in PDS2

format, the directory entry must contain the full 72 bytes of data.

EPTOKEN=eptoken — RX-type address or register (2-12)

Specifies the location of an 8-byte area containing the entry point token

received with the CSVQUERY macro. EPTOKEN is required when the program

module has already been loaded in virtual storage. EPTOKEN is valid only if

INTENT=ACCESS.

 The binder can retrieve a module identified by an entry point token only if the

module was loaded. EPTOKEN cannot be used to retrieve a module in LPA or

LLA. EPTOKEN can be used for programs loaded from the UNIX shell by

BPX1LOD.

ATTRIB={YES | NO}

Specifies whether to include the program module attributes with the program

module. These attributes override attributes set at the dialog level by SETO or

STARTD and any attributes set by prior INCLUDE calls. They do not override

attributes set at the workmod level by SETO. The values for ATTRIB can be

abbreviated as Y or N.

ALIASES={YES | NO}

Specifies whether to include the program module aliases with the program

module. Aliases can be included only if you are including a module from a

library. If the ddname specified points to a sequential data set, a z/OS UNIX

System Services file, or a specific member of a PDS or PDSE library, aliases

cannot be included. The values for ALIASES can be abbreviated as Y or N. NO

is the default.

IEWBIND function reference

Chapter 3. IEWBIND function reference 61

IMPORTS={YES | NO}

Indicates whether or not the import statements are to be included from the input

module.

Processing notes

If ATTRIB=YES, the following attributes are copied from the input directory: AC,

AMODE, DC, OL, REUS, RMODE, SSI, TEST, ENTRY POINT, DYNAM, and

MIGRATABLE. If INTENT=ACCESS, the following additional attributes are copied:

EDITABLE, EXECUTABLE, OVLY, and PAGE-ALIGNED. You cannot set the

EXECUTABLE, MIGRATABLE, and PAGE-ALIGNED attributes with either SETO or

STARTD.

When INTENT=ACCESS is specified on CREATEW, only one data set can be

included in the workmod and the data set must be a program object or load

module.

If INTENT=ACCESS and ALIASES=YES, the aliases and any associated

addressing modes are included. If INTENT=BIND and ALIASES=YES, the aliases

are included, but the associated addressing modes are not.

When INTENT=BIND, the ddname can refer to a concatenation of data sets or to a

z/OS UNIX System Services file. These data sets must be either all libraries or all

sequential data sets. If the ddname refers to a library and the member name is

included with the library name, it is processed sequentially and can only be

concatenated with other library members or sequential data sets. Each library

member must contain either a single program module or a mixture of object

modules and control statements. Sequential data sets can only contain object

modules and control statements.

The processing of INCLUDE can be modified by the ALTERW function. CSECTs

and symbols can be replaced or deleted in an included module when specified on

earlier ALTERW calls or equivalent control statements. The scope of such

alterations extends only to the first end-of-module condition encountered in the

included file. Additional modules can not be included into the workmod once it has

been bound.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. File included successfully.

04 83000515 Unsupported control statement encountered in included

file. File included successfully.

04 83000525 An unusual condition was encountered while processing

a REPLACE or CHANGE control statement.

04 83000526 An unusual condition was encountered in an input

module, while converting it into workmod format. For

example, this reason code will be returned if a two-byte

relocatable adcon was seen.

08 83000502 One or more editing requests (delete, change or replace

operations) failed during inclusion of the module. The

module was included successfully, but some of the

requested changes were not made.

IEWBIND function reference

62 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Return Code Reason Code Explanation

08 83000505 The included module was marked not editable, and has

been deleted.

08 83000507 A format error has been encountered in a module being

included. The module was not added to the target

workmod.

08 83000510 Errors were encountered in the included module. The

module is rejected.

08 83000511 A control statement in an included file attempted to

include the file containing the statement, or include

another file that, in turn, included the original file. The

recursive include has been rejected.

08 83000514 The requested member could not be found in the library,

or the library could not be found. Request rejected.

08 83000516 A format error has been encountered in one or more

control statements being included. The erroneous

statements have been ignored.

08 83000517 A NAME control statement was encountered, but no

target library (MODLIB) had been specified. The

statement was ignored.

08 83000518 A NAME control statement was encountered in a

secondary input file. The statement was ignored.

08 83000519 Errors (invalid data) were found in a module being

brought in by an INCLUDE control statement. The

module was not included.

08 83000520 The data set or library member specified by an

INCLUDE control statement could not be found. The

data set or library member was not included.

08 83000521 An I/O error occurred while trying to read an input data

set (or directory) specified on an INCLUDE control

statement. The data set (or member) was not included.

08 83000522 The input data set specified on an INCLUDE control

statement could not be opened. The data set (or

member) was not included.

08 83000527 Identify data could not be processed because the section

was not included prior to identify statement.

08 83000528 The DE parameter value; the TTR or K (concatenation)

field is invalid.

12 83000101 Not all the parameters required for the specified INTYPE

(as described above) were provided. The request has

been rejected.

12 83000103 The workmod was specified with INTENT=BIND, but the

INTYPE was other than DDNAME. The request has

been rejected.

12 83000500 The INCLUDE call has attempted to include a second

module when the processing intent is ACCESS. The

request has been rejected.

12 83000503 An I/O error occurred while trying to read the input data

set or its directory. The input is not usable.

12 83000504 The module was successfully included, but the ALIASES

or ATTRIB option could not be honored because the

directory was not accessible.

IEWBIND function reference

Chapter 3. IEWBIND function reference 63

Return Code Reason Code Explanation

12 83000506 An attempt has been made to include an object module

into a workmod specified as INTENT=ACCESS. Request

rejected.

12 83000507 A format error has been encountered in a module being

included. The module was not added to the target

workmod.

12 83000509 An attempt has been made to include a file containing

control statements but the workmod specified

INTENT=ACCESS. The request has been rejected.

12 83000512 The designated source for the current INCLUDE

contained more than one module but the target workmod

was specified with INTENT=ACCESS. The request has

been rejected.

12 83000513 The file could not be opened. Request rejected.

12 83000523 For intent access, the requested module contained a

format error and has not been placed in workmod.

Request rejected.

If the INCLUDE brings in control statements, the processing of these control

statements might generate calls to other binder functions. The errors and their

corresponding reason codes from the functions invoked by the generated calls are

propagated back to the caller of the INCLUDE function. The functions can include:

v ADDA

v ALIGNT

v ALTERW

v BINDW

v CREATEW

v DELETW

v INSERTS

v ORDERS

v PUTD

v RESETW

v SAVEW

v SETL

v SETO

v STARTS

Parameter list

If your program does not use the IEWBIND macro, place the address of the

INCLUDE parameter list in general purpose register 1.

 Table 18. INCLUDE parameter list

PARMLIST DS 0F

DC A(INCLUDE) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(INTYPE) Intype

DC A(DDNAME) ddname or pathname. Pathname is only valid if

INTYPE=N.

DC A(MEMBER) Member name. A(0) should be coded if

PATHNAME is specified.

IEWBIND function reference

64 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 18. INCLUDE parameter list (continued)

DC A(DCBPTR) Pointer to DCB

DC A(DEPTR) Pointer to BLDL entry

DC A(EPTOKEN) EPTOKEN

DC A(0) Reserved

DC A(ATTRIB) ATTRIB option

DC A(ALIASES) ALIASES option

DC A(IMPORTS+X’80000000’) IMPORTS option and end-of-list indicator

INCLUDE DC H’40’ Function code

DC H’version’ Interface version number

INTYPE DC CL1’N’ INTYPE source option

 ’N’ = Name

 ’P’ = Pointer

 ’T’ = Token

ATTRIB DC CL1’Y’ ATTRIB option

 ’Y’ = Yes

 ’N’ = No

ALIASES DC CL1’Y’ ALIASES option

 ’Y’ = Yes

 ’N’ = No

IMPORTS DC C’Y’ Whether imports in input should be included

 ’Y’ = Yes

 ’N’ = No

Note: X’80000000’ must be added to the ALIASES parameter (for Version 1

through 4) and to the IMPORTS parameter (for Version 5).

INSERTS: Insert section

INSERTS positions a control section or named common area within the program

module or within overlay segments in an overlay structure. This specification is

overridden by the order specified on an ORDERS call.

The syntax of the INSERTS call is:

 [symbol] IEWBIND FUNC=INSERTS

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,SECTION=section

FUNC=INSERTS

Requests that a specified control section be positioned at the current location

within the program module or overlay segment.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

IEWBIND function reference

Chapter 3. IEWBIND function reference 65

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

SECTION=section — RX-type address or register (2-12)

Specifies the location of a 16-byte varying character string that contains the

name of the control section or named common area to be inserted at the

current location.

Processing notes

The INSERTS function is valid only when the processing intent is BIND.

In an overlay structure, INSERTS places the section within the overlay segment

defined by the preceding OVERLAY control statement or STARTS function.

Sections named on insert functions that precede the first STARTS, as well as those

not named on any insert statements, are placed in the root segment.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Positioning of section will take place

during bind operation.

04 83000711 An insert was already processed for this section, and

has been replaced.

12 83000104 INSERT is not valid against a workmod specified with

INTENT=ACCESS. Request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

INSERTS parameter list in general purpose register 1.

 Table 19. INSERTS parameter list

PARMLIST DS 0F

DC A(INSERTS) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(SECTION+X'80000000') Section name and end-of-list indicator

INSERTS DC H’36’ INSERTS function code

DC H’version’ Interface version number

LOADW: Load workmod

LOADW produces an executable copy of the workmod and returns its entry point

and optionally its load point and length. The workmod is bound but control is not

passed to it after it is loaded.

Program modules that are identified to the system with this call can later be invoked

using the LINK, ATTACH, and XCTL macros. Programs that have not been

IEWBIND function reference

66 z/OS V1R9.0 MVS Program Management: Advanced Facilities

identified to the system can later be invoked using the CALL macro. See z/OS MVS

Programming: Assembler Services Guide for information about using these macros.

The syntax of the LOADW call is:

 [symbol] IEWBIND FUNC=LOADW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,IDENTIFY={YES | NO}

,EPLOC=eploc

[,XTLST=xtlst]

[,LNAME=name]

FUNC=LOADW

Specifies that the workmod is bound and loaded but not executed.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that receives the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that receives the reason

code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

IDENTIFY={YES | NO}

Specifies whether or not the loaded program module is identified to the system.

If you specify YES, you can optionally provide the name by which the module is

to be identified as the argument LNAME. In either case, the entry point address

is returned as the argument EPLOC. The value for IDENTIFY can be

abbreviated as Y or N.

EPLOC=eploc — RX-type address or register (2-12)

Specifies the location of a 4-byte area that receives the entry point address of

the loaded program module. This argument is required.

XTLST=xtlst — RX-type address or register (2-12)

Specifies the address of a buffer that receives the extent list of the loaded

program module. This list contains one entry for each contiguous block of

storage used for the loaded program module. See Appendix D, “Binder API

buffer formats,” on page 241 for a description of the structure of an extent list.

This argument is required if you code IDENTIFY=NO; it is optional if you code

IDENTIFY=YES.

LNAME=name — RX-type address or register (2-12)

Specifies the location of an optional 8-byte varying character string that contains

the name by which the program module is known to the system. This argument

is recognized only when IDENTIFY=YES. If IDENTIFY=YES and this argument

is not specified or a null value is provided, the name specified with the LNAME

option on a SETO call is used. If no value was specified on a SETO call, the

LNAME name defaults to **GO.

IEWBIND function reference

Chapter 3. IEWBIND function reference 67

Processing notes

Storage for the program module is obtained from the caller’s subpool zero. If you

code IDENTIFY=NO, the storage described by the extent list should be freed when

the program module is no longer required.

If the bound module contains more than one text class, all such classes are

concatenated and loaded into contiguous storage locations.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000655 The buffer provided room for only one extent, but a

second extent exists for the loaded module. The module

was loaded successfully.

04 83000603 The AMODE or RMODE of one or more input ESD

records is incompatible with the AMODE or RMODE of

the primary entry point.

04 83000604 There was a conflict in the AMODE/RMODE specification

of the current module. This means that 1) The

AMODE/RMODE combination is invalid, or one of the

MODEs is invalid, or 2) OVLY was specified but either

AMODE or RMODE is not (24). The module was loaded

with AMODE(24) and RMODE(24).

04 83000605 No entry name has been provided, either by the user or

from any object module processed. The entry point will

default to the first text byte.

04 83000607 The module was loaded successfully, but the indicated

2-byte adcon(s) did not relocate correctly.

04 83000657 The module was loaded with AMODE(24), but one or

more references in the module were resolved to modules

in the Extended LPA. Load successful.

08 83000306 The module was loaded, but the binder could not

produce the load summary report.

08 83000650 The entry name specified was not defined in the loaded

module. The entry point was forced to the first text byte.

12 83000101 Identify was set to NO, but no extent list buffer was

provided. Request rejected.

12 83000415 The module to be loaded contains no text. Execution

impossible.

12 83000651 The IDENTIFY for the loaded module failed, probably

due to the existence of another module of the same

name. The module was loaded successfully, but cannot

be accessed by system-assisted linkage.

12 83000652 Sufficient storage was not available to load the module.

The module is not loaded.

12 83000653 An error of severity greater than that allowed by the

current LET value was encountered. The module is not

loaded.

12 83000656 The module was bound in overlay format, and cannot be

loaded. Request rejected.

IEWBIND function reference

68 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Parameter list

If your program does not use the IEWBIND macro, place the address of the

LOADW parameter list in general purpose register 1.

 Table 20. LOADW parameter list

PARMLIST DS 0F

DC A(LOADW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(IDENT) Identify option

DC A(EPLOC) Entry point address

DC A(XTLST) Extent list

DC A(NAME+X'80000000') Name used for identify and end-of-list indicator

LOADW DC H’81’ LOADW function code

DC H’version’ Interface version number

IDENT DC CL1’Y’ Identify option

 ’Y’ = Yes

 ’N’ = No

ORDERS: Order sections

ORDERS allows you to specify the location of a section (control section or common

area) within the program module. You determine the sequencing of multiple sections

using multiple ORDERS requests.

The syntax of the ORDERS call is:

 [symbol] IEWBIND FUNC=ORDERS

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,SECTION=section

FUNC=ORDERS

Requests the order section function. It can be abbreviated as ORDER.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

IEWBIND function reference

Chapter 3. IEWBIND function reference 69

SECTION=section — RX-type address or register (2-12)

Specifies the location of a 16-byte varying character string that contains the

name of the section to be ordered.

Processing notes

An ORDERS request is valid only when the processing intent is BIND.

ORDERS requests cause the named sections to be moved to the beginning of the

module or overlay segment in the same sequence as the ORDERS calls are

received by the binder. If a section name appears in more than one call, the last

request is used.

Reordering does not occur until the workmod is bound, regardless of when the

ORDERS call is made.

Sections that are not specified in ORDERS calls follow sections that have been

ordered. In an overlay module, ORDERS calls can specify sections in more than

one segment but sections will never be moved from one segment to another.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Sections will be ordered during bind

processing.

08 83000711 A previous order request for this section was received,

and has been replaced.

12 83000104 An ORDERS request is invalid against a workmod

specified with INTENT=ACCESS. Request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

ORDERS parameter list in general purpose register 1.

 Table 21. ORDERS parameter list

PARMLIST DS 0F

DC A(ORDERS) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(SECTION+X'80000000') Section name and end-of-list indicator

ORDERS DC H’37’ ORDERS function code

DC H’version’ Interface version number

PUTD: Put data

PUTD stores data into a new or existing workmod item. If the item already exists,

the data overlays existing data in the item, or is added at the end. If the item does

not yet exist, a new one is created using the specified class and section names.

IEWBIND function reference

70 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The syntax of the PUTD call is:

 [symbol] IEWBIND FUNC=PUTD

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,CLASS=class

,SECTION=section

[,AREA=buffer

[,CURSOR=cursor]

[,COUNT=count]

[,NEWSECT={NO | YES}]

[,ENDDATA={NO | YES}]

label

Optional symbol. If present, the label must begin in column 1.

FUNC=PUTData

Requests the Put Data function. It can be truncated to PUTD.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

Note: This version must match the version you specify with the IEWBUFF

macro when you define the buffer passed on this call.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the name of a fullword integer variable that is to receive the

completion code returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the name of a 4-byte hexadecimal string variable that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the name of an 8-byte variable that contains the Workmod Token

returned by the program management binder on the CREATEW request. This

token must not be modified by the caller.

CLASS=class — RX-type address or register (2-12)

Specifies the name of an 16-byte varying character string variable containing

the class name, left adjusted.

 Certain binder-defined classes are generated by the binder and should not be

specified if the workmod was created with INTENT=BIND

B_PRV Pseudoregister vector

B_IDRB Binder identification record

B_MAP Module map

B_PARTINIT Part initializers

B-IMPEXP Import export table

B_LIT Loader information table

SECTION=section — RX-type address or register (2-12)

Specifies the name of a 32K–1 byte varying character string variable containing

the name of the section to be processed.

IEWBIND function reference

Chapter 3. IEWBIND function reference 71

AREA=buffer — RX-type address or register (2-12)

Specifies the name of a standard buffer containing the data to be replaced in or

appended to the designated workmod item. This parameter is not required if the

caller wants only to signal an end-of-section condition. When AREA is used,

COUNT also must be specified.

CURSOR=cursor — RX-type address or register (2-12)

Specifies the name of a fullword integer variable that indicates to the program

management binder the position (relative record or byte) in the item at which to

store the buffered data.

 If CURSOR= is omitted, the buffered data is appended to the existing item. If

INTENT=ACCESS, only B_IDR- and B_SYM-class items can be appended.

CURSOR is valid only if AREA has been specified.

COUNT=count — RX-type address or register (2-12)

Specifies the name of a fullword integer variable containing the number of data

bytes or records to be inserted. COUNT cannot be specified unless AREA is

specified.

NEWSECT={NO | YES}

Specifies that one or more new sections are being added to the workmod, and

that the data present in the buffer belongs to one of those sections. Once

NEWSECT=YES has been specified, all subsequent PUTD calls must also

indicate NEWSECT=YES, until all of the new sections are complete (see

ENDDATA parameter, below). YES or NO can be abbreviated Y or N,

respectively. NO is the default.

ENDDATA={NO | YES}

ENDDATA=YES indicates that all of the sections being added by this series of

PUTD calls are complete, and that certain validity checks are to be performed

on the ESD and RLD. Any data in the buffer is added to the workmod before

validation begins. YES or NO can be abbreviated Y or N, respectively. NO is

the default.

Processing notes

CLASS can contain any valid data class except B_IDRB, and SECTION should

contain the name of the CSECT being created or updated. If INTENT=ACCESS,

ESD and RLD data cannot be modified, nor TEXT extended.

CURSOR allows the caller to replace part of an existing item. It contains the offset,

relative to the start of the item, where the buffered data is to be inserted. If

CURSOR = is omitted, the buffered data is added to the end of the item. If

CURSOR contains zero, the data is stored starting at the first byte or record.

The BUFFER must be in the standard format for the data class being stored. See

Appendix D, “Binder API buffer formats,” on page 241 for additional information on

standard buffer formats.

The binder moves the specified number of bytes or records from the buffer into

workmod. Data is reformatted, if necessary, to conform to the internal format of the

data in workmod.

PUTD operates in either INPUT or EDIT mode. INPUT mode is used when adding

new sections to the workmod (INTENT must be BIND), and begins with the first

PUTD call specifying NEWSECT=YES and continues until ENDDATA=YES is

received. While in INPUT mode, there are certain restrictions on acceptable

program management binder functions. The only functions allowed against a

IEWBIND function reference

72 z/OS V1R9.0 MVS Program Management: Advanced Facilities

workmod in INPUT mode (those for which an input workmod token matches that of

the workmod in INPUT mode) are PUTD with NEWSECT = YES, RESETW, or

DELETEW. RESETW, DELETEW, and ENDD causes the operation to be

prematurely terminated.

In INPUT mode, sections being added are held in a temporary workmod until

ENDDATA=YES is received, when all of the new sections are validated as a unit

and added to the target workmod. If any of the new sections fail validation, the

entire group is discarded; otherwise, sections are added to the permanent workmod

according to normal merge rules. If the new section already exists, it does not

replace the existing one. If a deferred ALTERW request is pending, it is applied to

all sections in the temporary workmod before merging them into the permanent

workmod.

Certain additional requirements are placed on the user when entering module data

in input mode.

v Only one private code and/or blank common section can be handled during one

PUTD call series (a series being terminated by an end-of-data indication).

v For any section, the first class received must be B_ESD. More than one section

can be passed in a PUTD series, but the first class in any section must be

B_ESD.

v The first record in the first buffer of any B_ESD element must be the section

definition record (SD). This ensures that the first PUTD call for any section

identifies the section type.

Validation of the module in the temporary workmod proceeds one section at a time.

Violation of any of the following restrictions causes a validation failure for that

section:

v No ESD item exists for the section.

v The ESD item does exist, but does not contain a type SD ESD record.

v One or more of the ESD records contains an invalid ESD_TYPE. Only types SD,

CM, ED, LD, ER, and PR are expected via PUTD. ESD_TYPEs of ST, ET, DS

and PD are not acceptable for PUTD input.

v One or more LD records have a section offset (ESD_SECTION_OFFSET)

greater than the ESD section length (ESD_LENG from the SD record).

v Text length exceeds ESD section length.

v (RLD_SECTION_OFFSET + RLD_ADCON_LENGTH) exceeds ESD section

length.

EDIT mode is used to update existing data items, or to add new items to an

existing section. EDIT mode begins with the first PUTD call specifying

NEWSECT=NO (the default) and continues until ENDDATA=YES is received. In

EDIT mode, each PUTD call is completely processed before returning to the caller.

Some validation is performed on ESD and RLD type data as it is received, to

prevent consistency or integrity problems in the target module. This includes all of

the same checks listed above for input mode, except the last.

Note: Because EDIT mode checking is done on a single buffer rather than an

entire item, the sequence in which the individual data classes are updated

can affect the successful validation of the buffered data. To avoid possible

timing problems, section data should be updated in the following sequence:

v ESD section record (type SD or CM)

v Other ESD data

v Text

IEWBIND function reference

Chapter 3. IEWBIND function reference 73

v RLD

v Other classes

If INTENT=ACCESS, certain restrictions apply. B_ESD and B_RLD items cannot be

created or modified. TEXT items cannot be created or have their lengths extended.

If INTENT=BIND, SECTION must contain blanks or a user-assigned name

consisting only of characters between X'41' and X'FE' (or X'0E' or X'0F'). A section

name of all blanks should be used for private code or blank common. Special

names, which always begin with a character invalid for user-assigned names, are

created by the program management binder and can only be used by the caller

when modifying an existing item. Such modification requires INTENT=ACCESS.

Private code special names created by the program management binder can not be

used in the PUTD call for section name with INTENT=BIND.

Only one private code or blank common section (not both) can be handled during

one PUTD call series (a series being terminated by an end-of-data indication).

Section names used in the SECTION field of the call parameter list must be the

same as the ESD_NAME field in the supplied ESD input record.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Data inserted in workmod.

04 83000801 No data was passed. Module has not been changed.

12 83000101 Buffer not large enough to contain the designated

number of bytes or records. Request rejected.

12 83000802 NEWSECT was set to ’Yes’, but workmod intent is

ACCESS. Request rejected.

12 83000803 Workmod intent is ACCESS, but the target section does

not exist. Request rejected.

12 83000804 PUTD cannot be used to modify ESD or RLD data (even

in an existing section) in a workmod specified with

INTENT=ACCESS. Request rejected.

12 83000805 PUTD cannot be used to extend the length of text data

in a workmod specified with INTENT=ACCESS. Request

rejected.

12 83000806 PUTD cannot be used to modify sections generated by

the binder. Request rejected.

12 83000807 Incorrect parameter specification. The call attempted to

modify an existing item with NEWSECT=YES, or it

specified NEWSECT=NO while the binder was still in

input mode. Request rejected.

12 83000808 PUTD cannot be used to modify the IDRB record.

Request rejected.

12 83000811 One or more errors was detected in the module just

completed. The CSECT(s) was not added to the

workmod.

12 83000814 One or more errors were detected in the data records in

the buffer just passed to the program management

binder. The records were not added to workmod.

IEWBIND function reference

74 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Return Code Reason Code Explanation

12 83000815 One or more section or class names encountered in a

transport file are not valid. A program object is not

produced.

Parameter list

 Table 22. PUTD parameter list

PARMLIST DS 0F

DC A(PUTD) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(CLASS) Class name

DC A(SECTION) Section name

DC A(BUFFER) Standard data buffer

DC A(CURSOR) Starting position

To append data, set cursor value to (-1).

DC A(COUNT) Data count

DC A(NEWSECT) New section flag

DC A(ENDDATA+X'80000000') End-of-data flag

PUTD DC H’65’ PUTD function code

DC H’version’ Interface version number

NEWSECT DC CL1’Y’ New section flag

 ’Y’ = Yes

 ’N’ = No

ENDDATA DC CL1’Y’ End-of-data flag

 ’Y’ = Yes

 ’N’ = No

RENAME: Rename symbolic references

This function renames a symbolic reference if a reference to the old name remains

unresolved at the end of the first pass of autocall. For a complete explanation of the

autocall process, see the information on resolving external references in z/OS MVS

Program Management: User’s Guide and Reference.

The syntax of the RENAME call is:

 [symbol] IEWBIND FUNC=RENAME

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,OLDNAME=oldname

,NEWNAME=newname

FUNC=RENAME

Requests the RENAME function.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

IEWBIND function reference

Chapter 3. IEWBIND function reference 75

|

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token

returned on the CREATEW request. You must not modify this token.

OLDNAME=oldname — RX-type address or register (2-12)

Specifies the location of a 32K–1 byte varying character string that contains the

symbol to be renamed. The format consists of a 2-byte length field followed by

the actual name. The length does not include the first two bytes.

NEWNAME=newname — RX-type address or register (2-12)

Specifies the location of a 32K–1 byte varying character string that contains the

symbol to which the old name should be changed. The format consists of a

2-byte length field followed by the actual name. The length does not include the

first two bytes.

Processing notes

The only immediate result of the RENAME API call is that the new rename request

will be added to the list of such requests. Nothing else will be done until final

autocall processing. At the end of the first pass of autocall (that is, when all possible

references have been resolved with the names as they were on input), rename

processing will be performed.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. The binder added the rename

request to the rename list successfully.

04 83000501 Either the OLDNAME or the NEWNAME already existed

in the binder rename list. The rename request was not

successful (i.e., the request was not added to the binder

rename list).

Parameter list

If your program does not use the IEWBIND macro, place the address of the

RENAME parameter list in general purpose register 1.

 Table 23. RENAME parameter list

PARMLIST DS 0F

DC A(RENAME) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(OLDNAME) Reason code

DC A(NEWNAME+X'80000000') RENAME list & end-of-list indicator

RENAME DC H’22’ RENAME function code value

DC H’version’ Interface version number

OLDNAME DC H’nnn’,CLnnn Old name

IEWBIND function reference

76 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 23. RENAME parameter list (continued)

NEWNAME DC H’nnn’,CLnnn New name

RESETW: Reset workmod

RESETW resets a workmod to its initial state. All items are deleted. Options are

reset to the options current for the dialog and the processing intent must be

respecified. The workmod token is not changed.

If a workmod has been changed without being saved or loaded, it cannot be reset

without specifying PROTECT=NO.

The syntax of the RESETW call is:

 [symbol] IEWBIND FUNC=RESETW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,INTENT={BIND | ACCESS}

[,PROTECT={YES | NO}]

FUNC=RESETW

Specifies that a workmod be reset to its original state.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

INTENT={BIND | ACCESS}

Specifies the range of binder services that can be requested for this workmod.

The possible arguments are as follows:

BIND

Specifies that the processing intent for this workmod is bind. The workmod

will be bound, and all binder functions can be requested.

ACCESS

Specifies that the processing intent for this workmod is access. The

workmod will not be bound, and no services that alter the size or structure

of the program module can be requested. See “Processing intents” on page

10 for a list of the services that are not allowable.

The argument for INTENT can be abbreviated as B or A.

PROTECT={YES | NO}

Specifying PROTECT=NO allows the binder to reset a workmod that has been

IEWBIND function reference

Chapter 3. IEWBIND function reference 77

altered but not yet saved or loaded. The argument for PROTECT can be

abbreviated as Y or N. YES is the default.

Processing notes

The binder is sensitive to the state of the DCB pointed to by the DCBPTR in an

INCLUDE call. The DCB must not be closed and reopened while the binder

accesses the corresponding data set during a dialog. Once it is opened initially for

an INCLUDE call, it must remain open until after the binder’s ENDD call takes

place.

Note that if you do alter your DCB as described above, using RESETW (or

DELETEW followed by CREATEW) is not enough to reaccess your data set at a

later time during the same binder dialog. This only causes the data set’s information

to remain with the dialog, and such information is no longer valid once the DCB is

closed. An attempt to reuse the altered DCB in the same binder dialog might

produce unpredictable results. To avoid this, end your dialog (ENDD) and start a

new one (STARTD).

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Workmod has been reset.

12 83000709 The workmod was in an altered state, but

PROTECT=YES was specified or defaulted. RESETW

request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

RESETW parameter list in general purpose register 1.

 Table 24. RESETW parameter list

PARMLIST DS 0F

DC A(RESETW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(INTENT) Processing intent

DC A(PROTECT+X'80000000') Protection flag and end-of-list indicator

RESETW DC H’19’ RESETW function code

DC H’version’ Interface version number

INTENT DC CL1’A’ Processing intent

 ’A’ = Access

 ’B’ = Bind

PROTECT DC CL1’Y’ Protection flag

 ’Y’ = Yes

 ’N’ = No

IEWBIND function reference

78 z/OS V1R9.0 MVS Program Management: Advanced Facilities

SAVEW: Save workmod

SAVEW saves a workmod either as a load module in a partitioned data set or in a

PDSE or a z/OS UNIX System Services file. If the workmod has not already been

bound, it is bound before being saved.

The syntax of the SAVEW call is:

 [symbol] IEWBIND FUNC=SAVEW

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,MODLIBddname | pathname]

[,SNAME=member]

[,REPLACE={YES | NO}]

FUNC=SAVEW

Specifies that a workmod is to be bound and stored in a program library.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

MODLIB=ddname | pathname — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains the DD

name of the target library. If this parameter is not specified, the MODLIB value

set on the STARTD or SETO call is used.

 pathname specifies the location of a 1023-byte varying character string that

contains the absolute or relative path name of a z/OS UNIX System Services

file. The path name must begin with “/” (absolute path) or “./” (relative path) and

is limited to a maximum of 1023 characters. Note that pathname must resolve

to the file that is saved. pathname is mutually exclusive with ddname.

SNAME=member — RX-type address or register (2-12)

Specifies the location of an 1024-byte varying character string that contains the

member name of the program to be saved in the target library. If this parameter

is not specified, the member name on the DD statement for the program library

is used. If neither of these is specified, the SNAME value on the STARTD or

SETO call is used. If no value for SNAME is specified anywhere, the call fails. If

SNAME exceeds 8 bytes, the binder generates an 8-byte primary name and

saves the specified name as a special alias, called the alternate primary. For

more information on long names see the NAME statement in z/OS MVS

Program Management: User’s Guide and Reference.

IEWBIND function reference

Chapter 3. IEWBIND function reference 79

REPLACE={YES | NO}

Specifies whether or not the program module will replace an existing member of

the same name in the target library. This argument can be abbreviated as Y or

N. NO is the default.

Processing notes

Aliases that have been specified on ADDA calls or included with an input module

are added to the library directory. Existing aliases that are not specified on a

replacement module are deleted if the target library is a PDSE. They remain

unchanged if the target library is a partitioned data set. All aliases should be

respecified to ensure proper updating.

If the NE (not editable) option has been specified, or if a module with the NE

attribute is copied, no ESD items are saved and the module is marked not-editable

in the directory entry. Not-editable load modules or PM1 format program objects can

be reprocessed by the binder if INTENT=ACCESS. Not-editable PM2 and higher

format program objects cannot be reprocessed by the binder, even if

INTENT=ACCESS.

If you specify REPLACE=NO when processing a z/OS UNIX System Services file,

the binder issues an informational message.

If any of the following conditions exist, the output module is not saved:

v The module was bound with the RES option and one or more references were

resolved to modules in the link pack area.

v The module was marked not-executable and an executable module of the same

name already exists in the target library. This restriction can be overridden

through the use of the STORENX option. For more information, see the

STORENX option in z/OS MVS Program Management: User’s Guide and

Reference.

v The target library is a partitioned data set and the module exceeds the

restrictions for load modules. To overcome this problem, change the target library

to a PDSE and save the module as a program object.

v Saving DLL modules and their side files

– Saving side files

When modules are enabled for dynamic linking, a side file can be generated

to go along with the saved module. The side file contains IMPORT control

statements that describe which function and data items to import from which

dynamic link libraries in order to resolve references to symbols dynamically.

The name of the saved module is also used as the member name for the side

file whose ddname is specified in the STARTDialog binder API if the side file

was allocated as a library or a z/OS UNIX System Services directory. If the

module is saved to a z/OS UNIX System Services file (that is, if SYSLMOD is

a z/OS UNIX System Services file), the module name can be up to 255 bytes.

However, if the target library for the side file is a PDS or a PDSE and the

module name is greater than eight bytes, that name cannot be used for the

side file because the maximum member name length for PDS/PDSE data sets

is 8 bytes. The side file is not saved in this case. To solve this problem, either

shorten the z/OS UNIX System Services member name to 8 bytes or less, or

change the side file DDNAME to represent a z/OS UNIX System Services file.

– Saving DLLs

While creating a definition side file, the binder uses the module name

specified in the NAME control statement or SAVEW API for the DLLNAME

IEWBIND function reference

80 z/OS V1R9.0 MVS Program Management: Advanced Facilities

parameter of the IMPORT control statements. For more information, see the

IMPORT statement in z/OS MVS Program Management: User’s Guide and

Reference. If this is a long name (greater than 8 bytes), the binder generates

a unique 8-byte name for the DLL module if the module is saved to a PDS or

a PDSE program library. Therefore, any applications using the side file (whose

IMPORT control statements reference the long DLL name) will be unable to

dynamically link to said DLL because the DLL name will have been modified

(shortened). Because of this, long names should not be used for DLLs unless

the DLL module is saved to a z/OS UNIX System Services file.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion. Module and aliases saved in

designated library.

04 83000403 The reusability of one or more sections was less than

that specified for the module.

08 8E000401 One or more SYMLINK requests failed.

04 83000410 An error was encountered while saving a workmod. The

module was saved, but might not be executable.

04 83000411 A module saved as a program object had the SCTR

attribute specified. The SCTR attribute was ignored.

04 83000420 A module saved as a load module contained contents

not compatible with that format. Some auxiliary

information might have been lost (for example, IDRU

records may have been truncated or discarded).

04 83000605 No entry name has been provided, either by the user or

from any object module processed. The entry point will

default to the first text byte.

04 83000606 One or more RMODE(24) sections have been included

in an RMODE(ANY) module.

04 83000423 While attempting to process a side file, the binder can

issue this code for two reasons: 1) You did not specify a

side file ddname in the FILES parameter of the STARD

call, or 2) Inside your side file, one of the IMPORT

control statements refers to a DLLNAME that is longer

than 8 bytes and resides in a PDS or PDSE. If the first

reason does not apply to your case, refer to Saving

DLLs in the processing notes of SAVEW for additional

information on the second reason.

04 83000604 There was a conflict in the AMODE/RMODE specification

of the current module. This means that 1) The

AMODE/RMODE combination is invalid, or one of the

MODEs is invalid, or 2) OVLY was specified but either

AMODE or RMODE is not (24). In the first case, the

module is saved with the MODEs described in the

section on AMODE and RMODE validation in z/OS MVS

Program Management: User’s Guide and Reference. In

the second case, the module is saved with AMODE(24)

and RMODE(24).

04 83000607 The saved program module contains 2-byte adcons that

cannot be relocated.

IEWBIND function reference

Chapter 3. IEWBIND function reference 81

Return Code Reason Code Explanation

08 83000400 The module has been saved as requested, but has been

marked not-editable.

08 83000401 One or more aliases could not be added to the target

directory. Module saved as requested.

08 83000306 The module was saved successfully, but the save

operation summary could not be printed.

08 83000402 The entry name specified is not defined in the module

being saved. The entry point will default to the first text

byte.

08 83000603 The AMODE or RMODE of one or more input ESD

records is incompatible with the AMODE or RMODE of

the primary entry point.

08 83000425 A module name exceeds the maximum name length

allowed for a member in a side file data set. When

modules are enabled for dynamic linking, a side file can

be generated to go along with the saved module. The

name of the saved module is also used as the name for

the side file whose ddname is specified in the STARTD

binder API. If the module is saved to a z/OS UNIX

System Services file (that is, if SYSLMOD is a z/OS

UNIX System Services file), the module name can be up

to 255 bytes. However, if the side file is saved to a PDS

or a PDSE, that name cannot be used for the side file

because the maximum member name length for such

data sets is 8 bytes. Either shorten the z/OS UNIX

System Services member name to 8 bytes or less, or

change the side file DDNAME to represent a z/OS UNIX

System Services file.

12 83000404 The module exceeded the limitations for load modules,

and could not be saved in the specified PDS library.

12 83000405 A permanent write error was encountered while

attempting to write the load module. The save operation

terminated prematurely, and the module is unusable.

12 83000406 A permanent read error was encountered while

attempting to write the load module. The save operation

terminated prematurely, and the module is unusable.

12 83000407 No valid member name has been provided. Request

rejected.

12 83000408 The workmod has been marked not executable, and

cannot replace an executable version. Request rejected.

12 83000409 A member of the same name already exists in the target

library, but the REPLACE option was not specified. The

module was not saved.

12 83000412 The module contained no text and could not be saved.

12 83000413 One or more external references in the workmod were

bound to modules in the Link Pack Area. The module

cannot be saved.

12 83000414 The workmod is null. No modules were successfully

included from any source file. The workmod cannot be

saved.

12 83000415 The module is empty (contains no nonempty sections)

and will not be saved unless LET=12.

IEWBIND function reference

82 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Return Code Reason Code Explanation

12 83000416 No ddname has been specified for the target library.

Request rejected.

12 83000417 The target data set is not a library. Request rejected.

12 83000418 Target data set of SAVEW does not have a valid record

format for a load library. Module not saved.

Note: This can happen if the output PDS or PDSE has

a record format specified other than U.

12 83000421 Text longer than 1 gigabyte in program object. Module

not saved.

12 83000422 The workmod contained data that cannot be saved in the

requested format. The module is not saved.

12 83000424 A data management error was encountered while

attempting to open, close, read, or write to a definition

side file. Module not saved.

12 83000600 The target library could not be found. Request rejected.

12 83000601 The binder could not successfully close the output

library.

12 83000602 The binder could not successfully open the output library.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

SAVEW parameter list in general purpose register 1.

 Table 25. SAVEW parameter list

PARMLIST DS 0F

DC A(SAVEW) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(DDNAME) Library ddname

DC A(MEMBER) Library member name

DC A(REPLACE+X'80000000') Replace option and end-of-list indicator

SAVEW DC H’80’ SAVEW function code

DC H’version’ Interface version number

REPLACE DC CL1’Y’ Replace option

 ’Y’ = Yes

 ’N’ = No

SETL: Set library

SETL specifies how a specified symbol will be handled during automatic library call.

SETL is not performed until the workmod is bound, regardless of where the call

appears in the dialog.

IEWBIND function reference

Chapter 3. IEWBIND function reference 83

|
|
|
|

The syntax of the SETL call is:

 [symbol] IEWBIND FUNC=SETL

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

[,SYMBOL=symbol]

[,LIBOPT={

CALL | NOCALL | EXCLUDE}]

[,CALLIB=ddname | ,PATHNAME=pathname]

FUNC=SETL

Specifies that you are requesting an automatic library call option for a symbol.

The particular library call option is set on the LIBOPT parameter.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

SYMBOL=symbol — RX-type address or register (2-12)

Specifies the location of a 32K–1 varying character string that contains the

name of the symbol for which a library call option is being set. This paramether

is optional with LIBOPT=CALL. If omitted, the service call is interpreted as a

request to allow any accessible symbol in the CALLIB or PATHNAME to be

used during final symbol resolution.

LIBOPT={CALL | NOCALL | EXCLUDE}

Requests whether the automatic library call option for a symbol be call, nocall,

or exclusive nocall. The possible arguments are as follows:

CALL

Specifies a search of the library specified by CALLIB to resolve the

reference. If the symbol cannot be resolved from this library, no attempt to

resolve it from the system autocall library is made.

 CALL is the default.

NOCALL

Specifies that no attempt is made to resolve the reference via autocall

during the current dialog.

EXCLUDE

Specifies that no attempt is made to resolve the reference via autocall

during the current dialog or during any subsequent binder processing. This

can be overridden in subsequent processing runs by resetting the LIBOPT

value to CALL on a SETL call.

The argument for LIBOPT can be abbreviated as C, N, or E.

IEWBIND function reference

84 z/OS V1R9.0 MVS Program Management: Advanced Facilities

CALLIB=ddname — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains the

ddname of the library to be used during autocall. CALLIB is mutually exclusive

with PATHNAME. This keyword is only recognized if LIBOPT=CALL is coded or

defaulted.

PATHNAME=pathname — RX-type address or register (2-12)

Specifies the location of a 1023-byte varying character string that contains the

absolute or relative path name of a z/OS UNIX System Services file. The path

name must begin with “/” (absolute path) or “./” (relative path) and is limited to a

maximum of 1023 characters. Note that PATHNAME must resolve to the file

that is included. PATHNAME is mutually exclusive with CALLIB. This keyword is

only recognized if LIBOPT=CALL is coded or defaulted.

Processing notes

When multiple conflicting SETL requests are made, the last issued is used. If a

SETL CALL request is made that does not list a symbol, followed by NOCALL or

EXCLUDE requests for the same CALLIB or PATHNAME, other symbols that have

not been restricted can still be used from that library or path.

A SETL request is valid only when the processing intent is BIND.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

08 83000711 This request replaced a previous SETLIB request for the

same symbol.

12 83000101 The LIBOPT and CALLIB parameters are inconsistent.

Either LIBOPT=C and CALLIB was omitted, or

LIBOPT=N or E and CALLIB was present. Request

rejected.

12 83000104 The SETL function is invalid against a workmod

specified with INTENT=ACCESS. Request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the SETL

parameter list in general purpose register 1.

 Table 26. SETL parameter list

PARMLIST DS 0F

DC A(SETL) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(SYMBOL) Symbol/Section name

DC A(LIBOPT) Library option

DC A(DDNAME+X'80000000') Library ddname or pathname

SETL DC H’21’ SETL function code

DC H’version’ Interface version number

IEWBIND function reference

Chapter 3. IEWBIND function reference 85

Table 26. SETL parameter list (continued)

XLIBOPT DC CL1’C’ Library option

 ’C’ = Call

 ’N’ = Nocall

 ’E’ = Exclude

SETO: Set option

SETO specifies options for processing and module attributes. Each option is set at

either the dialog or workmod level by providing a token in the call. The options that

can be specified are listed in Chapter 5, “Binder options for advanced facilities,” on

page 111.

The syntax of the SETO call is:

 [symbol] IEWBIND FUNC=SETO

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

[,WORKMOD=workmod]

[,DIALOG=dialog]

,OPTION=option

,OPTVAL=optval

[,PARMS=parms]

FUNC=SETO

Specifies that you are requesting specific processing options or module

attributes for a dialog or workmod.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

Note: If VERSION=1 is specified for the SETO call, PARMS cannot be

specified as a macro keyword. The parameter list ends with the OPTVAL

parameter (with the high-order bit set). This exception is for version 1

only.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request. WORKMOD and DIALOG are mutually exclusive. To set the options at

the workmod level, provide the WORKMOD token.

DIALOG=dialog — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the appropriate dialog

token. WORKMOD and DIALOG are mutually exclusive. To set the options at

the dialog level, provide the DIALOG token.

OPTION=option — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains an

IEWBIND function reference

86 z/OS V1R9.0 MVS Program Management: Advanced Facilities

option keyword. Except for CALLIB, all keywords can be truncated to three

characters. See Chapter 5, “Binder options for advanced facilities,” on page 111

for a complete list of keywords.

OPTVAL=optval — RX-type address or register (2-12)

Specifies the location of a varying character string that contains a value or a list

of values for the specified option.

PARMS=parms — RX-type address or register (2-12)

Specifies the location of a varying character string that contains a list of option

specifications separated by commas.

Processing notes

Option values are coded as value or (value1,value2). A list of values is enclosed in

parentheses. A value containing special characters is enclosed in single quotes. An

imbedded single quote is coded as two consecutive single quotes. Special

characters include all EBCDIC characters other than upper and lower case

alphabetics, numerics, national characters (@ # $), and the underscore. YES and

NO values can be abbreviated Y and N, respectively.

Options specified for a workmod override any corresponding options specified for

that dialog. Options specified at the dialog level override the corresponding system

defaults, and apply to all workmods within the dialog unless overridden. If

INTENT=ACCESS, these keywords are not allowed: ALIGN2, CALL, CALLIB, EDIT,

LET, MAP, OVLY, RES, TEST, XCAL, and XREF.

The options list specified in the PARMS= parameter is a character string identical to

the PARM= value defined in the ″Binder options reference″ chapter of z/OS MVS

Program Management: User’s Guide and Reference, with the following restrictions:

v The list is not enclosed with apostrophes or parentheses

v Environmental options cannot be specified on SETO. See the list of

environmental options in “Setting options with the binder API” on page 111

v The EXITS and OPTIONS options are also not allowed in this list.

The OPTION and OPTVAL operands are used together to specify a single option

and its value.

v None of the environmental options can be specified. See “Setting options with

the binder API” on page 111.

v The following invocation options may not be specified on the OPTION/OPTVAL

operands of SETOPT because they are really mapped to something different:

EXITS, OPTIONS, REFR, RENT, and the YES, NO, or default values for REUS.

v The negative option format (for example, NORENT) is not allowed. The

corresponding option with a value must be used (for example,

OPTION=REUS,OPTVAL=SERIAL).

v An option specified using the OPTION and OPTVAL operands overrides any

value for that same option specified within the PARMS operand.

You can specify a z/OS UNIX System Services file as the CALLIB parameter value

on a SETO call.

IEWBIND function reference

Chapter 3. IEWBIND function reference 87

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

08 83000109 One or more options designated as environmental have

been specified on SETO. Option ignored.

12 83000100 Neither dialog token nor workmod token were specified.

Request rejected.

12 83000106 The option specified is invalid for a workmod specified

with INTENT=ACCESS. Request rejected.

12 83000107 Invalid option keyword specified. Request rejected.

12 83000108 The option value is invalid for the specified keyword.

Request rejected.

12 83000113 An option you specified is valid only for the STARTD

function. The request is rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the SETO

parameter list in general purpose register 1.

 Table 27. SETO parameter list

PARMLIST DS 0F

DC A(SETO) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(DIALOG) Dialog token

DC A(WORKMOD) Workmod token

DC A(OPTION) Option keyword

DC A(OPTVAL) Option value

DC A(PARMS) Options list

SETO DC H’20’ SETO function code

DC H’version’ Interface version number

Note: The PARMS parameter is an addition for Version 2 and X'80000000' must be

added to either the OPTION parameter (for Version 1) or the PARMS

parameter.

STARTD: Start dialog

STARTD begins a dialog with the binder, establishing the processing environment

and initializing the necessary control blocks. You specify the ddnames for the data

sets to be accessed, how errors are to be handled, and the global binder options.

STARTD returns a dialog token that is included with later calls for the same dialog.

IEWBIND function reference

88 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The syntax of the STARTD call is:

 [symbol] IEWBIND FUNC=STARTD

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,DIALOG=dialog

[,FILES=filelist]

[,EXITS=exitlist]

[,OPTIONS=optionlist]

[,PARMS=parms]

[,ENVARS=envars]

FUNC=STARTD

Specifies that a dialog is opened and initialized.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list used.

Notes:

1. If VERSION=1 is specified for the STARTD call, PARMS cannot be specified

as a macro keyword. The parameter list ends with the OPTLIST parameter

(with the high-order bit set). This exception is for Version 1 only.

2. ENVARS cannot be specified if VERSION is less then 6.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

DIALOG=dialog — RX-type address or register (2-12)

Specifies the location of an 8-byte area where the binder places the dialog

token. This token must not be modified.

FILES=filelist — RX-type address or register (2-12)

Specifies the address of a list containing one entry for each binder file for which

a ddname or file name is provided. You code some or all of these file names in

the list and provide a ddname or filename for each:

File name Description

CALLIB Automatic call library

MODLIB Target program library

PRINT Listing data set for messages produced by the

LIST, MAP, and XREF options

TERM Terminal data set for messages issued during

binder processing

SIDEFILE Data set to contain the side file of a DLL

module.

The ddnames specified for PRINT and TERM can designate z/OS UNIX System

Services files. CALLIB can designate a z/OS UNIX System Services directory

and a z/OS UNIX System Services archive file. MODLIB can designate a z/OS

UNIX System Services directory. SIDEFILE can designate a z/OS UNIX System

Services directory or a z/OS UNIX System Services file.

IEWBIND function reference

Chapter 3. IEWBIND function reference 89

Entries for all files on this list will accept a z/OS UNIX pathname in place of a

ddname. Path names must begin with a slash (/) or a period and a slash (./).

EXITS=exitlist — RX-type address or register (2-12)

Specifies the address of a list of user exit names. You can specify the following

user exits in this list:

MESSAGE exit

Specifies an entry into the calling program that receives control

immediately prior to the binder issuing a message. See “Message exit”

on page 136.

SAVE exit

Specifies an entry into the calling program that receives control if the

binder is about to reject a primary name or an alias name or after an

attempt to save a member or alias name. The save operation might

have succeeded or failed. See “Save exit” on page 136.

Note: This exit is not invoked if the target is a z/OS UNIX System

Services file.

INTFVAL exit

The Interface Validation Exit (INTFVAL) allows your exit routine to

examine descriptive data for both caller and called at each external

reference. The exit can perform audits such as examining parameter

passing conventions, the number of parameters, data types, and

environments. It can accept the interface, rename the reference, or

leave the interface unresolved. See “Interface validation exit” on page

138.

See Chapter 7, “User exits,” on page 135 for additional information on writing

user exit routines.

OPTIONS=optionlist — RX-type address or register (2-12)

Specifies the location of an options list that contains the address of binder

options to be initialized during the STARTD call. Any option that can be set by

SETO can be initialized by STARTD. See Chapter 5, “Binder options for

advanced facilities,” on page 111 for a list of allowable options. However, the

EXITS option listed in the table may not be specified as part of the OPTIONS

parameter; use the EXITS or PARMS parameter on STARTD to specify user

exits.

Note: The negative option format (for example, NORENT) is not allowed. Use

the corresponding keyword with a value. For example:

 DC CL8’REUS’

 DC AL4 (6) ,C’SERIAL’

PARMS=parms — RX-type address or register (2-12)

Specifies the location of a varying character string that contains a list of option

specifications separated by commas. PARMS= overrides the equivalent options

in the FILES, EXITS, and OPTIONS list of the STARTD call. See “Setting

options with the binder API” on page 111 for more information.

ENVARS=envars — RX-type address or register

Specifies the address of a list of 31-bit pointers. Each pointer in the list contains

the address of a character string that is an environment variable, in the form of

name=value, to be passed to the specified program. Each character string must

end with zeros. Note that this is the same as passing the external variable,

environ. See “Environment variables” on page 94 for more information.

IEWBIND function reference

90 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Passing lists to the binder

Any list passed to the binder must conform to a standard format, consisting of a

fullword count of the number of entries followed by the entries. Each list entry

consists of an 8-byte name, a fullword containing the length of the value string, and

a 31-bit pointer to the value string. The list specification is provided in Table 28.

 Table 28. Binder list structure

Field Name Field Type Offset Length Description

LIST_COUNT Integer 0 4 Number of 16-byte

entries in the list

LIST_ENTRY Structure 4,20,... 16 Defines one list entry

ENTRY_NAME Character 0 8 File, exit, or option name

ENTRY_LENGTH Integer 8 4 Length of the value

string

ENTRY_ADDRESS Pointer 12 4 Address of the value

string

Note: ENTRY_NAME, ENTRY_LENGTH, and ENTRY_ADDRESS are repeated for each

entry in the list up to the number specified in LIST_COUNT.

You code the data pointed to by ENTRY_ADDRESS according to the list type:

File list

Code one entry for each file name:

ENTRY_NAME: ’CALLIB ’, ’MODLIB ’, and so on. See list of file

names in FILES parameter description in “STARTD:

Start dialog” on page 88.

ENTRY_LENGTH: The byte length of the corresponding ddname.

ENTRY_ADDRESS: The address of the string containing the ddname.

Each file name specified in the FILES parameter of the STARTDialog API must

correspond to a currently defined ddname. Your data sets can be new or

preallocated. Although you can use any valid ddname for a given FILE name, the

following ddnames are recommended. Their allocation requirements are listed

below:

FILE name Recommended ddname

CALLIB SYSLIB

MODLIB SYSLMOD

PRINT SYSPRINT

TERM SYSTERM

SIDEFILE SYSDEFSD

The SYSLIB Data Set (the CALLIB file): This DD statement describes the

automatic call library, which must reside on a direct access storage device. This is a

required data set if you want to enable autocall processing while you bind your

modules through the use of the BINDWorkmod API call (See the CALLIB parameter

in the BINDW API).

The data set must be a library and the DD statement must not specify a member

name. You can concatenate any combination of object module libraries and

IEWBIND function reference

Chapter 3. IEWBIND function reference 91

program libraries for the call library. If object module libraries are used, the call

library can also contain any control statements other than INCLUDE, LIBRARY, and

NAME. If this DD statement specifies a PATH parameter, it must specify a directory.

Table 29 shows the the SYSLIB data set attributes, which vary depending on the

input data type.

 Table 29. SYSLIB data set DCB parameters

LRECL BLKSIZE RECFM

80 80 F, FS, OBJ, XOBJ, control statements, and GOFF

80 32720 (maximum size) FB, FBS OBJ, XOBJ, control statements, and

GOFF

84+ 32720 (maximum size) V, VB, GOFF object modules

n/a 32720 (maximum size) U, load modules

n/a 4096 U, program objects

The SYSLMOD data set (the MODLIB file): It is the target library for your

SAVEWorkmod API calls when ACCESS=BIND on your CREATEWorkmod API call.

That is, SYSLMOD is the library that contains your bound modules. As such, it must

be a partitioned data set, a PDSE, or a z/OS UNIX System Services file.

Although a member name can be specified on the SYSLMOD DD statement, it is

used only if a name is not specified on the SAVEWorkmod SNAME parameter. (See

“SAVEW: Save workmod” on page 79.) Therefore, a member name should not be

specified if you expect to save more that one member in a binder dialog. For

additional information on allocation requirements for SYSLMOD, see SYSLMOD DD

statement in z/OS MVS Program Management: User’s Guide and Reference.

The SYSPRINT data set (the print file): The binder prints diagnostic messages

to this data set. The binder uses a logical record length of 121 and a record format

of FBA and allows the system to determine an appropriate block size.

Table 30 shows the data set requirements for SYSPRINT.

 Table 30. SYSPRINT DCB parameters

LRECL BLKSIZE RECFM

121 121 FA

121 32670 (maximum size) FBA

125 VA or VBA

The SYSTERM data set (the TERM file): SYSTERM defines a data set for error

and warning messages that supplements the SYSPRINT data set. It is always

optional. SYSTERM output consists of messages that are written to both the

SYSTERM and SYSPRINT data sets, and it is used mainly for diagnostic purposes.

Table 31 shows the data set requirements for SYSTERM.

 Table 31. SYSTERM DCB parameters

LRECL BLKSIZE RECFM

80 32720 (maximum size) FB

IEWBIND function reference

92 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The SYSDEFSD data set (the SIDEFILE file): When a module (call it module A)

is enabled for dynamic linking through the DYNAM(DLL) binder option, a

complementary file can be generated to go along with it. Module A becomes a DLL,

and the complementary file becomes its side file. The side file is saved in the data

set represented by the SYSDEFSD ddname. The side file contains the external

symbols of DLL A, known as exports. These external symbols can be referenced by

other DLLs and are known as imports to these modules. If module A does not

export any symbols, no side file is generated for it. This applies to any DLL.

SYSDEFSD can be a sequential data set, a PDS, a PDSE, or a z/OS UNIX System

Services file. If it is a sequential data set, the generated side files for multiple DLLs

are appended one after another, provided that the DISP=MOD parameter is

supplied in the SYSDEFSD ddname specification. If SYSDEFSD is a PDS or a

PDSE, the side file is saved as a member with the same name as the DLL to which

it belongs. Refer to the processing notes of the SAVEW API for additional

information.

The SYSDEFSD DD statement is optional. However, when the ddname is absent,

the binder issues a warning message if at bind time a program generates export

records and the DYNAM(DLL) binder option has been specified.

Exit list

ENTRY_NAME: ’MESSAGE ’, ’INTFVAL ’, or ’SAVE ’.

ENTRY_LENGTH: 12.

ENTRY_ADDRESS: The location of a three-word area containing three

addresses. See the message list addresses in

“Message exit” on page 136, the save list

addresses in “Save exit” on page 136 and the

interface validation list addresses in “Interface

validation exit” on page 138 for the contents of the

three addresses.

Option list

ENTRY_NAME: The option keyword (for example, ’LIST ’,

’MAP ’, ’CALLERID’). Option keywords cannot

be truncated and negative options cannot be

specified (NOLIST, NOPRINT, and so on). If

INTENT=ACCESS, these keywords are not

allowed: ALIGN2, CALL, CALLIB, EDIT, LET, MAP,

OVLY, RES, TEST, XCAL, and XREF.

ENTRY_LENGTH: The length of the option value as a character string;

it can be zero.

ENTRY_ADDRESS: The address of the character string encoded with

the option’s value. The address can be zero. The

maximum length of the option value string is 256

bytes. Use commas and parentheses if a sublist is

required.

IEWBIND function reference

Chapter 3. IEWBIND function reference 93

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000112 The binder encountered an unsupported option in the

OPTIONS file. The option is ignored.

04 83000204 The binder was unable to open the trace data set during

initialization. Processing continues without trace.

08 83000108 An option value is missing or contains an invalid setting.

08 83000111 An OPTIONS option was encountered in the options file.

The option is ignored.

08 83000200 The binder was unable to open the PRINT data set

during initialization. Processing continues without PRINT.

08 83000201 One or more invalid options were passed on STARTD.

Those options were not set, but processing continues.

12 83000203 The binder was unable to open the TERM data set

during initialization. Processing stops.

08 83000205 The current time was not available from the operating

system. Time and date information in printed listings and

IDR records will be incorrect.

08 83000206 The binder was unable to open the SYSTERM data set

because its DDNAME was not specified in the FILES

parameter of STARTD. Processing continues without

SYSTERM.

12 83000207 The binder was unable to open the SYSPRINT data set

because its DDNAME was not specified in the FILES

parameter of STARTD. Processing continues without

SYSPRINT.

Environment variables

When the binder API is used by a program running in the z/OS UNIX subsystem,

the environ parameter may be used to pass the C/C++ runtime variable of that

name to the binder, in order to give the binder access to the array of environment

variables. If a user sets binder environment variables (those documented below) in

the UNIX shell, this is the only way the binder can get access to them. For further

information about the C runtime ’environ’ variable, refer to z/OS XL C/C++

Run-Time Library Reference, SA22-7821.

Although it is not recommended, you may also construct your own ’envars’

parameter using the same format as that of the C runtime variable. In this case,

’envars’ must be the address of an array of pointers. Each pointer is the address of

a null-terminated string representing an individual environment variable in the form

’keyword=value’. The last array entry must be a null pointer.

The following UNIX shell environment variables are recognized by the binder. They

are specified in the form:

export NAME=value

where NAME is the name of the environment variable.

IEWBIND function reference

94 z/OS V1R9.0 MVS Program Management: Advanced Facilities

IEWBIND_PRINT

the pathname or ddname to be used for SYSPRINT.

IEWBIND_TERM

the pathname or ddname to be used for SYSTERM.

IEWBIND_OPTIONS

the binder option string. These will be appended to options passed explicitly

through the STARTD API call (and will take precedence). There are

additional environment variables defined for the binder diagnostic data sets.

See the ″Binder Serviceability Aids" chapter inz/OS MVS Program

Management: User’s Guide and Reference for more information on passing

them on STARTD.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

STARTD parameter list in general purpose register 1.

 Table 32. STARTD parameter list

PARMLIST DS 0F

DC A(STARTD) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(DIALOG) Dialog token

DC A(FILELIST) File list

DC A(EXITLIST) Exit list

DC A(OPTLIST) Option list

DC A(PARMSTR) Parameters

DC A(ENVARS) Environment Variables

STARTD DC H’01’ STARTD function code

DC H’version’ Interface version number

Note: X'80000000' must be added to the last parameter. For version 1, that will be

OPTLIST. For other versions it may be either PARMSTR or (beginning with

version 6) ENVARS.

STARTS: Start segment

STARTS designates the beginning of an overlay segment when creating an overlay

format program module. The OVLY option must have been specified for this

workmod. OVLY-format modules can be saved only as load modules or PM1 format

program objects.

The syntax of the STARTS call is:

 [symbol] IEWBIND FUNC=STARTS

 [,VERSION=version]

[,RETCODE=retcode]

[,RSNCODE=rsncode]

,WORKMOD=workmod

,ORIGIN=origin

[,REGION={YES | NO}]

IEWBIND function reference

Chapter 3. IEWBIND function reference 95

FUNC=STARTS

Specifies the beginning of an overlay segment within an overlay format

program.

VERSION=1 | 2 | 3 | 4 | 5 | 6

Specifies the version of the parameter list to be used.

RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code

returned by the binder.

RSNCODE=rsncode — RX-type address or register (2-12)

Specifies the location of a 4-byte hexadecimal string that is to receive the

reason code returned by the binder.

WORKMOD=workmod — RX-type address or register (2-12)

Specifies the location of an 8-byte area that contains the workmod token for this

request.

ORIGIN=origin — RX-type address or register (2-12)

Specifies the location of an 8-byte varying character string that contains the

symbol that designates the segment origin. This symbol is independent of other

external symbols in the workmod and has no relation to external names in the

ESD.

REGION={YES | NO}

Specifies whether or not the segment begins a new region within the program

module. This is an optional keyword. The argument can be abbreviated as Y or

N. NO is the default.

Processing notes

A STARTS request is valid only when the processing intent is BIND.

For more information on overlay format programs, see the information on overlay

programs in z/OS MVS Program Management: User’s Guide and Reference.

Return and reason codes

The common binder API reason codes are shown in Table 3 on page 14.

 Return Code Reason Code Explanation

00 00000000 Normal completion.

