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I. Introduction 

 Perhaps the strongest argument for using SAT scores in college admissions (made by, e.g., 

Barro, 2001; McWhorter, 2001; Camara, 2001) is that these scores help to predict applicants’ 

eventual performance in college.  It is in nobody’s interest to admit a student who is unprepared to 

succeed in college, so any tool that helps to predict success has clear value in the admissions process. 

 A long literature has established the predictive validity of the SAT score for collegiate 

performance, usually measured as the grade point average (GPA) in the freshman year.1 Predictive 

validity studies are often interpreted as evidence for statements such as “The SAT has proven to be 

an important predictor of success in college. . . . SAT scores add significantly to the prediction” 

(Camara and Echternacht, 2000).  There are two important aspects of this kind of interpretation.  

First, it abstracts from issues of causal inference:  The causal path underlying any correlation 

between a predictor variable and student outcomes is irrelevant, so long as the former variable helps 

to predict the latter.2  Second, the conclusion that the SAT “add[s] significantly to the prediction” is 

dependent on the particular information used in the baseline, non-SAT prediction.  Traditional 

validity studies use only a single measure, the high school grade point average, for this.3 

 But if validity evidence is to support the use of the SAT in admissions, it is crucial to 

examine the SAT’s predictive power over and above the information provided by the entirety of the 

rest of the college application.  If the SAT adds substantial information, colleges may be “leaving 

money on the table” if they do not consider it in admissions.  By contrast, if all of the information 

                                                 
1 Examples include Bridgeman et al. (2000); Camara and Echternacht (2000); Stricker (1991); and Willingham et al. 
(1990). 
2 Indeed, it is not clear what it would mean for a test score to have a causal impact on college performance.  Clearly, 
interventions that raise SAT scores might also improve future performance, but test coaching, cheating, re-taking the 
exam (Clotfelter and Vigdor, 2003), and studying the underlying material, all of which might raise SAT scores, would be 
expected to have quite different impacts on future performance. 
3 Willingham (1985) and Willingham and Breland (1982) explore a few non-standard predictor variables. 
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contained in the SAT score is otherwise available to admissions officers, it is difficult to see what is 

lost by discarding the SAT. 

 Colleges frequently choose not to use available information about students’ future 

performance in admissions.  For example, athletes are known to earn lower grades than do non-

athletes who otherwise looked equally prepared for college (i.e., had similar SAT scores and high 

school grades) (Shulman and Bowen 2002), but it is nevertheless unheard of to give preferences in 

admissions to non-athletes over elite football players with similar numerical credentials.  Similarly, 

male applicants and the children of alumni are often given preferential treatment, even though there 

is evidence that they underperform relative to females and non-legacies, respectively (Espenshade, 

this volume).  This occurs for the simple reason that predicted performance, while often important, 

is not the only criterion in admissions decisions:  Colleges also care – entirely legitimately – about 

the quality of their football teams, about gender balance in their dorms, and about the happiness of 

their alumni. 

 But the decision to ignore the predictive power of athletic prowess, gender, and legacy status 

in admissions does not mean that these characteristics can be neglected in statistical assessments of 

the SAT’s validity.  Recall that validity evidence is taken to support the use of SAT scores in 

admissions because this use permits the admissions office to do a better job of distinguishing 

qualified from unqualified applicants than it could do without the SAT.  What is at issue here is how 

well the admissions office could predict performance, not how well it actually does.  If the admissions 

office has access from other sources to the information provided by the SAT but chooses not to 

make use of it, there is little value in adding the SAT to the available information set, as there is no 

reason for a rational decision process to take more account of the SAT than of the other sources of 

the same information. 
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The same argument applies to variables that are seen as inappropriate for use in admissions.  

