Loongcc - A Compiler based on Open64 for
MIPS64 Compatible Loongson 3 Architecture

Ling Kun Wang Tao Liu Ying

Huang Lei
Lu Tingyu

Hu Shiwen Zhang Mang Zhao Hongjian

Lian Ruiqi

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
{lingkun,wangtao2010,liuying2007 leihuang,hushiwen,zhangmang,zhaohongjian,lutingyu,lianruigi}@ict.ac.cn

Abstract

Loongson (academic name: Godson) is a family of general-purpose
MIPS CPUs developed by Institute of Computing Technology
(ICT), Chinese Academy of Science. Loongson 3 is the newest
generation of Loongson processor family and compatible with
MIPS64 ISA. It is designed for boosting general and high perfor-
mance computing. Our primary objective is to build a high perfor-
mance and production-quality compiler for Loongson 3 processor
family based on Open64 . The work reported in this article can be
divided into two folds. (1) Aiming at exploiting the architectural
features effectively, we have developed a set of Loongson 3 specific
optimizations , such as branch-to-trap, conditional-move, multiply-
add, quad-word loading, structure-layout optimization, software
prefetching, memory pool optimization, CG loop invariant code
motion, etc. We have also employed polyhedral algebra based loop
optimization techniques and integrated a 256-bit instruction vec-
torizer. (2) For high robustness, after a large set of debugging and
extending efforts, the compiler has obviously higher successful rate
and is capable to compile Linux kernel, GCC and bootstrap.

Categories and Subject Descriptors D.3.4 [PROGRAMMING
LANGUAGES]: Processors

General Terms performance, robustness, code generation, opti-
mization

Keywords Loongson 3, Loongson 3B, Loongson Compiler, poly-
hedral algebra based code optimization, SIMD extension support,
auto-vectorization

1. Introduction

Loongson 3 is the latest generation of Loongson CPU series. It is
a multi-core CPU designed for high performance desktops, servers
and clusters. The first release of Loongson 3 family is Loongson
3A with four 64-bit, four-issued, super scalar GS464 cores. Each
core has a 64KB private L1 data cache and 64KB private L1 in-
struction cache, the four cores share a 4MB L2 cache. It works at
1G Hz with a peak performance of 16GFLOPS [1]. Loongson 3A
also introduced plenty of new features which compiler can take ad-
vantage of. These features include: multiply-add instructions, con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OPENG64 Workshop 2012-06, Beijing

Copyright © 2012 ACM [to be supplied]. .. $10.00

ditional move instructions, load quad-word support, light weight
trap instructions, software prefetch support, etc.

Loongson 3B is the latest Loongson 3 CPU. Based on the new
features introduced in 3A, Loongson 3B increases to 8 cores. The
8-core Loongson 3B processor is composed of 2 nodes. Each node
has four cores and four L2-cache banks. The interconnection net-
work takes the 128-bit AXI standard interface with cache coher-
ence policy. Loongson 3B have also extended 3A’s GS464 cores
to GS464v cores by replacing the two floating-point functional
units (FPU1 and FPU2) in each core with two vector/floating-
point functional units (VPU1 and VPU2). Each VPU can perform
4 double-precision or 8 single-precision float point multiply and
add (MADD) operations or at most 32 fixed-point operations per
cycle. With VPUs, Loongson 3B can achieve a peak performance
of 128GFLOPS [2] while working at 1G Hz. To take full advatage
of VPUs, Loongson 3B has extended its ISA by adding a power-
ful 256-bit SIMD instruction extension. SIMD extensions in CPU
has been proven to be a highly effective approach for enhancing
the performance on applications that exhibit fine-grained data par-
allelism [3-6]. Loongson 3B’s SIMD extension has up to 300
instructions which contains commonly used SIMD operations [7]
. In order to efficiently maintain 256-bit vector data in register,
Loongson 3B also has introduced 128-entry vector registers. To
attain backward compatibility with Loongson’s floating point in-
structions, Loongson 3B reuses the lower 64-bit of the first 32
vector registers for floating-point registers [8].

We try to build a high performance and production-quality com-
piler: Loongcc for Loongson 3. Loongcc is based on the port
version of Open64 for MIPS III [9]. To achieve the performance
goal, we have introduced 8 major optimizations for Loongson 3.
In addition, we have also equipped Loongcc with a polyhedral al-
gebra based optimizer for loop-nest optimization and a three-level
programming support for Loongson 3B 256-bit SIMD extension
To achieve the robustness goal, we have extended the compiler to
support bootstrapping and the compilation of Linux kernels, GCC,
Mplayer, Binutils, etc. According to SuperTest [10], the correctness
of Loongcc is better than GCC.

1.1 Performance

The high performance objective in this work is focused on speed-
ing up general desktop applications, core algorithms in scientific
computing and streaming applications. Our contribution related to
performance improvement can be divided into the following three
categories:

Firstly, We have implemented and well tested a set of optimiza-
tions based on Loongson 3 architecture.

¢ Effectively utilizing Loongson 3 CPU features: we have in-
troduced branch to trap transformation, conditional move in-

struction optimization, multiply-add instruction optimization,
load quad-word instruction optimization, etc. Branch to trap
transformation will help to improve the efficiency of pipeline
usage by replacing branching instructions using trapping mech-
anism. Conditional move optimization can reduce the case of
bifurcation and merge corresponding basic blocks using condi-
tional move instructions introduced in Loongson 3. Multiply-
add optimization can substitute one multiplication and one sub-
sequent addition with a single MIPS madd instruction. Load
quad-word optimization can load four machine words into two
registers at the same time.

Locality optimization: we have introduced structure layout
optimization, software prefetching, memory pool reorganiza-
tion to improve and make use of the locality of the applica-
tions. Structure layout optimization improves the locality of
structure’s fields accessing by rearranging the layout of them.
Prefetch instruction insertion has the power of decreasing cache
miss rate for contiguous array accessing. Memory pool partition
and reorganization is on the purpose of increasing the data lo-
cality of heap memory .

CG optimization: we have also implemented a loop-invariant
code motion (LICM) module for CG Loop optimization. It can
help reduce redundant operations which are introduced in CG
expanding.

