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Hansen’s Right Triangle Theorem,
Its Converse and a Generalization

Amy Bell

Abstract. We generalize D. W. Hansen’s theorem relating the inradius and exradii
of a right triangle and its sides to an arbitrary triangle. Specifically, given a tri-
angle, we find two quadruples of segments with equal sums and equal sums of
squares. A strong converse of Hansen’s theorem is also established.

1. Hansen’s right triangle theorem

In an interesting article inMathematics Teacher, D. W. Hansen [2] has found
some remarkable identities associated with a right triangle. LetABC be a triangle
with a right angle atC, sidelengthsa, b, c. It has an incircle of radiusr, and three
excircles of radiira, rb, rc.

Theorem 1 (Hansen). (1) The sum of the four radii is equal to the perimeter of the
triangle:

ra + rb + rc + r = a + b + c.

(2) The sum of the squares of the four radii is equal to the sum of the squares of the
sides of the triangle:

r2
a + r2

b + r2
c + r2 = a2 + b2 + c2.

We seek to generalize Hansen’s theorem to an arbitrary triangle, by replacinga,
b, c by appropriate quantities whose sum and sum of squares are respectively equal
to those ofra, rb, rc andr. Now, for a right triangleABC with right angle vertex
C, this latter vertex is the orthocenter of the triangle, which we generically denote
by H. Note that

a = BH and b = AH.

On the other hand, the hypotenuse being a diameter of the circumcircle,c = 2R.
Note also thatCH = 0 sinceC andH coincide. This suggests that a possible
generalization of Hansen’s theorem is to replace the triplea, b, c by the quadruple
AH, BH, CH and2R. SinceAH = 2R cos A etc., one of the quantitiesAH,
BH, CH is negative if the triangle contains an obtuse angle.
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We shall establish the following theorem.

Theorem 2. Let ABC be a triangle with orthocenter H and circumradius R.
(1) ra + rb + rc + r = AH + BH + CH + 2R;
(2) r2

a + r2
b + r2

c + r2 = AH2 + BH2 + CH2 + (2R)2.

I

H

O

A

B C

Ia

Ib

Ic

Figure 1. Two quadruples with equal sums and equal sums of squares

2. A characterization of right triangles in terms of inradius and exradii

Proposition 3. The following statements for a triangle ABC are equivalent.
(1) rc = s.
(2) ra = s − b.
(3) rb = s − a.
(4) r = s − c.
(5) C is a right angle.

Proof. By the formulas for the exradii and the Heron formula, each of (1), (2), (3),
(4) is equivalent to the condition

(s − a)(s − b) = s(s − c). (1)
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ra = s − b

rb = s − a

r = s − c

rc = s
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Figure 2. Inradius and exradii of a right triangle

Assuming (1), we haves2 − (a + b)s + ab = s2 − cs, (a + b − c)s = ab,
(a + b− c)(a + b + c) = 2ab, (a + b)2 − c2 = 2ab, a2 + b2 = c2. This shows that
each of (1), (2), (3), (4) implies (5). The converse is clear. See Figure 2. �

3. A formula relating the radii of the various circles

As a preparation for the proof of Theorem 2, we study the excircles in relation
to the circumcircle and the incircle. We establish a basic result, Proposition 6,
below. Lemma 4 and the statement of Proposition 6 can be found in [3, pp.185–
193]. An outline proof of Proposition 5 can be found in [4,§2.4.1]. Propositions
5 and 6 can also be found in [5,§4.6.1].1 We present a unified detailed proof of
these propositions here, simpler and more geometric than the trigonometric proofs
outlined in [3].

Consider triangleABC with its circumcircle(O). Let the bisector of angleA
intersect the circumcircle atM . Clearly,M is the midpoint of the arcBMC. The
line BM clearly contains the incenterI and the excenterIa.

Lemma 4. MB = MI = MIa = MC .

1The referee has pointed out that these results had been known earlier, and can be found, for
example, in the nineteenth century work of John Casey [1].
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Figure 3. ra + rb + rc = 4R + r

Proof. It is enough to prove thatMB = MI. See Figure 3. This follows by an
easy calculation of angles.
(i) ∠IBIa = 90◦ since the two bisectors of angleB are perpendicular to each
other.
(ii) The midpointN of IaI is the circumcenter of triangleIBIa, soNB = NI =
NIa.
(iii) From the circle(IBIa) we see∠BNA = ∠BNI = 2∠BCI = ∠BCA, but
this means thatN lies on the circumcircle(ABC) and thus coincides withM .
It follows thatMIa = MB = MI, andM is the midpoint ofIIa.

The same reasoning shows thatMC = MI = MIa as well. �

Now, let I ′ be the intersection of the lineIO and the perpendicular fromIa to
BC. See Figure 4. Note that this latter line is parallel toOM . SinceM is the
midpoint ofIIa, O is the midpoint ofII′. It follows thatI′ is the reflection ofI in
O. Also, I ′Ia = 2 · OM = 2R. Similarly, I ′Ib = I ′Ic = 2R. We summarize this
in the following proposition.

Proposition 5. The circle through the three excenters has radius 2R and center I′,
the reflection of I in O.

Remark. Proposition 5 also follows from the fact that the circumcircle is the nine
point circle of triangleIaIbIc, andI is the orthocenter of this triangle.
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Figure 4. I ′Ia = 2R

Proposition 6. ra + rb + rc = 4R + r.