12 83000104 The STARTS function is not valid against a workmod

specified for INTENT=ACCESS. Request rejected.

12 83000712 The maximum of 4 regions will be exceeded. Request

rejected.

12 83000713 The maximum of 255 segments will be exceeded.

Request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the

STARTS parameter list in general purpose register 1.

 Table 33. STARTS parameter list

PARMLIST DS 0F

DC A(STARTS) Function code

DC A(RETCODE) Return code

IEWBIND function reference

96 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 33. STARTS parameter list (continued)

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(ORIGIN) Segment origin symbol

DC A(REGION+X'80000000') Region option and end-of-list indicator

STARTS DC H’35’ STARTS function code

DC H’version’ Interface version number

REGION DC CL1 Region option

 ’Y’=Yes, ’N’=No

Binder API reason codes in numeric sequence

Table 34 shows all reason codes returned by the binder API. The API function(s)

that return the codes are shown. Note that many of the codes can be the result of

an INCLUDE call that includes additional control statements into the binder.

For a more detailed explanation of the specific error condition, refer to the Return

and Reason Codes section of the particular API function being processed in

Chapter 1, “Using the binder application programming interface,” on page 1.

 Table 34. All binder API reason codes

Reason Code API Function Explanation

00000000 All API functions Successful completion.

83000001 All API functions Invalid workmod token. Request rejected.

83000002 All API functions Invalid dialog token. Request rejected.

83000003 All API functions Binder invoked from within user exit. Request

rejected.

83000004 All API functions Invalid function code specified. Request rejected.

83000005 All API functions Invalid call parameter. Request rejected.

83000006 All API functions Requested function not allowed while in PUTD input

mode. Request rejected.

83000007 All API functions A symbol passed in the parameter list contains

invalid characters.

83000008 All API functions Wrong number of arguments specified. Request

rejected.

83000009 All API functions One or more parameters not accessible by the

binder. Request rejected.

83000010 All API functions Parameter list not addressable by the binder.

Request rejected.

83000050 All API functions WKSPACE storage limit exceeded. Dialog

terminated.

83000051 All API functions Insufficient storage available. Dialog terminated.

83000060 All API functions Operating system at wrong level. Request rejected.

83000100 SETO Neither Dialog nor Workmod Token were specified

on a call. Request rejected.

83000101 GETE, INCLUDE,

LOADW, PUTD,

SETL

Invalid combination of parameters specified.

Request rejected.

IEWBIND function reference

Chapter 3. IEWBIND function reference 97

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000102 GETD, GETE,

GETN

Workmod was in an unbound state. GET calls not

allowed. Request rejected.

83000103 INCLUDE INTENT = BIND and INTYPE not equal to NAME.

INCLUDE request rejected.

83000104 ALTERW, BINDW,

INSERTS,

ORDERS, SETL,

ALIGN, STARTS

Function invalid for INTENT = ACCESS. Request

rejected.

83000106 SETO Option invalid for INTENT = ACCESS. SETO

request rejected.

83000107 SETO Invalid Option keyword specified. SETO request

rejected.

83000108 SETO, STARTD The option value is invalid for the specified keyword.

Request rejected.

83000109 SETO The OPTION cannot be specified on a SETO

function call. Request rejected.

83000111 STARTD Syntax error or unrecognized option in parameter

list.

83000112 STARTD Obsolete option specified in parameter list and is

ignored.

83000113 SETO OPTION can be specified only when using the batch

entry points.

83000200 STARTD Unable to open print data set during initialization.

Processing continues without print.

83000201 STARTD One or more invalid options, specified on STARTD,

were ignored. Processing continues.

83000203 STARTD Unable to open SYSTERM data set during

initialization. Processing continues without

SYSTERM.

83000204 STARTD Unable to open IEWTRACE data set during

initialization. Processing continues without

IEWTRACE.

83000205 STARTD Unable to obtain date and time from operating

system. Date and time stamps set to zero or blanks

on modules and listings.

83000206 STARTD Data set or file allocated to TERM could not be

found. Processing continues without PRINT.

83000207 STARTD Data set or file allocated to PRINT could not be

found. Processing continues without PRINT.

83000300 BINDW Unresolved references exist in the module. Either

NCAL, NOCALL, or NEVERCALL were specified.

Workmod has been bound.

83000301 BINDW Unresolved references exist in the module. The

names could not be found in the designated library.

Workmod has been bound.

83000302 BINDW Unresolved references exist in the module. No call

library specified. Workmod has been bound.

Binder API reason codes in numeric sequence

98 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000303 BINDW A reference module was located in the call library,

but could not be included. Workmod has been

bound with unresolved references.

83000304 BINDW A name specified on an INSERT request was not

resolved, or was resolved to a label that is not a

section name. Insert request ignored.

83000305 BINDW A name specified on an ORDER request was not

resolved, or was resolved to a label that is not a

section name. Order request ignored.

83000306 LOADW, SAVEW The Save or Load Operation Summary could not be

printed. Module might or might not have been

processed correctly, depending on other factors.

83000307 BINDW The Map or Cross Reference listings could not be

printed, but the module was bound successfully.

83000308 BINDW Unresolved references exist in the module. A

member of the same name was located in the

library, but did not resolve the symbol. Module was

bound successfully.

83000309 BINDW A name specified on an ALIGNT request was not

resolved, or was resolved to a label that is not a

section name. ALIGNT request ignored.

83000310 BINDW One or more ALTER requests were pending at entry

to autocall, and were ignored.

83000311 BINDW Overlay option not specified, but module contained

multiple segments. Overlay structure ignored.

83000312 BINDW Root segment contains no text.

83000313 BINDW A 3-byte VCON in an overlay module cannot be

relocated correctly.

83000314 BINDW Overlay module bound with at least one valid

exclusive call.

83000315 BINDW Invalid exclusive calls in module. Relocation not

possible. Module bound.

83000316 BINDW Overlay specified, but module contained only one

segment. Module bound, but not in overlay format.

83000317 BINDW One or more valid exclusive calls present, but XCAL

was not specified. Module bound in overlay format.

83000318 BINDW Module contains no branches out of the root

segment. Module bound in overlay format.

83000319 BINDW Interface mismatch between caller and callee. The

mismatch might be the XPLINK attribute, AMODE 64

and non-AMODE 64, code and data, or a signature

field mismatch.

83000320 BINDW An autocall library was not usable. Autocall

proceeded without library.

83000321 BINDW RMODE(SPLIT) or OVERLAY incompatible with

COMPAT specification.

83000322 BINDW Conflicting attributes specified for data elements

belonging to a class. Data for the class was

discarded.

Binder API reason codes in numeric sequence

Chapter 3. IEWBIND function reference 99

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000400 SAVEW Module has been saved, but has been marked

NOT-EDITABLE.

83000401 SAVEW One or more aliases could not be added to directory.

Module saved successfully.

83000402 SAVEW Specified entry name not defined in the module, or

entry point offset is beyond the bounds of the

containing element. Entry point defaults to first text

byte.

83000403 SAVEW Reusability of one or more sections was less than

that specified for the module.

83000404 SAVEW The module exceeded the limitations for included

load modules. Module not saved.

83000405 SAVEW A permanent write error was encountered while

attempting to write the module. Module not saved.

83000406 SAVEW A permanent read error was encountered while

processing an input data set.

83000407 SAVEW No valid member name was available during

SAVEW call. Module not saved.

83000408 SAVEW Workmod marked not-executable and cannot

replace executable version. Module not saved.

83000409 SAVEW A member of the same name exists in the library,

but replace was not specified. Module not saved.

83000410 SAVEW Error encountered converting module to requested

output format.

83000411 SAVEW SCTR specified for a program object. Option

ignored.

83000412 SAVEW A valid entry point could not be determined.

83000413 SAVEW One or more external references were bound to

modules in LPA. Module not saved.

83000414 SAVEW The workmod is null. No modules were successfully

included from any source file. The workmod cannot

be saved.

83000415 BINDW, LOADW,

SAVEW

The module contains no text or no ESDs.

83000416 SAVEW No DDNAME has been provided for the output

library. Module not saved.

83000417 SAVEW Target data set of SAVEW is not a library. Module

not saved.

83000418 SAVEW Target data set of SAVEW does not have a valid

record format for a load library. Module not saved.

Note: This can happen if the output PDS or PDSE

has a record format specified other than U.

83000419 Incompatible options existed at save time for

OVERLAY.

83000420 SAVEW Workmod modified before being stored in load

module format.

83000421 SAVEW Module has more than 1 GIGABYTE of text. Module

not saved.

Binder API reason codes in numeric sequence

100 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000422 SAVEW Workmod has data that cannot be saved in the

requested format.

83000423 SAVEW DYNAM(DLL) was specified and exported symbols

exist but SYSDEFSD was not allocated.

83000424 SAVEW I/O error on SYSDEFSD.

83000425 SAVEW Can’t write to SYSDEFSD because the member

name is too long.

83000426 LOADW, SAVEW LISTPRIV option specified and unnamed sections

exist.

83000427 SAVEW An attempt to change the file attributes or a user ID

or group ID failed while saving to a z/OS UNIX file.

83000500 INCLUDE An INCLUDE call specifies a nonempty target

workmod with INTENT=ACCESS. Request is

rejected.

83000501 BINDW Control statements included during autocall have

been ignored.

83000502 INCLUDE Some of the editing requests(CHANGE, DELETE,

REPLACE) failed. Module included, but some

changes not made.

83000503 INCLUDE I/O error encountered while attempting to read data

set or directory. Input not usable.

83000504 INCLUDE Aliases and/or attributes were not included because

directory not accessible; however, module included

successfully.

83000505 INCLUDE Included module marked NOT-EDITABLE and has

been bypassed.

83000506 INCLUDE Attempt to include object module into workmod with

INTENT=ACCESS. Request rejected.

83000507 INCLUDE A format error has been encountered in an included

module. The module has been bypassed.

83000509 INCLUDE An attempt has been made to include a file of

control statements when INTENT=ACCESS.

Request rejected.

83000510 INCLUDE Errors were detected in the included module.

Module was bypassed.

83000511 INCLUDE A control statement attempted to include a file that

was already in the include path. The recursive

include has been bypassed.

83000512 INCLUDE More than one module in an included file, and

INTENT=ACCESS was specified. Request rejected.

83000513 INCLUDE I/O error encountered reading a file or directory. File

not included.

83000514 INCLUDE Data set or member not found. Module not included.

83000515 INCLUDE Unsupported control statement in included file.

Statement ignored.

83000516 INCLUDE Format error encountered in included control

statement. Error statements ignored.

Binder API reason codes in numeric sequence

Chapter 3. IEWBIND function reference 101

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000517 INCLUDE Name statement encountered, but output library

(SYSLMOD) not specified. Statement rejected.

83000518 INCLUDE Name statement encountered in secondary input file.

Statement ignored.

83000519 INCLUDE Included module contained errors and has been

bypassed.

83000520 INCLUDE Data set or member specified on control statement

could not be found. Include has been bypassed.

83000521 INCLUDE An I/O error has been encountered while attempting

to read the data set or directory. Include bypassed.

83000522 INCLUDE The data set specified on an include statement

could not be opened. Include bypassed.

83000523 INCLUDE For INTENT=ACCESS, the requested module

contained a format error and was not placed in the

workmod.

83000525 INCLUDE An unusual condition was encountered while

processing and EDIT request (CHANGE, DELETE,

REPLACE).

83000526 INCLUDE An unusual condition was encountered while

processing an input module.

83000527 INCLUDE Target section on IDENTIFY control statement does

not exist.

83000528 INCLUDE The DE parameter value; the TTR or K

(concatenation) field is invalid.

83000550 ALTERW A section for which an EXPAND request was made

was not in the workmod. Request not processed.

83000551 ALTERW The name on an EXPAND request matches a

symbol that is not a section in the workmod.

Request not processed.

83000552 ALTERW The name on a CHANGE or REPLACE request is

blank. Request rejected.

83000553 ALTERW An EXPAND request was made for more than 1

GIGABYTE.

83000554 ALTERW The class requested for expanding does not exist.

Request rejected.

83000555 ALTERW The class requested for expanding is not text.

Request rejected.

83000556 EXPAND The name on an EXPAND request did not match

that of a section in workmod. Request not

processed.

83000600 SAVEW Output library (SYSLMOD) not found. Request

rejected.

83000601 SAVEW Unable to close output library. Module saved but

might be unusable.

83000602 SAVEW Unable to open output library. Save failed.

Binder API reason codes in numeric sequence

102 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000603 LOADW, SAVEW The AMODE or RMODE of one or more sections is

not compatible with the AMODE or RMODE of the

primary entry point. Save or load operation

continues.

83000604 LOADW, SAVEW AMODE/RMODE combination for the module is

invalid. Save or load operation continues.

83000605 LOADW, SAVEW No entry point available from input. Defaults to first

text byte.

83000606 LOADW, SAVEW One or more RMODE(24) sections have been

included in an RMODE(ANY) module.

83000607 LOADW, SAVEW The module was loaded successfully, but the

indicated 2-byte adcon(s) did not relocate correctly.

83000650 LOADW Entry name not defined in module. Defaults to first

text byte.

83000651 LOADW IDENTIFY failed because name already known to

system. Load successful, but module cannot be

reached through system linkage.

83000652 LOADW Insufficient virtual storage to load the module.

Module not loaded.

83000653 LOADW An error of severity greater than the LET option was

seen while processing load.

83000654 LOADW An error was found while converting from workmod

to executable form.

83000655 LOADW Extent list buffer provided room for only one extent,

but a second extent exists for the mini-cesd. Module

loaded successfully.

83000656 LOADW The module was bound in overlay format and cannot

be loaded.

83000657 LOADW An AMODE(24) module has been bound to one or

more modules in ELPA.

83000702 ALTERW The name specified on an IMMEDIATE ALTERW

request could not be found in the ESD. Alteration

rejected.

83000704 ENDD Unexpected condition during ENDD. Dialog ended,

but some resources might not have been released.

83000705 GETE Specified symbol could not be located in workmod.

No data returned in buffer.

83000706 ALTERW The new name specified on an IMMEDIATE

CHANGE request already existed. The name or

section was deleted, and the requested change

made.

83000707 DELETEW The workmod was in an altered state, but

PROTECT=YES was specified. DELETEW request

rejected.

83000708 ENDD One or more workmods were in an active state, but

PROTECT=YES was specified. ENDD request

rejected.

Binder API reason codes in numeric sequence

Chapter 3. IEWBIND function reference 103

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000709 RESETW The workmod was in an altered state, but

PROTECT=YES was specified. RESETW request

rejected.

83000710 ALIGNT Name already specified on ALIGNT request.

Request rejected.

83000711 ADDA, INSERTS,

ORDERS, SETL

A previous INSERT, ORDERS, ADDA or SETL

request for this name has been replaced.

83000712 STARTS Maximum of 4 regions will be exceeded. Request

rejected.

83000713 STARTS Maximum of 255 segments will be exceeded.

Request rejected.

83000719 BINDW Module contains no text.

83000750 GETD, GETN Buffer too small for one record.

83000800 GETD, GETE,

GETN

End of data condition. Some data returned in buffer.

83000801 GETD, GETE,

GETN, PUTD

Requested element not found or empty. No data

returned.

83000802 PUTD Attempt to create new section with

INTENT=ACCESS. Request rejected.

83000803 PUTD Target section for PUTD not found. Request

rejected.

83000804 PUTD Attempt to modify ESD or RLD with

INTENT=ACCESS. Request rejected.

83000805 PUTD Attempt to extend length of text with

INTENT=ACCESS. Request rejected.

83000806 PUTD Attempt to modify binder generated sections.

Request rejected.

83000807 PUTD Attempt to modify existing section when

NEWSECT=YES, or NEWSECT=NO was specified

while still in input mode. Request rejected.

83000808 PUTD Attempt to modify IDRB record. Request rejected.

83000810 GETN CURSOR negative or beyond end of item.

83000811 PUTD One or more errors detected in module just

completed. Section(s) not merged.

83000812 GETE OFFSET negative or beyond end of item or module.

No data returned in buffer.

83000813 GETD Workmod data is incompatible with the specified

buffer version.

83000814 PUTD Severe data errors in records contained in PUTD

data buffers.

83000815 PUTD Errors (such as invalid names) found in records

contained in PUTD data buffers. Some data might

have been dropped.

83000816 BINDW Classes C_WSA and C_WSA64 are both present in

the module. z/OS Language Environment does not

support the presence of these two classes in the

same program object, and the resulting module will

not execute correctly.

Binder API reason codes in numeric sequence

104 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 34. All binder API reason codes (continued)

Reason Code API Function Explanation

83000FFF ALL IEWBIND module could not be loaded. Issued by

IEWBIND invocation macro.

83EE2900 ALL Binder logic error. Dialog terminated.

83FFaaa0 ALL Binder abend aaa occurred. Dialog terminated.

Binder API reason codes in numeric sequence

Chapter 3. IEWBIND function reference 105

Binder API reason codes in numeric sequence

106 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 4. Invoking the binder from a program

Programming Interface information

You can pass control to the binder from a program in one of two ways:

1. As a subprogram, with the execution of a CALL macro instruction (after the

execution of a LOAD macro instruction), a LINK macro instruction, or an XCTL

macro instruction.

2. As a subtask with the execution of the ATTACH macro instruction.

24-bit or 31-bit addressing can be used with any of these macros.

The syntax of the macros used to invoke the binder follows:

 [symbol] {ATTACH|

 LINK|

 XCTL}

EP=bindername,

PARAM=(optionlist[,ddname list]),

VL=1

[symbol] LOAD EP=bindername

EP=bindername

Specifies a symbolic name of the binder. You use these names to invoke the

binder for the indicated services:

IEWBLINK Binds a program module and stores it in a program library.

Alternative alias names are IEWL, LINKEDIT, HEWL, and

HEWLH096.

IEWBLOAD Binds a program module and loads it into virtual storage, but

does not identify it. Upon return from IEWBLOAD,

v Register 0 contains the entry point address of the loaded

program. The high order bit is set for AMODE(31) or

AMODE(ANY). The low order bit is set for AMODE(64). In

addition, the top 32 bits of extended Register 0 are cleared

for AMODE(64).

v Register 1 contains the address of a two-word area

containing the following information:

– Word 1 contains the address of the beginning of the

virtual storage occupied by the loaded program.

– Word 2 contains the size in bytes of the virtual storage

occupied by the loaded program.

Alternative alias names are IEWLOADR, HEWLOADR, and

IEWLOAD.

IEWBLODI Binds a program module, loads it into virtual storage, and

identifies it to the system using the IDENTIFY macro. Upon

return from IEWBLODI,

v Register 0 contains the entry point address of the loaded

program. The high order bit is set for AMODE(31) or

AMODE(ANY). The low order bit is set for AMODE(64). In

addition, the top 32 bits of extended Register 0 are cleared

for AMODE(64).

v Register 1 contains the address of an 8 byte field containing

the module name used on the IDENTIFY macro.

© Copyright IBM Corp. 1991, 2006 107

Alternative alias names are IEWLOADI and HEWLOAD.

IEWBLDGO Binds a program module, loads it into virtual storage, and

executes it. Alternative alias names are IEWLDRGO, LOADER,

and HEWLDRGO.

PARAM=(optionlist[,ddname list])

Specifies, as a sublist, address parameters to be passed from the program to

the binder.

optionlist

Specifies the address of a variable-length list containing the options and

attributes. This address must be provided even if no list is provided.

 The option list must begin on a half-word boundary. The two high-order

bytes contain a count of the number of bytes in the remainder of the list. If

no options or attributes are specified, the count must be zero. The option

list is free form, with each field separated by a comma. No blanks or zeros

should appear in the list. See z/OS MVS Program Management: User’s

Guide and Reference for more information about processing and attribute

options.

ddname list

Specifies the address of a variable-length list containing alternative

ddnames for the data sets used during binder processing. If standard DD

names are used, this operand can be omitted.

 The DD name list must begin on a halfword boundary. The 2 high-order

bytes contain a count of the number of bytes in the remainder of the list.

Each name of less than 8 bytes must be left justified and padded with

blanks. If an alternate ddname is omitted from the list, the standard name

will be assumed. If the name is omitted within the list, the 8-byte entry must

contain binary zeros. Names can be omitted from the end by merely

shortening the list.

 The sequence of the 8-byte entries in the ddname list is as follows:

Entry Alternate Name For:

1 SYSLIN

2 Member name (the name under which the output module is

stored in the SYSLMOD data set; this entry is used if the

name is not specified on the SYSLMOD DD statement or if

there is no NAME control statement)

3 SYSLMOD

4 SYSLIB

5 Not applicable

6 SYSPRINT or SYSLOUT

7-11 Not applicable

12 SYSTERM

13 SYSDEFSD

VL=1

Specifies that the sign bit is set to 1 in the last fullword of the address

parameter list.

Invoking the binder from a program

108 z/OS V1R9.0 MVS Program Management: Advanced Facilities

When the binder completes processing, a return code is returned in register 15.

See ″Binder return codes″ in z/OS MVS Program Management: User’s Guide and

Reference for a list of return codes.

For more information on the use of these macro instructions and for the syntax of

the CALL macro, see z/OS MVS Programming: Assembler Services Guide.

You must code optionlist and VL1 on CALL.

End of Programming Interface information

Invoking the binder from a program

Chapter 4. Invoking the binder from a program 109

Invoking the binder from a program

110 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 5. Binder options for advanced facilities

Options can be specified in a number of different ways. Besides those defined in

this topic, you can find other ways to specify options in z/OS MVS Program

Management: User’s Guide and Reference.

Table 35 provides a list of options that can be specified by the following sources, all

of which are defined in this manual:

v Parameter 1 on ATTACH, LINK, XCTL, or CALL as defined in Chapter 4,

“Invoking the binder from a program,” on page 107

v The PARMS operand of either SETO (“SETO: Set option” on page 86) or

STARTD (“STARTD: Start dialog” on page 88)

v The OPTION and OPTVAL operands of SETO (“SETO: Set option” on page 86)

v The OPTIONS operand of STARTD (“STARTD: Start dialog” on page 88)

Setting options with the binder API

Many options can be set by using STARTD and SETO to specify options and

values. You can set most of the options that can be set in the PARM field of the

EXEC statement and there are a few options for use only through the API functions.

Any option can be set using STARTD. All options except the CALLERID, COMPAT,

EXITS, LINECT, MSGLEVEL, PRINT, TERM, TRAP, and WKSPACE options can

also be set using the SETO option. Negative keywords (for example, NOLIST or

NOMAP) cannot be used with the OPTION operand of SETO or the options list of

the STARTD call. These options are set by assigning the value NO to the primary

option. Refer to the descriptions of the STARTD and SETO operands for further

information.

Some options sources specify restrictions on the use of environmental options. The

following are treated as environmental options:

v CALLERID

v COMPAT

v LINECT

v MSGLEVEL

v PRINT

v TERM

v TRAP

v WKSPACE

Table 35 lists options with allowable and default values. Numeric values are coded

as numeric character strings unless otherwise specified. The table also references

any corresponding batch options.

 Table 35. Setting options with the binder API

Option Description Allowable Values Default Value

AC Sets the APF authorization code in the saved module.

Also see AC option in z/OS MVS Program

Management: User’s Guide and Reference.

0 - 255 0

ALIASES Allows you to mark external symbols as aliases for

symbol-resolution purposes.

ALL/NO NO

© Copyright IBM Corp. 1991, 2006 111

Table 35. Setting options with the binder API (continued)

Option Description Allowable Values Default Value

ALIGN2 Requests 2KB page alignment. Also see ALIGN2 option

in z/OS MVS Program Management: User’s Guide and

Reference.

Y, N N

AMODE Sets the addressing mode. For a detailed description,

see AMODE option in z/OS MVS Program

Management: User’s Guide and Reference.

24, 31, 64, ANY, MIN Derived in ESD

CALL/NCAL Allows or disallows automatic library call. Also see

CALL option in z/OS MVS Program Management:

User’s Guide and Reference.

Y, N Y

CALLIB Specifies the library for automatic call. ddname of 1 to 8 characters None

CALLERID Specifies string to be printed at the top of each page of

the binder output listings.

Character string of up to 80 bytes None

CASE Specifies case sensitivity for symbols. Also see CASE

option in z/OS MVS Program Management: User’s

Guide and Reference.

UPPER, MIXED UPPER

COMPAT Specifies binder compatibility level. LKED, PM1, PM2, PM3, PM4, CURRENT,

MIN, Release identifier (for example:

ZOSV1R7)

MIN

COMPRESS Controls whether the binder should attempt to

compress non-program data to reduce DASD space.

NO, AUTO, YES AUTO

DC Allows compatibility with down-level software. Also see

DC option in z/OS MVS Program Management: User’s

Guide and Reference.

Y, N N

DCBS Allows the block size of the SYSLMOD data set to be

reset for PDS only. Also see DCBS option in z/OS MVS

Program Management: User’s Guide and Reference.

Y, N N

DYNAM Determines whether a module being bound is enabled

for dynamic linking.

DLL, NO NO

EDIT Requests external symbol data to be retained, allowing

later reprocessing. Also see EDIT option in z/OS MVS

Program Management: User’s Guide and Reference.

Y, N Y

EP Specifies the program entry point (name,[offset]). Also

see EP option in z/OS MVS Program Management:

User’s Guide and Reference.

(symbol of up to 32767characters [,integer

value])

None

EXITS Specifies user exits. INTFVAL None

EXTATTR Specifies extended attributes for SYSLMOD when

saved in a z/OS UNIX file.

See EXTATTR option in z/OS MVS

Program Management: User’s Guide and

Reference.

system setting

 for

SYSLMOD

file

FETCHOPT Sets loading options for program objects. Also see

FETCHOPT option in z/OS MVS Program

Management: User’s Guide and Reference. PACK and

PRIME are ignored

PACK or NOPACK,

 PRIME or NOPRIME

NOPACK,

 NOPRIME

FILL Specifies that uninitialized areas of module are to be

filled with the byte provided.

Any byte value None

GID Specifies the Group ID attribute to be set for the

SYSLMOD file.

A string of up to 8 alphanumeric

characters which represents a RACF

group name or a numeric z/OS UNIX

group ID

system setting

 for

SYSLMOD

file

HOBSET Instructs the binder to set the high-order bit in V-type

adcons according to the AMODE of the target.

YES | NO No

INFO See z/OS MVS Program Management: User’s Guide

and Reference for more information.

INFO | INFO=NO | NOINFO INFO=NO

LET Allows errors of a specified severity to be accepted.

Also see LET option in z/OS MVS Program

Management: User’s Guide and Reference.

0, 4, 8, 12 4

LINECT Specifies number of lines per page of the binder output

listings. Also see LINECT option in z/OS MVS Program

Management: User’s Guide and Reference.

Integer value 60

Binder options for advanced facilities

112 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

Table 35. Setting options with the binder API (continued)

Option Description Allowable Values Default Value

LIST Controls contents of the output listings. Also see LIST

option in z/OS MVS Program Management: User’s

Guide and Reference.

OFF, SUMMARY, STMT, ALL

 NOIMPORT, NOIMP

SUMMARY

LNAME Specifies the program name to be identified to the

system. Also see LNAME parameter description in

“LOADW: Load workmod” on page 66.

Symbol of up to 8 characters

MAP Requests a module map. Also see MAP option in z/OS

MVS Program Management: User’s Guide and

Reference.

Y, N N

MAXBLK Specifies the maximum record length for the text of a

program module. Also see MAXBLK option in z/OS

MVS Program Management: User’s Guide and

Reference.

256 - 32760 32760

MODLIB Specifies a ddname for the output program library. Also

see MODLIB parameter description in “SAVEW: Save

workmod” on page 79.

ddname of up to 8 characters None

MODMAP See z/OS MVS Program Management: User’s Guide

and Reference for more information.

NO | LOAD | NOLOAD NO

MSGLEVEL Specifies the minimum severity level of messages to be

issued. Also see MSGLEVEL option in z/OS MVS

Program Management: User’s Guide and Reference.

0, 4, 8, 12, 16 0

OL Limits how the program can be brought into virtual

storage. Also see OL option in z/OS MVS Program

Management: User’s Guide and Reference.

Y, N N

OVLY Requests the program be bound in overlay format. Also

see OVLY option in z/OS MVS Program Management:

User’s Guide and Reference.

Y, N N

PATHMODE Specifies pathmode to be used when saving a module

to an z/OS UNIX file.

See PATHMODE option in z/OS MVS

Program Management: User’s Guide and

Reference.

Owner

permission

 for read, write,

and execute

PRINT Requests that messages be written to the SYSLOUT or

SYSPRINT data set. Also see PRINT option in z/OS

MVS Program Management: User’s Guide and

Reference.

Y, N Y

RES Requests that the link pack area queue be searched to

resolve references for programs that will not be saved.

Also see RES option in z/OS MVS Program

Management: User’s Guide and Reference.

Y, N N

REUS Specifies the reusability characteristics of the program

module. Also see REUS in z/OS MVS Program

Management: User’s Guide and Reference.

NONE, SERIAL, RENT, REF NONE

RMODE Sets the residence mode. Also see RMODE in z/OS

MVS Program Management: User’s Guide and

Reference.

24, ANY, SPLIT Derived from

ESD

SCTR Requests scatter format. Used only for MVS system

nucleus load module.

Y, N N

SNAME Specifies a member name for a saved program module.

Also see SNAME parameter description in “SAVEW:

Save workmod” on page 79.

Member name of 1 to 1024 characters None

SSI Specifies a system status index. Also see SSI option in

z/OS MVS Program Management: User’s Guide and

Reference.

8 hexadecimal digits None

STORENX Prevents an executable module from being replaced by

a non-executable module in the target library. Also see

STORENX option in z/OS MVS Program Management:

User’s Guide and Reference.

Y, N N

STRIPCL Removes unneeded classes from a program object or

load module. Also see STRIPCL option in z/OS MVS

Program Management: User’s Guide and Reference.

YES, NO NO

STRIPSEC Removes unneeded sections from a program object or

load module. Also see STRIPSEC option in z/OS MVS

Program Management: User’s Guide and Reference.

YES, NO NO

Binder options for advanced facilities

Chapter 5. Binder options for advanced facilities 113

|

Table 35. Setting options with the binder API (continued)

Option Description Allowable Values Default Value

TERM Requests that messages be sent to the terminal data

set SYSTERM.. Also see TERM option in z/OS MVS

Program Management: User’s Guide and Reference.

Y, N Y

TEST Requests that the program module be prepared for the

TSO TEST command. Also see TEST option in z/OS

MVS Program Management: User’s Guide and

Reference.

Y, N N

TRAP Controls error trapping. See z/OS MVS Program

Management: User’s Guide and Reference for more

information.

OFF, ON, ABEND ON

UID Specifies the User ID attribute to be set for the

SYSLMOD file.

A string of up to 8 alphanumeric

characters which represents a user name

(such as a TSO logon ID) or a numeric

z/OS UNIX user ID

system setting

 for

SYSLMOD

file

UPCASE While processing XOBJs, determines whether symbols

should be upper-cased before finalizing symbol

resolution during binding.

Y, N N

WKSPACE Specifies the amount of space available for binder

processing, both below and above the 16 MB line

(value1, value2). Also see WKSPACE option in z/OS

MVS Program Management: User’s Guide and

Reference.

Values specified in units 96KB below

16MB and 1024KB above 16MB

All available

space

XCAL Requests that valid exclusive references between

program segments of an overlay program module be

allowed. Also see WKSPACE option in z/OS MVS

Program Management: User’s Guide and Reference.

Y, N N

XREF Requests printing of a cross-reference table. Also see

XREF option in z/OS MVS Program Management:

User’s Guide and Reference.

Y, N N

Binder options for advanced facilities

114 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 6. Fast data access

This topic describes the fast data access service that allows you to more efficiently

obtain module data from a program object. The fast data access services differ from

the binder API described in Chapter 3, “IEWBIND function reference,” on page 23 in

a number of ways. The primary differences are:

 Fast data access Binder API

Used to inspect or obtain information about

an existing program,

Also provides access to all other binder

services, including creation of new programs

and updates to existing ones.

Supports program objects stored in UNIX

files or a PDSE.

Also supports traditional load modules stored

in a PDS, and all object file formats.

Is optimized for minimum overhead in

accessing data as it exists on DASD.

Establishes a robust recovery environment

on every call. Converts all data available to it

into a standardized internal format.

Utilizes 64-bit storage to hold the program

object, and because of that needs very little

31-bit or 24-bit storage.

Utilizes a data space to hold the program

object as it exists on DASD, but also needs

large additional amounts of 31-bit storage for

the standardized internal format and other

purposes.

Note: The lack of fast data access support for load modules in a PDS may appear

to be a severe restriction, but that format has been stabilized and is

completely documented in Appendix B, “Load module formats,” on page 195,

so applications can process it themselves. Fast data access to PDS load

modules would not be able to approach the performance of direct application

access.

Using the fast data access service

Fast Data access services are usable from any language that supports the required

data types. The services may be requested using either of two call interfaces: the

Request Code and the Unitary interface. The Unitary interface is primarily provided

for compatibility with earlier releases. IBM recommends that new applications use

the request code call interface. It is anticipated that future enhancements will be

made only to the request code call interface.

C/C++ programs should use the special interface support provided for that

language. See Chapter 8, “C/C++ APIs for program management,” on page 143 for

more information. This provides a variant of the request code call interface which is

more natural in a C/C++ environment. It uses, for example, null-terminated strings

rather than the length-prefixed strings defined here.

With either call interface, the code being called is entry point IEWBFDAT in a

separate load module in the system Link Pack Area. The application making the

calls must normally use some language-dependent means, such as the LOAD SVC,

to locate IEWBFDAT, and use that address for the call. The special C/C++ support

takes care of that requirement for the application. For assembler programs using

the Unitary interface, an optional IEWBFDA macro is provided which LOADs and

DELETEs IEWBFDAT as well as generating the parameter list and making the call.

© Copyright IBM Corp. 1991, 2006 115

|
|
|

|
|
|
|
|
|
|

The services described here return data in the same formats used by the binder

API described in Chapter 3, “IEWBIND function reference,” on page 23, so the

information in Chapter 2, “Binder API interface macros,” on page 15 about

generating and mapping data areas applies equally to fast data access. The buffer

formats defined in Appendix D, “Binder API buffer formats,” on page 241 also apply

to these services. See the Buffer parameter description below for more details.

Environment

Your program’s environment must have the following characteristics before invoking

the service:

v Enabled for I/O and external interrupts

v Holds no locks

v In task control block (TCB) mode

v With PSW key equal to the job step TCB key

v In primary address space mode

v In 31-bit addressing mode

v In either supervisor or problem program state

v Authorization to get enough 64-bit storage available to hold the stored program

object

All requests are synchronous. The service returns control to your program after the

completion of the requested service. Services cannot be requested in cross-memory

mode.

All addresses passed to the service in the form of parameters must be valid 31-bit

addresses.

Parameter descriptions

There are variations in the interface to this service. The methods of passing

parameters differ, but the same type of information is required in each case. This

section discusses the formats and meaning of the data passed and returned,

independent of the specific interface used.

Buffer

This refers to a structured area within which data is returned by the fast data

access service. The calling application must provide specific control information in

the buffer before passing it to a service. Chapter 2, “Binder API interface macros,”

on page 15 defines an IEWBUFF assembler macro that can be used to allocate,

map, and/or format the buffer correctly (see that topic for details). Appendix D,

“Binder API buffer formats,” on page 241 contains details of all buffer type formats.

Note that multiple buffer format versions exist. These should not be confused with

program object versions. With a few exceptions, fast data is able to map data from

any program object version into any buffer format version; however, earlier buffer

format versions may be missing fields for features available in more recent program

objects. In general, an application should use the most recent buffer version

supported by the systems the application is designed to run on. Earlier PO formats

can always be represented in more recent buffer formats.

There were major changes between PO1 and PO2 object formats, and

corresponding major changes between version 1 and version 2 buffers. Because of

this, version 1 ESD, RLD, and NAME buffers cannot be used to access more recent

Fast data access

116 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|

|
|
|
|

|
|

program object versions. If using IEWBUFF to generate buffers, please note that for

compatibility the default remains VERSION=1. Applications should override that

default in most cases.

Every buffer type has a header which identifies the type and version of the buffer.

Three other fields within the buffer headers deserve special note:

BUFFER_LENG

The total length of the buffer in bytes, including the header. Data entries are

built following the header, but the total buffer size must also include space, in

many buffer types, for name strings. These are built in descending address

order working back from the end of the buffer. It should be noted that the binder

supports external symbol names up to 32,767 bytes long, and that some entry

types have multiple names for a single entry. An application written to support

arbitrary names needs to provide a buffer which is large enough to handle any

combination of names associated with a single entry. An ESD entry, for

example, can have up to four names associated with it, so in theory the buffer

might have to be more than 128 KB long to retrieve a single entry.

ENTRY_LEN

Data will be returned as an array of entries. For example, External Symbol

Dictionary entries are currently from 56 to 96 bytes long, depending on buffer

version, but within a single buffer all ESD entries are of the same length. The

length is an attribute of the buffer version, and must correspond with it. A few

buffer types, including text buffers, effectively have unstructured or varying

length blocks of data. These buffer types always use an entry length of 1,

meaning that their content is counted in bytes.

ENTRY_COUNT

This is a nominal number of entries that can be expected to fit in the buffer. The

product of the entry count and the entry length is the size anticipated to be

used by returned data, excluding symbol names. The entry count is not updated

on return from a service, so it does not indicate the number of entries that are

actually in the buffer. See the Count parameter below for that. The count

returned could be less than this entry count even when there are more entries

that have not yet been returned. This would happen if the name strings for the

entries returned require more space than was reserved at the end of the buffer

for them. In some cases fast data may decide to go beyond the anticipated data

area and return more entries than indicated by entry count, if additional space is

available within the buffer.

Class

See on page 2 for a definition of classes in program objects, and a list of commonly

used class names. Class is passed as a character string with a leading two-byte

binary length field. The length is the number of bytes in the class name, excluding

the length field itself and any additional unused bytes in the field at the end of the

name.

Count

Count is a fullword output parameter specifying how many entries are returned in a

buffer from the current call. Note that the length of one entry is specified within the

buffer, as discussed above under Buffer.

Cursor

Cursor is a fullword which is both an input and an output field. Like Count, it is

maintained in terms of entries, not bytes (except for buffer types whose entry length

Fast data access

Chapter 6. Fast data access 117

is 1). An application would normally set the cursor to 0 when beginning a sequence

of accesses. At the end of each request the fast data access service will set the

cursor to the next sequentially available entry. In most cases the application can

reset the cursor to any desired value so long as it is within the scope of the objects

being retrieved. There are a few exceptions for entries which are structured but

varying in length, such as PTI entries. These entries have a formal entry length of

1, but a practical entry length larger than that. If the application resets the cursor it

must be set to the beginning of an entry. This means that for these classes the

application could back up to a previously saved point, but it could not jump ahead.

DCBptr

This is a pointer to a DFSMS Data Control Block. See DFSMS Macro Instructions

for Data Sets.

DDname

The name of a DD statement that identifies a PDSE data set, a concatenation of

PDS and PDSE data sets, or a UNIX path. Note that fast data cannot process PDS

members in a mixture of PDS and PDSE. Although a DD name is normally thought

of as an 8-character field, it is treated here as a varying length character string

beginning with a two-byte binary length field. The length is the number of bytes in

the ddname, excluding the length field itself.

DEptr

This refers to an individual member entry within the structure returned by BLDL,

beginning with an eight-character member name. BLDL allows entries as short as

12 bytes, but entries passed to releases of fast data access services prior to z/OS

V1R9 must be at least 62 bytes long. Beginning with z/OS V1R9, fast data uses

only the first eight bytes of the entry, which contain the member name. If your code

will never run on earlier z/OS releases you can bypass the BLDL call and pass a

member name padded with blanks in an eight-character field.

Note: This upwardly compatible change applies only to the interfaces defined in

this topic. The binder API defined in Chapter 3, “IEWBIND function

reference,” on page 23 continues to require a 62-byte BLDL entry.

Eptoken

An eptoken is an 8-byte field returned by CSVQUERY. Use of CSVQUERY followed

by a call to the fast data service is often useful when dealing with programs that are

already loaded, especially if their source is unknown. Given an eptoken, fast data

can locate and usually access the true source of a loaded program even if it has

been replace on DASD since it was loaded.

Member

This is normally the name of a program directory entry in a PDSE. Fast data also

permits use of a member parameter with UNIX files. In this context it is treated as

an extension of the path name, whether provided in a Path parameter or located

through a DD statement. When used this way the member string is simply

appended to the path string, and may include subdirectory information. Member is

passed as a varying length character string beginning with a two byte binary length

field. The length is the number of bytes in the member name, excluding the length

field itself.

Fast data access

118 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|
|
|
|
|
|

|
|
|

Mtoken

The mtoken is common to all interfaces and calls. It is a fullword field provided by

the application but with a value set by the fast data access service. An application

can have multiple concurrent instances of interaction with fast data. Each instance

deals with a single program being inspected, and each has a unique mtoken. The

first time the application calls for a particular program it must set the mtoken to 0.

The value returned must be used for all subsequent calls up through the call in

which the application indicates it is terminating the instance.

Path

A UNIX file may be referred to either by passing a path name directly or by passing

the name of a DD statement containing a PATH parameter. See also Member for a

special fast data extension to path processing. Path is passed as a varying length

character string beginning with a two byte binary length field. The length is the

number of bytes in the path name, excluding the length field itself.

Retcode

Retcode is a fullword binary return code from the service. Fast data return codes

are multiples of 4, from 0 to 16.

Rsncode

Rsncode is a four byte binary value providing more detail about the service return

code. Fast data reason codes all begin with X’1080’. See “Return and reason

codes” on page 132.

Section

This is the name of a control section within the program object being inspected. In

most cases control section names are optional, but may be used to restrict the

amount of data returned. There is an important relationship between Section and

Cursor. When Section is omitted, Cursor is a position within the entire scope of the

data. When Section is provided, Cursor is a position within the subset of the data

defined by that section name. Section is passed as a varying length character string

beginning with a two byte binary length field. The length is the number of bytes in

the section name, excluding the length field itself.

Interfaces

There are two interfaces to the fast data service. The interface originally provided is

now called the Unitary interface. The Request Code interface was introduced in

z/OS V1R5. Differences between them include:

1. If only a limited amount of information is needed, the Unitary interface can

provide it in a single request, while the Request Code interface always requires

at least three requests.

2. The Unitary interface may simplify the calling code in some cases, but should

not be thought of as more efficient. To implement it the fast data code analyzes

the parameters and breaks the call into a sequence of Request Code calls to

the actual processing routines.

3. The Unitary interface call requires 15 or 16 positional parameters, though for

assembler programs the IEWBFDA macro can be used to generate the

parameter list. The Request Code interface requires from two to eight positional

parameters.

4. The IEWBFDA macro, which takes care of locating the fast data Code, can be

used only by assembler programs and only with the Unitary interface. The

Fast data access

Chapter 6. Fast data access 119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

special C/C++ support, which also takes care of locating the fast data Code,

can be used only with the Request Code interface.

5. Compile unit information, section name lists, and class name lists can only be

obtained using the Request Code interface.

The request code interface

The request code interface operates in a manner similar to the binder API in that a

series of calls is required to extract data; at a minimum the application must make

one call to start a session, one to get data, and one to end the session. The caller

provides a parameter list for each call that specifies the service being requested.

This is a standard call using OS linkages with two qualifications:

v The parameter lists must be constructed in the variable length form, with the high

order bit set on the last parameter. In assembler this would be done using LINK

or (preferably) CALL with the VL parameter. High level languages typically,

though not universally, follow this convention by default.

v The program being called, IEWBFDAT, must not be resolved statically when the

application is created, and is not a DLL. It is located in the MVS Link Pack Area

and needs to be located dynamically during execution. In assembler language

this is done using LOAD or LINK. High Level Language techniques for

accomplishing this vary.

Every call provides at least three pieces of information:

v A function code. Two upper case EBCIC alphabetic characters.

v An interface level. Currently always 1.

v An mtoken. See “Mtoken” on page 119.

Upon return from fast data access, you can examine the return and reason codes.

Fullword return and reason codes are returned in registers 15 and 0 respectively.

For languages that do not provide access to one or both of those registers on

return, an RC service call is provided, which returns the most recent return and

reason codes in fields passed as parameters to the RC service call.

A fast data session begins with one of the “Start’ service calls:

 Function code The program to be inspected is identified by

SB An open DCB and a BLDL directory entry

SJ Some combination of a ddname, a member name, and/or a path name

SQ An entry point token returned by the MVS CSVQUERY service

SS Equivalent to SB; retained for compatability

The session continues with some combination of data requests:

 Function code Type of data requested

GC Compile unit information. This includes primarily data passed to the

binder by the compiler on the source of each program making up the

program object being inspected, but it also includes information on the

DASD location of the program object itself.

GD Generalized access to any data in any class in the program object. This

includes loadable data such as the executable program and its Working

Storage Area, but also non-loadable data such as relocation dictionaries

or debugging classes inserted by the compiler.

GE A specialized form of GD for the External Symbol Dictionary class.

Fast data access

120 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|

|

|

|

Function code Type of data requested

GN Class or section names. Although this comes last alphabetically it is often

the first data request issued, as it returns data that may be needed for

issuing GD or GE service calls.

There are also two special purpose requests:

 Function code Purpose

EN Terminate a fast data access session. This allows the service to release

resources which it has been holding across multiple calls.

RC Obtain return and reason codes for the most recent request. This service

is used in languages without direct access to registers 15 and 0 after a

service call.

Common Parameters

The following parameters common to all calls.

function code and interface level

A 4-byte character string consisting of 2 characters indicating the function being

requested followed by a value indicating the interface level. The only valid value

for interface level in this release is X'0001'.

mtoken

A 4-byte field that contains the module token provided by fast data. This token

must be initialized to binary zero before the first call of a sequence.

Optional parameters

The common parameters listed in “Common Parameters” are always required. Most

service calls have additional parameters, and most of them are required, but a few

parameters are listed as optional. An optional parameter may be shown as omitted

in one of three ways:

v If no parameters follow it, by passing a short parameter list. As noted earlier, all

parameter lists are to be constructed in the VL or varying length form.

v Providing binary zero in place of an address in the parameter list.

v By passing a null value. The null value for a varying length character string such

as SECTION, is a zero-length string. The null value for fullword or doubleword

parameters is a fullword or doubleword of binary zero.

SB - Starting a session with a BLDL identifier

The calling application identifies the program object by providing an open DCB and

an entry returned by the MVS BLDL service.

 Table 36. SB parameter list

Parameter Usage Format Content

1 in structure 'SB', X'0001'

2 in/out binary word mtoken

Must contain zero when the service is

called. The service will supply a value if

the service is successful.

3 in structure DCB

Note: The parameter list points directly to

the DCB, not to a pointer variable

Fast data access

Chapter 6. Fast data access 121

|

|

|
|
|

Table 36. SB parameter list (continued)

Parameter Usage Format Content

4 in structure Member name or BLDL directory entry;

only the first 8 bytes are inspected.

Note: The parameter list points directly to

the directory entryCaution: Releases of

z/OS prior to V1R9 require a full BLDL

entry here of at least 62 bytes, beginning

with the member name.

This service is primarily designed for DCBs opened within the jobstep in the jobstep

key. It can, however, also be used for DCBs opened by MVS, such as

JOBLIB/STEPLIB, LINKLIB, or PGM=*.DD.

Sample assembler code

 CALL (15),(SBIL,MTOKEN,MYDCB,DE),VL

SBIL DC C’SB’,X’0001’

MTOKEN DC F’0’ Replaced by the service

MYDCB DCB DDNAME=PDSE,DSORG=PO,RECFM=U,MACRF=R

BLDLIST DC H’1’,H’62’ 62 is the minimum for fast data

DE DC CL8’MEMBERNM’

 DS CL50 Filled by BLDL

SJ - Starting a session with a DD name or path

The calling application identifies the program object either directly by a UNIX path

name or indirectly by the name of a DD statement which identifies either a UNIX

path or one or more partitioned data sets. The application may also provide a

member name.

 Table 37. SJ parameter list

Parameter Usage Format Content

1 in structure 'SJ', X'0001'

2 in/out binary word mtoken

Must contain zero when the service is

called. The service will supply a value if

the service is successful.

3 in vstring DD name or path

If the string data begins with a slash or a

period followed by a slash it is treated as a

path, otherwise as a DD name.

4 (optional) in vstring Member name or path extension

If parameter 3 is a DD name defining a

PDSE or concatenation this is a member

name and is required.

If parameter 3 is either a path or a DD

name defining a path, this parameter is

optional and is appended to the path name

if present.

Sample assembler code

Fast data access

122 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

CALL (15),(SJIL,MTOKEN,UNIXDD),VL

* Note: 4th optional parameter omitted here

SJIL DC C’SJ’,X’0001’

MTOKEN DC F’0’ Replaced by the service

UNIXDD DC H’5’,’UPATH’ Name of a DD statement,

* which in turn has PATH.

SQ - Starting a session with a CSVQUERY token

The calling application identifies a program that is currently loaded in virtual storage

by providing a token returned from the MVS CSVQUERY service. This service

cannot be used to access a program in LPA or LLA, or one loaded from a UNIX file

Note that the loaded program is only that portion of the program object required

during execution. Stored program objects contain a good deal of information in

addition to that required during execution. That additional information will be needed

for the ″Get″ type services described later, so this service call, like the other Start

service calls, will locate the program object on DASD and read it.

 Table 38. SQ parameter list

Parameter Usage Format Content

1 in structure 'SQ', X'0001'

2 in/out binary word mtoken

Must contain zero when the service is

called. The service will supply a value if

the service is successful.

3 in 2 words eptoken

An 8-byte field with content provided by

the CSVQUERY service.

Sample assembler code

 CALL (15),(SQIL,MTOKEN,CSVTOKEN),VL

SQIL DC C’SQ’,X’0001’

MTOKEN DC F’0’ Replaced by the service

CSVTOKEN DS D Supplied by CSVQUERY

SS - Starting a session with a System DCB

Note: This service is equivalent to ’SB’ but may provide optimized access for

authorized callers when the DCB passed was not opened in the caller’s key.

Callers must be supervisor state or key zero.

 Table 39. SS parameter list

Parameter Usage Format Content

1 in structure 'SS', X'0001'

2 in/out binary word mtoken

3 in structure DCB

4 in structure Directory entry or DD name. Only the first

8 bytes are used.

Fast data access

Chapter 6. Fast data access 123

|

|
|
|

|

|
|
|

|
|

GC - Getting Compile unit information

Compile unit information is primarily data passed to the binder by compilers,

identifying the source of each program making up the program object being

inspected. As an important special case, though, the first compile unit entry returned

when the cursor is specified as zero provides information on the DASD location of

the program object itself. The program object source ″header record″ returned by

fast data in the CUI buffer for a program object in a PDSE will never identify the

data set containing the object.

An optional culist can be provided to filter which entries are to be returned.

 Table 40. GC parameter list

Parameter Usage Format Content

1 in structure 'GC', X'0001'

2 in binary word mtoken

3 (optional) in binary words culist

An array of numbers. The first word is the

number of additional words that follow it.

Each additional word is a compile unit

number returned in BNL_SECT_CU by a

’GN’ call.

If no compile unit numbers are passed, the

first (and only) word must be zero.

4 in/out structure buffer

Must be a CUI buffer formatted by

IEWBUFF or as defined in Appendix D,

“Binder API buffer formats,” on page 241.

5 in/out binary word cursor

Cursor indexing for this service is in bytes,

but the only valid values are indexes to the

beginning of an entry.

6 out binary word count

Since cursor indexing is by bytes, count is

also in bytes.

Sample assembler code

 CALL (15),(GCIL,MTOKEN,NULL,BUFF,CURS,CNT),VL

GCIL DC C’GC’,X’0001’

MTOKEN DS F As set at Start call

NULL DC F’0’ Omitted to get all CU’s

CURS DC F’0’ Start with PO information

CNT DS F Number of bytes returned

BUFF IEWBUFF FUNC=MAPBUFF,TYPE=CUI,VERSION=6,SIZE=2000

GD - Getting Data from any class

This service is often used to access program text, but can also be used to retrieve

data from other compiler-defined or binder-defined classes. The data can optionally

be limited to that associated with a particular section.

Fast data access

124 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|

|

One special feature for program text is that the addresses within the text can be

relocated in the same way that the loader would do, relative to a specified starting

address.

Note that many programs are built with multiple text classes. The GD service is not

able to combine data from different classes in a single call, and the cursor used for

positioning is always relative to the beginning of the specified class (or section

contribution within the class if the optional section parameter is provided). Typically

the calling application views program text as continuous across classes within a

loadable segment. The application can adjust for this by using the class starting

offset within the segment as returned by the GN service in the BNL_SEGM_OFF

field.

 Table 41. GD parameter list

Parameter Usage Format Content

1 in structure 'GD', X'0001'

2 in binary word mtoken

3 in vstring class

4 (optional) in vstring section

5 in/out structure buffer

Must be formatted by IEWBUFF or as

defined in Appendix D, “Binder API buffer

formats,” on page 241, and appropriate to

the class requested.

6 in/out binary word cursor - in items

The item size depends on the buffer type

and buffer version used.

For text data, this might not be returned as

the next location after the last text byte

returned, because pad bytes between

sections and uninitialized data areas within

sections may have been skipped. Any data

skipped should be treated by the caller as

containing the fill character (normally

X'00').

7 out binary word count - in items

8 (optional) in 64-bit address relocation value

An assumed address for the start of the

class, to be used for address constant

relocation.

Sample assembler code

 CALL (15),(GDIL,MTOKEN,CLASS,,BUFF,CURS,CNT),VL

GDIL DC C’GD’,X’0001’

MTOKEN DS F As set at Start call

CLASS DC H’6’,C’B_TEXT’ One particular text class

CURS DC F’0’ Start at beginning of text

CNT DS F Number of bytes returned

* (since text item size is 1)

BUFF IEWBUFF FUNC=MAPBUF,TYPE=TEXT,BYTES=8192

* Note default to V1, but text buffer hasn’t changed

Fast data access

Chapter 6. Fast data access 125

|
|

|
|
|

|

GE - Getting External Symbol Dictionary data

This service is a specialized variant of GD, used to retrieve only one class, B_ESD.

This can be a confusing class, though, because ESD records are owned by

elements in a second class and may point to elements in a third class. For

example, an ESD may describe an adcon in class C_CODE that refers to an

address in class B_TEXT. Using the ’GD’ service you would only be able to indicate

that you were interested in class B_ESD, and would have to retrieve all ESDs to

locate the specific ones you were interested in. The ’GE’ service allows the caller to

screen ESDs returned, limiting the output to those owned by a specified class. The

calling application can also ask for ESDs in a specific section.

 Table 42. GE parameter list

Parameter Usage Format Content

1 in structure 'GE', X'0001'

2 in binary word mtoken

3 (optional) in vstring class

4 (optional) in vstring section

5 in/out structure buffer

Must be formatted by IEWBUFF or as

defined in Appendix D, “Binder API buffer

formats,” on page 241, and appropriate to

the class requested.

6 in/out binary word cursor - in items

The item size depends on the buffer type

and buffer version used.

7 out binary word count - in items

Sample assembler code

 CALL (15),(GEIL,MTOKEN,CLASS,,BUFF,CURS,CNT),VL

GEIL DC C’GE’,X’0001’

MTOKEN DS F As set at Start call

CLASS DC H’6’,C’C_CODE’ Limit ESDs returned

CURS DC F’0’ Start with first ESD

CNT DS F Number of ESDs returned

BUFF IEWBUFF FUNC=MAPBUF,TYPE=ESD,VERSION=6,SIZE=50

* i.e. a buffer big enough to hold 50 ESDs,

* assuming the names are not too long.

GN - Getting Names of sections or classes

This is often the first Get service requested, because it provides the names of

sections or classes within the program object, thus providing information required

for the GD or GE service calls. If this service is called with no buffer it returns, in

the count field, the number of classes or sections in the program object.

 Table 43. GN parameter list

Parameter Usage Format Content

1 in structure 'GN', X'0001'

2 in binary word mtoken

3 in character ntype: C for class or S for section

May be upper or lower case.

Fast data access

126 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|

|

|

|
|

Table 43. GN parameter list (continued)

Parameter Usage Format Content

4 (optional) in/out vstring buffer

Must be an NAME buffer formatted by

IEWBUFF or as defined in Appendix D,

“Binder API buffer formats,” on page 241.

5 in/out binary word cursor - in items

The item size depends on the buffer type

and buffer version used.

6 out binary word count - in items

Sample assembler code

 CALL (15),(GNIL,MTOKEN,TYPE,BUFF,CURS,CNT),VL

GNIL DC C’GN’,X’0001’

MTOKEN DS F As set at Start call

TYPE DC C’C’ To return class names/info

CURS DC F’0’ Start with first class

CNT DS F Number of classes returned

BUFF IEWBUFF FUNC=MAPBUF,TYPE=NAME,VERSION=6,SIZE=50

* i.e. a buffer big enough to hold 50 classes.

* (Class names are never too long.)

RC - Return Code information

This service is useful when fast data services are called from a language which

does not allow the calling application to inspect register 15 or register 0 on return

from the service. It provides the return and reason codes from the most recent

service call with the same mtoken.

 Table 44. RC parameter list

Parameter Usage Format Content

1 in structure 'RC', X'0001'

2 in binary word mtoken

3 out binary word return code

4 out binary word reason code

EN - Ending a session

This service should always be issued after the calling application has finished

requesting data services. It allows the fast data utility to clean up its resources.

 Table 45. EN parameter list

Parameter Usage Format Content

1 in structure 'EN', X'0001'

2 in binary word mtoken

The Unitary interface

This is the original interface to fast data. It continues to be supported, but IBM

recommends using the request code call interface instead.

Fast data access

Chapter 6. Fast data access 127

|

|

|

|

The intent of this interface was to provide a single call to the service which could, in

simple cases, retrieve all data required. To allow for the possibility that differing

types of data may be required from a single program object, or that more data may

be present than can fit in the caller’s buffer, fast data Access service allows

chaining of calls. A module token (MTOKEN) is created on the first call and returned

to the caller. On the second and subsequent calls, the caller passes the MTOKEN

to the service and is assured of continuing from the last call. On the last or only call

of the set, HOLD=N should be specified, allowing all resources acquired by fast

data access to be released.

Most significantly, the first call of a set has the overhead of reading the program

object into virtual storage. This is required even if an eptoken for an already loaded

program is provided, since the program object contains a good deal of additional

data not present in a loaded copy of the executable text. A copy of the program

object is retained in 64-bit storage until the call with HOLD=N is made.

The Unitary interface can be used either by making a call with a parameter list as

described later or by using the assembler IEWBFDA macro which will generate the

parameter list. If you intend to use a manually generated parameter list you should

first understand the parameters as described for the macro.

See also “Parameter descriptions” on page 116. Those descriptions apply to all

interfaces to fast data.

The IEWBFDA macro

The syntax of the IEWBFDA macro is:

 [label] IEWBFDA ENTRYPNT=xentry point

 ,MTOKEN=mtoken

,RETCODE=retcode

,RSNCODE=rsncode

{,EPTOKEN=eptoken

 | ,DDNAME=ddname[,MEMBER=member]

 | ,PATH=pathname

 | ,DCBPTR=dcbptr,DEPTR=deptr}

,CLASS=class

[,SECTION=section]

,AREA=buffer

,CURSOR=cursor

,COUNT=count

,HOLD={N|Y}

,SYSTEMDCB={N|Y}

[,DELETE={N|Y}]

[,LOADFAIL=loadfail]

,MF={S | L | (E,listaddress)}

label

Optional symbol. If present, the label must begin in column 1.

ENTRYPNT=entry_point — RX-type address or register (3-12)

Specifies the name of a 4-byte variable that contains the entry point location of

the IEWBFDAT module. If this location is known prior to the first call of the fast

data access service, the use of such value by this parameter might save the

implied processing overhead of attempting to load the module into storage.

Fast data access

128 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

MTOKEN=token — RX-type address or register (3-12)

Specifies the name of an 8-byte variable that contains the Module Token

established by the binder. This token should be initialized to binary zero before

the first call of the set.

RETCODE=retcode — RX-type address or register (3-12)

Specifies the name of a fullword integer variable that receives the completion

code returned by the binder.

RSNCODE=rsncode — RX-type address or register (3-12)

Specifies the name of a 4-byte hexadecimal string variable that receives the

reason code returned by the binder.

EPTOKEN=eptoken — RX-type address or register (3-12)

Specifies the name of an 8-byte variable that contains the EPTOKEN received

from MVS contents supervisor by means of the CSVQUERY macro. EPTOKEN

is required to locate the correct copy of a module in a PDSE program library,

when the module has already been loaded into virtual storage by loader

services.

DDNAME=ddname — RX-type address or register (3-12)

Specifies the name of a structure identifying the ddname of the library to be

accessed. The structure consists of a two-byte length field followed by a

character string of up to 8 bytes. The library identified by the ddname must not

include a member name.

 DDNAME may also point to a z/OS UNIX System Services file by using a path

specification for the ddname. In this case, no member name should be passed

to IEWBFDAT.

PATH=pathname — RX-type address or register (3–12)

An absolute or relative path name may be passed explicitly. The path name will

occupy the same parameter list position as DDNAME and must start with / or ./.

DCBPTR=dcbptr — RX-type address or register (3-12)

Specifies the name of a 4-byte pointer variable containing the address of a DCB

that represents a PDSE program library. The DEPTR parameter is required if

DCBPTR is specified.

 Note that the DCB must be OPENed prior to the invocation of the service, and

its parameters must be: DSORG=PO,MACRF=(R).

DEPTR=deptr — RX-type address or register (3-12)

Specifies the name of a 4-byte pointer variable containing the address of a

directory entry as returned by BLDL.

MEMBER=member — RX-type address or register (3-12)

Specifies the name of a structure identifying the member name or alias of the

library member to be accessed. The structure consists of a two-byte length field

followed by a character string of up to 1024 bytes. MEMBER may be specified

only if DDNAME is specified.

SECTION=section — RX-type address or register (3-12)

Specifies the name of a structure identifying the name of the section to be

accessed. The structure consists of a two-byte length field followed by a

character string of up to 32767 bytes. This is an optional parameter, and is

default to a concatenation of all sections in the specified class.

CLASS=class — RX-type address or register (3-12)

Specifies the name of a structure identifying the class name of the required

class. The structure consists of a two-byte length field followed by a character

string of up to 16 bytes.

Fast data access

Chapter 6. Fast data access 129

AREA=buffer — RX-type address or register (3-12)

Specifies the name of a standard buffer that receives the data. See Appendix D,

“Binder API buffer formats,” on page 241 for buffer formats. The version level is

specified with this keyword.

CURSOR=cursor — RX-type address or register (3-12)

Specifies the name of a fullword integer variable that indicates to the binder the

position (relative record or byte) in the buffer where processing is to begin.