Secondly, taking advantage of memory hierarchy is one of the
key performance features . How to reduce the cache complex-
ity [11] of programs on Loongson 3B is a critical issue for com-
pilers. We have employed polyhedral algebra based methods to
achieve this goal. Polyhedral based optimization techniques are
good at modeling the time-space characteristics of memory access-
ing sequence on memory hierarchies. Therefore, based on an open
source package PLUTO [12], we have implemented an polyhe-
dral optimizer into our Loongcc. This module is still at prelim-
inary stage. The major contributions related to polyhedral frame-
work can be divided into 4 aspects: (1) Integration of polyhedral
framework; (2) Accepting more complex WHIRL structures; (3)
Avoiding integer overflow problems by modifying the intermediate
WHIRL structures and optimize polyhedral operations; (4) Regu-
larizing loops, e.g. loop normalization and branch hoisting to help
the vectorizer to generate more vectorized code.

Thirdly, Although many CPUs have SIMD extensions, how to
provide a flexible and easy-to-use way for programmers is still a
challenge for compiler and toolchain developers. There are three
level programming methods which are commonly used for SIMD
extensions currently. They are programming in assembly, calling
intrinsic functions and using auto-vectorization. Comparing to as-
sembly programming, intrinsic function is a higher level program-
ming interface using function calls to operate on vector data within
C/C++ code style, while auto-vectorization can automatically vec-
torize the existing standard C/C++ code. These different levels of
support can help not only senior developers to write advanced vec-
torized code manually, but also help to automatically take advan-
tage of SIMD extensions without modifying original C code. Based
on Open64’s framework, we have also implemented Loongson 3B
256-bit SIMD extension support for these three level methods. The
implementation includes: (1) assembly support for SIMD exten-
sions, (2) an interface of Loongson 3B 256-bit intrinsic functions
support, (3) an 256-bit auto-vectorizer.

1.2 Robustness

The high robustness objective in this work is achieved as following.
We have used SuperTest C/C++ as the unit test. It has more than 18-
thousand test files,which are intended to verify compiler’s C/C++
support. We have also used several large scale and commonly used

C/C++ code bases to expose and fix defects of Loongcc. Such
code bases include Linux MIPS kernel, bootstrap, Mplayer video
player, GCC, Binutils, bzip, etc. These applications also helped
us to find previous Loongcc’s missing or deficient support for
commonly used language extensions, like inline assembly code,
position-dependent code generation, fully MIPS N64 ABI (Appli-
cation Binary Interface) supporting, etc, which can hardly found by
simple testsuites.

We will describe the design and implementation of performance
enhancement in Section 2 and 3, and robustness improvement in
Section 4. The experimentation results for both performance and
correctness enhancement will be reported in Section 5.

2. Design and Implemenation for Well Tested
Optimizations

As mentioned in Section 1, we have accomplished a set of opti-
mizations. These optimizations have been well tested and show per-
formance improvement using SPEC CPU 2006 benchmark which
is a collection of commonly used desktop applications. We will
explore the design and implementation details in this section, and
show the experimentation results in section 5.1.1.

2.1 Optimizations based on Loongson CPU features

As the experience of CPU designing and developing grows in ICT
CAS, Loongson 3 have extended its micro-architecture for new
features and instructions according to its vaster applications. Mak-
ing full use of these features by compiler will help programmers
speedup their applications easier.

2.1.1 Branch to Trap Transformation

This idea came from an aggreesive branch eliminating experiment
on 255.vortex from SPEC CPU 2000. According to the edge pro-
filing result, It has lots of if branchs which will never taken. To get
an ideal performance result, we manually eliminated all these never
taken branches, and got a speedup of about 20% . The result illus-
trates that the branch predictor of Loongson may mispredict under
some circumstances, which cause instruction pipeline flushing and
performance degradation. However, Loongson 3 also provides light
weight conditional trap instructions, whose advantage is that there
is no need to predict the target PC and thus less execution penalty
(when the trap condition does not occur). If the condition is not
satisfied, the trap instruction will act like a nop instruction, else it
will trap into kernel. Taking advantage of trap instruction for never
taken branches can avoid the penalty of mis-prediction, and keep
the program correct at the same time.

Our implementation includes two parts: compiler side and
Linux kernel side. On the compiler side, Loongcc firstly instru-
ments all the branches to get the edge profiling, and then use
Feedback-Directed Optimization (FDO) to replace branches
which are less taken with trap instructions, at the same time gen-
erate a .traptable assembly section in order to record the map-
ping relation between each trap instruction and its target address
of the original branch. Figure 1 is an example of the replacement.
The code comes from 464.h264ref. The left part is the original
assembly code, and the right part is the transformed code. Each
less taken branch instruction is replaced by a trap instruction, the
third operand O of the trap instruction tells the kernel to use the
modified trap handler. A lable is inserted at the same time to iden-
tify the branch location. Loongcc will also generate a .traptable
at the end of the PU. On the kernel side, we firstly modified the
load ELF mechanism, the load_elf_binary function. When loading
ELF kernel to memory, kernel will find out the .traptable section,
and save it into the private data fragment of the process’s mem-
ory space, The trap handling algorithm of Linux kernel, the do_tr

.LBB1_free_mem2Dint64:

$LTRAP1_free_mem2Dint64:

.LBB1_free_mem2Dint64: teq $4,$0,0
nop
beq $4,$0,$Lt_13_4098 .LBB2_free_mem2Dint64:
nop Iw $4,0($4)
.LBB2_free_mem2Dint64: |:> $LTRAP2_free_mem2Dint64:
Iw $4,0($4) teq $4,$0,0
beq $4,$0,$Lt_13_4610 Nop
Nop
.section .traptable

word $LTRAP1_free_mem2Dint64
word $Lt_13 4098
.word $LTRAP2_free_mem2Dint64
word $Lt_13 4610

Figure 1. Branch to trap optimization compiler-side example:
464.h264ref

function, has also been modified. Algorithm 1 shows the detail of
the modification. When trapping, kernel will firstly check whether
a .traptable exist. If yes, kernel will search for the target address
inside the traptable, if corresponding entry is found, and then use
the address stored in the table to replace $PC register, else kernel
will continue use the original trap handler. Although the process
becomes more complicate, for the less taken branches, since the
trap instruction will not flush the pipeline and trap into the kernel.
we can still get performance improvement.

Algorithm 1 Branch to trap optimization kernel-side trap handling
mechanism
function do_tr(...)

