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Abstract

Inductive logic programming (ILP) can be viewed as machine learning in a
first-order language, where relations are present in the context of deductive
databases. It is relevant for knowledge discovery in relational and deductive
databases, as it can describe patterns involving more than one relation. The
chapter introduces ILP and gives a survey of basic ILP techniques, as well as
other ILP topics relevant to KDD. KDD applications of ILP are discussed, two
of which are described in some detail: biological classification of river water
quality and predicting protein secondary structure.

5.1 KDD and Machine Learning

Knowledge discovery in databases (KDD) is concerned with identifying
interesting patterns and describing them in a concise and meaningful
manner (Frawley et al. 1991). Frawley et al. (1991) also recognize that
machine learning can be applied to KDD problems. If we interpret
patterns as classes or concepts, clustering (unsupervised learning) can be
used to identify patterns and concept learning (supervised) to describe
them.

Attribute-value learning systems, such as C4.5 (Quinlan 1993), AS-
SISTANT (Cestnik et al. 1987), and CN2 (Clark and Boswell 1991), can
and have been applied to KDD problems. However, these approaches
have serious limits. The patterns discovered by the above learning sys-
tems are expressed in attribute-value languages which have the expres-
sive power of propositional logic. These languages are limited and do not
allow for representing complex structured objects and relations among
objects or their components. The domain (background) knowledge that
can be used in the learning process is also of a very restricted form and
other relations from the database cannot be used in the learning process.

Recent developments in inductive learning focus on the problem of
constructing a logical (intensional) definition of a relation (Quinlan 1990)
from example tuples known to belong or not to belong to it, where other
relations (background knowledge) may be used in the induced definition.
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Table 5.1
A Relational Database with Two Relations (tables): Potential-Customer and
Married-To.

Potential-Customer

Person Age Sex Income Customer
Ann Smith 32 F 10 000 yes
Joan Gray 53 F 1 000 000 yes
Mary Blythe 27 F 20000 no
Jane Brown 55 F 20 000 yes
M
M

Bob Smith 30 100 000 yes
Jack Brown 50 200 000 yes

Married-To

Husband Wife
Bob Smith  Ann Smith
Jack Brown Jane Brown

In this way, new relations can be specified by a small number of example
tuples, which are then generalized to induce a logical definition. Alter-
natively, existing relations can be compressed into their corresponding
logical definitions.

As the intensional definitions induced can be recursive (Quinlan 1990),
we may say that they are expressed in the formalism of deductive data-
bases (Ullman 1988). The logic programming school in deductive data-
bases (Lloyd 1987) argues that deductive databases can be effectively
represented and implemented using logic and logic programming. Within
this framework, the induction of logical definitions of relations can be
considered logic program synthesis and has been recently named In-
ductive Logic Programming (ILP) (Muggleton 1992a; De Raedt 1992;
Lavra¢ and Dzeroski 1994).

Early ILP systems, e.g., MIS (Shapiro 1983) and CIGOL (Muggleton
and Buntine 1988), did not address the problem of handling noisy data.
On the other hand, recent ILP systems, such as FOIL (Quinlan 1990)
and LINUS (Lavrac et al. 1991), are capable of noise-handling, as well
as handling continuous-valued attributes. In this way, they come closer
towards applicability for KDD problems.
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Before proceeding further, let us illustrate the use of attribute-value
learning and ILP for KDD. Consider the relational database shown in
Table 5.1, containing information about the potential customers of an
imaginary enterprise. Suppose we are interested in distinguishing be-
tween persons who are potential customers and those who are not (field
Customer in the table Potential-Customer).

We could use an attribute-value learning system on the table Potential-
Customer, where the field Customer would be the class and the fields
Age, Sex and Income the attributes. In this way, the following two
patterns could be discovered:

IF Income(Person) > 100 000 THEN Potential-Customer(Person)
IF Sex(Person) = F AND Age(Person) > 32 THEN Potential-Customer(Person).

If we use an ILP system to define the relation Potential-Customer in
terms of itself and the relation Married-To, we can find the following
patterns:

IF Married(Person,Spouse) AND Income(Person) > 100 000

THEN Potential-Customer(Spouse)

IF Married(Person,Spouse) AND Potential-Customer(Person)

THEN Potential-Customer(Spouse).

The latter is written as potential_customer(Spouse, SAge,SSez,
SIncome) « married(Person,Spouse), potential_customer(Person,
Age, Sex, Income) in logic programming notation.

The above example illustrates that attribute-value learning systems
can be used to discover patterns in an isolated file of database records,
i.e., a single relation in a relational database, where records (tuples)
can be viewed as training instances. ILP, on the other hand, can be
used to discover patterns involving several relations in a database. If
we want to learn concepts that involve several relations in a database
using propositional approaches, we have to resort to creating a single
universal relation. In the above example, the universal relation would
include the fields Spouse-Age, Spouse-Sex, Spouse-Income, and Spouse-
Customer, in addition to the fields of the relation Potential-Customer.
This may be inconvenient and impractical (the universal relation can be
very large) and suggests the use of ILP approaches for KDD.

The chapter first introduces the problem of inductive logic program-
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Table 5.2

A Simple ILP problem: learning the daughter relationship.
Training examples Background knowledge
@ daughter(sue,eve). mother(eve,sue). parent(X,Y) — female(ann). male(pat).
@ daughter(ann,pat). mother(ann,tom). mother(X,Y). female(sue). male(tom).

© daughter(tom,ann). father(pat,ann).  parent(X,Y) « female(eve).
© daughter(eve,ann). father(tom,sue). father(X,Y).

ming by giving some terminology, a definition of the problem and a
simple example. It then gives a survey of basic ILP techniques, includ-
ing relative least general generalization, inverse resolution, searching re-
finement graphs, using rule models, and transforming ILP problems to
propositional form. Recent advances in ILP relevant to KDD are out-
lined next. Finally, KDD applications of ILP are discussed: applications
of ILP to biological classification of river water quality (DZeroski et al.
1994), and prediction of the secondary structure of a protein from its
amino-acid sequence (Muggleton et al. 1992).

5.2 Inductive Logic Programming

This section first gives a simple example that will be used later to illus-
trate how ILP techniques work. It proceeds to introduce the necessary
database and logic programming terminology. It then discusses several
dimensions of ILP and finally defines the problem of empirical inductive
logic programming.

5.2.1 An Example ILP Problem

Let us illustrate the ILP task on a simple problem of learning family
relations. The task is to define the relation daughter(X,Y’), which states
that person X is a daughter of person Y, in terms of the background
knowledge relations female and parent. These relations are given in
Table 5.2. There are two positive and two negative examples of the
target relation daughter.

In the hypothesis language of logic programs, it is possible to formulate
the following definition of the target relation:

daughter(X,Y) — female(X), parent(Y, X).

This definition is a view that defines the target relation intensionally in
terms of the background knowledge relations.
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Table 5.3
Database and logic programming terms.
DB terminology LP terminology
relation name p predicate symbol p
attribute of relation p  argument of predicate p
tuple {(ai,...,an) ground fact p(ai,...,an)
relation p - predicate p -
a set of tuples defined extensionally by a set of ground facts
relation ¢ predicate q
defined as a view defined intensionally by a set of rules (clauses)

5.2.2 Deductive Databases and Logic Programming

Before discussing ILP further, let us first introduce some basic ter-
minology from the areas of logic programming and deductive databases.
An n-ary relation p is a set of tuples, i.e., a subset of the Cartesian prod-
uct of n domains D x D2 % ... x D,,, where a domain (or a type) is a set
of values. We assume that a relation is finite unless stated otherwise. A
set of relations forms a relational database (RDB) (Ullman 1988).