 The CURSOR value identifies an index into the requested data beginning with 0

for the first data item. Each of the buffer formats defined in Appendix D, “Binder

API buffer formats,” on page 241 contains an entry length field in its header.

Multiplying the cursor value by the entry length provides a byte offset into the

data. Note that CUI, LIB, PMAR, and text data is always treated as having entry

length 1.

 The CURSOR value is an input and output parameter. On input to the service,

the cursor specifies the first item to return. On exit from the service, it is

updated to an appropriate value for continued sequential retrieval if not all data

has yet been retrieved. For text data this may or may not be the next byte after

the last one returned, because pad bytes between sections and uninitialized

data areas within sections may have been skipped. Any data skipped should be

treated by the calling application as containing the fill character (normally X’00’).

COUNT=count — RX-type address or register (3-12)

Specifies the name of a fullword integer variable in which the binder can store

the number of bytes or entries returned in the buffer.

HOLD=N|Y — RX-type address or register (3-12)

Points to a 1 byte field containing a Y or N. If Yes is specified, DIV maps and

acquired storage are not released, allowing requests for additional data from the

same module on subsequent calls.

SYSTEMDCB=N|Y — RX-type address or register (3-12)

Points to a 1 byte field containing a Y or N, with a default of N. This parameter

is effectively ignored by fast data, but retained for compatability.

DELETE=N|Y — RX-type address or register (3-12)

Specifies if the IEWBFDA module is deleted The default is 'Y'.

 If Yes is specified, or if HOLD=N is specified without DELETE being specified,

the module is deleted.

 If Yes is specified, or if DELETE is not specified but HOLD=Y is specified, the

module is not deleted.

LOADFAIL=loadfail — RX-type address or register (3-12)

Specifies the name of a four-byte pointer containing the address of a

user-defined routine that gets control if the LOAD operation fails while

attempting to load the IEWBFDA module.

MF={S | L | (E,listaddress)}

Specifies the macro form required.

S Specifies the standard form and generates a complete inline expansion of

the parameter list. The standard form is for programs that are not

reenterable or refreshable, and for programs that do not change values in

the parameter list. The standard form is the default.

L Specifies the list form of the macro. This form generates an inline

parameter list.

Fast data access

130 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|

E Specifies the execute form of the macro. This form updates a parameter

and transfers control to the service routine.

listaddress — RX-type address or register (3-12)

Specifies the address of the parameter list.

Unitary parameter list

If you would like to use the Unitary interface without using the macro, you must load

IEWBFDAT and call using standard MVS linkage conventions, passing the following

parameter list.

The address of the following parameter list must be passed in GPR 1:

 Table 46. IEWBFDA parameter list

PARMLIST DS 0F

DC A(ENTRYPNT) Module entry point

DC A(MTOKEN) Module token

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(EPTOKEN) EPTOKEN

DC A(DDNAME | PATH) DD name or path name

DC A(MEMBER) Member name

DC A(DCBPTR) DCB pointer

DC A(DEPTR) Directory entry pointer

DC A(CLASS) Class name

DC A(SECTION) Section name

DC A(AREA) Standard data buffer

DC A(CURSOR) Starting position

DC A(COUNT) Data count

DC A(HOLD) Hold flag

DC A(SYSTEMDCB) SystemDCB indicator

* Keyword Values

HOLD DC CL1’Y’ Use N on the last or only request.

SYSTEMDCB DC CL1’Y’ Indicates whether passed DCB is from a

system library.

 'Y' = YES

 'N' = NO default

Note: SYSTEMDCB is an optional positional parameter which, if specified, follows

the HOLD parameter. You must add a value of X'80000000' to the last

parameter you specify – either the HOLD parameter (if you do not specify

SYSTEMDCB) or, if you specify it, the SYSTEMDCB parameter.

Error handling

Fast data access does not provide error handling routines for logic failures caused

by input or environmental problems. It does use error returns from system services

where those are reasonably available, and reflects such errors in the reason codes

it returns.

In a few cases fast data writes diagnostic messages to the job log (JESYSMG).

These have IEW2nnn message numbers, and are documented in the appropriate

volume of z/OS MVS System Messages.

If a problem needs to be reported to IBM, the following will be helpful:

Fast data access

Chapter 6. Fast data access 131

|
|

|

v For an ABEND or program check in fast data, a SLIP dump or SYSMDUMP

which includes 64-bit storage.

v For an unexpected return and reason code, a trace which can be gotten by

allocating an IEWTRACE DD statement. fast data uses QSAM to write variable

blocked records to the data set or SYSOUT destination specified.

Return and reason codes

 Return Code Reason Code Explanation

00 00000000 Normal completion.

04 10800001 Normal completion. Data was returned, and the buffer is

full. There might be additional data to retrieve.

04 10800002 Normal completion. Some data might have been

returned in the buffer, and an end-of-data condition was

encountered.

08 10800010 The requested CLASS does not exist in the indicated

program object. No data was returned.

08 10800011 The requested SECTION does not exist in the indicated

program object. The request was rejected.

08 10800061 The third parameter for the GN service must contain

EBCDIC ’C’ or ’S’ in upper or lower case.

08 10800062 No sections were found.

08 10800064 The culist passed to the GC service contained a value

which had not been returned by the GN service.

12 10800020 The program object identified by EPTOKEN could not be

located in physical storage. The request was rejected.

12 10800021 The specified MEMBER could not be found. The request

was rejected.

12 10800022 The buffer provided (AREA) is too small to contain even

one record of the specified CLASS. The request was

rejected.

12 10800023 A required parameter was omitted or specified as zero.

12 10800024 An incorrect module token (MTOKEN) was provided. The

request was rejected.

12 10800025 A buffer (AREA) with a negative length was provided.

The request was rejected.

12 10800026 The provided CLASS name is not valid. The request was

rejected.

12 10800027 The provided CURSOR value is either negative, or, if

this was a first or a subsequent call, it was altered by the

caller of the service so that the (new) value was not

within the range of records for the SECTION being

processed. The request was rejected.

12 10800028 The provided HOLD value is not one of the allowed

values: 'Y' or 'N'. The request was rejected.

12 10800029 The program is not a program object, or anomalies were

found in its structure. The request was rejected.

Fast data access

132 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Return Code Reason Code Explanation

12 1080002A The program object identified by the EPTOKEN has

been updated since it was last fetched. The service

cannot process it, since the extracted data would not be

the same as the data in physical storage. The request

was rejected.

12 1080002B The program object identified by the EPTOKEN was

fetched by a product other than DFP and therefore it

cannot be processed. The request was rejected.

12 1080002C The data set identified by DDNAME could not be found,

or the system service (SVC99) encountered an error

while verifying the data set allocation. The request was

rejected.

12 1080002D The specified DDNAME did not refer to a program object

library. The request was rejected.

12 1080002E An error occurred while trying to open the data set

identified by DDNAME. The request was rejected.

12 1080002F The acquisition of working storage was not successful.

The request was rejected.

12 10800030 An error was encountered while attempting to verify the

provided EPTOKEN. (Service Involved: CSVQUERY).

The request was rejected.

12 10800031 An error was encountered while attempting to map the

program object onto a data space. The request was

rejected.

12 10800032 An error was encountered while attempting to access the

directory entry for the program object being processed.

(Service Involved: DESERV). The request was rejected.

12 10800036 The supplied DCB, identified by DCBPTR, was not

OPENed prior to the service’s invocation as required.

The request was rejected.

12 10800037 The supplied DCB, identified by DCBPTR, is OPEN but

one or both of the pertinent DCB parameters are not

DSORG=PO and MACRF=(R), as required. The request

was rejected.

12 10800038 The supplied directory entry, identified by DEPTR, does

not represent a program object. The request was

rejected.

12 10800039 The supplied buffer (AREA) has an incorrect version

number in its header, which disagrees with the version of

the program object being accessed. For example, the

buffer version is 1, but the program object is version 2.

12 1080003A The supplied buffer (AREA) has an incorrect class name

in its header, which disagrees with CLASS name passed

to the service.

12 1080003B The provided SYSTEMDCB parameter is not one of the

allowed values: Y or N, in uppercase or lowercase

EBCDIC.

12 1080003D The directory portion of the supplied path name is

invalid.

12 1080003F The supplied path name is invalid.

Fast data access

Chapter 6. Fast data access 133

Return Code Reason Code Explanation

12 10800040 The supplied path name exceeds the acceptable length

limit.

12 10800041 Read access error occurred trying to open the file

supplied on the PATH parameter.

12 10800042 Read error occurred trying to open the file supplied on

the PATH parameter.

12 10800063 Interface value is invalid.

12 10800065 The cursor passed on a GD request for class

B_PARTINIT is invalid. The cursor must point to the

beginning of a part initializer record.

Fast data access

134 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 7. User exits

User exits identify points in binder processing when the calling program regains

control. The binder passes the user exit routine a data buffer. The exit routine can

examine or modify the data, return it to the binder, and set a return code.

The binder provides user exit points for:

v All messages (or those above a specified severity) issued during processing

v Each successful or failed attempt to save a program object or load module

v Each linkage of an external reference to its target

You can define the user exits either using the EXITS parameter on a

FUNC=STARTD call or by specifying them in the EXITS invocation option. Note that

invocation options are passed one of four ways:

v Through the JCL PARM string for batch invocation

v Via PARAM when using ATTACH, LINK, or SCTL

v Pointed to by register 1 when using LOAD and CALL

v Within the OPTIONS string of FUNC=STARTD when using the API

If the EXITS option is found in the OPTIONS string passed by FUNC=STARTD

when the API is used, that will override any EXITS parameter also passed by

FUNC=STARTD.

Note: In this topic, you will see several references to ″varying string.″ Keep in mind

that a varying string consists of a halfword length field followed by a

character string of that length and that varying strings are always addressed

by pointing to the length field.

Execution environment

The execution environment of a user exit routine is:

v Enabled for I/O and external interrupts

v Holds no locks

v In task control block (TCB) mode

v With PSW key equal to the key of the issuer of IEWBIND

v In primary address space mode

v In 31-bit addressing mode

v In same PSW state as when IEWBIND was invoked

v With no FRRs on the current FRR stack.

Registers at entry to the user exit routine

A user exit routine is called using MVS linkage conventions:

v Register 1 contains the address of the parameter list.

v Register 13 contains the address of an 18-word register save area.

v Register 14 contains the return address to the binder.

v Register 15 contains the address of the exit routine’s entry point.

© Copyright IBM Corp. 1991, 2006 135

Message exit

The binder passes control to your message user exit routine just prior to writing a

message to the print data set (typically SYSPRINT). The message is stored in a

buffer and passed to your routine. The exit routine can either prevent or allow the

message to print.

When specifying this exit on STARTD, you provide the following information by

means of the EXITS keyword:

v The entry point address of the message exit routine.

v Optional user data that is passed directly to the exit without being processed by

the binder. This is typically used as an address to dynamic storage when the

binder is invoked by a reentrant program, but can be a counter or other data.

v An address of a fullword containing an error severity level below which the binder

does not call your exit routine. For example, if you code 8 in this word, the binder

does not call your exit routine for normal output, informational messages, or

warning messages.

The binder passes a parameter list to the exit routine. Register one contains the

address of a list of addresses pointing to the following data:

v The user data specified in the second word of the exit specification.

v A pointer to a varying-length character buffer that contains a message. The

length of the buffer is indicated in the first two bytes, which are not included in

this length. The length can include trailing blanks.

v A halfword count of the number of lines in the buffer.

v A halfword count of the number of characters per line in the buffer.

v A 4-character message number extracted from the message text in the buffer.

v A halfword severity code.

v A fullword reason code to be set by the exit routine.

v A fullword return code to be set by the exit routine.

The exit routine can examine the messages but should not modify them. Before

returning to the binder, your exit routine should set a return code for the binder to

control its next action as follows:

 Return Code Explanation

00 Continue processing as if the exit routine had not been called.

04 Suppress printing of the message.

Save exit

The binder passes control to your save exit routine just prior to rejecting a primary

member name or an alias name or after an attempt to save a primary member

name or an alias name. The save operation might have succeeded or failed. The

binder passes your routine information about the disposition of the name and, in

certain situations, you can request that the save be retried.

Note: This exit is not invoked if the target is a z/OS UNIX System Services file.

When specifying this exit on STARTD, you provide the following information by

means of the EXITS keyword:

User exits

136 z/OS V1R9.0 MVS Program Management: Advanced Facilities

v The entry point address of the exit routine.

v Optional user data that is passed directly to the exit without being processed by

the binder. This is typically used as an address to dynamic storage when the

binder is invoked by a reentrant program, but can be a counter or other data.

v A third fullword that currently is not used.

The binder passes a parameter list to the exit routine. Register one contains the

address of a list of addresses to the following data:

v The user data specified in the second word of the exit specification.

v A fullword reason code (see below).

v A one-character EBCDIC argument identifying the type of name:

’P’ for primary member name and ’A’ for alias name.

v A two-byte field specifying the length of the name, followed by the name

v A fullword return code to be set by the exit.

The reason codes passed to the exit by the binder are as follows:

 Reason Code Explanation

00000000 Normal completion.

83008000 No valid member name.

83008001 Duplicate member name.

83008010 Not-executable module replacing executable module.

83008050 Alias name is too long (PDS only).

83008051 Duplicate alias name.

83008052 No ESD for alias target.

83008060 Insufficient virtual storage for STOW (PDS only).

83008070 I/O error in directory.

83008071 Out of space in directory (PDS only).

83008078 Member or alias name not processed (PDSE only).

83008079 Miscellaneous error condition.

The save attempt can be retried only if the reason code is less than 83008050.

Your exit routine should examine the name and reason code. It can either retry the

save, retry the save under a new name, or do nothing. Your routine should change

the name in the parameter list if a save under a new name is requested.

Your exit routine must set a return code for the binder to control its next action as

follows:

 Return Code Explanation

00 Continue processing as if the exit routine had not been called.

04 Retry the save with a new name. Your exit routine updates the fourth

parameter in the parameter list with the new name. Valid for reason

codes 83008000, 83008001, and 83008010.

08 Retry the original save and force a replacement. Valid for reason

codes 83008001 and 83008010.

User exits

Chapter 7. User exits 137

The binder performs the retry operation if requested. Your exit routine can be called

repeatedly until the save is successful. There is no limit to the number of retry

attempts. Your exit routine must return a zero return code eventually or a

never-ending loop could occur.

Interface validation exit

The Interface Validation Exit (INTFVAL) allows your exit routine to examine

descriptive data for both caller and called at each external reference. The exit can

perform audits, such as examining parameter passing conventions, the number of

parameters, data types, and environments. It can accept the interface, rename the

reference, or leave the interface unresolved.

When specifying this exit on STARTD, you provide the following information by

means of the EXITS keyword:

v The entry point address of the exit routine.

v Optional user data that is passed directly to the exit without being processed by

the binder. This is typically used as an address to dynamic storage when the

binder is invoked by a reentrant program, but can be a counter or other data.

v A third fullword that currently is not used.

The binder passes control to your exit routine at the completion of input processing,

including autocall. This is before binding the module. If specified, the exit routine is

invoked at three different points in binder processing, indicated by the function code

passed to the exit:

'S' (Start) - Allows the exit routine to set up its environment and return a list of

requested IDRs (product identifiers) to the binder.

'V' (Validate) - Allows the exit routine to validate all of the resolved and

unresolved references from one section (CSECT) in the module to external

labels in other sections.

'E' (End) - Invoked immediately prior to binding. Allows cleanup by the exit

routine.

For each module being bound, Start will be called once, Validate will be called zero

or more times, and End will be called once.

At the completion of autocall, the exit will be taken once for the Start function and

once for each section in the module containing one or more unchecked external

references. An external reference is unchecked if the signature in its ER record is

either null (binary zeros) or does not match the signature in the LD.

An anchor word will be passed to the exit to provide for persistent storage between

invocations. If the binder is invoked as a batch program, the anchor will be

allocated and set to zero by the binder on invocation of the Start function;

otherwise, the value passed to the binder on the STARTD exit specification will be

passed through to the exit. If the exit routine provides its own dynamic storage, that

address can be stored in the anchor word for addressability by subsequent

invocations. No facilities will be available for trapping errors: If the exit fails, the

binder fails. A message can be returned by the exit routine, however, to be printed

by the binder.

The binder passes a parameter list to the exit routine. Register one contains the

address of a list of addresses to the following data:

User exits

138 z/OS V1R9.0 MVS Program Management: Advanced Facilities

v Function Code ('S', 'V' or 'E'). A 1-byte function code indicating Start, Validate or

End, respectively.

v Anchor Word. A 4-byte pointer variable for use by the exit.

v Exit control. The character string passed on the exit specification. The character

string is immediately preceded by a halfword length field.

v Section name ('V' only). A varying string containing the name of the section being

validated.

v Section vaddr ('V' only). A 4-byte pointer to the beginning of the first text element

in the section being validated. This might not be useful in a multiclass module,

since there is no designated primary class. This field is reserved for future use.

v Section IDRL. This parameter has a dual use, depending on the Function Code.

On the Start ('S') call, the parameter is initialized to zero by the binder and

optionally reset by the exit routine. On the Validate ('V') call, the binder sets the

parameter to point to the IDR entry, if one is present, for the current section or to

zero.

– ('S') A 4-byte pointer, initialized to zero by the binder and optionally reset to

the address of an IDR list by the exit routine. The list, if specified, indicates

those product identifiers of interest to the exit. If the list is not returned by the

exit, the exit will be invoked for all sections. See below for a discussion of the

IDR selection list.

– ('V') A 4-byte pointer, set by the binder, to the IDR entry for the section in

process. The IDR data is preceded by a halfword length field.

v Reference List ('V' only). A 4-byte pointer to a list of unchecked references. See

below for a discussion of the reference list.

v Return code. A fullword return code indicating the overall status of the exit. It will

be initialized to zero on invocation of the exit.

Return codes from the exit routine are:

0 No further processing required of this section. The action code for all

references is zero.

4 Further processing required by the binder, as indicated in the returned

action codes.

12 Severe error. Make no more calls to the exit and do not save the module

(unless LET=12).

16 Terminate binder processing immediately

v Returned message. A 4-byte pointer to a varying string allocated by the exit and

containing a message to be printed by the binder. The returned message must

not be longer than 1000 bytes. The binder will prefix the returned message with

its own message number.

The message will be initialized to the null string so that the exit routine need not

take any action unless a message is issued.

The IDR selection list is built by the exit routine on the “Start” call and its address

returned to the binder. The purpose of the list is to improve performance by limiting

the number of exit invocations. If a section to be validated was compiled by a

language product not on the list, or if no IDR information is available for that

section, the exit will not be taken. Each entry in the list consists of:

v A 4-byte address of another entry (zero indicates last entry)

v A 2-byte length containing the number of IDR bytes to be compared (1-14)

User exits

Chapter 7. User exits 139

v A character string containing a substring of the product id, version and

modification level. The string can contain a maximum of 14 bytes in the format

ppppppppppvvmm.

The reference list is a linked list containing one entry for each unchecked ER in the

section. References marked NOCALL or NEVERCALL will not be included in the

list. The last entry in the list contains zero in the link field. A reference entry is 64

bytes in length and consists of the following fields:

Action codes set for each reference include the following:

0 No special processing required for this reference, such as changing the

bind status flags, renaming the reference or storing signatures.

1 Validation successful. Store the exit signature in both LD and ER records.

2 Validation successful. Store glue code address in all referring adcons and

store the exit signature in both LD and ER records.

OFF TYPE LEN NAME DESCRIPTION NOTES

--- -------- --- -------------- ---------------------------- -----

(0) Address 4 REFL_NEXT Address of next list entry 3

(4) Address 4 REFL_T_SYMBOL Address of referenced symbol 2

(8) Address 4 REFL_T_SECTION Address of target section name 2,8

(C) Address 4 REFL_T_ELEMENT Address of target element 1,8

(10) Address 4 REFL_T_DESCR Address of target descriptors 1,8

(14) Address 4 REFL_T_IDR Address of target IDR 1,5,8

(18) Bit 4 REFL_T_ENVIR Target environment 1,6,8

(1C) Character 8 REFL_T_SIGN Target signature 8

(24) Address 4 REFL_T_ADCONS Adcon list anchor 1

(28) Address 4 REFL_C_DESCR Address of caller descriptors 1

(2C) Bit 4 REFL_C_ENVIR Caller’s environment 1,6

(30) Character 8 REFL_X_SIGN Exit signature 4,9

(38) Address 4 REFL_X_SYMBOL New symbol (Char(*) varying) 4,7,9

(3C) Unsigned 2 REFL_X_ACTION Action code 4,9

(3E) Unsigned 2 Reserved 1

Notes:

 1 Must be zero.

 2 Points to varying character string. String must begin with a

 halfword length field containing current length, excluding length

 field.

 3 Last entry in list set to zero.

 4 Output field. Set by exit routine.

 5 IDR data is returned in the following format:

 0 CHAR 10 Processor Identification

 10 CHAR 2 Processor Version

 12 CHAR 2 Processor Modification Level

 14 CHAR 7 Date Compiled or Assembled (yyyyddd)

 The above 21-byte structure is preceded by a halfword length.

 The length can contain zero or any multiple of 21, allowing

 for multiple IDRs.

 6 Environmental bit settings are not yet defined.

 7 The exit routine must allocate and initialize a varying length

 character string, consisting of a halfword length field,

 containing the length of the symbol, immediately followed

 by the symbol itself. The address of this varying string

 must be stored in the REFL_X_SYMBOL field in the reference

 list.

 8 Target fields will contain binary zeros for unresolved references

 9 Output fields will be initialized to binary zeros on invocation

 of the exit routine.

 10 Referenced symbol or section is in the following format:

 0 BIN 2 Length of name field.

 2 CHAR * Name.

User exits

140 z/OS V1R9.0 MVS Program Management: Advanced Facilities

3 Accept unresolved reference. Do not store the exit signature in the ER

record. Reference will be treated as a weak reference and will not affect the

return code from the binder.

4 Retry. New symbol has been provided for reference. Do not store

signatures at this time. Reprocess autocall, if necessary, and revalidate.

5 Validation failed. Mark reference unresolved and do not store signatures at

this time. The return code from the binder will reflect that there was at least

one unresolved reference.

Post Processing:

On return from the exit, the binder will take the action described by the action code

for each external reference. If the action code is 1 or 2, the signature returned by

the exit will be stored, if nonzero, in both ER and LD, so that the interface will not

be reexamined on a subsequent invocation. If the exit elects to rename a reference,

the symbol will be changed FOR THAT REFERENCE ONLY. If the renamed

reference cannot be resolved from labels already present in the module, another

autocall pass will be required.

The exit routine should always return some kind of signature to the binder, if the

interface is valid, so that the same reference does not get revalidated on

subsequent passes. If the input signature is not null (binary zeros) return it to the

binder; otherwise, return any 8-byte string (for example, date/time), which will then

be saved in the LD and ER records. The signature can consist of any characters.

The binder map, if requested, will indicate those sections that were included as a

result of one or more renamed references. The flag position in the map, which

normally contains an asterisk for autocalled sections, will be reset to “R”. There will

be no indication as to the number and location of such renamed references nor

their original names.

Default Exit Routine:

In the absence of an interface exit specification, the binder will default the exit

processing. During default validation, the binder will examine each resolved ER -

LD pair, checking the following:

v Compare the text type expected (ER) with that of the target (LD). Fifteen text

types are supported by the binder, and can be passed in the ER and LD records

via the binder API or the new object module (GOFF):

 0 - unspecified

 1 - data

 2 - instructions

 3-15 - for translator use

If the text type for either caller or called is unspecified, or if the two text types are

equal, the interface is considered valid.

v Compare the signature fields. If either is unspecified (binary zeroes) or if they

match, the interface will be considered valid.

If either result is not valid, a warning message will be issued by the binder and the

return code set to 4. The reference remains resolved, however.

User exits

Chapter 7. User exits 141

142 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Chapter 8. C/C++ APIs for program management

This topic describes the Binder’s C/C++ API that enables C/C++ programs to

interface easily with Binder and to get the similar functionality of the Binder API

described in Chapter 3, “IEWBIND function reference,” on page 23 and fast data

access services described in Chapter 6, “Fast data access,” on page 115. The

previously defined APIs depend on buffer structures with assembler mappings

described in Chapter 2, “Binder API interface macros,” on page 15. The APIs can

be called from other languages, but the coding may be awkward. The programmer

is responsible for providing a certain environment, buffers and parameters lists. The

Binder’s C/C++ API is a C code interface that implements the initialization and

access functions of the Binder API and fast data access services. The interface

provides C functions equivalent to the following Binder API macro functions and fast

data access services via request code call interface:

 Binder API Fast data access

ADDA – Add alias SB- Start with DCB

ALIGNT – Align text SJ – Start with DDname

ALTERW – Alter workmod SQ – Start with EPtoken

AUTOC – Perform incremental autocall SS – Start with system DCB

BINDW – Bind workmod GC – Get compile unit list

CREATEW – Create workmod GD – Get data

DELETEW – Delete workmod GE – Get ESD data

ENDD – End open GN – Get names

GETC – Get compile unit list EN – End a session

GETD – Get data

GETE – Get ESD data

GETN – Get names

IMPORT – Import a function or external

variable

INCLUDE – Include module

INSERTS – Insert section

LOADW – Load workmod

ORDERS – Order sections

PUTD – Put data

RENAME – Rename symbolic

references

RESETW – Reset workmod

SAVEW – Save workmod

SETL – Set library

SETO – Set option

STARTD – Start open

STARTS – Start segment

© Copyright IBM Corp. 1991, 2006 143

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

||

||

||

||

||

|
|
|

||

||

||

||

||

||
|

The interface also provides some utilities functions to allow users to access return

values and enables the creation of Binder API buffers for some API calls that

require buffers as input.

Using the Binder’s C/C++ API

The Binder’s C/C++ API provides a header file (__iew_api.h) allows C/C++

programs to interface with Binder API and fast data access services more natural in

a C/C++ environment. The header file includes the following:

v API data types

The API data types are used by API access and utilities functions. They allow for

data encapsulation and as a convenient way for parameters passing.

v Buffer header and entry definition for each buffer type

The buffer header and buffer entry definition for each buffer type are based on

the version 6 of API buffer formats as described in Appendix D, “Binder API buffer

formats,” on page 241. The application could use the appropriate buffer type to

cast the return buffer after calling some API access functions.

v Binder API access functions

__iew_addA() __iew_alignT() __iew_alterW()

__iew_autoC() __iew_bindW() __iew_closeW()

__iew_getC() __iew_getD() __iew_getE()

__iew_getN() __iew_import() __iew_includeName()

__iew_includePtr() __iew_includeSmde() __iew_includeToken()

__iew_insertS() __iew_loadW() __iew_openW()

__iew_orderS() __iew_putD() __iew_rename()

__iew_resetW() __iew_saveW() __iew_setL()

__iew_setO() __iew_startS()

v Binder API utilities functions

__iew_api_name_to_str() __iew_create_list() __iew_eod()

__iew_get_reason_code() __iew_get_return_code() __iew_get_cursor()

__iew_set_cursor()

v Fast data access functions

__iew_fd_end() __iew_fd_getC() __iew_fd_getD()

__iew_fd_getE() __iew_fd_getN() __iew_fd_open()

__iew_fd_startDcb() __iew_fd_startDcbS() __iew_fd_startName()

__iew_fd_startToken()

v Fast data utilities functions

__iew_fd_eod() __iew_fd_get_reason_code()

__iew_fd_get_return_code() __iew_fd_get_cursor()

__iew_fd_set_cursor()

Note: __iew_api_to_name(), listed above for the binder API, can also be used for

the fast data API.

Accessing Binder’s C/C++ API through DLL support and is packaged in the

following USS file directories:

v Include file (__iew_api.h)

/usr/include

v Side-deck file (iewbndd.x)

/usr/lib

v DLL (non-XPLINK, iewbndd.so)

/usr/lib

Note: Export LIBPATH=/lib:/usr/lib:.

Binder’s C/C++ API

144 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|

Environment

The environment is the same as described in either Chapter 1, “Using the binder

application programming interface,” on page 1 for Binder API users or Chapter 6,

“Fast data access,” on page 115 for fast data users.

Binder API functions

This topic describes the binder API access functions and binder API utility functions.

Binder API access functions

__iew_addA() – Add alias

Adds a new alias to the list of aliases for a program, or changes the AMODE of an

entry point. Can be used when binding or copying a program.

Format:

#include <__iew_api.h>

int __iew_addA(_IEWAPIContext *__context,

 const char *__aname, const char *__ename,

 _IEWAnameType __anametype,

 const char *__amode);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__aname

the name of the alias to be added

__ename

existing external symbol in the program to be associated with the alias

__anametype

alias type can be one of the following:

_IEW_ALIAS

_IEW_SYM_LINK

_IEW_PATH

__amode

amode and the values that can be specified for amode are ‘24’, ‘31’, ‘64’,

‘ANY’, and ‘MIN’

Returned Value: If successful, __iew_addA() returns 0.

If unsuccessful, __iew_addA() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 145

|
|

|
|
|

|
|

|

|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

|

|
|

|

|
|

__iew_alignT() – Align text

Requests that a specified section be loaded on a 4K boundary. Can be used only

when _IEW_BIND intent is specified.

Format:

#include <__iew_api.h>

int __iew_alignT(_IEWAPIContext *__context,

 const char *__section);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__section

the section name

Returned Value: If successful, __iew_alignT() returns 0.

If unsuccessful, __iew_alignT() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_alterW() – Alter workmod

Changes or deletes symbols or sections, or adds patch space to a control section.

Can be used only when _IEW_BIND intent was specified.

Format:

#include <__iew_api.h>

int __iew_alterW(_IEWAPIContext *__context,

 _IEWAltType __alttype, _IEWAltMode __altmode,

 const char *__oldname, const char *__newname,

 unsigned int *__count,

 const char *__class);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__alttype

alter type can be one of the following:

v _IEW_ALT_CHANGE

changes an external symbol of any ESD type from old name to new

name

v _IEW_ALT_DELETE

deletes an external symbol in the target modules

v _IEW_ALT_EXPAND

expands the length of the text of a section

v _IEW_ALT_REPLACE

Binder’s C/C++ API

146 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|

|

|
|
|

|

|
|
|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|

|

|

|

|

|

deletes a symbol (old name), and changse any references to that symbol

to a new name

__altmode

alter mode can be one of the following:

v _IEW_ALT_NEXT

applies only to what will be in the next module to be included into the

workmod

v _IEW_ALT_IMMED

applies to what is already in the workmod

__oldname

the old name

__newname

the new name

__count

the number of bytes

__class

the class name

Returned Value: If successful, __iew_alterW() returns 0.

If unsuccessful, __iew_alterW() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_autoC() – Perform incremental autocall

Attempts to resolve currently unresolved symbols using the contents of the specified

library. Can be used only when _IEW_BIND intent was specified.

Format:

#include <__iew_api.h>

int __iew_autoC(_IEWAPIContext *__context,

 const char *__dd_or_path);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__dd_or_path

the autocall library DD name or path name

Returned Value: If successful, __iew_autoC() returns 0.

If unsuccessful, __iew_autoC() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 147

|
|

|
|

|

|
|

|

|

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|

|

|
|

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_bindW() – Bind workmod

Resolves all external references if it is possible, computes relative location of all

sections, builds relocation and external symbol dictionaries. Required when

_IEW_BIND intent was specified, cannot be used otherwise.

Format:

#include <__iew_api.h>

int __iew_bindW(_IEWAPIContext *__context,

 const char *__ddname);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__ddname

an optional additional library to use for resolving symbols.

Returned Value: If successful, __iew_bindW() returns 0.

If unsuccessful, __iew_bindW() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_closeW() – Close workmod

The closeW() deletes all data associated within the context(_IEWAPIContext),

releases IEWBIND from memory, and deletes the context.

Format:

#include <__iew_api.h>

_IEWAPIContext *__iew_closeW(_IEWAPIContext *__context,

 _IEWAPIFlags __flags,

 unsigned int *__return_code,

 unsigned int *__reason_code);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__flags

API flags protect whether to allow the binder to delete a workmod that has

been altered but not yet saved or loaded.

Note: Set the flag to 1 to turn on the bit and 0 to turn off the bit.

Binder’s C/C++ API

148 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|

|
|
|
|

|

|
|
|

|

|
|
|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|

|

__return_code

return code is passed back from DELETEW or ENDD

__reason_code

reason code is passed back from DELETEW or ENDD

Returned Value: If successful, __iew_closeW() returns NULL.

If unsuccessful, __iew_closeW() returns API context.

Note: If an invalid context is passed, __iew_closeW() returns NULL.

__iew_getC() – Get compile unit list

Obtains source information about the program and the compile units from which it

was constructed.

Format:

#include <__iew_api.h>

int __iew_getC(_IEWAPIContext *__context,

 int __culist[],

 void ** __cui_entry);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__culist

compile unit list – array of compile units where the first entry is used to

specify the total number of compile unit entries. If the first entry is non zero,

then one record for each compile unit in a list of compile units will be

returned. If the first entry is zero, then one record of each of all compile

units will be returned.

__cui_entry

returned buffer – CUI entry, one record for each compile unit in a list of

compile units is returned.

Returned Value: If successful, __iew_getC() returns > 0 (count, number of entries

returned in the buffer).

If unsuccessful, __iew_getC() returns 0.

Utilities Functions:

__iew_eod()

__iew_get_reason_code()

__iew_get_return_code()

__iew_get_cursor()

__iew_set_cursor()

__iew_getD() – Get data

Returns data associated with a specified class (and optionally section) in the

program.

Format:

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 149

|
|

|
|

|

|

|

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|

|
|
|

|

#include <__iew_api.h>

int __iew_getD(_IEWAPIContext *__context,

 const char *__class, const char * __sect,

 void *__reloc,

 void ** __data_entry);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__class

class name.

__sect

section name.

__reloc

relocation address.

__data_entry

returned buffer – based on class name.

Returned Value: If successful, __iew_getD() returns a number greater than zero

representing the number of data items or bytes returned in the buffer.

If unsuccessful, __iew_getD() returns 0.

Utilities Functions:

__iew_api_name_to_str()

__iew_eod()

__iew_get_reason_code()

__iew_get_return_code()

__iew_get_cursor()

__iew_set_cursor()

__iew_getE() – Get ESD data

Returns external symbol dictionary information selected by various criteria.

Format:

#include <__iew_api.h>

int __iew_getE(_IEWAPIContext *__context,

 const char *__sect, const char *__class,

 const char *__sym, const char *__rec_type

 int *__offset,

 void ** __esd_entry);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__sect

section name.

__class

class name. See class under “Understanding binder programming concepts”

on page 1 for details.

Binder’s C/C++ API

150 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

__sym

symbol name. See “External symbol dictionary” in Chapter 2 of Program

Management User’s Guide and Reference for details.

__rec_type

ESD record type.

__offset

offset in module or section

__esd_entry

returned buffer – ESD entry

Returned Value: If successful, __iew_getE() returns > 0 (count, number of entries

returned in the buffer).

If unsuccessful, __iew_getE() returns 0.

Utilities Functions:

__iew_api_name_to_str()

__iew_eod()

__iew_get_reason_code()

__iew_get_return_code()

__iew_get_cursor()

__iew_set_cursor()

__iew_getN() – Get names

Returns a list of section or class names within the program together with

information about the sections or classes.

Format:

#include <__iew_api.h>

int __iew_getD(_IEWAPIContext *__context,

 int __iew_getN(_IEWAPIContext *__context,

 _IEWNameType __nametype,

 unsigned int *__total_count,

 void ** __name_entry);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__nametype

name type could be one of the following: _IEW_SECTION or _IEW_CLASS.

__total_count

total number of sections or classes in the workmod.

__name_entry

returned buffer – Binder name list.

Returned Value: If successful, __iew_getN() returns > 0 (count, number of entries

returned in the buffer).

If unsuccessful, __iew_getN() returns 0.

Utilities Functions:

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 151

|
|
|

|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|

|

__iew_eod()

__iew_get_reason_code()

__iew_get_return_code()

__iew_get_cursor()

__iew_set_cursor()

__iew_import() – Import a function or external variable

Identifies a function or variable to be resolved dynamically during execution. Can be

used only when _IEW_BIND intent is specified.

Format:

#include <__iew_api.h>

int __iew_getD(_IEWAPIContext *__context,

 int __iew_import(_IEWAPIContext *__context,

 _IEWImpType __impType,

 const char *__dllname, const char *__iname,

 unsigned int *__offset);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__impType

import type can be one of the following:

v _IEW_IMP_CODE

v _IEW_IMP_DATA

v _IEW_IMP_CODE64

v _IEW_IMP_DATA64

__dllname

DLL name.

__iname

symbol name.

__offset

function descriptor offset.

Returned Value: If successful, __iew_import() returns 0.

If unsuccessful, __iew_import() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_includeDeptr() – Include module via DEPTR

Add an object to the workmod identified by a DDname and BLDL list entry.

Format:

Binder’s C/C++ API

152 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

#include <__iew_api.h>

int __iew_includeDeptr(_IEWAPIContext *__context,

 const char *__ddname,

 void *__deptr,

 _IEWAPIFlags *__flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__ddname

DD name.

__deptr

member entry returned by BLDL, at least 62 bytes long.

__flags

API flags

v __aliases - whether to include the program module aliases with the

program module

v __attrib - whether to include the program module attributes with the

program module

v __imports - whether or not the import statements are to be included from

the input module

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_includeDeptr() returns 0.

If unsuccessful, __iew_includeDeptr() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_includeName() – Include module via NAME

Adds an object to the wokmod identified either by a path name or by a DDname

and member name.

Format:

#include <__iew_api.h>

int __iew_includeName(_IEWAPIContext *__context,

 const char *__dd_or_path,

 const char * __member,

 _IEWAPIFlags *__flags);

 _IEWAPIFlags *__flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 153

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

__dd_or_path

DD name or pathname.

__member

member name if using DD name.

__flags

API flags

v __aliases - whether to include the program module aliases with the

program module

v __attrib - whether to include the program module attributes with the

program module

v __imports - whether or not the import statements are to be included from

the input module

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_includeName() returns 0.

If unsuccessful, __iew_includeName() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_includePtr() – Include module via POINTER

Adds an object to the workmod identified by a DCB and BLDL list entry.

Format:

#include <__iew_api.h>

int __iew_includePtr(_IEWAPIContext *__context,

 void *__dcbptr,

 void *__deptr,

 _IEWAPIFlags *__flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__dcbptr

pointer to DCB.

__deptr

pointer to BLDL entry.

Returned Value: If successful, __iew_includePtr() returns 0.

If unsuccessful, __iew_includePtr() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

Binder’s C/C++ API

154 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|
|

|

__iew_get_reason_code()

__iew_get_return_code()

__iew_includeSmde() – Include module via SMDE

Adds an object to the workmod identified by a DDname and SMDE returned by

DESERV.

Format:

#include <__iew_api.h>

int __iew_includeSmde(_IEWAPIContext *__context,

 const char *__ddname,

 void *__deptr,

 _IEWAPIFlags *__flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__ddname

DD name.

__deptr

pointer to BLDL entry, the directory entry is in SMDE format.

__flags

API flags

v __aliases - whether to include the program module aliases with the

program module

v __attrib - whether to include the program module attributes with the

program module

v __imports - whether or not the import statements are to be included from

the input module

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_includeSmde() returns 0.

If unsuccessful, __iew_includeSmde() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_includeToken() – Include module via DEPTR

Add an object to the workmod identified by an entry point token returned by

CSVQUERY.

Format:

#include <__iew_api.h>

int __iew_includeToken(_IEWAPIContext *__context,

 void *__eptoken,

 _IEWAPIFlags *__flags);

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 155

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__eptoken

EPTOKEN, token from the CSVQUERY macro.

__flags

API flags

v __aliases - whether to include the program module aliases with the

program module

v __attrib - whether to include the program module attributes with the

program module

v __imports - whether or not the import statements are to be included from

the input module

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_includeToken() returns 0.

If unsuccessful, __iew_includeToken() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_insertS() – Insert section

Position a control section or common area within the program, primarily for overlay

structured program. Can be used only when _IEW_BIND intent was specified.

Format:

#include <__iew_api.h>

int __iew_insertS(_IEWAPIContext *__context,

 const char *__section);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__section

section name.

Returned Value: If successful, __iew_insertS() returns 0.

If unsuccessful, __iew_insertS() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

Binder’s C/C++ API

156 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|

|

|
|

|

__iew_get_reason_code()

__iew_get_return_code()

__iew_loadW() – Load workmod

Load the program into virtual storage for immediate execution.

Format:

#include <__iew_api.h>

int __iew_loadW(_IEWAPIContext *__context,

 _IEWAPIFlags __flags,

 void *__eploc, const char *__lname,

 void **__xtlst_entry);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__flags

API flags:

v __identify - whether or not the loaded program module is identified to the

system

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

__eploc

entry point address.

__lname

name used for identify.

__xtlst_entry

returned buffer – extent list.

Returned Value: If successful, __iew_loadW() returns 0.

If unsuccessful, __iew_loadW() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_openW() – Open workmod

The __iew_openW() creates a context(_IEWAPIContext) and initializes all of the

parameters in the context and loads IEWBIND into memory. If successful, the

context is created and returned to user for all subsequent API calls.

This is a ‘C’ function equivalent to Binder API STARTD and CREATEW.

Format:

#include <__iew_api.h>

_IEWAPIContext *__iew_openW(_IEWTargetRelease__release,

 _IEWIntent __intent,

 _IEWList **__file_list,

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 157

|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|
|
|

|

|

|
|
|
|

_IEWList **__exit_list,

 const char *__parms,

 unsigned int *__return_code,

 unsigned int *__reason_code);

Parameters Descriptions:

__release

target release can be one of the following:

v _IEW_ZOSV1R3

v _IEW_ZOSV1R4

v _IEW_ZOSV1R5

v _IEW_ZOSV1R7

v _IEW_ZOSV1R8

v _IEW_ZOSV1R9

__intent

processing intent can be one of the following:

v _IEW_ACCESS

v _IEW_BIND

Note: _IEW_ACCESS is more efficient but only allows the program to be

inspected or copied. This can be changed later by __iew_resetW().

__file_list

file list is created by __iew_create_list().

__exit_list

exit list is created by __iew_create_list().

__parms

parameters – list of Binder option.

__return_code

return code is passed back from STARTD or CREATEW.

__reason_code

reason code is passed back from STARTD or CREATEW

Returned Value: If successful, __iew_openW() returns API context.

If unsuccessful, __iew_openW() returns NULL.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_create_list()

__iew_orderS() – Order sections

Specify the position of a section within the program. Normally a series of calls

would be made listing sections in the desired order. Can be used only when

_IEW_BIND intent was specified.

Format:

#include <__iew_api.h>

int __iew_orderS(_IEWAPIContext *__context,

 const char *__section);

Binder’s C/C++ API

158 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|

|

|
|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|
|
|

|

|
|
|

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__section

section name.

Returned Value: If successful, __iew_orderS() returns 0.

If unsuccessful, __iew_orderS() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_putD() – Put data

Add data to, or replace data within, a specified class and section. Can be used only

when _IEW_BIND intent was specified.

Format:

#include <__iew_api.h>

int __iew_putD(_IEWAPIContext *__context,

 const char *__class, const char *__section,

 void **__data_entry,

 int __count, int __cursor,

 _IEWAPIFlags__flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__oldname

class name .

__section

section name.

__data_entry

input buffer, can be null when count is zero and __enddata is specified.

__count

number of data bytes or records to be inserted.

__cursor

starting position.

__flags

API flags:

v __enddata - whether all of the sections being added by the series of this

calls are complete

v __newsect - whether a new section is being added to the workmod

Returned Value: If successful, __iew_putD() returns 0.

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 159

|

|
|
|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

If unsuccessful, __iew_putD() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_rename() – Rename symbolic references

Obsolescent: intended for compatibility with programs processed by the prelinker.

Can be used only when _IEW_BIND intent was specified.

Format:

#include <__iew_api.h>

int __iew_rename(_IEWAPIContext *__context,

 const char *__oldname,

 const char *__newname);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__oldname

symbol to be renamed.

__newname

symbol to which the old name should be changed.

Returned Value: If successful, __iew_rename() returns 0.

If unsuccessful, __iew_rename() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_resetW() – Reset workmod

Clears all data from the active workmod to allow a different program to be brought

in. This is required between any two include requests if _IEW_ACCESS was

specified on the most recent __iew_openW() or __iew_resetW() call.

Format:

#include <__iew_api.h>

int __iew_resetW(_IEWAPIContext *__context,

 _IEWIntent __intent,

 _IEWFlags __flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

Binder’s C/C++ API

160 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|

|

|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|
|
|

|

|
|
|
|

|

|
|
|

__intent

processing intent can be one of the following:

v _IEW_ACCESS

v _IEW_BIND

Note: _IEW_ACCESS is more efficient but only allows the program to be

inspected or copied.

__flags

API flags:

v __protect - whether to allow the binder to reset a workmod that has been

altered but not yet saved or loaded.

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_resetW() returns 0.

If unsuccessful, __iew_resetW() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_saveW() – Save workmod

Stores the active workmod on DASD. Can be used either to store a new or

modified program after __iew_bind() or to copy a module.

Format:

#include <__iew_api.h>

int __iew_saveW(_IEWAPIContext *__context,

 const char *__dd_or_path,

 const char *_sname,

 _IEWAPIFlags __flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__dd_or_path

DD name or pathname.

__sname

member name of the program to be saved in the target library.

__flags

API flags:

v __replace - whether or not the program module will replace an existing

member of the same name in the target library.

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_saveW() returns 0.

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 161

|
|

|

|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|

|

If unsuccessful, __iew_saveW() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_setL() – Set library

Adds to or limit automatic library call processing. This services is equivalent to the

LIBRARY control statement. Can be used only when _IEW_BIND intent was

specifed.

Format:

#include <__iew_api.h>

int __iew_setL(_IEWAPIContext *__context,

 const char *__symbol,

 _IEWLibOpttype __libopttype,

 const char *__dd_or_path);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__symbol

symbol name.

__libopttype

automatic library call option can be one of the following:

v _IEW_CALL

v _IEW_NOCALL

v _IEW_EXCLUDE

Returned Value: If successful, __iew_setL() returns 0.

If unsuccessful, __iew_setL() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_setO() – Set option

Set binder options to be used for subsequent processing. See Chapter 5, “Binder

options for advanced facilities,” on page 111 for details. Environment options cannot

be specified here.

Format:

#include <__iew_api.h>

int __iew_setO(_IEWAPIContext *__context,

 const char *__parms);

Binder’s C/C++ API

162 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|

|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|

|

|

|
|

|

|
|

|
|
|
|

|

|
|
|

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__parms

list of binder options.

Returned Value: If successful, __iew_setO() returns 0.

If unsuccessful, __iew_setO() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

__iew_startS() – Start segment

Structures an overlay format program. Used in conjunction with __iew_orderS().

Can be used only when _IEW_BIND intent is specified.

Format:

#include <__iew_api.h>

int __iew_startS(_IEWAPIContext *__context,

 const char *__origin,

 _IEWAPIFlags __flags);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__origin

segment origin symbol.

__flags

API flags:

v __region - whether or not the segment begins a new region within the

program module

Note: Set the flag to 1 to turn the bit on or 0 to turn the bit off.

Returned Value: If successful, __iew_startS() returns 0.

If unsuccessful, __iew_startS() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_get_return_code().

Utilities Functions:

__iew_get_reason_code()

__iew_get_return_code()

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 163

|

|
|
|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

Binder API utility functions

__iew_create_list() – Create list

The Binder’s lists consist of a fullword count of the number entries followed by the

entries. Each list entry contains an 8-byte name, a fullword containing the length of

the value string, and a 31-bit pointer to the value string. The __iew_create_list()

function creates a list of keywords and values in “Binder list format”. It is used to

support file lists and exit lists for the __iew_openW() call. There are two types of

lists:

1. A list of DD names with keywords being any of the standard Binder DD names

as strings, and values being string replacement names to use for them.

2. A list of exit routines with keywords being any of the strings “MESSAGE”,

“INTFVAL”, or “SAVE”, and values being an array of three pointers, to:

v exit routine entry point

v application data passes to the exit

v message exit severity (unused, but must be provided as zero, for the other

two exits)

Format:

#include <__iew_api.h>

_IEWList *__iew_create_list(int__size,

 char *__keys[],

 void *__values[]);

Parameters Descriptions:

__size input: size of the list.

__keys

input: list of keywords.

__values

input: list of values.

Returned Value: If successful, __iew_create_list() returns API list.

If unsuccessful, __iew_create_list() returns null.

__iew_eod() – Test for end of data

The __iew_eod() function tests whether end of data condition has been set for a

series of __iew_getC(), __iew_getD(), __iew_getE() or __iew_getN() calls.

Format:

#include <__iew_api.h>

int __iew_eod(_IEWAPIContext *__context,

 void **__data_entry,

 const char *__class);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__data_entry

returned buffer – based on class name.

__class

class name (binder-defined class).

Binder’s C/C++ API

164 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|
|
|
|
|
|

|
|

|
|

|

|

|
|

|

|
|
|
|

|

||

|
|

|
|

|

|

|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

Note: Testing end of data condition for __iew_getN() call, specify “B_BNL”

as class name.

Returned Value: If successful, __iew_eod() returns 0.

If unsuccessful, __iew_eod() returns nonzero.

__iew_get_reason_code() – Get a reason code from API context

The reason code identifies the nature of the problem. It is zero if the return code

was zero, a valid reason code otherwise. Reason codes are in the format

0x83eegggg. ee is 00 except for logic errors and abends when it is EE or FF

respectively. gggg contains an information code.

The __iew_get_reason_code() function returns Binder API reason code which is

stored in the API context from previous API call.

Format:

#include <__iew_api.h>

unsigned int __iew_get_reason_code(_IEWAPIContext *__context);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

Returned Value: __iew_get_reason_code() returns Binder API reason code.

__iew_get_return_code() – Get a return code from API context

A return code, indicating the completion status of the requested function, is returned

by most of the API calls. Return codes are interpreted as follows:

v 0 - Successful completion of the operation.

v 4 - Successful completion, but an unusual condition existed.

v 8 - Error condition detected.

v 12 - Severe error encountered.

v 16 - Termination error.

The __iew_get_return_code() function returns Binder API return code which is

stored in the API context from previous API call. It is used as an alternative to

retrieving the return code from API context.

Format:

#include <__iew_api.h>

unsigned int __iew_get_return_code(_IEWAPIContext *__context);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

Returned Value: __iew_get_return_code() returns Binder API return code.

__iew_get_cursor() – Get cursor value

A cursor contains the item number at which Binder should begin processing. It is

also updated at the end of a retrieval request so that it acts as a placeholder when

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 165

|
|

|

|

|
|
|
|
|

|
|

|

|
|

|

|
|
|

|

|
|
|

|

|

|

|

|

|
|
|

|

|
|

|

|
|
|

|

|
|
|

all the selected data does not fit in the buffer provided. The cursor value is initially

set to zero to tell the Binder to begin with the first item.

The __iew_get_cursor() function returns the cursor value that is stored in a private

data associated with the returned buffer from the previous API call.

Format:

#include <__iew_api.h>

int __iew_get_cursor(_IEWAPIContext *__context,

 void **__data_entry,

 const char *__class,

 int *__cursor);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__data_entry

returned buffer – based on class name.

__class

class name (binder-defined class).

__cursor

starting position

Returned Value: If successful, __iew_get_cursor() returns 0.

If unsuccessful, __iew_get_cursor() returns nonzero.

__iew_set_cursor() – Set cursor value

A cursor contains the item number at which Binder should begin processing. It is

also updated at the end of a retrieval request so that it acts as a placeholder when

all the selected data does not fit in the buffer provided. The cursor value is initially

set to zero to tell the Binder to begin with the first item.

The __iew_set_cursor() function sets the cursor value which is stored in a private

data associated with the data buffer.

Format:

#include <__iew_api.h>

int __iew_set_cursor(_IEWAPIContext *__context,

 void **__data_entry,

 const char *__class,

 int __cursor);

Parameters Descriptions:

__context

API context is created and returned by calling __iew_openW() and is used

throughout the open session.

__data_entry

data buffer – based on class name.

__class

class name (binder-defined class).

__cursor

starting position

Binder’s C/C++ API

166 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

Returned Value: If successful, __iew_set_cursor() returns 0.

If unsuccessful, __iew_set_cursor() returns nonzero.

Fast data functions

This topic describes the fast data access functions and fast data utility functions.

Fast data access functions

__iew_fd_end() – End a session

The __iew_fd_end() deletes all the parameters in the context(_IEWFDContext),

releases IEWBFDAT from memory, and deletes the context.

This is a C function equivalent to fast data request code EN.

Format:

#include <__iew_api.h>

_IEWFDContext *__iew_fd_end(_IEWFDContext *__context,

 unsigned int *__return_code,

 unsigned int *__reason_code);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__return_code

return code is passed back from request code EN.

__reason_code

reason code is passed back from request code EN.

Returned Value: If successful, __iew_fd_end() returns NULL.

If unsuccessful, __iew_fd_end() returns FD context.

Note: If an invalid context is passed, __iew_fd_end() returns NULL.

__iew_fd_getC() – Get compile unit list

Obtains source information about the program and the compile units form which it

was constructed. The program object source ″header record″ returned by fast data

in the CUI buffer for a program object in a PDSE will never identify the data set

containing the object.

Format:

#include <__iew_api.h>

int __iew_fd_getC(_IEWFDContext *__context,

 int __culist[],

 void ** __cui_entry);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 167

|

|

|
|

|

|

|
|
|

|

|

|
|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|

__culist

compile unit list – array of compile units where the first entry is used to

specify the total number of compile unit entries. If the first entry is non zero,

then one record for each compile unit in a list of compile units will be

returned. If the first entry is zero, then one record of each of all compile

units will be returned.

__cui_entry

returned buffer – CUI entry, one record for each compile unit in a list of

compile units will be returned.

Returned Value: If successful, __iew_fd_getC() returns > 0 (count, number of

entries returned in the buffer).

If unsuccessful, __iew_fd_getC() returns 0.

Utilities Functions:

__iew_fd_eod()

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_get_cursor()

__iew_fd_set_cursor()

__iew_fd_getD() – Get data

Return data associated with a specified class (and optionally section) in the

program.

Format:

#include <__iew_api.h>

int __iew_fd_getD(_IEWFDContext *__context,

 const char *__class, const char * __sect,

 void *__reloc,

 void ** __data_entry);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__class

class name.

__sect

section name.

__reloc

relocation address.

__data_entry

returned buffer – based on class.

Returned Value: If successful, __iew_fd_getD() returns > 0 (count, could be

number of bytes of TEXT (if class=TEXT) or number of entries returned in the

buffer).

If unsuccessful, __iew_fd_getD() returns 0.

Utilities Functions:

Binder’s C/C++ API

168 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

__iew_api_name_to_str()

__iew_fd_eod()

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_get_cursor()

__iew_fd_set_cursor()

__iew_fd_getE() – Get ESD data

Returns external symbol dictionary information selected by class and/or section to

which it refers.

Format:

#include <__iew_api.h>

int __iew_fd_getE(_IEWFDContext *__context,

 const char *__sect, const char *__class,

 void ** __esd_entry);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__sect

section name.

__class

class name.

__esd_entry

returned buffer – ESD entry.

Returned Value: If successful, __iew_fd_getE() returns > 0 (count, number of

entries returned in the buffer).

If unsuccessful, __iew_fd_getE() returns 0.

Utilities Functions:

__iew_api_name_to_str()

__iew_fd_eod()

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_get_cursor()

__iew_fd_set_cursor()

__iew_fd_getN() – Get names

Returns a list of section or class names within the program together with

information about the sections or classes.

Format:

#include <__iew_api.h>

int __iew_fd_getN(_IEWFDContext *__context,

 _IEWNameType __nametype,

 void ** __name_entry);

Parameters Descriptions:

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 169

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__nametype

name type can be _IEW_SECTION or _IEW_CLASS

__name_entry

returned buffer – Binder name list.

Returned Value: If successful, __iew_fd_getN() returns > 0 (count, number of

entries returned in the buffer).

If unsuccessful, __iew_fd_getN() returns 0.

Utilities Functions:

__iew_fd_eod()

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_get_cursor()

__iew_fd_set_cursor()

__iew_fd_open() – Open a session

The __iew_fd_open() will create a context (_IEWFDContext) and initialize all the

parameters in the context and load IEWBFDAT into memory. If successful, the

context is created and returned to user for all subsequent API calls.

Format:

#include <__iew_api.h>

_IEWFDContext *__iew_fd_open(_IEWTargetRelease *__release,

 unsigned int *__return_code,

 unsigned int *__reason_code);

Parameters Descriptions:

__release

Target release can be one of the following:

v _IEW_ZOSV1R3

v _IEW_ZOSV1R4

v _IEW_ZOSV1R5

v _IEW_ZOSV1R7

v _IEW_ZOSV1R8

v _IEW_ZOSV1R9

__return_code

The return code.

__reason_code

The reason code.

Returned Value: If successful, __iew_fd_open() returns FD context.

If unsuccessful, __iew_fd_open() returns null.

Binder’s C/C++ API

170 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

__iew_fd_startDcb() – Starting a session with BLDL data

Begin inspecting a program object identified by a DCB and BLDL list entry.

Format:

#include <__iew_api.h>

int __iew_fd_startDcb(_IEWFDContext *__context,

 void *__dcbptr,

 void *__deptr);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__dcptr

points to DCB.

__deptr

member entry returned by BLDL, at least 62 bytes long.

Returned Value: If successful, __iew_fd_startDcb() returns 0.

If unsuccessful, __iew_fd_startDcb() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_fd_get_return_code().

Utilities Functions:

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_startDcbS() – Starting a session with a System DCB

A specialized version of __iew_fd_startDcb() used for a system DCB.

Format:

#include <__iew_api.h>

int __iew_fd_startDcbS(_IEWFDContext *__context,

 void *__dcbptr,

 void *__deptr);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__dcptr

points to DCB.

__deptr

member entry returned by BLDL, at least 62 bytes long.

Returned Value: If successful, __iew_fd_startDcbS() returns 0.

If unsuccessful, __iew_fd_startDcbS() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_fd_get_return_code().

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 171

|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|

|

|
|

Utilities Functions:

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_startName() – Starting a session with a DD name or

path

Begin inspecting a program object identified either by a path name or by a DDname

and member name.

Format:

#include <__iew_api.h>

int __iew_fd_startName(_IEWFDContext *__context,

 const char *__dd_or_path,

 const char *__member);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__dd_or_path

DD name or path name.

__member

member name.

Returned Value: If successful, __iew_fd_startName() returns 0.

If unsuccessful, __iew_fd_startName() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_fd_get_return_code().

Utilities Functions:

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

__iew_fd_startToken() – Starting a session with a CSVQUERY

token

Begin inspecting a program object identified by an entry point token returned by

CSVQUERY.

Format:

#include <__iew_api.h>

int __iew_fd_startToken(_IEWFDContext *__context,

 void *__eptoken);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__eptoken

point to EPTOKEN, token returned from the MVS CSVQUERY service.

Returned Value: If successful, __iew_fd_startToken() returns 0.

Binder’s C/C++ API

172 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|
|
|

|

|
|
|

|

|
|
|

|
|

|

If unsuccessful, __iew_fd_startToken() returns nonzero.

Note: The returned value is the same as the code returned by a subsequent

__iew_fd_get_return_code().

Utilities Functions:

__iew_fd_get_reason_code()

__iew_fd_get_return_code()

Fast data utility functions

__iew_fd_eod() – Test for end of data

The __iew_fd_eod() function tests whether end of data condition has been set for a

series of __iew_fd_getC(), __iew_fd_getD(), __iew_fd_getE(), or __iew_fd_getN()

calls.

Format:

#include <__iew_api.h>

int __iew_fd_eod(_IEWFDContext *__context,

 void **__data_entry,

 const char *__class);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__data_entry

returned buffer – based on class name.

__class

class name (binder-defined class).

Note: Testing end of data condition after __iew_fd_getN() call, specify

“B_BNL” as class name.

Returned Value: If successful, __iew_fd_eod() returns 0.

If unsuccessful, __iew_fd_eod() returns nonzero.

__iew_fd_get_reason_code() – Get a reason code from FD

context

The reason code identifies the nature of the problem. It is zero if the return code

was zero, a valid reason code otherwise. Reason codes are in the format

0x1080gggg. gggg contains an information code.

The __iew_fd_get_reason_code() function returns fast data reason code which is

stored in the FD context from previous API call.

Format:

#include <__iew_api.h>

unsigned int __iew_fd_get_reason_code(_IEWFDContext *__context);

Parameters Descriptions:

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 173

|

|
|

|

|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|

|
|

|

|
|

|

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

Returned Value: __iew_fd_get_reason_code() returns fast data access reason

code.

__iew_fd_get_return_code() – Get a return code from FD context

A return code, indicating the completion status of the requested function, is returned

by most of the API calls. Return codes are interpreted as follows:

v 0 - Successful completion of the operation.

v 4 - Successful completion, but an unusual condition existed.

v 8 - Error condition detected.

v 12 - Severe error encountered.

v 16 - Termination error.

The __iew_fd_get_return_code() function returns API return code which is stored in

the FD context from previous API call. It is used as an alternative way to retrieve

return code from FD context.

Format:

#include <__iew_api.h>

unsigned int __iew_fd_get_return_code(_IEWFDContext *__context);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

Returned Value: __iew_fd_get_return_code() returns fast data access return

code.

__iew_fd_get_cursor() – Get cursor value

A cursor contains the item number from which fast data should begin processing. It

is also updated at the end of a retrieval request so that it acts as a placeholder

when all the selected data does not fit in the buffer provided. The cursor value is

initially set to zero to tell the fast data to begin with the first item.

The __iew_fd_get_cursor() function returns the cursor value that is stored in a

private data associated with the returned buffer from the previous API call.

Format:

#include <__iew_api.h>

int __iew_fd_get_cursor(_IEWFDContext *__context,

 void **__data_entry,

 const char *__class,

 int *__cursor);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__data_entry

returned buffer – based on class name.

Binder’s C/C++ API

174 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|

|
|

|
|
|

|

|

|

|

|

|
|
|

|

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

__class

class name (binder-defined class).

__cursor

starting position.

Returned Value: If successful, __iew_fd_get_cursor() returns 0.

If unsuccessful, __iew_fd_get_cursor() returns nonzero.

__iew_fd_set_cursor() – Set cursor value

A cursor contains item number at which fast Ddata should begin processing. It is

also updated at the end of a retrieval request so that it acts as a placeholder when

all the selected data does not fit in the buffer provided. The cursor value is initially

set to zero to tell the fast data to begin with the first item.

The __iew_fd_set_cursor() function sets the cursor value which is stored in a

private data associated with the data buffer.