1: if Current process does not have trap-table then

2: use normal trap handling strategy

3: else
4: trap_instruction_address = value of $EPC register
5. if trap_instruction_address not in trap-table then
6: use normal trap handling strategy
7: else
8: change $EPC register to the target value stored in the
trap-table
9: endif
10: end if

2.1.2 Conditional Move Instruction Generation

Loongson 3 introduces a set of conditional move(cmov) instruc-
tions. They are a set of instruction for data move between registers.
Whether a register move operation will be executed depends on the
predicate register specified in the instruction. If the value in predi-
cate register is true, then the operation will be executed, otherwise
it will be treated as a NOP instruction.

We implemented the conditional move instruction generation in
CG phrase, and it is invoked before control flow optimization. The
generator will firstly analyse the branches in control flow, and pick
up the one that can generate cmov instructions, then corresponding
basic blocks will be merged. A verification phase was also added
to ensure that the semantics stay the same after the optimization.

2.1.3 Multiply-add Instruction Generation

Loongson processor family exhibits excellent performance in float-
point operations, to which floating-point Multiply-Add (MADD)
instructions contribute a lot. Issuing one MADD instruction equals
to issuing one single or double precision multiply operation and
one add operation of the same type, while the former is 2-cycles
shorter than the latter one.

To effectively utilize this hardware feature, we firstly extended
WN_Lower phase to recognize as many MUL and ADD/SUB/NEG
operations as possible, combine and transform them into MADD
type whirl nodes. And then, we carefully selected some of them to
be expanded into MADD instructions in CG phase, according to a
cost model constructed from instruction execution latency. Finally,
we aggressively scheduled those instructions in consideration of
balancing different ALUs and keep them in-fly.

2.1.4 Load Quad-word Instruction Generation

Loongson 3 introduced a set of load quad-word (LQ) instructions
which can load 128-bit data to two 64-bit general purpose registers
or lower 128-bit part of vector register. These instructions are
faster than two 64-bit load double-word instructions when 16-byte
alignment can be guaranteed.

We have implemented a load quad-word instruction generator in
CG loop optimization phase, after loop unrolling. It will combines
several continuous array accesses to a totally 128-bit LQ memory
access when the alignment constraint is satisfied.

2.2 Optimizations based on memory access locality

Memory access penalty is one of the key performance bottlenecks
to thwart the performance of computers. Loongson also has this
problem. We have designed and implemented a few optimizations
to improve the program’s locality or eliminate unnecessary memory
accesses.

2.2.1 Structure Layout Optimization

As a general purpose high performance processor, Loongson 3 also
suffer from the memory wall. Improving data locality can help in-
crease the efficacy of cache utilization, and this is an effective way
to bridge the gap between CPU and memory. This optimization
tries to improve the locality by rearranging the layout of the struc-
ture fields.

We have implemented a layout transformation framework based
on fields access affinity graph introduced by Forma [13], and ex-
tended it to represent not only intra-instance fields affinity, but also
inter-instance fields affinity. The locality of the application can then
be improved based on these affinity informations. We firstly im-
plemented a method to gather information of adjacent memory
accesses and field affinities by instrumenting WHIRL IR, the in-
formation contains precise field affinity among fields of structure
instances. A predictor based on such information is also imple-
mented. It can predicate the characteristic of structure field mem-
ory accesses using type escape and compatibility analysis. These
analysises also make the transformation safe. Since by default all
possible data structure transformations are marked as unsafe, only
those proved by escape analysis and compatibility analysis will be
marked as safe. The analysises make sure that the structure type
will not pass as a parameter to any outer functions which are not
compiled by loongcc, and all fields are accessed directly using
field name. Structures which have fields been accessed using off-
set will be marked unsafe. Then loongcc rearranges layout of struc-
ture fields which is marked as safe based on the predicated affinity
information. The above framework was implemented in the Very
high WHIRL phase of IPL phase.

2.2.2 Software Prefetch

Loongson 3 makes a great improvement in memory access module,
whose prefetch instruction does not occupy an entry in CPO' queue.

A co-processor in MIPS which is used to handle interrupts, configuration
options, and some way of observing or controlling on-chip functions like
caches and timers.

U4UA4LDID 158 <1,4,.preg_U4> T<142,anon_ptr.,4,C> # wayar {class 221}
U4U4ILOAD 0 T<117,anon_ptr.,4> T<142,anon_ptr.,4> {class 21775}
U4STID 119 <1,4,.preg_U4> T<8,.predef_U4,4> # <preg>

U4UA4LDID 119 <1,4,.preg_U4> T<8,.predef_U4,4> # <preg>

U4U4LDID 133 <1,4,.preg_U4> T<8,.predef_U4,4> # <preg>

U4ADD
U4STID 139 <1,4,.preg_U4> T<8,.predef_U4,4> # <preg>

Figure 2. Loop Invariant Code Motion in CG example: regway-
obj::getway in 464.h264ref

This feature offers a more effective manner to prefetch data into L1
cache and hide load latency.

Currently, our software prefetch scheme can handle three
massive-memory-access situations as follows. Firstly, for regular
arrays residing in nested loops, we implemented our basic prefetch
support based on Open64’s existing framework in LNO phase [14],
which generates prefetch instructions for array elements appearing
in next iterations. Secondly, for pointer chains traversing situation,
we added a module to pre-compute the address of next pointer, and
then generated prefetch instruction for it. Thirdly, for arrays appear-
ing as fields of structures, we simplified the complex array base by
promoting it to a temporary variable, hence those arrays in struc-
tures could be viewed as regular array and prefetch instructions
could be generated. Finally, we also extended several modules in
CG phase for instruction selection, instruction schedule and assem-
bly generation, so that prefetch instructions would achieve better
performance.

2.2.3 Memory Pool Optimization

General-purpose heap memory allocators often does not pay much
attention to exploit the affinity of allocated heap objects, however
this affinity can help to increase access locality of the heap objects.
The optimization is based on Wang’s work of DPA [15], while our
implementation is static and planted in compiler.

We provide a new memory pool management library, which can
manage several memory pools and allocate space from some speci-
fied memory pools. We also added a pool allocation transformation
phase to the IPA phase in compiler. In such a transformation phase,
we use FDO to find the hot callsites for the heap memory alloca-
tor and record their calling relationships got from the call graph in
IPA phase. Then after some validity check, we replace the qualified
callsites by calling the new allocator, and also some replacements
on the corresponding locations to free the space.