A deductive database (DDB) consists of a set of database clauses. A
database clause is a typed program clause of the form:

p(X1y..s Xn) — Ly, Ln.

where the body of a clause is a conjunction of positive literals q:(Yy, ...,
Y;,) and/or negative literals not ¢;(Y1,...,Yn;). The basic difference
between program clauses and database clauses is in the use of types.
In typed clauses, a type is associated with each variable appearing in a
clause. The type of a variable specifies the range of values which the
variable can take. For example, in the relation lives_.in(X,Y), we may
want to specify that X is of type person and Y is of type city.

A set of program clauses with the same predicate symbol p in the head
forms a predicate definition. A predicate can be defined extensionally as
a set of ground facts or intensionally as a set of database clauses (Ullman
1988). It is assumed that each predicate is either defined extensionally
or intensionally. A relation in a database is essentially the same as a
predicate definition in a logic program. Table 5.3 relates the database
(Ullman 1988) and logic programming (Lloyd 1987) terms that will be
used throughout the chapter.

Database clauses use variables and function symbols in predicate argu-
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ments. Recursive types and recursive predicate definitions are allowed.
Deductive hierarchical databases (DHDB) (Lloyd 1987) are deductive
databases restricted to nonrecursive predicate definitions and to non-
recursive types. The latter determine finite sets of values which are
constants or structured terms with constant arguments.

5.2.3 Dimensions of ILP

Inductive logic programming systems (as well as other inductive learning
systems) can be divided along several dimensions. First of all, they can
learn either a single concept or multiple concepts (predicates). Second,
they may require all the training examples to be given before the learning
process (batch learners) or may accept examples one by one (incremental
learners). Third, during the learning process, a learner may rely on an
oracle to verify the validity of generalizations and/or classify examples
generated by the learner. The learner is called interactive in this case
and non-interactive otherwise. Fourth, a learner may invent new terms
(new predicates). This results in extending the learner’s vocabulary
which may facilitate the learning task. Finally, a learner may try to
learn a concept from scratch or can accept an initial hypothesis (theory)
which is then revised in the learning process. The latter systems are
called theory revisors.

Although these dimensions are in principle independent, existing ILP
systems are situated at two ends of the spectrum. At one end are batch
non-interactive systems that learn single predicates from scratch, while
at the other are interactive and incremental theory revisors that learn
multiple predicates. Following (De Raedt 1992) we call the first type of
ILP systems empirical ILP systems and the second type interactive ILP
systems.

MIS (Shapiro 1983) and CLINT (De Raedt 1992) are typical inter-
active ILP systems: they learn definitions of multiple predicates from
a small set of examples and queries to the user. On the other hand,
empirical ILP systems typically learn a definition of a single predicate
from a large collection of examples. This class of ILP systems includes
FOIL (Quinlan 1990), GOLEM (Muggleton and Feng 1990), and LINUS
(Lavrac et al. 1991). At present, it seems that empirical ILP systems are
more relevant to practical applications. Thus, the applications described
in this chapter involve empirical ILP systems, an empirical ILP problem
will be used to illustrate the basic ILP techniques, and the discussion will
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concern mainly empirical ILP. However, the basic techniques described
are used in both interactive and empirical ILP systems.

5.2.4 Empirical Inductive Logic Programming

The task of empirical single predicate learning in ILP can be formulated
as follows:

Given:

e 2 set of training examples &, consisting of true £ and false £~
ground facts of an unknown predicate p,

e a concept description language L, specifying syntactic restrictions
on the definition of predicate p,

e background knowledge B, defining predicates g; (other than p)
which may be used in the definition of p

Find:

e a definition H for p, expressed in £, such that H is complete, i.e.,
Ve € £t : BAH | e, and consistent, i.e., Ve € £~ : BAH I/ e, with
respect to £ and B.

One usually refers to the true facts £ as positive (@) examples, the
false facts £~ as negative (©) ezamples and the definition of p as the
definition of the target relation. Positive examples are tuples known to
belong to the target relation, while negative examples are tuples known
not to belong to the target relation. A definition of the target predicate
is sought that will characterize the examples precisely (i.e., will explain
all of the positive and none of the negative examples). When learning
from noisy examples, the completeness and consistency criteria need
to be relaxed, i.e., an approximate characterization of the examples is
considered sufficient.

The symbol + denotes the relation of derivability under the assump-
tion of a particular deductive inference rule, such as resolution: T Fe
means that e can be deductively derived from 7. In database terms,
T F e would mean that the query e succeeds when posed to the database
T. The task of empirical ILP is to construct an intensional definition
(view) for the target relation p in terms of other relations from a given
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database. One possible use of the constructed view is to replace the
facts (examples) about p, thus saving storage space.

The language of concept descriptions L is usually called the hypothesis
language. It is typically some subset of the language of program clauses.
The complexity of learning grows with the expressiveness of the hypoth-
esis language £. Therefore, to limit the complexity of learning, £ has
to be limited by imposing restrictions on hypothesized clauses. Typical
restrictions on the concept description language include the restriction
to DHDB clauses and the restriction to constrained clauses (clauses that
do not introduce new variables in the body).

5.3 Basic ILP Techniques

ILP techniques search for clauses in the hypothesis language that are
consistent with the training examples. The space of clauses is structured
by the generality relation between clauses, called f-subsumption. A
clause ¢ is more general than clause d if ¢ can be matched with a subset of
d. For example, the clause daughter(X,Y) «— female(X) is more gen-
eral than the clause daughter(ann,Y) « female(ann), parent(Y, ann).

The basic ILP techniques considered here have been all used in empir-
ical ILP systems and are thus relevant to KDD. Some of the techniques
have been also used or even first introduced in interactive ILP systems.
The techniques summarized below are: relative least general generaliza-
tion, inverse resolution, searching refinement graphs, using rule models,
and transforming ILP problems to propositional form.

5.3.1 Relative Least General Generalization

Plotkin’s notion of least general generalization (lgg) (Plotkin 1969) is
important for ILP since it forms the basis of cautious generalization.
Cautious generalization assumes that if two clauses ¢; and c; are true,
it is very likely that their most specific generalization lgg(cy,c2) will
also be true. The lgg of two clauses is computed by computing the
lgg of each pair of literals in the heads and bodies, respectively. The
lgg of two literals is computed by matching them and substituting the
parts that don’t match by a variable. We will not give the defini-
tion of lgg here, but will rather illustrate it on an example. If ¢; =
daughter(mary,ann) — female(mary), parent(ann, mary) and cz =
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daughter(eve, tom) « female(eve), parent(tom, eve), then lgg(ci,c2) =
daughter(X,Y) — female(X),parent(Y,X) (X stands for lgg(mary,
eve) and Y for lgg(ann,tom)).