Format:

#include <__iew_api.h>

int __iew_fd_set_cursor(_IEWFDContext *__context,

 void **__data_entry,

 const char *__class,

 int __cursor);

Parameters Descriptions:

__context

FD context is created and returned by calling __iew_fd_open() and is used

throughout the open session.

__data_entry

returned buffer – based on class name.

__class

class name (binder-defined class).

__cursor

starting position.

Returned Value: If successful, __iew_fd_set_cursor() returns 0.

If unsuccessful, __iew_fd_set_cursor() returns nonzero.

Binder and fast data API common utility functions

__iew_api_name_to_str() – Convert API name into string

Data buffers returned by the binder and fast data APIs often contain pointers to

names. Those are character data, but not stored as C null-delimited strings. Instead

they have a separate length field in the buffer structure. This function returns a C

string equivalent to the name returned by the API.

The function also provides special handling for binder-generated names, which are

returned as binary numbers. The function will convert those to special displayable

strings which will be recognized and automatically reconverted by the functions in

this suite if they are passed back to the API later.

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 175

|
|

|
|

|

|

|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|
|

|

|
|
|
|

|
|
|
|

Format

#include <__iew_api.h>

void __iew_api_name_to_str(const char *__name,

 short __len,

 char *__str);

Parameters Descriptions

__name

input: varying string characters.

__len input: varying string size.

__str output: string.

Note: You need to allocate storage for string. The length should be the

greater of 10 and input len+1.

Returned Value

None.

Binder API return and reason codes

The following Binder API return and reason codes are added to support Binder’s

C/C++ API. These are in addition to the return and reason codes documented at

the end of Chapter 3, “IEWBIND function reference,” on page 23.

 Return Code

(decimal)

Reason Code

(hexadecimal) Explanation

16 83001001 Allocation error, not enough space to satisfy the

request for space allocation.

16 83001002 Fetch() failed, IEWBIND module could not be loaded

into memory.

12 83001003 Invalid API context, API context was either NULL or

invalid.

12 83001004 Invalid release, the target release level is not

supported.

12 83001005 Unsupported release, the target release level is not

supported.

12 83001006 Incorrect buffer entry, the buffer entry and the class

name need to match with previous call.

Fast data access return and reason codes

The following fast data access return and reason codes are added to support

Binder’s C/C++ API. These are in addition to the return and reason codes

documented at the end of Chapter 6, “Fast data access,” on page 115.

 Return Code

(decimal)

Reason Code

(hexadecimal) Explanation

16 10801001 Allocation error, not enough space to satisfy the

request for space allocation.

16 10801002 Fetch() failed, IEWBFDAT module could not be

loaded into memory.

Binder’s C/C++ API

176 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|

|

|
|

||

||

|
|

|
|

|
|

|
|
|

||
|
|
||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

|
|

|
|
|

||
|
|
||

|||
|

|||
|

Return Code

(decimal)

Reason Code

(hexadecimal) Explanation

12 10801003 Invalid FD context, FD context was either NULL or

invalid.

12 10801004 Invalid release, the target release level is not

supported.

12 10801005 Unsupported release, the target release level is not

supported.

12 10801006 Incorrect buffer entry, the buffer entry and the class

name need to match with previous call.

Examples for Binder’s C/C++ API

The following sample program is intended to show how the Binder’s C/C++

programming interface could be used by an application written in C language.

1. Use Binder APIs which include a module and print classes, sessions with CU

numbers, and compile units.

2. Use fast data APIs which include a module and print classes, sessions with CU

numbers, and compile units.
/**/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/******************************/

/* Binder’s C/C++ Include Files */

/******************************/

#include <_iew_api.h>

/******************************/

/* Prototypes */

/******************************/

void test_binder_api();

void print_classes(_IEWAPIContext* _context);

void print_compile_units(_IEWAPIContext* _context);

void test_fdata_api();

void fd_print_classes(_IEWFDContext* _context);

void fd_print_compile_units(_IEWFDContext* _context);

void print_cu_entry(FILE* _file, _IEWCUIEntry* _buf);

void print_cu_name_entry(FILE* _file,

 _IEWNameListEntry* _buf);

void print_name_entry(FILE* _file, _IEWNameListEntry* _buf);

/**/

/* Name: main() */

/* Input: */

/* returns: */

/* Description: Sample Binder C/C++ API program */

/* 1. Use Binder APIs which include a module and print */

/* classes, sessions with CU numbers, and compile */

/* units. */

/* 2. Use Fastdata APIs which include a module and print */

/* classes, sessions with CU numbers, and compile */

/* units. */

/**/

int main(const int argc, const char **argv)

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 177

|
|
|
||

|||
|

|||
|

|||
|

|||
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{

 /* test binder api */

 test_binder_api();

 /* test fdata api */

 test_fdata_api();

 return;

}

/**/

/* Name: test_binder_api() */

/* Input: None */

/* returns: None */

/* Description: */

/* Example application which includes a module and */

/* prints classes, sessions with CU numbers, and */

/* compile units. */

/**/

void test_binder_api() {

 _IEWAPIContext *apiCnxt, *retCnxt; /* APIContext */

 _IEWList* files_list;

 _IEWList* exits_list;

 unsigned int rc, reason;

 /* initialize api flags */

 _IEWAPIFlags apiflags= {0,0,0,0,0,0,0,0,0};

 /* files list variables */

 char* files[] = { "PRINT " };

 char* files_val[] = { "./temp" };

 /* exits list variables */

 struct _exit_address {

 void *entry_point;

 void *user_data;

 void *severity_level;

 } exits_address;

 struct _exit_address exitsA;

 struct _exit_address *exitsPtr;

 exitsA.entry_point = NULL;

 exitsA.user_data = NULL;

 exitsA.severity_level = 0;

 exitsPtr = &exitsA

 char* exits[] = { "SAVE" };

 void* exits_val[] = { exitsPtr};

 /* parms for __iew_openW() */

 char *parms="MAP=Y,XREF=Y,CASE=MIXED,TERM=Y,LIST=ALL";

 /* read in program object via __iew_includeName() */

 char path_name[] = "/u/user/pdse/example1" ;

 /* create file list for __iew_openW() */

 files_list = __iew_create_list(1,files,(void **)files_val);

 if (files_list == NULL)

 {

 fprintf(stderr, " create_list error: files list is null.\n");

 return;

 }

 /* create exits list for __iew_openW() */

 exits_list = __iew_create_list(1,exits,exits_val);

 if (exits_list == NULL)

 {

 fprintf(stderr," create_list error: exits_val %x.\n", exits_val¦0});

Binder’s C/C++ API

178 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(stderr," create_list error: *exits_val %x.\n", *exits_val);

 fprintf(stderr," create_list error: exits list is null.\n");

 return;

 }

 /* open workmod session, load BINDER, create api context with */

 /* target release = R18, intent = access */

 apiCnxt = __iew_openW(_IEW_ZOSV1R8, _IEW_ACCESS,

 &files_list,&exits_list,

 parms,

 &rc,&reason);

 if (apiCnxt == NULL)

 {

 fprintf(stderr," openW error: apiCnxt is null.\n");

 fprintf(stderr," openW error: rc=%u, rs=<0X%.8X>.\n",rc,reason);

 return;

 }

 else

 {

 fprintf(stderr," openW: rc=%u, rs=<0X%.8X>.\n",rc,reason);

 }

 /* set api flags for __iew_includeName() */

 apiflags.__imports = 1;

 apiflags.__aliases = 1;

 apiflags.__attrib = 1;

 /* include path name */

 rc = __iew_includeName(apiCnxt,path_name,"",apiflags);

 if (rc)

 {

 fprintf(stderr," includeName error: apiCnxt is null.\n");

 fprintf(stderr," includeName error: rc=%u, rs=<0X%.8X>.\n",

 rc,__iew_get_reason_code(apiCnxt));

 }

 else

 {

 fprintf(stderr," includeName: rc=%u, rs=<0X%.8X>.\n",

 rc,__iew_get_reason_code(apiCnxt));

 /* print all class names from workmod */

 print_classes(apiCnxt);

 /* print all compile units from workmod */

 print_compile_units(apiCnxt);

 }

 /* set api flags for __iew_closeW() */

 apiflags.__protect = 1;

 /* close workmod session, delete api context */

 retCnxt = __iew_closeW(apiCnxt, apiflags, &rc, &reason);

 if (retCnxt)

 {

 fprintf(stderr," closeW: ERROR, context is not NULL. \n");

 }

 fprintf(stderr," closeW: return code = %X, rs =<0X%.8X> \n",

 rc, reason);

 fflush(stdout);

 return;

}

/**/

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 179

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Name: print_classes() */

/* Input: None */

/* returns: None */

/* Description: */

/* Print classes */

/**/

void print_classes(_IEWAPIContext* _context) {

 _IEWNameListEntry *class_name;

 void *name_entry;

 unsigned int num_of_classes = 0; /* number of classes */

 int i,count;

 /* loop on __iew_getN() api to get all classes */

 while ((count = __iew_getN(_context,_IEW_CLASS, &num_of_classes,

 &name_entry)) > 0)

 {

 fprintf(stderr,"print_classes: name count = %d\n",count);

 if(name_entry)

 {

 /* process all CSECTs retrieved */

 class_name = (_IEWNameListEntry *) name_entry;

 for (i=1; i <= count;i++,class_name++)

 {

 print_name_entry(stderr,class_name);

 }

 }

 else

 fprintf(stderr,"print_classes: name buffer is NULL! \n");

 }

 if (__iew_eod(_context, &name_entry,"B_BNL") != 0)

 {

 fprintf(stderr," getN: ERROR, not end of data \n");

 fprintf(stderr," getN: rc=%u, rs=<0X%.8X>.\n",

 __iew_get_return_code(_context),__iew_get_reason_code(_context));

 }

}

/**/

/* Name: print_compile_units() */

/* Input: None */

/* returns: None */

/* Description: */

/* Print sessions with CU numbers, and compile units. */

/**/

void print_compile_units(_IEWAPIContext* _context) {

 unsigned int num_of_classes = 0; /* number of classes */

 int i,count;

 _IEWNameListEntry * sect_name;

 _IEWCUIEntry * cui_entry;

 /* set the first CU entry to zero, so one record of all */

 /* compile units are returned */

 int cu_val[]= {0};

 void *name_entry, *cu_entry;

 /* loop on getN() api to get all sections */

 while ((count = __iew_getN(_context,_IEW_SECTION, &num_of_classes,

 &name_entry)) > 0)

 {

 fprintf(stderr,"print sections with CU numbers: name count = %d\n",

 count);

 if(name_entry)

 {

Binder’s C/C++ API

180 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* process all CSECTs retrieved */

 sect_name = (_IEWNameListEntry *) name_entry;

 for (i=1; i <= count;i++,sect_name++)

 {

 print_cu_name_entry(stderr,sect_name);

 }

 }

 else

 fprintf(stderr,"print_compile_units: name entry is NULL! \n");

 }

 if (__iew_eod(_context,&name_entry,"B_BNL") != 0)

 {

 fprintf(stderr," getN: ERROR, not end of data \n");

 fprintf(stderr," getN: rc=%u, rs=<0X%.8X>.\n",

 __iew_get_return_code(_context),__iew_get_reason_code(_context));

 return;

 }

 /* loop on get_C() api to get all compile units */

 while ((count = __iew_getC(_context,cu_val,

 &cu_entry)) > 0)

 {

 fprintf(stderr,"print_compile_units: cu count = %d\n",count);

 if(cu_entry)

 {

 cui_entry = (_IEWCUIEntry *) cu_entry;

 /* process all CUs retrieved */

 for (i=1; i <= count;i++,cui_entry++)

 {

 print_cu_entry(stderr,cui_entry);

 }

 }

 else

 fprintf(stderr,"print_compile_units: CU entry is NULL! \n");

 }

 if (__iew_eod(_context, &cu_entry,"B_CUI") != 0)

 {

 fprintf(stderr," getC: ERROR, not end of data \n");

 fprintf(stderr," getC: rc=%u, rs=<0X%.8X>.\n",

 __iew_get_return_code(_context),__iew_get_reason_code(_context));

 }

}

/**/

/* Name: test_fdata_api() */

/* Input: None */

/* returns: None */

/* Description: */

/* Example application which includes a module and */

/* prints classes, sessions with CU numbers, and */

/* compile units. */

/**/

void test_fdata_api() {

 _IEWFDContext *fdCnxt, *fdRetCnxt; /* FDContext */

 unsigned int rc, reason;

 /* read in program object via __iew_fd_startName() */

 char path_name[] = "/u/user/pdse/example1" ;

 /* open session, create fd context with */

 /* target release = R18 */

 fdCnxt =__iew_fd_open(_IEW_ZOSV1R8,

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 181

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

&rc,&reason);

 if (fdCnxt == NULL)

 {

 fprintf(stderr," fd_open error: fdCnxt is null.\n");

 fprintf(stderr," fd_open error: rc=%u, rs=<0X%.8X>.\n",rc,reason);

 return;

 }

 else

 {

 fprintf(stderr," fd_open rc=%u, rs=<0X%.8X>.\n",rc,reason);

 }

 /* starting a session with a path */

 rc = __iew_fd_startName(fdCnxt,path_name,"");

 printf(" fd_startName rc =%d \n", rc);

 if (rc)

 {

 fprintf(stderr," fd_startName error: rc=%u, rs=<0X%.8X>.\n",

 rc,__iew_fd_get_reason_code(fdCnxt));

 }

 else

 {

 fprintf(stderr," fd_startName: rc=%u, rs=<0X%.8X>.\n",

 rc,__iew_fd_get_reason_code(fdCnxt));

 /* print all class names */

 fd_print_classes(fdCnxt);

 /* print all compile units */

 fd_print_compile_units(fdCnxt);

 }

 /* end a session */

 fdRetCnxt = __iew_fd_end(fdCnxt,&rc,&reason);

 if (fdRetCnxt)

 {

 fprintf(stderr," fd_end: ERROR, context is not NULL \n");

 }

 fprintf(stderr," fd_end: return code = %X, rs =<0X%.8X> \n",

 rc,reason);

 fflush(stdout);

 return;

}

/**/

/* Name: fd_print_classes() */

/* Input: None */

/* returns: None */

/* Description: */

/* Print classes */

/**/

void fd_print_classes(_IEWFDContext* _context) {

 _IEWNameListEntry *class_name;

 void *name_entry;

 int i,count;

 /* loop on __iew_fd_get_N() api to get all classes */

 while ((count = __iew_fd_getN(_context,_IEW_CLASS,

 &name_entry)) > 0)

 {

Binder’s C/C++ API

182 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(stderr,"fd_print_classes: name count = %d\n",count);

 if(name_entry)

 {

 /* process all CSECTs retrieved */

 class_name = (_IEWNameListEntry *) name_entry;

 for (i=1; i <= count;i++,class_name++)

 {

 print_name_entry(stderr,class_name);

 }

 }

 else

 fprintf(stderr,"fd_print_classes: name buffer is NULL! \n");

 }

 if (__iew_fd_eod(_context,&name_entry,"B_BNL") != 0)

 {

 fprintf(stderr," fd_getN: ERROR, not end of data \n");

 fprintf(stderr," fd_getN: rc=%u, rs=<0X%.8X>.\n",

 __iew_fd_get_return_code(_context),

 __iew_fd_get_reason_code(_context));

 }

}

/**/

/* Name: fd_print_compile_units() */

/* Input: None */

/* returns: None */

/* Description: */

/* Print sessions with CU numbers, and compile units. */

/**/

void fd_print_compile_units(_IEWFDContext* _context) {

 int i,count;

 _IEWNameListEntry * sect_name;

 _IEWCUIEntry * cui_entry;

 /* set the first CU entry to zero, so one record of all */

 /* compile units are returned */

 int cu_val[]= {0};

 void *name_entry, *cu_entry;

 /* loop on fd_get_N() api to get all sections */

 while ((count = __iew_fd_getN(_context,_IEW_SECTION,

 &name_entry)) > 0)

 {

 fprintf(stderr,"print sections with CU numbers: name count = %d\n",

 count);

 if(name_entry)

 {

 /* process all CSECTs retrieved */

 sect_name = (_IEWNameListEntry *) name_entry;

 for (i=1; i <= count;i++,sect_name++)

 {

 print_cu_name_entry(stderr,sect_name);

 }

 }

 else

 fprintf(stderr,"fd_print_compile_units: name entry is NULL! \n");

 }

 if (__iew_fd_eod(_context,&name_entry,"B_BNL") != 0)

 {

 fprintf(stderr," fd_getN: ERROR, not end of data \n");

 fprintf(stderr," fd_getN: rc=%u, rs=<0X%.8X>.\n",

 __iew_fd_get_return_code(_context),

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 183

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

__iew_fd_get_reason_code(_context));

 return;

 }

 /* loop on fd_get_C() api to get all compile units */

 while ((count = __iew_fd_getC(_context,cu_val,

 &cu_entry)) > 0)

 {

 fprintf(stderr,"fd_print_compile_units: cu count = %d\n",count);

 if(cu_entry)

 {

 cui_entry = (_IEWCUIEntry *) cu_entry;

 /* process all CUs retrieved */

 for (i=1; i <= count;i++,cui_entry++)

 {

 print_cu_entry(stderr,cui_entry);

 }

 }

 else

 fprintf(stderr,"fd_print_compile_units: CU entry is NULL! \n");

 }

 if (__iew_fd_eod(_context,&cu_entry,"B_CUI") != 0)

 {

 fprintf(stderr," fd_getC: ERROR, not end of data \n");

 fprintf(stderr," fd_getC: rc=%u, rs=<0X%.8X>.\n",

 __iew_fd_get_return_code(_context),

 __iew_fd_get_reason_code(_context));

 }

}

/***/

/* Name: print_cu_entry() */

/* Input: file, buf */

/* returns: */

/* Description: print out some CU entries */

/***/

void print_cu_entry(FILE* _file, _IEWCUIEntry* _buf) {

 fprintf(_file,

"getC: cu=%u, src cu=%u, concat=%x, type=%x, src type=%x, seq=%u\n",

 _buf->__cui_cu, _buf->__cui_source_cu, _buf->__cui_concat,

 _buf->__cui_type, _buf->__cui_c_type,

 _buf->__cui_c_seq);

}

/***/

/* Name: print_cu_name_entry() */

/* Input: file, name */

/* returns: */

/* Description: print out some NAME entries for CU */

/***/

void print_cu_name_entry(FILE* _file,_IEWNameListEntry* _name) {

 int i;

 char temp_str[1025];

 temp_str[0] = ’\0’;

 if (((char*)_name->__bnl_name_ptr)[0] == 0) {

 sprintf(temp_str,"PC%06X",*((int*)_name->__bnl_name_ptr));

 }

 else {

 sprintf(temp_str,"%.*s",_name->__bnl_name_chars,

 (char*)_name->__bnl_name_ptr);

 }

Binder’s C/C++ API

184 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(_file,

 "%s: len - %d, cu - %u, count - %d \n",

 temp_str, _name->__bnl_name_chars,

 _name->__bnl_u1.__bnl_sect_cu,_name->__bnl_elem_count);

}

/***/

/* Name: print_name_entry() */

/* Input: file, buf */

/* returns: */

/* Description: print out some NAME entries */

/***/

void print_name_entry(FILE* _file,_IEWNameListEntry* _name) {

 int i;

 char temp_str[1025];

 temp_str[0] = ’\0’;

 if (((char*)_name->__bnl_name_ptr)[0] == 0) {

 sprintf(temp_str,"PC%06X",*((int*)_name->__bnl_name_ptr));

 }

 else {

 sprintf(temp_str,"%.*s",_name->__bnl_name_chars,

 (char*)_name->__bnl_name_ptr);

 }

 fprintf(_file,"%s: len - %d, count - %d , attributes - 0x%02X\n",

 temp_str, _name->__bnl_name_chars,

 _name->__bnl_elem_count,_name->__bnl_bind_flags);

}

 /**/

Binder’s C/C++ API

Chapter 8. C/C++ APIs for program management 185

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

186 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix A. Object module input conventions and record

formats

This topic contains general-use programming interface and associated guidance

information.

This topic contains binder input conventions and record formats for object modules.

See “Extended object module (XOBJ)” on page 192 for a format which may be

generated by IBM C, C++, and PL/I compilers.

Appendix C, “Generalized object file format (GOFF),” on page 205 discusses

support for the generalized object file format.

Input conventions

All object modules used as input to the binder must follow a number of input

conventions. The binder treats violation of the following conventions as errors:

v All text records of a control section must follow the external symbol dictionary

(ESD) record containing the control section (SD) or private code (PC) entry that

describes the control section.

v The end of every object module must be marked by an END record.

v Each object module can contain only one zero-length control section (a control

section whose length field in its SD or PC entry in the ESD contains zeros). The

length must be specified on the END record of any module that contains a

zero-length control section.

v After processing the first text record of a zero-length control section, the binder

will not accept a text record of a different control section within the same object

module.

v Any relocation dictionary (RLD) item must be read after the ESD items to which it

refers; if it refers to a label in a different control section, it must be read after the

ESD item for that control section.

v The language translators must gather RLD items in groups of identical position

pointers. No two RLD items having the same P pointer can be separated by an

RLD item having a different P pointer.

v Each record of text1 and each LD or LR entry in the ESD record must refer to an

SD or PC entry in the ESD.

v The position pointer of every RLD item must point to an SD or PC entry in the

ESD.

v No LD or LR can have the same name as an SD or CM.

v All SYM records must be placed at the beginning of an object module. The ESD

for an object module containing test translator statements must follow the SYM

records and precede TXT records.

v The binder accepts TXT records that are out of order within a control section,

even though binder processing might be affected. TXT records are accepted

even though they might overwrite previous text in the same control section. The

binder does not eliminate any RLD items that correspond to overwritten text.

1. A common (CM) control section cannot contain text or external references.

© Copyright IBM Corp. 1991, 2006 187

v During a single execution of the binder, if two or more control sections having the

same name are read in, only the first control section is accepted; the subsequent

control sections are deleted.

v The binder interprets common (CM) entries in the ESD (blank or with the same

name) as references to a single control section whose length is the maximum

length specified in the CM items of that name (or blank). No text can be

contained in a common control section.

v Within an input module, the binder does not accept an SD or PC entry after the

first RLD item is read.

To avoid unnecessary scanning and input/output operations, input modules should

conform with the following conventions. Although violations of these rules are not

treated as errors, avoiding them will improve the efficiency of binder processing.

v Within an object module, no LD or SD can have the same name as an ER.

v Within an object module, no two ERs can have the same name.

v Within an object module, TXT records can be in the order of the addresses

assigned by the language translator.

Record formats

The following figures show the record formats required for object modules

processed by the binder.

SYM record

11,121 2-4 5-10 13-16 17-72 73-80

x ' 02 '

SYM

Blank

Number of bytes of SYM data

Blank

SYM data

Not used

SYM Input Record

Figure 6. SYM input record

Object conventions and formats

188 z/OS V1R9.0 MVS Program Management: Advanced Facilities

ESD record

9

11,121 2-4 5-10 13,14 17-72 73-80

x ' 02 '

ESD
Blank

Number of bytes of ESD data

ESD data - see below
(up to 3 data items per record)

Not used

ESD Input Record

15,16

Blank

1-8 10-12 14-16

Type-Hex (00=SD, 01=LD, 02=ER, 04=PC, 05=CM, 06=PR,
0A=WX, OD=SD, OE=PC, OF=CM)

24 bit address (SD, PC, LD)

ESD Data Item

Zero if length is on END record (types SD, PC)
Length of control section (types SD, PC, CM)
Identifier of SD entry containing name (type LD)
Blank (types ER, WX)
Length of pseudoregister (type PR)

Alignment factor (PR)
07 - doubleword alignment
03 - word alignment
01 - halfword alignment
00 - byte alignment

AMODE/RMODE/RSECT data (SD , PC)
xx.. not used

...a AMODE 64 if 1, otherwise use the AA bits

...

..r. RMODE 64 if 1, otherwise use the R bit

. 1... 1 if RSECT
.... .R.. RMODE data, 0=24, 1=31
.... ..AA AMODE data, 00, 01=24, 10=31, 11=ANY

Blank (LD, ER, CM, Null, WX)

13

Name-when type is: SD, LD, ER, CM, PR, WX

Blank-when type is: PC or blank CM

ESD IDENTIFIER of first ESD item (other than LD)

Blank if all ESD items are LD

Figure 7. ESD input record

Object conventions and formats

Appendix A. Object module input conventions and record formats 189

Text record

RLD record

11,129,101 2-4 6-8 17-72 73-80

x ' 02 '

TXT

24 bit address of first byte of text data

Blank

Text data (machine language code)

Not used

Text Input Record

15,16

ESD Identifier of SD or PC control section of this text

Number of bytes of text data

5

Blank

13,14

Blank

Figure 8. Text input record

Figure 9. RLD input record

Object conventions and formats

190 z/OS V1R9.0 MVS Program Management: Advanced Facilities

END record

x ' 02 '

Blank

ESDID of SD for the control section
the entry point address specified in bytes 6-8

Blank

IDR data - see below

END Input Record - Type 1

24-bit address of entry point (optional)

Not used

15,161 2-4 5 17-28 33-7129-32 72 73-80

Control section length for control section
was not specified in SD ESD item. Byte 29 is binary zero
if a length is present

6-8 9-14

Blank

END

Blank

Figure 10. END input record–type 1

17-241 2-4 5-16 25-28

x ' 02 '

Blank
Symbolic entry point name (optional; blank if none)

Blank

IDR data - See below

END Input Record - Type 2

29-32

Control section length for control section
whose length was not specified in SD ESD item.

END

72 73-8033-7133-71

Blank

Not used

Figure 11. END input record–type 2

Object conventions and formats

Appendix A. Object module input conventions and record formats 191

Extended object module (XOBJ)

Some compilers may create a modified object module. The z/OS C compiler, for

example, may create this modified object module format when LONGNAME or

RENT is in effect as a compile option. The modified object module consists of

several subfiles, each of which has the form of an ordinary object module, except

that the ESD records will generally be replaced by XSD records. The first subfile

consists of two records. The first record is an ESD record containing a single ESD

item: a 0-length section definition (SD) for the name @@DOPLNK. The second

record is an END record with the appropriate product and date information. It is this

subfile which triggers the recognition of this module as an XOBJ module.

XOBJ modules can be processed by either the LE prelinker or the binder. XOBJ

modules (input to the binder) which contain an XSD record for symbol @@XINIT@

can be saved only in a PO3 (or greater) format program object. XOBJ modules

containing an XSD record for @@XINIT@ are those which use C-style reentrancy.

When XOBJ input modules are saved in a PO3 or higher format program object,

the sections in the program object will not always correspond to CSECTS defined

by SD records in the input module. CSECTS with compiler-generated names (those

beginning with @@) may be renamed, or combined with other CSECTs into a

single output section. The @@DOPLNK csect will not appear in the output module.

The remainder of this appendix defines the XSD record format.

46-47 53-7150-5248-49

IDR data in an END record

33 34-43 44-45

When present, same format
as bytes 34-52, but data
applies to a processor which
produced the source code
for the processor described
in bytes 34-52.

Flag field:
Blank: No IDR information in this record
X'F1': One IDR item follows
X'F2': Two IDR items follow

Translator identification: Order number or equivalent,
left justified and padded to the right with blanks.

Day of year
(date of compilation or assembly)

Version level of processor (01 to 99)

Release level of processor (01 to 99)

Last two digits of year
(date of compilation or assembly)*

Note: * 65-99 represents 19XX years and 00-64 represents 20XX years.

Figure 12. IDR data in an object module END record

Object conventions and formats

192 z/OS V1R9.0 MVS Program Management: Advanced Facilities

XSD record format

Object conventions and formats

Appendix A. Object module input conventions and record formats 193

Notes

1. The record is structured like the ESD record. This is so that it is simple to map

a XSD record to an ESD record. Differences from the ESD record, and other

details, are described here.

2. The length of a name can be stored in a four byte field. A name greater than 40

characters in length is spread over several records.

3. For a name spread over several records, all of the information is repeated on

each record except for the ’Offset’ and ’Substring of Name’ field.

4. The LD identifiers

2 and XSD identifiers can collide. That is, LD identifiers and

XSD identifiers are different identifier namespaces.

5. PC sections have a name length of 0.

6. the ’if Name was mapped’ bit is set for:

v names that are mapped using #pragma map

v control section names specified using #pragma csect

v reserved run-time names generated by the compiler.

2. A LD does not have an identifier field on an ESD record. This field is introduced to tie together all the XSD records for a given

name.

Object conventions and formats

194 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix B. Load module formats

This topic contains general-use programming interface and associated guidance

information.

This topic contains load record formats (see Figure 13 on page 196 through

Figure 21 on page 203).

See also “Extended object module (XOBJ)” on page 192 for the format used for

LONGNAME support for the C compiler. Appendix C, “Generalized object file format

(GOFF),” on page 205 discusses support for the generalized object file format.

Input conventions

Load modules to be processed in a single execution of the binder must conform

with a number of input conventions. Violations of the following are treated as errors

by the binder:

v All text records of a control section must follow the ESD record containing the SD

or PC entry that describes the control section.

v The end of every input module must be marked by an end indication (END

record in an object module; EOM flag in a load module).

v Each input module can contain only one no-length control section (a control

section whose length field in its SD or PD entry in the ESD contains zeros). The

length must be specified on the END record of any module that contains a

no-length control section.

v After processing the first text record of a no-length control section, the linkage

editor will not accept a text record of a different control section within the same

input module.

v Any RLD item must be read after the ESD items to which it refers; if it refers to a

label within a different control section, it must be read after the ESD item for that

control section.

v The language translators must gather RLD items in groups of identical position

pointers. No two RLD items having the same P pointer can be separated by an

RLD item having a different P pointer.

v Each record of text

3 and each LD or LR entry in the ESD record must refer to an

SD or PC entry in the ESD.

v The position pointer of every RLD item must point to an SD or PC entry in the

ESD.

v No LD or LR can have the same name as an SD or CM.

v All SYM records must be placed at the beginning of an input module. The ESD

for an input module containing test translator statements must follow the SYM

records and precede TXT records.

v The binder accepts TXT records that are out of order within a control section,

even though linkage editor processing might be affected. TXT records are

accepted even though they might overwrite previous text in the same control

section. The binder does not eliminate any RLD items that correspond to

overwritten text.

3. A common (CM) control section cannot contain text or external references.

© Copyright IBM Corp. 1991, 2006 195

v During a single execution of the binder, if two or more control sections having the

same name are read in, only the first control section is accepted; the subsequent

control sections are deleted.

v The binder interprets common (CM) entries in the ESD (blank or with the same

name) as references to a single control section whose length is the maximum

length specified in the CM items of that name (or blank). No text can be

contained in a common control section.

v Within an input module, the binder does not accept an SD or PC entry after the

first RLD item is read.

To avoid unnecessary scanning and input/output operations, input modules should

conform with the following conventions. Although violations of these rules are not

treated as errors, avoiding them will improve the efficiency of binder processing.

v Within an input module, no LD or SD can have the same name as an ER.

v Within an input module, no two ERs can have the same name.

v Within an input module, TXT records can be in the order of the addresses

assigned by the language translator. (If TXT records are not in address

sequence, each reorigin operation might require additional linkage editor

processing time.)

v SYSUT1 record size should be at least as large as SYSLMOD.

Record formats

Figure 13 through Figure 19 on page 201 are the load module record formats for

the linkage editor.

0 2,3 4-243

Identification-specifies this is a SYM record -- 0100 0000 (1 byte)

Subtype-specidies information for TESTRAN-(1byte)
1000 0000 - this SYM record contains ESD items (SD, PC, or CM) from a load
module that was not "under test"
The TEST attribute was not specified when it was link edited.
0000 0000 - this SYM record is not the above type.

Count-in bytes, of SYM and ESD data (2 bytes)

SYM data and ESD data
(ESD type SD, CM, and PC items)-(maximum of 240 bytes)

SYM Record - (Load Module)

1

Figure 13. SYM record (load module)

Load module formats

196 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Figure 14. CESD record (load module)

Load module formats

Appendix B. Load module formats 197

0

Identification -- identifies this as a scatter/translation record-0001 0000 (1 byte)

Zero - binary zeros (1 byte)

Count - in bytes, of data field (2 bytes)

Scatter/Translation Record

1 2,3

?-Data - can contain translation table or scatter table; or both,
if both will fir in 1020 bytes.

4-1023 up to and including 1020 bytes

Zero-binary zeros (2 bytes)

Translation Table Entry-pointer to the scatter table entry that contains the address of the control
section containing this CESD entry. Number of translation table
entries=number of CESD
entries + 1=n. Pointer will be zero if its corresponding CESD entry is not SD,
PC,
CM, or LR. (2 bytes)

Translation Table

T
1

Padding-if necessary, to force fullword
boundary alignment of scatter table (2 bytes)

T
2

T
n

T T T T T

Zero - binary zeros (1 byte)

Flags (1 byte)
xxxx ..x. not used
.... R... RSECT information

0=not read-only
1=read-only

.... .R.. MODE data
0=not read-only
1=read-only

Scatter Table

Assigned Address-of a control section (SD, PC, or CM)(3 bytes)

.... ...H Hieracrchy (OS/MVT)
0=processor storage
1=2361 storage

Translation data (2 bytes)

Translation Table and Scatter Table

T
1

T
2

T
n

T P

T
3

T
3

T T S
1

S
2

SS
3

S
1

S
n

Binary Zeros (4 bytes)Binary Zero (2 bytes)

Scatter Table Entry

Padding-if necessary to align scatter table to a fullword
boundary (2 bytes)

Figure 15. Scatter/Translation record

Load module formats

198 z/OS V1R9.0 MVS Program Management: Advanced Facilities

0 4,5 16-255

Identification (1 BYTE) -specifies that this is:

Count-in bytes, of the control data (CESDID, length of control section) following the
CCW field (2 bytes)

Control data - see data

Control Record-(Load Module)

1,2 Record Length 20 to 256 bytes for level F8-156,7

Channel Command Word (CCW)-that could be used to read the text record
that follows. The data address field contains the linkage editor assigned
address of the first byte of text in the text record that follows. The count
field contains the length of the succeeding text record. (8 bytes)

Count-binary zeros (2 bytes)

3

Count (1 byte) of RLD and/or CTL/RLD records following next text record

Spare-binary zeros (2 bytes)

-- a control record-0000 0001
-- the control record that precedes the last text record of this overlay

segment-0000 0101 (EOS)
-- the control record that precedes the last text record of the

module-0000 1101 (EOM)

Control Data

C L C L C L

Length of text record and/or length of control section-specifies
the length of the control section (in bytes) to which the text in the
following record belongs, or the number of bytes of a control
section contained in the following text record (2 bytes)

CESD entry number-specifies the composite external symbol
dictionary entry that contains the control section name of the control
section of which this text is a part (2 bytes)

Figure 16. Control record (load module)

Load module formats

Appendix B. Load module formats 199

Figure 17. Relocation dictionary record (load module)

Load module formats

200 z/OS V1R9.0 MVS Program Management: Advanced Facilities

0 4,5

Identification (1 byte) - specifies that this record is:
-- a control and RLD record-0000 0011-(it is followed by a text record)
-- a control and RLD record that is followed by the last text record of a

segment-0000 0111
-- a control and RLD record that is followed by the last text record of a

module-0000 1111

Spare (3 bytes)

Count, in bytes, of control information following the last RLD address field.
The control information contains the ID and length of control sections in the
following text record. (2 bytes)

Relocation pointer (2 bytes)

Dictionary Record - (Load Module)

1-3 6,7 8-15

Channel Command Word (8 bytes)

Count, in bytes, of RLD information (2 bytes)

Position pointer (2 bytes)

Flag (1 byte)

Address (3 bytes)

Flag

Address

CESD entry number
(2 bytes)

Length of
control section
or text record
(2 bytes)

Notes: For detailed descriptions of the data fields see Relocation Dictionary Record and Control Record.
The record length varies from 20 to 256 bytes.

Figure 18. Control and relocation dictionary record (load module)

0 2 3-255

Identification-indicates that this is:
1000 0000 - CSECT Identification record.

Byte Count-of IDR data in this record, including this field (value range 6 to 255).

Sub-Type Indicator-specified type of IDR data contained on this record (bits 1-3 reserved)
---- 0001 data supplied by HMASPZAP
---- 0010 Linkage Editor data
---- 0100 Translator-supplied data
---- 1000 User (System)-supplied data (from IDENTIFY function)
1 ---- ---- Indicates the last IDR of this load module

CSECT IDR data -- Dependent on the
sub-type field (see part 2 and part 3
for corresponding sub-types)

CSECT Identification Record

1 record length 7 to 256 bytes

Figure 19. Record format of load module IDRs–part 1

Load module formats

Appendix B. Load module formats 201

0 3-5 6-13

Flags and count
Bit 0-reserved
Bit 1-chain bit - a 1 indicates that the next record is also available for MHASPZAP data.
Bits 2-7 number of HMASPZAP entries used on this record (value range 0 to 19)

ESDID of CSECT processed by HMASPZAP.

Data of HMASPZAP processing (packed decimal) YYDDD

Data specified during HMASPZAP processing *

HMASPZAP Data (sub-type 0001)

1, 2 14-247

Up to 18 repetitions of bytes 1 through 13

* May be a PTF number or up to eight bytes of variable user data specified on an
HMASPZAP IDRDATA control statement.

0-9 12-14

Program Name of the linkage editor that produced this module

Time of last binder processing of this module (packed decimal) HHMMSS.
Note: Not present in older modules or modules processed by the linkage
editor.

Version and Modification level of the linkage editor that produced this module
(unsigned packed decimal) VVMM

Date of last linkage editor processing of this module (packed decimal) YYDDD

Linkage Editor or Binder Data (sub-type 0010)

10, 11 15-18

Figure 20. Record format of load module IDRs–part 2

Load module formats

202 z/OS V1R9.0 MVS Program Management: Advanced Facilities

n+1

Translator description (see below)

Translator Data (sub-type 0100)

n+17 - n+31

0000 0000 - one translator description follows
0000 0001 - two translator descriptions follow
Two translator cases could include a language
preprocessor or a compiler that generates
assembler source

List of one or more two-byte ESDID(s) of CSECT(s)
whose object code was produced by the translator
or translators described in this data item. The high
order bit of the last ESDID in the list is set to one.

ESDID of the CSECT to which the user data applies.

0,1 2 - 4 1 to 40 bytesvariable5

Date on which this data was supplied to the module via the linkage editor IDENTIFY
control statement (packed decimal) YYDDD.

From 1 to 40 bytes of variable user (or system) supplied
data as specified on the Linkage Editor IDENTIFY control
statement. Assumed to be printable EBCDIC characters.

Count - number of characters in the user data field

User Data
(Linkage Editor IDENTIFY Function)

(sub-type 1000)

0 - 9 12 - 1410 - 11

Program name of translator, left justified
and padded to the right with blanks

Date of compilation/assembly
(signed packed decimal) YYDDD

Version and release level of translator
(unsigned packed decimal) VVMM

Translator Description

n+2 - n+6

Optional: depending on byte n+1
additional translator description (see below)

0 - n

Figure 21. Record format of load module IDRs–part 3

Appendix B. Load module formats 203

204 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix C. Generalized object file format (GOFF)

This topic contains General-use Programming Interface and Associated Guidance

Information.

This topic describes the conventions and formats for the generalized object file

format (GOFF). The data elements supported by the binder are shown here.

The GOFF record types are essentially identical in concept (and usually, in content)

to OBJ (object module) records, but their formats differ in several respects.

Migration from OBJ to GOFF formats is discussed in “Mapping object formats to

GOFF format” on page 231. In the remainder of this topic, the term OBJ refers to

traditional object formats, including the extended object format.

The term “record” is used in two possibly conflicting senses throughout this topic.

The first sense is that of one of the GOFF record types, regardless of the number

of data management records it may be spread over. The second sense is that of a

data management “logical” record, which contains one of the pieces of a continued

GOFF record. The correct sense should be clear from the surrounding context.

The term “object file” is used to refer to a collection of GOFF records beginning with

a header record and ending with an end record.

Guidelines and restrictions

GOFF records follow these guidelines and restrictions:

v A GOFF record is contained within one or more complete data management

records. These must be fixed or variable length records, with only fixed length

records supported in a UNIX file system. If fixed length records are used, the

record length must be 80. Because continuation records are not defined for

header records, the minimum usable LRECL for variable length records is 58.

v A record’s length is not a part of the record itself. This architecture assumes that

the operating environment in which the records are produced will supply

additional information, such as record length (LRECL) and record format (F or V).

This means that a program reading GOFF files need not know the internal

structure of each record in order to scan for a particular record type.

v Each GOFF record must start at a data management record boundary, that is, a

GOFF file is not a stream. When fixed length records are used, including the

UNIX file case, some records will need to have unused space at the end to meet

this requirement.

v GOFF records contain no sequence information. The sequence of the records in

a GOFF file cannot be altered. Continuation records must appear in the correct

sequence, immediately following the record they continue.

v Each GOFF object file must begin with a header record, and end with an end

record. (Multiple object files can be produced in a single invocation of a

translator, but the object stream must be separable into distinct object files.) The

“Record Count” field on the END record should contain a count of the GOFF

records (not data management logical records) in each object file including HDR

and END.

v If a GOFF record is continued, no intervening records can appear among the

continuation segments.

v Some of the OBJ conventions for ordering and contents of the input records

apply. Specifically:

© Copyright IBM Corp. 1991, 2006 205

|
|

|

– ESD items must be numbered starting at 1 in a monotonically increasing

sequence, with no “gaps” or omitted values.

– An ESD record must precede any other record containing a reference to the

ESDID defined by that item.

v Multiple RLD data items can appear on a single RLD record, and RLD items can

be split across continuation records.

v ESD records contain only a single ESD item.

v The character set to be used for external names is not specified in this GOFF

format. Other products, standards, or conventions can impose restrictions, of

course. The program management binder requires that the characters in external

symbols lie in the range from X'41' to X'FE' inclusive, plus the Shift-Out (X'0E')

and Shift-In (X'0F') characters.

The character set used in each GOFF file, including the character set used for

external names, can be specified in the Module Header record.

v For upward compatibility, fields that are shown as reserved should be set to

binary zero. They might be supported by a future version of the binder.

v If architectural extensions cause a record definition to be longer than was defined

at the same or an earlier architecture level, the binder treats the additional fields

as containing binary zero if they are not actually present in the record.

Note: Basically, the program management binder supports any EBCDIC

Single-Byte Character Set (SBCS), plus SBCS-encoded Double-Byte

Character Sets (DBCS). The main reason for including a character set

identifier in the GOFF header record is to prepare for support of

Multiple-Byte Character Sets (MBCS) such as Unicode.

Incompatibilities

The following usages of GOFF records are incompatible with OBJ records.

v OBJ SYM records have no direct counterpart in GOFF records. Other more

flexible vehicles (particularly, ADATA records) must be used instead.

v Some users have found unsupported uses of OBJ records such as hiding data in

otherwise “blank” or “unused” fields. Such uses are not supported for GOFF

records.

GOFF record formats

The basic GOFF record types are shown below. The names used here are similar

to OBJ record names, and have similar functions. The one new type, LEN, has a

name with similar mnemonic significance. These “names” do not appear anywhere

on the records, however (unlike OBJ records).

HDR Header Record: must appear first.

ESD External Symbol Definition

TXT Machine language instructions and data (“text”); Identification Data Record

(“IDR”) data; Associated Data (“ADATA”); other identification data (more

than current 19-byte IDR items); any other data items to become part of the

module. (Note that “text” is used here as a very general term; see the

definition in the glossary).

RLD Relocation Directory (adcon information)

LEN Supply length values for deferred-length sections

GOFF formats

206 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|

|
|
|

Note: A LEN record is essentially a special form of ESD record, in which

only a single piece of data, a length, is provided for a previously

defined external name.

END End of module, with optional entry-point identification. The END record must

be the last record in the object file.

Conventions

Several sets of conventions are to be followed in using and describing GOFF

records.

In general, each record has at most one varying-length field.

Conventions for record descriptions

The fields in the records are described using four columns:

v A short phrase or name describing the field

v The offset of the field from the start of the record, or from the start of the record

component. Numbering is zero-based, and bits within a byte follow the standard

System/390 convention where the high-order (leftmost) bit in a byte (with the

greatest numeric weight) is bit zero. The notation is one of these forms:

n Byte number n

n-m Bytes numbered n through m

n-* Bytes starting at n, through the end of the field or record

n.p Byte number n, bit number p

n.p-q Byte number n, bits numbered p through q

v The length of the field is described as follows:

Byte(n)

A contiguous string of n bytes, with no particular numeric value assigned,

nor any significance for particular bits within the bytes.

Binary(n)

A contiguous string of n bytes, to be treated as a signed

two’s-complement binary integer. (If it is interpreted as an unsigned

integer, the field description will explicitly state this.)

Bit(n) A contiguous string of n bits.

v The contents of the field.

Conventions for class names

Many of the GOFF records require specifying a class name. Some of these names

can be chosen freely (for example, for user-supplied information), and other names

must follow some rules. Class names reserved to IBM are called “Reserved

Names”, and class names that can be used freely are called Non-Reserved

Names. (Note that class names are not external symbols!)

v Class names appearing in object modules are case sensitive.

v Reserved class names are a maximum of 16 characters and are of the following

form:

�� letter underscore identifier ��

– The first character of a reserved class name is a letter (A-Z).

– The second character of a reserved class name is an underscore character

(_).

GOFF formats

Appendix C. Generalized object file format (GOFF) 207

– The remaining 1 to 14 characters of a reserved class name form a normal

alphanumeric identifier: a letter followed by either letters, digits or both.

The following reserved class name prefixes are currently in use:

– Class names starting with B_ are reserved for the binder.

– Loadable class names using the prefix C_ are reserved for translators

creating LE-enabled code.

– X_,Y_,Z_ as well as non-loadable C_ classes are reserved for general

translator use.

All other letter_ class names are reserved for future use.

v The following classes can be specified by language translators and other

creators of GOFF records:

B_ESD External Symbol Dictionary Class

B_TEXT Text Class

B_RLD Relocation Directory Class

B_SYM Internal Symbol Table Class

B_IDRL Language-Translator Identification Data Class

B_PRV Pseudo-Register Class

B_IDRU User-specified Identification Data Class

OBJ inputs to the program management binder will be automatically mapped to

these classes.

The following classes are reserved for internal use by the program management

binder, and cannot be specified on GOFF records:

B_IDRB Program Management Binder-created

 Identification Data Class

B_IDRZ SuperZAP-created Identification Data Class

B_MAP Internal Program Object Mapping-Data Class

B_LIT Loader Information Table

B_IMPEXP Import-Export Table

v It is expected that conventions will be established for the use of other classes.

IBM translators should use class names of the form:

C_xxxxxxxxx Translator-defined Classes

v Non-Reserved class names follow the normal formation rules for external

symbols except they are limited to 16 characters in length.

Record prefix

All GOFF records have a 3-byte identifying prefix of the following form:

 Table 47. GOFF record-type identification prefix byte

Field Offset Type Description

Prefix 0 Byte(1) X'03'. All other values are reserved.

Note: The value X'03' is chosen to distinguish GOFF

records from OBJ records, which begin with a byte

containing X'02', and from control statements, which

begin with a byte whose hex value is not less than X'40'.

GOFF formats

208 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 47. GOFF record-type identification prefix byte (continued)

Field Offset Type Description

Record Type 1.0-3 Bit(4) Type of record:

X'0' External Symbol Dictionary (ESD)

X'1' Text (TXT)

X'2' Relocation Directory (RLD)

X'3' Deferred Element Length (LEN)

X'4' Module End, with optional entry point

specification (END)

X'5-E' Reserved.

X'F' Module Header (HDR)

 1.4-5 Bit(2) Reserved.

Continuation and Continued

Indicators

1.6-7 Bit(2) These two bits indicate respectively that this record is

v a continuation of the preceding record, and/or

v continued on the succeeding record.

B’00’ This record is the initial record of the

designated type (it is not a continuation record).

It is not continued on the succeeding record.

Note: For variable-format GOFF records, this

should be the only valid combination.

B’01’ This record is the initial record of the

designated type (it is not a continuation record).

It is continued on the succeeding record.

B’10’ This record is a continuation of the previous

record of this type, and it is not continued on

the following record.

B’11’ This record is a continuation of the previous

record of this type, and it is continued on the

following record.

Version 2 Byte(1)

X'00' This is the initial version number for the record

of this type. All other values are reserved.

These three bytes are usually referred to as the “PTV” bytes.

Module header record

A module header (“HDR”) record describes global properties of this GOFF file. It is

required, and must appear first.

 Table 48. Module header record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'03F000' If not continued (this is the only form

currently defined)

 3-47 Byte(45) Reserved.

Architecture level 48-51 Binary(4) GOFF architecture level used in this object file. Only

levels 0 and 1 are supported.

Module properties 52–53 Binary(2) Length of module properties field length.

GOFF formats

Appendix C. Generalized object file format (GOFF) 209

Table 48. Module header record (continued)

Field Offset Type Description

 54–59 Byte(n) Reserved.

Module properties 60– * Module properties field.

External symbol definition record

An external symbol definition (“ESD”) record describes a single symbol. An initial

record has the following form:

 Table 49. External symbol definition record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'030000' If not continued

X'030100' If continued

Symbol Type 3 Binary(1) Type of the external symbol:

X'00' SD, section definition. This will include current

OBJ ESD items of types SD, CM and PC

(private code, blank SD name). The “Parent” or

“Owning” ID must be zero.

Note: PC sections are defined by having a

blank section name, not by a special section

type (see “Mapping object module ESD PC

items” on page 233).

See the comments in the description of the

COMMON flag in Table 54 on page 218.

X'01' ED, element definition.

 The “Parent ID” must be nonzero, and is the SD

ID of the section of which this element is a

component.

Note: The class to which this element belongs

is specified by the external name on this record.

If any RLD items refer to this class, an ED

record must be present, even if the class

contains no text.

X'02' LD, label definition. The “Parent ID” must be

nonzero, and is the EDID of the element in

which the LD item resides.

X'03' PR, part reference.

 The “Parent ID” must be nonzero, and is the

EDID of the element in which this PR item

resides.

Note: This supersedes current OBJ PR

(pseudo-register definition).

X'04' ER and WX, external reference. (WX is

described by the “Binding Strength” value in the

Attributes field below.)

All other types are reserved.

GOFF formats

210 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 49. External symbol definition record (continued)

Field Offset Type Description

ESDID 4-7 Binary(4) ESDID of this item. This value must be greater than

zero. ESDIDs in a GOFF file must be numbered

sequentially starting at one, with no gaps.

Parent or Owning ESDID 8-11 Binary(4) ESDID of the object that “defines” or “owns” this item, if

any. (For example, an LD item has its own ESDID, but

the element to which it belongs has the “owning”

ESDID.) If there is no “owning” ESDID, this field contains

binary zero. See Table 51 on page 213 for a summary.

 12-15 Binary(4) Reserved.

Offset 16-19 Binary(4) Offset associated with the ESD item named on this

record.

Note: The only ESD types currently having offsets are

LD items (and ED items as currently produced by the

Assembler).

 20-23 Binary(4) Reserved.

Length 24-27 Binary(4) Length of the item named on this record.

Note: Length values apply only to ED and PR items.

For SD, LD, and ER items, this field must be zero.

To distinguish a true zero length from a deferred length,

specify −1 if the length specification is deferred. See

“Deferred element length record” on page 228.

Extended Attribute ESDID 28-31 Binary(4) ESDID of the element that contains extended attribute

information. This information is stored in the program

object and may be made available to LE DLL support for

dynamically resolved symbols. Valid for ED and LD

records.

Extended Attribute Data

Offset

32-35 Binary(4) Offset (within the element defined by the previous field)

of the extended attribute data defined for this symbol.

Valid for ED and LD records.

 36-39 Byte(4) Reserved.

Name Space ID 40 Binary(1) Identification of the name space to which this name

belongs.

0 Reserved to program management binder

1 Normal external names (these can be specified

as PDS member and alias names)

2 Pseudo-Register (PR) names

3 Parts. External data items for which storage is

allocated in the program object and which can

have initial text (for example, data items in C

writable static).

All other values are reserved.

Fill-Byte Value Presence

Field

41.0 Bit(1) Indicates the presence of a fill-byte value in Byte 42.

B’0’ No fill byte is present.

B’1’ A fill byte value is present.

Valid only for ED records.

GOFF formats

Appendix C. Generalized object file format (GOFF) 211

Table 49. External symbol definition record (continued)

Field Offset Type Description

Mangled Flag 41.1 Bit(1) Indicates whether this symbol is a C++ mangled name.

B’0’ The symbol is not mangled.

B’1’ The symbol may be mangled.

Renameable Flag 41.2 Bit(1) Indicates whether or not the symbol can participate in LE

type renaming.

B’0’ The symbol cannot be renamed (same as

’mapped’ flag in XOBJ).

B’1’ The symbol can be renamed.

Removable Class Flag 41.3 Bit(1) Indicates that this class may be optionally deleted from a

program object without affecting the executability of the

program.

B’0’ Not removable. This is the default.

B’1’ Removable. This attribute applies only to ED

ESD items.

 41.4-6 Bit(3) Reserved.

 41.7 Bit(1)

B’1’ Reserve 16 bytes at beginning of class. MRG

class ED records only.

B’0’ No space reserved.

Fill Byte Value 42 Byte(1) Fill byte value, if bit 41.0 is one. ED records only.

 43 Byte(1) Reserved.

Associated data ID 44-47 Binary(4) This ID identifies the associated data (the environment

or static area) for this symbol. Valid for LD items only.

Supported only for XPLINK definitions and references.

Priority 48-51 Binary(4) Supported for PR items only. This unsigned field is used

as a sort field when determining the order of PR items.

 52-59 Byte(8) Reserved. Must be binary zero.

Behavioral Attributes 60-69 Byte(10) Behavioral attribute information for the ESD item named

on this record. The format of the behavioral attribute

information is shown in Table 53 on page 214.

Name Length 70-71 Binary(2) Length of the name of this ESD item. This length field

cannot be zero.

Name 72-* Byte(n) Name of this ESD item. All names (including blank

names) must be at least one character long. Trailing

blanks should be removed.

Trailer Byte(m) Unused space at the end of a record is reserved and

cannot be used for any other purpose.

External symbol definition continuation record

The format of an external symbol definition continuation record is as follows:

GOFF formats

212 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 50. External symbol definition continuation record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'030200' If not continued

X'030300' If continued

Text 3-* Byte(n) The next n bytes of the name.

Trailer Byte(m) Unused space at the end of a record is reserved, and

cannot be used for any other purpose.

External symbol ID and name relationships

The following table summarizes the ESDIDs of items and their “Parent ESDIDs”.

Terms like “SD ESDID” can be abbreviated as “SDID”, and so forth.

 Table 51. Relationship of an element’s ESDIDs and parent ESDIDs

If this ESD Item

is:

Then its ESDID

is:

And its Parent

ESDID is:

And, the External Name defines

a:

SD SDID zero Section name

ED EDID SDID Class name

LD LDID EDID Label name

PR PRID EDID Part name

ER ERID SDID External name

These “parentage” relationships can also be viewed pictorially:

Note: ESDIDs must be defined before they appear in any referencing field.

Elements specifiable on ESD records

 Table 52. Specifiable external symbol definition record items

Field SD ED LD PR ER

Symbol Type Y Y Y Y Y

ESDID Y Y Y Y Y

Parent ESDID Y Y Y Y

Offset (see note) A Y

Length Y Y

Extended Attributes ESDID Y Y

Extended Attribute Offset Y Y

Name Space ID (see note) Y Y Y Y

SDIS

EDID

PRID

ERID

LDID

GOFF formats

Appendix C. Generalized object file format (GOFF) 213

Table 52. Specifiable external symbol definition record items (continued)

Field SD ED LD PR ER

Fill Byte Y

Behavioral Attributes (see note) Y Y Y Y Y

Symbol Name Length Y Y Y Y Y

Symbol Name Y Y Y Y Y

Note: “A” means “Currently, Assembler Only”.

The Name Space assigned to a LD or PR item must match that of the ED to which it

belongs.

See “ESD item behavioral attribute assignment” on page 218 for Behavioral Attribute

assignments.

The owning parent ID of an SD must be zero.

External symbol definition behavioral attributes

The format of the behavioral attributes data field in an external symbol definition

record is as follows:

 Table 53. External symbol definition behavioral attributes

Field Offset Type Description

Addressing Properties 0 Byte(1) Addressing mode associated with this external symbol. If

control is received from the operating system at an entry

point named by this symbol, these addressing properties

will determine the addressing mode.

X'00' AMODE not specified (default=24)

X'01' AMODE(24)

X'02' AMODE(31)

X'03' AMODE(ANY) (either 24-bit or 31-bit:

an entry point can tolerate either

addressing mode)

X'04' AMODE(64)

X'10' AMODE(MIN): the program

management binder can set the

AMODE to the minimum AMODE of all

entry points in the program object.

All other values are reserved.

Residence Properties 1 Byte(1) Residence mode associated with this external symbol.

X'00' RMODE not specified (default=24)

X'01' RMODE(24)

X'03' RMODE(31)

X'04' RMODE(64)

All other values are reserved.

Note: RMODE(31) is equivalent to OBJ RMODE(ANY).

GOFF formats

214 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 53. External symbol definition behavioral attributes (continued)

Field Offset Type Description

Text Record Style 2.0-3 Bit(4) Designates the style of text to be accepted into this

class. (See “Text record” on page 220 for further details.)

Note: Text is valid only for ED and PR items.

B’0000’ Byte-oriented data. The “Address” field

in the Text record provides the offset

within the designated element where

the data bytes are to be placed.

B’0001’ Structured-record (binder-defined)

data. Only one form of

structured-record data is currently

defined (see “Identification record data

field” on page 222 and Figure 22 on

page 223 for a description).

B’0010’ Unstructured-record (user-defined)

data

All other values are reserved.

Note: The Text Record Style in the ED record will be

matched against that on the text records for this

element, as a safety check.

All text data within a class must be of the same style.

Binding Algorithm 2.4-7 Bit(4) Type of binding action to be performed:

B’0000’ Concatenate: each of the section

contributing elements within the

designated class will be concatenated

by placing the contributions “end to

end”, with boundary alignment. (This is

typified by current OBJ SD items.)

B’0001’ Merge: identically named parts will be

“merged” by retaining the longest

length and most restrictive alignment.

(This is typified by current OBJ CM

and PR items.) The merged parts will

then be concatenated (with

differently-named parts possibly having

different alignments) in a program

management binder-created class.

Only parts are allowed in a MERGE

class.

All other values are reserved.

GOFF formats

Appendix C. Generalized object file format (GOFF) 215

Table 53. External symbol definition behavioral attributes (continued)

Field Offset Type Description

Tasking Behavior 3.0-2 Bit(3) Translators wanting to specify the “traditional” tasking

and concurrency attributes can use the following

settings:

B’000’ Unspecified

B’001’ NON-REUS: Not serially reusable

B’010’ REUS: serially reusable

B’011’ RENT: reentrant

All other values are reserved.

Note that RENT implies REUS.

 3.3 Bit(1) Reserved.

Read-Only 3.4 Bit(1) Read-only indicator; no stores are allowed into this

object, so the system can place it into protected storage.

B’0’ Not read-only

B’1’ Read-only

Executable 3.5-7 Bit(3) Executable or not-executable indicator

B’000’ Not specified (currently)

B’001’ Not executable (That is, “This is data”.)

B’010’ Executable (That is, “This is code”.)

All other values are reserved.

Note: These flags can be applied to LD, PR, and ER

elements. LD elements can also inherit the executability

properties of the element to which they belong.

 4.0-4.1 Bit(4) Reserved.

Duplicate symbol severity 4.2–3 Bit(2) Severity to be associated with duplicate definitions of this

symbol.

B’00’ Severity determined by the binder.

B’01’ Severity should be at least 4 (warning).

B’10’ Severity should be at least 8 (error).

B’11’ Reserved.

Note: This field applies to PR ESD items only.

GOFF formats

216 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 53. External symbol definition behavioral attributes (continued)

Field Offset Type Description

Binding Strength 4.4-7 Bit(4) Strength of a definition or reference:

B’0000’ Strong reference or definition

B’0001’ Weak reference or definition

All other values are reserved.

Weak references are handled as in current products; the

interactions with definitions are as follows:

Strong Reference

If unresolved, an “out-of-module” external library

search will be made for a name to resolve the

reference.

Weak Reference

If unresolved, no “out-of-module” external library

search will be made to resolve the reference.

Strong Definition

Can be resolved to any reference. (This is the

default, and normal, definition strength.)

Class Loading Behavior 5.0-1 Bit(2) Determines whether or not the elements in this class will

be loaded with the module when a LOAD (or similar)

request to the operating system is satisfied by bringing

the program object into storage.

B’00’ LOAD–Load this class with the module (Also

known as INITIAL LOAD.)

B’01’ DEFERRED LOAD–This class will very

probably be required by the program, and

should be partially loaded in preparation for

such a request.

B’10’ NOLOAD–Do not load this class with the

module.

B’11’ Reserved.

COMMON Flag 5.2 Bit(1) If 1, indicates that this section should be treated as an

“old” COMMON: that is, as like any other CM section. If

more than one COMMON is present, the longest length

will be retained; if an SD section with the same name is

present, its length and text will be retained. The only text

class supported is B_TEXT.

Direct Versus Indirect

Reference

5.3 Bit(1) This bit indicates whether references to the symbol are

direct or via a linkage descriptor. This bit is also known

as the “descriptor bit”.

B’0’ References are direct (as far as binder

processing is concerned).

B’1’ For a PR item, indicates that the item

represents a linkage descriptor. For An ER item,

if the XPLINK bit is on, this represents a

reference to an XPLINK linkage descriptor.

GOFF formats

Appendix C. Generalized object file format (GOFF) 217

Table 53. External symbol definition behavioral attributes (continued)

Field Offset Type Description

Binding Scope 5.4 Bit(4) Requested binding or resolution-search scope of an

external symbol.

B’0000’ Unspecified

B’0001’ Section scope (“local”)

B’0010’ Module scope (“global”)

B’0011’ Library scope.

B’0100’ Import-Export scope

All other values are reserved.

 6.0-1 Bit(3) Reserved.

Linkage Type 6.2 Bit(1) Linkage Convention Indicator

B’0’ Standard OS linkage. This is the default.

B’1’ XPLINK linkage.

Note: This bit is valid for ER, LD, PD, and PR items.

Alignment 6.3-7 Bit(5) Storage alignment requirement of this object

Bits Implied Alignment of the Object

B’00000’ byte

B’00001’ halfword

B’00010’ fullword

B’00011’ doubleword

B’00100’ quadword

B’01100’ 4KB page

All other values are reserved.

