A Total-Group Phylogenetic Metatree for Cetacea and the Importance of Fossil Data in Diversification Analyses

GRAEME T. LLOYD^{1,*}, GRAHAM J. SLATER²

¹ *School of Earth and Environment, University of Leeds, Leeds, U.K.* ² *Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA*

**graemetlloyd@gmail.com*

ABSTRACT

 Phylogenetic trees provide a powerful framework for testing macroevolutionary hypotheses, but it is becoming increasingly apparent that inferences derived from extant species alone can be highly misleading. Trees incorporating living and extinct taxa are are needed to address fundamental questions about the origins of diversity and disparity but it has proved challenging to generate robust, species–rich phylogenies that include large numbers of fossil taxa. As a result, most studies of diversification dynamics continue to rely on molecular phylogenies. Here, we extend and apply a recently developed meta–analytic approach for synthesizing previously published phylogenetic studies to infer a well–resolved set of species level, time–scaled phylogenetic hypotheses for extinct and extant cetaceans ¹⁰ (whales, dolphins and allies). Our trees extend sampling from the ~ 90 extant species to over 400 living and extinct species, and therefore allow for more robust inference of ¹² macroevolutionary dynamics. While the diversification scenarios we recover are broadly ¹³ concordant with those inferred from molecular phylogenies they differ in critical ways, most notably in the relative contributions of extinction and speciation rate shifts in driving rapid radiations. Supertrees are often viewed as poor substitute for phylogenies inferred ¹⁶ directly from character data but the metatree pipeline overcomes many of the past

2 LLOYD AND SLATER

¹⁷ criticisms leveled at these approaches. Meta–analytic phylogenies provide the most ¹⁸ immediate route for integrating fossils into macroevolutionary analyses, the results of ¹⁹ which range from untrustworthy to nonsensical without them.

²⁰ *Key words*: supertree, morphology, matrix representation with parsimony, extinction, ²¹ macroevolution.

 $\overline{2}$

²³ It is now widely accepted that a phylogenetic framework is essential for addressing ²⁴ questions regarding diversification dynamics, phenotypic evolution, and historical ²⁵ biogeography. The covariances between species that are imposed by the hierarchical ²⁶ structure of a phylogenetic tree mean that any attempt to understand the processes ₂₇ responsible for generating observed patterns of diversity must take the tree and its ²⁸ associated branch lengths into account (Felsenstein, 1985; Harvey and Pagel, 1991; Foote ²⁹ $\boxed{1996}$ O'Meara et al., $\boxed{2006}$ Ree and Smith, $\boxed{2008}$. As a consequence of this phylogenetic ³⁰ dependence, the development of new tools for inferring macroevolutionary dynamics has ³¹ been paralleled by innovations in the field of phylogenetic inference, and it is now possible ³² to infer time-scaled trees using complex models of molecular evolution applied to ³³ genome-scale data.

³⁴ The need for a well–resolved, time–calibrated phylogeny places substantial ³⁵ constraints on the kinds of clades that are accessible to most biologists for testing ³⁶ macroevolutionary hypotheses. Some authors have noted that clades are often selected for ³⁷ study due to their tractability rather than because they are suitable candidates for testing ³⁸ a particular hypothesis, resulting in a form of empirical ascertainment bias (Beaulieu and ³⁹ O'Meara, 2018, 2019). For example, early burst models of adaptive radiation arose to ⁴⁰ explain the origins of higher taxa (Simpson, 1944, 1953; Van Valen, 1971; Valentine, 1980 ⁴¹ Humphreys and Barraclough, 2014; Slater and Friscia, 2019) but have mostly been tested $\frac{4}{2}$ in lower level clades, such as genera, where the early burst signal is conspicuously lacking

CETACEAN METATREE AND DIVERSIFICATION 3

 $_{43}$ (e.g., Harmon et al., 2010). Although lower level clades certainly have a role to play in ⁴⁴ comparative biology (Schluter, 2000 ; Losos, 2009 ; Donoghue and Edwards, 2019), there is a ⁴⁵ pressing need to develop suitable phylogenetic frameworks for studying macroevolutionary ⁴⁶ pattern and process at higher taxonomic levels. ⁴⁷ The major barrier to obtaining appropriate phylogenetic frameworks for higher–level ⁴⁸ clades has always been data availability (Smith et al., 2009). The "Supermatrix" approach was initially suggested as a solution to this problem (Sanderson et al., 1998 ; Gatesy et al. \sim 2002; de Queiroz and Gatesy, 2007). Here, one obtains all available sequence data for a ⁵¹ clade of interest through a combination of direct sequencing and from repositories such as ⁵² Genbank. Sequences are aligned and concatenated to create a large but sparsely sampled ⁵³ matrix that can be analyzed using standard phylogenetic software and methods. Concerns 54 regarding the impact of missing data and data quality (e.g., McMahon and Sanderson, ⁵⁵ 2006) have, more recently, led to alternative approaches based on bioinformatic pipelines ⁵⁶ Smith et al. (2009) or patching of subclades onto backbone trees (Jetz et al., 2012; Tonini $\frac{1}{57}$ et al., 2016; Jetz and Pyron, 2018; Upham et al., 2019). These methods have proved ₅₈ effective for generating large, higher–level phylogenetic hypotheses (particularly where ⁵⁹ taxonomic information can also be used to constrain the placement of species that lack ⁶⁰ character data) and have yielded novel insights into diversification dynamics, trait ⁶¹ evolution and historical biogeographic patterns. Recent examples include a 5,284 species ⁶² tree of agariomycete fungi (Varga et al., 2019), an 11,638 species tree of extant fishes 63 (Rabosky et al., 2018), and a 353,185 species tree of seed plants (Smith and Brown, 2018). ⁶⁴ While these methods provide promise for extant clades, they cannot be used to ⁶⁵ generate phylogenetic hypotheses for most of the *>* 99% of life that is now extinct (Raup, ⁶⁶ [1994]. This is particularly problematic given that fossil data play a critical role in refining σ estimates of ancestral character states (Finarelli and Flynn, 2006), choosing among ⁶⁸ competing models of trait evolution (Slater et al., $\boxed{2012}$), inferring ancestral biogeographic \bullet patterns (Meseguer et al., 2014), and understanding speciation and extinction dynamics

4 LLOYD AND SLATER

⁷⁰ through time (Mitchell et al., 2018 ; Louca and Pennell, 2020). The difficulty in generating π_1 large character–taxon matrices for fossil taxa is due in large part to the unique and often ⁷² subjective ways in which morphological characters and their states are defined and coded ⁷³ across studies. Unlike molecular data, where character states are universally coded, two ⁷⁴ morphological matrices with partially overlapping taxon lists cannot be concatenated ⁷⁵ without extensive revision of characters and re–coding of their states, which is, in itself, a σ challenging, time–consuming, and potentially impossible task. The effect of this π incompatibility is that, although the number of species included in morphological ⁷⁸ character–taxon matrices has continued to increase over the past few decades (fig 1), they ⁷⁹ lag well behind molecular datasets in size. One recent study included character state ∞ codings for 501 OTUs (Hartman et al., 2019), but this is twice the size of the next largest μ_{max} matrix published to date (N=254, Mo et al. 2012).

Fig. 1. Although the number of taxa included in morphological character–taxon matrices has increased over time, they lag behind the largest molecular datasets. Based on a cubic spline (light blue line) fitted to log(number of taxa) in 3671 morphological studies (graemetlloyd.com/matr.heml), the average dataset has only increased from 8.3 OTUs in 1975 to 58 OTUs in 2020 (note log scale on y–axis). The maximum number of taxa has also increased, corroborated by a loess fit (dark blue solid line). Removing Hartman et al. (2019), which contains the largest number of taxa by a factor of 2, indicates a slow–down in the rate of increase towards the present (dark blue dashed line).

CETACEAN METATREE AND DIVERSIFICATION 5

⁸² Supertree methods provide an alternative avenue for the inference of large ⁸³ phylogenies of extinct taxa. Supertrees are a class of consensus tree in which a set of ⁸⁴ topologies derived from distinct datasets are summarized in some common form to yield a ⁸⁵ topology containing shared or well–supported splits (Sanderson et al.) 1998; Sanderson and ⁸⁶ Driskell 2003; Bininda-Emonds et al. 2002; Bininda-Emonds, 2004). Importantly, ⁸⁷ supertree methods can accommodate sets of input trees with partially or non-overlapping ⁸⁸ leaf sets, and they therefore provide a way of synthesizing morphological character–taxon ⁸⁹ matrices covering distinct clades without re–coding characters or concatenating matrices. ⁹⁰ The best–known method for combining trees is Matrix Representation with Parsimony $_{91}$ (MRP), where all input topologies are represented using a binary coding scheme (Fig. 2). ⁹² Each column, or character, in a MRP matrix represents a bipartition from one of the ⁹³ source trees. An entry of "1" for a given row indicates the presence of that taxon within ⁹⁴ the clade, "0" indicates its exclusion from the clade, and "?" indicates that the taxon is ⁹⁵ not represented in the source tree in question (Baum, 1992; Ragan, 1992; Baum and ⁹⁶ Ragan, 2004 , Fig $2C$). A supertree containing the union of tips over the source trees may ⁹⁷ then be inferred using standard parsimony methods. Like supermatrices, supertrees (and ⁹⁸ MRP supertrees in particular) have been criticized on a number of grounds. Character ⁹⁹ non–independence necessarily arises due to reuse of characters across multiple analyses \int_{100} (Springer and de Jong, 2001), and issues concerning the relative quality of individual ¹⁰¹ studies must also be addressed $(Gatesy et al. | 2004)$. Further sources of concern include ¹⁰² how to select and code topologies produced from analysis of the same matrix Gatesy ¹⁰³ et al., 2004), weighting of strongly versus weakly supported nodes (Gatesy and Springer) 104 2004), the potential recovery of clades that are not found in any of the input trees (Pisani ¹⁰⁵ and Wilkinson, 2002; Bininda-Emonds, 2003; Wilkinson et al., 2005) and how best to deal $_{106}$ with supraspecific OTUs (Page, 2004).

¹⁰⁷ In response to these criticisms, a number of alternative supertree approaches have ¹⁰⁸ been developed (e.g, Bininda-Emonds, 2004; Semple et al., 2004; Levasseur and Lapointe

Fig. 2. Matrix representation of tree topologies allows for the inference of total clade trees even if taxa are missing from individual source trees. Here, the two source trees on the left differ in that tree 1 does not sample taxon F while tree 2 is missing taxon D. Parsimony analysis of the matrix representation of the two topologies results in a single shortest tree that captures the intuitive relationships of F with B and C as sister to $D+E$ that are not both present in either of the two source trees.

¹⁰⁹ 2006; Steel and Rodrigo, 2008; Lin et al., 2009; Ranwez et al., 2010; Swenson et al., 2012; 110 Akanni et al., 2015; Kettleborough et al., 2015; Fleischauer and Böcker, 2017). Some of ¹¹¹ these methods allow for character weighting based on information such as bootstrap ¹¹² values, or relative importance of a given source tree, but none provides a straightforward ¹¹³ way to explicitly accommodate phylogenetic uncertainty within individual source studies, ¹¹⁴ particularly where the number of studies is large. Furthermore, none of these approaches or ¹¹⁵ pipelines explicitly deal with earlier criticisms of the supertree paradigm that are rooted in $_{116}$ issues of data reuse and redundancy (Springer and de Jong, 2001; Gatesy and Springer, $_{117}$ 2004; Gatesy et al., 2004). Lloyd et al. (2016) introduced an alternative approach that they ¹¹⁸ called a "metatree". As with MRP supertrees, metatrees use binary encoding of tree 119 topologies to generate a matrix that can be analyzed using standard phylogenetic methods. 120 The principal difference between an MRP supertree and a metatree is that the matrix from ¹²¹ which MRP supertrees are built typically uses individual tree topologies gleaned from

CETACEAN METATREE AND DIVERSIFICATION 7 7

 published papers as data, while the metatree approach explicitly requires reanalysis of morphological character-taxon matrices to sample and encode *all* optimal topologies. Moreover, the metatree pipeline introduces specific rules to ameliorate concerns associated with data redundancy and uncertainty in the inference of source trees. In practice, metatrees tend to lead to more resolved consensus topologies than traditional MRP ¹²⁷ supertrees (compare Lloyd et al. 2016 to Lloyd et al. 2008) while also better accommodating phylogenetic uncertainty in the source studies than the figured trees 129 typically used by supertree methods $[Bell and Lloyd]$ $[2015]$.