The relative least general generalization (rlgg) of two clauses ¢; and
co is the least general clause which is more general than both ¢; and
co with respect (relative) to background knowledge B. Relative least
general generalization is the basic technique used in the ILP system
GOLEM (Muggleton and Feng 1990), where the background knowledge
B is restricted to ground facts. If K denotes the conjunction of all these
facts, the rlgg of two ground atoms A; and A; (positive examples),
relative to B is defined as:

rlgg(Ay, A2) = lgg((A1 — K), (A2 — K))

Given the positive examples e; = daughter(mary,ann) and e; =
daughter(eve, tom) and the background knowledge B for the family ex-
ample in Section 5.2.1, the least general generalization of e; and e
relative to B is computed as:

rlgg(er, e2) = lgg((e1 + K), (e2 — K))

where K denotes the conjunction of the literals parent(ann,mary),
parent(ann,tom), parent(tom,eve), parent(tom,ian), female(ann),
female(mary), and female(eve).

For notational convenience, the following abbreviations are used: d-
daughter, p-parent, f-female, a-ann, e-eve, m-mary, t-tom, i-ian. The
conjunction of facts from the background knowledge (comma stands for
conjunction) is

K = p(a,m),p(a, ), p(t, ), p(t,7), f(a), f(m), f(e).
The computation of rlgg(e;, e2) produces the following clause

d(Vin,es Va,t) < p(a, m), p(a,t), p(t, e), p(t, 1), f(a), f(m), f(e),
p(a" Vm,t)ap(Va,t, Vm,e);P(Va,t, Vm,i)a p(Va,ta ‘/t,e)v
P(Va,t, V2,i), 0ty Veri), f(Vam)s f(Va,e)s f(Vim,e)-

where V., stands for rlgg(z,y), for each z and y. In general, a rigg
of a set of training examples can contain infinitely many literals or at
least grow exponentially with the number of examples. Since such a
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clause can be intractably large, GOLEM uses a determinacy constraint

on introducing new variables into the body of the rlgg. Even under this

constraint, rlggs are usually long clauses with many irrelevant literals.
Eliminating irrelevant literals yields the clause

d(Vm,e, Va,t) — p(‘/a.,t) Vm,e)‘) f(vae)’

which stands for daughter(X,Y) — female(X), parent(Y, X).

The ILP system GOLEM based on rlgg has been applied to several prac-
tical problems, including protein secondary structure prediction (pre-
dicting the shape of a protein from its sequence of amino acids) (Mug-
gleton et al. 1992) and learning structure-activity relationships (relating
the effectiveness of a drug, e.g., the degree to which it slows bacterial
growth, to its chemical structure) (King et al. 1992).

5.3.2 Inverse Resolution

The basic idea of inverse resolution (introduced as a generalization tech-
nique to ILP by Muggleton and Buntine (1988)) is to invert the resolu-
tion rule of deductive inference (Robinson 1965). The basic resolution
step in propositional logic derives the proposition pVr given the premises
pVgand qVr. In first-order logic, resolution is more complicated, in-
volving substitutions. The conclusion reached from clauses c and d by a
resolution inference step is denoted by res(c,d) and is called the resol-
vent of ¢ and d.

To illustrate resolution in first-order logic, we use the example from
Section 5.2.1. Suppose that background knowledge B consists of the
clauses b; = female(mary) and by, = parent(ann,mary) and H = {c}
= {daughter (X,Y) «— female(X), parent(Y,X)}. Let T = HUB.
Suppose we want to derive the fact daughter(mary,ann) from 7. To
this end, we proceed as follows:

e First, the resolvent c¢; = res(c, b;) is computed under substitution
0; = {X/mary}. This means the substitution 6, is first applied
to ¢ to obtain daughter(mary,Y) « female(mary), parent(Y,
mary), which is then resolved with b; as in the propositional case.
The resolvent of daughter(X,Y) « female(X), parent(Y, X) and
female(mary) is thus ¢; = res(c,by) = daughter(mary,Y)
parent (Y, mary).
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e The next resolvent ca = res(cy, by) is computed under the substi-
tution f2 = {Y/ann}. The clauses daughter(mary,Y) «— parent
(Y, mary) and parent(ann,mary) resolve in ¢z = res(ci,by) =
daughter(mary, ann).

Inverse resolution, as implemented in CIGOL (Muggleton and Bun-
tine 1988), uses a generalization operator based on inverting substitution
(Buntine 1988). Given a clause W, an inverse substitution 6~! of a sub-
stitution 6 is a function that maps terms in W8 to variables, such that
W66-1 = W. Let c = daughter(X,Y) « female(X),parent(Y, X) and
the substitution 8 = {X/mary,Y/ann}:

¢’ = cf = daughter(mary,ann) «— female(mary), parent(ann, mary).

By applying the inverse substitution §~! = {mary/X,ann/Y} the orig-
inal clause c is obtained:

¢ =c'07! = daughter(X,Y) «— female(Y), parent(Y, X).

In the general case, inverse substitution is substantially more complex.
It involves the places of terms in order to ensure that the variables in
the initial clause W are appropriately restored in W66~1.

Let the background knowledge B contain the two facts (clauses) b; =
female(mary) and by = parent(ann,mary). Let the current hypoth-
esis H = 0. Suppose that the learner encounters the positive example
e1 = daughter(mary,ann). The inverse resolution process might then
proceed as follows:

e In the first step, inverse resolution attempts to find a clause ¢;
which will, together with by, entail e; and can be added to the
current hypothesis H instead of e;. Using the inverse substitution
6;' = {ann/Y}, an inverse resolution step generates the clause
c; = ires(by, e1) = daughter(mary,Y) — parent(Y, mary). Clau-
se ¢; becomes the current hypothesis H, such that {b2} UH I e;.

e Inverse resolution then takes b; = female(mary) and the current
hypothesis H = {c1} = {daughter(mary,Y) — parent(Y, mary)}.
By computing ¢’ = ires(by,c;), using the inverse substitution
07! = {mary/X}, it generalizes the clause ¢; with respect to back-
ground knowledge B, yielding ¢’ = daughter(X,Y) «— female(X),
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¢ = daughter(X,Y) «— female(X),
parent(Y, X)

b, = female(mary)

67! = {mary/X}

c1 = daughter(mary,Y) «
parent(Y, mary)

b2 = parent(ann, mary)

6;' = {ann/Y}

e1 = daughter(mary,ann)

Figure 5.1
An inverse linear derivation tree.

parent(Y, X). In the current hypothesis H, clause c¢; can now be re-
placed by the more general clause ¢’ which together with B entails
the example e;. The induced hypothesis is H = {daughter(X,Y) «
female(X), parent(Y, X)}.

The corresponding inverse linear derivation tree is illustrated in Fig-
ure 5.1.

The generalization operator illustrated in the above example is called
the absorption operator (the V operator), and is used in the interac-
tive ILP systems MARVIN (Sammut and Banerji 1986) and CIGOL
(Muggleton and Buntine 1988) to generate hypotheses. Several other
inverse resolution operators are used in CIGOL. An important operator
is intra-construction, also called the W operator, which combines two
V operators. This operator generates clauses using predicates which are
not available in the initial learner’s vocabulary. The ability to introduce
new predicates is referred to as predicate invention.
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While most systems based on inverting resolution are interactive, an
empirical system based on mode-directed inverse resolution (PROGOL
[Muggleton 1995]) has been recently developed. It has been applied to
the problem of predicting the mutagenicity of chemical compounds from
their structure (Srinivasan et al. 1994).