For example, many colleges use “need blind” admissions, seeing it as inappropriate to consider an 

applicant’s ability to pay in admissions decisions even though financial resources are likely predictive 

of future grades.  To the extent that the SAT’s predictive power is found to reflect its association 

with such traits, there is no more basis for relying on the SAT than for using the underlying traits 

themselves.  In the most extreme case, if the SAT adds zero predictive power to what is otherwise 

available from disallowed admissions variables, it would be bizarre to allow the SAT to “launder” 

variation that the college is unwilling to use directly.  (Or, rather, a college that resents the limitation 

might be willing to launder the disallowed variable through the SAT score, but in this case it is the 

SAT’s appearance of neutrality rather than its predictive power that is of value.)  Even in less 

extreme cases, if a substantial portion of the information provided by SAT scores about future 

performance is also available from inappropriate admissions variables—even if these variables lack a 

simple causal relationship with either the SAT or the performance measure—then only the portion 

of the SAT’s predictive power that is not otherwise available should count in an assessment of the 

SAT’s ability to contribute to the admissions office’s predictions.4 

This concern is empirically relevant.  It is well known that SAT scores are strongly correlated 

with applicants’ race and with other family background characteristics.  This raises the possibility 

that SAT scores may derive much or all of their predictive power for collegiate performance from 

these correlations.  That is, it may be that what a high SAT score really tells us is that the student is 

likely to have come from an advantaged background; that she probably has supportive parents and 

enough financial resources to focus on her schoolwork; and that she attended a well-functioning 

                                                 
4 One could reasonably take this argument even farther.  In employment discrimination law, for example, the doctrine of 
“disparate impact” states that even variables that have independent predictive power for job performance are suspect if 
they are strongly correlated with membership in a protected class, and employers can be held liable for their use in hiring 
if it can be shown that an alternative variable that is not so strongly correlated would satisfy the employer’s legitimate 
business interests.  See, e.g., Griggs v. Duke Power Co., 401 U.S. 424, and 42 U.S.C. §2000e-2(k)(1)(A)(ii). 
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high school that successfully instilled good study habits that she will bring with her into college.  

These traits are indisputably associated with good performance in college, so an effort to identify 

well-prepared students should certainly consider them.  But they – or reasonably accurate proxies – 

are also available to the admissions office, which knows which high school an applicant attended 

and can usually infer a good deal about the applicant’s family background. Thus, if the SAT is merely 

serving as a signal of these sorts of background traits, it will appear to be a strong predictor in simple 

validity models but in fact will add nothing to the admissions office’s ability to distinguish qualified 

from unqualified applicants.   

In earlier work (Rothstein, 2004), I found that much of the SAT’s apparent predictive power 

in simple validity models was indeed attributable to the exclusion of student background variables 

from these models.  When I added controls for the student’s own race and for the demographic 

composition of her high school, the SAT’s predictive validity was reduced by 50% or more.   

In this chapter, I dig deeper into this result.  I focus on characteristics of the student’s high 

school. The demographic characteristics and test performance of the high school attended are quite 

powerful proxies for family background, perhaps because parents who are involved with choosing 

good schools for their children tend also to be involved with their children’s education in other 

ways.  Moreover, admissions officers know a great deal about the high schools that applicants 

attend, and can and do consider this information in admissions.5  The SAT can contribute to the 

quality of admissions decisions only if it provides additional information beyond what is otherwise 

available.   

                                                 
5 One commonly hears, for example, that selective colleges give preferences to students from schools that have 
historically sent many ultimately-successful students to the college in question.  Although I do not have access to 
measures of the performance of students from prior cohorts, the results presented here suggest that this is probably a 
useful strategy for identifying students likely to succeed. 
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I demonstrate that simple, widely-available school-level variables are important predictors of 

both individual SAT scores and collegiate performance.  In particular, students from schools with 

high average test scores earn substantially higher freshman GPAs (hereafter, FGPAs), on average, 

than do students with similar scores from schools with lower averages.  This partly reflects a 

correlation of the school average SAT score with other characteristics of the school:  Schools with 

relatively low shares of black and Hispanic students, with high shares of Asian students, with parents 

with high levels of education, and with high scores on state accountability exams typically have 

higher average SAT scores and higher average FGPAs than do more disadvantaged schools.  

However, even when all of these characteristics are controlled, the school average SAT retains 

substantial predictive power for students’ college performance. 

It is worth emphasizing again that this result says nothing about causality.  Although it is 

certainly possible that there is a direct causal path leading from school composition to future student 

performance—for example, students may learn better study habits when surrounded by students 

with highly educated parents—there are a variety of other hypotheses that could explain the 

predictive relationship.  To take but one example, white, highly educated families may seek out well-

run high schools, leading school-level demographic characteristics to serve as a proxy for difficult-

to-measure school quality in prediction models. 