Notes:

1. Alignment bits = log2(boundary_size).

2. All these alignments are supported for ED records.

All alignments except page alignment are supported

for PR items.

 7-9 Byte(3) Reserved.

ESD item behavioral attribute assignment

Table 54 shows which behavioral attributes apply to the different ESD items. Note

that the attributes of PR items (with the exception of alignment) are determined

from the element EDID to which they belong.

 Table 54. Specifiable external symbol behavioral attributes

Field SD ED LD PR ER

Addressing Properties Y Y

Residence Properties Y

Text Record Style Y

Binding Algorithm Y

Tasking Behavior Y

GOFF formats

218 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 54. Specifiable external symbol behavioral attributes (continued)

Field SD ED LD PR ER

Read-Only Y

Executable Y(1) Y Y

Binding Strength Y Y

Class Loading Behavior Y

COMMON Flag (2) Y

Alignment Y Y

Notes:

1. The Executable property would apply to all LDs in this element.

2. The CM Flag may be set only for SD items with text class B_TEXT. It is invalid if the SD

contains any other text class.

ESD Extended Attributes

In the ESD record for each external symbol, there is a pair of 4 byte fields located

at offsets 28 and 32 for the Extended Attribute ESDID and offset, respectively.

These two items locate the place in the object where the descriptive information

about the symbol is found. The ESDID identifies the element. The offset is

calculated with respect to the beginning of the element identified by the

ESDID. The element must reside in the same section as the ESD record specifying

the extended attribute information.

Extended Attribute information is represented using the following data structures:

 Table 55. Extended attribute information data structures

Field Length/Type Meaning

Text length Unsigned 32-bit integer The length of the full attribute text including this field.

Extended attributes architecture

level

Unsigned 16-bit integer The level of definition for this extended attribute data

structure.

Number of attribute entries Unsigned 16-bit integer The number of extended attribute data elements for

this ESD or RLD item

Only architecture level 1 is currently supported.

Following the extended attributes header are one or more 8-byte data element

descriptors. Each such descriptor is a structure of the following form:

 Table 56. Data element descriptor data structures

Field Length/Type Meaning

Attribute type Unsigned 16-bit integer The type of attribute information.

Offset to data element Unsigned 16-bit integer The offset from the origin of the extended attributes

header to the first byte of the data element

associated with this descriptor.

Data element length Unsigned 16-bit integer The length in bytes of the data element associated

with this descriptor.

Reserved 2 bytes Reserved.

These data element descriptors are immediately followed by the data elements.

The following attribute codes are currently supported:

GOFF formats

Appendix C. Generalized object file format (GOFF) 219

Table 57. Supported extended attribute type codes

Type Code Attribute Assignment

0 Not defined; reserved.

1 XPLINK call descriptor for referenced function.

2–65535 Reserved.

IBM products currently place the attribute information in an initial load class named

C_EXTNATTR.

Text record

This GOFF definition describes three basic mechanisms or styles of supplying text

information:

v Byte-oriented data is an unstructured stream of bytes to be placed at a specified

offset (“address”, for Assembler users) within a designated element of the

program object.

Byte-oriented data is typified by machine language instructions and data (as in

current OBJ TXT records). (These can be thought of as analogous to “U-format”

inputs.)

v Structured-record data is in the form of fixed-length records whose internal

structure is known to and defined by the program management binder, and which

will be placed in the C’B_IDRL’ class. (These can be thought of as analogous to

“F-format” inputs.)

The only currently acceptable form is 19-byte IDR data. (See Figure 22 on page

223.) Data records of any other length or content must be defined by the

program management binder.

An example of structured-record data is current OBJ IDR data, which is in the

form of one or two 19-byte structures on an OBJ END record.

v Unstructured-record data is in the form of records whose internal structure is

(and will remain) unknown to the program management binder, which will simply

append such records (prefixed by a length field) at the current end of the

designated element. The length of each such record must be supplied by its

provider. (These can be thought of as analogous to “V-format” inputs.)

Examples of unstructured-record data are current OBJ SYM data and GOFF

ADATA records.

A text record has the following format:

 Table 58. Text record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'031000' If not continued

X'031100' If continued

 3.0-3 Bit(4) Reserved.

GOFF formats

220 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 58. Text record (continued)

Field Offset Type Description

Text Record Style 3.4-7 Bit(4) Designates the style of text data on this record:

B’0000’ Byte-oriented data. The “Address” field

provides the position where the data

bytes are to be placed.

B’0001’ Structured-record data
Note: All structured-record data in a text record must

have the same format.

B’0010’ Unstructured-record data

All other values are reserved.

Note: This field replicates a similar field in the element

definition, so that text records can be checked for

consistency.

Element ESDID 4-7 Binary(4) ESDID of the element or part to which the data on this

(and any subsequent continuation) records belongs.

Note: Since the ED or PR record contains both the

class name and the ESDID of the Section Definition (SD)

record, this field uniquely identifies the program object

element to which this data belongs.

 8-11 Binary(4) Reserved.

Offset 12-15 Binary(4) Starting offset from the element or part origin of the text

on this (and any subsequent continuation) records. This

field must be zero for structured-record and

unstructured-record styles of data.

Note: The offset for Assembler-produced text can be

relative to a nonzero element origin.

Text Field True Length 16-19 Binary(4) If the Text Encoding Type in the following field is zero,

this field must be zero. If the Text Encoding Type is

nonzero, this field specifies the length of the text after

expansion.

Text Encoding 20-21 Binary(2) If the text on this record is not compressed or not

encoded, this field must be zero. A nonzero value

indicates that the data is encoded, and will require

decoding, expansion, or other treatment. See “Text

encoding and compression” on page 224.

Data Length 22-23 Binary(2) Total length in bytes of the data on this (and any

following continuation) record. This length is unsigned

and cannot be zero.

Data 24-* Byte(n) The next n bytes of data.

Note: The IDR data must follow conventions and rules

for translator-produced IDR data. (See Figure 22 on

page 223.) The format for emitting IDR data is given in

“Identification record data field” on page 222 below.

Trailer Byte(m) Unused space at the end of a record is reserved, and

cannot be used for any other purpose.

Text continuation record

The format of a text continuation record is as follows:

GOFF formats

Appendix C. Generalized object file format (GOFF) 221

Table 59. Text continuation record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'031200' If not continued

X'031300' If continued

Data 3-* Byte(n) Up to n bytes of data.

Trailer Byte(m) Unused space at the end of a record is reserved and

cannot be used for any other purpose.

Identification record data field

Identification records have a fixed format and fixed content, both defined by the

program management binder. Each Identification Data field of a (structured-record)

data record has the following format:

 Table 60. Identification record data field

Field Offset Type Description

 0 Byte(1) Reserved

Type 1 Byte(1) Type of IDR item:

X'00' Primary-translator identification data (Format 1)

(see “Current (old) IDR data (format 1)”)

X'01' Secondary-translator identification data (Format

1)

Note: This corresponds to the second IDR field

on current OBJ END record.

X'02' Extended Identification Data (Format 2) (see

“Extended IDR data (format 2)” on page 223)

X'03' Primary-translator identification data (Format 3)

(see “Extended IDR data (format 3)” on page

223)

X'04' Secondary-translator identification data (Format

3)

All other values are reserved.

Length 2-3 Binary(2) Total length in bytes of the data in this field. This length

cannot be zero.

IDR Data 4-* Byte(n) The n bytes of identification data

Note: Multiple IDR data items are acceptable; it is up to

the language translator producing the IDR data to supply

more than one value, or to provide appropriate syntax

permitting added IDR values to be expressed in its input

language. All data is in the form of single-byte EBCDIC

characters.

Remember that the IDR Data Field begins at byte offset +24 (the “Data” field) in the

Text Record.

Current (old) IDR data (format 1)

The “old” format of IDR data is known in the program management binder as

“IDRL” data, because it is typically placed either by default or explicitly into the

B_IDRL class.

GOFF formats

222 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The 19-byte Format 1 IDR data entry is shown (using Assembler Language

notation) in the following figure.

If the length of the Translator Identifier is less than 10 characters, it must be padded

on the right with blanks.

Notes:

1. The binder treats 2-digit years in IDR data as follows:

 if (YY > 65)

 then Year = 1900+YY

 else Year = 2000+YY

2. IDR data is not stored in load modules by the Linkage Editor and program

management binder in precisely this format.

Extended IDR data (format 2)

The “extended” format of IDR data is known in the program management binder as

“IDRU” (“User IDR”) data, because it is placed into the B_IDRU class (for which an

ED must have been previously defined).

The format of an extended IDR data entry is shown (using Assembler Language

notation) in the following figure.

The IDR data can be up to 80 characters long. The IDR “record” must be 86

characters long, even if the IDR data text is less than 80 characters.

Note: The content of the 80-byte IDR_Data field has not been architected. (It is

generated internally by the binder, not by any translator.)

Extended IDR data (format 3)

To accommodate year 2000 compatibility, a 30-byte Format 3 IDR data structure is

provided to support four-digit year values and time stamps. It is treated as “IDRL”

data.

The only differences between Format 3 and Format 1 IDR data are that the

Trans_Date field has been extended from five to seven characters, with YYDDD in

Format 1 becoming YYYYDDD in Format 3, and the nine-character Trans_Time “time

stamp” field has been added.

Translator DS CL10 Translator identification ("PID Number")

Version DS CL2 Version Level (01 to 99)

Release DS CL2 Release Level (01 to 99)

Trans_Date DS CL5 Translation date in Julian format (YYDDD)

Figure 22. Current IDR data item (format 1)

Date DS PL4 Packed Decimal Julian Date, as YYYYDDDF

Data_Length DS H True length of following IDR data text

IDR_Data DS CL80 IDR data (true length in previous 2 bytes)

Figure 23. Extended IDR data item (format 2)

Translator DS CL10 Translator identification ("PID Number")

Version DS CL2 Version Level (01 to 99)

Release DS CL2 Release Level (01 to 99)

Trans_Date DS CL7 Translation date in Julian format (YYYYDDD)

Trans_Time DS CL9 Translation time (HHMMSSTTT)

Figure 24. IDR data item (format 3)

GOFF formats

Appendix C. Generalized object file format (GOFF) 223

Text encoding and compression

In those cases where some value is gained by a translator’s encoding,

compressing, or encrypting some or all of the text, the following structures appear in

the “Data” portion of the record described in Table 58 on page 220, depending on

the “Text Encoding Type”. Only one method of encoding is supported.

Note: Run-time decoding and/or decryption is the responsibility of the loaded

program, which should place its encoded text into a special class that can be

loaded (on demand) at run time.

 Table 61. Text encoding types

Text Encoding Data Field

X'0001' The data field of the text record contains one or more instances of the

following three sub-fields, as determined by the “Data Length” field:

R L L bytes of data

2 L

v A nonzero unsigned repeat count R (Binary(2))

v A nonzero unsigned string length L (Binary(2))

v A string of bytes (Char(L)) whose length is specified by the preceding string

length sub-field.

The expanded text will be R×L bytes long and will contain R copies of the L

bytes.

X'0002'- X'FFFF' Reserved.

Relocation directory record

A relocation directory (“RLD”) record has the following format:

 Table 62. Relocation directory record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'032000' If not continued

X'032100' If continued

 3 Byte(1) Reserved.

Length 4-5 Binary(2) Total length of the relocation data on this record. This

length cannot be zero.

Relocation Data 6-* Byte(n) Up to n bytes of relocation data. The format of the RLD

data elements is shown in Table 63 on page 225.

Trailer Byte(m) Unused space at the end of a record is reserved and

cannot be used for any other purpose.

Relocation directory data item

The format of a relocation directory (“RLD”) data item is shown in Table 63 on page

225. Note that a relocation directory data item can be from 8 to 28 bytes long,

depending on which fields are present. The presence or absence of each field is

determined by the “Flags” field. Offsets shown assume all fields are present.

GOFF formats

224 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 63. Relocation directory data element

Field Offset Type Description

Flags 0-5 Byte(6) Flags describing this RLD item. The flags are shown in

Table 65 on page 226.

 6-7 Byte(2) Reserved.

R Pointer 8-11 Binary(4) ESDID of the ESD entry (ED or ER) which will be used

as the basis for relocation.

v For internal references, this will be the ED ESDID

defining the referenced element. (The offset of the

referenced position within the referenced element will

have been placed by the translator in the target text

field of the address constant.)

v For external references, this will be the ER or PR

ESDID describing the referenced symbol.

P Pointer 12-15 Binary(4) ESDID of the element within which this address constant

resides.

Offset 16-19 Binary(4) Offset within the element described by the P pointer

where the adcon is located; the place where the address

constant can be found; the position of the field to be

updated or relocated. This field is called the fixup target,

relocation target, or simply target.

Note: The constant part of a translator’s address

expression is stored in the “Target Field” (at this offset, in

the element defined by the P pointer). It can contain a

constant, an offset, or be ignored (“not fetched”).

 20-23 Binary(4) Reserved.

 24-27 Binary(4) Reserved.

Note that RLD records will normally be smaller if the RLD data is sorted by

P-pointer, because typical text elements contain more than a single adcon.

Relocation directory continuation record

The format of a relocation directory continuation record is as follows:

 Table 64. Relocation directory continuation record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'032200' If not continued

X'032300' If continued

Data 3-* Byte(n) Up to n bytes of data.

Trailer Byte(m) Unused space at the end of a record is reserved, and

cannot be used for any other purpose.

Relocation directory data element flags field

The format of the 6-byte Flags field of a relocation directory (“RLD”) data element is

as follows:

GOFF formats

Appendix C. Generalized object file format (GOFF) 225

Table 65. Relocation directory data element flags field

Field Offset Type Description

Same R-ID 0.0 Bit(1) Indicates whether or not this RLD item has the same R

pointer as the previous item. If yes, the R pointer (R-ID

field) is omitted from this item.

B’0’ Different R pointer

B’1’ Same R pointer as the previous RLD item.

Same P-ID 0.1 Bit(1) Indicates whether or not this RLD item has the same P

pointer as the previous item. If yes, the P pointer (P-ID

field) is omitted from this item.

B’0’ Different P pointer

B’1’ Same P pointer as the previous RLD item.

Same Offset 0.2 Bit(1) Indicates whether or not this RLD element has the same

offset as the previous item. If yes, the Offset field is

omitted from this item.

B’0’ Different offset from the previous item.

B’1’ Same offset as the previous RLD item.

 0.3-4 Bit(2) Reserved.

 0.5 Bit(1) Reserved.

Offset Length 0.6 Bit(1) Indicates the length of the Offset field in this RLD item:

B’0’ Offset is 4 bytes long.

Addressing Mode Sensitivity 0.7 Bit(1) Indicates whether or not the final address should have

its high-order bit set according to the addressing mode

of its target.

B’0’ No addressing mode sensitivity

B’1’ Mode sensitive: set addressing-mode bit (or

bits) in the address of this field, according to the

AMODE of the R-pointer element.

Note: This bit is set only for V-type constants.

Regardless of this setting, specifying the

HOBSET binder option sets the addressing

mode bit in all V-type adcons which reference

entry points whose addressing mode is 31 or

any.

R-Pointer Indicators 1 Byte(1) Indicates what type of data should be used as a “second

operand” in this relocation or fixup action, and the type

of referent. The two fields are shown below.

GOFF formats

226 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 65. Relocation directory data element flags field (continued)

Field Offset Type Description

Reference Type 1.0-3 Bit(4) Indicates what type of data will be used as the “second

operand” of the relocation action:

0 R-address.

1 R-Offset relative to the start of the referent

2 R-Length. (The length value associated with an

LD item is zero.)

6 R - Relative-Immediate (Instruction-Address-
relative halfword or fullword offset, use with

relative-immediate instructions).

 RI instruction allow one or more external

symbols in their operands, however Binder only

supports RI instructions with one external

symbol in their operands.

7 R-type constant (The address of associated

nonshared data area)

All other values are reserved.

Referent Type 1.4-7 Bit(4) Indicates the type of item that is used as the referent of

the relocation operation. For offset-type constants,

indicates the type of item that is used as a base for the

offset calculation

0 Label (R-ID restricted to LD)

1 Element (R-ID restricted to ED)

2 Class (R-ID restricted to ED). Note that classes

do not have external names, so they have no

associated ESDID.

3 Part (R-ID restricted to PR)

All other values are reserved.

Action or Operation 2.0-6 Bit(7) Indicates what type of operation should be performed

using the “second operand” in this relocation or fixup

action. (The first operand is the fetched value, or zero.)

All operations are 32-bit (signed fullword integer) unless

noted. In each case, the result of the operation replaces

the first operand.

0 + (the second operand is added to the first)

1 − (the second operand is subtracted from the

first)

All other values are reserved.

Fixup Target Field

Fetch/Store Flag

2.7 Bit(1) Indicates whether or not the contents of the target field

should be fetched and used in evaluating the following

expression.

v If this bit is zero, the contents of the fixup-target field

will be “fetched” and used as the first operand in

subsequent operations.

v If this bit is one, the initial contents of the target field

will be ignored, and the “fixup” quantity will be stored

over it. If no initial contents has been fetched, the first

operand’s value is implicitly zero for the indicated

operations.

 3 Byte(1) Reserved.

Target Field Byte Length 4 Binary(1) Unsigned byte length of the target field (adcon).

 5 Byte(1) Reserved.

GOFF formats

Appendix C. Generalized object file format (GOFF) 227

The relationships between the Reference Type and Referent Type are shown in the

following table.

 Table 66. RLD-element referent and reference types

Reference Type Referent 0 (Label or Part) Referent 1 (Element) Referent 2 (Class)

Reference 0 (R-address) A(label) or A(part) Not supported A(class origin) in which the

label, element, or part

belongs

Reference 1 (R-Offset) Offset of label or part

relative to class origin

Not supported zero (offsets of classes are

determined only at program

loading time)

Reference 2 (R-Length) Zero (labels don’t have a

length associated with

them)

Length of the element or

part

Length of the class to which

the label, element, or part

belongs

Examples of RLD data items

In this section, we will give some examples showing how RLD elements can be

used.

v The four types of address constant used in current programs can be

implemented very simply: the R- and P-pointers and P-position offset are set in

the usual way, and the sequencing bits in the first byte of the Flags field are set

according to whether or not the three values are repeated from the previous item.

The Reference/Referent and Action bytes are set as follows:

– A-con X'0000'

– A-con (with subtraction of the R-value) X'0002'

– V-con X'0001'

– Q-con X'1200'

– CXD-con X'2201'

The Target Field Byte Length is set appropriately (for example, to 4, for 4-byte

adcons), and the remaining fields are set to zero.

Deferred element length record

A deferred-length (“LEN”) record can be used to supply the true length of an

element whose length was not known at the time the External Symbol Dictionary

(ESD) record was issued. The format of a LEN record is as follows; a LEN record

cannot be continued.

 Table 67. Deferred section-length record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record (X'033000')

 3-5 Byte(3) Reserved.

Length 6-7 Binary(2) The length of the deferred-length data items that follow.

This length cannot be zero.

Element-Length Data 8-* Byte(n) Up to n bytes of element-length data. (See Table 70 on

page 230.)

Trailer Byte(m) Unused space at the end of a record is reserved, and

cannot be used for any other purpose.

The format of each 12-byte Deferred Element Length Data Element is as follows:

GOFF formats

228 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 68. Deferred element-length data item

Field Offset Type Description

ESDID 0-3 Binary(4) ESDID of the element for which this length value is

supplied.

 4-7 Binary(4) Reserved.

Length 8-11 Binary(4) Length of the element.

A deferred element length data item cannot be split across records.

Associated data (ADATA) record

Associated data records can be created by a translator for direct inclusion with the

program object as follows:

v Issue an element definition (ED) record for the class into which the records are to

be placed. The class name is chosen as shown in “Associated data (ADATA)

record types.” Retain the ED associated with that type of ADATA record for use

as each is emitted.

v In the Behavioral Attributes field, set all fields to zero except:

– Class Loading Behavior is set to B’10’.

– Binding Algorithm is set to B’0000’ (CAT).

– Set the “Text Record Style” to B’0010’, indicating that the data in this class is

“unstructured” (so that the program management binder will not attempt to

interpret it in any way).

– Two other fields could be set: Read-Only and (not) Executable.

v For each ADATA record, create a GOFF text record as follows:

– Set the Element ESDID to the ED value created for the class to which this

type of record belongs.

– Set the Offset to zero.

– Set the Data Length to the length of the ADATA record, and fill the DATA field

with the actual ADATA record itself.

The program management binder will accumulate the records of each type into the

specified class, by appending each new record to the end of the previous record in

that class.

Associated data (ADATA) record types

The following assignments have been made for ADATA record types:

 Table 69. Associated data (ADATA) record type assignments

Type Description

X'0000-7FFF' Translator (and other components) records. (Note that some values

in the range X'0000-0130' are already in use by High Level

Assembler, COBOL/370, and OS/2 PL/I.)

X'8000-8FFF' Program Management records.

X'9000-DFFF' Reserved.

X'E000-EFFF' Reserved for non-IBM translators.

X'F000-FFFF' User records. IBM products and non-IBM translators will not create

records with types in this range.

GOFF formats

Appendix C. Generalized object file format (GOFF) 229

Class names are assigned to ADATA records in a very simple way: take the four

hexadecimal digits of the ADATA record type, convert them to character format, and

append them to the stem C’C_ADATA’. For example, the Class name for an ADATA

record of type X'0000' would be C’C_ADATA0000’.

End of module record

The format of a module end (“END”) record with an optional entry point request is

as follows:

 Table 70. End-of-module record, with optional entry point request

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'034000' If not continued

X'034100' If continued

 3.0-5 Bit(6) Reserved.

Flags 3.6-7 Bit(2) Indicator flags, indicating presence or absence of a

requested entry point:

B’00’ No entry point is suggested or requested on this

END record. No subsequent fields on this

record (other than the Record Count) are valid,

and they cannot be used for any purpose.

B’01’ An entry point is requested by internal offset

and ESDID on this END record. This ESDID

can be either an EDID if the nominated entry

point is known to be within this entry point. or

an ERID if the nominated entry point is at an

external symbol referenced in this input module.

The Name Length field is zero. No continuation

records are allowed.

B’10’ An entry point is requested by external name on

this END record. The ESDID and Offset fields

must be zero. Continuation records are allowed.

Note that if an entry point is requested, the

entry point name or class must be in

namespace 1.

B’11’ Reserved.

AMODE 4 Byte(1) AMODE of requested entry point. See AMODE values in

“External symbol definition behavioral attributes” on page

214.

 5-7 Byte(3) Reserved.

Record Count 8-11 Binary(4) Count of GOFF logical records in this object file,

including HDR and END records. If no record count is

provided, this field must contain binary zero.

ESDID 12-15 Binary(4) ESDID of the element containing the requested module

internal entry point. If no entry point is requested, or if

the entry point is requested by name, this field must be

zero. If an ESDID is specified, the following Offset field

is used.

 16-19 Binary(4) Reserved.

GOFF formats

230 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 70. End-of-module record, with optional entry point request (continued)

Field Offset Type Description

Offset 20-23 Binary(4) Translator-assigned offset (or address, for Assembler

output) of the requested module internal entry point. If no

entry point is requested, or if the entry point is requested

by name, this field must be zero.

Note: Offset cannot be specified for external (ERID)

entry point nominations.

Name Length 24-25 Binary(2) Total length of the external name. This length cannot be

zero if a name is present. It must be zero if an entry

point is requested by ESDID and Offset, or if no entry

point is requested.

Entry Name 26-* Byte(n) The first n characters of the external name requested as

the module entry point.

Trailer Byte(m) Unused space at the end of a record is reserved, and

cannot be used for any other purpose.

End of module continuation record, with optional entry point

name

The format of an end-of-module continuation record is as follows:

 Table 71. End-of-module (entry point name) continuation record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'034200' If not continued

X'034300' If continued

Entry Name 3-* Byte(n) Up to n bytes of data.

Trailer Byte(m) Unused space at the end of this record is reserved, and

cannot be used for any other purpose.

Mapping object formats to GOFF format

Migration of current OBJ usage to GOFF style is straightforward, and is necessary

only if the new GOFF facilities are needed. (The program management binder will

continue to accept OBJ records.)

In general, the first step in creating a GOFF record will be to initialize the record

buffer to binary zeros; most of the fields will not be needed, and zeros will provide

the proper default values.

The GOFF analogs of current OBJ facilities are shown here, along with examples of

the kinds of Assembler Language statements or operands that create them:

v ESD records

OBJ ESD records can contain the following types of information:

– SD names, including PC elements (blank SD names): these are derived from

START, CSECT, and RSECT statements.

– CM names: these are derived from COM statements.

– LD names: these are derived from ENTRY statements.

– ER names (possibly, WX): these are derived from EXTRN and WXTRN

statements, and from the names in V-type address constants.

GOFF formats

Appendix C. Generalized object file format (GOFF) 231

– PR names: these are derived from DXD statements, and Q-type address

constants containing DSECT names.

v TXT records

Current OBJ TXT records contain simply an ESDID (of the section to which the

text belongs), a length, and an address. The contents of TXT records are derived

from the machine language instructions and data generated during the assembly

process.

v RLD records

Each item on OBJ RLD records is derived from an A-type, V-type, or Q-type

address constant, or from a CXD statement.

v END records

Current OBJ END records can contain an optional entry point request (either as

an external name, or as an ESDID/offset combination to request entry within a

module), plus zero to two IDR elements. The data on the END record is created

by the translator (first IDR element), or is derived from the operand(s) of the END

statement (requested entry point and second IDR item).

v SYM records

Current OBJ SYM records have no analog in GOFF records; they are produced

when the Assembler’s TEST option is specified. The information currently

collected on SYM records should be produced in GOFF ADATA records, or in

some other translator-defined class. No mappings are shown for SYM data, nor

for other forms of symbol tables.

It is assumed that translators will not produce nonstandard forms of object module

records (for example, zero-data ESD records or blank SD items).

Module header records

The first record of a GOFF file must be a Module Header Record. It need only

contain the PTV bytes X'03F000'.

Mapping object module ESD elements to GOFF format

This section describes how elements appearing in Object Modules are represented

in the Generalized Object File Format.

Mapping object module ESD SD items

OBJ ESD SD elements require three GOFF ESD records: one to define the section,

a second to define the class and element in which the text associated with the OBJ

section is to reside, and the third to define an LD item for the external symbol

named by the OBJ SD item. (GOFF SD names are not used for resolution; in effect,

OBJ SDs are replaced by GOFF elementIDs.) Note that the LD item is not needed

unless the OBJ SD name will be used to resolve external references.

GOFF formats

232 z/OS V1R9.0 MVS Program Management: Advanced Facilities

These steps are shown in Table 72.

 Table 72. Mapping OBJ ESD SD items to GOFF format

OBJ Element GOFF Element

SD element (1) GOFF SD item: all fields are zero, except:

v The Symbol Type is X'00'

v The ESDID is that of the section

v The Name Length is that of the OBJ SD name (cannot be zero),

and the Name field contains the SD name. (Remember that blank

names must contain a single blank.)

SD element (2) The GOFF element (ED) record: all fields are zero, except:

v The Symbol Type is X'01'

v The ESDID is that of the element

– Remember the element ESDID specified here, for use in

subsequent TXT records belonging to this OBJ CSECT.
v The Owning/Parent ESDID is that of the section just created

v The Offset is zero (except possibly for Assembler output; the

offset is then taken from the address field of the OBJ SD item)

v The Length is that of the OBJ SD (or − if a deferred length is

supplied later)

v The Name Space ID is X'01'

v The Behavioral Attributes are all zero (except for Residence

Mode, if it was specified; for Assembler output, the Read-Only bit

is set to the same value as the RSECT bit; and the Alignment is

set to B’0011’)

v The Name Length is set to 6, and the Name field is set to

C’B_TEXT’.

SD element (3) If the section name is blank, or is not used to resolve external

references, this GOFF LD item record is not needed. Otherwise, all

fields are zero, except:

v The Symbol Type is X'02'

v The ESDID is that of the LD name

v The Owning ESDID is that of the element in which the text of the

OBJ section is placed

v The Name Space ID is X'01'

v The Behavioral Attributes are set to zero (except that the

Addressing properties are set to match those of the OBJ SD’s

AMODE)

v The Name Length and Name are those of the OBJ SD element.

Mapping object module ESD PC items

PC items in OBJ format are actually defined by a blank SD name and a type of PC.

However, PC items could have a nonblank name. Note also that an OBJ SD item

with a blank name is invalid.

 Table 73. OBJ treatment of ESD PC items and blank names

Name PC SD

blank valid invalid

nonblank undefined valid

The table shows that PC items are uniquely identified by a blank name, so that

there is actually no need for a separate PC ESD type.

GOFF formats

Appendix C. Generalized object file format (GOFF) 233

The same convention as for nonblank names applies for GOFF format; no special

treatment is required for blank section names, except that no LD record (SD item

(3)) is ever needed.

Thus, follow the same two steps as for SD items (1) and (2), using a Section Name

of a single blank.

Mapping object module ESD LD items

OBJ ESD LD items behave in an identical fashion to those in GOFF records, and

the mapping from OBJ to GOFF format is straightforward, as shown in Table 74.

 Table 74. Mapping OBJ ESD LD items to GOFF format

OBJ Element GOFF Element

LD element The GOFF LD item record: all fields are zero, except:

v The Symbol Type is X'02'

v The ESDID is that of the LD name

v The Owning ESDID is that of the element in which the text of the

OBJ SD to which this LD belongs will be placed

v The Offset is the offset of the LD within its OBJ SD section

v The Name Space ID is X'01'

v The Behavioral Attributes are set to zero (except that the

Addressing properties can optionally be different from those of the

OBJ SD’s AMODE and Binding scope is set to B'0010').

v The Name Length and Name are those of the OBJ LD element

Mapping object module ESD ER/WX items

OBJ ESD ER and WX items are mapped into nearly identical GOFF forms, shown

in Table 75.

 Table 75. Mapping OBJ ESD ER/WX items to GOFF format

OBJ Element GOFF Element

ER or WX The GOFF ER record: all fields are zero, except:

v The Symbol Type is set to X'04'

v The ESDID is set to that of the ER item

v The Owning ESDID is that of the section (SD) to which this ER

belongs

v The Behavioral Attributes are zero (except that the Binding scope

field is set to B'0010' for WX items and B'0001' for ER items)

v The Name Space ID is X'01'

v The Name Length and Name are set appropriately

Mapping object module ESD CM items

OBJ ESD records containing CM data provide the CM name, its ESDID, and its

length. (Alignment is implicitly doubleword.)

Note that Fortran BLOCK DATA sections can be handled as traditionally “overlaid”

SD items if they are specified as follows:

OBJ CM items are mapped onto GOFF format SD, ED, and (if needed) LD records

in exactly the same way as are SD parts (shown in “Mapping object module ESD

SD items” on page 232), except that the “COMMON Flag” bit is set to B’1’.

Blank COMMON is treated specially by the binder (as it was by the linkage editor).

Blank COMMON never has initializing text even if a blank-named control section

(Private code) is present.

GOFF formats

234 z/OS V1R9.0 MVS Program Management: Advanced Facilities

(The program management binder and the program object format support a much

more powerful way to handle “COMMON” or external data previously emitted as

OBJ SD items. They are then not mapped by the program management binder as

though they were SD items. This avoids the problem of order-dependent behavior in

the OM/LM assignment of lengths to CM items with initializing data specified in an

SD item.)

Mapping object module ESD PR items

OBJ ESD records containing PR data provide the PR name, its ESDID, and its

length and alignment requirements.

OBJ PR elements are mapped onto GOFF format PR records as indicated in

Table 76. A GOFF SD record defines the section owning the PR item; this record

will have been previously issued. An ESD record defining an ED for class C’B_PRV’

should also be issued, and the Binding Algorithm field is set to B’0001’.

 Table 76. Mapping OBJ ESD PR items to GOFF format

OBJ element GOFF element

PR element The GOFF ESD record items are set as follows: all fields are zero,

except:

v The Symbol Type is set to X'03' (PR).

v Its ESDID is assigned.

v The owning ESDID is that of the owning ED (or zero if no ED

record was provided, in which case the program management

binder will take a default action).

v The Length is set to that of the PR item.

v The Name Space ID is X'02'.

v The Behavioral Attributes are all set to zero, except that the

Binding Algorithm field is set to B’0001’ and the Alignment field is

set to indicate the desired PR alignment.

v The Name Length is set to that of the PR, and the PR name is

placed in the Name field.

Note that the use of “owning EDs” is not recommended, and

translators producing GOFF records should not rely on the binder

continuing to treat this as defaulting to B_PRV.

Mapping object module XSD items to GOFF format

The items on an XSD record map to GOFF ESD records in the same way as

shown in “Mapping object module ESD SD items” on page 232, with the the

following exception:

v Names need not be segmented

Other special flags in XSD records must be mapped to the appropriate fields in the

GOFF ESD records; the details are not described here.

Mapping object module TXT items to GOFF format

OBJ text-record items are mapped onto GOFF format records as indicated in

Table 77 on page 236. First, a GOFF record defining the element in which the text

resides must have been issued, (see Table 72 on page 233 under “SD Item (2)”).

Then, the GOFF text record would be created as follows; all other fields are zero.

GOFF formats

Appendix C. Generalized object file format (GOFF) 235

Table 77. Mapping OBJ TXT items to GOFF format

OBJ Element GOFF Element

TXT Set “Text Record Style” to B’0000’.

Text ESDID Element ESDID for the element in which the text resides.

Note: This is the ESDID that was “remembered” when the element

ED record was emitted. See Table 72 on page 233.

Offset Offset

Text length Data length

Mapping object module RLD items to GOFF format

GOFF RLD records are quite similar to OBJ RLD records; their function is the

same, to describe address constants. The primary differences are that the

“sequencing” bits refer to the previous RLD item rather than to the next, GOFF

ESDIDs are 4 bytes long (rather than 2), the Offset field is 4 bytes (rather than 3),

and the flags field is 6 bytes (rather than 1). The mappings are shown in Table 78.

All fields should be initialized to zero.

 Table 78. Mapping OBJ RLD items to GOFF format

OBJ Element GOFF Element

Same R-, P- pointer

Flags

Set bits as appropriate

R-, P- pointers and

Offset

R, P pointers are expanded from 2 bytes to 4 (if present); Offset

expanded from 3 bytes to 4. Note that in the OBJ implementation,

the R-pointer for CXD items is set to zero. In GOFF files this should

contain the EDID of the class whose length is requested. The binder

treats zero R-ID as defaulting to B_PRV, but this should not be relied

on.

R-Pointer Indicators

and Action Bytes

The OBJ 4-bit type field is mapped to a 2-byte “Indicators and

Action/Fetch” field:

v B’0000’ (A-type) becomes X'0000'

v B’0000’ (A-type with subtraction) becomes X'0002'

v B’0001’ (V-type) becomes X'0001'

v B’0010’ (Q-type) becomes X'1200'

v B’0011’ (CXD-type) becomes X'2201'

Target Field Byte

Length

The OBJ 2-bit length field is mapped to the GOFF 8-bit Target

Length field, and 1 is added.

Relocation Sign This bit (X'02') is part of the “Action” field; see above.

Note: Incompatible or inconsistent OBJ uses (such as an A-con and a V-con

referring to the same name) can be flagged by the program management

binder.

Mapping object module END items to GOFF format

Mapping the information in OBJ END records will typically require two (and possibly

three) GOFF records, the first for IDR information (shown in Table 79 on page 237),

the second (possibly) if a deferred item length is desired (shown in Table 80 on

page 237), and the third for END and (possibly) entry point information (shown in

Table 81 on page 237). (The case where no deferred length is provided and no

entry point is requested is shown in “Mapping object module END-entry items” on

page 237.)

GOFF formats

236 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Mapping object module END IDR items

IDR data from OBJ END records is actually mapped into a text class named

C’B_IDRL’. The procedure to follow is shown in Table 79.

 Table 79. Mapping OBJ END IDR items to GOFF format

OBJ Element GOFF Element

Initially: Issue an ED record with class name C’B_IDRL’, and set the Text

Record Style to B’0001’. Assign the Owning ID of the section SD to

which this element belongs. The EDID on this record will be used for

the IDR data to follow (on one or more separate records).

IDR Data Emit a GOFF Text record, with “Text Record Style” set to B’0001’

(meaning “structured data”), ESDID set to the value defined on the

ED record just described, Offset 0, and Data Length 23. The 23

bytes of data are:

v 1 reserved byte

v 1 byte set to X'00' (primary translator data)

v 2 bytes containing decimal 19 (the length of the following data)

v 19 bytes of normal IDR data.

Mapping object module END section-length elements

OBJ END records can supply the length of a section whose length was not known

at the time the ESD SD item was produced. In the GOFF format, this information is

provided on a new type of record (“LEN”), which must be emitted ahead of the END

record. It is shown in Table 80. Note that the length must be that of an element, not

of a program object section, which has no text or length associated with it. Note

also that while OBJ END records can supply only a single deferred length (for a

single SD item), GOFF records can accommodate multiple deferred lengths.

 Table 80. Mapping OBJ END section–length items to GOFF format

OBJ Element GOFF Element

END with section

length

Emit a deferred-length record with Length 12, and data as follows:

v 4-byte EDID for the element whose length is being provided.

v 4 byte reserved field, set to zero.

v 4-byte length for the specified element.

Mapping object module END-entry items

OBJ END records can request an entry point either by name or by ESDID and

offset; these two forms are provided by the GOFF format.

 Table 81. Mapping OBJ END–entry items to GOFF format

OBJ Item GOFF Element

END (no entry point

request)

Set the Flags bits to B’00’, and the rest to zero. (In other words,

nothing to do.)

END with entry point

ED and offset

v Set the Flags bits to B’01’, and the rest to zero.

v Set the ESDID field to the EDID of the element in which the

desired entry point is located.

v Set the Offset to the entry point offset within the designated

element.

END with entry point

name

v Set the Flags bits to B’10’.

v Set the 2-byte Name Length to the name of the requested entry

point. Note that this name should already have appeared on an

LD item (for an internal entry point) or an ER item (for an external

entry point) in this object module.

GOFF formats

Appendix C. Generalized object file format (GOFF) 237

Generating DLLs and linkage descriptors from GOFF object modules

Certain features in GOFF object modules must be used to build DLLs and DLL

applications. A related function is the use of certain GOFF features to request the

binder to generate linkage descriptors in a non-DLL situation. This support is

primarily intended for LE-conforming applications. In some cases LE runtime

support may have more stringent requirements than those enforced by the binder.

Exports

Exporting data

Exported data is represented as a PR or LD type ESD record with the binding

scope set to Import-Export. IBM recommends using a PR type ESD item for

compatibility with Language Environment. If using a PR ESD record, ensure the

record length is greater than zero and set the name space ID to 3. If using an LD

ESD record, you must set the ’executable’ bit to ’not executable’. If you intend to

reference the data in 64 bit addressing mode, set the addressing mode to

AMODE(64). The ’linkage type’ field must also match that of the referencing

program.

Exporting code

Exported code is represented as a PR or LD type ESD record with the binding

scope set to Import-Export. IBM recommends using an LD type ESD item for

compatibility with Language Environment. When using a PR record, you must set

the ’executable’ bit to ’executable’ and the name space ID to 3. The addressing

mode and linkage type fields must match that of the referencing program.

Imports

Importing data

Reentrant data items are represented by a zero-length PR ESD record with the

binding scope set to Import-Export. Non-reentrant data items (supported for XPLINK

only) are represented by an ER ESD record with the binding scope set to

Import-Export and the ’executable’ bit set to ’non-executable’. The addressing mode

and linkage type fields should match those of the exported data you wish to use.

The binder builds data descriptors and import information only if the ESD record for

the imported data item is the target (R Pointer) of at least one RLD entry.

Non-XPLINK: When using reentrant code the owning ESD of the imported data

item must be an ED for class C_WSA or C_WSA64. The binder builds a data

descriptor for the reference in the owning class. Non-reentrant imported data is not

supported by the binder. RLDs which reference non-XPLINK imported data must be

Q-cons (RLD reference type=1).

XPLINK: The PR or ER in the importing class which represents the imported data

must have the ’linkage type’ field set to XPLINK. References to XPLINK data items

should be A-type or V-type address constants (RLD reference type=0) contained in

C_WSA or C_WSA64 when using reentrant code. References to XPLINK data items

may be contained in any class when using non-reentrant code.

Importing code

A reference to imported code always requires a linkage descriptor. When using

non-XPLINK code, the binder builds the required linkage descriptors. When using

GOFF formats

238 z/OS V1R9.0 MVS Program Management: Advanced Facilities

XPLINK code, either the binder or LE can build the require linkage descriptors.

Language translators (compiler or assembler) may pass XPLINK descriptors to the

binder.

The binder constructs descriptors in one of three classes: C_WSA, C_WSA64, or

B_DESCR. The binder creates descriptors in B_DESCR only in the XPLINK case.

Non-XPLINK: You must use an ER ESD with the ’Indirect Reference’ bit set to

trigger the building of a linkage descriptor for the target symbol. Set the ’executable’

attribute to ’code’ and the scope to Import-Export.

An RLD entry whose target (R Pointer) is an ESD with the ’Indirect Reference’ bit

set resolves to the linkage descriptor. An RLD entry whose target is an ER ESD

without the ’Indirect Reference’ bit set resolves directly to the referenced symbol.

XPLINK:

1. XPLINK ’call-by-name’ references

’Call-by-name’ refers to the case in which the name of the function being called

is known at compile time. XPLINK call-by-name descriptors are generated by

language translators. The binder recognizes these descriptors when they

conform to the following format:

v An XPLINK ’call-by-name’ descriptor consists of two RLDs that describe a

pair of contiguous adcons. These RLDs reference two 8-byte adcons for

64-bit code or two 4-byte adcons for 31-bit code.

v The resident class must be C_WSA64 for 64-bit or C_WSA for 31 bit.

 Table 82. XPLINK ’call-by’name’ descriptor adcon offsets

Offset Contents

0 R(referenced symbol) - RLD reference type 7

4 or 8 R(referenced symbol) - RLD reference type 1

The ER ESD describing the referenced symbol must have a linkage type of

’XPLINK,’ a scope of Import-Export, and not have the ’Indirect Reference’ bit

set.

When the target function resolves, the ’R-con’ (the first RLD in the descriptor)

resolves to the target function’s environment if the referenced function provides

one. The environment is defined by the ’Associated Data ID’ field in the LD ESD

record that defines the referenced function.

2. XPLINK ’call-by-pointer’ references

You may use a function pointer which points to a function descriptor if the

function to be called is not known at compile time. The requirements for having

the binder or LE build the function descriptor are the same as for non-XPLINK

imported code with the exception that you must set the linkage type to XPLINK

in the ER ESD for the imported symbol. In addition, you must set the

addressing mode to the expected addressing mode of the caller and callee. The

binder uses the addressing mode to determine the length of the adcons used

when building a descriptor.

Using linkage descriptors in non-DLL applications

Linkage descriptors can be used for code references when the bind is not for a DLL

or DLL application (that is, DYNAM=DLL is not specified). The requirements are the

same as described for references to imported code with exception that a scope of

Import-Export is not necessary.

GOFF formats

Appendix C. Generalized object file format (GOFF) 239

240 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix D. Binder API buffer formats

This topic contains general-use programming interface and associated guidance

information.

This topic describes the external formats of program object data that are used to

describe, bind, load and execute program objects.

Program object data is used as follows:

v Using the binder API, you can read, write or modify class-oriented data in the

program object. API calls GETC, GETD, GETE, GETN and PUTD either create

or accept module data in the external format. For more information, see

Chapter 1, “Using the binder application programming interface,” on page 1.

v With minor exceptions,the fast data API can be used to retrieve the same data

that is returned from the GETC, GETD, GETE, or GETN API calls. For more

information, see Chapter 6, “Fast data access,” on page 115.

Regardless of what method you use to process the program object data, you can

use the IEWBUFF macro to allocate, initialize, map and delete buffers for each

class of interest. For more information on using IEWBUFF, see “Generating and

mapping data areas” on page 15.

All binder buffer formats are described in this appendix.

New buffer versions were introduced in the following releases:

v Version 1 - DFSMS/MVS Release 1

v Version 2 - DFSMS/MVS Release 3

v Version 3 - DFSMS/MVS Release 4

v Version 4 - OS/390 Version 2 Release 10

v Version 5 - z/OS Version 1 Release 3. New PMAR buffer and additional ESD

fields added

v Version 6 - z/OS Version 1 Release 5. New CUI and LIB buffers, and new field in

the Bindr Name List

The binder API, including the fast data API, support all formats. If VERSION is not

specified on the IEWBUFF macro, version 1 buffers will be generated.

The differences between version 1 buffers and the later versions are very

significant, especially in the case of the ESD records. If you are migrating an

application from version 1 to a higher version number, see “Migration to version 2

buffers” on page 263.

The remainder of this section contains the external buffer formats for each version.

The version 2 and 3 buffer sets are each followed by a discussion of migration from

earlier buffer formats.

Data buffers are similarly structured. Each consists of a 32-byte buffer header

followed by one or more entries, the number of entries being determined by the

SIZE or BYTES specification on the IEWBUFF macro. Each of the buffer

descriptions show the buffer header and one buffer entry. The following notes apply

to all formats and versions:

© Copyright IBM Corp. 1991, 2006 241

v The information stored in the buffer header can be used by your program to

process data in any class or buffer version but should not be modified.

v Names do not appear in the buffer entries; instead, the names are represented

by name lengths and pointers that locate the name string elsewhere in

addressable storage. In the following record layouts, the name is shown as a

6-byte name field followed by its length and pointer components. Note that the

6-byte name field is not generated by IEWBUFF.

v Fields shown as reserved should be set to zero in input.

v ESD and RLD code values are defined symbolically in SYS1.MACLIB members

IEWBCES and IEWBCRL, respectively.

 Table 83. API buffer formats. The VERSION indicates the first API version that supported

the buffer type. Note that when using IEWBIND with VERSION=1, the CLASS= parameter

can specify either the class names beginning with “B_” or the obsolete equivalents which

begin with “@” in place of “B_”.

CLASS TYPE= VERSION DESCRIPTION

@ESD or B_ESD ESD 1 External Symbol Dictionary

@IDRB or B_IDRB IDRB 1 Binder Identification Record (IDR)

@IDRL or B_IDRL IDRL 1 Language Processor Identification

Data (IDR)

@IDRU or B_IDRU IDRU 1 User Identification Data (IDR)

@IDRZ or B_IDRZ IDRZ 1 AMASPZAP Identification Data (IDR)

@RLD or B_RLD RLD 1 Relocation Directory Data

@SYM or B_SYM SYM 1 Internal Symbol Table

@TEXT or B_TEXT TEXT 1 Program Text (instructions and data)

(none) NAME 1 Binder Name List

(none) XTLST 1 Extent List

B_MAP MAP 2 Module Map

B_PARTINIT PINIT 3 Part Initializer

B_PMAR PMAR 5 Program Management Attribute

Record

B_CUI CUI 6 Compile unit information

B_LIB LIB 6 Library path

 Attention: If the version is omitted on the IEWBUFF and IEWBIND macros, it

defaults to version 1.

The following table provides pointers to the version-specific definitions of the

buffers.

 Table 84. API buffer definitions

TYPE= V1 V2 V3 V4 V5 V6

CUI 285

ESD 245 256 271 271 280 280

IDRB 247 247 247 247 247 247

IDRL 248 248 248 248 248 248

IDRU 249 249 249 249 249 249

API buffer formats

242 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 84. API buffer definitions (continued)

TYPE= V1 V2 V3 V4 V5 V6

IDRZ 250 250 250 250 250 250

LIB 284

MAP 262 262 262 262 262

NAME 253 261 261 278 278 287

PARTINIT 276 276 276 276

PMAR 279 279

RLD 251 259 274 274 274 274

SYM 252 252 252 252 252 252

TEXT 252 252 252 252 252 252

XTLST 253 253 253 253 253 253

Note: For more information, see “Accessing program object class information” on

page 306.

Buffer header contents

There are two ways to initialize the buffer header:

v Use the INITBUF function on the IEWBUFF macro

v Use the information found in Table 85 and Table 86 on page 244 to code it.

For additional information about the IEWBUFF macro, see “Using the IEWBUFF

macro” on page 15.

The following general format applies to all binder buffers.

 Table 85. Buffer header format. Table shows the formatting information for the Buffer

header.

Field Name Field Type Offset Length Description

buffer_id char 0 8 buffer type

buffer_leng binary 8 4 buffer length in

bytes (includes

header)

version binary 12 1 buffer version

* binary 13 3 reserved, must

be zero

entry_leng binary 16 4 length of one

entry

count binary 20 4 number of

entries

* binary 24 8 reserved, must

be zero

The count field designates the maximum number of entries that will be returned.

The buffer must be large enough to hold the maximum number of entries or the call

will fail. Use the entry length shown in Table 86 on page 244 to compute the buffer

size.

API buffer formats

Appendix D. Binder API buffer formats 243

The buffer type corresponds to what is coded as the TYPE keyword on the

IEWBUFF macro. Use the following values when retrieving data for the indicated

buffer type:

 Table 86. Buffer type format. Table shows the format information for the buffer type.

Buffer Type buffer_id entry_leng

CUI IEWBCUI 80

ESD IEWBESD version 1 - 56

version 2 - 80

version 3 and later - 96

LIB IEWBLIB 1

RLD IEWBRLD version 1 - 32

version 2 - 44

version 3 and later - 52

IDRU IEWBIDU 96

IDRL IEWBIDL 28

IDRZ IEWBIDZ 24

IDRB IEWBIDB 116

SYM IEWBSYM 96

TEXT IEWBTXT 1

NAME IEWBBNL version 1 - 8

version 2,3 - 16

version 4 and later - 24

XTLST IEWBXTL 8

MAP IEWBMAP 32

PINIT IEWBPTI 1

PMAR IEWBPMR 1

CUI IEWBCUI 80

Version 1 buffer formats

Version 1 buffers are those supported in DFSMS/MVS version 1, releases 1.0 and

2.0, program management (PM1). They are also generated in later releases of

DFSMS if VERSION=1 is specified or defaulted on the IEWBUFF macro. This

section contains buffer layouts for each data class supported in PM1, as shown in

Table 83 on page 242.

API buffer formats

244 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

ESD entry (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBESD Binder ESD buffer, Version 1

 ESDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBESD"

 ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 ESDH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 ESDH_ENTRY_LENG Binary 16 4 Length of each entry

 ESDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 ESDH_ENTRY_ORIGIN 32 First ESD entry

 ESD_ENTRY ESD entry

4 ESD_TYPE Char 0 2 ESD Type

 C’ ’ Null Entry

 C’SD’ Control Section or

 Private Code

 CSECT if ESD_SCOPE=M

 private if ESD_SCOPE=S

 C’CM’ Common (Named or unnamed)

 C’LD’ Label Definition

 C’ER’ External Reference

 strong if ESD_SCOPE=L

 weak if ESD_SCOPE=M

 C’PR’ Pseudoregister

5 C’ST’ Segment Table (Overlay)

5 C’ET’ Entry Table (Overlay)

5 C’DS’ Dummy Section

5 C’PD’ Pseudoregister Definition

 ESD_SCOPE Char 2 1 Scope of Name

 ’ ’ Not applicable

 C’S’ Section (Types SD/private,ST,ET)

 C’M’ Module (Types SD/CSECT,LD,

 ER/weak,CM,PR,DS,PD)

 C’L’ Library (Type ER/strong)

 ESD_TEXT Char 3 1 Label Type

 C’I’ Instructions (Types SD,ET,ER,LD)

 C’D’ Data (Type CM,DS,ER,LD,PD,PR,ST)

 C’ ’ Unspecified

 ESD_ALIGN Binary 4 1 Alignment Specification from

 language processor (Type PR)

 X’00’ Byte

 X’01’ Halfword

 X’02’ Fullword

 X’03’ Doubleword

 ESD_STORAGE Binary 5 1 Storage Specification (Type SD)

 X’00’ Any Storage

 X’10’ Read-only Storage (Type SD)

 *** RESERVED *** Binary 6 2 Reserved (must be zero)

 ESD_USABILITY Binary 8 1 Reusability (Type SD)

 X’00’ Unspecified

 X’01’ Nonreusable

 X’02’ Reusable

 X’03’ Reentrant

 X’04’ Refreshable

Figure 25. Format for ESD entries (Part 1 of 2)

API buffer formats

Appendix D. Binder API buffer formats 245

Field Field Off Leng Description

 Name Type set

 ESD_RMODE Binary 9 1 Residence Mode (Type SD)

 X’00’ Unspecified

 X’01’ RMODE 24

 X’03’ RMODE Any (24 or 31)

 ESD_AMODE Binary 10 1 Addressing Mode (Type SD)

 X’00’ Unspecified

 X’01’ AMODE 24

 X’02’ AMODE 31

 X’03’ AMODE Any (24 or 31)

 X’04’ use minimum AMODE

 *** RESERVED *** Binary 11 1 Reserved, must be zero

 ESD_AUTOCALL Binary 12 1 Autocall Specification (Type ER)

 X’80’ Nevercall

2 ESD_STATUS Bit 13 1 Resolution Status (Types ER,PR)

 1... Symbol has been resolved

 .1.. Symbol processed by autocall

 ..xx xxxx Reserved

 *** RESERVED *** Binary 14 2 Reserved, must be zero

2 ESD_REGION Binary 16 2 Overlay Region Number

 (Types SD,CM,ET)

2 ESD_SEGMENT Binary 18 2 Overlay Segment Number

 (Types SD,CM,ET)

 ESD_LENG Binary 20 4 Length of the defined section

 or pseudoregister

 (Types CM,SD,DS,ET,PD,PR,ST)

3 ESD_SECTION_OFFSET Binary 24 4 Text offset within section

 (Types LD,PD)

2 ESD_MODULE_OFFSET Binary 28 4 Text offset within module

 (Types SD,CM,LD,ST,ET,DS)

 *** RESERVED *** Binary 32 2 Reserved (must be zero)

 ESD_NAME Name 34 6 Symbol name. (Blank OK for

 private code and common.)

 ESD_NAME_CHARS Binary 34 2 length of name in bytes

 ESD_NAME_PTR Pointer 36 4 pointer to name string

 *** RESERVED *** Binary 40 2 Reserved (must be zero)

2 ESD_TARGET Name 42 6 Name of the section in which the

 symbol is defined (Type ER)

 ESD_TARGET_CHARS Binary 42 2 length of name in bytes

 ESD_TARGET_PTR Pointer 44 4 pointer to name string

 *** RESERVED *** Binary 48 2 Reserved (must be zero)

1 ESD_RESIDENT Name 50 6 Name of the section in which

 this ESD entry resides.

 (Types LD,ER,PR,PD)

 ESD_RESIDENT_CHARS Binary 50 2 length of name in bytes

 ESD_RESIDENT_PTR Pointer 52 4 pointer to name string

Notes:

1. Ignored on input to the binder.

2. Recalculated by the binder.

3. Calculated on the ED and ER records, required input to LD.

4. ESD_TYPE is further qualified by ESD_SCOPE.

5. Binder-generated ESD type.

Figure 25. Format for ESD entries (Part 2 of 2)

API buffer formats

246 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Binder identification data (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBIDB Binder IDR Data, Version 1

 IDBH_BUFFER_ID Char 0 8 Buffer identifier "IEWBIDB"

 IDBH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 IDBH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 IDBH_ENTRY_LENG Binary 16 4 Length of each entry

 IDBH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 IDBH_ENTRY_ORIGIN 32 First IDR entry

1 IDB_ENTRY Binder IDR Entry

 IDB_BINDER_ID Char 0 10 Binder identification

 IDB_VERSION Char 10 2 Binder version

 IDB_RELEASE Char 12 2 Binder release

 IDB_DATE_BOUND Char 14 7 Date of binding (YYYYDDD)

 IDB_TIME_BOUND Char 21 6 Time of binding (HHMMSS)

 *** RESERVED *** Binary 27 1 Reserved, must be zeros

 IDB_MODULE_SIZE Binary 28 4 Length of module text

 IDB_CALLERID_CHARS Binary 32 2 Number of significant characters

 in IDB_CALLERID

 IDB_CALLERID Char 34 80 Caller identification

 *** RESERVED *** Binary 114 2 Reserved, must be zeros

Notes:

1. Generated by binder during binding.

Figure 26. Format for binder identification data

API buffer formats

Appendix D. Binder API buffer formats 247

|

Language processor identification data (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBIDL Language Processor IDR Record,

 Version 1

 IDLH_BUFFER_ID Char 0 8 Buffer identifier "IEWBIDL"

 IDLH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 IDLH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 IDLH_ENTRY_LENG Binary 16 4 Length of each entry

 IDLH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 IDLH_ENTRY_ORIGIN 32 First IDR entry

3 IDL_ENTRY Language IDR Entry

 IDL_PID_ID Char 0 10 Translator product ID

 IDL_VERSION Char 10 2 Version of the translator

 IDL_MOD_LEVEL Char 12 2 Modification level of translator

2 IDL_DATE_PROCESSED Char 14 7 Date compiled or assembled

 (yyyyddd)

 *** RESERVED *** Binary 21 1 Reserved, must be zeros

1 IDL_RESIDENT Name 22 6 The name of the section to

 which this IDR data applies.

 IDL_RESIDENT_CHARS Binary 22 2 length of name in bytes

 IDL_RESIDENT_PTR Pointer 24 4 pointer to name string

Notes:

1. Ignored on input to the binder.

2. If the module is saved as a load module, dates are truncated to 5 characters

(YYDDD).

3. There normally is only one IDRL entry per section. However, if the section was

produced by a multistage compilation, there is one IDRL record for each

processor involved in the generation of the object code.

Figure 27. Format for language processor identification data

API buffer formats

248 z/OS V1R9.0 MVS Program Management: Advanced Facilities

User identification data (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBIDU User IDR Data, Version 1

 IDUH_BUFFER_ID Char 0 8 Buffer identifier "IEWBIDU"

 IDUH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 IDUH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 IDUH_ENTRY_LENG Binary 16 4 Length of each entry

 IDUH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 IDUH_ENTRY_ORIGIN 32 First IDR entry

 IDU_ENTRY User IDR entry

2 IDU_CREATE_DATE Char 0 7 Date the entry was created

 (yyyyddd)

 *** RESERVED *** Binary 7 1 Reserved, must be zeros

 IDU_DATA_CHARS Binary 8 2 Number of significant characters

 in IDU_DATA

2 IDU_DATA Char 10 80 Defined by the user

1 IDU_RESIDENT Name 90 6 Name of section to which this

 IDR data applies

 IDU_RESIDENT_CHARS Binary 90 2 length of name in bytes

 IDU_RESIDENT_PTR Pointer 92 4 pointer to name string

Notes:

1. Ignored on input to the binder.

2. If the module is saved as a load module, the identification data is truncated to

40 bytes and the creation date to 5 (yyddd).

Figure 28. Format for user identification data

API buffer formats

Appendix D. Binder API buffer formats 249

AMASPZAP identification data (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBIDZ AMASPZAP IDR Data, Version 1

 IDZH_BUFFER_ID Char 0 8 Buffer identifier "IEWBIDZ"

 IDZH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 IDZH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 IDZH_ENTRY_LENG Binary 16 4 Length of each entry

 IDZH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 IDZH_ENTRY_ORIGIN 32 First IDR entry

 IDZ_ENTRY Superzap IDR entry

2 IDZ_DATE Char 0 7 Date of processing

 (yyyyddd)

 IDZ_ZAP_DATA Char 7 8 PTF number or other ZAP data

 *** RESERVED *** Binary 15 3 Reserved, must be zeros

1 IDZ_RESIDENT Name 18 6 Name of the section to which

 this IDR data applies

 IDZ_RESIDENT_CHARS Binary 18 2 length of name in bytes

 IDZ_RESIDENT_PTR Pointer 20 4 Pointer to name string

Notes:

1. Ignored on input to the binder.

2. If the module is saved as a load module, dates are truncated to 5 characters

(YYDDD).

Figure 29. Format for AMASPZAP identification data

API buffer formats

250 z/OS V1R9.0 MVS Program Management: Advanced Facilities

RLD entry (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBRLD Binder RLD buffer, Version 1

 RLDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBRLD"

 RLDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 RLDH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 RLDH_ENTRY_LENG Binary 16 4 Length of each entry

 RLDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 RLDH_ENTRY_ORIGIN 32 First RLD entry

 RLD_ENTRY RLD entry

 RLD_TYPE Binary 0 1 Adcon Type

 X’10’ Branch type (V-con)

 X’20’ Nonbranch type (A-con)

 X’30’ Pseudoregister (Q-con)

 X’40’ Cumulative Pseudo-register Length (CXD)

2 RLD_STATUS Binary 1 1 Adcon Status

 X’01’ References an unresolved symbol

 X’02’ References a resolved symbol

 X’03’ References a nonrelocatable

 symbol

2 RLD_ADCON_BDY Binary 24 1 Binder no longer maintains

 Adcon boundary status and

 changes this value to 0

 RLD_ADCON_DIRECTION Binary 3 1 Adcon relocation direction

 X’00’ Relocation is positive

 X’01’ Relocation is negative

 RLD_ADCON_LENG Binary 4 2 Length of the Adcon

 *** RESERVED *** Binary 6 2 Reserved, must be zero

 RLD_SECTION_OFFSET Binary 8 4 Offset of the address constant

 within the containing section

2 RLD_MODULE_OFFSET Binary 12 4 Offset of the address constant

 within the module

 *** RESERVED *** Binary 16 2 Reserved, must be zero

 RLD_TARGET Name 18 6 Name of the external symbol to

 be used to compute the value

 of the adcon ("R-Pointer")

 adcon ("R Pointer")

 RLD_TARGET_CHARS Binary 18 2 length of name in bytes

 RLD_TARGET_PTR Pointer 20 4 Pointer to name string

 *** RESERVED *** Binary 24 2 Reserved, must be zero

1 RLD_RESIDENT Name 26 6 Name of the section to be used

 to compute the location of

 the adcon ("P-Pointer").