5.3.3 Searching Refinement Graphs

The basic specialization ILP technique is top-down search of refinement
graphs. Top-down learners start from the most general clause and re-
peatedly refine (specialize) it until it no longer covers negative examples.
During the search they ensure that the clause considered covers at least
one positive example. The ILP technique of top-down search of a re-
finement graph was first used in the interactive ILP system MIS (Model
Inference System (Shapiro 1983)). It is also used in the empirical ILP
system FOIL (Quinlan 1990) and its derivatives, e.g., mFOIL (DzZeroski
and Bratko 1992) and FOCL (Pazzani and Kibler 1992).

For a selected hypothesis language £ and given background knowl-
edge B, the hypothesis space of program clauses is a lattice, structured
by the §-subsumption generality ordering. In this lattice, a refinement
graph can be defined as a directed, acyclic graph in which nodes are
program clauses and arcs correspond to the basic refinement operations:
substituting a variable with a term and adding a literal to the body of
a clause.

Part of the refinement graph for the family relations problem is de-
picted in Figure 5.2. The search for a clause starts with the clause
daughter(X,Y) «, which covers two negative examples. The refine-
ments of this clause are then considered, of which daughter(X,Y) «
female(X) and daughter(X,Y) « parent(Y, X) cover only one nega-
tive example each. These two clauses have a common refinement

daughter(X,Y) « female(X),parent(Y, X)

which covers no negative examples. The search of the refinement lattice
is usually heuristic, as for instance in FOIL (Quinlan 1990).

5.3.4 Using Rule Models

The system MOBAL (Morik et al. 1993) contains a learning module based
on the use of rule models. Rule models are a form of declarative bias,
more specifically declarative language bias. They explicitly specify the
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daughter(X,Y) —

daughter(X,Y) « daughter(X,Y) «— daughter(X,Y) —
X=Y parent(Y, X) parent(X, Z)

daughter(X,Y) —

female(X) daughter(X,Y)
parent(Y, X)
/\ female(Y)
daughter(X,Y) — daughter(X,Y) «
female(X female(X)
female(Y parent(Y, X)
Figure 5.2

Part of the refinement graph for the family relations problem.

form of clauses that can appear in the hypothesis and are used as tem-
plates for constructing hypotheses. They are provided by the user or
can be derived from previously learned rules by the model acquisition
tool within MOBAL.

A rule model R has the form T « L,,...,L,, where T and L, are
literal schemas. Each literal schema L; has the form Q;(Y7,...,Yy,) or
not Q;(Y1,...,Yn;) where all non-predicate variables Yy are implicitly
universally quantified. The predicate variable ; can be instantiated
only to a predicate symbol of the specified arity n;.

The search for hypotheses in MOBAL is guided by the rule models.
The hypothesis space that is actually searched is the set of all predi-
cate ground instantiations of rule models with predicates from the back-
ground knowledge B. An instantiation © is a second-order substitution,
i.e., a finite set of pairs P/p where P is a predicate variable and p is a
predicate symbol. An instantiation of a rule model R (denoted by RO©)
is obtained by replacing each predicate variable in R by the correspond-
ing predicate symbol from the set ©. A second-order rule model R is
predicate ground if all of its predicate variables are instantiated; in this
case, R becomes a first-order rule (clause).

For learning the daughter relation from the family relations problem




Inductive Logic Programming and Knowledge Discovery in Databases 131

of Section 5.2.1, the user needs to define the following model:
P(X,Y) « R(X),Q(Y, X).

In this case, the correct clause daughter(X,Y) « female(X),parent
(Y, X) can be induced. The above model could also be instantiated to
the clause son(X,Y) «— male(X), parent(Y, X). We can thus see that
one rule model can be useful for solving several learning problems.

The space of clauses specified by the rule models is still very large.
For each rule model, all possible instantiations of predicate variables are
tried systematically and the resulting clauses are tested against the ex-
amples and background knowledge. A hierarchical order of rule models,
based on extended §-subsumption, allows MOBAL to prune parts of the
hypothesis space.

MOBAL has been applied to the practical problem of learning access
rules for telecommunications equipment in a security context (Morik et
al. 1993).

5.3.5 Transforming ILP Problems to Propositional Form

The ILP system LINUS (Lavrag et al. 1991; Lavra¢ and DzZeroski 1994) is
based on the following idea: background knowledge can give rise to new
attributes for propositional learning. An ILP problem is transformed
from relational to attribute-value form and solved by an attribute-value
learner. This approach is feasible only for a restricted class of ILP prob-
lems. Thus, the hypothesis language is restricted to function-free pro-
gram clauses which are typed (each variable is associated with a prede-
termined set of values), constrained (all variables in the body of a clause
also appear in the head), and nonrecursive (the predicate symbol from
the head does not appear in any of the literals in the body), i.e., to
function-free constrained DHDB clauses.
The LINUS algorithm consists of the following three steps:

e The learning problem is transformed from relational to attribute-
value form.

¢ The transformed learning problem is solved by an attribute-value
learner.

e The induced hypothesis is transformed back into relational form.
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Table 5.4
Propositional form of the daughter relation problem.

Class  Variables  Propositional [features

X ¥ KX) {(Y) m(X) m(Y) p(X X) p(XY) p(Y,X) p(Y,
mary ann true true false false true false
eve tom true false false true false false true false
tom ann false true true false false false true false
eve ann true true false false false false false false

(OJOXS-XC

The above algorithm allows for a variety of approaches developed for
propositional problems, including noise-handling techniques in attribute-
value algorithms, such as ASSISTANT (Cestnik et al. 1987) or CN2
(Clark and Niblett 1989; Clark and Boswell 1991), to be used for learn-
ing relations. It is illustrated on the simple ILP problem of learning
family relations from Section 5.2.1. The task is to define the rela-
tion daughter(X,Y), which states that person X is a daughter of per-
son Y, in terms of the background knowledge relations female, male
and parent. All the variables are of type person, which is defined as
person = {ann, eve, ian, mary, tom}. There are two positive and
two negative examples of the target relation. The training examples and
the relations from the background knowledge are given in Table 5.2.

The first step of the algorithm, i.e., the transformation of the ILP
problem into attribute-value form, is performed as follows. The possible
applications of the background predicates on the arguments of the target
relation are determined, taking into account argument types. Each such
application introduces a new attribute. In our example, all variables are
of the same type person. The corresponding attribute-value learning
problem is given in Table 5.4, where f stands for female, m for male
and p for parent. The attribute-value tuples are generalizations (relative
to the given background knowledge) of the individual facts about the
target relation.

In Table 5.4, variables stand for the arguments of the target relation,
and propositional features denote the newly constructed attributes of the
propositional learning task. When learning function-free clauses, only
the new attributes are considered for learning.

In the second step, an attribute-value learning program induces the
following if-then rule from the tuples in Table 5.4:

Class =@ if [female(X) =true] A [parent(Y,X) = true]

In the last step, the induced if-then rules are transformed into DHDB
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clauses. In our example, we get the clause
daughter(X,Y) « female(X), parent(Y, X).

LINUS has been applied to the problem of learning diagnostic rules for
early rheumatic diseases from a medical database (Lavra¢ et al. 1993).
DINUS (Dzeroski et al. 1992; Lavraé and Dzeroski 1994) is an exten-
sion of LINUS that learns determinate clauses, the same class of clauses
learned by GOLEM (Muggleton and Feng 1990). It has been applied to
the problem of behavioral cloning, i.e., learning control rules for dynamic
systems (DzZeroski et al. 1995).

Note that several different techniques may be employed within a single
ILP system. For example, rule models in MOBAL are used in combination
with top-down search. Bidirectional search, combining top-down and
bottom-up search for clauses, may also be used in an ILP system (Siou
1994).