¹³⁰ In this paper we leverage the metatree approach to assess diversification dynamics in ¹³¹ extant and extinct cetaceans (whales, dolphins and relatives). A number of recent studies ¹³² based on molecular phylogenies have provided evidence for a recent increase in cetacean ¹³³ net diversification rates during the past 10 Ma, driven by rapid speciation of ocean ¹³⁴ dolphins (Delphinidae) (Steeman et al., 2009; Slater et al., 2010; Rabosky, 2014; Rabosky $\frac{1}{135}$ and Goldberg, $\left| \frac{2015}{0} \right|$. However, the relative contributions of speciation and extinction rate ¹³⁶ variation to trends in net diversification can be extremely difficult to disentangle using ¹³⁷ phylogenies of extant taxa (Liow et al., 2010 ; Louca and Pennell, 2020) and the rich ₁₃₈ cetacean fossil record suggests that different dynamics may have been at play during the ¹³⁹ past 36 million years than might be suggested on the basis of molecular phylogeny alone $_{140}$ (Quental and Marshall, 2010 ; Morlon et al., 2011 ; Marx and Fordyce, 2015). Until now, the ¹⁴¹ lack of a densely–sampled higher–level phylogeny of the clade has precluded thorough ¹⁴² comparison of diversification dynamics inferred from molecular and fossil phylogenies. We ¹⁴³ here use the metatree pipeline (Lloyd et al., $\sqrt{2016}$) to assemble a comprehensive set of ¹⁴⁴ phylogenetic hypotheses for extant and extinct cetaceans. We then use a Bayesian ¹⁴⁵ model–averaging approach (fossilBAMM Rabosky et al., 2014 Mitchell et al., 2018) to ¹⁴⁶ estimate rates of speciation and extinction through time and across branches of the ¹⁴⁷ time–scaled cetacean trees. Our results demonstrate that simultaneous analysis of extinct ₁₄₈ and extant taxa can yield different conclusions regarding macroevolutionary dynamics

LLOYD AND SLATER

than are derived from analyses of extant taxa alone, and stress the important of

paleo–phylogenetic approaches for studying macroevolutionary dynamics.

¹⁵¹ MATERIALS AND METHODS

¹⁵² The metatree approach was fully described in Lloyd et al. (2016) but we provide an overview here in the context of assembly of our cetacean metatree. For ease of reference, $_{154}$ our pipeline is summarized visually as a flow–chart in Figure $\overline{3}$ and our description of methods follow this structure.

Data Acquisition

 Morphological character data We collected 146 morphological character matrices from 143 published studies (See Supplementary Bibliography). Sampled studies range in publication date from 1994 to 2020. New species of (typically extinct) cetacean are $_{160}$ described with sufficient regularity that such a tree can quickly become out-of-date. However, our pipeline allows easy integration of additional data for continuous updating. We included phylogenetic analyses of exclusively extinct, exclusively extant, and both extinct and extant taxa in our dataset. The only requirement for inclusion was that a morphological character matrix was provided in the paper, the associated supplementary ¹⁶⁵ methods, or on some repository such as Morphobank $[O']$ Leary and Kaufman, 2011). All character matrices have been deposited on the cetacean metatree GitHub repository (https://github.com/graemetlloyd/ProjectBlackFish). We retained information regarding any character weighting or ordering schemes used in the published analyses. To minimize the impact of data duplication, we removed molecular data, where included, from each alignment.

 Molecular character data Molecular evidence may provide a strong and divergent phylogenetic signal for extant taxa compared with the signal provided by morphological

CETACEAN METATREE AND DIVERSIFICATION 9

Fig. 3. Schematic showing the general outline of metatree assembly. Description of methods used in the assembly of our cetacean metatrees follow this workflow.

¹⁷³ data. Parsimony analyses of morphological character data often employ a molecular ₁₇₄ scaffold approach, whereby tree searches are constrained to recover topologies for extant ¹⁷⁵ taxa that are consistent with molecular estimates. However, the fact that a single topology

LLOYD AND SLATER

 constraint must typically be enforced means topological uncertainty inherent in tree $_{177}$ inference from molecular data cannot be accommodated. The metatree pipeline can readily incorporate molecular data as an additional data source, thus accommodating topological $_{179}$ uncertainty. We here used the molecular supermatrix of McGowen et al. (2009). This matrix contains 42,335 characters from 45 nuclear loci, mitochondrial genomes, and transposon insertion events coded for 91 taxa (four artiodactyl outgroups and 87 of 91 182 currently recognized cetacean species).

Pre-processing

 Reanalysis We reanalyzed each morphological character–taxon matrix, under the outgroup, weighting, and ordering schemes specified by the original authors, using the μ_{186} maximum parsimony software TNT (Goloboff et al., 2008). The use of parsimony allowed us to balance our desire to incorporate phylogenetic uncertainty via a set of most parsimonous trees with the need for an ecient pipeline for processing large numbers of source datasets while guaranteeing convergence on an optimal set of solutions. However, any approach (Maximum Likelihood, Bayesian Inference) could be used to reanalyze source data. The settings for each analysis were determined on the basis of matrix size. For 24 or fewer taxa the implicit enumeration option was used, which guarantees that all optimal topologies will be returned. For 25 or more taxa, 20 separate replicates of TNT's "New Technology Searches" were performed, each starting with a random seed. Trees from each replicate were then combined and a final round of tree bisection–reconnection was performed. In some cases the maximum tree limit (100,000) was hit, indicating additional equally optimal relationships exist. In order not to miss these topologies, searches were repeated until the least frequent bipartition was found at least twice suggesting complete coverage was reached). For the purposes of inference, trees were summarised using matrix representation, with all duplicate bipartitions removed. All unique bipartitions were ₂₀₁ equally weighted as under parsimony there is no clear basis for considering bipartition

CETACEAN METATREE AND DIVERSIFICATION 11

²⁰² frequency within the set of shortest trees as a measure of support.

²⁰³ The molecular data from $\overline{\text{McGowen et al.}}$ (2009) were analyzed in MrBayes v 3.2 ²⁰⁴ (Ronquist et al., 2012) via the CIPRES portal (Miller et al., 2010) using the same MCMC settings and models as in the original study. In Bayesian phylogenetic methods, topologies (and their associated branch lengths) are sampled in proportion to their posterior probabilities, which means that bipartition frequency is meaningful. We encoded unique bipartitions found within 1000 trees drawn at random from the posterior sample using matrix representation but assigned each column of the resulting character matrix a weight corresponding to its frequency in the posterior sample. For example, a clade sampled in ₂₁₁ only 10% of the posterior sample was assigned a weight that is one–tenth that of a clade present in all trees in the sample.

²¹³ *Metadata* We recorded two key pieces of metadata from each source study. First, ²¹⁴ we noted whether supra–specific Operational Taxonomic Units (OTUs) in the character ₂₁₅ matrix were coded from a specific taxon or taxa. For example, the NEXUS file of Godfrey ²¹⁶ et al. (2017) lists the OTU *Phocageneus* but the paper itself confirms that this OTU is ²¹⁷ *Phocageneus venustus*. If a supra–specific OTU was coded from more than one taxon, all ²¹⁸ were recorded if listed in the paper. If no species–level taxa were listed, we retained the ²¹⁹ supra–specific taxon as the unit of analysis. Direct editing of names in NEXUS files can ²²⁰ lead to problems if taxa are later synonymized or names are altered. We therefore ₂₂₁ generated custom XML files for each source study in which each OTU was reconciled to its ₂₂₂ constituent taxa, as recorded in the Paleobiology Database (Peters and McClennen, 2016). ²²³ Cetaceans, both extinct and extant, are extremely well documented in the Paleobiology $_{224}$ Database thanks largely to the efforts of Mark Uhen (e.g., Uhen and Pyenson, 2007). ²²⁵ Additionally, as the database is continually updated and has an API (Peters and α McClennen, 2016), dynamic updating of taxonomy can be achieved in future metatree $_{227}$ iterations. Seventy undescribed OTUs did not have a species name. Following Lloyd et al. $\sqrt{2016}$ we retain these as "valid" taxa in our analyses because 1) they may represent key

12 LLOYD AND SLATER

²²⁹ data for resolving phylogenetic relationships, dating the tree, or performing downstream ²³⁰ macroevolutionary analysis, and 2) there is a clear and repeated tendency for these ²³¹ specimens to become the holotypes of new species (for example, the specimen-level OTU, ²³² "GSM 109" was included in multiple trees prior to its formal description as *Echovenator* ²³³ *sandersi* by Churchill et al. 2016). Such OTUs are a common feature in other clades too; $_{234}$ 10% (97 of 961) of OTUs in Lloyd et al. (2016) were unnamed specimens.

²³⁵ The second piece of information noted was whether the matrix was based on a ²³⁶ previous study. For example, the matrix of $\boxed{\text{Godfrey et al.}}$ (2017) was based on an earlier ²³⁷ study by Lambert et al. (2014) and was itself later used by Boersma et al. (2017) . This ²³⁸ information was added to each matrix's XML file for use in determining relative weighting ²³⁹ or study redundancy when assembling the final MRP matrix.

²⁴⁰ *Taxonomic reconciliation and taxonomy tree* Before matrix representations for ²⁴¹ each source study can be combined to form a global matrix, a list of valid species must be ²⁴² decided on and taxonomic assignments reconciled to this list. We dynamically reconciled ²⁴³ tip names recorded in the XML files to currently valid taxon names recognized in the ²⁴⁴ Paleobiology Database, for example updating junior synonyms to their senior synonyms. ²⁴⁵ This procedure allows taxonomic information to be automatically updated and limits ²⁴⁶ human error while updating names.

 The taxonomic hierarchy present in the database also represents a ²⁴⁸ pseudo-phylogenetic hypothesis (Soul and Friedman, $\langle 2015 \rangle$), a feature exploited here in two ways. First, supraspecific taxon rows that cannot be reconciled to specific taxa can be replaced with a set of duplicated rows corresponding to species-level OTUs, avoiding the situation where, for example, *Balaenoptera* and *Balaenoptera musculus* exist as separate tips in the final metatree. Second, the taxonomy can be included as an additional, albeit a $_{253}$ heavily down–weighted data set (Gatesy and Springer, 2004). This is important as the presence of a basic but comprehensive estimate of phylogeny derived from taxonomy can ₂₅₅ ameliorate inference issues that might arise due to a lack of data overlap (an affliction of

CETACEAN METATREE AND DIVERSIFICATION 13

 formal supertrees often termed "rogue taxa"). For example, Mysticetes and Odontocetes should logically be separated as clades, but if all phylogenetic analyses only focused on one or the other of these clades, then information on their reciprocal monophyly would be lacking.