 RLD_RESIDENT_CHARS Binary 26 2 length of name in bytes

 RLD_RESIDENT_PTR Pointer 28 4 Pointer to name string

Notes:

1. Ignored on input to the binder.

2. Recalculated by the binder.

Figure 30. Format for RLD entries

API buffer formats

Appendix D. Binder API buffer formats 251

Internal symbol table (version 1)

Text data buffer (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBSYM Binder Symbol buffer, Version 1

 SYMH_BUFFER_ID Char 0 8 Buffer identifier "IEWBSYM"

 SYMH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 SYMH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 SYMH_ENTRY_LENGTH Binary 16 4 Length of each entry

 SYMH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 SYMH_ENTRY_ORIGIN 32 First SYM entry

 SYM_ENTRY SYM entry

 SYM_CREATE_DATE Char 0 7 Date entry created (yyyyddd)

 *** RESERVED *** Binary 7 1 Reserved, must be zeros

 SYM_DATA_CHARS Binary 8 2 Number of significant characters

 in SYM_DATA

 SYM_DATA Char 10 80 Not defined by the binder

1 SYM_RESIDENT Name 90 6 Name of the section to which

 the symbol data applies

 SYM_RESIDENT_CHARS Binary 90 2 length of name in bytes

 SYM_RESIDENT_PTR Pointer 92 4 pointer to name string

Notes:

1. Ignored on input to the binder.

Figure 31. Format for symbol table (SYM) entries

 Field Field Off Leng Description

 Name Type set

 IEWBTXT Binder Text buffer, Version 1

 TXTH_BUFFER_ID Char 0 8 Buffer identifier "IEWBTXT"

 TXTH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 TXTH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 TXTH_ENTRY_LENG Binary 16 4 Length of entries (always 1)

 TXTH_ENTRY_COUNT Binary 20 4 Number of entries (bytes) in the

 buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 TXT_ARRAY Undef. 32 var Program Text (length varies from

 1 to 2**31-1 bytes, depending

 on value in TXTH_ENTRY_COUNT)

Figure 32. Format for TXT entries

API buffer formats

252 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Binder name list (version 1)

Extent list (version 1)

 Field Field Off Leng Description

 Name Type set

 IEWBBNL Binder Name List buffer, Ver 1

 BNLH_BUFFER_ID Char 0 8 Buffer identifier "IEWBBNL"

 BNLH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 BNLH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 BNLH_ENTRY_LENG Binary 16 4 Length of each entry in the list

 BNLH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 BNLH_ENTRY_ORIGIN 32 First namelist entry

1 BNL_ENTRY Namelist entry

 BNL_NAME_CHARS Binary 0 2 Number of significant characters

 in the class or section name

 *** RESERVED *** Binary 2 2 Reserved, must be zeros

 BNL_NAME_PTR Pointer 4 4 Address of the class or section name

Notes:

1. Output only.

Figure 33. Format for binder name list entries

 Field Field Off Leng Description

 Name Type set

 IEWBXTL Module Extent List, Version 1

 XTLH_BUFFER_ID Char 0 8 Buffer identifier "IEWBXTL"

 XTLH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 XTLH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 XTLH_ENTRY_LENG Binary 16 4 Length of each entry

 XTLH_ENTRY_COUNT Binary 20 4 Number of entries in the list

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 XTLH_ENTRY_ORIGIN 32 First extent list entry

1 XTL_ENTRY Extent List Entry

 XTL_LOAD_POINT Binary 0 4 Load point address for extent

2 XTL_EXTENT_LENG Binary 4 4 Length of extent

Notes:

1. Valid for output only. There is normally only one entry. When the binder is

invoked under TSO, however, a second entry is provided for the mini-CESD.

2. The extent length includes the length of the module text plus other

binder-related data.

Figure 34. Format for contents extent list entries

API buffer formats

Appendix D. Binder API buffer formats 253

Version 2 buffer formats

VERSION=2 must be specified on the IEWBUFF macro to obtain buffers in this

format.

Most buffers have not changed except for the version number, but VERSION 2 is

supported by IEWBUFF for all classes, whether or not there is a format change.

Differences between Versions 1 and 2 include:

v ESD and RLD buffers have changed significantly in support of multiple text

classes, a new binding algorithm and new address constants.

v A new binder-defined class, B_MAP, describes the logical structure of the

program object.

v External names can be up to 1024 bytes in length.

v @class-type class names are not supported in version 2 calls and buffers.

v For compatibility with PM1, the PM2 IEWBUFF macro produces the Version 1

buffer formats, described previously, if VERSION=1 is specified or defaulted in

the macro invocation.

This section contains the buffer layouts that have changed or have been added in

version 2. As indicated in Table 84 on page 242, all other buffer formats are the

same for version 2 as in version 1.

API buffer formats

254 z/OS V1R9.0 MVS Program Management: Advanced Facilities

ESD entry (version 2)

Please note that the version 2 ESD buffer has been significantly changed from the

Version 1 buffer.

API buffer formats

Appendix D. Binder API buffer formats 255

Field Field Off Leng Description

 Name Type set

 IEWBESD Binder ESD buffer, Version 2

 ESDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBESD"

 ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 ESDH_VERSION Binary 12 1 Version identifier (Constant 2)

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 ESDH_ENTRY_LENG Binary 16 4 Length of each entry

 ESDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved

 ESDH_ENTRY_ORIGIN 32 First ESD entry

 ESD_ENTRY ESD entry

 ESD_TYPE Char 0 2 ESD Type

 C’ ’ Null Entry

 C’SD’ Control Section

 C’LD’ Label Definition

 C’ER’ External Reference

 C’PR’ Part Reference

 C’PD’ Part Definition

 C’ED’ Element Definition

 ESD_TYPE_QUAL Char 2 2 ESD Type Qualifier

 C’ ’ (no qualification)

 C’SD’ Section Definition (SD)

 C’CM’ Common (SD)

 C’ST’ Segment Table (SD)

 C’ET’ Entry Table (SD)

 C’PC’ Unnamed Section (SD)

 C’PR’ Part Reference (PR, PD)

 C’PD’ Part Definition (PR, PD)

 C’ER’ External Reference (ER)

 C’WX’ Weak Reference (ER)

 ESD_NAME_SPACE Binary 4 1 Name Space for symbols

 X’00’ Class and section names (SD, ED)

 X’01’ Labels and references (LD, ER)

 X’02’ Pseudoregisters (PR, PD)

 X’03’-x’07’ Reserved

 ESD_SCOPE Char 5 1 Scope of Name

 ’ ’ Not applicable

 ’S’ Section (Types SD/private,ST,ET)

 ’M’ Module (Types SD/CSECT,LD,

 ER/weak,CM,PR,DS,PD)

 ’L’ Library (Type ER/strong)

 ESD_NAME Name 6 6 Symbol represented by ESD record

 ESD_NAME_CHARS Binary 6 2 length of name in bytes

 ESD_NAME_PTR Pointer 8 4 pointer to name string

 *** RESERVED *** Char 12 2 Reserved

1 ESD_RES_SECTION Name 14 6 Name of containing section

 ESD_RESIDENT_CHARS Binary 14 2 length of name in bytes

 ESD_RESIDENT_PTR Pointer 16 4 pointer to name string

 ESD_LENG Binary 20 4 Length of defined element

 (ED, PD)

 ESD_ALIGN Binary 24 1 Alignment specification from

 language processor. Indicates

 Alignment of section contribution

 within class segment (SD, ED, PD)

 X’00’ Byte alignment

 X’01’ Halfword

 X’02’ Fullword

 X’03’ Doubleword

 X’0C’ 4K page

Figure 35. Format for ESD entries (Part 1 of 3)

API buffer formats

256 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Field Field Off Leng Description

 Name Type set

 ESD_USABILITY Binary 25 1 Reusability of Section (SD)

 X’00’ Unspecified

 X’01’ Nonreusable

 X’02’ Reusable

 X’03’ Reentrant

 X’04’ Refreshable

 ESD_AMODE Bit 26 1 Addressing Mode for Section or

 label (SD, LD)

 X’00’ Unspecified

 X’01’ AMODE 24

 X’02’ AMODE 31

 X’03’ AMODE ANY (24 or 31)

 X’04’ AMODE MIN

 ESD_RMODE Bit 27 1 Residence Mode for class element

 (SD, ED)

 X’01’ RMODE 24

 X’03’ RMODE ANY (24 or 31)

 ESD_RECORD_FMT Binary 28 2 Record format for class (ED)

 H’1’ Byte stream

 H’>1’ Fixed length records

 Field Field Off Leng Description

 Name Type set

 ESD_LOAD_FLAGS Bit 30 1 Load Attributes (ED)

 1... Read-only

 .1.. Do not load with module

 ..1. Moveable

 ...1 Shareable

 1111 ** Reserved **

 ESD_BIND_FLAGS Bit 31 1 Bind Attributes

2 1... Binder generated (SD, ED, LD)

2 .1.. No class data available (ED)

2 ..1. Variable length records (ED)

 ...1 Descriptive data (not text) (ED)

 1111 ** Reserved **

 ESD_BIND_CNTL Bit 32 1 Bind control information

1 1... Removable class(ED)

1 .x.. ** Reserved **

1 ..xx Binding method (ED)

1 ..00 CAT (Catenated text)

1 ..01 MRG (Merged parts)

1 ..1x ** Reserved **

 *** RESERVED *** Char 33 1 Reserved

 ESD_XATTR_CLASS Name 34 6 Extended attributes class

 (LD, ER)

 ESD_XATTR_CLASS_CHARS

 Binary 34 2 length of name in bytes

 ESD_XATTR_CLASS_PTR

 Pointer 36 4 pointer to name string

 ESD_XATTR_OFFSET Binary 40 4 Extended attributes element offset

 (LD, ER)

Figure 35. Format for ESD entries (Part 2 of 3)

API buffer formats

Appendix D. Binder API buffer formats 257

2 ESD_SEGMENT Binary 44 2 Overlay segment number (SD)

2 ESD_REGION Binary 46 2 Overlay region number (SD)

 ESD_SIGNATURE Char 48 8 Interface signature

2 ESD_AUTOCALL Binary 56 1 Autocall specification (ER)

 x... ** Reserved **

 .1.. Entry in LPA. If ON, name is

 an alias.

 ..xx xxxx ** Reserved **

2 ESD_STATUS Bit 57 1 Resolution status (ER)

 1... Symbol is resolved

 .1.. Processed by autocall

 ..xx xxxx Reserved

2 ESD_TGT_SECTION Name 58 6 Target section (ER)

 ESD_TARGET_CHARS Binary 58 2 length of name in bytes

 ESD_TARGET_PTR Pointer 60 4 pointer to name string

 *** RESERVED *** Char 64 2 Reserved

 ESD_RES_CLASS Name 66 6 Name of containing class

 (LD, PD) or target class (ER)

 ESD_RES_CLASS_CHARS

 Binary 66 2 length of name in bytes

 ESD_RES_CLASS_PTR

 Pointer 68 4 pointer to name string

3 ESD_ELEM_OFFSET Binary 72 4 Offset within class element

 (LD, ER)

2 ESD_CLASS_OFFSET Binary 76 4 Offset within class segment

 (ED, LD, PD, ER)

Notes:

1. This entry is ignored on input to the binder.

2. Recalculated by the binder.

3. Calculated on the ED and ER records, required input to LD.

Figure 35. Format for ESD entries (Part 3 of 3)

API buffer formats

258 z/OS V1R9.0 MVS Program Management: Advanced Facilities

RLD entry (version 2)

The RLD Entry has been changed significantly from version 1.

 Field Field Off Leng Description

 Name Type set

 IEWBRLD Binder RLD buffer, Version 2

 RLDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBRLD"

 RLDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 RLDH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 RLDH_ENTRY_LENG Binary 16 4 Length of each entry

 RLDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 RLDH_ENTRY_ORIGIN 32 First RLD entry

 RLD_ENTRY RLD entry

 RLD_TYPE Binary 0 1 Adcon type

 X’10’ Branch type (V-con)

 X’20’ Nonbranch type (A-con)

 X’21’ Address of class segment

 X’30’ Pseudoregister (Q-con)

 X’40’ Class or PRV length (CXD)

 X’60’ Relative immediate type

2 RLD_STATUS Binary 1 1 Adcon status

 X’01’ References an unresolved symbol

 X’02’ References a resolved symbol

 X’03’ References a nonrelocatable

 symbol

1 RLD_RES_IDENT Name 2 6 Name of section containing adcon

 ("P-pointer")

 RLD_RESIDENT_CHARS Binary 2 2 length of name in bytes

 RLD_RESIDENT_PTR Pointer 4 4 pointer to name string

 RLD_ADCON_LENG Binary 8 2 Adcon length

 RLD_RES_CLASS Name 10 6 Name of class containing adcon

 RLD_CLASS_CHARS Binary 10 2 length of name in bytes

 RLD_CLASS_PTR Pointer 12 4 pointer to name string

 RLD_ELEM_OFFSET Binary 16 4 Offset of the address constant

 within the containing element

2 RLD_CLASS_OFFSET Binary 20 4 Offset of the address constant

 within the class segment

2 RLD_ADCON_BDY Binary 24 1 Binder no longer maintains

 Adcon boundary status and

 changes this value to 0

 RLD_BIND_FLAGS Bit 25 1 Bind attributes

 1... Relocation sign (direction)

 ’0’=positive, ’1’=negative

 .1.. Set high order bit from

 AMODE of target

 ..1. Scope of reference

 ’0’=internal, ’1’=external

 ...1 High order bit of adcon

 reset by binder

Figure 36. Format for RLD entries (Part 1 of 2)

API buffer formats

Appendix D. Binder API buffer formats 259

Field Field Off Leng Description

 Name Type set

 RLD_XATTR_CLASS Name 26 6 Extended attributes class

 RLD_XATTR_CLASS_CHARS

 Binary 26 2 length of name in bytes

 RLD_XATTR_CLASS_PTR

 Pointer 28 4 pointer to name string

 RLD_XATTR_OFFSET Binary 32 4 Extended attributes element offset

 RLD_NAME_SPACE Binary 36 1 Name space of reference

 X’00’ Types 21, 40

 X’01’ External reference (10, 20)

 X’02’ Parts and pseudoregisters (30)

 X’03’-X’07’ Available to language products

 *** RESERVED *** Binary 37 1 Reserved, must be zeros

 RLD_TARGET Name 38 6 Name of referenced symbol (for

 external references and Q-cons)

 or class (internal references

 and class references and lengths)

 ("R-Pointer")

 RLD_TARGET_CHARS Binary 38 2 length of name in bytes

 RLD_TARGET_PTR Pointer 40 4 pointer to name string

Notes:

1. Ignored on input.

2. Recalculated by the binder.

Figure 36. Format for RLD entries (Part 2 of 2)

API buffer formats

260 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Binder name list (version 2)

The name list has changed from version 1. Certain attributes, such as class length,

bind control flags and element count, have been added to the name entries

returned in the buffer.

 Field Field Off Leng Description

 Name Type set

 IEWBBNL Binder Name List buffer, Ver 2

 BNLH_BUFFER_ID Char 0 8 Buffer identifier "IEWBBNL"

 BNLH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 BNLH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 BNLH_ENTRY_LENG Binary 16 4 Length of each entry in the list

 BNLH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 BNLH_ENTRY_ORIGIN 32 First namelist entry

1 BNL_ENTRY Namelist Entry

 BNL_CLS_LENGTH Binary 0 4 Class segment length

 BNL_BIND_FLAGS Bit 4 1 Bind Attributes

 1... Generated by Binder

 .1.. No data present

 ..1. Varying length records

 ...1 Descriptive data (non-text)

 1... Class has initial data

 1.. Fill character specified

 1 Class validation error

2 BNL_PAD1 Bit 5 1 Loadability and alignment

 (NTYPE=CLASS only)

 0000 0000 Not available

 ..1. A DEFER load class

 .10. A NOLOAD class

 .00. Class is initially loaded

 xxxx Boundary alignment as a power

 of 2, for example X’03’ is

 2**3 = 8 byte align

 BNL_NAME Name 6 6 Class or section name

 BNL_NAME_CHARS Binary 6 2 length of name in bytes

 BNL_NAME_PTR Pointer 8 4 pointer to name string

 BNL_ELEM_COUNT Binary 12 4 Number of elements in class or

 section

Notes:

1. This entry is valid for output only.

2. For initial load classes, the offset of the class within a loaded module can be

determined by padding the length of each segment as specified by the

alignment, and accumulating the lengths in the order they are returned by

GETN. If corrective service is missing from the system, BNL_PAD1 may be

zero. In this case neither the order nor the padding are usable.

Figure 37. Format for binder name list entries

API buffer formats

Appendix D. Binder API buffer formats 261

Module map (version 2)

The module map is new in version 2.

 Field Field Off Leng Description

 Name Type set

 IEWBMAP Module Map, Version 2

 MAPH_BUFFER_ID Char 0 8 Buffer identifier "IEWBMAP"

 MAPH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 MAPH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 MAPH_ENTRY_LENG Binary 16 4 Length of each entry

 MAPH_ENTRY_COUNT Binary 20 4 Number of entries in the list

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 MAPH_ENTRY_ORIGIN 32 First map entry

1 MAP_ENTRY Map Entry

 MAP_NEXT Binary 0 4 Offset of next sibling entry

 MAP_TYPE Char 4 1 Type of map entry

 ’M’ Module

 ’C’ Class

 ’O’ Overlay segment

 ’S’ Section within class

 ’P’ Part within class

 ’L’ Label within section

 ’X’ Text extent within section

 or part

 ’E’ End-of-module

2 MAP_FLAGS Bit 5 1 Flags

 1... Single extent implied (S)

 .1.. Loadable text class (C)

 ..1. Class is executable text (C)

 ...x xxxx Reserved

2 MAP_NAME Name 6 6 Name of mapped element

 Null (M, X, E)

 region & segment (O)

 MAP_NAME_CHARS Binary 6 2 length of name in bytes

 MAP_NAME_PTR Pointer 8 4 pointer to name string

2 MAP_OFFSET Binary 12 4 Offset

 class offset (O, S, P)

 section offset (L, X)

 zero (M, C)

Figure 38. Format for module map list entries (Part 1 of 2)

API buffer formats

262 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Migration to version 2 buffers

Support for multiple text classes and a logical module structure in which sections

are subdivided into classes requires some fundamental changes in the ESD. (See

“Understanding binder programming concepts” on page 1 for a better understanding

of module structure and content). At the highest level in the ESD hierarchy is the

Section Definition (SD entry), which assigns some attributes to the section. At the

next level is the Element Definition (ED entry), one for each class requested in the

section. ED records are new and need not be present for binder-defined, nontext

classes, such as ESD and IDR. Elements can contain either labels (LD entries) or

parts (PR entries), depending upon the binding method for the class. Beginning with

PM2, LD entries are required for all entry points: An SD entry is no longer an

implied entry into offset zero of that section.

Two PM1 data classes have been extended in PM2 in order to properly reflect the

multipart program object. Class B_ESD has been extensively modified, with some

data moving from the SD record to lower level records, such as the ED and LD. In

addition, new data fields have been added to support future expansion. Class

B_RLD has also been modified for multipart modules, although not as extensively

as the ESD. These changes must be considered when converting your program

from version 1 buffers and API calls to version 2.

If your program was designed for version 1 buffers, you may not need to migrate to

version 2 (or a later version) if you are processing data only from traditional (load

module compatible) modules. However if a PM2 (or later level) program object

exploits new function, it might contain data that cannot be converted to version 1

buffer format. In this case, you will receive an error message. In addition, the binder

fast data API supports only PM1 format program objects with version 1 buffers.

If you want to convert your program to use the version 2 buffer formats and API

calls, you must consider the following:

1. The SD ESD records no longer contain the length and offset of a section (since

the section may now have more than one piece of text, in different text classes).

The lengths and offsets are now in the ED ESD records.

 Field Field Off Leng Description

 Name Type set

2 MAP_QUANTITY Binary 16 4 Number of logical records/bytes

 Sum of all classes (M)

 Zero (L)

2 MAP_NAME_SPACE Binary 20 1 Name space of label

 X’01’ External Labels (L)

 X’02’ Pseudoregisters (P)

 X’03’-X’07’ Reserved

 *** RESERVED *** Binary 21 1 Reserved.

2 MAP_RECORD_FMT Binary 22 2 Class data format/record length

 Zero (M, E)

 Record length (C,O,S,L,P,X)

 *** RESERVED *** Binary 24 8 Reserved.

Notes:

1. This entry is valid for output only.

2. Letters shown in parentheses refer to the map record type in which the flag is

valid.

Figure 38. Format for module map list entries (Part 2 of 2)

API buffer formats

Appendix D. Binder API buffer formats 263

2. The number of ESD record types has been reduced to six by combining all

section-related records (for example, PC, CM, DS, ST, ET) into a single SD

record type. The type qualifier can be used to distinguish between the various

types of SD entries.

3. The ED record is new and is required for all text and compiler-defined classes,

including ADATA.

4. An LD record is required for each entry point into the section. External

references are not bound to SD entries in PM2.

5. PR and PD formats are identical. PRs, which represent a reference to a part or

pseudoregister in a merge class, are created by the language translator and

remain with the referencing section in the module. PD entries are always

created during binding and are stored in a special summary section. The

generated PD entries are the true definers of these parts, and contain the

correct class offset, length and alignment.

6. Offsets relative to the start of the module or section in version 1 buffers have

been replaced by class and element offsets, respectively, in Version 2.

7. Extended attributes information can be identified in certain ESD and RLD record

types. Those data items are stored in the program object, but not processed in

any way by the binder.

8. Name space has been added to both ESD and RLD records, since program

symbols can be defined and referenced in multiple name spaces.

9. A new RLD type is defined for address constants that are to be set to the virtual

address of a class.

The following tables show the correspondence between data elements in the two

versions of the ESD and RLD buffers. Format codes shown have the following

meaning:

Bnn Bit string, width in bits

Cnn Character data, width in bytes

Fnn Fixed point (integer) data, width in bits.

N06 Name, consisting of halfword name length followed by pointer to string. The

IEWBUFF macro generates separate DS entries for the name length and

pointer.

PTR 4-byte pointer

New data elements are normally set to zero when processing a PM1 module. This

is not true if the new value is determined from other data present in the record.

Field correspondence for ESD records

 Table 87. Comparison of new and old ESD formats. New and old ESD formats are

compared, field-by-field. Numbers in the note column refer to notes in the conversion list

which follows the table. An “=” indicates that the field name, format, contents and meaning

are identical.

Version 2 Fields Version 1 Fields Ref

ESD_TYPE C02 ESD_TYPE C02 1

ESD_TYPE_QUAL C02 ESD_TYPE C02 2

ESD_NAME_SPACE F08 (none) 3

ESD_SCOPE C01 ESD_SCOPE C01 =

ESD_NAME N06 ESD_NAME N06 =

ESD_RES_SECTION N06 ESD_RESIDENT N06 =

API buffer formats

264 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 87. Comparison of new and old ESD formats (continued). New and old ESD formats

are compared, field-by-field. Numbers in the note column refer to notes in the conversion list

which follows the table. An “=” indicates that the field name, format, contents and meaning

are identical.

Version 2 Fields Version 1 Fields Ref

ESD_LENG F31 ESD_LENG F31 =

ESD_ALIGN F08 ESD_ALIGN F08 4

ESD_USABILITY B08 ESD_USABILITY B08 4

ESD_AMODE B08 ESD_AMODE B08 4

ESD_RMODE B08 ESD_RMODE B08 4

ESD_RECORD_FMT F15 (none) 5

ESD_LOAD_FLAGS B08 (none) 6

 RO B01 STORAGE B08 7

 NL B01 (none) 8

 MOVE B01 (none) 9

 SHR B01 (none) 9

ESD_BIND_FLAGS B08 (none) 10

 GEND B01 (none) 11

 NO_CLASS B01 (none) 12

 VL B01 (none) 13

 DESCR B01 (none) 14

ESD_BIND_CNTL B08 (none) 15

 METH B02 (none) 15

 TEXT_TYPE B04 TEXT C01 15

ESD_XATTR_CLASS N06 (none) 16

ESD_XATTR_OFFSET F31 (none) 16

ESD_SEGMENT F15 ESD_SEGMENT F15 =

ESD_REGION F15 ESD_REGION F15 =

ESD_SIGNATURE C08 (none) 17

ESD_AUTOCALL F08 ESD_AUTOCALL F08 =

ESD_STATUS B08 ESD_STATUS B08 =

ESD_TGT_SECTION N06 ESD_TARGET N06 =

ESD_RES_CLASS N06 (none) 18

ESD_ELEM_OFFSET F31 ESD_SECTION_OFFSET PTR 19

ESD_CLASS_OFFSET F31 ESD_MODULE_OFFSET PTR 19

ESD conversion notes (and PM1-PM2 differences)

The numbered items in the following list correspond to the numbers in the Ref

column in the above table.

 1. ESD_TYPE in PM2 supports only six record types: SD, ED, LD, PD, PR and

ER. The PM1 ESD type values have been moved to the ESD_TYPE_QUAL

field.

 2. ESD_TYPE_QUAL contains the PM1 ESD type value, and is used to identify

special behavioral characteristics. Routines that process all sections in the

API buffer formats

Appendix D. Binder API buffer formats 265

same way can now refer to ESD_TYPE only; those that must discriminate

between the various section types must also look at the type qualifier.

 3. ESD_NAME_SPACE is a new data element in PM2. It replaces some logic in

bind processing and, as a result, gives more binding flexibility to the

languages. For binder purposes, a name space is a set of symbols consisting

of characters from the binder’s character set and contains no duplicate

definitions. In the case of a PM1 program object, the buffer is set to one of the

following values:

v 0 - SD and ED entries.

v 1 - LD and ER entries, and PD/PR entries for external data items.

v 2 - PD/PR entries representing pseudoregisters and other parts

 4. Alignment, Usability, RMODE and AMODE are unchanged from PM1 values,

except that some have been moved to lower level ESD structures:

v Alignment to ED. PR alignment comes from old PR record.

v AMODE to LD. Each external label can have its own AMODE, but can be

overridden by a referencing ALIAS specification.

v RMODE to ED. This is necessary for multipart loading.

All remain as valid SD fields for compatibility, although they are copied to the

other record types prior to binding.

 5. ESD_RECORD_FMT is a new data element in PM2. It is used only on the ED

record type, and indicates the structure and record length of the data

contained in the class being described by the ED record. As such it becomes a

class attribute, against which the record length field in any PUTD buffers for

that class is validated.

 6. ESD_LOAD_FLAGS is a new data element in PM2. Its purpose is to enable

multiclass loading by the program management Loader, and together with

RMODE contains the various attributes the loader needs for proper placement

of the class segment in storage. Load flags are extracted from input of all

sources.

 7. The PM1 format defines ESD_STORAGE value X'10' as representing

read-only storage. This field is reduced to a single load flag in PM2, RO,

where B'1' means read-only.

 8. Loader attribute NL, if set, indicates that the class segment is not to be loaded

with the module.

 9. These are new PM2 data elements.

10. Bind flags ESD_BIND_FLAGS are new PM2 data elements. In a PM2 program

object, they represent binding attributes that are derived from other sources

during binding. They control the binding and output processes of the binder.

Four flags have been defined, GEND, NO_CLASS, VL and DESCR.

11. GEND indicates that the defined entity has been generated by the binder. It is

used with:

v SD records for SEGTABs and ENTABs and special sections (X'00000001'

and X'00000003').

v ED records for B_IDRB and B_MAP classes.

v LD records created by the binder for each CSECT.

v PD summary records created by the binder for parts.

12. NO_CLASS indicates that there is no initial data in this class. The element is

filled with the fill byte, if specified, during bind and/or load.

13. VL indicates that the byte stream data consists of varying length records, each

preceded by a halfword length field.

API buffer formats

266 z/OS V1R9.0 MVS Program Management: Advanced Facilities

14. DESCR indicates whether the class contains text or descriptive data. Text is

byte stream data that can contain or be the target of address constants.

Descriptive data is everything else. Both text and descriptive data could be

either loaded or not.

15. ESD_BIND_CNTL contains two data elements needed to control the binding

process. Unlike ESD_BIND_FLAGS, this data is provided by the language

translator. This field consists of two sub-elements, METH and TEXT_TYPE.

v Binder control field METH identifies the binding method to be used on the

class. It is specified only on the ED record, and should be set to B'00' on

other record types for PM2 program objects.

v The field ESD_TEXT has been reduced to a half-byte field under the name

TEXT_TYPE. The data is meaningful only for external references, on the ER

and LD records, and allows cursory interface matching during binding. The

values represent the type of text that is defined by the label (LD) or

expected by the reference (ER) and are:

– 0 - Unspecified. If either the LD and/or ER have this value, the interface

is accepted by the binder.

– 1 - Data. For data references.

– 2 - Instructions. For calls.

– 3-15 - Undefined value for special translator usage.

16. These are new PM2 data elements. ESD_XATTR_CLASS and

ESD_XATTR_OFFSET locate extended attributes for a label (LD) or external

reference (ER). On SD, ED, PR and PD records, these fields are meaningless

and are set to zero.

IBM language products are not currently using signatures, extended attributes,

or interface matching.

17. SIGNATURE is a new data element in PM2. It allows quick interface matching

between reference and definition during the binding process, avoiding the

invocation of a time-consuming interface validation exit if the signatures match

or are not specified.

IBM language products are not currently using signatures, extended attributes

or interface matching.

18. This is a new PM2 data element. For a PM2 program object, CLASS is

displayed on all LD, PD and ER records and should be set to zero on SD and

ED. For LD, PD and ER records, it is the data class containing the label or

part.

19. Change of field names: “section” becomes “element”, “module” becomes

“class”.

 Table 88. ESD element usage. Table shows which elements are displayed, by ESD record

type. For usage of sub-elements, refer to individual record type formats.

Element Name SD ED LD PR ER

ESD_NAME R R R R R

ESD_RES_SECT O O O O O

ESD_TARGET C

ESD_RES_CLASS R R C

ESD_XATTR_CLASS O O

ESD_XATTR_OFFSET O O

ESD_LENG R R

ESD_ELEM_OFFSET R C

API buffer formats

Appendix D. Binder API buffer formats 267

Table 88. ESD element usage (continued). Table shows which elements are displayed, by

ESD record type. For usage of sub-elements, refer to individual record type formats.

Element Name SD ED LD PR ER

ESD_CLASS_OFFSET C C C C

ESD_REGION C

ESD_SEGMENT C

ESD_TYPE R R R R R

ESD_TYPE_QUAL R O

ESD_SCOPE R R

ESD_NAME_SPACE R C C R

ESD_RECORD_FMT R

ESD_LOAD_FLAGS R

ESD_BIND_FLAGS C R C

ESD_BIND_CNTL R R R

ESD_ALIGN O R R

ESD_USABILITY R

ESD_RMODE R

ESD_AMODE O R

ESD_AUTOCALL C

ESD_STATUS C

ESD_SIGNATURE C

Note: R = Required on input, displayed on output; O = Optional on input, displayed on

output; C = Recalculated by Bind.

Field correspondence for RLD records

 Table 89. Comparison of new and old RLD formats. New and old workmod RLD formats

are compared, field-by-field. Numbers in the notes column refer to notes in the conversion

list that follows the table. An “=” in this column indicates that the two formats are identical in

name, format, content and meaning.

Version 2 Fields Version 1 Fields Ref

RLD_TYPE F08 RLD_TYPE F08 1

RLD_STATUS F08 RLD_STATUS F08 =

RLD_RES_IDENT N06 RLD_RESIDENT N06 =

RLD_ADCON_LENG F15 RLD_ADCON_LENG F15 =

RLD_RES_CLASS N06 (none) 2

RLD_ELEM_OFFSET F31 RLD_SECTION_OFFSET F31 3

RLD_CLASS_OFFSET F31 RLD_MODULE_ OFFSET F31 3

RLD_ADCON_BDY F08 RLD_ADCON_BDY F08 =

RLD_BIND_FLAGS B08 (none) 4

 DIRECTION B01 RLD_ADCON_ DIRECTION F08 5

 HOBSET B01 (none) 4

 INT_EXT B01 (none) 4

API buffer formats

268 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 89. Comparison of new and old RLD formats (continued). New and old workmod

RLD formats are compared, field-by-field. Numbers in the notes column refer to notes in the

conversion list that follows the table. An “=” in this column indicates that the two formats are

identical in name, format, content and meaning.

Version 2 Fields Version 1 Fields Ref

 HOBCHG B01 (none) 4

RLD_XATTR_CLASS N06 (none) 4

RLD_XATTR_OFFSET F31 (none) 4

RLD_NAME_SPACE F08 (none) 6

RLD_TARGET N06 RLD_TARGET N06 =

RLD conversion notes (and PM1-PM2 differences)

The numbered items in the following list correspond to the numbers in the Ref

column in the above table.

1. This is equivalent to the PM1 field RLD_TYPE. A new RLD type added in PM2,

type 21, which is used to address the origin of any loaded class segment.

2. Name of the class containing the adcon. For PM1 program objects,

RLD_CLASS is set to B_TEXT.

3. Module and section offset have been replaced with the offset relative to the start

of the class and element, respectively.

4. New PM2 field. Is initialized to zero unless otherwise noted.

5. The 8-bit PM1 direction flag is reduced to a single bind flag in PM2.

6. For A- and V-type adcons (types 10 & 20), RLD_NAME_SPACE=1. For Q-type

adcons (type 30), RLD_NAME_SPACE=2. Otherwise, RLD_NAME_SPACE=0.

Version 3 buffer formats

VERSION=3 must be specified on the IEWBUFF macro to obtain buffers in this

format.

Version 3 buffers support new program management features introduced in PM3.

Most buffers have not changed except for the version number, but version 3 is

supported by IEWBUFF for all classes, whether or not there is a format change.

Differences between versions 2 and 3 include:

v ESD buffer has changed slightly to support DLLs and C/C++ semantic s.

v RLD buffer has changed slightly to support RLDs resident in parts.

v A new binder-defined class, B_PARTINIT, has a new buffer format named

IEWBPTI.

This section contains the buffer layouts that have changed or have been added in

version 3. As indicated in Table 84 on page 242, all the other buffer formats will be

the same for version 3 as in version 2.

API buffer formats

Appendix D. Binder API buffer formats 269

ESD entry (version 3)

Please note that the version 3 ESD buffer has been slightly changed from the

version 2 buffer.

API buffer formats

270 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Field Field Off Leng Description

 Name Type set

 IEWBESD Binder ESD buffer, Version 3

 ESDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBESD"

 ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 ESDH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 ESDH_ENTRY_LENG Binary 16 4 Length of each entry

 ESDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved

 ESDH_ENTRY_ORIGIN 32 First ESD entry

 ESD_ENTRY ESD entry

 ESD_TYPE Char 0 2 ESD Type

 C’ ’ Null Entry

 C’SD’ Control Section

 C’LD’ Label Definition

 C’ER’ External Reference

 C’PR’ Part Reference

 C’PD’ Part Definition

 C’ED’ Element Definition

 ESD_TYPE_QUAL Char 2 2 ESD Type Qualifier

 C’ ’ (no qualification)

 C’SD’ Section Definition (SD)

 C’CM’ Common (SD)

 C’ST’ Segment Table (SD)

 C’ET’ Entry Table (SD)

 C’PC’ Unnamed Section (SD)

 C’PR’ Part Reference (PR, PD)

 C’PD’ Part Definition (PR, PD)

 C’ER’ External Reference (ER)

 C’WX’ Weak Reference (ER)

 ESD_NAME_SPACE Binary 4 1 Name Space for symbols

 X’00’ Class and section names (SD, ED)

 X’01’ Labels and references (LD, ER)

 X’02’ Pseudoregisters (PR, PD)

 X’03’ Parts (PR, PD) in merge classes

 X’04’-x’07’ Reserved

 ESD_SCOPE Char 5 1 Scope of Name

 ’ ’ Not applicable

 ’S’ Section (Types SD/private,ST,ET)

 ’M’ Module (Types SD/CSECT,LD,

 ER/weak,CM,PR,DS,PD)

 ’L’ Library (Type ER/strong)

 ’X’ Symbol can be IMPORTED or

 EXPORTED.

 ESD_NAME Name 6 6 Symbol represented by ESD record

 ESD_NAME_CHARS Binary 6 2 length of name in bytes

 ESD_NAME_PTR Pointer 8 4 pointer to name string

 ESD_SYMBOL_ATTR Binary 12 1 Symbol attributes

 1... ON = strong ref or def.

 OFF = weak ref or def.

 .1.. ON = this symbol can be renamed

 ..1. ON = Symbol is a descriptor

 ...1 ON = symbol is a C++ mangled name

 1... ON = symbol uses XPLINK linkage

 conventions

 1.. Environment exists

 11 ** Reserved **

 ESD_FILL_CHAR Char 13 1 Value to fill with

1 ESD_RES_SECTION Name 14 6 Name of containing section

 ESD_RESIDENT_CHARS Binary 14 2 length of name in bytes

 ESD_RESIDENT_PTR Pointer 16 4 pointer to name string

 ESD_LENG Binary 20 4 Length of defined element

 (ED, PD)

Figure 39. Format for ESD entries (Part 1 of 3)

API buffer formats

Appendix D. Binder API buffer formats 271

Field Field Off Leng Description

 Name Type set

 ESD_ALIGN Binary 24 1 Alignment specification from

 language processor. Indicates

 Alignment of section contribution

 within class segment

 X’00’ Byte alignment (PD, PR)

 X’01’ Halfword (PD, PR)

 X’02’ Fullword (PD, PR)

 X’03’ Doubleword (PD, PR, ED)

 X’0C’ 4K page (ED)

 ESD_USABILITY Binary 25 1 Reusability of Section (SD)

 X’00’ Unspecified

 X’01’ Nonreusable

 X’02’ Reusable

 X’03’ Reentrant

 X’04’ Refreshable

 ESD_AMODE Bit 26 1 Addressing Mode for Section or

 label (SD, LD)

 X’00’ Unspecified

 X’01’ AMODE 24

 X’02’ AMODE 31

 X’03’ AMODE ANY (24 or 31)

 X’04’ AMODE MIN

 X’05’ Unused, reserved

 X’06’ AMODE 64

 ESD_RMODE Bit 27 1 Residence Mode for class element

 (SD, ED)

 X’01’ RMODE 24

 X’03’ RMODE ANY (24 or 31)

 ESD_RECORD_FMT Binary 28 2 Record format for class (ED)

 H’1’ Byte stream

 H’>1’ Fixed length records

 Field Field Off Leng Description

 Name Type set

 ESD_LOAD_FLAGS Bit 30 1 Load Attributes (ED)

 1... Read-only

 .1.. Do not load with module

 ..1. Moveable

 ...1 Shareable

 1... Deferred

 111 Reserved

 ESD_BIND_FLAGS Bit 31 1 Bind Attributes

2 1... Binder generated (SD, ED, LD)

2 .1.. No class data available (ED)

2 ..1. Variable length records (ED)

 ...1 Descriptive data (not text) (ED)

 1... ON = class contains part initializers (ED)

 1.. ON = fill character has been specified

 (ED)

 1. Class has padding

 1 ** Reserved **

 ESD_BIND_CNTL Bit 32 1 Bind control information

1 1... Removable class(ED)

1 .x.. ** Reserved **

1 ..xx Binding method (ED)

1 ..00 CAT (Catenated text)

1 ..01 MRG (Merged parts)

1 ..1x ** Reserved **

 *** RESERVED *** Char 33 1 Reserved

Figure 39. Format for ESD entries (Part 2 of 3)

API buffer formats

272 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Field Field Off Leng Description

 Name Type set

 ESD_XATTR_CLASS Name 34 6 Extended attributes class

 (LD, ER)

 ESD_XATTR_CLASS_CHARS

 Binary 34 2 length of name in bytes

 ESD_XATTR_CLASS_PTR

 Pointer 36 4 pointer to name string

 ESD_XATTR_OFFSET Binary 40 4 Extended attributes element offset

 (LD, ER)

2 ESD_SEGMENT Binary 44 2 Overlay segment number (SD)

2 ESD_REGION Binary 46 2 Overlay region number (SD)

 ESD_SIGNATURE Char 48 8 Interface signature

2 ESD_AUTOCALL Binary 56 1 Autocall specification (ER)

 1... ** Reserved **

 .1.. Entry in LPA. If ON, name is

 an alias.

 ..xx xxxx ** Reserved **

2 ESD_STATUS Bit 57 1 Resolution status (ER)

 1... Symbol is resolved

 .1.. Processed by autocall

 ..1. INCLUDE attempted

 ...1 Member not found

 1... Resolved outside module

 1.. NOCALL or NEVERCALL

 1. No strong references

 1 Special call library

2 ESD_TGT_SECTION Name 58 6 Target section (ER)

 ESD_TARGET_CHARS Binary 58 2 length of name in bytes

 ESD_TARGET_PTR Pointer 60 4 pointer to name string

 *** RESERVED *** Char 64 2 Reserved

 ESD_RES_CLASS Name 66 6 Name of containing class

 (LD, PD) or target class (ER)

 ESD_RES_CLASS_CHARS

 Binary 66 2 length of name in bytes

 ESD_RES_CLASS_PTR

 Pointer 68 4 pointer to name string

3 ESD_ELEM_OFFSET Binary 72 4 Offset within class element

 (LD, ER)

2 ESD_CLASS_OFFSET Binary 76 4 Offset within class segment

 (ED, LD, PD, ER)

 *** RESERVED *** Char 80 2 Reserved

 ESD_ADA_CHARS Binary 82 2 Environment name length (LD)

 ESD_ADA_PTR Pointer 84 4 Pointer to name of environment (LD)

 *** RESERVED *** Char 88 4 Reserved

 ESD_PRIORITY Binary 92 4 Binding priority

Notes:

1. This entry is ignored on input to the binder.

2. Recalculated by the binder.

3. Calculated on the ED and ER records, required input to LD.

Figure 39. Format for ESD entries (Part 3 of 3)

API buffer formats

Appendix D. Binder API buffer formats 273

RLD entry (version 3)

The RLD Entry has been changed slightly from version 2.

 Field Field Off Leng Description

 Name Type set

 IEWBRLD Binder RLD buffer, Version 3

 RLDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBRLD"

 RLDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 RLDH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 RLDH_ENTRY_LENG Binary 16 4 Length of each entry

 RLDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 RLDH_ENTRY_ORIGIN 32 First RLD entry

 RLD_ENTRY RLD entry

 RLD_TYPE Binary 0 1 Adcon type

 X’10’ Branch type (V-con)

 X’20’ Nonbranch type (A-con)

 X’21’ Address of class segment

 X’30’ Pseudoregister (Q-con)

 X’40’ Class or PRV length (CXD)

1 X’50’ Loader token

 X’60’ Relative immediate type

 X’70’ Reference to environment

2 RLD_STATUS Binary 1 1 Adcon status

 X’01’ References an unresolved symbol

 X’02’ References a resolved symbol

 X’03’ References a nonrelocatable

 symbol

1 RLD_RES_IDENT Name 2 6 Name of section containing adcon

 ("P-pointer")

 RLD_RESIDENT_CHARS Binary 2 2 length of name in bytes

 RLD_RESIDENT_PTR Pointer 4 4 pointer to name string

 RLD_ADCON_LENG Binary 8 2 Adcon length

 RLD_RES_CLASS Name 10 6 Name of class containing adcon

 RLD_CLASS_CHARS Binary 10 2 length of name in bytes

 RLD_CLASS_PTR Pointer 12 4 pointer to name string

 RLD_ELEM_OFFSET Binary 16 4 Offset of the address constant

 within the containing element

2 RLD_CLASS_OFFSET Binary 20 4 Offset of the address constant

 within the class segment

2 *** RESERVED *** Binary 24 1 Reserved

 RLD_BIND_FLAGS Bit 25 1 Bind attributes

 1... Set high order bit from

 AMODE of target

 .1.. Relocation sign (direction)

 ’0’=positive, ’1’=negative

 ..1. Scope of reference

 ’0’=internal, ’1’=external

 ...1 High order bit of adcon

 reset by binder

Figure 40. Format for RLD entries (Part 1 of 2)

API buffer formats

274 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Field Field Off Leng Description

 Name Type set

 RLD_XATTR_CLASS Name 26 6 Extended attributes class

 RLD_XATTR_CLASS_CHARS

 Binary 26 2 length of name in bytes

 RLD_XATTR_CLASS_PTR

 Pointer 28 4 pointer to name string

 RLD_XATTR_OFFSET Binary 32 4 Extended attributes element offset

 RLD_NAME_SPACE Binary 36 1 Name space of reference

 X’00’ Types 21, 40

 X’01’ External reference (10, 20)

 X’02’ Pseudoregisters (30)

 X’03’ Parts (PR,PD) in writeable static

 X’04’-X’07’ Available to language products

 *** RESERVED *** Binary 37 1 Reserved, must be zeros

 RLD_TARGET Name 38 6 Name of referenced symbol (for

 external references and Q-cons)

 or class (internal references

 and class references and lengths)

 ("R-Pointer")

 RLD_TARGET_CHARS Binary 38 2 length of name in bytes

 RLD_TARGET_PTR Pointer 40 4 pointer to name string

 *** RESERVED *** Binary 44 2 Reserved, must be zeros

 RLD_RES_PART Name 46 6 Name of resident part.

 RLD_RES_PART_CHARS Binary 46 2 length of name in bytes

 RLD_RES_PART_PTR Pointer 48 4 pointer to name string

Notes:

1. Ignored on input.

2. Recalculated by the binder.

Figure 40. Format for RLD entries (Part 2 of 2)

API buffer formats

Appendix D. Binder API buffer formats 275

PARTINIT entry (version 3)

The PARTINIT entry has been added for version 3.

Migration to version 3 buffers

Version 3 buffers are very similar to Version 2 buffers. The change from Version 2

to Version 3 is much smaller than the change from Version 1 to Version 2.

Therefore, if you are currently using Version 1 buffers, see the discussion in

“Migration to version 2 buffers” on page 263 before reading this section.

If your program was designed for PM2 format, it should continue to work without

change. Fast data will convert a PM3 program object to PM2 (but not to PM1).

Part initializers

Part Initializer buffers are not supported in version 1 or 2. Part initializers contain

text data to be placed in parts (defined by PR or PD ESD records) in merge

classes.

ESD conversion notes

The ESD records contain the following new fields:

1. ESD_SYMBOL_ATTR

a. strong or weak

If definition - a strong definition will override a weak definition. Multiple weak

definitions are allowed.

 Field Field Off Leng Description

 Name Type set

 IEWBPTI Binder PARTINIT buffer, Version 3

 PTIH_BUFFER_ID Char 0 8 Buffer identifier "IEWBPTI"

 PTIH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 PTIH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 PTIH_ENTRY_LENG Binary 16 4 Length of each entry

 PTIH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, must be zeros

 PTIH_ENTRY_ORIGIN 32 First PARTINIT entry

 PTI_ENTRY PARTINIT entry

 PTI_DATA_LENG Binary 0 2 Record length

 PTI_DATA_REP Binary 2 2 Repetition factor

 *** RESERVED *** Binary 4 2 Reserved, must be zeros

 PTI_DATA_CLASS_LL Binary 6 2 Class name length

 PTI_DATA_CLASS_PTR Pointer 8 4 Pointer to class name

 PTI_DATA_NAME_LL Binary 12 2 Part Initializer name length

 PTI_DATA_NAME_PTR Pointer 14 4 Pointer to part initializer name

 PTI_DATA_OFFSET Pointer 18 4 Placement of data within part

 PTI_DATA_BYTE Undef. 22 var Beginning of data (the length varies from

 1 to a maximum which takes into account

 the combined size of the buffer header,

 the buffer names list area, and the entry

 header; while the actual size for each

 entry will depend on its content, the

 maximum given a single entry

 (PTIH_ENTRY_COUNT = 1) is BYTES-1078 or

 SIZE depending which keyword is used)

Figure 41. Format for PARTINIT entries

API buffer formats

276 z/OS V1R9.0 MVS Program Management: Advanced Facilities

If reference - unresolved weak reference will not result in an error message.

b. renameable symbol is eligible for renaming under control of UPCASE option,

RENAME control statements, and C run-time library renaming algorithms.

c. descriptor symbol represents a linkage descriptor.

2. ESD_LOAD_FLAGS is a new attribute flag (DEFER) to indicate a deferred load

class has been defined. This bit should be interpreted in conjunction with the

do-not-load flag (NL) as follows:

 NL DEFER MEANING

0 0 INITIAL LOAD

0 1 DEFERRED LOAD

1 0 NO LOAD

3. The ESD_PRIORITY field can be used to order the PRs in a merge class. The

lowest priority parts in the output module will be assigned the smallest offset.

RLD conversion notes

RLD_RES_PART can be set to specify the name of the resident part for an RLD

that describes an adcon within a part. If RLD_RES_PART is set,

RLD_ELEM_OFFSET must be interpreted as the offset of the adcon from the

beginning of the part. The part name must match the name on a PR or PD type

ESD record.

Version 4 buffer formats

Version 4 buffers are those supported in OS/390 DFSMS Version 2 Release 10

program management (PM3). VERSION=4 must be specified on the IEWBUFF

macro to obtain buffers in this format. Most buffers have not changed except for the

version number, but VERSION=4 is supported by IEWBUFF for all buffers, whether

or not there is a format change.

The name list has changed from version 2. Binder Name List buffer has has been

extended to provide additional information about segments within a class. Segment

ID and segment offset fields have been added. Boundary alignment, which was

added late to the version 2/3 format as a temporary expedient, has been removed

because segment offset provides better information.

This section contains the buffer layouts that have changed or have been added in

Version 4. As indicated in Table 84 on page 242, all the other buffer formats will be

the same for Version 4 as in Version 3.

Binder name list (version 4)

Please note that the version 4 binder name list buffer has been slightly changed

from the version 3 buffer.

API buffer formats

Appendix D. Binder API buffer formats 277

Version 5 buffer formats

Version 5 buffers are first supported in z/OS Version 1 Release 3 program

management (PM4). VERSION=5 must be specified on the IEWBUFF macro to

obtain buffers in this format. Most buffers have not changed, but VERSION=5 is

supported by IEWBUFF for all buffers, whether or not there is a format change.

The PMAR is a buffer format added in version 5. It is the primary conduit of

information from the binder to the program loader. The PMAR is mapped by the

system mapping macro IEWPMAR. The PMAR buffer format provided by IEWBUFF

only reserves the appropriate amount of storage without defining its layout. For

additional information about IEWPMAR, see z/OS MVS Data Areas, Vol 2

(DCCB-ITZYRETC).

 Field Field Off Leng Description

 Name Type set

 IEWBBNL Binder Name List buffer, Version 4

 BNLH_BUFFER_ID Char 0 8 Buffer identifier "IEWBBNL"

 BNLH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 BNLH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 BNLH_ENTRY_LENG Binary 16 4 Length of each entry in the list

 BNLH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 BNLH_ENTRY_ORIGIN 32 First namelist entry

1 BNL_ENTRY Namelist Entry

 BNL_CLS_LENGTH Binary 0 4 Class segment length

 BNL_BIND_FLAGS Bit 4 1 Bind Attributes

 1... Generated by Binder

 .1.. No data present

 ..1. Varying length records

 ...1 Descriptive data (non-text)

 1... Class has initial data

 1.. Fill character specified

 1 Class validation error

 BNL_LOAD_FLAGS Bit 5 1 Loadability (NTYPE=CLASS only)

 1... Read Only

 ..1. A DEFER load class

 .10. A NOLOAD class

 .00. Class is initially loaded

 ...1 Sharable

 1... Moveable (AdCon free)

 BNL_NAME_CHARS Binary 6 2 Length of name

 BNL_NAME_PTR Pointer 8 4 Pointer to class or section

 name

 BNL_ELEM_COUNT Binary 12 4 Number of elements in class

 or section

 BNL_SEGM_ID Binary 16 2 Segment ID

 BNL_PAD1 Binary 18 2 Reserved, set to zero

 BNL_SEGM_OFF Binary 20 4 Class offset from start

 of segment

Notes:

1. This entry is valid for output only.

Figure 42. Format for binder name list entries

API buffer formats

278 z/OS V1R9.0 MVS Program Management: Advanced Facilities

One additional flag byte, ESD_ATTRIBUTES, has been defined in the ESD buffer,

using a previously reserved field. The version 5 layout is defined in Figure 44 on

page 280.

PMAR entry (version 5)

 Field Field Off Leng Description

 Name Type set

 IEWBPMR Binder PMAR buffer, Version 5

 PMRH_BUFFER_ID Char 0 8 Buffer identifier "IEWBPMR"

 PMRH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 PMRH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 PMRH_ENTRY_LENG Binary 16 4 Length of entries (always 1)

 PMRH_ENTRY_COUNT Binary 20 4 Number of entries (bytes) in the buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 PMRH_ARRAY Undef. 32 var PMAR data (length varies from 1 to 1024 bytes

 depending on value in PMRH_ENTRY_COUNT;

 typically, PM4 has 136 bytes, PM3 has 128 bytes,

 PM2 has 112 bytes, and PM1 has 88 bytes of PMAR

Figure 43. Format for PMAR entries

API buffer formats

Appendix D. Binder API buffer formats 279

ESD entry (version 5)

 Field Field Off Leng Description

 Name Type set

 IEWBESD Binder ESD buffer, Version 5

 ESDH_BUFFER_ID Char 0 8 Buffer identifier "IEWBESD"

 ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 ESDH_VERSION Binary 12 1 Version identifier (Constant 2)

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 ESDH_ENTRY_LENG Binary 16 4 Length of each entry

 ESDH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved

 ESDH_ENTRY_ORIGIN 32 First ESD entry

 ESD_ENTRY ESD entry

 ESD_TYPE Char 0 2 ESD Type

 C’ ’ Null Entry

 C’SD’ Control Section

 C’LD’ Label Definition

 C’ER’ External Reference

 C’PR’ Part Reference

 C’PD’ Part Definition

 C’ED’ Element Definition

 ESD_TYPE_QUAL Char 2 2 ESD Type Qualifier

 C’ ’ (no qualification)

 C’SD’ Section Definition (SD)

 C’CM’ Common (SD)

 C’ST’ Segment Table (SD)

 C’ET’ Entry Table (SD)

 C’PC’ Unnamed Section (SD)

 C’PR’ Part Reference (PR, PD)

 C’PD’ Part Definition (PR, PD)

 C’ER’ External Reference (ER)

 C’WX’ Weak Reference (ER)

 ESD_NAME_SPACE Binary 4 1 Name Space for symbols

 X’00’ Class and section names (SD, ED)

 X’01’ Labels and references (LD, ER)

 X’02’ Pseudoregisters (PR, PD)

 X’03’ Parts(PR, PD) in merge classes

 X’04’-x’07’ Reserved

 ESD_SCOPE Char 5 1 Scope of Name

 ’ ’ Not applicable

 ’S’ Section (Types SD/private,ST,ET)

 ’M’ Module (Types SD/CSECT,LD,

 ER/weak,CM,PR,DS,PD)

 ’L’ Library (Type ER/strong)

 ’X’ Symbol can be IMPORTED or

 EXPORTED.

 ESD_NAME Name 6 6 Symbol represented by ESD record

 ESD_NAME_CHARS Binary 6 2 length of name in bytes

 ESD_NAME_PTR Pointer 8 4 pointer to name string

Figure 44. Format for ESD entries (Part 1 of 4)

API buffer formats

280 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Field Field Off Leng Description

 Name Type set

 ESD_SYMBOL_ATTR Binary 12 1 Symbol attributes

 1... ON = strong ref or def.

 OFF = weak ref or def.

 .1.. ON = this symbol can be renamed

 ..1. ON = Symbol is a descriptor

 ...1 ON = symbol is a C++ mangled name

 1... ON = symbol uses XPLINK linkage

 conventions

 1.. Environment exists

 11 ** Reserved **

 ESD_FILL_CHAR Char 13 1 Value to fill with

1 ESD_RES_SECTION Name 14 6 Name of containing section

 ESD_RESIDENT_CHARS Binary 14 2 length of name in bytes

 ESD_RESIDENT_PTR Pointer 16 4 pointer to name string

 ESD_LENG Binary 20 4 Length of defined element

 (ED, PD)

 ESD_ALIGN Binary 24 1 Alignment specification from

 language processor. Indicates

 Alignment of section contribution

 within class segment (SD, ED, PD)

 X’00’ Byte alignment (PD, PR)

 X’01’ Halfword (PD, PR)

 X’02’ Fullword (PD, PR)

 X’03’ Doubleword (PD, PR, ED)

 X’04’ Quadword (PR, PD, ED)

 X’0C’ 4K page (ED)

 ESD_USABILITY Binary 25 1 Reusability of Section (SD)

 X’00’ Unspecified

 X’01’ Nonreusable

 X’02’ Reusable

 X’03’ Reentrant

 X’04’ Refreshable

Figure 44. Format for ESD entries (Part 2 of 4)

API buffer formats

Appendix D. Binder API buffer formats 281

Field Field Off Leng Description

 Name Type set

 ESD_AMODE Bit 26 1 Addressing Mode for Section or

 label (SD, LD)

 X’00’ Unspecified

 X’01’ AMODE 24

 X’02’ AMODE 31

 X’03’ AMODE ANY (24 or 31)

 X’04’ AMODE MIN

 X’05’ Unused, reserved

 X’06’ AMODE 64

 ESD_RMODE Bit 27 1 Residence Mode for class element

 (SD, ED)

 X’01’ RMODE 24

 X’03’ RMODE ANY (24 or 31)

 X’04’ RMODE 64

 ESD_RECORD_FMT Binary 28 2 Record format for class (ED)

 H’1’ Byte stream

 H’>1’ Fixed length records

 ESD_LOAD_FLAGS Bit 30 1 Load Attributes (ED)

 1... Read-only

 .1.. Do not load with module

 ..1. Moveable

 ...1 Shareable

 1... Deferred

 111 Reserved

 ESD_BIND_FLAGS Bit 31 1 Bind Attributes

2 1... Binder generated (SD, ED, LD)

2 .1.. No class data available (ED)

2 ..1. Variable length records (ED)

 ...1 Descriptive data (not text) (ED)

 1... ON = class contains part initializers (ED)

 1.. ON = fill character has been specified (ED)

 1. Class has padding

 1 ** Reserved **

 ESD_BIND_CNTL Bit 32 1 Bind control information

1 1... Removable class(ED)

1 .x.. ** Reserved **

1 ..xx Binding method (ED)

1 ..00 CAT (Catenated text)

1 ..01 MRG (Merged parts)

1 ..1x ** Reserved **

 ESD_ATTRIBUTES Bit 33 1 General attributes

 4 1... Compiled as system LE

 4 .1.. Compiled as lightweight LE

 ..11 ** Reserved **

 4 xx.. Error severity for dups (PD, LD)

 00.. - I-level

 01.. - W-level

 10.. - E-level

 11.. - S-level

 1. ** Reserved **

 1 ** Reserved **

Figure 44. Format for ESD entries (Part 3 of 4)

API buffer formats

282 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Version 6 buffer formats

Version 6 buffers are supported in z/OS Version 1 Release 5. CUI and LIB are

buffer formats added in version 6. The CUI buffer is used to get compile unit

information and LIB is used to return library path information. In addition, the BNL

buffer has changed.

 Field Field Off Leng Description

 Name Type set

 ESD_XATTR_CLASS Name 34 6 Extended attributes class

 (LD, ER)

 ESD_XATTR_CLASS_CHARS

 Binary 34 2 length of name in bytes

 ESD_XATTR_CLASS_PTR

 Pointer 36 4 pointer to name string

 ESD_XATTR_OFFSET Binary 40 4 Extended attributes element offset

 (LD, ER)

2 ESD_SEGMENT Binary 44 2 Overlay segment number (SD)

2 ESD_REGION Binary 46 2 Overlay region number (SD)

 ESD_SIGNATURE Char 48 8 Interface signature

2 ESD_AUTOCALL Binary 56 1 Autocall specification (ER)

 1... ** Reserved **

 .1.. Entry in LPA. If ON, name is

 an alias.

 ..xx xxxx ** Reserved **

2 ESD_STATUS Bit 57 1 Resolution status (ER)

 1... Symbol is resolved

 .1.. Processed by autocall

 ..1. INCLUDE attempted

 ...1 Member not found

 1... Resolved outside module

 1.. NOCALL or NEVERCALL

 1. No strong references

 1 Special call library

2 ESD_TGT_SECTION Name 58 6 Target section (ER)

 ESD_TARGET_CHARS Binary 58 2 length of name in bytes

 ESD_TARGET_PTR Pointer 60 4 pointer to name string

 *** RESERVED *** Char 64 2 Reserved

 ESD_RES_CLASS Name 66 6 Name of containing class

 (LD, PD) or target class (ER)

 ESD_RES_CLASS_CHARS

 Binary 66 2 length of name in bytes

 ESD_RES_CLASS_PTR

 Pointer 68 4 pointer to name string

3 ESD_ELEM_OFFSET Binary 72 4 Offset within class element

 (LD, ER)

2 ESD_CLASS_OFFSET Binary 76 4 Offset within class segment

 (ED, LD, PD, ER)

 *** RESERVED *** Char 80 2 Reserved

 ESD_ADA_CHARS Binary 82 2 Environment name length (LD)

 ESD_ADA_PTR Pointer 84 4 Pointer to name of environment (LD)

 *** RESERVED *** Char 88 4 Reserved

 ESD_PRIORITY Binary 92 4 Binding priority

Notes:

1. This entry is ignored on input to the binder.

2. Recalculated by the binder.

3. Calculated on the ED and ER records, required input to LD.

4. Valid for SDs only.

Figure 44. Format for ESD entries (Part 4 of 4)

API buffer formats

Appendix D. Binder API buffer formats 283

LIB entry (version 6)

 Field Field Off Leng Description

 Name Type set

 IEWBLIB Binder LIB buffer, Version 6

 LIBH_BUFFER_ID Char 0 8 Buffer identifier "IEWBLIB"

 LIBH_BUFFER_LENG Binary 8 4 Length of the buffer, including the header

 LIBH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 LIBH_ENTRY_LENG Binary 16 4 Length of entries (always 1)

 LIBH_ENTRY_COUNT Binary 20 4 Number of entries (bytes) in the buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 LIB_ARRAY Undef. 32 var Library Path data (length varies from 1 to 1024 bytes,

 depending on value in LIBH_ENTRY_COUNT)

Figure 45. Format for LIB entries

API buffer formats

284 z/OS V1R9.0 MVS Program Management: Advanced Facilities

CUI entry (version 6)

Notes:

1. The header record contains information about the target workmod as a whole.

The format is the same as that of the other records. CUI_CU,

CUI_SOURCE_CU and CUI_CU_SEQ will always be zero in the header record.