5.4 Recent Developments in ILP Relevant to KDD

This section outlines three recent advances in ILP relevant to KDD:
multiple predicate learning (De Raedt et al. 1993), inductive data engi-
neering (Flach 1993), and clausal discovery (De Raedt and Bruynooghe
1993).

5.4.1 Multiple Predicate Learning

The task of empirical multiple predicate learning is to learn the logical
definitions of m different predicates pi,...,pm, from a set of training
examples £ of these predicates and a background theory B, containing
predicate definitions for qi,...,q (De Raedt et al. 1993). It is similar
to empirical single predicate learning, but involves additional problems
that arise when learning mutually dependent predicates. These include
the consideration of clauses only at a local level, determining the order
of learning the predicates, overgeneralization and mutual recursion.

An example task of multiple predicate learning would be to learn the
definitions of the target predicates male_ancestor(X,Y) and female
_ancestor(X,Y) in terms of the background knowledge predicates mother
(X,Y) and father(X,Y). To illustrate the problems encountered when
learning multiple predicates, consider the following definitions induced
by FOIL (Quinlan 1990).
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male_ancestor(X,Y) —
father(X, W), mother(M,W), female_.ancestor(M,Y)

female_ancestor(X,Y) «
mother(X, W), father(F, W), male_ancestor(F,Y)

The definitions are correct, but not operational: they would cause an
endless recursion if executed. No ground facts about the target relations
can be derived from these definitions.

The ILP system MPL (De Raedt et al. 1993) has been designed specif-
ically for learning multiple predicates. It is based on a top-down search
and considers clauses both locally and globally, backtracking when in-
consistencies are detected. It induces the following correct definition of
the predicates male_ancestor(X,Y) and female_ancestor(X,Y).

female_ancestor(X,Y) «— mother(X,Y).
male_ancestor(X,Y) «— father(X,Y).
female_ancestor(X,Y) — mother(X, Z), female_ancestor(Z,Y).
male_ancestor(X,Y) « father(X, Z), female_ancestor(Z,Y).
male_ancestor(X,Y) « father(X, Z), male_ancestor(Z,Y).
female_ancestor(X,Y) «—

female_ancestor(X, Z), male_ancestor(Z,Y).

5.4.2 Inductive Data Engineering

The term inductive data engineering (IDE) is used to denote the interac-
tive restructuring of databases by means of induction (Flach 1993). The
main idea is to use induction to determine integrity constraints that are
valid (or almost valid) in a database and then use the constraints to
decompose (restructure) the database. The integrity constraints used in
the IDE system INDEX (Flach 1993) include functional and multivalued
dependencies.

An unstructured database typically contains redundant information.
INDEX decomposes such a relation into more primitive relations by us-
ing attribute dependencies. It defines the original relation as an inten-
sional relation in terms of the primitive relations. In ILP terms, INDEX
invents new predicates. It interacts with the user during the restruc-
turing process, e.g., when choosing which dependency to decompose the
relation upon.
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If a dependency is satisfied on a given relation, it suggests a horizontal
decomposition, where the original relation is reconstructed by a join
operation. If a dependency is not satisfied, but is considered interesting
(e.g., it is almost satisfied), it may suggest a vertical decomposition,
where the original relation is reconstructed by a set union operation.
The dependency is typically satisfied in the relations created by vertical
decomposition, thus suggesting further horizontal decompositions.

To illustrate the IDE process, consider a train schedule represented
by a single unstructured relation

train(Direction, Hour, Minutes, F irstStop)

(Flach 1993). The multivalued dependency [| —— Hour (trains run ev-

ery hour) is almost satisfied, suggesting a vertical decomposition. The

relation train is then split into two relations: regular_train (trains that

run every hour) and irregular_train: train(A, B,C, D) — regular_train
(A, B,C, D)V irregular train(A, B, C, D). The dependency || =— Hour
is satisfied for the relation regular_train. Consequently, we can perform

a horizontal decomposition: regular_train(D,H, M, FS) « hour(H),

reg-train(D, M, F'S).

5.4.3 Clausal Discovery

The ILP setting described in Section 5.2, including single and multiple
predicate learning, interactive and empirical ILP, is the normal ILP set-
ting (Muggleton and De Raedt 1994). Classification rules are induced
in the normal ILP setting; if the induced rules are sufficiently accurate,
they may replace the examples; namely, the examples can be derived
from the rules. A radically different approach is taken in the nonmono-
tonic ILP setting: given a database, a set of constraints is to be found
that hold for the database. As the constraints can have the form of first-
order clauses, the approach is known as clausal discovery (De Raedt and
Bruynooghe 1993).

To illustrate clausal discovery in the nonmonotonic ILP setting, con-
sider a database containing facts about family relations: mother(X,Y),
father(X,Y), and parent(X,Y). The following integrity constraints,
among others, have been discovered by the ILP system CLAUDIEN (De
Raedt and Bruynooghe 1993):

mother(X,Y) V father(X,Y) « parent(X,Y)
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parent(X,Y) « father(X,Y)
— mother(X,Y), father(X,Y)
— parent(X, X)

The third and fourth constraint state that it is impossible that X is
at the same time both the mother and the father of Y, and that it is
impossible for a person to be his own parent. Unlike in the normal ILP
setting, if we throw away the database, the learned theory may not be
able to reconstruct it.

CLAUDIEN searches a refinement graph for full clauses. The language
of the clauses is specified through a declarative bias specification lan-
guage, thus focusing the search to relevant clauses. Potential appli-
cations of CLAUDIEN are described in (Dehaspe et al. 1994), including
the discovery of attribute dependencies and integrity constraints. As
the nonmonotonic setting allows for more efficient induction than the
normal setting (De Raedt and Dzeroski 1994), we are likely to see KDD
applications of clausal discovery. Section 5.5 describes the application of
CLAUDIEN to discovering rules for biological classification of river water
quality.

5.5 KDD Applications of ILP

Several ILP applications have emerged recently. They vary considerably
in the degree of sophistication and significance with respect to the area of
application. Most of these are laboratory demonstrations (some of them
using real data) rather than fielded real-world applications. Surveys of
ILP applications can be found in (Bratko and King 1994; Bratko and
Dzeroski 1995), and (Lavra¢ and Dzeroski 1994). Lavra¢ and DZzeroski
(1994) identify knowledge discovery in databases as one of the main
application areas of ILP.

Applications of ILP to different problems of knowledge discovery in
databases include learning rules for early diagnosis of rheumatic diseases
from a medical database (Lavra¢ et al. 1993), and biological classifica-
tion of river water quality from an environmental database (DZeroski et
al. 1994). ILP has also been applied to several tasks of knowledge dis-
covery in biomolecular databases, where the results achieved have come
close to practical significance. These applications are: modeling the
structure-activity relationships for two series of drugs (King et al. 1992;



Inductive Logic Programming and Knowledge Discovery in Databases = 137

Hirst et al. 1995a; Hirst et al. 1995b), prediction of the local secondary
structure (shape) of a protein from its amino-acid sequence (Muggleton
et al. 1992), and prediction of the mutagenicity of compounds using only
their chemical structure (Srinivasan et al. 1994). In all three cases, ILP
approaches have generated rules that perform as well or better than
conventional approaches and provide insight into the relevant stereo-
chemistry.