 The use of a taxonomy tree also allows for the inclusion of species that are un–sampled in the set of source trees. Higher–level analyses of extant clades have included taxa for which molecular data are unavailable by simultaneously enforcing topology constraints, based on taxonomy, and integrating over possible placements of missing taxa ²⁶⁴ under a birth–death process (e.g., Kuhn et al. 2011; Jetz et al. 2012; Rabosky et al. 2018; ²⁶⁵ Upham et al., $\boxed{2019}$. We here increased taxonomic coverage for fossil cetaceans by producing two additional versions of our MRP matrix, one in which all species assigned to a sampled genus were included and another where all species assigned to Cetacea in the Paleobiology Database were included. We refer to these analyses as GENUS and ALL, respectively, for the remainder of this paper, with the species–level analysis referred to as EXCLUDE to account for the fact that unsampled OTUs were excluded. It should be ₂₇₁ stressed that, because our pipeline treats taxonomic bipartitions as data that are down–weighted relative to bipartitions derived from phylogenetic analyses, this approach does not force a taxonomic structure on the result where there are primary character data ₂₇₄ available that disagree with it (cf. Jetz et al.) 2012 ; Rabosky et al., 2018; Upham et al. $275 \quad |2019\rangle.$

 Matrix assembly and character weighting After taxonomic reconciliation, it is ²⁷⁷ straightforward to merge MRP matrices from source studies into a global character–taxon matrix. At this stage, we also compute character weights, based on three attributes of source studies: non–independence, date of publication, and size (measured in number of MRP characters). Older character matrices that were reused in a subsequent study without $_{281}$ modification of the characters themselves (e.g., by the addition of a single new taxon to an existing dataset) were deemed redundant and automatically removed. The remaining

14 LLOYD AND SLATER

 non–independent data sets were assigned equal weights that sum to one, with this weight $_{284}$ being applied to each character of the data set. Next, following Lloyd et al. (2016). publication year weights were assigned such that the oldest included data–set received a weight of 10 (an order of magnitude higher than the weight assigned to the taxonomy tree) and with weights doubling every two years. Again, this weight was applied to each character in a data set. Finally, some data sets generated more MRP characters than others ²⁸⁹ simply because they contained greater phylogenetic uncertainty and without intervention these would dominate the final tree. To account for this individual characters (bipartitions) ²⁹¹ were weighted such that any within-data-set characters (biparitions) with which they ²⁹² conflict are clustered and down-weighted such that they sum to one, with any unconflicted ₂₉₃ characters being weighted one. These different character weights were combined by taking the product of the three criteria–based weights. Other ways of weighting characters and source studies are possible (interested readers can consult the *in development metatree* R package github.com/graemetlloyd/metatree for more information and options) but we have so far found the above to work well across a range of groups.

²⁹⁸ TNT (Goloboff et al., $\left| \frac{2008}{90} \right|$ requires that weights fall in the range $0.50 - 1000.00$. ²⁹⁹ We set default weights of one for the taxonomy tree (always enforced) and 10 for the ³⁰⁰ minimum phylogenetic weight, but no initial maximum weight can be specified and in ³⁰¹ practice this may exceed 1000.00. When this occurred, we rescaled the phylogenetic ³⁰² weights only to fall on a 10.00 – 1000.00 scale. Lloyd et al. (2016) applied multistate ³⁰³ characters to effectively stretch this maximum possible weight to 31000.00, but we found ³⁰⁴ that this dramatically slowed the run time of TNT. Thus when it came time to upweight ³⁰⁵ molecular topologies relative to morphological topologies, we instead assigned them ³⁰⁶ maximum weights combined with column (character) duplication. Column duplication is ³⁰⁷ identical to numerically upweighting character state changes or site likelihoods using ³⁰⁸ integer–valued weights, and is the method employed in model–based phylogenetic inference $\frac{309}{200}$ tools such as RAxML (Stamatakis, 2014) and BEAST 2 (Bouckaert et al. 2014).

CETACEAN METATREE AND DIVERSIFICATION 15

³¹⁰ *Phylogeny Inference*

³¹¹ *Metatree inference* Prior to analysis, the final MRP matrix was subjected to Safe 312 Taxonomic Reduction (STR: Wilkinson, 1995) using the SafeTaxonomicReduction() $_{313}$ function in the R (R Development Core Team, 2019) package Claddis (Lloyd, 2016) and ³¹⁴ an all–zero outgroup was added to provide character polarity during the tree search $\frac{1}{315}$ (Baum, 1992; Ragan, 1992). We performed 1000 independent parallel tree searches using ³¹⁶ TNT with the **xmult** option for multiple replications using sectorial searches, drifting, ³¹⁷ ratchet and fusing invoked at level 10, and a maximum of 1000 trees held in memory $_{318}$ (Goloboff et al. 2008). We reinserted STR taxa using the SafeTaxonomicReinsertion ³¹⁹ function in Claddis (Lloyd, 2016) and constructed a strict consensus tree from the final ³²⁰ sample of shortest trees.

³²¹ *Time-tree Inference* The result of metatree inference is a set of most parsimonious ³²² topologies that can be summarized using consensus methods. However, macroevolutionary ³²³ analyses require topologies with associated branch lengths in units of time. Paleontological ³²⁴ approaches for time scaling phylogenies have historically been somewhat arbitrary in ³²⁵ nature (for a review see Hunt and Slater, $\sqrt{2016}$). However, these approaches have recently ³²⁶ been superseded by probabilistic methods that allow for simultaneous inference of topology ³²⁷ and branch lengths for extinct and extant species under a birth–death process (Heath $_{328}$ et al., 2014 ; Gavryushkina et al., 2014 , 2017).

³²⁹ We combined three sources of data to sample a distribution of time–scaled 330 phylogenies for extinct and extant cetaceans using BEAST 2.5.2 (Bouckaert et al., $|2014|$). ³³¹ We first used the strict consensus metatree topology to derive a series of topological ³³² constraints for each BEAST analysis. No character data were used for extinct taxa and so ³³³ no morphological clock was invoked to derive branch lengths. In an analysis of extant taxa ₃₃₄ only, the resulting topological arrangements among unconstrained taxa would be random, ³³⁵ but for extinct taxa they are influenced by stratigraphic age, via the use of the Fossilized

16 LLOYD AND SLATER

336 birth–death process tree prior (Heath et al., 2014 Gavryushkina et al., 2014 , 2017). As a ³³⁷ result, sampled topologies can be thought of as reflecting a balance between strong prior ³³⁸ belief, in the form of hard topological constraints derived from metatree inference, and ³³⁹ stratigraphic data. For each extinct terminal taxon in our strict consensus topology, we first ³⁴⁰ queried the Paleobiology Database to obtain the age of first occurrence. The age of each ³⁴¹ taxon was then specified as the beginning and end dates for the stage of first occurrence, ³⁴² based on the 2018 International Commission on Stratigraphy updated chronostratigraphic 343 chart (http://stratigraphy.org/ICSchart/ChronostratChart2018-07.pdf). Where ³⁴⁴ possible, we supplanted PBDB–derived ages, with more refined biostratigraphic or ³⁴⁵ radiometric age estimates taken from primary sources or previous phylogenetic analyses ³⁴⁶ and revisions (Table S1).

³⁴⁷ We selected a subset of the alignment from McGowen et al. (2009) for use in our ³⁴⁸ BEAST analyses. Molecular data can provide important information regarding the relative ³⁴⁹ branch lengths for extant taxa, particularly in clades lacking fossil representatives. ³⁵⁰ Preliminary attempts to perform BEAST analyses using the entire alignment yielded poor ³⁵¹ mixing, even after very long ($>10^8$ generations) runs. We therefore used SortaDate (Smith ³⁵² et al. 2018) to identify and rank genes that were most congruent with the topology $\frac{353}{253}$ reported by McGowen et al. (2009) and that displayed the most clock–like behavior. Based ³⁵⁴ on these criteria *Cytochrome B* was identified as the most appropriate gene and was used ³⁵⁵ in Bayesian estimation of topology and branch lengths (note that the same gene was used, ³⁵⁶ due to its availability for all 87 extant taxa, in McGowen et al. \vert 2009) We determined that ³⁵⁷ an uncorrelated relaxed clock with log–normally distributed rates best fitted the molecular ³⁵⁸ data, based on comparison of marginal likelihoods computed for a fixed topology of extant ³⁵⁹ taxa (see Supplementary Information). We set informative priors on the net diversification ³⁶⁰ ($r \sim$ exponential[1.0]), and relative extinction rates ($\epsilon \sim \beta$ [2.0, 1.0] based on Marshall's ³⁶¹ [2017] third paleobiological law that speciation \approx extinction), and placed a flat prior on ³⁶² fossilization probability $(s \sim U[0, 1])$. For the origin of the FBD process we specified an

CETACEAN METATREE AND DIVERSIFICATION 17

³⁶³ offset exponential prior, with an offset of 54 million years, corresponding to the age of the ³⁶⁴ oldest known cetacean *Himalayacetus subanthuensis* (Bajpai and Gingerich, 1998), and ³⁶⁵ mean of 3.5 that resulted in a 95% quantile corresponding to the Cretaceous – Paleogene boundary (66 Ma). We ran two chains for 10^8 generations, sampling every 10^5 generations $_{367}$ and, after visually checking for convergence and parameter effective sample sizes > 200 ³⁶⁸ using Tracer v1.7.1, we discarded a chain–specific burn–in and combined tree files. ³⁶⁹ Attempts to produce a maximum clade credibility tree annotated with mean or median ₃₇₀ branch lengths failed due to negative branch lengths, indicating conflict between the most 371 frequently sampled topology and the distribution of underlying branch lengths. Instead, we ³⁷² sampled the Maximum *A Posteriori* (MAP) tree for visualization purposes and for ³⁷³ subsequent macroevolutionary analysis.

³⁷⁴ *Inference of Diversification Dynamics*

³⁷⁵ Analyses based on molecular phylogenies of extant cetacean phylogeny have ³⁷⁶ recovered evidence for an increase in mean net diversification rates during the past 10 Ma, $\frac{377}{2009}$ driven by increased rates of speciation in oceanic dolphins (McGowen et al., 2009; Steeman $\frac{1}{2018}$ et al., 2009; Slater et al., 2010; Rabosky et al., 2014). It is well known that inference of ³⁷⁹ trait evolution dynamics can be misleading when based on phylogenies of extant taxa alone ³⁸⁰ (Finarelli and Flynn $\sqrt{2006}$ Slater et al., $\sqrt{2012}$ $\sqrt{2017}$) and some evidence suggests that $\frac{381}{281}$ inference of cetacean diversification dynamics may suffer from similar issues (Quental and 382 Marshall, 2010 ; Morlon et al., 2011 . We used fossilBAMM (Mitchell et al., 2018) to infer ³⁸³ speciation and extinction dynamics for each of the MAP time–scaled cetacean metatrees. 384 As with the standard form of BAMM (Rabosky et al. $\boxed{2014}$), fossilBAMM is a Bayesian ³⁸⁵ model–averaging approach that samples speciation and extinction rates along branches of ³⁸⁶ a phylogentic tree while allowing for shifts in one or both rates. The method requires a ³⁸⁷ bifurcating, time–scaled tree containing living and extinct taxa, as well as the number of ³⁸⁸ unique fossil occurrences for tips included in the tree. We queried the Paleobiology

18 LLOYD AND SLATER

³⁸⁹ Database to recover unique stratigraphic occurrences associated with each terminal taxon ³⁹⁰ present in each of the three metatrees. Taxa not in the database (i.e., undescribed taxa) ³⁹¹ were treated as having unique single occurrences. Prior to analysis, we also pruned ³⁹² sampled ancestors from the MAP trees to avoid biasing estimates of speciation and ³⁹³ extinction due to very short terminal edges. We determined priors for each analysis by 394 using the setBAMMpriors function in the BAMMtools library (Rabosky et al., 2014) and ran two independent MCMC chains for 10^8 generations, sampling every 10^4 . We checked for ₃₉₆ convergence and large effective sample sizes using functions in the coda library (Plummer ³⁹⁷ et al., 2006) and processed post-burnin output using functions from the BAMMtools library ³⁹⁸ (Rabosky et al., 2014). To compare and contrast trends in diversification dynamics derived ³⁹⁹ from the three metatrees, we plotted median and 95% confidence intervals for speciation, ⁴⁰⁰ extinction and net diversification rates through time using the plotRateThroughTime() ⁴⁰¹ function. To compare branch and clade specific rates, we also plotted mean per–branch ⁴⁰² rates on the respective phylogenetic hypotheses.