Proof. The lineIaI
′ intersectsBC at the pointX′ of tangency with the excircle.

Note thatI′X ′ = 2R − ra. SinceO is the midpoint ofII′, we haveIX + I′X ′ =
2 · OD. From this, we have

2 · OD = r + (2R − ra). (2)

Consider the excentersIb andIc. Since the anglesIbBIc andIbCIc are both
right angles, the four pointsIb, Ic, B, C are on a circle, whose center is the mid-
pointN of IbIc. See Figure 5. The centerN must lie on the perpendicular bisector
of BC, which is the lineOM . ThereforeN is the antipodal point ofM on the
circumcircle, and we have2ND = rb + rc. Thus,2(R + OD) = rb + rc. From
(2), we havera + rb + rc = 4R + r. �

4. Proof of Theorem 2

We are now ready to prove Theorem 2.
(1) SinceAH = 2 ·OD, by (2) we express this in terms ofR, r andra; similarly

for BH andCH:

AH = 2R + r − ra, BH = 2R + r − rb, CH = 2R + r − rc.
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Figure 5. ra + rb + rc = 4R + r

From these,

AH + BH + CH + 2R =8R + 3r − (ra + rb + rc)

=2(4R + r) + r − (ra + rb + rc)

=2(ra + rb + rc) + r − (ra + rb + rc)
=ra + rb + rc + r.

(2) This follows from simple calculation making use of Proposition 6.

AH2 + BH2 + CH2 + (2R)2

=(2R + r − ra)2 + (2R + r − rb)2 + (2R + r − rc)2 + 4R2

=3(2R + r)2 − 2(2R + r)(ra + rb + rc) + r2
a + r2

b + r2
c + 4R2

=3(2R + r)2 − 2(2R + r)(4R + r) + 4R2 + r2
a + r2

b + r2
c

=r2 + r2
a + r2

b + r2
c .

This completes the proof of Theorem 2.
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5. Converse of Hansen’s theorem

We prove a strong converse of Hansen’s theorem (Theorem 10 below).

Proposition 7. A triangle ABC satisfies

r2
a + r2

b + r2
c + r2 = a2 + b2 + c2 (3)

if and only if it contains a right angle.

Proof. UsingAH = 2R cos A anda = 2R sin A, and similar expressions forBH,
CH, b, andc, we have

AH2 + BH2 + CH2 + (2R)2 − (a2 + b2 + c2)

=4R2(cos2 A + cos2 B + cos2 C + 1 − sin2 A − sin2 B − sin2 C)

=4R2(2 cos2 A + cos 2B + cos 2C)

=8R2(cos2 A + cos(B + C) cos(B − C))

= − 8R2 cos A(cos(B + C) + cos(B − C))

= − 16R2 cos A cos B cos C.

By Theorem 2(2), the condition (3) holds if and only ifAH2 + BH2 + CH2 +
(2R)2 = a2 + b2 + c2. One ofcos A, cos B, cos C must be zero from above. This
means that triangleABC contains a right angle. �

In the following lemma we collect some useful and well known results. They
can be found more or less directly in [3].

Lemma 8. (1) rarb + rbrc + rcra = s2.
(2) r2

a + r2
b + r2

c = (4R + r)2 − 2s2.
(3) ab + bc + ca = s2 + (4R + r)r.
(4) a2 + b2 + c2 = 2s2 − 2(4R + r)r.

Proof. (1) follows from the formulas for the exradii and the Heron formula.

rarb + rbrc + rcra =
�2

(s − a)(s − b)
+

�2

(s − b)(s − c)
+

�2

(s − c)(s − a)
=s((s − c) + (s − a) + (s − b))

=s2.

From this (2) easily follows.

r2
a + r2

b + r2
c =(ra + rb + rc)2 − 2(rarb + rbrc + rcra)

=(4R + r)2 − 2s2.
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Again, by Proposition 6,

4R + r

=ra + rb + rc

=
�

s − a
+

�
s − b

+
�

s − c

=
�

(s − a)(s − b)(s − c)
((s − b)(s − c) + (s − c)(s − a) + (s − a)(s − b))

=
1
r

(
3s2 − 2(a + b + c)s + (ab + bc + ca)

)

=
1
r

(
(ab + bc + ca) − s2

)
.

An easy rearrangement gives (3).
(4) follows from (3) sincea2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca) =

4s2 − 2(s2 + (4R + r)r) = 2s2 − 2(4R + r)r. �
Proposition 9. r2

a + r2
b + r2

c + r2 = a2 + b2 + c2 if and only if 2R + r = s.

Proof. By Lemma 8(2) and (4),r2
a + r2

b + r2
c + r2 = a2 + b2 + c2 if and only if

(4R+ r)2 − 2s2 + r2 = 2s2 − 2(4R+ r)r; 4s2 = (4R+ r)2 +2(4R+ r)r + r2 =
(4R + 2r)2 = 4(2R + r)2; s = 2R + r. �
Theorem 10. The following statements for a triangle ABC are equivalent.
(1) ra + rb + rc + r = a + b + c.
(2) r2

a + r2
b + r2

c + r2 = a2 + b2 + c2.
(3) R + 2r = s.
(4) One of the angles is a right angle.

Proof. (1) =⇒ (3): This follows easily from Proposition 6.
(3) ⇐⇒ (2): Proposition 9 above.
(2) ⇐⇒ (4): Proposition 7 above.
(4) =⇒ (1): Theorem 1 (1). �
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