In the remainder of this section, we give a summary of the applications
of ILP to biological classification of river water quality (DZeroski et
al. 1994), and prediction of the secondary structure of a protein from
its amino-acid sequence (Muggleton et al. 1992). While the datasets
in these applications are not tremendously large by today’s standards,
they nonetheless represent real-world datasets used in specific scientific
studies.

5.5.1 Biological Classification of River Water Quality

Increasing importance is placed on the use of riverine ecology as a means
of monitoring and classifying river quality, both in terms of water quality
and its broader environmental quality (Ruck et al. 1993). The various
biological flora and fauna, such as attached algae, macrophytes and ben-
thic (or river bed) macro-invertebrates, are seen as continuous monitors
of the rivers’ “health,” and field data on these are used to classify the
river. In the case of water quality monitoring and classification, the bi-
ological methods are used to complement the more traditional chemical
methods. An introduction to biological monitoring theory and tech-
niques can be found in (De Pauw and Hawkes 1993).

At present, the most suitable single group for monitoring purposes is
considered to be the benthic macro-invertebrates. These animals form
part of the community associated with the river bed and are relatively
immobile. They are present in all rivers, except in cases of extreme pol-
lution, and cover a range of life modes and trophic levels. Taxonomic
classification of these organisms to family or genus level is not too de-
manding, and qualitative identification is often carried out at the river
bank. Also the different species are known to have different sensitivi-
ties to pollutants, thus the structure of the benthic macro-invertebrate
community is affected by both degradable organic matter (sewage) and
toxic pollutants (pesticides and heavy metals).

The task addressed here is to interpret benthic samples of macro-
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invertebrates in water quality terms. In other words, given are samples
of the river beds at different sites and their classification into one of five
quality classes. The task is to learn general rules that will be able to
classify new samples (Dzeroski et al. 1994). The study used 292 field
samples of benthic communities collected from British Midlands rivers,
classified by an acknowledged expert river ecologist (H. A. Hawkes).
The samples come from the database maintained by the National River
Authority of the United Kingdom, where the results of monitoring the
environmental quality of British rivers are stored.

~ Two ILP systems were applied to the problem of classification of bio-
logical samples. GOLEM (Muggleton and Feng 1990) works in the normal
ILP setting, where the task is to find classification rules that explain the
training examples, while CLAUDIEN (De Raedt and Bruynooghe 1993)
works in the nonmonotonic ILP setting, where the task is to find valid
rules that are confirmed by the training examples. A propositional learn-
ing system, CN2 (Clark and Boswell 1991; Dzeroski et al. 1993) was also
applied to learn classification rules.

For the normal ILP setting, the problem was formulated as follows:
for each class a separate ILP problem was created, where the positive
examples are the samples classified in that class, and all the other sam-
ples are negative examples. Thus, the target predicates were bla(X),
b1b(X), b2(X), b3(X), and b4(X). The background knowledge con-
sisted of eighty predicates of the form family(X, A), each denoting that
family is present in sample X at abundance level A. (In several cases,
identification was carried to levels other than family, e.g., species or gen-
era level. For simplicity, we will use the term family throughout, regard-
less of the taxonomic identification level.) Predicates of this kind include
tipulidae(X, A), asellidae(X, A), etc. In addition, the background pred-
icate greater_than(A, B) was available, stating that abundance level A
is greater than abundance level B.

The default settings of GOLEM were used, except for the fact that
rules were allowed to cover up to five negative examples. GOLEM pro-
duced three rules for class Bla, fourteen rules for Blb, sixteen for
B2, two for B3, and none for B4. For example, the rule bla(X) «
leuctridae(X, A) states that a sample belongs to the best water qual-
ity class if Leuctridae are present. This rule covers forty-three posi-
tive and four negative examples, and agrees with expert knowledge; the
family Leuctridae is an indicator of good water quality. Another good
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rule is the following: b1b(X) « ancylidae(X, A), gammaridae(X, B),
hydropsychidae(X,C), rhyacophilidae(X, D), greater_than(B, A),
greater_than(B, D). Gammaridae in abundance is a good indicator of
class Blb, along with the other families present.

Out of the thirty-five rules, twenty-five are considered good or accept-
able by the expert, but some of them are judged to be too specific. Note
that GOLEM cannot use the absence of particular families in the rules
within the representation adopted here. Together with GOLEM’s strategy
of looking for the most specific rules consistent with the examples, this
may have influenced the generality (specificity) of the generated rules.
This may also be the reason that no rules for class B4 were induced.
Namely, the absence of most families is characteristic for this class.

Unlike GOLEM, CLAUDIEN (De Raedt and Bruynooghe 1993) checks all
possible rules, within a specified language, for consistency with the given
examples. Only tests of the presence of different families were allowed in
the antecedents (no absence tests and no abundance level tests), while
one or more quality classes were allowed in the consequents. Rules were
required to cover at least thirty examples.

Altogether, seventy-nine rules were generated. Of these, twenty-eight
involved the presence of a single family. These rules in fact specify the
range of quality classes in which a certain family is present. The rule
bla(X)Vblb(X) « perlodidae(X, A) specifies that Perlodidae are found
in good quality water (classes Bla and B1b). If Rhyacophilidae are also
present, then the water is almost certainly of class Bla: bla(X) «
perlodidae(X, A), rhyacophilidae(X, B). Both rules are judged by the
expert to be good.

Only nine rules had a single class (Bla) in the conclusion. The others
had a number of possible classes in the conclusion, which was considered
natural and understandable by the expert. This indicates that class Bla
is easy to characterize in terms of the families present, while for the other
classes references to the abundance levels or absence of certain families
is required in order to find significant rules (that cover at least thirty
samples). Overall, two thirds of the rules were considered to be good.
The rest were not outright wrong, but still unacceptable to the expert
for a number of reasons, such as mentioning families which are irrelevant
(according to the expert opinion) for a particular water quality class.

In summary, the rules induced by the ILP systems GOLEM and CLAU-
DIEN were found to be consistent with the expert knowledge to a great
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extent. Compared to other methods for automating the classification
process, such as neural networks, ILP produces symbolic rules that can
be used as a knowledge base for an expert system. The rules generated
by CLAUDIEN were judged to be the most intuitive and promising. This
is due to the coverage of more than one class by a single rule; this is
important as the classification problem is based on a discretization of
a continuous space. The fact that a single family is used in some rules
also contributes to the overall intuitiveness of the CLAUDIEN rules.

Rules generated by GOLEM were considered too specific. The CN2
rules were quite general, but relied too heavily on the absence of certain
families. According to the expert, rules should rely on the presence
rather than absence of families as the latter may be due to reasons other
than water quality (e.g., seasonal variations). However, the absence
of some families seems to be necessary for rules classifying into poorer
water quality classes.

The best direction for further work seems the selective use of absence
information, which can be easily achieved using the declarative bias
facilities of CLAUDIEN, together with the use of diversity information.
The performance of the rules obtained in this way will be tested on an
independent data set and compared to the corresponding performance
of neural networks and Bayesian systems (Ruck et al. 1993; Walley et
al. 1992). If their performance so merits the rules will then be used as a
knowledge base of an expert system for biological classification of river
water quality.

5.5.2 Predicting Protein Secondary Structure

We now briefly review the problem of learning rules for predicting the
secondary structure of proteins, to which GOLEM has been applied (Mug-
gleton et al. 1992). We first describe the problem, then the relevant
background knowledge, and finally the results.