Colleges would do a better job of identifying well-prepared applicants if they considered 

school-level demographic variables.  They may not wish to conduct admissions in this way – giving 

preferences to applicants from demographically advantaged high schools and from schools with 

high average test scores – as diversity or equity objectives may conflict with the goal of admitting the 

students most likely to succeed (by conventional measures).  However, it is important to recognize 

that using the SAT in admissions effectively does this.  Moreover, reliance on validity models that do 

not distinguish between within- and across-school variation in SAT scores obscures the role that 
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school-level demographic variation plays in these models.  Indeed, I find that the exclusion of 

school-level variables from validity models leads to substantial overstatement of the independent 

importance of the individual SAT, as within-school differences in SAT scores have much less 

predictive power than do across-school differences.  Only the within-school component can 

plausibly be called the individual SAT score’s predictive contribution.  The results thus suggest that 

the SAT is substantially less useful as a tool for identifying qualified students than would be 

indicated by traditional validity studies. 

II. Omitted Variables in the Basic Validity Model 

Rothstein (2004) discusses many of the technical details of predictive validity modeling.  The 

appendix to this paper provides a simpler discussion of those aspects that are relevant here.  But it is 

possible to discuss the issues at hand without reference to equations.  I attempt to do so here. 

The simplest possible estimate of the SAT’s predictive validity is the raw correlation between 

SAT scores and FGPAs.  But this provides only an upper limit to the SAT’s predictive contribution.  

It is widely recognized that other variables—most commonly, the high school GPA or class rank—

are available for prediction, and that the SAT’s contribution is only the extent to which predictions 

are improved by its addition to the model.  This is implemented by estimating a multiple regression 

of FGPAs on SAT scores and high school GPAs.  Multiple regression is a statistical tool that allows 

us to tease apart the separate information in the two predictor variables.  The SAT coefficient tells 

us the average difference in FGPAs between students with the same high school GPA but SAT 

scores that differ by one point; similarly, the high school GPA coefficient tells us how much of an 

improvement in FGPAs we can expect by admitting students with higher high school GPAs but the 

same SATs.  The SAT’s contribution to predictions could be measured by its regression coefficient, 

but is more typically measured by its contribution to the “goodness-of-fit” of the regression:  How 
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much smaller are prediction errors, on average, when both the high school GPA and the SAT score 

are used as predictors than when only the high school GPA is used?  In general, we can expect the 

SAT’s contribution to be smaller by either measure when it is viewed as an addition to a baseline 

prediction that uses the high school GPA than when it is considered in isolation. 

Traditional validity modeling stops with the high school GPA, but there is no principled 

reason for this.  Ideally, a number of other variables—the quality of the essay, the strength of the 

recommendation letters, a measure of the difficulty of the high school curriculum, etc.—should be 

included in the prediction model along with the SAT and high school GPA.  Typically, these are 

excluded simply because they are much more difficult to measure, and because the data sets used for 

validity estimation do not provide the necessary variables.  Once again, if additional variables could 

be added, the SAT’s estimated contribution would almost certainly decline.6  As it makes no sense to 

credit the SAT with predictive power that is available in any case from other aspects of the 

application, the conceptually correct measure of the SAT’s contribution derives from a prediction 

model that includes all other variables considered in the admissions decision. 

 It is slightly less clear that variables not considered in admissions but available at the time of 

the student’s application should be included as predictors.  Consider, for example, the racial 

composition of the high school, at a university that practices race-blind admissions.7  It is entirely 

conceivable that the racial composition of the school is correlated both with SAT scores and with 

FGPAs.  Suppose, hypothetically, that the SAT’s regression coefficient declined to zero when the 

school racial composition was included in the model; that is, that students with high SAT scores 

earn no higher FGPAs, on average, than students with lower SAT scores from schools of similar 