2. Fields which have the comment ’original’ refer to the object module used to

build the program object the first time. These field contents are not changed if

the program object is rebound. However, this information will be available only if

 Field Field Off Leng Description

 Name Type set

 IEWBCUI Binder CUI buffer, Version 6

 CUIH_BUFFER_ID Char 0 8 Buffer identifier "IEWBCUI"

 CUIH_BUFFER_LENG Binary 8 4 Length of the buffer, including the header

 CUIH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 CUIH_ENTRY_LENG Binary 16 4 Length of entries

 CUIH_ENTRY_COUNT Binary 20 4 Number of entries (bytes) in the buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 CUIH_ENTRY_ORIGIN 32 First compile unit entry

 CUI_ENTRY Compile Unit Entry

 CUI_CU Binary 0 4 Compile unit number

 CUI_SOURCE_CU Binary 4 4 Source of compile unit number

 *** RESERVED *** Binary 8 2 Reserved, must be zero

 CUI_MEMBER_LEN Binary 10 2 Length of member

 CUI_MEMBER_PTR Pointer 12 4 Pointer to the member

 *** RESERVED *** Binary 16 2 Reserved, must be zero

 CUI_PATH_LEN Binary 18 2 Length of path

 CUI_PATH_PTR Pointer 20 4 Pointer to the path

 *** RESERVED *** Binary 24 2 Reserved, must be zero

 CUI_DSNAME_LEN Binary 26 2 Length of dsname

 CUI_DSNAME_PTR Pointer 28 4 Pointer to the dsname

 CUI_DDNAME Char 32 8 Ddname

 *** RESERVED *** Binary 40 2 Reserved, must be zero

 CUI_CONCAT Binary 42 1 Concat

 CUI_TYPE Binary 43 1 Source type

 X’00’ Load module

 X’01’ Generated by PUTD API version 1

 X’02’ Generated by PUTD API version 2 or higher

 X’10’ PO1 (PM1) format program object

 X’11’ Object module (traditional format)

 X’12’ Object module (XOBJ format)

 X’13’ Object module (GOFF format)

 X’14’ Unknown

 X’15’ Workmod

 X’16’ Generated by the binder

 X’20’ PO2 (PM2) format program object

 X’30’ PO3 (PM3) format program object

 X’41’ PO4 (PM4) format program object, z/OS 1.3 compatible

 X’42’ z/OS 1.5 compatible

 X’43’ z/OS 1.7 compatible

 X’51’ PO5 (PM5) format program object, z/OS 1.8 compatible

 *** RESERVED *** Binary 44 4 Reserved, must be zero

 *** RESERVED *** Binary 48 2 Reserved, must be zero

 CUI_C_MEMBER_LEN Binary 50 2 Length of member (original)

 CUI_C_MEMBER_PTR Pointer 52 4 Pointer to the member (original)

 *** RESERVED *** Binary 56 2 Reserved, must be zero

 CUI_C_PATH_LEN Binary 58 2 Length of path (original)

 CUI_C_PATH_PTR Pointer 60 4 Pointer to the path (original)

 *** RESERVED *** Binary 64 2 Reserved, must be zero

 CUI_C_DSNAME_LEN Binary 66 2 Length of dsname (original)

 CUI_C_DSNAME_PTR Pointer 68 4 Pointer to the dsname

 *** RESERVED *** Char 72 3 Reserved, must be zero

 CUI_C_TYPE Binary 75 1 Source type within the object file

 CUI_C_SEQ Binary 76 4 CU sequence number within the object file

Figure 46. Format for CUI entries

API buffer formats

Appendix D. Binder API buffer formats 285

|

|
|

the program object is (and has always been) in z/OS 1.5 compatible format.

Thus, complete information will be returned for non-header records only if

CUI_TYPE is 42.

API buffer formats

286 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Binder name list (version 6)

Please note that the version 6 binder name list buffer has been slightly changed

from the version 4 buffer.

 Field Field Off Leng Description

 Name Type set

 IEWBBNL Binder Name List buffer, Version 4

 BNLH_BUFFER_ID Char 0 8 Buffer identifier "IEWBBNL"

 BNLH_BUFFER_LENG Binary 8 4 Length of the buffer,

 including the header

 BNLH_VERSION Binary 12 1 Version identifier

 *** RESERVED *** Binary 13 3 Reserved, must be zeros

 BNLH_ENTRY_LENG Binary 16 4 Length of each entry in the list

 BNLH_ENTRY_COUNT Binary 20 4 Number of entries in the buffer

 *** RESERVED *** Binary 24 8 Reserved, initialize to zeros

 BNLH_ENTRY_ORIGIN 32 First namelist entry

1 BNL_ENTRY Namelist Entry

2 BNL_CLS_LENGTH Binary 0 4 Class segment length

3 BNL_SECT_CU Binary 0 4 Compile unit number

 BNL_BIND_FLAGS Bit 4 1 Bind Attributes

 1... Generated by Binder

 .1.. No data present

 ..1. Varying length records

 ...1 Descriptive data (non-text)

 1... Class has initial data

 1.. Fill character specified

 1 Class validation error

 BNL_LOAD_FLAGS Bit 5 1 Loadability (NTYPE=CLASS only)

 1... Read Only

 .01. A DEFER load class

 .10. A NOLOAD class

 .00. Class is initially loaded

 ...1 Sharable

 1... Moveable (AdCon free)

 BNL_NAME_CHARS Binary 6 2 Length of name

 BNL_NAME_PTR Pointer 8 4 Pointer to class or section

 name

 BNL_ELEM_COUNT Binary 12 4 Number of elements in class

 or section

 BNL_SEGM_ID Binary 16 2 Segment ID

 BNL_PAD1 Binary 18 2 Reserved, set to zero

 BNL_SEGM_OFF Binary 20 4 Class offset from start

 of segment

Notes:

1. This entry is valid for output only.

2. BNL_CLS_LENGTH is only for GETN NTYPE=CLASS.

3. BNL_SECT_CU is at the same offset as BNL_CLS_LENGTH and is only for

GETN NTYPE=SECTION.

Figure 47. Format for binder name list entries

API buffer formats

Appendix D. Binder API buffer formats 287

288 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix E. Data areas

This topic contains general-use programming interface and associated guidance

information.

This topic describes the formats of the following data areas.

v The first describes the “PDS directory entry format on entry to STOW.”

v The second describes the “PDS directory entry format returned by BLDL” on

page 296.

v The third describes the “PDSE directory entry returned by DESERV (SMDE data

area)” on page 303.

v The fourth describes “Accessing program object class information” on page 306.

v The last describes “Module Map” on page 308

PDS directory entry format on entry to STOW

The following describes the format of a partitioned data set (PDS) directory entry. It

is returned in simulated 256-byte blocks when BSAM or QSAM is used to read a

PDSE directory entry This format shows the control block on entry to the STOW

macro. You can use the IHAPDS macro to map this control block.

 Decimal

Offsets

Hex

Offsets Type/Value Len Name (Dim) Description

0 (0) CHARACTER 8 PDS2NAME - LOAD MODULE MEMBER NAME OR

ALIAS

8 (8) CHARACTER 3 PDS2TTRP - TTR OF FIRST BLOCK OF NAMED

MEMBER

11 (B) BITSTRING 1 PDS2INDC - INDICATOR BYTE

 1... PDS2ALIS “BIT0”- NAME IN THE FIRST FIELD IS

AN ALIAS

 .11. PDS2NTTR “BIT1+ BIT2”- NUMBER OF TTR’S IN

THE USER DATA FIELD

 ...1 1111 PDS2LUSR “BIT3+ BIT4+ BIT5+ BIT6+ BIT7” -

LENGTH OF USER DATA FIELD IN

HALF WORDS

12 (C) CHARACTER 1 PDS2USRD (0) - START OF VARIABLE LENGTH

USER DATA FIELD

12 (C) CHARACTER 3 PDS2TTRT - TTR OF FIRST BLOCK OF TEXT

15 (F) CHARACTER 1 PDS2ZERO - ZERO

16 (10) CHARACTER 3 PDS2TTRN - TTR OF NOTE LIST OR

SCATTER/TRANSLATION TABLE.

USED FOR MODULES IN SCATTER

LOAD FORMAT OR OVERLAY

STRUCTURE ONLY.

19 (13) SIGNED 1 PDS2NL - NUMBER OF ENTRIES IN NOTE

LIST FOR MODULES IN OVERLAY

STRUCTURE

20 (14) BITSTRING 2 PDS2ATR (0) - TWO-BYTE MODULE ATTRIBUTE

FIELD

© Copyright IBM Corp. 1991, 2006 289

|

|

|
|

|
|

|

|

Decimal

Offsets

Hex

Offsets Type/Value Len Name (Dim) Description

20 (14) BITSTRING 1 PDS2ATR1 - FIRST BYTE OF MODULE

ATTRIBUTE FIELD

 1... PDS2RENT “BIT0”- REENTERABLE

 .1.. PDS2REUS “BIT1”- REUSABLE

 ..1. PDS2OVLY “BIT2”- IN OVERLAY STRUCTURE

 ...1 PDS2TEST “BIT3”- MODULE TO BE TESTED -

TESTRAN

 1... PDS2LOAD “BIT4”- ONLY LOADABLE

 1.. PDS2SCTR “BIT5”- SCATTER FORMAT

 1. PDS2EXEC “BIT6”- EXECUTABLE

 1 PDS21BLK “BIT7”- IF ZERO, MODULE CONTAINS

MULTIPLE RECORDS WITH AT

LEAST ONE BLOCK OF TEXT. — IF

ONE, MODULE CONTAINS NO RLD

ITEMS AND ONLY ONE BLOCK OF

TEXT.

21 (15) BITSTRING 1 PDS2ATR2 - SECOND BYTE OF MODULE

ATTRIBUTE FIELD

 1... PDS2FLVL “BIT0”- IF ZERO, MODULE CAN BE

PROCESSED BY ALL LEVELS OF

LINKAGE EDITOR. — IF ONE,

MODULE CAN BE PROCESSED ONLY

BY F LEVEL OF LINKAGE EDITOR.

 .1.. PDS2ORG0 “BIT1”- LINKAGE EDITOR ASSIGNED

ORIGIN OF FIRST BLOCK OF TEXT

IS ZERO.

 ..1. PDS2EP0 “BIT2”- ENTRY POINT ASSIGNED BY

LINKAGE EDITOR IS ZERO

 ...1 PDS2NRLD “BIT3”- MODULE CONTAINS NO RLD

ITEMS

 1... PDS2NREP “BIT4”- MODULE CANNOT BE

REPROCESSED BY LINKAGE

EDITOR

 1.. PDS2TSTN “BIT5”- MODULE CONTAINS

TESTRAN SYMBOL CARDS

 1. PDS2LEF “BIT6”- MODULE CREATED BY

LINKAGE EDITOR F

 1 PDS2REFR “BIT7”- REFRESHABLE MODULE

22 (16) SIGNED 3 PDS2STOR - TOTAL CONTIGUOUS VIRTUAL

STORAGE REQUIREMENT OF

MODULE

25 (19) SIGNED 2 PDS2FTBL - LENGTH OF FIRST BLOCK OF TEXT

27 (1B) ADDRESS 3 PDS2EPA - ENTRY POINT ADDRESS

ASSOCIATED WITH MEMBER NAME

OR WITH ALIAS NAME IF ALIAS

INDICATOR IS ONE

Data areas

290 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Decimal

Offsets

Hex

Offsets Type/Value Len Name (Dim) Description

30 (1E) ADDRESS 3 (0) - LINKAGE EDITOR ASSIGNED

ORIGIN OF FIRST BLOCK OF TEXT

(when bit 0 is off)

30 (1E) BITSTRING 3 PDS2FTBO (0) - FLAG BYTES (VS/1-VS/2 USE OF

FIELD)

30 (1E) BITSTRING 1 PDS2FTB1 - BYTE 1 OF PDS2FTBO

 1... PDSAOSLE “BIT0”- MODULE HAS BEEN

PROCESSED BY VS/1-VS/2 LINKAGE

EDITOR

 .1.. PDS2BIG “BIT1” THIS MODULE REQUIRES 16M

OR MORE OF VIRTUAL STORAGE.

 ..1. PDS2PAGA “BIT2”- PAGE ALIGNMENT REQUIRED

FOR LOAD MODULE

 ...1 PDS2SSI “BIT3”- SSI INFORMATION PRESENT

 1... PDSAPFLG “BIT4”- INFORMATION IN PDSAPF IS

VALID

 1.. PDS2LFMT “BIT5”- MODULE IS IN PROGRAM

OBJECT FORMAT. THE PDS2FTB3

FIELD IS VALID AND CONTAINS

ADDITIONAL FLAGS

31 (1F) BITSTRING 1 PDS2FTB2 - BYTE 2 OF PDS2FTBO

 1... PDS2ALTP “BIT0:”- ALTERNATE PRIMARY FLAG.

INDICATES THE PRIMARY NAME

WAS GENERATED BY THE BINDER.

 ...1 PDSLRMOD “BIT3:”- PROGRAM RESIDENCE

MODE (1=RMODE=ANY,

0=RMODE=24)

 11.. PDSAAMOD “BIT4+ BIT5”- ALIAS ENTRY POINT

ADDRESSING MODE (00=AMODE=24,

10=AMODE=31, 01=AMODE=64,

11=AMODE=ANY)

 11 PDSMAMOD “BIT6+ BIT7”- MAIN ENTRY POINT

ADDRESSING MODE (SAME BIT

SETTINGS AS PDSAAMOD)

32 (20) BITSTRING 1 PDS2RLDS (0) NUMBER OF RLD/CONTROL

RECORDS WHICH FOLLOW THE

FIRST BLOCK OF TEXT

32 (20) BITSTRING 1 PDS2FTB3 - BYTE 3 OF PDS2FTBO

 1... PDS2NMIG “BIT0”- THIS PROGRAM OBJECT

LOAD MODULE CANNOT BE

CONVERTED TO RECORD FORMAT

 .1.. PDS2PRIM “BIT1”- FETCHOPT PRIME WAS

SPECIFIED

 ..1. PDS2PACK “BIT2”- FETCHOPT PACK WAS

SPECIFIED

 X'21' PDSBCEND “*”- END OF BASIC SECTION

 X'21' PDSBCLN “PDSBCEND-PDS2”- LENGTH OF

BASIC SECTION

Data areas

Appendix E. Data areas 291

THE FOLLOWING SECTION IS FOR LOAD MODULES WITH SCATTER LOAD

 X'21' PDSS01 “*”- START OF SCATTER LOAD

SECTION

33 (21) SIGNED 2 PDS2SLSZ - NUMBER OF BYTES IN SCATTER

LIST

35 (23) SIGNED 2 PDS2TTSZ - NUMBER OF BYTES IN

TRANSLATION TABLE

37 (25) CHARACTER 2 PDS2ESDT - IDENTIFICATION OF ESD ITEM

(ESDID) OF CONTROL SECTION TO

WHICH FIRST BLOCK OF TEXT

BELONGS

39 (27) CHARACTER 2 PDS2ESDC - IDENTIFICATION OF ESD ITEM

(ESDID) OF CONTROL SECTION

CONTAINING ENTRY POINT

 X'29' PDSS01ND “*”- END OF SCATTER LOAD

SECTION

 X'8' PDSS01LN “PDSS01ND-PDSS01”- LENGTH OF

SCATTER LOAD SECTION

 THE FOLLOWING SECTION IS FOR LOAD MODULES WITH ALIAS NAMES

 X'29' PDSS02 “*”- START OF ALIAS SECTION

41 (29) ADDRESS 3 PDS2EPM - ENTRY POINT FOR MEMBER NAME

 X'29' DEENTBK “PDS2EPM”— ALIAS

44 (2C) CHARACTER 8 PDS2MNM - MEMBER NAME OF LOAD MODULE.

WHEN THE FIRST FIELD

(PDS2NAME) IS AN ALIAS NAME,

THIS FIELD CONTAINS THE

ORIGINAL NAME OF THE MEMBER

EVEN AFTER THE MEMBER HAS

BEEN RENAMED.

 X'34' PDSS02ND “*”- END OF ALIAS SECTION

 X'B' PDSS02LN “PDSS02ND-PDSS02”- LENGTH OF

ALIAS SECTION

 THE FOLLOWING SECTION IS FOR SSI INFORMATION AND IS ON

 A HALFWORD BOUNDARY

 52 (34) SIGNED 2 PDSS03 (0) - FORCE HALFWORD ALIGNMENT

FOR SSI SECTION

52 (34) CHARACTER 4 PDSSSIWD (0) - SSI INFORMATION WORD

52 (34) SIGNED 1 PDSCHLVL - CHANGE LEVEL OF MEMBER

53 (35) BITSTRING 1 PDSSSIFB - SSI FLAG BYTE

 .1.. PDSFORCE “BIT1”- A FORCE CONTROL CARD

WAS USED WHEN EXECUTING THE

IHGUAP PROGRAM

 ..1. PDSUSRCH “BIT2”- A CHANGE WAS MADE TO

MEMBER BY THE INSTALLATION, AS

OPPOSED TO AN IBM-DISTRIBUTED

CHANGE

Data areas

292 z/OS V1R9.0 MVS Program Management: Advanced Facilities

...1 PDSEMFIX “BIT3”- SET WHEN AN EMERGENCY

IBM-AUTHORIZED PROGRAM ’FIX’ IS

MADE, AS OPPOSED TO CHANGES

THAT ARE INCLUDED IN AN

IBM-DISTRIBUTED MAINTENANCE

PACKAGE

 1... PDSDEPCH “BIT4”- A CHANGE MADE TO THE

MEMBER IS DEPENDENT UPON A

CHANGE MADE TO SOME OTHER

MEMBER IN THE SYSTEM

 11. PDSSYSGN “BIT5+ BIT6”- FLAGS THAT INDICATE

WHETHER OR NOT A CHANGE TO

THE MEMBER WILL NECESSITATE A

PARTIAL OR COMPLETE

REGENERATION OF THE SYSTEM

 PDSNOSGN “X'00'”- NOT CRITICAL FOR SYSTEM

GENERATION

 1. PDSCMSGN “BIT6”- MAY REQUIRE COMPLETE

REGENERATION

 1.. PDSPTSGN “BIT5”- MAY REQUIRE PARTIAL

REGENERATION

 1 PDSIBMMB “BIT7”- MEMBER IS SUPPLIED BY

IBM

54 (36) CHARACTER 2 PDSMBRSN - MEMBER SERIAL NUMBER

 X'38' PDSS03ND “*”- END OF SSI SECTION

X'4' PDSS03LN “PDSS03ND-PDSS03”- LENGTH OF

SSI SECTION

 THE FOLLOWING SECTION IS FOR APF INFORMATION

 X'38' PDSS04 “*”- START OF APF SECTION

56 (38) CHARACTER 2 PDSAPF (0) - PROGRAM AUTHORIZATION

FACILITY (APF) FIELD

56 (38) SIGNED 1 PDSAPFCT - LENGTH OF PROGRAM

AUTHORIZATION CODE (PDSAPFAC)

IN BYTES

57 (39) CHARACTER 1 PDSAPFAC - PROGRAM AUTHORIZATION CODE

 X'3A' PDSS04ND “*”- END OF APF SECTION

 X'2' PDSS04LN “PDSS04ND-PDSS04”- LENGTH OF

APF SECTION

 THE FOLLOWING SECTION IS FOR LARGE PROGRAM OBJECTS (LPO)

 X'3A' PDSLPO “*”- START OF LPO SECTION

LENGTH

58 (3A) SIGNED 1 PDS2LPOL - LPO SECTION LENGTH

59 (3B) SIGNED 4 PDS2VSTR - VIRTUAL STORAGE REQUIREMENT

FOR THIS MODULE

63 (3F) SIGNED 4 PDS2MEPA - MAIN ENTRY POINT OFFSET

Data areas

Appendix E. Data areas 293

67 (43) SIGNED 4 PDS2AEPA - ALIAS ENTRY POINT OFFSET. ONLY

VALID IF THIS IS AN DIRECTORY

ENTRY IS FOR AN ALIAS

 X'47' PDSLPOND “*”- END OF LPO SECTION

 X'D' PDSLPOLN “PDSLPOND-PDSLPO”- LENGTH OF

LPO SECTION

Cross reference

 Name Hex Offset Hex Value

PDSAAMOD 1F C

PDSAOSLE 1E 80

PDSAPF 38

PDSAPFAC 39

PDSAPFCT 38

PDSAPFLG 1E 8

PDSBCEND 20 21

PDSBCLN 20 21

PDSCHLVL 34

PDSCMSGN 35 2

PDSDEPCH 35 8

PDSEMFIX 35 10

PDSFORCE 35 40

PDSIBMMB 35 1

PDSLLM (alternate for PDSLPO) 3A �

PDSLLMLN (alternate for PDSLPOLN 47 D

PDSLLMND (alternate for PDSLPOND) 47 �

PDSLPO 3A �

PDSLPOL 3A D

PDSLPOLN 47 D

PDSLPOND 47 �

PDSLRMOD 1F 10

PDSMAMOD 1F 3

PDSMBRSN 36

PDSNOSGN 35 0

PDSPTSGN 35 4

PDSSSIFB 35

PDSSSIWD 34

PDSSYSGN 35 6

PDSS01 20 21

PDSS01LN 27 8

PDSS01ND 27 29

PDSS02 27 29

PDSS02LN 2C B

PDSS02ND 2C 34

PDSS03 34

PDSS03LN 36 4

PDSS03ND 36 38

PDSS04 36 38

PDSS04LN 39 2

PDSS04ND 39 3A

PDSUSRCH 5 20

PDS2AEPA 43

Data areas

294 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Name Hex Offset Hex Value

PDS2ALIS B 80

PDS2ALTP 1F 80

PDS2ATR 14

PDS2ATR1 14

PDS2ATR2 15

PDS2BIG 1E 40

PDS2EPA 1B

PDS2EPM 29

PDS2EP0 15 20

PDS2ESDC 27

PDS2ESDT 25

PDS2EXEC 14 2

PDS2FLVL 15 80

PDS2FTBL 19

PDS2FTBO 1E

PDS2FTB1 1E

PDS2FTB2 1F

PDS2FTB3 20

PDS2INDC B

PDS2LEF 15 2

PDS2LFMT 1E 4

PDS2LLML 3A

PDS2LOAD 14 8

PDS2LUSR B 1F

PDS2MEPA 3F

PDS2MNM 2C

PDS2NAME 0

PDS2NL 13

PDS2NMIG 20 80

PDS2NREP 15 8

PDS2NRLD 15 10

PDS2NTTR B 60

PDS2ORG0 15 40

PDS2OVLY 14 20

PDS2PACK 20 20

PDS2PAGA 1E 20

PDS2PRIM 20 40

PDS2REFR 15 1

PDS2RENT 14 80

PDS2REUS 14 40

PDS2RLDS 20

PDS2SCTR 14 4

PDS2SLSZ 21

PDS2SSI 1E 10

PDS2STOR 16

PDS2TEST 14 10

PDS2TSTN 15 4

PDS2TTRN 10

PDS2TTRP 8

PDS2TTRT C

PDS2TTSZ 23

PDS2USRD C

PDS2VSTR 3B

Data areas

Appendix E. Data areas 295

Name Hex Offset Hex Value

PDS2ZERO F

PDS21BLK 14 1

PDS directory entry format returned by BLDL

The following describes the format of a partitioned data set (PDS) directory entry.

This format describes what is returned by BLDL for each PDS directory entry

member. You can use the IHAPDS macro to map this control block.

 Decimal

Offsets

Hex

Offsets Type/Value Len Name (Dim) Description

0 (0) CHARACTER 8 PDS2NAME - LOAD MODULE MEMBER NAME OR

ALIAS

8 (8) CHARACTER 3 PDS2TTRP - TTR OF FIRST BLOCK OF NAMED

MEMBER

11 (B) CHARACTER 1 PDS2CNCT - CONCATENATION NUMBER OF THE

DATA SET

12 (C) CHARACTER 1 PDS2LIBF - LIBRARY FLAG FIELD

 PDS2LNRM “X'00'”- NORMAL CASE

 1 PDS2LLNK “X'01'”- IF DCB OPERAND IN BLDL

MACRO INSTRUCTION WAS

SPECIFIED AS ZERO, NAME WAS

FOUND IN LINK LIBRARY

 1. PDS2LJOB “X'02'”- IF DCB OPERAND IN BLDL

MACRO INSTRUCTION WAS

SPECIFIED AS ZERO, NAME WAS

FOUND IN JOB LIBRARY

13 (D) BITSTRING 1 PDS2INDC - INDICATOR BYTE

 1... PDS2ALIS “BIT0”- NAME IN THE FIRST FIELD IS

AN ALIAS

 1... DEALIAS “BIT0”— ALIAS FOR PDS2ALIS

 .11. PDS2NTTR “BIT1+ BIT2”- NUMBER OF TTR’S IN

THE USER DATA FIELD

 ...1 1111 PDS2LUSR “BIT3+ BIT4+ BIT5+ BIT6+ BIT7”-

LENGTH OF USER DATA FIELD IN

HALF WORDS

14 (E) CHARACTER 1 PDS2USRD (0) - START OF VARIABLE LENGTH

USER DATA FIELD

14 (E) CHARACTER 3 PDS2TTRT - TTR OF FIRST BLOCK OF TEXT

17 (11) CHARACTER 1 PDS2ZERO - ZERO

18 (12) CHARACTER 3 PDS2TTRN - TTR OF NOTE LIST OR

SCATTER/TRANSLATION TABLE.

USED FOR MODULES IN SCATTER

LOAD FORMAT OR OVERLAY

STRUCTURE ONLY.

21 (15) SIGNED 1 PDS2NL - NUMBER OF ENTRIES IN NOTE

LIST FOR MODULES IN OVERLAY

STRUCTURE

Data areas

296 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Decimal

Offsets

Hex

Offsets Type/Value Len Name (Dim) Description

22 (16) BITSTRING 2 PDS2ATR (0) - TWO-BYTE MODULE ATTRIBUTE

FIELD

22 (16) BITSTRING 1 PDS2ATR1 - FIRST BYTE OF MODULE

ATTRIBUTE FIELD

 1... PDS2RENT “BIT0”- REENTERABLE

 .1.. PDS2REUS “BIT1”- REUSABLE

 ..1. PDS2OVLY “BIT2”- IN OVERLAY STRUCTURE

 ...1 PDS2TEST “BIT3”- MODULE TO BE TESTED -

TESTRAN

 1... PDS2LOAD “BIT4”- ONLY LOADABLE

 1.. PDS2SCTR “BIT5”- SCATTER FORMAT

 1. PDS2EXEC “BIT6”- EXECUTABLE

 1 PDS21BLK “BIT7”- IF ZERO, MODULE CONTAINS

MULTIPLE RECORDS WITH AT

LEAST ONE BLOCK OF TEXT. — IF

ONE, MODULE CONTAINS NO RLD

ITEMS AND ONLY ONE BLOCK OF

TEXT.

23 (17) BITSTRING 1 PDS2ATR2 - SECOND BYTE OF MODULE

ATTRIBUTE FIELD

 1... PDS2FLVL “BIT0”- IF ZERO, MODULE CAN BE

PROCESSED BY ALL LEVELS OF

LINKAGE EDITOR. --- IF ONE,

MODULE CAN BE PROCESSED ONLY

BY F LEVEL OF LINKAGE EDITOR.

 .1.. PDS2ORG0 “BIT1”- LINKAGE EDITOR ASSIGNED

ORIGIN OF FIRST BLOCK OF TEXT

IS ZERO.

 ..1. PDS2EP0 “BIT2=- ENTRY POINT ASSIGNED BY

LINKAGE EDITOR IS ZERO”

 ...1 PDS2NRLD “‘BIT3’- MODULE CONTAINS NO RLD

ITEMS”

 1... PDS2NREP “BIT4”- MODULE CANNOT BE

REPROCESSED BY LINKAGE

EDITOR

 1.. PDS2TSTN “BIT5”- MODULE CONTAINS

TESTRAN SYMBOL CARDS

 1. PDS2LEF “BIT6”- MODULE CREATED BY

LINKAGE EDITOR F

 1 PDS2REFR “BIT7”- REFRESHABLE MODULE

24 (18) SIGNED 3 PDS2STOR - TOTAL CONTIGUOUS VIRTUAL

STORAGE REQUIREMENT OF

MODULE

27 (1B) SIGNED 2 PDS2FTBL - LENGTH OF FIRST BLOCK OF TEXT

29 (1D) ADDRESS 3 PDS2EPA - ENTRY POINT ADDRESS

ASSOCIATED WITH MEMBER NAME

OR WITH ALIAS NAME IF ALIAS

INDICATOR IS ONE

Data areas

Appendix E. Data areas 297

Decimal

Offsets

Hex

Offsets Type/Value Len Name (Dim) Description

32 (20) ADDRESS 3 (0) - LINKAGE EDITOR ASSIGNED

ORIGIN OF FIRST BLOCK OF TEXT

(OS USE OF FIELD)

32 (20) BITSTRING 3 PDS2FTBO (0) - FLAG BYTES (VS/1-VS/2 USE OF

FIELD)

32 (20) BITSTRING 1 PDS2FTB1 - BYTE 1 OF PDS2FTBO

 1... PDSAOSLE “BIT0”- MODULE HAS BEEN

PROCESSED BY VS/1-VS/2 LINKAGE

EDITOR

 .1.. PDS2BIG “BIT1”- THIS MODULE REQUIRES

16M OR MORE OF VIRTUAL

STORAGE.

 ..1. PDS2PAGA “BIT2”- PAGE ALIGNMENT REQUIRED

FOR LOAD MODULE

 ...1 PDS2SSI “BIT3”- SSI INFORMATION PRESENT

 1... PDSAPFLG “BIT4”- INFORMATION IN PDSAPF IS

VALID

 1.. PDS2LFMT “BIT5”- MODULE IS IN PROGRAM

OBJECT FORMAT. THE PDS2FTB3

FIELD IS VALID AND CONTAINS

ADDITIONAL FLAGS

33 (21) BITSTRING 1 PDS2FTB2 - BYTE 2 OF PDS2FTBO

31 (1F) 1... 1 PDS2ALTP ″BIT0:″- ALTERNATE PRIMARY FLAG.

INDICATES THE PRIMARY NAME

WAS GENERATED BY THE BINDER.

 ...1 PDSLRMOD “BIT3”- PROGRAM OBJECT

RESIDENCE MODE

 11.. PDSAAMOD “BIT4+ BIT5”- ALIAS ENTRY POINT

ADDRESSING MODE (00=AMODE=24,

10=AMODE=31, 01=AMODE=64,

11=AMODE=ANY)

 11 PDSMAMOD “BIT6+ BIT7”- MAIN ENTRY POINT

ADDRESSING MODE

34 (22) BITSTRING 1 PDS2RLDS (0) NUMBER OF RLD/CONTROL

RECORDS WHICH FOLLOW THE

FIRST BLOCK OF TEXT

34 (22) BITSTRING 1 PDS2FTB3 - BYTE 3 OF PDS2FTBO

 1... PDS2NMIG “BIT0”- THIS PROGRAM OBJECT

LOAD MODULE CANNOT BE

CONVERTED TO RECORD FORMAT

 .1.. PDS2PRIM “BIT1”- FETCHOPT PRIME WAS

SPECIFIED

 ..1. PDS2PACK “BIT2” FETCHOPT PACK WAS

SPECIFIED

 X'23' PDSBCEND “*”- END OF BASIC SECTION

 X'23' PDSBCLN “PDSBCEND-PDS2”- LENGTH OF

BASIC SECTION

Data areas

298 z/OS V1R9.0 MVS Program Management: Advanced Facilities

THE FOLLOWING SECTION IS FOR LOAD MODULES WITH SCATTER LOAD

 X'23' PDSS01 “*”- START OF SCATTER LOAD

SECTION

35 (23) SIGNED 2 PDS2SLSZ - NUMBER OF BYTES IN SCATTER

LIST

37 (25) SIGNED 2 PDS2TTSZ - NUMBER OF BYTES IN

TRANSLATION TABLE

39 (27) CHARACTER 2 PDS2ESDT - IDENTIFICATION OF ESD ITEM

(ESDID) OF CONTROL SECTION TO

WHICH FIRST BLOCK OF TEXT

BELONGS

41 (29) CHARACTER 2 PDS2ESDC - IDENTIFICATION OF ESD ITEM

(ESDID) OF CONTROL SECTION

CONTAINING ENTRY POINT

 X'2B' PDSS01ND “*=- END OF SCATTER LOAD

SECTION”

 X'8' PDSS01LN “PDSS01ND-PDSS01”″- LENGTH OF

SCATTER LOAD SECTION

 THE FOLLOWING SECTION IS FOR LOAD MODULES WITH ALIAS NAMES

 X'2B' PDSS02 “*”- START OF ALIAS SECTION

43 (2B) ADDRESS 3 PDS2EPM - ENTRY POINT FOR MEMBER NAME

 X'2B' DEENTBK “PDS2EPM”— ALIAS

46 (2E) CHARACTER 8 PDS2MNM - MEMBER NAME OF LOAD MODULE.

WHEN THE FIRST FIELD

(PDS2NAME) IS AN ALIAS NAME,

THIS FIELD CONTAINS THE

ORIGINAL NAME OF THE MEMBER

EVEN AFTER THE MEMBER HAS

BEEN RENAMED.

X'36' PDSS02ND “*”- END OF ALIAS SECTION

 X'B' PDSS02LN “PDSS02ND-PDSS02”- LENGTH OF

ALIAS SECTION

 THE FOLLOWING SECTION IS FOR SSI INFORMATION AND IS ON

 A HALFWORD BOUNDARY

 54 (36) SIGNED 2 PDSS03 (0) - FORCE HALFWORD ALIGNMENT

FOR SSI SECTION

54 (36) CHARACTER 4 PDSSSIWD (0) - SSI INFORMATION WORD

54 (36) SIGNED 1 PDSCHLVL - CHANGE LEVEL OF MEMBER

55 (37) BITSTRING 1 PDSSSIFB - SSI FLAG BYTE

 .1.. PDSFORCE “BIT1”- A FORCE CONTROL CARD

WAS USED WHEN EXECUTING THE

IHGUAP PROGRAM

 ..1. PDSUSRCH “BIT2”- A CHANGE WAS MADE TO

MEMBER BY THE INSTALLATION, AS

OPPOSED TO AN IBM-DISTRIBUTED

CHANGE

Data areas

Appendix E. Data areas 299

...1 PDSEMFIX “BIT3”- SET WHEN AN EMERGENCY

IBM-AUTHORIZED PROGRAM ’FIX’ IS

MADE, AS OPPOSED TO CHANGES

THAT ARE INCLUDED IN AN

IBM-DISTRIBUTED MAINTENANCE

PACKAGE

 1... PDSDEPCH “BIT4”- A CHANGE MADE TO THE

MEMBER IS DEPENDENT UPON A

CHANGE MADE TO SOME OTHER

MEMBER IN THE SYSTEM

 11. PDSSYSGN “BIT5+ BIT6”- FLAGS THAT INDICATE

WHETHER OR NOT A CHANGE TO

THE MEMBER WILL NECESSITATE A

PARTIAL OR COMPLETE

REGENERATION OF THE SYSTEM

 PDSNOSGN “X'00'”- NOT CRITICAL FOR SYSTEM

GENERATION

 1. PDSCMSGN “BIT6”- MAY REQUIRE COMPLETE

REGENERATION

 1.. PDSPTSGN “BIT5”- MAY REQUIRE PARTIAL

REGENERATION

 1 PDSIBMMB “BIT7”- MEMBER IS SUPPLIED BY

IBM

56 (38) CHARACTER 2 PDSMBRSN - MEMBER SERIAL NUMBER

 X'3A' PDSS03ND “*”- END OF SSI SECTION

 X'4' PDSS03LN “PDSS03ND-PDSS03”- LENGTH OF

SSI SECTION

 THE FOLLOWING SECTION IS FOR APF INFORMATION

 X'3A' PDSS04 “*”- START OF APF SECTION

58 (3A) CHARACTER 2 PDSAPF (0) - PROGRAM AUTHORIZATION

FACILITY (APF) FIELD

58 (3A) SIGNED 1 PDSAPFCT - LENGTH OF PROGRAM

AUTHORIZATION CODE (PDSAPFAC)

IN BYTES

59 (3B) CHARACTER 1 PDSAPFAC - PROGRAM AUTHORIZATION CODE

 X'3C' PDSS04ND “*”- END OF APF SECTION

 X'2' PDSS04LN “PDSS04ND-PDSS04”- LENGTH OF

APF SECTION

 THE FOLLOWING SECTION IS FOR LARGE PROGRAM OBJECTS (LPO)

 X'3C' PDSLPO “*”- START OF LPO SECTION

60 (3C) SIGNED 1 PDS2LPOL - LPO SECTION LENGTH

61 (3D) SIGNED 4 PDS2VSTR - VIRTUAL STORAGE REQUIREMENT

FOR THIS MODULE

65 (41) SIGNED 4 PDS2MEPA - MAIN ENTRY POINT OFFSET

69 (45) SIGNED 4 PDS2AEPA - ALIAS ENTRY POINT OFFSET. ONLY

VALID IF THIS IS AN DIRECTORY

ENTRY IS FOR AN ALIAS

Data areas

300 z/OS V1R9.0 MVS Program Management: Advanced Facilities

X'49' PDSLPOND “*”- END OF LPO SECTION

 X'D' PDSLPOLN “PDSLPOND-PDSLPO”- LENGTH OF

LPO SECTION

Cross reference

 Name Hex Offset Hex Value

PDSAAMOD 21 C

PDSAOSLE 20 80

PDSAPF 3A

PDSAPFAC 3B

PDSAPFCT 3A

PDSAPFLG 20 8

PDSBCEND 22 23

PDSBCLN 22 23

PDSCHLVL 36

PDSCMSGN 37 2

PDSDEPCH 37 8

PDSEMFIX 37 10

PDSFORCE 37 40

PDSIBMMB 37 1

PDSLLM (alternate for PDSLPO) 3C �

PDSLLMLN (alternate for PDSLPON) 49 D

PDSLLMND (alternate for PDSLPOND) 49 �

PDSLPO 3C �

PDSLPOL 3C D

PDSLPOLN 49 D

PDSLPOND 49 �

PDSLRMOD 21 10

PDSMAMOD 21 3

PDSMBRSN 38

PDSNOSGN 37 0

PDSPTSGN 37 4

PDSSSIFB 37

PDSSSIWD 36

PDSSYSGN 37 6

PDSS01 22 23

PDSS01LN 29 8

PDSS01ND 29 2B

PDSS02 29 2B

PDSS02LN 2E B

PDSS02ND 2E 36

PDSS03 36

PDSS03LN 36 4

PDSS03ND 38 3A

PDSS04 38 3A

PDSS04LN 3B 2

PDSS04ND 3B 3C

PDSUSRCH 37 20

PDS2AEPA 45

PDS2ALIS D 80

PDS2ALTP 21 80

PDS2ATR 16

Data areas

Appendix E. Data areas 301

Name Hex Offset Hex Value

PDS2ATR1 16

PDS2ATR2 17

PDS2BIG 20 40

PDS2CNCT B

PDS2EPA 1D

PDS2EPM 2B

PDS2EP0 17 20

PDS2ESDC 29

PDS2ESDT 27

PDS2EXEC 16 2

PDS2FLVL 17 80

PDS2FTBL 1B

PDS2FTBO 20

PDS2FTB1 20

PDS2FTB2 21

PDS2FTB3 22

PDS2INDC D

PDS2LEF 17 2

PDS2LFMT 20 4

PDS2LIBF C

PDS2LJOB C 2

PDS2LLML 3C

PDS2LLNK C 1

PDS2LNRM C 0

PDS2LOAD 16 8

PDS2LUSR D 1F

PDS2MEPA 41

PDS2MNM 2E

PDS2NAME 0

PDS2NL 15

PDS2NMIG 22 80

PDS2NREP 17 8

PDS2NRLD 17 10

PDS2NTTR D 60

PDS2ORG0 17 40

PDS2OVLY 16 20

PDS2PACK 22 20

PDS2PAGA 20 20

PDS2PRIM 22 40

PDS2REFR 17 1

PDS2RENT 16 80

PDS2REUS 16 40

PDS2RLDS 22

PDS2SCTR 16 4

PDS2SLSZ 23

PDS2SSI 20 10

PDS2STOR 18

PDS2TEST 16 10

PDS2TSTN 17 4

PDS2TTRN 12

PDS2TTRP 8

PDS2TTRT E

PDS2TTSZ 25

Data areas

302 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Name Hex Offset Hex Value

PDS2USRD E

PDS2VSTR 3D

PDS2ZERO 11

PDS21BLK 16 1

PDSE directory entry returned by DESERV (SMDE data area)

This section describes the format of a PDSE entry returned by the DESERV macro.

This is the SMDE data area, which is mapped by the IGWSMDE mapping macro.

The formats shown here are specific to PDSE program libraries.

The system managed directory entry (SMDE) can represent either a program object

in a PDSE or a load module in a PDS. The SMDE also represents both primary

(member) entries and aliases. The SMDE consists of several sections that appear

depending on the type of directory entry being provided:

v Primary entry for a load module: BASIC+NAME+PMAR (including PMARR)

v Alias entry for a load module: BASIC+NAME+PNAME+PMAR (including PMARR)

v Primary entry for a program object: BASIC+NAME+TOKEN+PMAR (including

PMARL)

v Alias entry for a program object: BASIC+NAME+PNAME+TOKEN+PMAR

(including PMARL)

The basic SMDE format is shown in Table 90.

 Table 90. SMDE format

Offset

Length or Bit

Pattern Name Description

00 (X'00') variable SMDE Member directory entry (structure)

00 (X'00') 44 SMDE_BASIC Start of basic section (character)

00 (X'00') 16 SMDE_HDR Header (character)

00 (X'00') 8 SMDE_ID Eyecatcher (character)

08 (X'08') 4 SMDE_LEN Length of control block. This is the sum of the

sizes of the SMDE sections and the size of the

user data. (unsigned)

12 (X'0C') 1 SMDE_LVL SMDE version number (unsigned)

X'01' SMDE_LVL_VAL Constant to be used with SMDE_LVL

13 (X'0D') 3 - Reserved

16 (X'10') 1 SMDE_LIBTYPE Source library type. Possible values are

declared below with names like

SMDE_LIBTYPE_XXX. (unsigned)

X'03' SMDE_LIBTYPE_C370LIB Constant to be used with SMDE_LIBTYPE

X'02' SMDE_LIBTYPE_HFS Constant to be used with SMDE_LIBTYPE

X'01' SMDE_LIBTYPE_PDSE Constant to be used with SMDE_LIBTYPE

X'00' SMDE_LIBTYPE_PDS Constant to be used with SMDE_LIBTYPE

Data areas

Appendix E. Data areas 303

Table 90. SMDE format (continued)

Offset

Length or Bit

Pattern Name Description

17 (X'11') 1 SMDE_FLAG Flag byte (bitstring)

1... SMDE_FLAG_ALIAS Entry is an alias

.1.. SMDE_FLAG_LMOD Member is a program

..1. SMDE_SYSTEM_DCB DCB opened by the system, so DESERV

returned connect tokens

...x xxxx * Reserved

18 (X'12') 2 * Reserved

20 (X'14') 5 - Extended MLTK (character)

20 (X'14') 1 - Reserved, must be zero

21 (X'15') 4 SMDE_MLTK MLT and concatenation number (character)

21 (X'15') 3 SMDE_MLT MLT of member - zero if z/OS UNIX System

Services (character)

24 (X'18') 1 SMDE_CNCT Concatenation number (unsigned)

25 (X'19') 1 SMDE_LIBF Library flag - Z-byte (unsigned)

X'02' SMDE_LIBF_TASKLIB Constant to be used with SMDE_LIBF

X'01' SMDE_LIBF_LINKLIB Constant to be used with SMDE_LIBF

X'00' SMDE_LIBF_PRIVATE Constant to be used with SMDE_LIBF

26 (X'1A') 2 SMDE_NAME_OFF Name offset (signed)

28 (X'1C') 2 SMDE_USRD_LEN User data length (signed)

28 (X'1C') 2 SMDE_PMAR_LEN Sum of lengths of program management

attribute record sections (PMAR, PMARR,

PMARL) (signed)

30 (X'1E') 2 SMDE_USERD_OFF User data offset (signed)

30 (X'1E') 2 SMDE_PMAR_OFF Program management attribute record offset

(signed)

32 (X'20') 2 SMDE_TOKEN_LEN Token length (signed)

34 (X'22') 2 SMDE_TOKEN_OFF Token data offset (signed)

36 (X'24') 2 SMDE_PNAME_OFF Primary name offset, zero for nonalias SMDEs

or if library type is a PDS and this is not a

program. (signed)

38 (X'26') 2 SMDE_NLST_CNT Number of note list entries that exist at

beginning of user data field. Always zero for

non-PDS members. (signed)

40 (X'28') 2 SMDE_C370_ATTR_OFF Offset to C370LIB attribute word

40 (X'2A') 2 * Reserved

44 (X'2C') variable SMDE_SECTIONS Start of entry sections (character)

Table 91 on page 305 through Table 96 on page 305 shows the optional

SMDE_SECTIONS, or extensions to the SMDE.

Data areas

304 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 91. Directory entry name section

Offset

Length or Bit

Pattern Name Description

00 (X'00') variable SMDE_NAME Name descriptor (structure)

00 (X'00') 2 SMDE_NAME_LEN Length of entry name (signed)

2 (X'02') variable SMDE_NAME_VAL Entry name (character)

 Table 92. Directory entry notelist section (PDS only)

Offset

Length or Bit

Pattern Name Description

00 (X'00') variable SMDE_NLST Note list extension (structure)

00 (X'00') 4 SMDE_NLST_ENTRY Note list entries (character)

00 (X'00') 3 SMDE_NLST_RLT Note list record location token (character)

3 (X'03') 1 SMDE_NLST_NUM Number of RLT described by this note list block.

If 0 this is not a notelist but a data block.

(unsigned)

 Table 93. Directory entry token section (normal use)

Offset

Length or Bit

Pattern Name Description

00 (X'00') 32 SMDE_TOKEN (structure)

00 (X'00') 4 SMDE_TOKEN_CONNID CONNECT_IDENTIFIER (unsigned)

4 (X'04') 4 SMDE_TOKEN_ITEMNO Item number (unsigned)

08 (X'08') 24 SMDE_TOKEN_FT File token (character)

 Table 94. Directory entry token section (system DCB)

Offset

Length or Bit

Pattern Name Description

00 (X'00') 16 * Reserved

16 (X'10') 8 SMDE_TOKEN_BMF_CT BMF connect token

24 (X'18') 8 SMDE_TOKEN_CDM_CT JCDM connect token

 Table 95. z/OS UNIX System Services file descriptor section

Offset

Length or Bit

Pattern Name Description

00 (X'00') 4 SMDE_FD (structure)

00 (X'00') 4 SMDE_FD_TOKEN File descriptor (unsigned)

 Table 96. Directory entry primary name section

Offset

Length or Bit

Pattern Name Description

00 (X'00') variable SMDE_PNAME Primary name descriptor (structure)

00 (X'00') 2 SMDE_PNAME_LEN Length of primary name (signed)

2 (X'02') variable SMDE_PNAME_VAL Primary name (character)

Data areas

Appendix E. Data areas 305

If the SMDE represents a directory entry for a program (either a load module or a

program object) the program’s attributes are defined by the PMAR structure. The

PMAR is a subfield of the SMDE and its offset is defined by the field

SMDE_PMAR_OFF. For the PMAR structure and mapping, see IEWPMAR in z/OS

MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

If the SMDE represents a data member of a PDS or a PDSE, the

SMDE_USRD_OFF field indicates the offset into the SMDE for the user data of the

directory entry.

Accessing program object class information

The initial load segment of a program object can contain a binder-generated text

class that describes the other loadable classes in the program object. This

descriptive class is only present in program objects stored as COMPAT=PM3 or

higher and when one of the following is true:

v The module has more than one loadable text class.

v There is a loadable text class whose name does not begin with B_.

If COMPAT is specified or defaulted to PM1 or PM2, this descriptive class is

suppressed with no error indication. LE-enabled programs that do not use a

prelinker step require the IEWBLIT control block.

The information can be accessed in one of the following two ways:

v An API can be used to retrieve the text from a stored program object.

– The standard binder API or the fast data API can be used.

– The class name is B_LIT and the section name is IEWBLIT.

v An external reference can be used by a program within the object to locate the

text.

– Use the symbol name IEWBLIT.

– It must be a weak reference. For example, a WXTRN in assembler

terminology. The binder cannot create the B_LIT class until after all other

external symbols have been resolved. A strong reference would be flagged as

an error before the class could be created.

For either of the above means of access, the calling program will see the data as a

structure defined for assembler programs in the shipped IEWBLIT mapping macro.

The field names in that macro match those used in Table 97 on page 306.

The structure contains names, locations, and lengths of each class in the program

object. It also contains the following attribute information about each class:

v RMODE

v Boundary alignment

v Initial, deferred, or no load

v Read-only status

The structure begins with a header that specifies the number of class entries and

the length of each:

 Table 97. BLIT structure format

Field Name Field Type Offset Length Description

BLIT_EYE_CATCHER Char 0 8 Constant ’IEWBLIT ’

Data areas

306 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 97. BLIT structure format (continued)

Field Name Field Type Offset Length Description

BLIT_ LENGTH Binary 8 4 Total structure length with

entries

BLIT_VERSION Binary 12 1 Structure version = 1

* 13 3 * reserved *

BLIT_HEADER_LENGTH Binary 16 4 Length to CTABLE

BLIT_CENTRY_LENGTH Binary 20 4 Length of one class entry

BLIT_DEFER_COUNT Binary 24 4 Number of class entries

* 28 8 * reserved *

BLIT_LOADER_TOKEN Char 36 8 [For loader use]

BLIT_CIE_ADDR Pointer 44 4 Address of Import/Export table

or offset in segment on DASD

BLIT_MOD_ATTR Bit 48 4 Module attributes

 BLIT_PLINK Bit 48.0 0.1 XPLINK linkage convention

* 52 8 * reserved *

BLIT_CTABLE 60 Start of class entries

Each of the class entries has the following format:

 Table 98. BLIT class entry format

Field Name Field Type Offset Length Description

BLIT_CLASS_NAME Char 0 16 Name of class, blank padded

BLIT_CLASS_LENGTH Binary 16 4 Length of class when loaded

BLIT_CLASS_ADDR Pointer 20 4 Address of initial load class or offset

in segment on DASD or zero for

deferred load class

BLIT_RMODE Binary 24 1 00=RMODE_UNSPEC

01=RMODE_24

03=RMODE_ANY

04=RMODE_64

BLIT_ALIGN Binary 25 1 Power of 2 class alignment in

storage; for example, 3=doubleword

aligned (2**3 = 8)

BLIT_LOAD_ATTR Bit 26 1

 BLIT_RO Bit 26.0 0.1 Read only if on.

 BLIT_NOLOAD

Bit 26.1 0.1 Always off – load classes are not

listed in this table

 BLIT_DEFER Bit 26.2 0.1 Deferred load if on

BLIT_PADDING Bit 27.0 0.1 Class has 16 byte initial padding

28 4 * reserved *

Data areas

Appendix E. Data areas 307

Module Map

Obtaining needed information about entry points and other external symbols in a

program object often requires many calls to the binder API. Applications can avoid

this for load modules by reading the PDS member directly. They may find most of

the information they need in the CESD. This option is not available for programs

stored in a PDSE or in UNIX files.

The binder module map may allow the writing of single-path code to handle either

format, and with a much smaller number of binder API calls than was previously

necessary. In addition, if the map is part of a loaded module (MODMAP=LOAD

specified when building the module) it may be located directly, as explained below.

The binder writes a module map as part of the saved module under the following

circumstances:

1. There is a strong reference to IEWBPMM in one of the modules input to a bind.

2. The binder option MODMAP=LOAD or MODMAP=NOLOAD is specified.

If it exists, the module map is always in section IEWBPMM. For a module with only

one text class (load module and some program objects) the map is in class

B_TEXT. For program objects that already contain more than one text class, the

map is built in class B_MODMAP.

If the map is in a loadable class, it may be found in the loaded module as follows:

1. IEWBPMM could be located from an address constant referencing that symbol,

if the address constant is in a known location.

2. If IEWBLIT exists (built by the binder for program objects containing multiple

text classes or user-defined classes), then the entry for class B_MODMAP will

contain the address of that class in the loaded module.

3. The map will be at the end of the first segment (the segment containing the

entry points). The last doubleword of the map contains the offset of the

beginning of the map from the load point of that segment.

If the module map is in a noload class (MODMAP=NOLOAD) the map is in section

IEWBPMM and class B_MODMAP. The contents are retrievable though binder

GETD API call (or fast data GD call) using a text buffer.

Structure of the module map

A program module map consists of a small header followed by fixed length records.

These records represent segments (G), classes (C), sections (S), entry points or LD

records (E) and parts (P). The fixed length records are followed by a string area

containing null-terminated symbols. At the end of the map is an eyecatcher

(IEWBPMM) followed by a field containing the offset to the beginning of the map

from the start of the segment (zero if the map is in a NOLOAD class).

All sections and classes (that is, all elements) and parts resident in initial load and

deferred load classes have entries in the map. Segment numbers are stored in all

entries.

Unnamed sections are included in the map, but unnamed entry points and parts are

omitted. Unnamed entities are those whose named are printed as $PRIV****** in

the binder sysprint map. C++ function or variable names are the complete mangled

Data areas

308 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|
|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

name. Entry records include amode, xplink/nonxplink and code/data attributes. The

table contains offsets only. There are no adcons. This choice enables the table to

be stored in a NOLOAD class, if desired.

The entries are ordered by segment and then offset within segment.

Entries are organized in a hierarchy, segment/class/section/entry or

segment/class/section/part. For each class, there is a class entry followed by entries

for all sections that contribute to that class. These section entries correspond to ED

ESD entries in the module. Each section entry is followed by entries for the entry

points (corresponding to LD ESD records) and parts (corresponding to PD ESD

records) in that section and class.

Example of record structure

Segment 1 (G)

 Class1 (C)

 Section1 (S)

 Entry1 (E)

 Entry2 (E)

 Section2 (S)

 Entry3 (E)

 Section3 (S)

 Class2 (C)

 Section2 (S)

 Entry4 (E)

 Entry5 (E)

 Entry6 (E)

 Section4 (S)

 Entry7 (E)

Segment 2 (G)

 Class3 (C)

 Section0 (S)

 Part1 (P)

 Part2 (P)

These records contain both the length of the name of these entities and the offset

to the name from the start of the map. These names are in a string area at the end

of the map. Each symbol name in the string area is null-terminated. Segments,

however, do not have an associated name.

Compile unit information

The compile unit information is that which is saved from the original object module.

Such information is retained across rebinds only in program objects that are in

ZOSV1R5 format or later, so it is not always available. As with symbols in the main

module map, symbols stored in conjunction with the compile unit information are

null-terminated

Module map format

The structure begins with a header that specifies the number of class entries and

the length of each:

 Table 99. Module map header

Field Name Field Type Offset Length Description

IEWBMMP

BMMP_HEADER Char 0 24

BMMP_EYE_CATCHER Char 0 8 Constant ’IEWBMMP’

Data areas

Appendix E. Data areas 309

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|

||

|||||

|||||

|||||

|||||

Table 99. Module map header (continued)

Field Name Field Type Offset Length Description

BMMP_LENGTH Binary 8 4 Length including header

BMMP_VERSION Binary 12 1 Structure version=1

* 13 3 *Reserved*

BMMP_HEADER_LENGTH Binary 15 2 Length to

BMMP_ENTRIES_

BMMP_ENTRY_LENGTH Binary 18 2 Length of one entry

BMMP_ENTRY_COUNT Binary 20 4 Number of entries

BMMP_ENTRIES 24 Start of entries

Each of the map entries has the following format:

 Table 100. Map entry format

Field Name Field Type Offset Length Description

BMMP_ENTRY 24

BMMP_TYPE Char 0 1 Type of map entry

(G=segment, C=class,

S=section, E=entry point,

P=part)

BMMP_FLAGS Binary 1 1

BMMP_XPLINK Bit 1.0 1 1=XPLINK (types E/P only)

BMMP_DATA Bit 1.1 1 1=DATA (types E/P only)

BMMP_AMODE Binary 2 1 Amode (types E/P only)

BMMP_RMODE Binary 2 1 Rmode (types G/C only)

* 3 1 *Reserved*

BMMP_SEGNUM Binary 4 2 Segment Number

BMMP_NAME_LEN Binary 6 2 Length of name

BMMP_NAME_OFF Binary 8 4 Offset of name from start of

map

BMMP_OFF Binary 12 4 Offset of the class/element

from start of segment

BMMP_CU_INFO_OFF Binary 16 4 Offset to compile unit info

from start of map. Zero if

none.

BMMP_NEXT Binary 20 4 Offset from start of map to

next entry of same type

Each entry for compile unit information has the following format:

 Table 101. Compile unit information

Field Name Field Type Offset Length Description

BMMP_CU_INFO 0 20

BMMP_ORIG_NAME_LEN Binary 0 2 Length of data set or

path name

Data areas

310 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|

|||||

|||||

|||||

|||||

|||||
|

|||||

|||||

|||||
|

|

||

|||||

|||||

|||||
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|
|

|||||
|
|

|

||

|||||

|||||

|||||
|

Table 101. Compile unit information (continued)

Field Name Field Type Offset Length Description

BMMP_ORIG_MEM_LEN Binary 2 2 Length of member

name

BMMP_ORIG_NAME_OFF Binary 4 4 Offset to data set or

path name from start

of the map

BMMP_ORIG_MEM_OFF Binary 8 4 Offset to member

name from start of the

map

BMMP_TS_DATE Char 12 7 Compile data yyyyddd

* 19 1 *Reserved*

Data areas

Appendix E. Data areas 311

|

|||||

|||||
|

|||||
|
|

|||||
|
|

|||||

|||||
|

Data areas

312 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix F. Programming example for the binder API

The sample program in 315 is intended to show how the binder application

programming interface could be used by an application written in System/390*

assembler language. Although the task is arbitrary, the example shows the

sequence in which the APIs can be invoked in order to accomplish the task. The

program is linked non-reentrant in RMODE=24.

The program invokes the binder to include an arbitrary module (IFG0198N) from a

library (ddname=LPALIB), scans through its ESD entries one section at a time, and

writes the ESD entries to an output file (ddname=MYDDN). The program specifies

all three types of lists on the STARTD call to show how they could be used. It also

demonstrates the use of the SETO call to set an option during the dialog. Use a

SYSPRINT DD to see the calls made to the binder.

The program is divided into numbered sections for ease of annotation. Additional

commentary on each of the numbered sections follows:

Section Number Description

1 This is standard MVS entry point linkage. Register 12 is saved in

the message exit specification so that the exit routine can obtain

addressability to its own code and data.

 The BASR instruction clears the high-order byte (or bit) of register

12. This was done because the message user exit routine is

entered in 31-bit addressing mode and uses register 12 as its base

register. If the main program is entered in 24-bit addressing mode,

the high-order byte of register 12 will contain extraneous bits unless

it is cleared.

2 This logic opens the output file.

3 These specifications of the IEWBUFF macro obtain storage for the

ESD and NAMES buffers and initialize them. Mapping DSECTs for

the buffers are provided at the end of the program.

4 The STARTD call establishes a dialog with the binder. It is always

required and sets the dialog token for use in subsequent binder

calls. The dialog token must be initialized to binary zero before its

first usage.

 The example uses all three list parameters on the STARTD call:

v FILES allows us to assign a ddname to the binder’s print file.

Note that when using the binder API, any required binder files

(those whose ddnames do not appear on binder control

statements or as macro parameters) must have ddnames

assigned in this way.

v EXITS allows us to specify a message exit routine that receives

control, in this case, if the message severity is greater than 0.

The exit routine appears at the end of this program.

v OPTIONS allow us to specify one or more options that will apply

throughout the binder dialog. In this example, option TERM is set

to “Y”.

5 This logic creates a binder workmod with INTENT=ACCESS. The

dialog token, DTOKEN, is a required input parameter. The workmod

© Copyright IBM Corp. 1991, 2006 313

|

token, WTOKEN, is set by the binder for use on subsequent calls.

The workmod token must be initialized to binary zero prior to the

CREATEW call.

6 SETO is used to set the LIST option to “ALL”. Since the workmod

token is provided on the macro, LIST is set at the workmod level

and is valid only until the workmod is reset.

7 This step includes member IFG0198N from library LPALIB, using

ddname and member name to identify the module to be included.

8 The GETN call retrieves from the workmod the names of all

sections in module IFG0198N. Names are returned in the names

buffer, IEWBBNL, and COUNTN is set to the number of names

returned. TCOUNT is set to the total number of names in the

module, regardless of the size of the buffer. For this example, the

two counts should be the same. The size of the buffer is controlled

by the second IEWBUFF macro in section 17, which specifies

SIZE=50. This provides space for up to 50 names. Since IFG0198N

has fewer than 50 sections, the GETN request reaches end of file

before filling the buffer. That is why it ends with return code 4, and

why TCOUNT and COUNTN are the same.

9 For each name returned in the names buffer, the program issues

one GETD call to obtain the ESD data. If a large module had been

processed, both the GETN and GETD calls would have been

processed in a loop to accommodate the possibility that there are

more names or ESD records than could be obtained in a single

buffer. This example, however, assumes that all ESD entries can be

returned in a single GETD call.

 Assuming that any ESD entries were returned for the designated

section, the program scans through the buffer and writes each ESD

record to the output file designated by ddname MYDDN. It is

possible, however, that the item does not exist and that the named

section must be bypassed.

10 DELETEW removes the workmod from binder storage.

PROTECT=YES, the default, merely indicates that the delete

should fail if the workmod has been altered by the dialog. Since

INTENT=ACCESS, no alteration was possible, and PROTECT=YES

is ineffective.

11 ENDD ends the dialog between the program and the binder,

releasing any remaining resources, closing all files, and resetting

the dialog token to the null value.

12 A call to IEWBUFF (FUNC=FREEBUF) frees the NAME and ESD

buffers previously obtained by IEWBUFF.

13 Once the intended task is completed, the program closes the output

file and releases its buffer storage.

14 This logic represents standard MVS return linkage to the operating

system.

 Note that an error in the program might cause control to be passed

to the ERREXIT label, where clean-up processing takes place.

Three clean-up items are accomplished here:

Programming example for the binder API

314 z/OS V1R9.0 MVS Program Management: Advanced Facilities

1. If the NAME and ESD buffers were obtained previously through

IEWBUFF, they are released here. IEWBUFF

(FUNC=FREEBUF) is invoked to accomplish this.

2. If the binder dialog is outstanding (that is, if the STARTDialog

API was invoked previously), it is ended here. Note that the

workmod is deleted when the dialog is ended.

3. If the output DCB is open, it is closed and its storage is

released.

15 Many macro parameters require variable length character strings.

To the binder, a variable length string consists of a halfword length

followed by a byte string of the designated length. The halfword

length value does not include the two bytes for the length field

itself.

 This section illustrates the definition of some of those variable

length character string constants.

16 The STARTD function call specified all three types of lists: FILES,

EXITS and OPTIONS. Each of these list parameters is defined

here. Although each list contains only a single entry, additional

entries could have been specified by incrementing the fullword

count and adding another three-item specification at the end of the

list.

17 The DCB for the output file is defined for this program only. The file

is not shared or used in any way by the binder.

18 This use of the IEWBUFF macro provides DSECT maps for both

the ESD and names buffers. Registers 6 and 7 are dedicated as

base registers for the ESD buffer header and entries, respectively.

Similarly, registers 8 and 9 are dedicated to the names buffer.

 Note that you must code the IEWBUFF macro within a CSECT.

Also note that the VERSION parameter in IEWBUFF must match

the value of the VERSION parameter in the GETN and GETD

binder APIs.