⁴⁰³ RESULTS

⁴⁰⁴ *Metatree Inference*

Analysis of the 147 source studies (146 morphological plus 1 molecular) resulted in an MRP matrix comprising 494 species, approximately two-thirds of all recognized cetacean taxa, and 14257 binary characters. Safe Taxonomic Reduction reduced the size of the matrix for analysis to 440 taxa. The strict consensus of 1000 most parsimonious trees, ⁴⁰⁹ after reinsertion of STR tips, is remarkably well–resolved (78% of nodes, Fig $\frac{4}{9}$) with polytomies concentrated in basilosaurid archaeocetes, Balaenopteroidea (including extant rorquals), squalodontid odontocetes, and the beaked whale genus *Mesoplodon*. Adding taxa to the taxonomy source tree allowed us to increase taxonomic coverage but, without ⁴¹³ additional data to place the new species, tended to lead to much less well resolved strict

CETACEAN METATREE AND DIVERSIFICATION 19

⁴¹⁴ consensus topologies. Specifically, the percentage of resolved nodes dropped to 56% in the ⁴¹⁵ GENUS tree (615 taxa, 14326 characters; Fig $\vert \phi \vert$) and to 29% for the ALL tree (746 taxa, $_{416}$ 14344 characters; Fig $\overline{4c}$).

 The lack of resolution in the ALL strict consensus metatree, in particular, poses problems for reliable inference of topology and branch lengths during time–tree inference. ⁴¹⁹ We therefore used Matrix Representation with Likelihood (MRL; Nguyen et al., 2012) to generate a more stable estimate of topology for this dataset. We first switched the codings of 50% of data columns selected at random, such that "0" became "1" and vice versa to avoid violating the assumptions of the symmetric Markov models employed in ⁴²³ phylogenetics software. We then used RAxML v. 8 (Stamatakis, 2014) to find the ⁴²⁴ maximum likelihood estimate of topology under the BINCAT model with rate heterogeneity disabled $(-V \text{ option})$. Taxa removed during safe taxonomic reduction were subsequently reinserted and the resulting tree was then used as a topology constraint for 427 BEAST analyses.

Fig. 4. Strict Consensus metatrees of cetaceans based on inclusion of a) 494 species–level OTUs from source trees, b) 615 species belonging to genus–level OTUs from source trees, and c) all 746 valid cetacean taxa recorded in the Paleobiology Database. Black edges represent those branches arising from bifurcating nodes. Red edges are those arising from polytomies either due to uncertainty in the MPT set or due to reinsertion of taxa that were removed prior to analysis during safe taxonomic reduction.

LLOYD AND SLATER

Time-tree Inference

 The availability of stage–level or finer stratigraphic data reduced the number of taxa from 494 to 487 for Bayesian estimation of topology and branch lengths for the ⁴³¹ EXCLUDE dataset. Divergence time estimates among extant clades in the MAP tree (Fig. ⁴³² 5) are broadly consistent with previously published estimates for cetaceans but the inclusion of extinct taxa yields novel insights into the timescale of whale evolution. The cetacean stem extends back to 51.3 Ma, with the divergence of the semi–aquatic archaeocete clade Pakicetidae (*Pakicetus*, *Ichthyolestes*, and *Nalacetus*) from all other ⁴³⁶ cetaceans. Fully aquatic cetaceans (the Pelagiceti of Uhen, 2008) originate at 41.7 Ma with ⁴³⁷ the divergence of a clade comprising the paraphyletic Basilosauridae and Neoceti. The time–scaled metatree emphasizes that many of the gaps along long internal branches of molecular time–trees should be filled with now–extinct radiations. For example, the long stem lineage leading to crown odontocetes that is implied by molecular phylogenies is filled in by the radiations of Xenorophidae, Waipatiidae, Patricetidae, and Squalodontidae. The former diversity of Physeteroidea and Platanistoidea is also apparent in the time–scaled tree, despite the low diversity of these clades in modern times (3 and 1 extant species, respectively).

 Bayesian estimation of branch lengths on the GENUS and ALL datasets resulted in larger time trees with more fossil taxa but yielded substantially older divergence times for ⁴⁴⁷ some crown clades than we found for the EXCLUDE dataset. To facilitate comparison of our results to divergence time estimates derived from node–dated trees, we extracted mean ages and their associated 95% HPD intervals for select crown clades and compared them to ⁴⁵⁰ those inferred by McGowen et al. (2019) using a genomic dataset. These estimates (Table $\overline{1}$ show that node age estimates are relatively consistent between the genomic tree and our EXCLUDE metatree, albeit with the metatree generating slightly younger node ages. Node ages for the GENUS and ALL datasets are, on average, a little older than those in the EXCLUDE tree and more similar to those of the genomic tree. Balaenidae and

CETACEAN METATREE AND DIVERSIFICATION 21

Fig. 5. Maximum *a posteriori* chronogram derived from simultaneous Bayesian inference of topology and branch lengths. The strict consensus metatree derived from analysis of species–level OTUs is used as a topology constraint with stratigraphic ages for extinct taxa and *Cytochrome B* sequence data for extant taxa used to help resolve polytomies. Shaded bars correspond to marine stages.

22 LLOYD AND SLATER

⁴⁵⁵ Delphinidae deviate substantially from this pattern, however, with mean age estimates

⁴⁵⁶ that are approximately 10 and 7 million years older, respectively, than the EXCLUDE

⁴⁵⁷ dataset and have 95% HPD intervals that do not overlap.

Table 1. Divergence time estimates (mean and 95% HPD intervals) for select crown clades from the genomic study of McGowen et al. (2019) and the three metatree analysis.

Clade	McGowan et al. (2019)	EXCLUDE	GENUS	ALL.
Neoceti	$36.7 (37.5 - 36.4)$	$36.8(38.4-35.2)$	$37.8(39.3-35.4)$	$40.3(42.0-38.3)$
Mysticeti	$25.7(26.7-25.2)$	$23.3(28.1-24.4)$	$26.8(28.4-24.5)$	$28.7(31.2-26.4)$
Balaenidae	$10.6(12.1-9.2)$	6.9 $(8.3-5.9)$	$17.2(18.4-15.5)$	$17.8(19.6-16.0)$
Balaenoperidae	$15.7(16.9 - 14.7)$	$13.0(16.2 - 9.7)$	$15.9(18.5-12.3)$	$20.5(22.4-18.4)$
Odontoceti	$34.1 (34.9 - 33.7)$	$28.0(26.7-29.5)$	$28.6(29.7-26.8)$	$31.9(33.5-30.2)$
Physteroidea	$22.4(24.1 - 20.6)$	$21.0(23.2 - 18.4)$	$23.1(24.5-21.2)$	$25.0(27.7-22.4)$
Delphinida	$25.1(26.1-24.2)$	$21.4(23.7-19.2)$	$22.9(25.1-20.3)$	$23.2(25.1-21.4)$
Delphinidae	$12.7(13.6-11.8)$	$8.7(10.6-6.7)$	$15.7(16.7-13.8)$	$17.4(19.7-15.4)$

⁴⁵⁸ *Inference of Diversification Dynamics*

 Similar to analyses based on extant cetaceans alone, we found that net diversification rates are relatively constant through time, but with a rapid increase in mean net diversification rates beginning at approximately 10 Ma for the EXCLUDE MAP chronogram. In contrast with inference from molecular phylogenies, this result arises not only from a moderate increase in speciation rates, but also from a precipitous decline in ⁴⁶⁴ extinction rates over the same time frame (Figs $\overline{6}$ b,c). These average rates are clearly emergent properties of more complex, clade-specific dynamics. The 95% credible shift set for the EXCLUDE MAP tree contained 483 distinct configurations, with $2 - 6$ shifts $\frac{467}{167}$ recovered most often (Table 2). No individual configuration occurred with any meaningful ⁴⁶⁸ frequency $(f = 0.055$ or less). However, plots of mean per-branch speciation, extinction, ⁴⁶⁹ and net diversification rates show that elevated net diversification rates in mesoplodont beaked whales, a result not previously identified in molecular phylogenies, result from ⁴⁷¹ depressed rates of extinction against a backdrop of already low rates of speciation, while rapid diversification rates in oceanic dolphins result from both elevated speciation and depressed extinction rates (Figs $7a-c$).

CETACEAN METATREE AND DIVERSIFICATION 23

Fig. 6. Diversification dynamics through time inferred from the EXCLUDE (a:c), GENUS (d:f), and ALL (g:i) datasets suggest very different dynamics through time. Note that Speciation and Extinction rates are plotted on the same scale as each other, and as in $(Rabosky|2014)$ figure 9D:E) for extant cetaceans.

Increases in mean net diversification rates towards the present day are more muted ⁴⁷⁵ in the GENUS chronogram (Figs $\frac{6}{1}d$ -f). Although we recovered similarly declining mean ⁴⁷⁶ extinction rates as for the EXCLUDE tree, we found no increase in mean speciation rates 477 and, in fact, recovered a slight decline over this time–frame (Figs $\overline{6d}$,e). The number of

24 LLOYD AND SLATER

N.Shifts	Exclude	Genus	All
0	0	${<}0.01$	0.46
1	${<}0.01$	0.51	0.23
$\overline{2}$	0.14	0.36	0.18
3	0.29	0.09	0.10
4	0.23	0.02	0.02
5	0.17	${<}0.01$	${<}0.01$
6	0.11	0	${<}0.01$
7	0.03	0	0
8	0.02	0	0
9	${<}0.01$	0	0
10	0	0	0
11	${<}0.01$	0	0

Table 2. Posterior probabilities for numbers of rate shifts (N. shifts) on the 3 MAP time–scaled metatrees.

 inferred shifts is much lower for the GENUS dataset (Table $\boxed{2}$), and only 83 possible ⁴⁷⁹ configurations are present in the 95% credible set. Mean per–branch rates (Figs $7d$ –f) show that the more muted increases in net diversification for mesoplodontid ziphiids and ocean dolphins arise from decreased extinction rates in these clades.

Rate variation is further dampened in the ALL analysis. Here, there is no increase ⁴⁸³ in mean net diversification rate and both mean speciation and extinction rates have ⁴⁸⁴ remained relatively low and constant, albeit with a very slight increase in speciation and ⁴⁸⁵ decline in extinction at approximately 10 Ma (Figs. $|6g-i|$). Although a configuration with ⁴⁸⁶ no shifts was the most frequently sampled (Table $|2|$), 154 alternative configurations are ⁴⁸⁷ present in the 95% credible set. Mean per–branch rates of speciation and extinction are ⁴⁸⁸ relatively homogeneous, but with very slight increases in speciation and decreases in ⁴⁸⁹ extinction rates, leading to slight increases in net diversification in delphinids (Figs. $7g$:i).

⁴⁹⁰ DISCUSSION

⁴⁹¹ The ability to infer comprehensively sampled phylogenies of extant higher–level ⁴⁹² clades has led to novel hypotheses regarding their macroevolutionary dynamics (Smith ⁴⁹³ et al., 2009; Smith and Brown, 2018; Jetz et al., 2012; Zanne et al., 2014; Cooney et al. $_{494}$ $[2017]$ Tonini et al., $[2016]$ Jetz and Pyron, $[2018]$ Rabosky et al., $[2018]$ Upham et al., $[2019]$; ⁴⁹⁵ Varga et al., 2019). However, even a limited amount of data from fossil taxa can overturn

CETACEAN METATREE AND DIVERSIFICATION 25

Fig. 7. Mean per–branch rates of speciaton, extinction, and net–diversification rates for the EXCLUDE (a:c), GENUS (d:f), and ALL (g:i) datasets. As in Figure $\overline{6}$, the top row is speciation rates, middle row is extinction rates, and bottom row is net diversification rate. The single asterix (*) denotes mesoplodont beaked whales, the double asterices (**) denote oceanic dolphins (Delphinidae). Note that the same scale is used for each plot to enable comparisons of absolute magnitudes of the underlying estimated rates.