                                                 
6 It is in principle possible for additional variables to lead to a larger SAT coefficient, but only if these variables are 
negatively correlated with the SAT.  An example might be if students with strong essays had lower SAT scores but 
higher FGPAs than students with weaker essays.  
7 I assume for this hypothetical that “race-blindness” precludes direct consideration not just of individual race but also of 
the school racial composition, though this need not be true. 
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racial composition.  This would indicate that the SAT’s predictive power for FGPAs in simple 

prediction models derived entirely from its association with the school racial composition, and that 

an admissions office that had access to the racial composition variables would obtain no additional 

information about applicants’ potential from individual SAT scores.  At our hypothetical university, 

the former variables are not available for admissions, so predictions are improved by using the SAT 

score. But this hardly seems consistent with the goal of race-blindness:  The SAT functions in the 

admissions process merely as a proxy for the disallowed race variables.  A university that is serious 

about race-blindness should not be willing to use the SAT to “launder” the disallowed variation, so 

should eschew its use in admissions.  Similarly, a researcher should consider that the SAT score 

provides no incremental information about students’ eventual performance, a conclusion that is 

unaffected by the university’s decision not to take advantage of all of the available information. 

 In the real world, of course, things are not as simple as in this hypothetical example.  As I 

demonstrate below, high school variables are indeed correlated with both SAT scores and FGPAs.  

Their inclusion in the validity model substantially reduces the SAT’s prediction coefficient, but does 

not drive it to zero.  Thus, the SAT provides some information about FGPAs beyond what is 

available from the school-level variables.  Nevertheless, because the school-level variables that I 

consider could be used in the admissions process, the portion of the SAT’s contribution to FGPA 

prediction in models that ignore these variables overstates the amount of independent information 

provided by the individual SAT score.  A more appropriate measure of the information provided by 

the individual SAT score derives from a richer prediction model that includes the school-level 

variables. 
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III. Data and Methods 

I use an unusually large and rich data set extracted from University of California (UC) 

administrative records.  The data contain observations on all California residents who applied to any 

of the UC campuses for admission as regular freshmen for the 1993-1994 academic year.  Variables 

include self-reported SAT scores8 and high school GPAs, as well as identifiers for the high school 

attended.  For those students who enrolled at one of the UC campuses, additional variables describe 

the campus attended, the major during the freshman year, and the grade point average during the 

freshman year.9 

These data have two important features that act to minimize sample selection problems 

which otherwise plague validity estimates.  (Statistical details of the selection issue are discussed in 

Rothstein, 2004.)  First, the campuses of the UC system are quite disparate in their selectivity.  Thus, 

while validity studies that use data from a single campus often rely on a very thin slice of the college-

going population, the UC sample represents a wide range of SAT scores and HSGPAs.  By itself, 

this reduces sample selection biases, which are most severe for observations close to the admissions 

threshold where exceptional unobservable characteristics would have been required to offset 

marginal SATs. 

The second advantageous feature of the UC data is that eligibility to the UC system is a 

known, deterministic function of SAT scores and HSGPAs.  Eligible students are guaranteed 

admission to at least one campus, while ineligible students can be admitted only “by exception,” 

with these exceptions limited to no more than 6% of each campus’s admissions offers.  I am able to 

                                                 
8 Scores are reported on the pre-1994 scale.  I do not have separate math and verbal scores, but only the composite.  
When I combine the UC data with auxiliary data sets that report post-1994, “recentered” scores, I convert the latter to 
the earlier scale. 
9 One of the eight campuses, Santa Cruz, allows students the option of taking courses without grades, and many students 
from that campus do not have valid GPAs.  Observations from that campus are dropped from all analyses here.   
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compute an approximate measure of eligibility;10 the admissions rules guarantee that any eligible 

student—regardless of his or her unobserved characteristics—had the option to attend the 

University of California.  It is at least plausible that the matriculation decisions of admitted students 

are uncorrelated with those students’ potential performance.  If this is true, estimates of prediction 

equations from the subsample of eligible students are unbiased estimates of those that would be 

obtained were FGPAs available for all applicants. 

Grading standards may differ across campuses or majors; if high SAT students are 

disproportionately drawn to engineering, for example, and if grades are systematically lower in 

engineering courses than in the humanities, the strength of the SAT-FGPA relationship will be 

artificially attenuated.   To avoid this, I control for full sets of campus and major effects in all 

specifications.   