2.3 Optimization based on redundant operation elimination
2.3.1 Loop Invariant Code Motion in CG

Loop Invariant Code Motion (LICM) is a traditional optimization,
which is implemented in compiler’s middle end usually. Although
Open64 compiler has a powerful LICM in the middle end, There
may still be some loop invariant codes when come to CG. These
codes are composed of codes which escaped the motion in middle
end and the ones produced during lowering WHIRL to CG IR
[16]. Figure 2 shows a WHIRL node within the loop nest body
of regwayobj::getway from 473.astar. wayar will not change in the
loop, however the LICM in WOPT does not promote the /LOAD
node. A preliminary analysis indicates that the alias analysis or less
analysis of ILOAD may be the reason.

We introduced an LICM phase in CG , which can identify such
loop invariant, evaluate the benefit of the code motions and move
invariants out of the loops if needed. For the WHIRL node of
wayar in Figure 2, CG will expand it to load operation. With the
variable liveness information, CG-LICM find out that the variable
will not be changed in the inner loop, then it will be marked as loop
invariant, and will be promoted to the outer loop.

Input WHIRL Polyhedral Frond-end I

WRaP-IT (INRIA)

Pre-Optimizer
(pass-1)

£l PLUTO

An automatic parallelizer
Polyhedarl and locality optimizer for
Framework multicores (Uday)

O
Pre-Optimizer
(pass-2)

Polyhedral back-end

CLOOG /WLOOG

Pre-Optimizer
(pass-3)
=

Output WHIRL

Figure 3. The integration of polyhedral framework

3. Polyhedral Framework and SIMD supporting

Polyhedral based optimization has a higher level view to the it-
eration space, data space and dependence of loop-nests, thus has
strength to transform the code towards optimization objectives such
as locality, parallelism etc. Certainly, the objective can also be
scheduling the code into vectorizer friendly format. We report the
framework design and implementation approaches in this section.

3.1 Polyhedral Framework

Basically, polyhedral based loop optimization is rather high level
technique. More precisely, it is a systematic approach to optimize
affine loop-nest/arrays program structures [17]. Comparing to tra-
ditional loop optimization techniques, it has two major advantages:
(1) capable to capture the exact data dependence between all itera-
tion execution instances, thus, has more freedom to reorganize the
iteration domain of statements and re-schedules the execution to-
wards better locality and parallelism [18-22]. (2) capable to com-
bine numbers of iteration space interleaving techniques, such as
loop fusion, tiling, shewing, permutation, auto-vectorization into
one optimization pass. Namely, It can construct a synthesized opti-
mization objective and calculate the corresponding transformations
accordingly.

There are a few open source libraries supporting polyhedral
optimization techniques, such as LeTSeE [24, 25], PLUTO [12,
26], Omega [27], Polly [28], Graphite [29]. We chose PLUTO as
the initial baseline optimizer and used WRaP-IT as the WHIRL
level polyhedral representation. The implementation efforts can be
divided into 4 aspects:

1. Integration of polyhedral framework: we have solved two ma-
jor problems. The first problem can be phrased as “incon-
sistency between the input and output WHIRL to polyhedral
framework”. The input WHIRL is translated by WRaP-IT and
SCoP converter into PLUTO’s internal polyhedral representa-
tion. PLUTO then optimizes the code purely on this internal
representation and relies on CLoog and Wloog to generate the
optimized WHIRL code, as shown in Figure 3. However, there
was an important issue that was not handled. Namely, the loop
variables and global parameters were not updated along the
code transformation process. For example, when PLUTO per-
forms a loop tiling, new loop variables and bounds will be
created, however, these new symbols are not updated in the
symbol table. The second problem can be phrased as “inconsis-
tency of alias and DU information”. Similar to the first problem,
the previous implementation of WRaP-IT does not maintain the
alias and DU information along the code transformation process
which may produce wrong code. We have solved both problems
by collecting, updating and maintaining the symbol table, alias
and DU management information.

2. Accepting more complex WHIRL structures: the classical poly-
hedral optimizer has well-defined restriction to the input pro-
gram. In fact, it only handles so-called Static Control Parts
(SCoPs) in the program. A SCoP is defined as a maximal set
of consecutive statements, where loop bounds and conditionals
are affine functions of the surrounding loop iterators and the pa-
rameters (constants whose values are unknown at compilation
time) [36]. As formulated in Cédric’s paper [36], the affine re-
striction for loop bounds and if conditionals can be removed
by using over-estimation techniques. At the time of writing this
report, we haven’t finished the implementation of this exten-
sion. However, we have modified a few crux places of WRaP-
IT to make the polyhedral front-end identifies more SCoP, such
as converting arithmetic expressions inside the conditionals to
logic ones, supporting set operations of polyhedra, extracting
array Load/Store from complex WHIRL expression, etc. Al-
though these modifications are merely engineering work, the
improvement of identifying SCoPs is helpful.

3. Reducing integer overflow from polyhedral operations: As
known integer programming and polyhedral operations are NP-
complete. The intermediate expression swell is a severe prob-
lem during these computations. Namely the integer coefficients
grow quickly for large input. Although multiple precision in-
teger libraries can keep the precision, it increases compilation
time exponentially. Therefore, we still use machine integer en-
coding the polyhedral coefficients, and try to reduce the cases
of integer overflow. Basically, we used two approaches. (1) We
try to simply the input WHIRL such that the coefficients in
the linear program become smaller, e.g. simplifying the array
addressing expression. (2) We have tuned the integer program-
ming solver and the polyhedral libraries, such as adjusting the
order of input inequalities, and the order of polyhedral compu-
tation.

4. Tiling 45-degree timespace loop for vectorization: first, if we
linearize the N-dimensional iteration space associated to a state-
ment in an affine loop-nest, and linearize the M-dimensinal data
space associated to an array A accessed by the same statement,
we could depict the set of binary iterations between iterations
and array locations in a 2-D figure. Namely, one axis of the fig-
ure coordinates the iterations space, the other coordinates the
data space accordingly. Any line in this figure with 45-degree
will represent a set of array accessing which is executed con-
secutively in both data space and iterations space in terms of
Lexi-graphical order (Figure 4). In other words, if a sequence of
array accessing satisfies the 45-degree property, we call it vec-
torization friendly. The example shown in Figure 5 is an good
example that the loop can be vectorized for SIMD instructions.
We name the set of lines has degree in between 45-90 degree
a data scaling area and, the set of lines has degree in between
0-45 degree an iteration scaling areas. Figure 6 and 7 are toy
examples for each case. Currently, in polyhedral framework we
only extract the loop with 45-degree and regularize it. By pass-
ing a flag embedded in the WHIRL representation of loops, we
guide the vectorizer to generate SIMD instructions.