19 The message exit routine receives control, in this example, any

time a message is issued by the binder with a severity of four or

greater. This routine receives control in the binder’s AMODE (31). It

must provide capping code to switch to AMODE(24), if necessary,

then back to the binder’s AMODE before returning. Refer to z/OS

MVS Programming: Assembler Services Guide for a discussion of

capping.

 The exit routine is copying the message from the binder’s message

buffer to the output file. It could have prevented the binder from

issuing the message by returning a 4 in register 15.

Example: Sample programming example for the binder API

**

* *

* SAMPLE BINDER PROGRAM *

* *

* Example application which includes a module and prints its ESD *

* records using the Binder call interface functions INCLUDE, GETN *

* and GETE. *

* *

**

**

Programming example for the binder API

Appendix F. Programming example for the binder API 315

* PROGRAM INITIALIZATION *

**

**

* 1. Entry point linkage *

***** *****

BAGETE CSECT

 PRINT GEN

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 SAVE (14,12)

 BASR R12,0 Get 31-bit base even in 24-bit mode

 USING *,R12

 ST R12,MESSAGE+4 Save program base for message exit

 LA R15,SAVE

 ST R13,SAVE+4

 ST R15,8(,13)

 LR R13,R15

 SPACE

 MVC FREEBFR,ZERO No buffers to FREEBUF yet

 MVC CLSDCB,ZERO No DCB to close yet

 MVC ENDDLG,ZERO No Dialog to end yet

**

* 2. Open output data set *

***** *****

 OPEN (MYDCB,OUTPUT) Open output data set

 LTR R15,R15 Successful?

 BNZ ERREXIT Exit if not

 MVC CLSDCB,FOUR We must CLOSE our DCB on exit

 SPACE

**

* 3. Obtain and initialize binder buffers *

***** *****

 IEWBUFF FUNC=GETBUF,TYPE=ESD

 IEWBUFF FUNC=GETBUF,TYPE=NAME

 IEWBUFF FUNC=INITBUF,TYPE=ESD

 IEWBUFF FUNC=INITBUF,TYPE=NAME

 MVC FREEBFR,FOUR We must FREEBUF our buffers on exit

 SPACE

**

* 4. Start Dialog, specifying lists *

***** *****

 MVC DTOKEN,DZERO Clear dialog token

 IEWBIND FUNC=STARTD, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 DIALOG=DTOKEN, +

 FILES=FILELIST, +

 EXITS=EXITLIST, +

 OPTIONS=OPTLIST, +

 VERSION=4

 CLC RSNCODE,ZERO Check the reason code

 BNE ERREXIT Exit if not zero

 MVC ENDDLG,FOUR We must ENDDIALOG on exit

Programming example for the binder API

316 z/OS V1R9.0 MVS Program Management: Advanced Facilities

EJECT

**

* 5. Create a Workmod with Intent ACCESS *

***** *****

 MVC WKTOKEN,DZERO Clear workmod token

 IEWBIND FUNC=CREATEW, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 WORKMOD=WKTOKEN, +

 DIALOG=DTOKEN, +

 INTENT=ACCESS, +

 VERSION=4

 CLC RSNCODE,ZERO Check the reason code

 BNE ERREXIT Exit if not zero

 EJECT

**

* 6. Set the list option to ALL *

***** *****

 IEWBIND FUNC=SETO, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 WORKMOD=WKTOKEN, +

 OPTION=LIST, +

 OPTVAL=ALL, +

 VERSION=4

 CLC RSNCODE,ZERO Check the reason code

 BNE ERREXIT Exit if not zero

 EJECT

**

* MAIN PROGRAM *

**

**

* 7. Include a module (IFG0198N) *

***** *****

 IEWBIND FUNC=INCLUDE, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 WORKMOD=WKTOKEN, +

 INTYPE=NAME, +

 DDNAME=INCLLIB, +

 MEMBER=MODNAME, +

 VERSION=4

 CLC RSNCODE,ZERO Check the reason code

 BNE ERREXIT Exit if not zero

 EJECT

**

* 8. Get all section names from workmod *

***** *****

 MVC CURSORN,ZERO

 IEWBIND FUNC=GETN, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 WORKMOD=WKTOKEN, +

 AREA=IEWBBNL, +

 CURSOR=CURSORN, +

 COUNT=COUNTN, +

 TCOUNT=TCOUNT, +

 NTYPE=S, +

 VERSION=4

 TCOUNT=TCOUNT, +

 NTYPE=S, +

 VERSION=4

 CH R15,=H’4’ RC=4 means have all names

 BE GETNOK

 BH ERREXIT Any higher is an error

 PUT MYDCB,MSG2MANY RC=0: Too many sections

GETNOKAY EQU *

Programming example for the binder API

Appendix F. Programming example for the binder API 317

EJECT

**

* 9. Get ESD data for each name returned by GETN *

***** *****

 L R5,COUNTN Number of sections

LOOP1 L R3,BNL_NAME_PTR Extract section name

 LH R2,BNL_NAME_CHARS

 STH R2,SECTION

 LA R4,SECTION

 BCTR R2,0

 EX R2,MOVESEC

 MVC CURSORD,ZERO Reset cursor

 IEWBIND FUNC=GETD, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 WORKMOD=WKTOKEN, +

 CLASS=B_ESD, +

 SECTION=SECTION, +

 AREA=IEWBESD, +

 CURSOR=CURSORD, +

 COUNT=COUNTD, +

 VERSION=4

 CLC RSNCODE,ZERO

 BE GETDOKAY

 CLC RETCODE,FOUR Last buffer

 BE GETDOKAY

 CLC RETCODE,EIGHT No data for item

 BNE ERREXIT

GETDOKAY EQU *

 L R4,COUNTD Number of ESD entries in buffer

 LTR R4,R4 Skip empty section

 BZ NEXTSECT

 LA R7,ESDH_END First record in ESD buffer

 SH R7,=H’4’ Leave space for length info

 L R0,ESDH_ENTRY_LENG

 AH R0,=H’4’

 SLL R0,16 Convert to LLBB form

LOOP2 DS 0H

 ST R0,0(,R7)

 PUT MYDCB,(R7) Write ESD to output data set

 L R0,0(,R7)

 A R7,ESDH_ENTRY_LENG Move to next ESD in this section

 BCT R4,LOOP2

NEXTSECT A R9,BNLH_ENTRY_LENG Move to next section name

 BCT R5,LOOP1

 SPACE

**

* END OF DATA - FINISH UP *

**

**

* 10. Done processing - delete workmod *

***** *****

 IEWBIND FUNC=DELETEW, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 WORKMOD=WKTOKEN, +

 PROTECT=YES, +

 VERSION=4

 CLC RSNCODE,ZERO

 BNE ERREXIT

 SPACE

**

* 11. End dialog *

***** *****

 IEWBIND FUNC=ENDD, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

Programming example for the binder API

318 z/OS V1R9.0 MVS Program Management: Advanced Facilities

DIALOG=DTOKEN, +

 VERSION=4

 CLC RSNCODE,ZERO

 BNE ERREXIT

 SPACE

**

* 12. FREEBUF (Release) our buffer storage *

***** *****

FREEBUFS IEWBUFF FUNC=FREEBUF,TYPE=ESD

 IEWBUFF FUNC=FREEBUF,TYPE=NAME

**

* 13. Close output dataset *

***** *****

CLOSEDCB CLOSE (MYDCB)

 FREEPOOL MYDCB

 SPACE

**

* 14. Return to operating system *

***** *****

NORMEXIT EQU *

 LA R15,0 Set a reason code of zero

 B EXIT

ERREXIT EQU *

 CLC FREEBFR,FOUR Do we need to FREEBUF our buffers?

 BNE CHECKDLG

 IEWBUFF FUNC=FREEBUF,TYPE=ESD

 IEWBUFF FUNC=FREEBUF,TYPE=NAME

CHECKDLG CLC ENDDLG,FOUR Do we need to end the Dialog?

 BNE CHECKDCB

* Ending the dialog also deletes the workmod

 IEWBIND FUNC=ENDD, +

 RETCODE=RETCODE, +

 RSNCODE=RSNCODE, +

 DIALOG=DTOKEN, +

 PROTECT=NO, +

 VERSION=4

CHECKDCB CLC CLSDCB,FOUR Do we need to CLOSE and FREE our DCB?

 BNE SETRSN

 CLOSE (MYDCB)

 FREEPOOL MYDCB

SETRSN L R15,RSNCODE

EXIT L R13,SAVE+4

 RETURN (14,12),RC=(15)

**

* PROGRAM CONSTANTS *

**

DZERO DC 2F’0’

ZERO DC F’0’

FOUR DC F’4’

EIGHT DC F’8’

MOVESEC MVC 2(0,R4),0(R3)

MSG2MANY DC Y(MSG2MZ-*,0),C’TOO MANY SECTIONS TO DISPLAY’

MSG2MZ EQU *

**

* 15. Variable length string constants *

***** *****

B_ESD DC H’5’,C’B_ESD’ Class name

ALL DC H’3’,C’ALL’ LIST option value

INCLLIB DC H’6’,C’LPALIB’ Include library

LIST DC H’4’,C’LIST’ LIST option keyword

MODNAME DC H’8’,C’IFG0198N’ Member name

TERM DC H’4’,C’TERM’ TERM option keyword

Y DC H’1’,C’Y’ TERM option value

**

* 16. STARTD list specifications *

***** *****

FILELIST DS 0F ddname specifications

Programming example for the binder API

Appendix F. Programming example for the binder API 319

DC F’1’ Number of list entries

 DC CL8’PRINT’,F’8’,A(PRINTX) Assign print file ddname

PRINTX DC CL8’SYSPRINT’ The ddname

 SPACE

OPTLIST DS 0F Global options specifications

 DC F’1’ Number of list entries

 DC CL8’TERM’,F’1’,A(YX) Set TERM option

YX DC C’Y’ TERM option value

EXITLIST DS 0F User exit specifications

 DC F’1’ Number of list entries

 DC CL8’MESSAGE’,F’12’,A(MESSAGE) Specify MESSAGE exit

MESSAGE DC A(MSGEXIT) Exit routine entry point

 DC AL4(0) Base address for exit routine

 DC A(FOUR) Take exit for severity >= 4

**

* WORKING STORAGE *

**

SAVE DS 18F Register save area

SAVE2 DS 18F Another for the exit routine

SAVE13 DS F Register 13 save

COUNTD DS F Number of ESD records returned

COUNTN DS F Number of section names

CURSORD DS F Cursor value for GETD call

CURSORN DS F Cursor value for GETN call

DCB@ DS F DCB for output file

DTOKEN DS CL8 Dialog Token

RETCODE DS F General return code

RSNCODE DS CL4 General reason code

SECTION DS H,CL8 Section Name for GETD

TCOUNT DS F Total number of sections

WKTOKEN DS CL8 Workmod Token

MSGLEN DS F

MSG DC 80C’0’ Put message buffer

FREEBFR DS F Indicator for FREEBUFing our buffers

* on exit, if they were GETBUFfed.

CLSDCB DS F Indicator for closing our DCB

ENDDLG DS F Indicator for ENDDing the Dialog

**

* 17. DCB for output file *

***** *****

MYDCB DCB DSORG=PS,MACRF=PM,RECFM=VB,LRECL=300,DDNAME=MYDDN

***** *****

**

* 18. NAMES and ESD Buffer Mappings. *

* Note that the buffer VERSION must match the *

* VERSION of the GETN and the GETD Binder APIs. *

***** *****

 IEWBUFF FUNC=MAPBUF,TYPE=ESD,SIZE=50, +

 HEADREG=6,ENTRYREG=7,VERSION=4

 IEWBUFF FUNC=MAPBUF,TYPE=NAME,SIZE=50, +

 HEADREG=8,ENTRYREG=9,VERSION=4

 LTORG

**

* MESSAGE EXIT ROUTINE *

* *

* This exit routine merely prints out a message as an example *

* of how the print exit could be used, not how it should *

* be used. *

**

**

* 19. Message Exit Routine *

* *

* Note: This routine will always be entered in AMODE(31). *

* If AMODE(24) is required, capping code must be added. *

***** *****

MSGEXIT EQU *

 SAVE (14,12)

Programming example for the binder API

320 z/OS V1R9.0 MVS Program Management: Advanced Facilities

L R12,0(,R1) Get address of user data

 L R12,0(,R12) Get user data(pgm base register)

 L R4,28(,R1) Get address of exit return code

 XC 0(4,R4),0(R4) Set exit return code to zero

 L R3,4(,R1) Get address of address of msg buf

 L R3,0(,R3) Get address of message buffer

 LH R1,0(,R3) Length of the message

 LA R0,L’MSG

 CR R1,R0

 BNL MSGX2

 LR R1,R0 But limited to buffer length

MSGX2 DS 0H

 LA R0,4(,R1) Length+4 for QSAM

 SLL R0,16 Convert to LLBB form

 ST R0,MSGLEN

 BCTR R1,0 Length-1 for Execute

 EX R1,MOVEMSG Put all we can in the buffer

 LA R3,MSGLEN

 ST R13,SAVE13 Save input save area address

 LA R13,SAVE2 Save area for PUT

 PUT MYDCB,(R3) Write message to data set

 L R13,SAVE13 Restore save area register

 RETURN (14,12) Return to binder

*

MOVEMSG MVC MSG(0),2(R3) Executed above

 END

Programming example for the binder API

Appendix F. Programming example for the binder API 321

Programming example for the binder API

322 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix G. Using the transport utility (IEWTPORT)

The transport utility (IEWTPORT) is a program management service with very

specific and limited function. It obtains (via the binder) a program object from a

PDSE and converts it into a “transportable program file” in a sequential

(nonexecutable) format. It also reconstructs the program object from a transportable

program file and stores it back into a PDSE (through the binder).

Note: You would only use this utility if you wanted to access the program data in a

program object on a system where program management was NOT

available. It should be emphasized that the purpose of IEWTPORT is very

limited. Its use is discouraged. It is not intended to replace or provide an

alternative to IEBCOPY, which is the appropriate utility for copying load

modules and program objects. It is simply a service for allowing the transport

of program data for other reasons than binding or loading. This utility will not

be enhanced further and might be withdrawn at some future date.

You create a transportable copy of the program object using IEWTPORT, then send

the transportable copy to the system without program management services. A

program on the target system can access the transportable copy using QSAM.

Section “Logical structure of a transportable file” on page 326 contains a description

of the transportable file format. Macro IEWTFMT contains the mappings for the

transportable file records.

If you want to load, bind, or execute a transportable program, you must first

recreate the program object by executing IEWTPORT on a system with program

management services installed. No programming interfaces exist to perform any of

these operations on transportable programs.

IEWTPORT does not support load modules, nor does it support program objects in

overlay format.

IEWTPORT does not support PO4 format program objects.

Executing IEWTPORT

IEWTPORT is an executable program. You can use a batch job to invoke the

IEWTPORT utility. The following is the JCL syntax:

input.dset[(member name)]

The name of a PDSE program library (with or without a member specification)

or the name of a sequential data set containing a transportable program.

output.dset

The name of a PDSE program library or the name of a sequential data set

containing a transportable program.

Defining the data sets

SYSPRINT is a required data set. It contains IEWTPORT user messages, binder

messages, and processing information.

 //PROGA EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=input.dset[(member name)],DISP=SHR

 //SYSUT2 DD DSN=output.dset,DISP=(NEW,CATLG,DELETE),...

 //SYSPRINT DD SYSOUT=*

© Copyright IBM Corp. 1991, 2006 323

SYSUT1 defines the required input data set, and SYSUT2 defines the required

output data set. If SYSUT1 defines a PDSE program library, SYSUT2 must define a

sequential data set (sequential and extended format data sets are both supported).

If SYSUT1 defines a sequential data set, then SYSUT2 must define a PDSE

program library. The SYSUT1 member name specification can be a primary name

or an alias. If an alias name is specified, IEWTPORT will convert the corresponding

primary name.

If SYSUT1 defines a PDSE program library and SYSUT2 defines a sequential data

set, IEWTPORT builds one or more transportable programs. If you include a

member name, IEWTPORT builds a transportable program for that member only. If

you specify a program library without a member name, IEWTPORT converts the

entire program library.

If SYSUT1 defines a sequential data set containing a transportable program, and

SYSUT2 defines a PDSE program library, IEWTPORT recreates the corresponding

program object with its original member name, aliases, and attributes. If you specify

a member name in the SYSUT2 statement and that member name already exists in

the output library, IEWTPORT replaces the old member name. If you specify a

member name that does not exist in the output library, IEWTPORT fails with no

messages.

IEWTPORT writes the sequential data set containing transportable programs with a

logical record length of 4096 bytes and a record format of variable block

(LRECL=4096 and RECFM=VB). If you specify the JCL parameters BLKSIZE,

LRECL, or RECFM, they are ignored.

Allocating space for the SYSUTn data sets

The disk or tape space requirement for the new data set defined by the SYSUT2

DD statement is approximately equal to that of the input data. If you are converting

a single program object to its transportable format, allocate the same number of

bytes as currently used by the PDSE member. If you are converting an entire

library, allocate the same number of bytes as currently used by the PDSE program

library. When converting a transportable file back to one or more program objects,

the disk space requirement is approximately equal to the size of the transportable

file.

Transporting selected members

You can create a sequential data set that contains transportable programs for all

members of a PDSE program library. In this case, you can recreate the PDSE

program library from the sequential data set.

If you want to create transportable programs for only some of the members of a

program library, you can copy all of the selected program objects to a new PDSE

program library and then convert the entire new PDSE to a single transportable file.

Alternatively, you can invoke IEWTPORT once for each member and create a

transportable file for each.

If you attempt to convert an empty library to its transportable format, IEWTPORT

creates an empty transportable file.

Sample IEWTPORT invocations

Below are some JCL examples for invoking IEWTPORT.

Transport utility

324 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Convert a program object to a transportable program

 The data set JUNE.CALCS is a PDSE program library. IEWTPORT converts the

program object CALC1 and writes it to a sequential data set called

JUNE.CALC1.TRANS. The messages generated by IEWTPORT are written to the

SYSPRINT data set.

Convert an entire program library

 The data set YEARLY.CALCS is a PDSE program library with several members in

it. ALL.CALCS.TRANS has been previously allocated as a sequential data set.

IEWTPORT converts the entire YEARLY.CALCS program library to a single

sequential file, ALL.CALCS.TRANS. At completion, ALL.CALCS.TRANS consists of

a series of transportable programs.

Convert a transportable program to a single program object

 The data set FEB.CALC2.TRANS is a sequential data set containing one

transportable program. FEB.CALCS is the name of a PDSE program library.

IEWTPORT recreates the program object from the transportable program read in

from the sequential data set, FEB.CALC2.TRANS. The program object is restored

with its original name, alias names, and attributes.

Messages, errors, and return codes

This topic summarizes the IEWTPORT messages, errors, and return codes.

Messages and codes

The IEWTPORT messages are numbered in the range of 3000-3100, and the

application identifier is IEW. The severity codes and the letter suffix to the message

number are the same as those for the binder. See z/OS MVS System Messages,

Vol 8 (IEF-IGD) for the message text and the explanations.

Errors

When creating a transportable file, a severe error might cause the last written

transportable program to be unusable.

If the time and date are not available due to an error, they are not recorded in the

header. IEWTPORT does not generate a return code or message for this condition.

 //CONV1 EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=JUNE.CALCS(CALC1),DISP=SHR

 //SYSUT2 DD DSN=JUNE.CALC1.TRANS,DISP=(NEW,CATLG,DELETE),

 // SPACE=(TRK,(2,1)),UNIT=SYSDA

 //SYSPRINT DD SYSOUT=*

 //CONVALL EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=YEARLY.CALCS,DISP=SHR

 //SYSUT2 DD DSN=ALL.CALCS.TRANS,DISP=OLD

 //SYSPRINT DD SYSOUT=*

 //RECREAT1 EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=FEB.CALC2.TRANS,DISP=SHR

 //SYSUT2 DD DSN=FEB.CALCS,DISP=OLD

 //SYSPRINT DD SYSOUT=*

 //IEWTRACE DD SYSOUT=*

Transport utility

Appendix G. Using the transport utility (IEWTPORT) 325

If you specify the BLKSIZE, LRECL, RECFM, PARM, or output member name in

your JCL, they are ignored without any warning message or return code.

If you specify an incorrect member name for either input or output, IEWTPORT fails

with no messages.

Return codes

 Table 102. IEWTPORT return codes

Return Code Description

00 Informational: IEWTPORT finished processing normally.

04 Warning: An exceptional condition has been detected, but should have

no adverse effect on the conversion process. Processing continues with

no user action required. The output should be verified to assure

completeness and correctness of the conversion.

08 Error: IEWTPORT has detected an error in the user data such as an

incorrect program object. IEWTPORT has taken corrective action. A

message is issued and processing continues, if appropriate. The integrity

of any output data is not assured.

12 Severe: IEWTPORT encountered an error that renders the output

unusable. The error might be caused by conditions such as an improper

execution environment or an I/O error. IEWTPORT has taken corrective

action. The standard action is to issue a message and terminate

processing.

16 Terminating: Processing ends immediately. This return code might be

issued due to the lack of minimum requirements for execution of

IEWTPORT, such as a missing ddname or the lack of storage. It might

be returned after the failure of a system service or macro invoked by

IEWTPORT. IEWTPORT has taken corrective action. The standard action

is to issue a message and terminate processing. The output, if any,

should be considered unusable.

Logical structure of a transportable file

Programming Interface information

A transportable file is a sequential file containing one or more transportable

programs (converted program objects). It consists of a header, one or more

transportable programs, and a trailer. The header indicates the beginning of the file,

and the trailer indicates the end of the file. A transportable program contains the

program object data. The overall file structure is shown in Figure 48 on page 327.

Each of the partitions indicated in the figure represents a logical record. The content

and structure of each type of the logical records is described in the remainder of

this section.

Transport utility

326 z/OS V1R9.0 MVS Program Management: Advanced Facilities

End of Programming Interface information

Mapping macro IEWTFMT

Programming Interface information

An assembler language mapping macro, IEWTFMT, is available that contains

mappings of the logical records of a transportable file. Table 103 on page 328 lists

the names of the DSECT maps and the record mapped by each DSECT.

Figure 48. Transportable file structure

Transport utility

Appendix G. Using the transport utility (IEWTPORT) 327

You can use this macro in your program, provided you assemble the program with

the Assembler H or higher program product and provided the IEWTFMT macro is

available in a macro library.

 Table 103. Transportable program record

DSECT name Mapped record

TFMT_THHEAD Header

TFMT_TTTRAIL Trailer

TFMT_TPDESC Descriptor

TFMT_TDALIAS Alias data record

TFMT_TDATTRIBS Attributes data record

TFMT_TDITEM Item data record

End of Programming Interface information

Header

Programming Interface information

The header contains information such as the time of day and date when

IEWTPORT created the transportable file and the data set name of the PDSE

program library. It is mapped by TFMT_THHEAD, which is shown in Table 104.

 Table 104. Transportable file header

TFMT_THHEAD DSECT Maps the header record

TFMT_THEYE DS CL8 Transportable file identifier. Contains

string ’IEWTPORT’

TFMT_THLVL DS FL1 Current level number: 1

TFMT_THRS1 DS CL3 Reserved

TFMT_THLEN DS FL4 Record length including the varying

length of the data set name

TFMT_THDS_OFF DS FL2 Data set name offset with respect to

the beginning of TFMT_THHEAD

TFMT_THRS2 DS FL2 Reserved

TFMT_THDATE DS CL10 Date as MM/DD/YYYY

TFMT_THTIME DS CL8 Time as HH:MM:SS

TFMT_THRS3 DS FL2 Reserved

TFMT_THDSNAME DSECT Maps the data set name

TFMT_THDSN_LEN DS FL2 Length of the data set name

TFMT_THDSN_VAL DS CL44 Data set name, varying, with a

maximum length of 44 bytes

End of Programming Interface information

Transport utility

328 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Trailer

Programming Interface information

The trailer indicates the end of the transportable program file. It is mapped by

TFMT_TTTRAIL, which is shown in Table 105.

 Table 105. Transportable file trailer

TFMT_TTTRAIL DSECT Maps trailer record

TFMT_TTEYE DS CL8 Trailer record identifier. Contains

string ’IEWTPTRL’

TFMT_TTLVL DS FL1 Current level number: 1

TFMT_TTRS1 DS FL3 Reserved

TFMT_TTLEN DS FL4 Trailer record length

TFMT_TTNUM DS FL4 Number of transportable programs in

this transportable file.

End of Programming Interface information

Transportable program

Programming Interface information

Each transportable program contains a descriptor and a body. A transportable

program descriptor (TP descriptor) indicates the beginning of a transportable

program and contains the primary name. The body contains the data that is

required to rebuild the program object. The overall structure of a transportable

program is shown in Figure 49. The TP descriptor record is mapped by

TFMT_TPDESC, which is shown in Table 106.

 Table 106. Transportable program descriptor map

TFMT_TPDESC DSECT Maps the descriptor record

TFMT_TPEYE DS CL8 Transportable program descriptor

identifier. Contains string ’IEWTPDSC’

TFMT_TPLVL DS FL1 Level number: 1

TFMT_TPPOV DS FL1 Program object version

TP
desc

H TP
desc

body . . .

Transportable File Format

body TP
desc

body T

transportable
program

A

transportable
program

B

transportable
program

N

Figure 49. Transportable program structure

Transport utility

Appendix G. Using the transport utility (IEWTPORT) 329

Table 106. Transportable program descriptor map (continued)

TFMT_TPRS1 DS CL2 Reserved

TFMT_TPLEN DS FL4 Record length including the varying

member name

TFMT_TPNAME_OFF DS FL2 Offset to the primary (member) name

relative to the beginning of

TFMT_TPDESC

TFMT_TPRS2 DS FL2 Reserved

TFMT_TPMEMNAM DSECT Maps primary name

TFMT_TPMEM_LEN DS FL2 Length of the primary name

TFMT_TPMEM_VAL DS CL8 Primary (member) name, varying,

with a maximum length of eight bytes.

Body

The body consists of a series of data records. Each data record has a data header

that describes the data that follows it. The data type is classified as either ALIAS,

ITEM, or ATTRIBUTES. The data header is mapped by one of three different data

sections of the IEWTFMT mapping macro, depending upon the data type.

In the body of a transportable program, the first records are alias records, followed

by the attributes record, and then the item records. There can be multiple alias and

item records but only one attributes record.

The maximum size of a data record cannot exceed the sequential data set block

size of 4KB. Items larger than 4KB span several blocks.

ALIAS data type: An ALIAS data type indicates that the data is an alias name.

For the alias data type, the alias name and AMODE are stored after the data

header. Figure 51 depicts the format of the alias data type. The alias data header is

mapped by the TFMT_TDALIAS section of the IEWTFMT macro and shown in

Table 107 on page 331.

data
data

header
1

data
data

header
2

data
data

header
n

. . .

Body Structure

Figure 50. Transportable program body structure

data
header

alias
name
length

(2 bytes)

alias
name

AMODE
length

(2 bytes)

alais
AMODE

offset

Figure 51. Alias data record

Transport utility

330 z/OS V1R9.0 MVS Program Management: Advanced Facilities

The alias data header is mapped by the TFMT_TDALIAS section of the IEWTFMT

macro shown here.

 Table 107. Transportable program alias data header

TFMT_TDALIAS DSECT Maps the alias data header

TFMT_TDALIAS_EYE DS CL8 Data record identifier. Contains string

’IEWTLIAS’.

TFMT_TDALIAS_LVL DS FL1 Level number: 1

TFMT_TDALIAS_RS1 DS CL3 Reserved

TFMT_TDALIAS_LEN DS FL4 Length of the record including the varying data

TFMT_TDALIAS_EPOFF DS FL4 Alias entry point offset. The offset is relative to

the beginning of the program object that

contains this alias.

TFMT_TDALIAS_DATOFF DS FL2 Offset to the alias data relative to the beginning

of the alias data record

TFMT_TDALIAS_RS2 DS FL2 Reserved

Note: The varying alias data is stored immediately after the TFMT_TDALIAS data header. The alias data linear format

is:

 Alias name length + Alias name + Alias AMODE length + Alias AMODE

 (2 bytes) (varying) (2 bytes) (varying)

ATTRIBUTES data type: An ATTRIBUTES data type indicates that the data is an

array of attributes. The attributes data header is mapped by the TFMT_TDATTRIBS

section of the IEWTFMT macro. The map is described in Table 108 on page 332.

The attributes are the program attributes that have been set by the binder as

options. Specifically, they are: AC, AMODE, PAGE, DC, EDIT, EP, EXEC,

FETCHOPT, OL, REUS, RMODE, SCTR, SSI, and TEST. The program attributes

have the same names and values as the binder options, as described in Chapter 5,

“Binder options for advanced facilities,” on page 111, except for the following:

v The EP value is an entry point offset.

v The EXEC attribute indicates if the program is executable. The values are YES

or NO.

v The PAGE attribute indicates if page alignment is performed for this program.

The values are YES or NO.

data
header

data

attr.
count

attr.
name

1

attr.
length

1

offset
to attr.
value1

attr.
name

2

.attr.
value

1

attr.
value

2

Figure 52. Attributes Data Record

Transport utility

Appendix G. Using the transport utility (IEWTPORT) 331

Table 108. Transportable program attributes data header

TFMT_TDATTRIBS DSECT Maps the attributes data header

TFMT_TDATTRIBS_EYE DS CL8 Data record identifier. Contains string

’IEWTATTR’.

TFMT_TDATTRIBS_LVL DS FL1 Level number: 1

TFMT_TDATTRIBS_RS1 DS CL3 Reserved

TFMT_TDATTRIBS_LEN DS FL4 Attribute data record length including the varying

data

TFMT_TDATTRIBS_DLEN DS FL4 Length of the varying attributes data

TFMT_TDATTRIBS_OFF DS FL2 Offset to the attributes varying data. The offset is

relative to the beginning of TFMT_TDATTRIBS.

TFMT_TDATTIBS_RS2 DS FL2 Reserved

Note: The attributes data is stored immediately after the attributes data header. The varying attributes data has this

format:

 ATTRIBUTES_COUNT(how many in array) (4 bytes)

 ATTRIBUTES_ARRAY

 ATTRIBUTE_NAME (8 bytes)

 ATTRIBUTE_LENGTH (2 bytes)

 ATTRIBUTE_VALUE_OFFSET (2 bytes)

 The offset is relative to the beginning of this

 attributes array.

 The attribute value has a length of ATTRIBUTE_LENGTH.

 ACTUAL VARYING VALUES (saved contiguously to previous structure)

The linear format of this data is:

 ATTRIBUTES_COUNT (N) +

 ATTRIBUTE_NAME(1) + ATTRIBUTE_LENGTH(1) + OFFSET(1) +

 ATTRIBUTE_NAME(2) + ATTRIBUTE_LENGTH(2) + OFFSET(2) + ...

 ATTRIBUTE_NAME(N) + ATTRIBUTE_LENGTH(N) + OFFSET(N) +

 ACTUAL ATTRIBUTE VALUE(1) + ACTUAL ATTRIBUTE VALUE(2) + ...

 ACTUAL ATTRIBUTE VALUE(N).

ITEM data type: An ITEM data type indicates that the data is a data item

identified by a class name. For the item data type, the class name is stored after

the data header. The item data itself (that is, the class of data for all sections of a

program object) follows the class name.

Figure 53 on page 333 shows the structure of the item data record. The data

header is mapped by the TFMT_TDITEM section in the IEWTFMT macro and is

shown in Table 109 on page 333.

The data item that follows the class field is mapped by one of the mapping macros

described in Appendix D, “Binder API buffer formats,” on page 241. The applicable

map is determined by the class name. For example, if the class name is “B_RLD”,

the corresponding map is structure IEWBRLD described in Figure 30 on page 251.

The meaning of some fields in the header structures described in Appendix D,

“Binder API buffer formats,” on page 241 is changed to fit the context of a record

rather than an in-storage buffer. These changes apply to the header fields listed

below. Replace “xxx” with a data class identifier (ESD, RLD, IDB, ...).

xxxH_BUFFER_LENG

Actual length of the item data including header

xxxH_ENTRY_COUNT

Actual number of entries in the record

xxxH_NAMEPTR_ADJ

Negative adjustment factor to add to name pointers. The pointers then

become offsets from the first byte of the buffer header (for example,

IEWBESD, or IEWBRLD). In the context of the item record, the offsets are

relative to the beginning of the item data. See Figure 53 on page 333.

Transport utility

332 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Table 109. Transportable program item data header

TFMT_TDITEM DSECT Maps item data header

TFMT_TDITEM_EYE DS CL8 Data record identifier. Contains string

’IEWTITEM’

TFMT_TDITEM_LVL DS FL1 Level number: 1

TFMT_TDITEM_BUFF_LVL DS FL1 Version of the data buffer that follows this

header

TFMT_TDITEM_RS1 DS CL2 Reserved

TFMT_TDITEM_LEN DS FL4 Data record length including the varying data

TFMT_TDITEM_CSR DS FL4 Cursor number. Indicates the relationship of data

in this data record relative to the previous item

data record

TFMT_TDITEM_CNT DS FL4 Indicates how many bytes/records of binder data

are saved after this header.

TFMT_TDITEM_OFF DS FL2 Offset to the item data relative to the beginning

of TFMT_TDITEM

TFMT_TDITEM_RS2 DS CL2 Reserved

Note: The varying item data is stored immediately after the item data header. The varying item data has the format:

 Class name length + Class name + Item data length + Item data

 (2 bytes) (varying) (2 bytes) (varying)

End of Programming Interface information

data
item

length
(2 bytes)

class
name

data
header

offset

class
length

(2 bytes)

data
item

Figure 53. Item data record

Transport utility

Appendix G. Using the transport utility (IEWTPORT) 333

Transport utility

334 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Appendix H. Establishing installation defaults

Note: This procedure involves making changes to an MVS component and

modifying an authorized library. It can only be performed by your system

programmer, who can provide you with a list of the defaults that have been

established for your installation.

Default values for binder options can be tailored to the needs of your installation by

replacing a data-only load module in SYS1.LINKLIB. CSECT IEWBODEF in load

module IEWBLINK can be used to specify default values for one or more options.

The module is initially set to the null string but can be modified to contain binder

option default settings in the same form they would be specified in the JCL PARM

field, without enclosing apostrophes or parentheses. A halfword length field

preceding the string must be set to the current length of the string.

The following example shows how you can set the defaults for binder options

FETCHOPT, LET and MSGLEVEL:

 IEWBODEF CSECT

 DC AL2(ENDPARM-PARMS)

 PARMS EQU *

 DC C’COMPRESS=YES,’

 DC C’FETCHOPT(NOPACK,NOPRIME),’

 DC C’LET(4),’

 DC C’MSGLEVEL(4)’

 ENDPARM EQU *

 END

Any options that can be set in the JCL PARM field can be defaulted in this manner.

Notice the setting of the length and the comma delimiters between options. Once

this module has been assembled it must be linked into module IEWBLINK, using

either the linkage editor or binder, replacing the empty module.

It is recommended that only binder processing options, (for example, COMPAT,

LINECT, LIST, MAP, and MSGLEVEL), be established for your installation. Module

attributes, such as RMODE, REUS and OVLY, tend to vary from module to module,

and changing the defaults for these attributes can result in unwanted conflicts. Note

that utilities, such as IEBCOPY, invoke the binder to perform part of their

processing, and any defaults established with this procedure can affect those

utilities as well.

Installations planning to migrate from PDS load modules to PDSE or UNIX program

objects may want to consider an installation default of COMPRESS=YES. This

might result in as much as a 20 percent to 25 percent reduction in DASD space

requirements for programs. However, program objects bound with

COMPRESS=YES cannot be rebound or inspected (by AMBLIST or debuggers, for

example) on any system older than z/OS version 1 release 7.

The installation default can be overridden for calls to the binder, including those via

c89, ld, TSO link, and the Application Programming Interface. It is important to note

that the installation default would also apply in some cases to IEBCOPY and the

UNIX cp command, and there is no way to override it for those programs.

An installation can override the requirement that the interface must use the VL

format (that is, where the high order bit must be set on the last parameter pointer).

The override is implemented by providing a module named IEWBQHOB, available

to fast data using an undirected LOAD (no DCB). Typically this would be provided

© Copyright IBM Corp. 1991, 2006 335

|
|
|
|

in the LINKLIB or LPALIB concatenation, though a STEPLIB could be used if the

override was wanted for only particular cases.

The following is an example of an assembler program to create IEWBQHOB:

IEWBQHOB CSECT

 DC C’WARN’

 END IEWBQHOB

336 z/OS V1R9.0 MVS Program Management: Advanced Facilities

|
|

|

|
|
|

Appendix I. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1991, 2006 337

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

338 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1991, 2006 339

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Programming interface information

This book primarily documents information that is NOT intended to be used as

Programming Interfaces of z/OS.

This book also documents intended Programming Interfaces that allow the customer

to write programs to obtain the services of z/OS. This information is identified where

it occurs, either by an introductory statement to a chapter or section or by the

following marking:

Programming Interface information

End of Programming Interface information

340 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Trademarks

The following terms are trademarks of the IBM Corporation in the United States, or

other countries, or both:

v COBOL/370

v DFSMS/MVS

v DFSMSdfp

v IBM

v IBMLink

v Language Environment

v MVS

v OS/2

v OS/390

v Parallel Sysplex

v RACF

v Resource Link

v S/370

v System/370

v System/390

v zSeries

v z/OS

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 341

342 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Index

A
access intent

specifying 39, 77

valid function calls 10

accessibility 337

ADDA (add alias function)
parameter list 28

return and reason codes 28

syntax 26

ALIAS data type 330

alias specifying 27

aligning sections
4 KB boundary

with ALIGNT function call 29

ALIGNT (align text function)
parameter list 30

return and reason codes 29

syntax 29

alternate entry point
specifying 27

specifying AMODE 27

ALTERW (alter workmod function)
parameter list 33

return and reason codes 33

syntax 30

AMASPZAP IDR data 250

AMODE specifying 27

API 1

buffer header 243

call version 8

invoking from high-level languages 12

retrieve text 306

setting invocation environment 11

setting options 111

writing user exit routines 90

API (application programming interface)
using IEWBIND macro 20

using IEWBUFF macro 15

writing user exit routines 135

API buffer formats 241

AMASPZAP IDR data 250

binder IDR data 247

binder name list 253, 261, 277, 287

content extent list 253

ESD entry 245, 255, 270, 280

internal symbol table 252

language processor IDR data 248

module map 262

PARTINIT entry 276

PMAR entry 279

RLD entry 251, 259, 274

text data buffer 252

user IDR data 249

ATTACH macro invoking binder 107

AUTOC (API function)
syntax 34

AUTOCall (API function)
parameter list 35

return and reason codes 35

automatic library call
BINDW function 36

specifying option 83

B
B_DESCR 3

B_ESD 2

B_IDRB 3

B_IDRL 3

B_IDRU 3

B_IDRZ 3

B_IMPEXP 3

B_LIT 3

B_MAP 3

B_PARTINIT 3

B_PRV 2

B_RLD 3

B_SYM 3

B_TEXT 2

B_TEXT24 3

B_TEXT31 3

behavioral attributes data field 214

bind intent
specifying 39, 77

valid function calls 10

binder (program management binder)
invoking

from a program 107

with the API 1

program names 12, 107

binder application programming interface
description 1

example 313

binder dialog
description 1

starting 88

summary 8

terminating 44

binder function call
overview 8

sequence 8

summary 26

binder invocation environment 11

binder options
advanced facilities 111

defaults 335

installation 335

setting up 335

with the API 111

using SETO function 86

using STARTD function 88

binder processing intent
associating with workmod 10

description 2

© Copyright IBM Corp. 1991, 2006 343

binder user exit
message exit routine 136

save exit reason codes 137

save exit routine 136

specifying with STARTD function 90

BINDW (bind workmod function)
parameter list 38

resolving external references 36

return and reason codes 37

syntax 35

BLIT
class entries 307

description 307

structure 306

buffer
header contents 243

header format 243

values 244

buffer operations
allocating 17

initializing 18

mapping 18

releasing 16

byte-oriented data 220

C
C/C++ API 143

CALLERID option
purpose 112

CALLIB option
purpose 112

specifying 86, 90

CESD record format 197

changing external symbols 31

class
attributes 5

description 2

names 2, 207

class data, obtaining 115

class identifier
B_DESCR 3

B_ESD 2

B_IDRB 3

B_IDRL 3

B_IDRU 3

B_IDRZ 3

B_IMPEXP 3

B_LIT 3

B_MAP 3

B_PARTINIT 3

B_PRV 2

B_RLD 3

B_SYM 3

B_TEXT 2

B_TEXT24 3

B_TEXT31 3

coding the IEWBIND macro 20

common area
aligning

with ALIGNT function call 29

common area (continued)
changing 31

data classes 2

deleting 31

expanding 31

inserting 65

ordering 69

replacing 31

compile unit list 45

control record 199

control/RLD dictionary record format
See control/RLD record write

CREATEW (create workmod function)
parameter list 40

return and reason codes 40

syntax 39

CSECT
identification record (IDR) format 201

CSECT (control section)
aligning

with ALIGNT function call 29

changing 31

data classes 2

deleting 31

expanding 31

inserting 65

ordering 69

replacing
with ALTERW function call 31

D
data area 289

data class, obtaining 115

data set
specifying in STARTD function 89

data storing 70

DD statement
alternative ddnames 108

DELETEW (delete workmod function)
parameter list 41

return and reason codes 41

syntax 40

deleting external symbols
with ALTERW function call 31

deleting sections 31

dialog token
description 2

obtaining 89

disability 337

DLL support
Exporting code 238

Exporting data 238

Importing code 238

Non-XPLINK 239

XPLINK 239

Importing data 238

Non-XPLINK 238

XPLINK 238

DLLR
return and reason codes 43

344 z/OS V1R9.0 MVS Program Management: Advanced Facilities

DLLR (continued)
syntax 42

DLLRename
parameter list 44

dynamic link library
DLL names inside IMPORT control statements 80

E
END object module record 191

ENDD (end dialog function)
parameter list 45

return and reason codes 45

syntax 44

entry name
changing 31

deleting 31

specifying 27

entry point
replacing 31

specifying AMODE
with ADDA function call 27

environmental options
CALLERID 111

COMPAT 111

LINECT 111

MSGLEVEL 111

PRINT 111

TERM 111

TRAP 111

WKSPACE 111

ESD
attribute assignment 218

behavioral attributes 214

continuation record 212

extended attributes 219

record 210

specifying elements 213

ESD (external symbol dictionary)
offsets 7

retrieving 50

ESD object module record 189

ESDID summary 213

example
attributes data record 332

IEWTPORT (transport utility) 324

item data record 333

transportable file format 327

transportable program body 330

transportable program structure 329

execution environment 12

user exit 135

exit
interface validation 138

message 136

save 136

setting return codes 137

user 135

EXITS 90, 138

exits user
specifying with STARTD function 90

external reference
changing 31

processing rules 36

replacing 31

external symbol
changing 31

deleting 31

replacing 31

external symbol definition
behavioral attributes 214

record 210

F
fast data access 115

code call interface 120

environment characteristics 116

error handling 131

interfaces 119

parameters 116

using 115

formats
object module 192

FREEBUF
function 16

syntax 16

function calls 8

G
GETBUF function

syntax 17

GETC (get compile unit list function)
parameter list 47

return and reason codes 47

syntax 45

GETD (get data function)
parameter list 50

return and reason codes 49

syntax 47

GETE (get ESD data)
parameter list 53

return and reason codes 53

syntax 50

GETN (get names function)
parameter list 56

return and reason codes 55

syntax 54

GOFF
class names 207

conventions 207

generating DLLs 238

generating linkage descriptors 238

guidelines 205

incompatibilities 206

overview 205

record formats 206

record prefix 208

record types 205

restrictions 205

Index 345

I
identification record data field 222

IDR
data field 222

format 1 222

IDR data
extended format 223

format 2 223

format 3 223

IDRL 222

IDRU 223

IEWBFDA (obtain module data)
return and reason codes 132

service 115

syntax 128

IEWBIND macro
coding 20

coding lists 91

function summary 26

parameter list 21

return and reason codes 13

IEWBUFF macro
coding 15

function summary 15

IEWTFMT macro 327, 331

IEWTPORT (transport utility)
allocating space 324

convert a program library 325

convert a program object 325

convert a transportable program 325

defining data 323

errors 325

examples 324

JCL 323

messages 325

return codes 326

selecting members 324

SYSPRINT DD statement 323

SYSUT1 DD statement 323

SYSUT2 DD statement 323

using 323

IMPORT (import variable function)
parameter list 58

return and reason codes 58

syntax 56

import variable
with IMPORT function call 56

INCLUDE (include module function)
parameter list 64

return and reason codes 62

syntax 58

INITBUF function
syntax 18

initial load segment 306

initializing buffers 18

input conventions 195

input record types
formats 196

inserting sections 65

INSERTS (insert section function)
parameter list 66

INSERTS (insert section function) (continued)
return and reason codes 66

syntax 65

interface validation exit 90, 138

default exit routine 141

post processing 141

INTFVAL 90, 138

invoking the API 1

from high-level languages 12

setting invocation environment 11

using macros 11

with IEWBIND macro 20

with IEWBUFF macro 15

invoking the binder
from a program 1, 107

with the API 1

ITEM data type 332

J
JCL (job control language)

coding
IEWTPORT 323

K
keyboard 337

L
LINK macro invoking binder 107

link pack area
with RES option 36

linkage editor 196

LNAME option
purpose 113

specifying 86, 90

LOAD macro
invoking

binder 12

invoking binder 107

issued by IEWBIND macro 11

load module record formats 196

loading programs with binder API 66

loading the binder 11

LOADW (load workmod function)
parameter list 69

return and reason codes 68

syntax 66

LookAt message retrieval tool xvi

M
MAPBUF function

syntax 18

mapping buffers 18

message exit 90, 136

message retrieval tool, LookAt xvi

migration from OBJ to GOFF 205

346 z/OS V1R9.0 MVS Program Management: Advanced Facilities

MODLIB option
purpose 113

specifying 86, 90

module data, obtaining 115

multiple text classes 5

Multiple-text class modules 7

MVS linkage conventions 13

N
naming program modules 113

never-call option 83

non-reserved names 207

Notices 339

O
object module

formats 192, 205

including 58

input conventions 187

record formats 188

ordering sections 69

ORDERS (order section function)
parameter list 70

processing notes 70

return and reason codes 70

syntax 69

overlay program
inserting sections 65

INSERTS (insert section function) 65

STARTS (start segment function) 95

overlay region
assigning an origin 96

overlay segment
assigning an origin 96

P
page alignment

4KB boundary
with ALIGNT function call 29

parameter list 21

creating 12

setting null values 21

passing lists to the binder API 91

PDS
directory entry 289

PDS data area map
cross reference 294

on entry to STOW 289

returned by BLDL 296

PDSE
returned by DESERV 303

program module
including 58

saving 79

program module data
location and order 7

program object
accessing class information 306

program object (continued)
accessing with API 306

accessing with external reference 306

programming interface information 340

pseudoregister
changing 31

deleting 31

replacing 31

PUTD
parameter list 75

return and reason codes 74

syntax 70

R
reason codes

ADDA (add alias function) 28

ALIGNT (align text function) 29

ALTERW (alter workmod function) 33

AUTOCall (API function) 35

binder 97

BINDW (bind workmod) 37

CREATEW (create workmod function) 40

DELETEW (delete workmod function) 41

DLLR 43

ENDD (end dialog function) 45

GETC (get compile unit list function) 47

GETD (get data function) 49

GETE (get ESD function) 53

GETN (get names function) 55

IEWBFDA (obtain module data) 132

IEWBIND macro 13

IMPORT (import variable function) 58

INCLUDE (include module function) 62

INSERTS (insert section function) 66

LOADW (load workmod function) 68

ORDERS (order section function) 70

PUTD (put data function) 74

RENAME 76

RESETW (reset workmod function) 78

save user exit 137

SAVEW (save workmod function) 81

SETL (set library function) 85

SETO (set option function) 88

STARTS (start segment function) 96

record
GOFF 206

load module format 196

RLD 224

text continuation 221

record format load module IDR 201

record formats 205

record formats, object module 192

releasing buffers 16

relocation directory record 224

relocation record format 200

RENAME (rename symbolic references)
parameter list 76

return and reason codes 76

syntax 75

rename DLL modules 42

Index 347

replacing external symbols 31

replacing sections
with ALTERW function call 31

reserved names 207

RESETW (reset workmod function)
parameter list 78

return and reason codes 78

syntax 77

restricted no-call option 83

retrieving
compile unit list 45

ESD entries 50

section names 54

sections 47

text 47

workmod items 47

return codes
IEWBFDA (obtain module data) 132

IEWBIND macro 13

IEWTPORT (transport utility) 326

RLD 224

RLD object module record 190

RLD record format 200

S
save exit 90

save exit routine 136

SAVEW (save workmod function)
parameter list 83

return and reason codes 81

syntax 79

saving program modules 79

scatter table format 198

scatter/translation record format 198

section
definition 3

inserting 65

names 3, 21

ordering 69

retrieving 47

names 54

section names 4

SETL (set library function)
never-call option 83

parameter list 85

return and reason codes 85

syntax 83

SETO (set option function)
parameter list 88

return and reason codes 88

syntax 86

setting user exit return codes 136, 137

shortcut keys 337

side files
saving 80

SMDE
data area 303

entry token section (normal) 305

entry token section (system DCB) 305

extensions 304

SMDE (continued)
file descriptor section 305

format 303

name section 304

notelist section 305

optional SMDE_SECTIONS 304

primary name section 305

SNAME option
purpose 113

specifying 86, 90

specifying aliases and alternate entry points 26

specifying AMODE with ADDA 27

specifying binder options
from a program 108

with the API 111

using SETO function 86

using STARTD function 88

specifying call libraries 36

specifying substitute member names 75

STARTD
ENVARS option 90

PARMS option 90

STARTD (start dialog function)
parameter list 95

return and reason codes 94

syntax 88

starting binder dialog 88

STARTS (start segment function)
parameter list 96

return and reason codes 96

syntax 95

storing data with PUTD 70

STOW macro 289

string parameter
example 13

structured-record data 220

supplying text information 220

SYM object module record 188

SYM record format 196

symbol (SYM) record format 196

symbol names
purpose in API 5

summary 5

SYSUTn 324

T
terminating binder dialog 44

text
compression 224

encoding types 224

encryption 224

object module record format 190

record format 220

retrieving 47

text continuation record 221

translation table format 198

transport utility 323

transportable file format
alias data type 330

attributes data type 331

348 z/OS V1R9.0 MVS Program Management: Advanced Facilities

transportable file format (continued)
body 330

example 326

header 328

item data type 332

structure 326

TP descriptor 329

trailer 329

transportable program 323

descriptor map 329

structure 329

U
unitary (obtain module data)

parameter list 131

unstructured-record data 220

user exit
execution environment 135

linkage conventions 135

registers at entry 135

user exits 135

V
varying character strings 20

version
specifying in API 8

specifying in binder 19

summary 8

W
workmod

binding 35

creating 39

deleting 40

description 2

item retrieving 47

resetting 77

workmod element
description 2

workmod token
description 2

obtaining 39

writing
data, using PUTD 70

writing binder user exit routines 90, 135

X
XCTL macro 107

Index 349

350 z/OS V1R9.0 MVS Program Management: Advanced Facilities

Readers’ Comments — We’d Like to Hear from You

z/OS

MVS Program Management: Advanced Facilities

 Publication No. SA22-7644-07

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7644-07

SA22-7644-07

����

Cut or Fo
Along Lin

Cut or Fo
Along Lin

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7644-07

	Contents
	Figures
	Tables
	About this document
	Required product knowledge
	Required publications
	Related publications
	Referenced publications
	Notational conventions
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS
	z/OS Wizards
	Information updates on the web

	Summary of changes
	Chapter 1. Using the binder application programming interface
	Understanding binder programming concepts
	Symbol names in API calls
	Program management support of class attributes

	Organization of data in the program module
	Module level information
	Multiple-text class modules, load segments and ESD offsets

	Version number in an API call
	Binder dialogs
	Processing intents

	Invoking the binder API
	Setting the invocation environment
	Loading the binder
	Invoking the binder using the macros
	Invoking the binder without the macros
	Providing buffer areas
	Providing the environment
	Obtaining the address of the binder program
	Providing the parameter lists
	Invoking the binder

	Binder API common return and reason codes

	Chapter 2. Binder API interface macros
	Generating and mapping data areas
	Using the IEWBUFF macro
	FREEBUF: Free buffer storage
	GETBUF: Get buffer storage
	INITBUF: Initialize buffer header
	MAPBUF: Map buffer declaration

	Coding the IEWBIND macro
	Defining varying character strings
	Defining section names
	Defining parameter lists
	Setting null values

	Chapter 3. IEWBIND function reference
	ADDA: Add alias
	Processing notes
	Return and reason codes
	Parameter list

	ALIGNT: Align text
	Processing notes
	Return and reason codes
	Parameter list

	ALTERW: Alter workmod
	Processing notes
	Return and reason codes
	Parameter list

	AUTOC: Perform incremental autocall
	Processing notes
	Return and reason codes
	Parameter list

	BINDW: Bind workmod
	Processing notes
	Return and reason codes
	Parameter list

	CREATEW: Create workmod
	Processing notes
	Return and reason codes
	Parameter list

	DELETEW: Delete workmod
	Processing notes
	Return and reason codes
	Parameter list

	DLLR: Rename DLL modules
	Processing notes
	Return and reason codes
	Parameter list

	ENDD: End dialog
	Processing notes
	Return and reason codes
	Parameter list

	GETC: Get compile unit list
	Processing notes
	Return and reason codes
	Parameter list

	GETD: Get data
	Processing notes
	Return and reason codes
	Parameter list

	GETE: Get ESD data
	Processing notes
	Return and reason codes
	Parameter list

	GETN: Get names
	Processing notes
	Return and reason codes
	Parameter list

	IMPORT: Import a function or external variable
	Processing notes
	Return and reason codes
	Parameter list

	INCLUDE: Include module
	Processing notes
	Return and reason codes
	Parameter list

	INSERTS: Insert section
	Processing notes
	Return and reason codes
	Parameter list

	LOADW: Load workmod
	Processing notes
	Return and reason codes
	Parameter list

	ORDERS: Order sections
	Processing notes
	Return and reason codes
	Parameter list

	PUTD: Put data
	Processing notes
	Return and reason codes
	Parameter list

	RENAME: Rename symbolic references
	Processing notes
	Return and reason codes
	Parameter list

	RESETW: Reset workmod
	Processing notes
	Return and reason codes
	Parameter list

	SAVEW: Save workmod
	Processing notes
	Return and reason codes
	Parameter list

	SETL: Set library
	Processing notes
	Return and reason codes
	Parameter list

	SETO: Set option
	Processing notes
	Return and reason codes
	Parameter list

	STARTD: Start dialog
	Passing lists to the binder
	File list
	Exit list
	Option list

	Return and reason codes
	Environment variables
	Parameter list

	STARTS: Start segment
	Processing notes
	Return and reason codes
	Parameter list

	Binder API reason codes in numeric sequence

	Chapter 4. Invoking the binder from a program
	Chapter 5. Binder options for advanced facilities
	Setting options with the binder API

	Chapter 6. Fast data access
	Using the fast data access service
	Environment
	Parameter descriptions
	Buffer
	Class
	Count
	Cursor
	DCBptr
	DDname
	DEptr
	Eptoken
	Member
	Mtoken
	Path
	Retcode
	Rsncode
	Section

	Interfaces
	The request code interface
	Common Parameters
	Optional parameters
	SB - Starting a session with a BLDL identifier
	SJ - Starting a session with a DD name or path
	SQ - Starting a session with a CSVQUERY token
	SS - Starting a session with a System DCB
	GC - Getting Compile unit information
	GD - Getting Data from any class
	GE - Getting External Symbol Dictionary data
	GN - Getting Names of sections or classes
	RC - Return Code information
	EN - Ending a session

	The Unitary interface
	The IEWBFDA macro
	Unitary parameter list

	Error handling
	Return and reason codes

	Chapter 7. User exits
	Execution environment
	Registers at entry to the user exit routine
	Message exit
	Save exit
	Interface validation exit

	Chapter 8. C/C++ APIs for program management
	Using the Binder’s C/C++ API
	Environment
	Binder API functions
	Binder API access functions
	__iew_addA() – Add alias
	__iew_alignT() – Align text
	__iew_alterW() – Alter workmod
	__iew_autoC() – Perform incremental autocall
	__iew_bindW() – Bind workmod
	__iew_closeW() – Close workmod
	__iew_getC() – Get compile unit list
	__iew_getD() – Get data
	__iew_getE() – Get ESD data
	__iew_getN() – Get names
	__iew_import() – Import a function or external variable
	__iew_includeDeptr() – Include module via DEPTR
	__iew_includeName() – Include module via NAME
	__iew_includePtr() – Include module via POINTER
	__iew_includeSmde() – Include module via SMDE
	__iew_includeToken() – Include module via DEPTR
	__iew_insertS() – Insert section
	__iew_loadW() – Load workmod
	__iew_openW() – Open workmod
	__iew_orderS() – Order sections
	__iew_putD() – Put data
	__iew_rename() – Rename symbolic references
	__iew_resetW() – Reset workmod
	__iew_saveW() – Save workmod
	__iew_setL() – Set library
	__iew_setO() – Set option
	__iew_startS() – Start segment

	Binder API utility functions
	__iew_create_list() – Create list
	__iew_eod() – Test for end of data
	__iew_get_reason_code() – Get a reason code from API context
	__iew_get_return_code() – Get a return code from API context
	__iew_get_cursor() – Get cursor value
	__iew_set_cursor() – Set cursor value

	Fast data functions
	Fast data access functions
	__iew_fd_end() – End a session
	__iew_fd_getC() – Get compile unit list
	__iew_fd_getD() – Get data
	__iew_fd_getE() – Get ESD data
	__iew_fd_getN() – Get names
	__iew_fd_open() – Open a session
	__iew_fd_startDcb() – Starting a session with BLDL data
	__iew_fd_startDcbS() – Starting a session with a System DCB
	__iew_fd_startName() – Starting a session with a DD name or path
	__iew_fd_startToken() – Starting a session with a CSVQUERY token

	Fast data utility functions
	__iew_fd_eod() – Test for end of data
	__iew_fd_get_reason_code() – Get a reason code from FD context
	__iew_fd_get_return_code() – Get a return code from FD context
	__iew_fd_get_cursor() – Get cursor value
	__iew_fd_set_cursor() – Set cursor value

	Binder and fast data API common utility functions
	__iew_api_name_to_str() – Convert API name into string
	Format
	Parameters Descriptions
	Returned Value

	Binder API return and reason codes
	Fast data access return and reason codes
	Examples for Binder’s C/C++ API

	Appendix A. Object module input conventions and record formats
	Input conventions
	Record formats
	SYM record
	ESD record
	Text record
	RLD record
	END record

	Extended object module (XOBJ)
	XSD record format
	Notes

	Appendix B. Load module formats
	Input conventions
	Record formats

	Appendix C. Generalized object file format (GOFF)
	Guidelines and restrictions
	Incompatibilities

	GOFF record formats
	Conventions
	Conventions for record descriptions
	Conventions for class names
	Record prefix

	Module header record
	External symbol definition record
	External symbol definition continuation record
	External symbol ID and name relationships
	Elements specifiable on ESD records
	External symbol definition behavioral attributes
	ESD item behavioral attribute assignment
	ESD Extended Attributes

	Text record
	Text continuation record
	Identification record data field
	Current (old) IDR data (format 1)
	Extended IDR data (format 2)
	Extended IDR data (format 3)
	Text encoding and compression

	Relocation directory record
	Relocation directory data item
	Relocation directory continuation record
	Relocation directory data element flags field
	Examples of RLD data items

	Deferred element length record
	Associated data (ADATA) record
	Associated data (ADATA) record types

	End of module record
	End of module continuation record, with optional entry point name

	Mapping object formats to GOFF format
	Module header records
	Mapping object module ESD elements to GOFF format
	Mapping object module ESD SD items
	Mapping object module ESD PC items
	Mapping object module ESD LD items
	Mapping object module ESD ER/WX items
	Mapping object module ESD CM items
	Mapping object module ESD PR items

	Mapping object module XSD items to GOFF format
	Mapping object module TXT items to GOFF format
	Mapping object module RLD items to GOFF format
	Mapping object module END items to GOFF format
	Mapping object module END IDR items
	Mapping object module END section-length elements
	Mapping object module END-entry items

	Generating DLLs and linkage descriptors from GOFF object modules
	Exports
	Exporting data
	Exporting code

	Imports
	Importing data
	Importing code

	Using linkage descriptors in non-DLL applications

	Appendix D. Binder API buffer formats
	Buffer header contents
	Version 1 buffer formats
	ESD entry (version 1)
	Binder identification data (version 1)
	Language processor identification data (version 1)
	User identification data (version 1)
	AMASPZAP identification data (version 1)
	RLD entry (version 1)
	Internal symbol table (version 1)
	Text data buffer (version 1)
	Binder name list (version 1)
	Extent list (version 1)

	Version 2 buffer formats
	ESD entry (version 2)
	RLD entry (version 2)
	Binder name list (version 2)
	Module map (version 2)

	Migration to version 2 buffers
	Field correspondence for ESD records
	ESD conversion notes (and PM1-PM2 differences)
	Field correspondence for RLD records
	RLD conversion notes (and PM1-PM2 differences)

	Version 3 buffer formats
	ESD entry (version 3)
	RLD entry (version 3)
	PARTINIT entry (version 3)

	Migration to version 3 buffers
	Part initializers
	ESD conversion notes
	RLD conversion notes

	Version 4 buffer formats
	Binder name list (version 4)

	Version 5 buffer formats
	PMAR entry (version 5)
	ESD entry (version 5)

	Version 6 buffer formats
	LIB entry (version 6)
	CUI entry (version 6)
	Binder name list (version 6)

	Appendix E. Data areas
	PDS directory entry format on entry to STOW
	Cross reference

	PDS directory entry format returned by BLDL
	Cross reference

	PDSE directory entry returned by DESERV (SMDE data area)
	Accessing program object class information
	Module Map
	Structure of the module map
	Example of record structure
	Compile unit information
	Module map format

	Appendix F. Programming example for the binder API
	Appendix G. Using the transport utility (IEWTPORT)
	Executing IEWTPORT
	Defining the data sets
	Allocating space for the SYSUTn data sets
	Transporting selected members

	Sample IEWTPORT invocations
	Convert a program object to a transportable program
	Convert an entire program library
	Convert a transportable program to a single program object

	Messages, errors, and return codes
	Messages and codes
	Errors
	Return codes

	Logical structure of a transportable file
	Mapping macro IEWTFMT
	Header
	Trailer
	Transportable program
	Body

	Appendix H. Establishing installation defaults
	Appendix I. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