A protein is basically a string of amino acids (or residues). Predicting
the three-dimensional shape of proteins from their amino acid sequence is
widely believed to be one of the hardest unsolved problems in molecular
biology. It is also of considerable interest to the pharmaceutical industry
since the shape of a protein generally determines its function.

The sequence of amino acids is called the primary structure of the
protein. Spatially, the amino acids are arranged in different patterns
(spirals, turns, flat sections, etc.). The three-dimensional spatial shape
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Table 5.5
Rules for predicting a-helix secondary structure.

Level 0 rule

alpha0(A, B) — octf(D,E,F,G,B,H,1,J, K),
position(A, D, Q), not_p(Q), not_k(Q),
position(A, E, O), not_aromatic(O), small_or_polar(O),
position(A, F, R),
position(A, G, P), not_aromatic(P),
position(A, B, C), very-hydrophobic(C), not-aromatic(C),
position(A, H, M), large(M), not_aromatic(M),
position(A, I, L), hydrophobic(L),
position(A, K, N), large(N), ltu(N, R).

Level 1 rule

alphal(A,B) — octf(D,E,F,G,B,H,1,J, K),
alphaO(A, F), alpha0(A, G).

Level 2 rule

alpha2(A, B) — octf(C,D,E,F,B,G,H,1,J),
alphal(A, B), alphal(A,G), alphal(A, H).

of a protein is called the secondary structure. When trying to predict the
shape (secondary structure) it is easier to consider only one particular
shape (pattern), instead of the multitude of possibilities; the a-helix
(spiral) shape was considered by Muggleton et al. (1992).

The target relation alpha(Protein, Position) specifies that the residue
at position Position in protein Protein belongs to an a-helix. Nega-
tive examples state all residue positions in particular proteins which are
not in an a-helix secondary structure. For instance, the positive exam-
ple alpha(1HMQ,104) means that the residue at position 104 in pro-
tein 1HMQ (hemerythrin met) is in an o-helix. The negative example
alpha(1HMQ@, 105) states that the residue at position 105 in the same
protein is not in an a-helix (it actually belongs to a B-coil secondary
structure).

To learn rules to identify whether a position in a protein is in an
a-helix, Muggleton et al. (1992) use the following information as back-
ground knowledge.

e The relation position(A, B,C) states that the residue of protein
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A at position B is the amino-acid C. Each residue can be any
one of the 20 possible amino acids and is denoted by a lower case
character. For example, the fact position(1HM@, 111, g) says that
the residue at position 111 in protein 1HMQ is glycine (using the
standard one-character amino acid coding).

The following arithmetic relations allow indexing of the protein
sequence, relative to the residue for which secondary structure is
being predicted. They have to be provided explicitly, as GOLEM has
no built-in arithmetics. The relation octf(A,B,C,D,E,F,G,H,I)
specifies nine adjacent positions in a protein, i.e., it says that
positions A to I occur in sequence. One fact in this relation
may be, for instance, octf(19,20,21,22,23,24,25,26,27). The
alpha_triplet(A, B, C), alpha_pair(A, B) and alpha_pair4(A, B) re-
lations allow a similar kind of indexing, which specifies residues
that are likely to appear on the same face of an a-helix. They
might be defined declaratively by the following three facts:
alpha_triplet(n,n+1,n+4), alpha_pair(n,n+3), alpha_paird(n,n+
4).

Physical and chemical properties of individual residues are de-
scribed by unary predicates. These properties include hydropho-
bicity, hydrophilicity, charge, size, polarity, whether a residue is
aliphatic or aromatic, whether it is a hydrogen donor or acceptor,
etc. Sizes, hydrophobicities, polarities, etc., are represented by
constants, such as polar0 and hydro0. The use of different constant
names for polarity zero polar0 and hydrophobicity zero hydro0 is
necessary to prevent unjustified generalizations in GOLEM (these
could be prevented by explicit statement of types instead). Re-
lations between the constants, such as less_than(polar0, polarl),
are also provided as background knowledge.

Let us now proceed with a very short description of the experimental
setup and the results (Muggleton et al. 1992). Sixteen proteins from
the Brookhaven database (Bernstein et al. 1977) were used, twelve for
training and four for testing. Without addressing in detail how GOLEM
was run to induce rules from the training data, let us mention that
each of the induced rules was allowed to misclassify up to 10 instances
and some subjective statistical criteria were used to judge its significance
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before allowing it into the set of rules used for classification. The induced
rules covered around 60% of the instances.

To improve the coverage of these preliminary rules, the learning pro-
cess was iterated. The predicted secondary structure positions found
using the initial rules (called level 0 rules) were added to the back-
ground information. GOLEM was then run again to produce new (level
1) rules. This was necessary as the level 0 predictions were speckled, i.e.,
only short a-helix sequences were predicted. The level 1 rules in effect
filtered the speckled predictions and joined together short sequences of
a-helix predictions. The learning process was iterated once more with
level 1 predictions added to the background knowledge and level 2 rules
were induced. Finally, the symmetric variants of the rules induced at
level 1 and level 2 were added to the rule set (e.g., alphal(A,B) «
octf(D,E,F,G,B,H,1,J,K), alphaO(A4, F), alpha0(A, G)): this was
suggested by a domain expert that inspected the rules.

Applying GOLEM to the training set produced twenty-one level 0 rules,
five symmetric level 1 rules and two symmetric level 2 rules. For illus-
tration, Table 5.5 gives one rule from each level. The induced rules
achieved accuracies of 78% on the training and 81% on the testing set.
For comparison, the best previously reported result is 76%, achieved by
using a neural network approach (Kneller et al. 1990). The rules induced
by GOLEM also have the advantage over the neural network method of
being more understandable. The propositional learner PROMIS (King
and Sternberg 1990) achieved 73% accuracy using the same data set as
GOLEM. However, as the representation power of PROMIS is limited, it
was not able to find some of the important relationships between residues
that GOLEM found to be involved in a-helix formation.

5.6 Discussion

We have given a brief introduction to inductive logic programming, as
well as the basic techniques currently in use in ILP: relative least general
generalization, inverse resolution, top-down search of refinement graphs,
the use of rule models, and the transformation of ILP problems to propo-
sitional form. We have also outlined some recent developments in ILP
relevant to KDD: multiple predicate learning, inductive data engineer-
ing and clausal discovery. Finally, we have described two applications
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of ILP to KDD problems: biological classification of river water quality
and predicting protein secondary structure. The remainder of the chap-
ter gives a discussion on where to find out more about ILP, what ILP
approaches to use for different kinds of KDD problems, and current hot
topics in ILP research.

5.6.1 More Information on ILP

As the field of inductive logic programming is relatively young, most of
the publications in the area appear in conference and workshop proceed-
ings. There have been four international workshops on inductive logic
programming, with proceedings published as technical reports (Mug-
gleton 1991; Muggleton 1992b; Muggleton 1993; Wrobel 1994). The
proceedings contain papers describing theoretical advances in inductive
logic programming, practical implementations of ILP systems and ap-
plications of inductive logic programming.

A special section of the SIGART Bulletin, 5(1), January 1994, is de-
voted to ILP. It includes an introductory paper, as well as papers deal-
ing with major topics within ILP, such as top-down search for logic
program clauses and applications of ILP. The paper (Muggleton 1991b)
introduced the term inductive logic programming. The most complete
survey paper so far is (Muggleton and De Raedt 1994).