3.2 Intrinsic function and Auto-Vectorization Support

To get more performance boost from Loongson 3B processor
and provide easier way for using SIMD extension , We based on
our intrinsic support for Loongson 2F MMI SIMD instruction ex-
tention [34], provide all the three level SIMD programming sup-
port for Loongson 3B , including assembly, intrinsic function
and auto-vectorization. These three levels have different level of
programming flexibility and performance tuning support. Assem-
bly is the most flexible way to programming, but error prone. In-

Data Space

Data scaling

Iteration scaling

Iteration Space

Figure 4. Time-Space relation of array accessing

foriinl --- Ndo
Ali] = A[i] + A[{]

Figure 5. Example of 45-degree

foriinl --- Ndo
A2 xi] = A[2 %] + A[2 * i]

Figure 6. Example of data scaling

foriin1 --- N by2do
Alif2] = Ali/2] + Ali/2]

Figure 7. Example of iteration scaling

trinsic function is much easier than assembly. Auto-vectorization
is the most convenient way to use SIMD extension, it generates
SIMD code based on common standard sequential C/C++ code,
but the speedup depends on the code and input of the program.
senior programmers can use assembly or intrinsic functions for
high performance, while programmers can also use compilers auto-
vecterization features to achieve comparable performance.

Figure 8 illustrates ours implementation based on Open64’s
existing framework, the gray boxes are what we have done plenty
of works for Loongson 3B SIMD intrinsic support. The right part
of the figure is the detailed framework of auto-vectorization module
in LNO. For assembly support, as Open64 already has it for X86
embedded assembly, there was only some extending in WGEN and
CG for Loongson 3B.

Our implementation can be divided into three categories, they
are common framework, intrinsic functions and auto-vectorization.
Common framework extending is mainly about changes in com-
mon part of Open64 compiler. The implementation of Intrinsic
functions is mainly in the CC142, WGEN front end, and CG. The
implementation of auto-vectorization is mainly in LNO and CG.
Thanks to Open64’s rich assertion support, it makes compiler de-
bugging a pleasance.

Common framework extending The common frameworks in
Open64 associated with SIMD support are the WHIRL IR descrip-
tion and target-dependent information. To make it easy for extend-
ing and re-targeting, Open64 tries to make them independent from
other parts of the compiler. So extending these two components
is mainly about adding new items according to the Loongson 3B
SIMD extension. We firstly extended WHIRL IR for the attribute

Standard Code with
Code intrinsics

'

CC142

Pre_Analysis

Analysis
i > >
IR i
Align Module
Vectorization
Targ Info Module

}

Figure 8. The integration of SIMD support framework

of 256-bit vector mtypes and corresponding INTRINSIC_OPs for
all SIMD instructions, and then extend the target information for
SIMD instructions and VPU description. For the 128 entry 256-bit
vector registers, Loongcc uses the 0-31 registers for floating-point
data only, and added a new 256-bit vector register class for the
32-127 registers.

Intrinsic function Intrinsic is currently a powerful tool for senior
programmers to write high performance parallel library or the hot
code of the application, it also helps keeping them from error prone
works like register allocation and instruction scheduling which ad-
vanced compilers, like Open64, can handle it more effectively. For
Loongson 3B, it is quite necessary to provide such an interface for
programmers. We choose to reuse the Open64’s INTRINSIC_OP
framework for Loongosn 3B intrinsic support. As INTRINSIC_OP
is only used for unknown and no side effect operations.

Front End extension For intrinsic support, because it is a pro-
gramming language extensions, we have to extend the front end,
CC142 and WGEN, to check and recognize it. We extended CC142
and gspin to support the 256-bit vector data types and built-in func-
tions recognition. While in WGEN, we mainly extended gspin to
WHIRL conversion support for intrinsic function. It includes con-
versions about the gspin data type to WHILR vector mtypes and
builtin function to INTRINSIC_OP.

CG extension In CG, we extend the expanding for INTRIN-
SIC_OPs during WHIRL to CGIR, and the register allocator for
vector regs. To make our compiler support all loongson CPUs,
we firstly implement a backward compatible register allocator for
256-bit vector registers. This allocator is based on Open64’s exist-
ing powerful allocator, with some modifications about new vector
TN class, vector register allocation, register spilling. Moreover, Be-
cause Loongson 3B use two 128-bit memory access instruction for
256-bit vector register load and store, we implement a partly-load
framework for it .

LNO auto-vectorization The most attractive way to use SIMD
extension for ordinary programmers is auto-vectorization. Cur-
rently, auto-vectorization can be divided into two categories ac-
cording to whether it bases on Loops or basic block [35]. The
former one, which is based on loop, tries to analyze loops firstly,
and do vecterization for several adjacent loop iterations. This type
of auto-vectorization is mainly derived from vector computer [37].
The latter one, which is based on basic block, is mostly derived

from Super-word Level Parallelism(SLP) [38]. It tries to collect
similar operations in a basic block, which usually results from loop
unrolling, then analyses memory alignment and vectorizes the sim-
ilar operations. Our implementation is based on Open64’s existing
vectorization framework for X86 which is based on loops. It sup-
ports up to SSE4.2 128-bit instruction extensions. The right part
of Fig 8 is the four main phases of the vectorizer. We ported it for
Loongson 3B’s 256-bit SIMD extension, and modified the basic
analysis by providing corresponding vector width, mtypes, vec-
torizable operations, then extended it for 256-bit SIMD operation
generation. This work also includes adding some common WHIRL
operators and opcodes in common whirl files, and in other phases
like WOPT. CG also needs WHIRL to ops expanding support for
these WHIRL operations.

4. Robustness

In order to improve the robustness, we have used Loongcc to
build many real world large scale Linux applications for Loong-
son platform. These applications include Linux kernel, bootstrap,
Mplayer(a GUI based video player), GCC and Binutils(commonly
used GNU toolchain components), etc. The following of this sec-
tion will mainly focus on Linux kernel building and bootstrap. The
works for the other applications are similar.

4.1 Linux Kernel Build

Using loongcc to build Linux kernel can not only check its robust-
ness, but also improve the programming interface which a produc-
tive compiler should provided to programmers. So far as we know,
only a few Non-GNU compilers, like ICC [39], LLVM [40] can
successfully build Linux kernel version 2.6 and above. We mainly
overcame three major difficulties during the Linux kernel building:
(1) Adjusting GCC options to Loongcc options and tracing them.
(2) Enhancing and adding compiler support for rich and flexible
embedded assembly, GNU C extensions, position dependent code
generation, MIPS N64 ABI support, etc. (3) Fixing the defects ex-
posed during the Linux kernel building.

