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Hansen’s Right Triangle Theorem,
Its Converse and a Gener alization

Amy Bell

Abstract. We generalize D. W. Hansen’s theorem relating the inradius and exradii
of a right triangle and its sides to an arbitrary triangle. Specifically, given a tri-
angle, we find two quadruples of segments with equal sums and equal sums of
squares. A strong converse of Hansen’s theorem is also established.

1. Hansen’sright triangle theorem

In an interesting article iMathematics Teacher, D. W. Hansen [2] has found
some remarkable identities associated with a right triangle At be a triangle
with a right angle at’, sidelengths, b, c. It has an incircle of radius, and three
excircles of radiir,, 73, 7.

Theorem 1 (Hansen) (1) The sum of the four radii is equal to the perimeter of the
triangle:

rgt+ry+ret+r=a+b+ec
(2) The sum of the squares of the four radii is equal to the sum of the squares of the
sides of the triangle:

r2pri4ri e =a® 02 + A

We seek to generalize Hansen'’s theorem to an arbitrary triangle, by reptacing
b, c by appropriate quantities whose sum and sum of squares are respectively equal
to those ofr,, 13, 7. andr. Now, for a right triangled BC' with right angle vertex
C, this latter vertex is the orthocenter of the triangle, which we generically denote
by H. Note that
a=BH and b= AH.

On the other hand, the hypotenuse being a diameter of the circumeirel&R.
Note also thatU H = 0 sinceC and H coincide. This suggests that a possible
generalization of Hansen’s theorem is to replace the triplg ¢ by the quadruple
AH, BH, CH and2R. SinceAH = 2Rcos A etc., one of the quantitied H,
BH, CH is negative if the triangle contains an obtuse angle.
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We shall establish the following theorem.
Theorem 2. Let ABC be atriangle with orthocenter H and circumradius R.

(1) 70 + 7y + 70 + 7 = AH + BH + CH + 2R;
@) r2+r2 +r2+r2=AH*+ BH? + CH? + (2R)%.

Ia
Figure 1. Two quadruples with equal sums and equal sums of squares

2. A characterization of right trianglesin terms of inradius and exr adii
Proposition 3. The following statements for atriangle ABC' are equivalent.

Q) r. =s.

(2)r, =s—0.
B)r, =s—a.
dr=s—c

(5) C'isaright angle.
Proof. By the formulas for the exradii and the Heron formula, each of (1), (2), (3),

(4) is equivalent to the condition
(s—a)(s—0b) =s(s—c). (1)
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Figure 2. Inradius and exradii of a right triangle

Assuming (1), we have? — (a + b)s + ab = s? — ¢s, (a + b — ¢)s = ab,
(a+b—c)a+b+c)=2ab, (a+b)?—c? = 2ab, a® + b? = . This shows that
each of (1), (2), (3), (4) implies (5). The converse is clear. See Figure 2. [

3. A formularelating theradii of the various circles

As a preparation for the proof of Theorem 2, we study the excircles in relation
to the circumcircle and the incircle. We establish a basic result, Proposition 6,
below. Lemma 4 and the statement of Proposition 6 can be found in [3, pp.185—
193]. An outline proof of Proposition 5 can be found in §2,4.1]. Propositions
5 and 6 can also be found in [64.6.1].> We present a unified detailed proof of
these propositions here, simpler and more geometric than the trigonometric proofs
outlined in [3].

Consider triangleA BC' with its circumcircle(O). Let the bisector of anglel
intersect the circumcircle d/. Clearly, M is the midpoint of the ar&@MC. The
line BM clearly contains the incentdrand the excentef,.

Lemmad4. MB=MI=MI,=MC.

IThe referee has pointed out that these results had been known earlier, and can be found, for
example, in the nineteenth century work of John Casey [1].
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Ia

Figure3. ro + 71, + 1. =4R+ 1

Proof. It is enough to prove that/ B = M. See Figure 3. This follows by an

easy calculation of angles.
(i) ZIBI, = 90° since the two bisectors of anglg are perpendicular to each

other.
(if) The midpoint N of 1,1 is the circumcenter of triangleB1,, SONB = NI =
NI,.
(iii) From the circle(/BI,) we see/BNA = /BNI = 2/BCI = ZBCA, but
this means thalv lies on the circumcircl¢ ABC') and thus coincides with/.
It follows thatM [, = M B = M1, andM is the midpoint of/ I,.
The same reasoning shows tldtC = M T = M I, as well. O
Now, let I’ be the intersection of the linBO and the perpendicular from to
BC'. See Figure 4. Note that this latter line is parallelQd/. SinceM is the

midpoint of I1,, O is the midpoint of/ I'. It follows that’ is the reflection of in
0. Also, I'l, =2-OM = 2R. Similarly, I'T, = I'[. = 2R. We summarize this

in the following proposition.
Proposition 5. Thecircle through the three excenters has radius 2R and center 7,

the reflection of 7 in O.
Remark. Proposition 5 also follows from the fact that the circumcircle is the nine
point circle of trianglel, I, 1., andI is the orthocenter of this triangle.
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Figure4. I'l, = 2R

Proposition 6. v, + 1, + 7. = 4R+ 7.