The collection of papers “Inductive Logic Programming” (Muggleton
1992a) contains many revised and extended papers from The Proceed-
ings of the First International Workshop on Inductive Logic Program-
ming (Muggleton 1991b), as well as many other papers relevant to the
field. The book “Interactive Theory Revision: An Inductive Logic Pro-
gramming Approach” (De Raedt 1992) gives a thorough account on
interactive inductive logic programming, focusing on the ILP system
CLINT. The book “Knowledge Acquisition and Machine Learning: The-
ory, Methods and Applications” (Morik et al. 1993) describes the ILP
toolbox MOBAL and its applications.

An extensive overview of empirical ILP techniques, including descrip-
tions of several empirical ILP systems is given in the book “Induc-
tive Logic Programming: Techniques and Applications” (Lavraé¢ and
Dzeroski 1994). The book gives a general introduction to the field, which
we have summarized in Sections 5.2 and 5.3. It also gives a detailed ac-
count of handling imperfect (noisy) data in ILP, an important topic for
practical applications. Part IV of the book concentrates on applications
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Table 5.6
ILP resources on the internet.
Resource How to reach it
ILPNET WWW  http://www-ai.ijs.si/ilpnet.html
ILP Newsletter Send email to ilpnet@ijs.si
ILP Data sets ftp://ftp.gmd.de:/MachineLearning/ILP/public/data

ML Repository  ftp://ftp.ics.uci.edu:/pub/machine-learning-databases
ILP Publications  ftp://ftp.gmd.de:/MachineLearning/ILP/public/papers
ILP References ftp://ftp.gnd.de:/MachineLearning/ILP/public/bib
ILP Systems ftp://ftp.gmnd.de:/MachineLearning/ILP/ public/software

of inductive logic programming. It describes several applications in de-
tail and gives and overview of several other ILP applications, including
protein secondary structure prediction as described in Section 5.5.2.

For the enthusiastic reader, Table 5.6 gives a list of ILP resources
available on the Internet. These include ILP publications, ILP datasets,
and ILP systems. The main sources are the ILPNET World-Wide-Web
server in Ljubljana and the Machine Learning Archive in Bonn. The
former provides general information on ILP and ILP research, as well as
pointers to other sources of information on ILP.

5.6.2 When to Use What

Giving definite recommendations as to which of the variety of ILP ap-
proaches is suitable for which problem is a difficult task. This is not
easy even for attribute-value systems which have been around for much
longer and have reached maturity. Nevertheless, we will attempt to lay
out a few guidelines.

If interested in learning classification rules for a given relation which
would rely on other relations, one should use an ILP system operating
within the normal ILP setting. In addition to revealing regularities in
the data, such a set of classification rules can be used to replace the
table it was derived from (provided it is accurate enough). If one is
only interested in regularities in his database (possibly clausal integrity
constraints) that need not be used for classification, the CLAUDIEN ILP
system can be recommended. CLAUDIEN (De Raedt and Bruynooghe
1993) operates in the nonmonotonic ILP setting.

In the normal setting, interactive ILP systems, such as CLINT (De
Raedt 1992), should be used when interaction with the user is desired
or the database studied is at an early stage of construction. However,
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empirical ILP systems are presently more appropriate for use in KDD,
especially in the context of a database that is past the initial stages of
development.

MPL (De Raedt et al. 1993) can be recommended for learning classifi-
cation type logical definitions for several mutually dependent predicates.
Other ILP systems, e.g., MOBAL (Morik et al. 1993), can also be used for
this task. The use of MOBAL is especially recommended (both for single
and multiple predicate learning) if the user has knowledge of the form
of patterns to be discovered: this knowledge can be provided to MOBAL
in the form of rule models.

Regarding the other empirical ILP systems for single predicate learn-
ing, the following recommendations can be made. If constrained or de-
terminate clauses suffice for the application, LINUS and DINUS (Lavraé
and DzZeroski 1994) are a good choice. They rely on attribute-value sys-
tems to do the learning and are thus capable of handling noisy data and
real-valued attributes. Most ILP systems do not have noise-handling
capabilities. However, there are several exceptions, e.g., FOSSIL (Furn-
kranz 1994) and MILP (Kovaci¢ 1994). Also, FOIL (Quinlan 1990)
and GOLEM (Muggleton and Feng 1990) have some rudimentary noise-
handling capabilities.

Top-down systems, such as FOIL, are better for finding simpler pat-
terns, even in the presence of noise (in this case use mFOIL (Dzeroski
and Bratko 1992)). Bottom-up systems, such as GOLEM, are better at
finding complicated patterns from data without imperfections, because
they start with the most specific hypothesis in the hypothesis language
that explains the examples. To conclude this recommendation section,
we recommend that the reader gain access to the ILP systems from the
Machine Learning Archive in Bonn (see Table 5.6) and try them out on
their favorite KDD problem.

5.6.3 Hot Topics in ILP Research

Having started from a sound theoretical basis, current ILP research is
increasingly turning to topics that are relevant for practical applications.
One such topic is the computational complexity of ILP algorithms. Al-
though theoretic by nature, this topic is of immediate practical interest:
provably efficient ILP algorithms are obviously desirable. Research in
this area has identified several classes of patterns (logic programs) that
can be efficiently induced by current ILP systems, e.g., determinate logic
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programs (Dzeroski et al. 1992). It has also shown that the nonmono-
tonic ILP setting allows for more efficient clausal discovery than the
normal ILP setting (De Raedt and Dzeroski 1994).

The study of the computational complexity of ILP problems/algorithms
has shown that current ILP algorithms would scale relatively well with
the increasing number of examples or facts in the background knowl-
edge database. However, they would not scale well with the number of
arguments of the predicates (relations) involved, and in some cases with
the complexity of the patterns searched. There are also indications that
the use of declarative bias can help to resolve these problems.

Declarative bias is an active area of ILP research. Formalisms for spec-
ifying declarative bias include rule models (Morik et al. 1993), clause sets
(Bergadano and Gunetti 1994), and antecedent description grammars
(Cohen 1994). The bias specification mechanism of (Ade et al. 1995)
is a generalization of these approaches and is used in the ILP system
cLAUDIEN (De Raedt and Bruynooghe 1993).

Finally, handling imperfect (noisy) data and numerical constraints
in ILP are also among the main topics of ILP research. This includes
upgrading propositional techniques to the first-order case (Lavra¢ and
Dzeroski 1994), as well as using MDL-based heuristics (Kovagic 1994)
for noise handling. Relational regression is used (Dzeroski et al. 1995) to
learn numerical constraints in the normal setting, and a similar regression-
based approach can be used in the nonmonotonic setting.

5.7 Conclusion

ILP is concerned with the induction of first-order rules in the form of
clausal theories or logic programs. The induction process happens in
the context of a deductive database, i.e., a set of intensional and ex-
tensional relations. ILP can thus be used for discovering patterns that
involve several relations. The expressive power of the pattern language
is a strong motivation for the use of ILP in a KDD context. While effi-
ciency and scaling problems may be expected when using ILP for KDD,
recent ILP systems provide powerful tools to cope with these problems,
e.g., facilities for specifying a strong declarative bias. Handling imper-
fect data and real-valued attributes is also increasingly present in ILP
systems. In their efforts to prove the practical value of their systems,
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ILP researchers are sure to address KDD applications: we hope that
their work will be complemented with work by KDD practitioners, thus
helping to discover new and useful knowledge.
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