Firstly, thousands of files will be built using carefully adjusted
GCC options for Linux kernel, we should convert these options
to the corresponding Loongcc ones. We should also trace the full
command line for debugging purpose. To achieve this goal, we en-
hanced the existing kopencc shell script for temporary file keep-
ing, command line parsing and recording, and object file replacing.
With the help of the enhanced script, we can quickly find out files
which Loongcc has failed to built and the compiling options.

Secondly, Linux Kernel and GCC have plenty of co-designs,
like rich and flexible embedded assembly support, useful built-in
functions support, convenient GNU extended syntax like variable
length structure, attributes, etc. These additional features exist in
many part of the code. Furthermore, the currently available Linux
kernel for Loongson computer is only well tested and widely used
based on MIPS N64 ABI building, and it is position-dependent.
We should extend Loongcc for all the features mentioned above,
so that the Linux kernel can be successfully built. With the help of
Open64’s rich assertion support and plenty of designing, program-
ming and debugging, we finally make Loongcc support them based
on the documents of these extensions, the difference of assembly
generated by Open64 and GCC, and the internal implementation
details of GCC.

Finally, excluding the absence of extensions and ABI support-
ing, there are only several defects that Loongcc exposed during the
build process. These defects are mainly about load type conversion
during WHIRL2OPS in CG, side effect judge error during Local
Register Allocation in CG, and variable argument function inline
in INLINE.

4.2 Bootstrap

Both the cross and native bootstrapping have been accomplished
for Loongcc. For native bootstrapping , since Loongcc just works
like a common user space application, the mainly problem is about
defects fixing. While for cross bootstrapping, the fact that Loongcc
does cross compilation from X86 host to MIPS target imposes more
challenges to support bootstrap than those native compilers, due to
different environment settings (architectures, systems, preproces-
sors, libraries, etc) between the host and target platforms.

At the meantime, Loongcc contains 50,000 source files, about
7 million lines of C/C++ code, and a huge number of optimiza-
tion modules, which greatly increases workload and difficulty of
bootstrap. Considering those challenges and difficulties, we ad-
justed the front-end of the compiler to identify the available pre-
processors and switch them on-fly; and then improved a few opti-
mizations with defects to adapt them with large file compilation
and special run-time input; we also applied some techniques to
minimize Global Offset Table(GOT) at link time, which effectively
avoided its overflow. Currently, bootstrap of Loongcc is success-
ful on both X86 and MIPS platform with all optimization levels
(00-03), which indicates its excellent robustness.

5. Experimentation

The main part of this section describes experimental results asso-
ciated to the performance and robustness enhancement illustrated
in Section 2. We have used SPEC2006 test suites [32] and Poly-
bench [31] to benchmark the performance, and SuperTest to test
the quality and robustness. If not specified, all the testing is con-
ducted on Loongson 3B machines (CPU model ICT Loongson-3B
V0.6 FPU VO0.1) with 8 cores at 1 GHz.

5.1 Performance
5.1.1 SPEC CPU 2006 Performance

The followings are performance of the 8 selected optimizations
mentioned in Section 2. Because Loongson 3B had not yet finally
released when the optimizations were firstly implemented, Loong-
son 3A has all the features of which these optimizations take advan-
tage, and the micro-architecture of Loongson 3A and Loongson
3B are similar, all the results were test on Loongson 3A platform.

The baseline of the followings speedup is the existing peak
performance of each benchmark. These peak performance is based
on ” — 037, ” — ipa” with some additional optimization flags
for each benchmark. We used runspec to invoke all testcase, ran
each testcase at least 3 times using reference input. Because all
the test cases are single threaded, all tests run exclusively with
Reference as input, there is almost no variation (< +3%) for the
experiment result, except 481.wrf (< +4%), 459.GemsFDTD (<
+6%), 470.1bm (< +£7%). To offset these variations, we use the
arithmetic mean of all the evaluations as the final result.

Multiply-add Instruction Generation (MADD) 12 cases have
speedup after adopting Mutiply-Add optimiztion. The most sig-
nificant three testcases are 454.calculix 32.93%, 436.cactu-
SADM 18.56%, 481.wrf 12.71%.

Software Prefetch (PREFETCH) 14 cases have speedup af-
ter adopting software prefetch. The most significant three test-
cases are 462. libquantum 128.69%, 437.leslie3d 34.81%,
481.wrf 32.33%.

Load-Quad Word Instruction Generation (LQ) 7 cases have
speedup after adopting Load-quad word optimization. The most
significant three testcases are 401.bzip2 7.03%, 450.soplex 3.55%,
459.GemsFDTD 2.44%.

1.1
BASE =—=1
SPEEDUP mmmmm
1.05
Q.
3
® 1
Q
Q.
%]
0.95
0.9

(¢]

Q. 8 < 1,
R ’0,17«0

Figure 9. Geomean of all SPECO6 testcase of the 8 selected opti-
mizations

Branch to Trap Transformation (BTRAP) 7 cases have speedup
after adopting branch to trap optimization. The most significant
three testcases are 400.perlbench 10.60%, 464.h264ref 5.06%,
401.bzip2 5.05%.

Conditional Move Instruction Generation (CMOV) 4 cases
have speedup after adopting conditional move optimization. The

most significant three testcases are 403.gcc 3.80%, 458.sjeng 1.55%,

481.wrf 1.14%.

Struct Layout Optimization (SLO)
is 462.libquantum 105.94%.

The most significant testcase

Loop invariant code motion optimization (LICM) 6 cases have
speedup after adopting Loop invariant code motion optimization.
The most significant three testcases are 447.dealll 9.09%, 473.as-
tar 5.73%, 464.h264ref 4.99%

Memory Pool Reorganization (MP) The most significant test-
case is 483.xalancbmk 80.58%.