I begin with simple decompositions of SATs, high school GPAs, and FGPAs into across- 

and within-high school components.  I then estimate a variety of prediction models that include 

individual SATs and high school GPAs as well as average SATs and GPAs at the high school as 

predictors.  I explore different computations of these averages—over students in the sample, over 

all UC applicants, and over all SAT-takers—with little effect on the results.  When the averages are 

computed over the sample used for the estimation of the regression, the individual SAT and high 

school GPA coefficients reflect only within-school relationships between the predictor variables and 

ultimate GPAs, while the school-average SAT and GPA coefficients reflect the predictive power of 

across-school variation over and above that of within-school variation.  I also explore specifications 

that add as additional predictor variables measures of the socioeconomic composition of the 

school’s student body and of the school’s scores on state accountability exams.  Finally, I discuss the 

                                                 
10 The full eligibility rules impose requirements on the high school courseload, and use a slightly different construct of 
HSGPA than my measure.  I ignore these complications, and assume that every student whose SAT scores and observed 
HSGPAs meet the eligibility threshold is in fact eligible. 
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relationship between my results and the literature on “overprediction” (Ramist, Lewis, and 

McCamley-Jenkins, 1993). 

IV. Within- and Between-School Components of the SAT  

Table 1 presents preliminary validity models, first on the full sample of matriculants at the 

University of California (Columns A-C) and second on the subsample of matriculants who were 

UC-eligible (Columns D-F).  Column C indicates, for example, that on average students whose SAT 

scores differ by 100 points but whose high school GPAs are identical earn FGPAs that differ by 

0.094 points, just a bit larger than the impact of changing one grade per semester from a B to a B+.  

When we compare students with identical SAT scores but different high school GPAs, each fifth of 

a high school grade point corresponds to an additional tenth of a college grade point, on average. 

As argued by Rothstein (2004), endogenous admissions decisions may bias prediction 

coefficients in models that include ineligible students relative to those that would be obtained were 

representative samples of applicants available.  The selection-on-observables of the eligibility 

determination may, if enrollment decisions are uncorrelated with ability, permit for unbiased 

estimation using the sample of eligible students.  Note, however, that the eligibility rule encompasses 

both SAT scores and high school GPAs (hereafter, HSGPAs), so only the model containing both 

(Column F) is even plausibly unbiased.  The HSGPA coefficient is notably larger in Column F than 

in Column C, consistent with the HSGPA’s important role (much larger than that of the SAT) in the 

eligibility formula.  Rothstein (2004) explores alternative specifications designed to detect bias 

deriving from endogeneity of matriculation or of campus or major choice, with little impact on the 

relevant coefficients. 

The key concern of this paper is the potential for differential predictive validity of the 

across- and within-school components of the variation in SAT scores.  As a preliminary step, Table 
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2 presents variance decompositions of SAT scores, HSGPAs, and FGPAs into across- and within-

school shares, computed from the estimation sample of eligible UC matriculants.  Column D of the 

table presents a similar decomposition for SAT scores in the population of California SAT-takers.  

Roughly one quarter of the variation in SAT scores is across schools.  This is much higher than the 

across-school share of variation of either HSGPAs or FGPAs. 

Table 3 presents an exploration of the predictive power of across- and between-school 

variation in SAT scores and HSGPAs in the UC-eligible sample.  Column A repeats the specification 

from Column F of Table 1.  Column B presents the SAT and HSGPA coefficients from a 

specification that includes fixed effects for each high school in the sample, allowing for arbitrary 

across-school differences in student achievement in college and identifying the predictive power of 

SAT and HSGPA only from contrasts among students at the same school.  Not surprisingly, these 

fixed effects add substantially to the predictive power of the regression.  Note, however, what 

happens to the SAT and HSGPA coefficients:  The SAT coefficient falls by nearly half, while the 

HSGPA coefficient rises substantially.  Evidently, SAT scores are much worse at predicting FGPAs 

within schools than they are in the sample as a whole, while HSGPAs are much better at within-

school prediction.  (The latter result, of course, is consistent with the idea that HSGPA scales differ 

substantially across schools, perhaps in part a consequence of differential grade inflation.) 

The across- and within-school distinction is made clearer in Column C, which replaces the 

school fixed effects with the sample means of HSGPA and SAT.  If the across- and within-school 

variation in these variables were equally predictive of FGPAs, the school means would have 

coefficients of zero.  The positive coefficient on the school average SAT indicates, once again, that 
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across-school SAT variation is substantially—over three times11—as predictive of college 

performance as is within-school variation.  The individual and school mean HSGPA have opposite 

signs and are similar in magnitude, indicating that within-school variation in HSGPAs is quite 

predictive of eventual FGPAs but that across-school variation provides very little information. 