⁴⁹⁶ well-supported hypotheses derived from analyses of extant taxa only (Finarelli and Flynn) $_{497}$ 2006; Albert et al., 2009; Slater et al., 2012; Betancur-R et al., 2015; Meseguer et al., 2014) ⁴⁹⁸ and it is likely that datasets consisting exclusively or primarily of fossil taxa are needed to

26 LLOYD AND SLATER

⁴⁹⁹ test fundamental macroevolutionary hypotheses. The most substantial barrier to ₅₀₀ implementing such tests has always been the difficulty in assembling robust, time–scaled ₅₀₁ phylogenies for higher–level clades that contain sufficient numbers of fossil taxa. Our ⁵⁰² well–resolved cetacean metatrees suggests that meta–analytic phylogenies can provide a ⁵⁰³ useful and compelling way of synthesizing studies of lower–level clades to produce ₅₀₄ higher–level phylogenetic hypotheses for extinct taxa. Moreover, these trees provide an ⁵⁰⁵ accessible way of addressing questions of macroevolutionary importance using fossil data ₅₀₆ and allow for the interrogation of results derived from phylogenies of extant taxa alone.

⁵⁰⁷ *Implications for Cetacean Diversification*

⁵⁰⁸ It has been recognized for some time that estimates of extinction rates derived from 509 molecular phylogenies may be problematic (Rabosky, 2010; Beaulieu and O'Meara, 2015). ₅₁₀ Empirical studies have found that diversification rates estimated from molecular $_{511}$ phylogenies may be congruent with inferences derived from paleontological data but often $_{512}$ differ in the underlying estimates of speciation and extinction rates over time (e.g, $\frac{1}{2015}$ Simpson et al., 2011; Cantalapiedra et al., 2015; Hagen et al., 2017; Law et al., 2017). The ⁵¹⁴ myriad ways in which speciation and extinction rates can vary to produce identical lineage ₅₁₅ through time plots for phylogenies of extant species was recently emphasized by Louca and ⁵¹⁶ Pennell (2020). One of the many implication of their work is that the dimensionality of ⁵¹⁷ model space (that is, the number of possible combinations of time–varying speciation and ⁵¹⁸ extinction rates) is too large to reliably identify the generating model when only extant ⁵¹⁹ species are sampled and that robust inference of speciation and extinction rates through ₅₂₀ time can only be achieved with densely sampled phylogenies that incorporate extinct and ⁵²¹ extant lineages.

⁵²² One of the most striking results to emerge from our diversification analyses is that ⁵²³ variation in extinction rates, rather than speciation rates, have played a dominant role in ⁵²⁴ shaping extant cetacean diversity. It is, of course, a mathematical necessity that rates of

CETACEAN METATREE AND DIVERSIFICATION 27

⁵²⁵ speciation must increase or rates of extinction decline in order for net diversification rates ₅₂₆ to increase. But, while many neontologists have (explicitly or implicitly) assumed a ₅₂₇ dominant role for elevated rates of speciation in driving diversification in exceptionally ⁵²⁸ species–rich clades as a response to increased ecological opportunity (for reviews, see $\frac{1}{200}$ Schluter, $\frac{2000}{\text{Glor}}$ Glor, $\frac{2010}{\text{Stroud}}$ and Losos, $\frac{2016}{\text{Martin}}$ and Richards, $\frac{2019}{\text{Glor}}$, ₅₃₀ paleontologists have tended to recognize a role for extinction rate variation in facilitating ⁵³¹ radiations over geologic time–scales (Jablonski et al., 1983; Van Valen, 1985; Labandeira $\frac{1}{2}$ and Sepkoski, 1993; Valentine, 1990). However, the difficulty of inferring extinction from ₅₃₃ molecular phylogenies means that the effects of extinction rate variation have received ⁵³⁴ little attention in phylogenetic contexts. Here, by incorporating fossil taxa in a ⁵³⁵ phylogenetic framework, we found that mesoplodont beaked whales emerge as a previously $_{536}$ unidentified rapid radiation. Despite accounting for 15 of 21 extant species Mead and $\frac{1}{257}$ Brownell Jr (1993), this radiation is not characterized by elevated speciation rates but, ₅₃₈ rather, by depressed extinction (Fig. 7b). Fossil evidence from diverse taxa has showed ₅₃₉ that clade–level origination and extinction rates tend to be positively correlated (Stanley) ₅₄₀ [1979], meaning that clades with a higher instantaneous probability of speciating tend to ⁵⁴¹ also have a higher long–term probability of going extinct (higher volatility: $\boxed{\text{Gilinsky}}$, 1994), 542 while clades with low extinction probabilities are more extinction resistant (Valentine). ⁵⁴³ [1990]. Recent work has found a strong link between ecological diversity and low volatility ₅₄₄ across living and extinct clades of marine animals (Knope et al., 2020), suggesting that low ⁵⁴⁵ extinction at the clade level may arise due to factors such as ecological flexibility. ⁵⁴⁶ Unfortunately, too little is currently known about mesoplodont ecology to derive ₅₄₇ reasonable hypotheses to explain their low extinction rates and macroevolutionary success. ⁵⁴⁸ Diversification studies based on extant cetacean phylogenies have consistently ⁵⁴⁹ identified the oceanic dolphins as a rapid radiation due to elevated speciation rates during

 $\frac{2014}{10}$. Although we still recover Delphindae as rapid radiation using a phylogeny of extant

 $\frac{1}{2550}$ the past 10 myr (McGowen et al., 2009; Steeman, 2010; Slater et al., 2010; Rabosky et al.

28 LLOYD AND SLATER

 552 and extinct cetaceans, we find support for strikingly different underlying dynamics. While ⁵⁵³ there is still evidence for increased speciation rates in Delphinidae (Figs $\overline{6a}$; $\overline{7a}$), their ⁵⁵⁴ elevated net diversification rates are predominantly driven by dramatically decreased $\frac{555}{255}$ extinction rates relative to other cetaceans (Figs $\overline{6}$ b; $\overline{7}$ b). One explanation for this finding ⁵⁵⁶ could be that dolphins are in the early phase of adaptive radiation within an unoccupied ⁵⁵⁷ adaptive zone, wherein speciation is rapid and extinction 0 due to a lack of competition ⁵⁵⁸ (Simpson, 1953; Valentine, 1980; Van Valen, 1985). However, Stanley (1990) has argued ⁵⁵⁹ that, because so few clades break the strong correlation between origination and extinction ⁵⁶⁰ rates, those that do ("Supertaxa") likely possess uniquely advantageous combinations of ⁵⁶¹ life history traits, such as low dispersal rates combined with large population sizes, ₅₆₂ compared with related clades. The precise nature of the relationships that arise between ⁵⁶³ traits and speciation / extinction dynamics are complex and mechanism dependent (see, $_{564}$ for example, Table 1 in Jablonski, $\vert 2008 \vert$ but it is notable that delphinids are social and ⁵⁶⁵ ecologically flexible, while their diversification has previously been linked to ⁵⁶⁶ Plio–Pleistocene changes in ocean currents that resulted in abrupt, localized, soft barriers $_{567}$ to gene flow (do Amaral et al., 2018). A greater understanding of the multivariate $_{568}$ structure of life history traits with Cetacea (e.g.,. Pianka et al., 2017) may reveal more ⁵⁶⁹ insights into how Delphinidae has managed to break the speciation – extinction correlation 570 with such dramatic effect.

⁵⁷¹ *Paleo–Problems and Future Directions*

⁵⁷² Any phylogenetic hypothesis is only as robust as the data from which it is inferred. ₅₇₃ Ultimately the onus is on the user to ensure that the data are of sufficient quality and $_{574}$ independence that the resulting tree(s) stand up to scrutiny (Bininda-Emonds et al. $\frac{2004}{ }$. By establishing a formalized set of rules for dealing with data re–use, recovery of ₅₇₆ multiple optimal trees, and the use of OTUs corresponding to different levels of the $\frac{577}{2016}$ taxonomic hierarchy, the metatree pipeline (Lloyd et al., 2016) provides an explicit

CETACEAN METATREE AND DIVERSIFICATION 29

 578 framework for ameliorating some of the criticisms and concerns leveled at earlier MRP $\frac{1}{579}$ supertrees (Springer and de Jong, 2001; Gatesy et al., 2002, 2004; Gatesy and Springer, $\frac{2004}{\text{Page}}$ $\boxed{\text{Page}}$, $\boxed{2004}$. This is not to say that there are no concerns or areas for future 581 improvement with our approach. ⁵⁸² MRP supertrees have been criticized on the basis that they can recover unique ⁵⁸³ clades that are not present in the profile of source trees (Wilkinson, 1995; ⁵⁸⁴ Bininda-Emonds, 2003; Gatesy et al., 2004). Few unusual clades emerge in our strict $\frac{5}{585}$ consensus metatrees, but we do recover a unique Llanocetidae (Fig $\overline{5}$), consisting of ⁵⁸⁶ *Llanocetus denticrenatus*, *Mystacodon selenensis*, *Niparajacetus palmidentis* and ZMT62 an ⁵⁸⁷ undescribed taxon from New Zealand (Fordyce, 1989). *Mystacodon*'s placement is not a ⁵⁸⁸ subject of concern; although the taxon was originally described as an earlier diverging 589 mysticete (Lambert et al., 2017; de Muizon et al., 2019) its placement within Llanocetidae 590 is in line with a number of recent studies (e.g., Fordyce and Marx, 2018 ; Marx et al., 2019 ; 591 Azucena Solis-Añorve and Gerardo González-Barba and René Hernández-Rivera, 2019). ⁵⁹² The other two taxa have not been recovered as llanocetids in published sources ₅₉₃ incorporated here, but their placements can be easily explained. ZMT62 features in a $\frac{1}{594}$ single study, that of Geisler et al. (2017), and is figured (their Fig. 4) as the sister lineage ⁵⁹⁵ to a clade consisting of Mammalodontidae + Aetiocetidae and ((*Llanocetus*, ⁵⁹⁶ (Eomysticetidae, crown group mysticetes)). Inspection of the supplementary methods of $\frac{1}{597}$ Geisler et al. (2017) reveals that this topology is derived from an analysis using implied ⁵⁹⁸ weights (Golobo↵, 1993), a procedure that has been shown to increase resolution at the $\frac{1}{299}$ expense of accuracy (Congreve and Lamsdell, 2016), and that the authors' own analyses ⁶⁰⁰ using equal weights yield a topology with ZMT62 as the sister taxon to *Llanocetus*, as we ⁶⁰¹ also found. The placement of *Niparajacetus* can be equally well explained. The original ⁶⁰² description of this taxon included a bootstrap consenus tree rooted sequentially by the ⁶⁰³ archaeocete *Zygorhiza* and a selection of odontocetes, in which *Niparajacetus* is recovered ⁶⁰⁴ in a polytomy with *Coronodon havensteini*, Mammalodontidae, Aetiocetidae,