Fig 9 shows the geomean peak performance improvements of
SPEC CPU 2006 whith each of these optimizations. The BASE
bar is the geomean of existing peak performance of each test case
before the optimization was implemented. The SPEEDUP bar is
the geomean of the following performance perf_max of each test
case.

perf_max = max (peak , peak with optimization on)

For all the Loongson feature based optimizations, multiply-add
instruction generation has the most significant geomean speed-up
by 4.0%, since plenty of floating-point testcases can take advan-
tage from this feature. Branch to trap transformation, load quad-
word instruction generation and conditional move instruction gen-
eration have improved the performance by 1.8%, 0.7% and 0.2%
respectively. For memory locality optimizations ,software prefech
can get a speedup of 8.9% for all SPEC CPU 2006 testcases due
to memory access latency decreasing, structure layout optimization
can also significantly improve the performance by 4.1%, and mem-
ory pool optimization 1.9% due to the locality improvement. For
loop invariant code motion in CG, a speedup of 0.6% have been
attained.

Fig 10 shows SPEC CPU 2006 performance built by Loongcc.
In order to give a clearer impression of the performance, we com-
pare Loongcc to GCC . For Loongcc, we use a cross build version
and peak options with optimizations metioned . For GCC, We use
GCC 4.4 native build compiler. In order to fully exploit the perfor-
mance, all the testcase are built using N32 Application Binary Inter-
face. As far as we know, for the Loongson 3 target, GCC’s highest
performance comes from the O3 build, so we put the performance
of GCC O3 and Loongcc peak together. All the result were tested
on Loongson 3B processor running at 1GHz with 4GB memory.
We note that there are two testcases, 445.gobmk and 444.namd, of
which Loongcc has performance degradation comparing to GCC.

GCC -O3 Ratio Performance s
Loongcc Ratio Performance

Figure 10. SPEC CPU 2006 Performance compare to GCC on Loongson 3B

14 - BASE =——= -
12 | POLY+SIMD mmmmm |
10 | E

Time (secs)

o N M O
-

]
—
I
-

_—
|

]

—

B P q % 4 S,
%Y, K %%, %@ %o, %,
& % 2 T
% 7 %,
s
%

Figure 11. Base and Poly+SIMD Performance of Selected bench-
marks from Polybench on Loongson 3B

A preliminary performance analysis has been done on these two
cases, showing that 445 have more register spills than gcc, while
444 has more branch mis-predication.

5.1.2 Polyhedral and Auto-vectorization performance

Polybench 3.1 consists of 30 kernels extracted from core numeri-
cal algorithms, such as Jacobi method (jacobi-1d/2d), 2-D Gauss-
Seidel Iteration(seidel-2d), implicit finite-difference time-domain
(ADIL FDTD) method. It is designed to test the efficiency of Poly-
hedral based optimization and vectorization. As explained in Sec-
tion 2 the optimization objective of polyhedral based techniques is
to reduce cache misses by tiling and fusion; the optimization objec-
tive of the auto-vectorizer is to maximally utilize the Loongson 3B
SIMD unit. Figure 11 shows the testcases which have performance
and their speedup of polyhedral based optimization together with
auto-vectorizer optimization using a preliminary version of poly-
hedral framework and auto-vectorization of Loongcc.

5.2 Robustness

Table 1. Failure rate comparing to GCC on SuperTest benchmark suite

00 02 03
Loongec | 0.25% | 0.45% | 0.35%
GCC44 | 1.23% | 1.10% | 1.10%

To evaluate the quality of our Loongcc after the intensive
robustness enhancement, we have used SuperTest test suite. Su-
perTest is the world’s most comprehensive compiler test and val-
idation suite that is coming from ACEs 30+ years of experience
and expertise in compiler construction. The SuperTest suite con-
tains over eighteen thousand source files and provides well over 2

million quality and conformance tests [10]. As shown in the Ta-
ble 1, Loongcc has a better SuperTest pass rate compare to GCC
4.4 using 00, O2 and O3.

Besides the previous unit test, Loongcc also successfully built
and boot a MIPS-64 Linux kernel on Qemu simulators, which is
also a good proof for Loongces robustness [41]. According to
the test, Loongcc can successfully build a MIPS Linux kernel that
can run on simulator. The other applications that we have tested
including Mplayer video player(svn trunck 2010-4-1), GCC(4.6),
binutils(svn trunck 2011-07-07).

6. Future Work and conclusion

We have developed a set of optimization methods to improve the
memory traffic and utilize the features of Loongson 3. The perfor-
mance results are satisfactory. Moreover, after intensive efforts for
promoting the functionality and quality, our Loongcc is capable to
compile very complex systems such as Linux kernel, and the cor-
rectness based SuperTest suite is superior to GCC. However, there
are two major issues we plan to solve in the near future primarily:
(1) to regularize the loop such that its array accessing sequence be-
come 45-degree angled in the time/space coordinates by data/code
layout rearrangement. (2) to calculate the combinatorial optimiza-
tion objective with considering SIMD unit, multi-core and memory
hierarchy, based on the architecture of Loongson 3B.

Acknowledgments

Since Loongcc derived from Open64 trunck, we would thank all
the Open64 contributors firstly for all their works. We are also
grateful to developers of MIPSPro, Pathscale and ORC for their
contributions to the open source society. Zhou Shuchang and Gao
Zhitao have done plenty of works for the branch to trap transfor-
mation and structure layout optimization. Wang Zhenjiang gave us
lots of help to make DPA work in Loongcc compiler. Yang Shuxin
have done a ORC version of LICM, which makes our LICM design
and implementation much more easier. Lai Jianxin, Zhu Qing and
Yu Gang in HP shared all their Linux kernel building experience
with us. We would also like to thank the anonymous reviewers for
their precious remarks which help improve this paper.

References

[1] Loongson 3A CPU details. http
//www.loongson.cn/ EN/product_info.php?id = 35

[2] Loongson 3B CPU details. http

//www.loongson.cn/ EN[product_info.php?id = 33

[3] HASSABALLAH M, OMRAN S, MAHDY Y B. A Review of SIMD
Multimedia Extensions and their Usage in Scientific and Engineering
Applications.Comput. J., 2008(6):630649.

[4] TORRES G. Inside the Intel Sandy Bridge Microarchitecture, 2010.
http . [/www.hardwaresecrets.com/article/Inside — the — Intel —
Sandy — Bridge — Microarchitecture/1161/1.

[5] WALRATH J. Bulldozer at ISSCC 2011 - The Future of AMD Proces-
sors, 2011. http : [/www.pcper.com[reviews/Processors/Bulldozer —
ISSCC - 2011 — Future — AMD — Processors.

[6] Intel AVX - Intel Software Network. http : //software.intel.com/en —
us/avx/

[71 WEIWU HU Y C. GS464V: A High-performance Low-power XPU
with 512-bit Vector Extension. HOT CHIPS.