The models in Columns B and C are not fair validity models, as they include as predictors 

information that is arguably unavailable at the time of the admissions decision, when it is impossible 

to compute average SATs among students who will eventually matriculate. The sample average 

SATs and HSGPAs in the high school that are used in Column C would be available only after 

admissions and enrollment decisions were completed, as only then would the sample be determined.  

Thus, it is possible that reliance on these measures is misleading about what an admissions office 

could do to use the across-school component of FGPAs in predictions. 

The remaining columns of Table 3 present specifications that estimate school averages over 

samples that are progressively closer to what might be available at admissions time.  In Column D, 

the averages are computed over all eligible UC enrollees (including those at UC Santa Cruz and 

others without valid FGPAs); in Column E over all eligible UC applicants, including those who did 

not ultimately enroll; and in Column F over all UC applicants, eligible or not.  None of these 

alterations has important effects on the prediction coefficients. 

All of the preceeding models have averaged SATs and HSGPAs over subsets of students 

who applied to the UC.  Even more readily available to an admissions office is the average SAT 

among all SAT-takers in the school, whether or not they applied.  I compute this using College 

Board data on all SAT-takers from the 1994 cohort (one year behind the cohort from which my UC 

sample is drawn).  Although students are asked their HSGPA when taking the SAT, it is reported 

                                                 
11 The difference in average FGPAs between two students whose individual scores differ by 100 points but whose high 
schools have the same average scores is 0.49.  If the schools’ average SATs differ by 100 points, maintaining the same 
100 point difference in individual scores, the predicted difference in FGPAs is 0.49 + 1.28 = 1.77.  
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only in discrete categories, so is not directly comparable to that available in the UC data.  As a result, 

comparable average HSGPAs among SAT-takers at the school are unavailable.  The lower panel of 

Table 3 repeats the earlier estimates without the school average HSGPA.  The exclusion of this 

variable reduces the school average SAT coefficient and inflates the coefficient on the individual 

SAT score.  Finally, Columns G and H measure the school SAT average over all UC-eligible SAT-

takers, whether or not they applied, and over all SAT-takers at the school.  This modification causes 

the school average SAT coefficient to decline notably, but has essentially zero effect on the other 

coefficients. 

V. School Demographics and Between-School SAT Variation 

It would arguably be legitimate to give preferences in admissions to students who attended 

good high schools.  On the other hand, many policymakers would, quite understandably, balk at the 

idea of basing admissions in part on the racial composition of the high school, or even at rewarding 

school quality if the quality measure turned out to be highly correlated with the fraction of white 

students at the school.  It is not clear a priori which of these extreme cases best characterizes the 

school average SAT score.  Thus, a central question for the interpretation of the results in Table 3 is 

the extent to which the school average SAT scores provide independent information about students’ 

preparedness, rather than simply proxying for school demographic characteristics. 

As a preliminary step toward analyzing this question, Table 4 presents models to explain the 

school average SAT score, averaged over all test-takers.  The sample in this table is public schools in 

California that sent at least one student to the UC in 1993-1994, and estimates are weighted by the 

number of test-takers at the school. 

As schools vary widely in the fraction of students who take the exam, and as test-takers are 

not sampled randomly from within the school population, an important concern in relating school 
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SAT averages with school characteristics is the potential bias introduced by the selectivity of the 

test-taking subpopulation.  The first model in Table 4 includes only a single explanatory variable, a 

measure of the fraction of students at the school who took the SAT.12  The coefficient on this 

variable is large and negative, indicating that schools with higher participation rates also have 

substantially higher scores.  This contradicts expectations about the sign of selectivity bias—one 

expects that test-takers earn higher scores than would non-takers—and suggests that there are 

important omitted factors that vary across schools and influence both test participation rates and 

scores (Clark, Rothstein, and Schanzenbach 2009).   