30 LLOYD AND SLATER

⁶⁰⁵ Eomysticetidae and crown group mysticetes, and with Llanocetidae as sister to this clade ⁶⁰⁶ (Azucena Solis-Añorve and Gerardo González-Barba and René Hernández-Rivera, 2019) ⁶⁰⁷ their Fig.7). Our reanalysis of the character matrix yields an identical topology with one ⁶⁰⁸ exception: the odontocete outgroups are nested within mysticetes. Indeed, rerooting the ⁶⁰⁹ tree on the odontocetes produces a topology in which *Niparajacetus* falls within a ₆₁₀ monophyletic Llanocetidae, consistent with our metatree results. The recovery of this ⁶¹¹ previously unreported clade in the metatree can therefore be considered to result from ⁶¹² careful scrutiny of the input data, rather than a compromise between conflicting ⁶¹³ relationships in figured topologies that might emerge from a traditional MRP supertree. ⁶¹⁴ It is well understood that failing to account for unsampled taxa can bias inference ⁶¹⁵ of diversification dynamics based on molecular phylogenies (Pybus and Harvey, 2000; ⁶¹⁶ FitzJohn et al. 2009; Höhna et al. 2011). To overcome this issue, some authors have used ⁶¹⁷ random birth–death resolutions, combined with taxonomic constraints, to integrate over all ϵ_{18} possible placements of unsampled taxa (Kuhn et al., 2011). We used a similar procedure ₆₁₉ here to include unsampled fossil species by using the Paleobiology Database's taxonomy as ⁶²⁰ a down–weighted constraint during metatree inference. There are reasons to be concerned ϵ_{621} that this procedure may introduce a substantial source of error when inferring the ⁶²² placement of unsampled species. Although cetaceans possess one of the most well–curated ⁶²³ set of records in the database (e.g., Uhen and Pyenson, 2007), a number of records of ⁶²⁴ uncertain or doubtful status exist that have dramatic impacts on downstream analyses. ⁶²⁵ For example, the Paleobiology Database records the taxon *Balaena dubusi* from the middle 626 Miocene of Belgium (Louwye et al., $\boxed{2010}$), in turn implying a minimum age of 15 Ma for ⁶²⁷ the divergence of the sole extant member of the genus *Balaena*, the bowhead *B. mysticetus* ⁶²⁸ from the right whales *Eubalaena*. In our GENUS and ALL analyses, inclusion of this taxon ⁶²⁹ contributes to an increase in the mean age of crown group balaenids from 8.6 Ma in the 630 EXCLUDE analysis to ~ 18 Ma (Table 1). *B. dubusi* was described by Van Beneden $\frac{1872}{ }$ from a single vertebral column and Steeman (2010) has discussed the many issues

CETACEAN METATREE AND DIVERSIFICATION 31

 surrounding taxa described from the Antwerp faunas, considering many as *nomina dubia*. While the status of *B. dubusi* awaits formal re–assessment, it seems plausible that its assignment to the extant genus *Balaena* is in error. It is likely that similar taxonomic issues influence topology, branch lengths, and subsequent macroevolutionary inference in $\frac{656}{100}$ other parts of the GENUS and ALL trees (Figures $\boxed{67}$). Notably, the inference of older ⁶³⁷ divergence times for Delphinidae in these "more complete" trees than for the EXCLUDE analysis may provide an explanation for the loss of signal for increased diversification rates during the past 10 Ma. It should be noted that the birth–death polytomy resolution is not without issue in molecular phylogenetics either, resulting in elevated relative extinction ⁶⁴¹ rates (μ / λ) , increased "tippy–ness" and more balanced trees than are found in empirical ϵ_{642} distributions of trees (Kuhn et al., 2011). The appropriate placement of unsampled extant taxa similarly depends on the accuracy of taxonomic constraints used. However, the fact that fossil taxa are non–contemporaneous means that they potentially exert more influence ⁶⁴⁵ on divergence time estimates (Soul and Friedman, 2015). The inclusion of unsampled fossil taxa in meta–analytic phylogenies should always be carefully considered and justified and, ₆₄₇ at least for cetaceans, we recommend that the EXCLUDE trees should be the preferred hypotheses used in downstream analyses. More generally, these results emphasize that uncritical use of paleontological databases in phylogenetic and macroevolutionary research has the potential to produce flawed inferences and every taxon should, ideally, be vetted against the literature to corroborate its status.

 A potential criticism of the metatree approach, as applied here, is that the resulting posterior distribution of time–scaled topologies does not explicitly incorporate topological uncertainty derived from the sample of input trees. Previous paleo–supertree studies have attempted to accommodate topological and divergence time uncertainty by first obtaining a subsample of most parsimonius trees and then using paleontological approaches to ϵ_{657} generate multiple sets of branch lengths per tree (e.g., Clarke et al., 2016; Lloyd et al. ⁶⁵⁸ 2016). Although some phylogenetic uncertainty is propagated through our BEAST

32 LLOYD AND SLATER

₆₅₉ analyses due to the use of the strict consensus metatree as a topological constraint, many ⁶⁶⁰ nodes were fixed (for the EXCLUDE tree in particular) due to the well–resolved nature of ⁶⁶¹ the resulting estimate. Molecular phylogeneticists have employed a divide–and–conquer ϵ_{62} approach called "backbone–and–patch" (Jetz et al., 2012; Tonini et al., 2016; Jetz and ⁶⁶³ Pyron, 2018; Upham et al., 2019), wherein topologies for densely sampled monophyletic ⁶⁶⁴ subclades are pasted onto time–scaled higher–level topologies, to obtain a pseudo–posterior ⁶⁶⁵ distribution of time–scaled topologies that can be used in comparative analyses. ⁶⁶⁶ Logistically, such an approach cannot work in paleontological contexts because it would ₆₆₇ require assumptions of monophyly, which may vary between studies, and appropriate ⁶⁶⁸ character taxon matrices for both the backbone and patch clades, which are also lacking in ₆₆₉ most cases. There is some cause to be optimistic that solutions can be found. Akanni et al. $\frac{1}{670}$ (2015) used Markov chain Monte Carlo to sample the posterior distribution of rooted ϵ_{671} supertree topologies under the exponential error model of Steel and Rodrigo (2008) and ϵ_{672} found that the approach performed well in terms of topology inference, clade support, and ϵ_{673} computation time. Efficient approaches for generating time–scaled trees of extinct taxa ⁶⁷⁴ that also appropriately accommodate topological and branch length uncertainty will ⁶⁷⁵ require similar Bayesian treatments.

⁶⁷⁶ *Conclusions*

⁶⁷⁷ Metatrees have some key benefits over traditional MRP supertrees that render them ₆₇₈ ideal for comparative paleobiologists. Complete sampling of taxa from the source data is $\frac{679}{679}$ always achieved, whereas a supertree can suffer when figured source trees collapse ⁶⁸⁰ non-focal clades (loss of resolution) or key outgroups are excluded (loss of overlap). ⁶⁸¹ Additionally, a preferred method of inference (e.g., parsimony, maximum likelihood, or ⁶⁸² Bayesian inference) can be applied when re-analyzing the source data and a preferred ⁶⁸³ output, such as a complete set of most parsimonious trees, maximum likelihood tree or sample from a Bayesian posterior distribution, can be used for metatree inference. This

CETACEAN METATREE AND DIVERSIFICATION 33

⁶⁸⁵ latter step enables a more realistic inclusion of phylogenetic uncertainty in the resulting ⁶⁸⁶ composite phylogeny than can be accomplished through the use of published consensus $\frac{687}{100}$ trees (see Bell and Lloyd, 2015, their Figure 4). In other words, metatrees take more ⁶⁸⁸ information forward from the source data to the synthetic hypothesis than traditional 689 MRP supertrees do, and this tends to lead to better resolved topologies (Lloyd et al. $\frac{2016}{90}$. Most importantly, and as our comparative analyses demonstrate, the ability to ⁶⁹¹ generate synthetic phylogenies containing large numbers of extinct taxa allows for the ₆₉₂ critical assessment of macroevolutionary hypotheses derived from extant taxa alone. Here, ⁶⁹³ we showed that the apparent pulse of increased cetacean diversification during the past 10 ⁶⁹⁴ myr is driven more by reduced extinction rates than by increased speciation, a pattern ⁶⁹⁵ long established in the fossil record but almost undetectable using extant species alone. ⁶⁹⁶ While a supermatrix, with character states coded for every extinct species, remains a $\frac{697}{697}$ compelling standard for morphologists to strive for (Gatesy and Springer, 2004), supertrees ⁶⁹⁸ realistically provide the most direct and accessible route for generating large phylogenies ϵ_{699} containing extinct taxa which, as simulations suggest (Slater et al., 2012; Louca and ⁷⁰⁰ Pennell, 2020) and our results show, are essential for obtaining accurate parameter ⁷⁰¹ estimates and model inference from macroevolutionary and macroecological analyses.

702 ACKNOWLEDGEMENTS

 We extend our sincere gratitude to Mark D. Uhen for his dedicated entry of cetacean fossil occurrences into the Paleobiology Database. Michael McGowan provided his molecular alignment and discussion of divergence times and the taxonomy of fossil τ_{06} cetaceans. Jon Hill wrote parallelization code for TNT. David Černý, Natalie Cooper, David Jablonski, Felix Marx, Rossy Natale, Mark Uhen, and Anna Wisniewski provided helpful comments and criticisms on early drafts of the manuscript. GTL was supported, in part, by a Researcher Mobility Award from the University of Leeds.

REFERENCES

References

Akanni, W. A., M. Wilkinson, C. J. Creevey, P. G. Foster, and D. Pisani. 2015.

 $_{712}$ Implementing and testing bayesian and maximum-likelihood supertree methods in phylogenetics. Royal Society open science 2:140436.

- Albert, J. S., D. M. Johnson, and J. H. Knouft. 2009. Fossils provide better estimates of
- ancestral body size than do extant taxa in fishes. Acta Zoologica 90:357–384.

Azucena Solis-A˜norve and Gerardo Gonz´alez-Barba and Ren´e Hern´andez-Rivera. 2019.

Description of a new toothed mysticete from the Late Oligocene of San Juan de La

Costa, B.C.S., M´exico. Journal of South American Earth Sciences 89:337 – 346.

- Bajpai, S. and P. D. Gingerich. 1998. A new Eocene archaeocete (Mammalia, Cetacea)
- from India and the time of origin of whales. Proceedings of the National Academy of Sciences 95:15464–15468.
- Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic $\frac{723}{723}$ inference, and the desirability of combining gene trees. Taxon Pages 3–10.
- Baum, B. R. and M. A. Ragan. 2004. The mrp method. Pages 17–34 *in* Phylogenetic supertrees. Springer.
- Beaulieu, J. M. and B. C. O'Meara. 2015. Extinction can be estimated from moderately sized molecular phylogenies. Evolution 69:1036–1043.
- Beaulieu, J. M. and B. C. O'Meara. 2018. Can we build it? Yes we can, but should we use ₇₂₉ it? Assessing the quality and value of a very large phylogeny of campanulid angiosperms. American Journal of Botany 105:417–432.
- Beaulieu, J. M. and B. C. O'Meara. 2019. Diversity and skepticism are vital for
- comparative biology: a response to Donoghue and Edwards (2019). American Journal of
- Botany 106:613–617.

REFERENCES 35

Bininda-Emonds, ed.). Springer.

- Bininda-Emonds, O. R. P. 2003. Novel versus unsupported clades: Assessing the qualitative support for clades in mrp supertrees. Systematic Biology 52:839–848.
- Bininda-Emonds, O. R. P., J. L. Gittleman, and M. A. Steel. 2002. The (super)tree of life:

⁷⁴⁷ Procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.

- Boersma, A. T., M. R. McCurry, and N. D. Pyenson. 2017. A new fossil dolphin *Dilophodelphis fordycei* provides insight into the evolution of supraorbital crests in Platanistoidea (Mammalia, Cetacea). Royal Society Open Science 4:170022.
- Bouckaert, R., J. Heled, D. K¨uhnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard,
- A. Rambaut, and A. J. Drummond. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537.
- Cantalapiedra, J. L., M. Hern´andez Fern´andez, B. Azanza, and J. Morales. 2015.
- Congruent phylogenetic and fossil signatures of mammalian diversification dynamics
- ⁷⁵⁷ driven by Tertiary abiotic change. Evolution 69:2941–2953.

REFERENCES

- do Amaral, K. B., A. R. Amaral, R. Ewan Fordyce, and I. B. Moreno. 2018. Historical
- Biogeography of Delphininae Dolphins and Related Taxa (Artiodactyla: Delphinidae).
- Journal of Mammalian Evolution 25:241–259.
- Donoghue, M. J. and E. J. Edwards. 2019. Model clades are vital for comparative biology, and ascertainment bias is not a problem in practice: a response to Beaulieu and O'Meara (2018). American Journal of Botany 106:327–330.
- Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125:pp. 1–15.