[8] HU W, WANG R, CHEN Y, et al. Godson-3B: A 1GHz 40W 8-core
128GFLOPS processor in 65nm CMOS. Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International.2011

[9] Zhou Shuchang, Liu Ying, Lu Fang, Yin Le, Huang Lei, Li Shuai,
Ma Chunhui, Gao Zhitao, Lian Ruiqi, Open64 on MIPS: porting and
enhancing Open64 for Loongson II, Open64 Workshop at CGO 2009.

[10] ACE Associated Computer Experts bv ACE Associated Compiler Ex-
perts bv ACE Consulting bv, http://www.ace.nl/compiler/supertest.html

[11] Matteo Frigo, Volker Strumpen, The Cache Complexity of Multi-
threaded Cache Oblivious Algorithms, Theory of Computing Systems
(2006) Volume: 45, Issue: 2, Publisher: ACM Press, Pages: 203-233

[12] U. Bondhugula . Effective Automatic Parallelization and Locality Op-
timization Using The Polyhedral Model. PhD dissertation, The Ohio
State University ,2010.

[13] Peng Zhao, Shimin Cui, Yaoqing Gao, Raul Silvera, Jose Nelson
Amaral. Forma: A Framework for Safe Automatic Array Reshaping,
Transactions on Programming Languages and Systems (TOPLAS) 2007,
30(1).

[14] Todd C. Mowry, Monica S. Lam, Anoop Gupta. Design and Eval-
uation of a Compiler Algorithm for Prefetching. Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems(ASPLOS), 1992

[15] Zhenjiang Wang, Chenggang Wu, and Pen-Chung Yew. 2010. On im-
proving heap memory layout by dynamic pool allocation. International
Symposium on Code generation and optimization (CGO ’10). ACM,
New York, NY, USA, 92-100

[16] YANG Shu-Xin, XUE Li-Ping, ZHANG Zhao-Qing. Loop Invariant
Code Motion in Code Generator. Computer Science, 2004, 31(11):158-
161

[17] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compil-
ers: Principles,Techniques, and Tools (2nd).Addison-Wesley,ISBN-
100321486811,2006.

[18] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul.
The Polyhedral Model Is More Widely Applicable Than You Think. In
Proceedings of CC’10 International Conference on Compiler Construc-
tion, LNCS 6011, pages 283-303, Paphos, Cyprus, March 2010.

[19] D. K. Wilde, A library for doing polyhedral operations, International
Journal of Parallel, Emergent and Distributed Systems, Volume 15, Issue
3 & 4 December 2000.

[20] Cérib Bastoul, Albert Cohen, Sylvain Cabala, Saurabh Shard and
Olivier Temam,Putting Polyhedral Loop Transformations to Work,
Putting Polyhedral Loop Transformations to Work. Lecture Notes in
Computer Science, 2004, Volume 2958/2004, 209-225,

[21] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling
Problem (I) One Dimensional Time. Journal of Parallel Programming
1992, Volume 21, Number 5, 313-347.

[22] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling
Problem (II) Multidimensional

[23] WRaP-IT,WHIRL Represented as Polyhedra - Interface Tool.
An Open64 Plug-In for Unified Polyhedral Transformations.
http : [/www.lri.fr] girbal/site_Pratt/

[24] Louis-Noél Pouchet, Cédric Bastoul, Albert Cohen and Nicolas Vasi-
lache. Iterative Optimization in the Polyhedral Model: Part I, One-
Dimensional Time. In Proceedings of International Symposium on Code
Generation and Optimization 2007 (pp.144-156). San Jose, CA: ACM.

[25] Louis-Noél Pouchet, Cédric Bastoul, Albert Cohen and Nicolas Vasi-
lache. Iterative Optimization in the Polyhedral Model: Part II, Multidi-
mensional Time. Conference on Programming Language Design and Im-
plementation, 2008, vol. 43, pp. 90-100.

[26] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. Pro-
gramming language design and implementation 2008 (pp. 101-113).
New York:ACM.

[27] William Pugh and the Omega team, http
//www.cs.umd.edu/ pro jects/omega/omega.html/

[28] Polyhedral optimizations for LLVM, http
[[wiki.llvm.org/ Polyhedral, ptimization sramework

[29] GRAPHITE: Polyhedral Analyses and Optimizations for GCC, http :
//gcc.gnu.org/wiki/Graphite

[30] LI Luican, H. Zhu, F. Balasa , Reducing the dynamic energy con-
sumption in the multi-layer memory of embedded multimedia process-
ing systems, Workshop on Synthesis and System Integration of Mixed
Information technologies (SASIMI 2007), Sapporo, Japan, Oct. 2007.

[31] PolyBench — Homepage of Louis-Noél Pouchet, http
//www.cse.ohio — state.edu/ ~ pouchet/software/polybench/

[32] designed to evaluate the speed and request-handling,
www.spec.org/benchmarks.html

[33] Lee, R.B. Accelerating multimedia with enhanced microprocessors.
Micro 1995

[34] Ling Kun, Hu Shiwen, Lian Ruiqi, Optimization of the Intrinsic Sup-
port in Loongcc Compiler for Loongson CPU’s SIMD Extensions. High
Performance Computing Technology, 2011.6:38-42

[35] EICHENBERGER A E, WU P, O’BRIEN K. Vectorization for SIMD
architectures with alignment constraints. Conference on Programming
language design and implementation, 2004:82-93

[36] Mohamed-walid Benabderrahmane and Louis-noel Pouchet and Al-
bert Cohen and Cédric Bastoul, The Polyhedral Model Is More Widely
Applicable Than You Think, 2010, LNCS, Paphos, Cyprus, Classement
CORE : A, nombre de papiers acceptés : 16, soumis : 56,Springer-Verlag.

[37] ALLEN R, KENNEDY K. Automatic translation of FORTRAN pro-
grams to vector form. ACM Trans. Program. Lang.Syst., 1987, 9:491.

[38] LARSEN S, AMARASINGHE S. Exploiting superword level paral-
lelism with multimedia instruction sets. Conference on Programming
language design and implementation, 2000.

[39] Feilong Huang. Building Linux Kernel with Intel C++ Compiler for
Linux. Intel White Paper. 2008

[40] Jake Edge. LFCS: Building the kernel with Clang.
http://lwn.net/Articles/441018/

[41] Qing Zhu , Tao Wang , Gang Yu , Kun Ling , Jian-xin Lai. Build Linux
kernel with Open64. Open64 Workshop at CGO 2009