Proof. The line I, I’ intersectsBC' at the pointX’ of tangency with the excircle.
Note thatl’ X’ = 2R — r,. SinceO is the midpoint of/I’, we havel X + I' X’ =
2 - OD. From this, we have

2.0D =1+ (2R —ry). )

Consider the excenter and .. Since the angle%, BI. and I,CI. are both
right angles, the four points, 1., B, C' are on a circle, whose center is the mid-
point N of I1.. See Figure 5. The cent&f must lie on the perpendicular bisector
of BC, which is the lineOM. ThereforeN is the antipodal point ofi/ on the
circumcircle, and we haveN D = r, + r.. Thus,2(R + OD) = r, + r.. From
(2), we haver, +ry +7r. = 4R+ . O

4. Proof of Theorem 2

We are now ready to prove Theorem 2.
(1) SinceAH = 2-0OD, by (2) we express this in terms &f r andr,; similarly
for BH andCH:

AH =2R+7r —rq, BH =2R+r —ry, CH =2R+r —r,.
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Figure5. ro + 1y + 1. =4R+ 1

From these,

AH + BH +CH +2R =8R +3r — (rq + 14 +7¢)
=2(4R+7r)+71r— (rg + 15+ 7¢)
=2(rq +1p+7c)+ 17— (Ta + 75+ 7¢)
=rq+rp+retr.

(2) This follows from simple calculation making use of Proposition 6.
AH? + BH? + CH? + (2R)?

=Q2R47 1)+ 2R +7r —1)> + QR+ 7 —r.)? + 4R*

=3(2R+ 1) —22R+71)(rq +7p + 1) + T2+ 15 + 12 + 4R

=32R +7)? —2Q2R+1)(4R + 1) + 4R* + 12 + 1} + 1’

=r? 4+ 7«2 + rg + rg.

This completes the proof of Theorem 2.
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5. Converse of Hansen’s theorem

We prove a strong converse of Hansen’s theorem (Theorem 10 below).
Proposition 7. Atriangle ABC satisfies
r2+r§+r§+r2:a2+b2+c2 3)
if and only if it contains a right angle.

Proof. UsingAH = 2R cos A anda = 2R sin A, and similar expressions f@ H,
CH, b, andc, we have
AH? + BH? + CH? + (2R)? — (a* + b* + &%)

=4R?(cos® A+ cos® B + cos> C' + 1 — sin? A — sin® B — sin® 0)

=4R*(2 cos® A + cos 2B + cos 2C)

=8R%(cos?® A + cos(B + C) cos(B — C))

= — 8R?cos A(cos(B + C) + cos(B — C))

= — 16R? cos A cos B cos C.

By Theorem 2(2), the condition (3) holds if and only4fi? + BH? + CH? +
(2R)? = a® + b% + 2. One ofcos A, cos B, cos C must be zero from above. This
means that triangled BC' contains a right angle. O

In the following lemma we collect some useful and well known results. They
can be found more or less directly in [3].

Lemma8. (1) rory + rpre + rera = S°.
(@) r2 +r2 +r2= (4R +1r)* — 252
(3)ab +bc+ ca = s>+ (4R +1)r.

@) a® +b*+ 2 =252 —24R+r)r.

Proof. (1) follows from the formulas for the exradii and the Heron formula.

A2 A2 A2
G_a)-0 G-0e-0 G-oE-a
=s((s —¢)+(s—a)+(s—0))

282.

TaTh + 1T + Telq =

From this (2) easily follows.

Tg + Tl% + Tg :(Ta + 7+ Tc)2 - 2(Tarb + rpre + Tcra)
(4R +r)* — 252
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Again, by Proposition 6,
4R+ r
=Tq +Tp+7Tc

A A A
:s—a+s—b+s—c
A
G a6 —0 (s=b)(s—c)+(s—c)(s—a)+(s—a)(s—D))
:% (382—2(a+b+c)s+(ab+bc+ca))
:% ((ab+ be + ca) — s?) .

An easy rearrangement gives (3).
(4) follows from (3) sincen® + b? + ¢ = (a + b+ ¢)? — 2(ab + be + ca) =
452 — 2(s? + (AR +7)r) = 252 — 2(4R + r)r. O

Proposition 9. r2 + rZ +r2 4+ 12 =a? +b* + 2 ifand only if 2R + r = s.

Proof. By Lemma 8(2) and (4);2 + r2 + r2 + r? = a® + b + ¢? if and only if
(A4R+71)? —252+712 =252 —2(4R+7)r; 45> = (AR +7)2 +24R+7)r+ 1% =
(4R +2r)2 =4(2R+1)% s =2R + . a

Theorem 10. The following statements for a triangle ABC' are equivalent.
MQ)ro+rp+re+r=a+b+ec.

@)r2+r2+ri4+r2=a®+b*+ 2

B)R+2r = s.

(4) One of the anglesisa right angle.

Proof. (1) = (3): This follows easily from Proposition 6.
(3) < (2): Proposition 9 above.
(2) < (4): Proposition 7 above.
(4) = (1): Theorem 1 (1). O
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