REFERENCES 37

- Finarelli, J. A. and J. J. Flynn. 2006. Ancestral state reconstruction of body size in the $_{784}$ Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Systematic Biology 55:301–313.
- FitzJohn, R. G., W. P. Maddison, and S. P. Otto. 2009. Estimating trait-dependent
- speciation and extinction rates from incompletely resolved phylogenies. Systematic

Biology 58:595–611.

- $_{789}$ Fleischauer, M. and S. Böcker. 2017. Bad clade deletion supertrees: A fast and accurate supertree algorithm. Molecular Biology and Evolution 34:2408–2421.
- Foote, M. 1996. Models of morphological diversification. Pages 62–88 *in* Evolutionary
- Paleobiology (J. D., D. Erwin, and J. Lipps, eds.). University of Chicago Press.
- Fordyce, R. E. 1989. Problematic Early Oligocene toothed whale (Cetacea,? Mysticeti)
- from Waikari, North Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 32:395–400.
- Fordyce, R. E. and F. G. Marx. 2018. Gigantism precedes filter feeding in baleen whale $_{797}$ evolution. Current Biology $28:1670 - 1676.$ e2.
- Gatesy, J., R. H. Baker, and C. Hayashi. 2004. Inconsistencies in arguments for the supertree approach: Supermatrices versus supertrees of Crocodylia. Systematic Biology 53:342–355.
- Gatesy, J., C. Matthee, R. DeSalle, and C. Hayashi. 2002. Resolution of a
- supertree/supermatrix paradox. Systematic Biology 51:652–664.
- ⁸⁰³ Gatesy, J. and M. S. Springer. 2004. A critique of matrix representation with parsimony supertrees. Pages 369–388 *in* Phylogenetic Supertrees. Springer.
- Gavryushkina, A., T. A. Heath, D. T. Ksepka, T. Stadler, D. Welch, and A. J. Drummond.
- 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins.
- Systematic Biology 66:57–73.

38 REFERENCES

- ⁸⁰⁸ Gavryushkina, A., D. Welch, T. Stadler, and A. J. Drummond. 2014. Bayesian inference of ⁸⁰⁹ sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput Biol 810 10:e1003919.
- ⁸¹¹ Geisler, J. H., R. W. Boessenecker, M. Brown, and B. L. Beatty. 2017. The origin of filter $\frac{1}{812}$ feeding in whales. Current Biology 27:2036 – 2042.e2.
- ⁸¹³ Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction $\frac{1}{814}$ intensity. Paleobiology 20:445–458.
- ⁸¹⁵ Glor, R. E. 2010. Phylogenetic insights on adaptive radiation. Annual Review of Ecology,
- 816 Evolution, and Systematics 41:251–270.
- 817 Godfrey, S. J., L. G. Barnes, and O. Lambert. 2017. The Early Miocene Odontocete ⁸¹⁸ *Araeodelphis natator*Kellogg, 1957 (Cetacea; Platanistidae), from the Calvert Formation 819 of Maryland, U.S.A. Journal of Vertebrate Paleontology 37.
- 820 Goloboff, P. A. 1993. Estimating character weights during tree search. Cladistics 9:83–91.
- $\frac{1}{821}$ Goloboff, P. A., J. S. Farris, and K. C. Nixon. 2008. TNT, a free program for phylogenetic ⁸²² analysis. Cladistics 24:774–786.
- ⁸²³ Hagen, O., T. Andermann, T. B. Quental, A. Antonelli, and D. Silvestro. 2017. Estimating 824 Age-Dependent Extinction: Contrasting Evidence from Fossils and Phylogenies. 825 Systematic Biology 67:458-474.
- ⁸²⁶ Harmon, L. J., J. B. Losos, T. Jonathan Davies, R. G. Gillespie, J. L. Gittleman,
- ⁸²⁷ W. Bryan Jennings, K. H. Kozak, M. A. McPeek, F. Moreno-Roark, T. J. Near,
- ⁸²⁸ A. Purvis, R. E. Ricklefs, D. Schluter, J. A. Schulte II, O. Seehausen, B. L. Sidlauskas,
- 829 O. Torres-Carvajal, J. T. Weir, and A. Ø. Mooers. 2010. Early bursts of body size and ⁸³⁰ shape evolution are rare in comparative data. Evolution 64:2385–2396.
- 831 Hartman, S., M. Mortimer, W. R. Wahl, D. R. Lomax, J. Lippincott, and D. M. Lovelace.

REFERENCES 39

- ⁸³² 2019. A new paravian dinosaur from the Late Jurassic of North America supports a late 833 acquisition of avian flight. PeerJ 7:e7247.
- ⁸³⁴ Harvey, P. H. and M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology 835 vol. 239. Oxford University Press Oxford.
- ⁸³⁶ Heath, T. A., J. P. Huelsenbeck, and T. Stadler. 2014. The fossilized birth–death process ⁸³⁷ for coherent calibration of divergence-time estimates. Proceedings of the National 838 Academy of Sciences 111:E2957–E2966.
- 839 Höhna, S., T. Stadler, F. Ronquist, and T. Britton. 2011. Inferring speciation and 840 extinction rates under different sampling schemes. Molecular Biology and Evolution 841 28:2577-2589.
- ⁸⁴² Humphreys, A. and T. Barraclough. 2014. The evolutionary reality of higher taxa in 843 mammals. Proceedings of the Royal Society B-Biological Sciences 281.
- 844 Hunt, G. and G. Slater. 2016. Integrating paleontological and phylogenetic approaches to ⁸⁴⁵ macroevolution. Annual Review of Ecology, Evolution, and Systematics 47:189–213.
- ⁸⁴⁶ Jablonski, D. 2008. Species selection: Theory and data. Annual Review of Ecology, ⁸⁴⁷ Evolution, and Systematics 39:501–524.
- 848 Jablonski, D., J. J. Sepkoski, D. J. Bottjer, and P. M. Sheenan. 1983. Onshore-offshore ⁸⁴⁹ patterns in the evolution of Phanerozoic shelf communities. Science 222:1123–1125.
- ⁸⁵⁰ Jetz, W. and R. A. Pyron. 2018. The interplay of past diversification and evolutionary $\frac{1}{851}$ isolation with present imperilment across the amphibian tree of life. Nature Ecology & 852 Evolution 2:850–858.
- ⁸⁵³ Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global $\frac{1}{854}$ diversity of birds in space and time. Nature 491:444 EP –.

40 REFERENCES

- ⁸⁵⁵ Kettleborough, G., J. Dicks, I. N. Roberts, and K. T. Huber. 2015. Reconstructing
- ⁸⁵⁶ (Super)Trees from Data Sets with Missing Distances: Not All Is Lost. Molecular Biology $\frac{857}{857}$ and Evolution 32:1628–1642.
- 858 Knope, M. L., A. M. Bush, L. O. Frishkoff, N. A. Heim, and J. L. Payne. 2020. Ecologically ⁸⁵⁹ diverse clades dominate the oceans via extinction resistance. Science 367:1035–1038.
- ⁸⁶⁰ Kuhn, T. S., A. Ø. Mooers, and G. H. Thomas. 2011. A simple polytomy resolver for dated ⁸⁶¹ phylogenies. Methods in Ecology and Evolution 2:427–436.
- ⁸⁶² Labandeira, C. and J. Sepkoski. 1993. Insect diversity in the fossil record. Science ⁸⁶³ 261:310–315.
- ⁸⁶⁴ Lambert, O., G. Bianucci, and M. Urbina. 2014. *Huaridelphis raimondii*, a new early ⁸⁶⁵ Miocene Squalodelphinidae (Cetacea, Odontoceti) from the Chilcatay Formation, Peru. ⁸⁶⁶ Journal of Vertebrate Paleontology 34:987–1004.
- ⁸⁶⁷ Lambert, O., M. Martínez-Cáceres, G. Bianucci, C. D. Celma], R. Salas-Gismondi,

⁸⁶⁸ E. Steurbaut, M. Urbina, and C. [de Muizon]. 2017. Earliest mysticete from the Late 869 Eocene of Peru sheds new light on the origin of baleen whales. Current Biology 27:1535 $\frac{1541}{2}$.

- ϵ_{871} Law, C. J., G. J. Slater, and R. S. Mehta. 2017. Lineage diversity and size disparity in ⁸⁷² Musteloidea: Testing patterns of adaptive radiation using molecular and fossil-based ⁸⁷³ methods. Systematic Biology 67:127–144.
- ⁸⁷⁴ Levasseur, C. and F.-J. Lapointe. 2006. Total evidence, average consensus and matrix 875 representation with parsimony: What a difference distances make. Evolutionary 876 bioinformatics online 2:1.
- $\frac{1}{877}$ Lin, H. T., J. G. Burleigh, and O. Eulenstein. 2009. Triplet supertree heuristics for the tree 878 of life. BMC Bioinformatics 10:S8.

REFERENCES 41

- ⁸⁷⁹ Liow, L. H., T. B. Quental, and C. R. Marshall. 2010. When Can Decreasing
- ⁸⁸⁰ Diversification Rates Be Detected with Molecular Phylogenies and the Fossil Record?
- 881 Systematic Biology 59:646–659.
- ⁸⁸² Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete
- ⁸⁸³ character-taxon matrices: implementation, challenges, progress, and future directions.
- 884 Biological Journal of the Linnean Society 118:131–151.
- ⁸⁸⁵ Lloyd, G. T., D. W. Bapst, M. Friedman, and K. E. Davis. 2016. Probabilistic divergence
- ⁸⁸⁶ time estimation without branch lengths: dating the origins of dinosaurs, avian flight and 887 crown birds. Biology Letters 12:20160609.
- ⁸⁸⁸ Lloyd, G. T., K. E. Davis, D. Pisani, J. E. Tarver, M. Ruta, M. Sakamoto, D. W. E. Hone,
- 889 R. Jennings, and M. J. Benton. 2008. Dinosaurs and the Cretaceous terrestrial ⁸⁹⁰ revolution. Proceedings of the Royal Society B 275:2483–2490.
- ⁸⁹¹ Losos, J. B. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of ⁸⁹² Anoles. University of California Press, Berkeley.
- ⁸⁹³ Louca, S. and M. W. Pennell. 2020. Extant timetrees are consistent with a myriad of ⁸⁹⁴ diversification histories. Nature 580:502–505.
- ⁸⁹⁵ Louwye, S., R. Marquet, M. Bosselaers, and O. Lambert. 2010. Stratigraphy of an ⁸⁹⁶ early–middle Miocene sequence near Antwerp in northern Belgium (southern north sea ⁸⁹⁷ basin). Geologica Belgica 13:269–284.
- ⁸⁹⁸ Marshall, C. R. 2017. Five palaeobiological laws needed to understand the evolution of the $\frac{1}{899}$ living biota. Nature Ecology & Evolution 1:0165.
- ⁹⁰⁰ Martin, C. H. and E. J. Richards. 2019. The paradox behind the pattern of rapid adaptive
- ⁹⁰¹ radiation: How can the speciation process sustain itself through an early burst? Annual
- ⁹⁰² Review of Ecology, Evolution, and Systematics 50:569–593.

REFERENCES

924 Miller, M., W. Pfieffer, and T. Schwartz. 2010. Creating the CIPRES science gateway for $\frac{925}{25}$ inference of large phylogenetic trees. Pages $1-8$ *in* Proceedings of the the gateway

computing environments workshop (GCE), 14 Nov. 2010, New Orleans, LA.

REFERENCES 43

- ⁹²⁷ Mitchell, J. S., R. S. Etienne, and D. L. Rabosky. 2018. Inferring Diversification Rate $\frac{928}{928}$ Variation From Phylogenies With Fossils. Systematic Biology 68:1–18.
- ⁹²⁹ Mo, J.-y., X. Xu, and S. E. Evans. 2012. A large predatory lizard (Platynota, Squamata)
- ₉₃₀ from the Late Cretaceous of South China. Journal of Systematic Palaeontology 931 10:333-339.
- 932 Morlon, H., T. L. Parsons, and J. B. Plotkin. 2011. Reconciling molecular phylogenies with ₉₃₃ the fossil record. Proceedings of the National Academy of Sciences 108:16327.
- 934 Nguyen, N., S. Mirarab, and T. Warnow. 2012. MRL and SuperFine+MRL: new supertree 935 methods. Algorithms for Molecular Biology 7:3.
- ⁹³⁶ O'Leary, M. A. and S. Kaufman. 2011. Morphobank: phylophenomics in the 'cloud'. 937 Cladistics 27:1-9.
- ⁹³⁸ O'Meara, B. C., C. An´e, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for ⁹³⁹ different rates of continuous trait evolution using likelihood. Evolution 60:922–933.
- ⁹⁴⁰ Page, R. D. 2004. Taxonomy, supertrees, and the tree of life. Pages 247–265 *in* 941 Phylogenetic Supertrees. Springer.
- ⁹⁴² Peters, S. E. and M. McClennen. 2016. The Paleobiology Database application 943 programming interface. Paleobiology 42:1–7.
- ⁹⁴⁴ Pianka, E. R., L. J. Vitt, N. Pelegrin, D. B. Fitzgerald, and K. O. Winemiller. 2017.
- ⁹⁴⁵ Toward a periodic table of niches, or exploring the lizard niche hypervolume. The 946 American Naturalist 190:601–616.
- ⁹⁴⁷ Pisani, D. and M. Wilkinson. 2002. Matrix representation with parsimony, taxonomic 948 congruence, and total evidence 51:151–155.
- ⁹⁴⁹ Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence Diagnosis and
- 950 Output Analysis for MCMC. R News 6:7-11.

REFERENCES

- Pybus, O. G. and P. H. Harvey. 2000. Testing macro–evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London. Series B: Biological 953 Sciences 267:2267-2272.
- Quental, T. B. and C. R. Marshall. 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology & Evolution $25:434-441$.
- R Development Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria ISBN $_{958}$ 3-900051-07-0.
- Rabosky, D. L. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816–1824.
- Rabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLOS ONE 9:1–15.
- Rabosky, D. L., J. Chang, P. O. Title, P. F. Cowman, L. Sallan, M. Friedman,
- K. Kaschner, C. Garilao, T. J. Near, M. Coll, and M. E. Alfaro. 2018. An inverse
- latitudinal gradient in speciation rate for marine fishes. Nature 559:392–395.
- Rabosky, D. L. and E. E. Goldberg. 2015. Model Inadequacy and Mistaken Inferences of 967 Trait-Dependent Speciation. Systematic Biology 64:340–355.
- Rabosky, D. L., M. Grundler, C. Anderson, P. Title, J. J. Shi, J. W. Brown, H. Huang,
- and J. G. Larson. 2014. BAMM tools: an R package for the analysis of evolutionary
- dynamics on phylogenetic trees. Methods in Ecology and Evolution 5:701–707.
- Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees.
- ⁹⁷² Molecular phylogenetics and evolution 1:53–58.
- Ranwez, V., A. Criscuolo, and E. J. Douzery. 2010. SuperTriplets: a triplet-based supertree
- 974 approach to phylogenomics. Bioinformatics 26:i115–i123.

REFERENCES 45

- ⁹⁷⁵ Raup, D. M. 1994. The role of extinction in evolution. Proceedings of the National 976 Academy of Sciences 91:6758-6763.
- $_{977}$ Ree, R. H. and S. A. Smith. 2008. Maximum likelihood inference of geographic range
- ⁹⁷⁸ evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57:4–14.
- 979 Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna,
- 980 B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient
- ⁹⁸¹ Bayesian phylogenetic inference and model choice across a large model space. Systematic

982 biology 61:539–542.

- ⁹⁸³ Sanderson, M. J. and A. C. Driskell. 2003. The challenge of constructing large phylogenetic ⁹⁸⁴ trees. Trends in Plant Science 8:374–379.
- ⁹⁸⁵ Sanderson, M. J., A. Purvis, and C. Henze. 1998. Phylogenetic supertrees: Assembling the $\frac{1}{986}$ trees of life. Trends in Ecology Evolution 13:105 – 109.
- 987 Schluter, D. 2000. The Ecology of Adaptive Radiation. Oxford University Press.
- ⁹⁸⁸ Semple, C., P. Daniel, W. Hordijk, R. D. Page, and M. Steel. 2004. Supertree algorithms ⁹⁸⁹ for ancestral divergence dates and nested taxa. Bioinformatics 20:2355–2360.
- 990 Simpson, C., W. Kiessling, H. Mewis, R. C. Baron-Szabo, and J. Müller. 2011.
- ⁹⁹¹ Evolutionary diversification of reef corals: A comparison of the molecular and fossil 992 records. Evolution 65:3274-3284.
- 993 Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press.
- ⁹⁹⁴ Simpson, G. G. 1953. Major Features of Evolution. Columbia University Press.
- ⁹⁹⁵ Slater, G. J. and A. R. Friscia. 2019. Hierarchy in adaptive radiation: A case study using
- ₉₉₆ the Carnivora (Mammalia). Evolution 73:524–539.

REFERENCES

- Slater, G. J., J. A. Goldbogen, and N. D. Pyenson. 2017. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proceedings of the Royal Society of London B: Biological Sciences 284.
- Slater, G. J., L. J. Harmon, and M. E. Alfaro. 2012. Integrating fossils with molecular
- phylogenies improves inference of trait evolution. Evolution 66:3931–3944.
- Slater, G. J., S. A. Price, F. Santini, and M. E. Alfaro. 2010. Diversity versus disparity and the radiation of modern cetaceans. Proceedings of the Royal Society B-Biological 1004 Sciences 277:3097-3104.
- Smith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2009. Mega-phylogeny approach for
- comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9:37.
- Smith, S. A. and J. W. Brown. 2018. Constructing a broadly inclusive seed plant ¹⁰⁰⁹ phylogeny. American Journal of Botany 105:302–314.
- Smith, S. A., J. W. Brown, and J. F. Walker. 2018. So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLOS ONE 13:1–18.
- Soul, L. C. and M. Friedman. 2015. Taxonomy and phylogeny can yield comparable results in comparative paleontological analyses. Systematic Biology 64:608–620.
- Springer, M. S. and W. W. de Jong. 2001. Which mammalian supertree to bark up? 1016 Science 291:1709-1711.
- Stamatakis, A. 2014. Raxml version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
- Stanley, S. M. 1979. Macroevolution, pattern and process. Johns Hopkins University Press.

REFERENCES 47

 Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pages 103–127 *in* Causes of evolution: a Paleontological Perspective (R. Ross and W. Allmon, eds.). University of Chicago Press,

Chicago.

- Steel, M. and A. Rodrigo. 2008. Maximum likelihood supertrees. Systematic biology $57:243-250$.
- Steeman, M. E. 2010. The extinct baleen whale fauna from the Miocene-Pliocene of Belgium and the diagnostic cetacean ear bones. Journal of Systematic Palaeontology 1028 8:63-80.
- Steeman, M. E., M. B. Hebsgaard, R. E. Fordyce, S. Y. W. Ho, D. L. Rabosky, R. Nielsen, C. Rahbek, H. Glenner, M. V. Sørensen, and E. Willerslev. 2009. Radiation of Extant Cetaceans Driven by Restructuring of the Oceans. Systematic Biology 58:573–585.
- Stroud, J. T. and J. B. Losos. 2016. Ecological opportunity and adaptive radiation. Annual Review of Ecology, Evolution, and Systematics 47:507–532.
- Swenson, M. S., R. Suri, C. R. Linder, and T. Warnow. 2012. Superfine: Fast and accurate supertree estimation. Systematic Biology 61:214–227.
- Tonini, J. F. R., K. H. Beard, R. B. Ferreira, W. Jetz, and R. A. Pyron. 2016.
- Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status.
- Biological Conservation 204:23 31.
- Uhen, M. D. 2008. New protocetid whales from alabama and mississippi, and a new cetacean clade, Pelagiceti. Journal of Vertebrate Paleontology 28:589–593.
- Uhen, M. D. and N. D. Pyenson. 2007. Diversity estimates, biases, and historiographic
- ₁₀₄₂ effects: resolving cetacean diversity in the tertiary. Palaeontologia Electronica
- $10:11A:22p.$

REFERENCES

- Upham, N. S., J. A. Esselstyn, and W. Jetz. 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biology $17:1-44.$
- Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories.
- Paleobiology 6:444–450.
- Valentine, J. W. 1990. The fossil record: a sampler of life's diversity. Phil. Trans. Roy. Soc. 1050 Lond. B 330:261-268.
- Van Beneden, P. J. 1872. Les Baleines fossiles d'Anvers. Bulletins de L'Academie Royale des Sciences, des Lettres et des Beaux-arts 34:6–23.
- Van Valen, L. 1971. Adaptive zones and the orders of mammals. Evolution 25:420–428.
- Van Valen, L. M. 1985. A theory of origination and extinction. Evolutionary Theory 7:133–142.
- 1056 Varga, T., K. Krizsán, C. Földi, B. Dima, M. Sánchez-García, S. Sánchez-Ramírez, G. J.
- 1057 Szöllősi, J. G. Szarkándi, V. Papp, L. Albert, W. Andreopoulos, C. Angelini, V. Antonín,
- K. W. Barry, N. L. Bougher, P. Buchanan, B. Buyck, V. Bense, P. Catcheside,
- M. Chovatia, J. Cooper, W. D¨amon, D. Desjardin, P. Finy, J. Geml, S. Haridas,
- K. Hughes, A. Justo, D. Karasi´nski, I. Kautmanova, B. Kiss, S. Kocsub´e, H. Kotiranta,
- K. M. LaButti, B. E. Lechner, K. Liimatainen, A. Lipzen, Z. Luk´acs, S. Mihaltcheva,
- L. N. Morgado, T. Niskanen, M. E. Noordeloos, R. A. Ohm, B. Ortiz-Santana,
- C. Ovrebo, N. R´acz, R. Riley, A. Savchenko, A. Shiryaev, K. Soop, V. Spirin,
- 1064 C. Szebenyi, M. Tomšovský, R. E. Tulloss, J. Uehling, I. V. Grigoriev, C. Vágvölgyi,
- T. Papp, F. M. Martin, O. Miettinen, D. S. Hibbett, and L. Nagy. 2019. Megaphylogeny
- resolves global patterns of mushroom evolution. Nature Ecology & Evolution 3:668–678.
- Wilkinson, M. 1995. Coping with abundant missing entries in phylogenetic inference using
- parsimony. Systematic Biology 44:501–514.

REFERENCES 49

- ¹⁰⁶⁹ Wilkinson, M., D. Pisani, J. A. Cotton, and I. Corfe. 2005. Measuring Support and
- ¹⁰⁷⁰ Finding Unsupported Relationships in Supertrees. Systematic Biology 54:823–831.
- ¹⁰⁷¹ Zanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn,
- ¹⁰⁷² D. J. McGlinn, B. C. O'Meara, A. T. Moles, P. B. Reich, D. L. Royer, D. E. Soltis, P. F.
- ¹⁰⁷³ Stevens, M. Westoby, I. J. Wright, L. Aarssen, R. I. Bertin, A. Calaminus, R. Govaerts,
- ¹⁰⁷⁴ F. Hemmings, M. R. Leishman, J. Oleksyn, P. S. Soltis, N. G. Swenson, L. Warman, and
- ¹⁰⁷⁵ J. M. Beaulieu. 2014. Three keys to the radiation of angiosperms into freezing
- ¹⁰⁷⁶ environments. Nature 506:89–92.