Column B adds to the model controls for the racial composition of the school.  Schools with 

high fractions of blacks and Hispanics have substantially lower SAT scores than do schools that are 

largely white.  Inclusion of these variables shrinks the selection coefficient substantially, though it is 

still significantly negative.  Column C further adds the average education of parents of the students 

at the school, measured on a 1-5 scale.13  This, too, is highly significant, indicating that students at a 

school whose parents are all college graduates earn SAT scores 130 points higher than do those 

from schools where parents all attended college but failed to graduate.  Inclusion of parental 

education has dramatic effects on the racial composition coefficients, and eliminates the effect of the 

school participation rate. 

Finally, Columns D and E add the “School Characteristics Index” (SCI) and “Academic 

Performance Index” (API).  The API is the score used by the California Department of Education 

in its school accountability program, computed from the distribution of scores on standardized 

                                                 
12 Specifically, the variable used is an inverse Mill’s ratio computed from the school SAT participation rate (Gronau, 
1974; Heckman, 1979) 
13 The parental education variable was collected in 1999 as part of the California school accountability program via a 
take-home survey.  There are thus two important sources of error:  First, response rates were less than perfect, with a 
response rate of about 80% at the average high school.  Second, a school’s parental education may have changed 
between 1993 and 1999.  (The latter would be a problem as well for the school racial composition, as this too is from 
1999.)  Either type of error would be expected to attenuate the coefficient. 
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exams given to all students in California schools.  The SCI is computed as the predicted value from 

a regression of the API score on the full set of demographic characteristics collected by the 

California Department of Education (Technical Design Group, 2000).  APIs are scaled to range 

from 200 to 1000, while SCIs range from 1 to 2. 

Both the SCI and API are important predictors of school SAT scores.  When the SCI is 

included, in Column D, the SAT participant selectivity coefficient finally becomes significantly 

greater than zero, as expected.  It becomes even larger when the API is added as well, in Column E. 

Of course, there is an important difference between the API score and the other measures, 

as this variable—unlike parental education, for example—plausibly measures the school’s quality as 

well as its demographic composition.  It is worth noting, however, that the addition of the API score 

to the model does not eliminate the effect of the demographic characteristics, suggesting that not all 

of the association between SAT scores and demographics can be attributed to school quality (at least 

as measured by APIs). 

Table 5 explores the impact of including these school-level variables in the FGPA prediction 

model.  Columns A and B repeat the specifications from Columns A and C of Table 3.  Columns C 

and D report the same specifications, this time estimated only on the subsample of students from 

California public high schools (where the demographic variables are available).  There is little 

difference between the two pairs of columns.  The remaining columns add the school demographic 

controls and, ultimately, the API score to the model.  The inclusion of the school racial composition 

reduces the coefficient on the school SAT average by about one quarter.14  Additional demographic 

characteristics have relatively little impact, and are generally insignificant.  On the other hand, when 

                                                 
14 A natural concern is that the school racial composition variables are proxying for individual race.  Rothstein (2004) 
explores models that include both the individual race and the school composition; both have predictive power for 
FGPAs.   
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the school API score is included (in Column H), it is has significant predictive power for FGPAs, 

and it causes the school mean SAT coefficient to decline by an additional 5%. 

The results in Table 5 indicate that a substantial portion of the school average SAT’s 

predictive power for FGPAs derives from its association with the school racial composition.  A 

substantially smaller additional portion derives from a component that is also reflected in the API 

score, though the API score retains substantial predictive power on its own. 

VI. Demographic Variation and Underprediction 

A long literature (Young, 2001, is a recent example) shows that race-blind models tend to 

overpredict the performance of black students, who have lower average SAT scores than white 

students and who tend to earn even lower relative FGPAs than would be predicted based on their 

SAT scores.  There is a close connection between this “underprediction” and the analyses conducted 

here.  It is straightforward to show that underprediction is equivalent to the result that between-race 

SAT gaps have stronger associations with FGPAs than do within-race SAT differences.  That is, 

whenever group A has lower average SAT scores than group B, group A’s performance will be 

underpredicted by a race blind model if and only if the SAT coefficient declines when a group 

indicator is added as a predictor variable. 

One implication of this result, in combination with the analyses shown earlier, is that 

standard approaches will tend to find evidence of overprediction of FGPAs for students from 

schools with below-average SAT scores or with demographic characteristics that are typically 

associated with below-average scores.  Table 6 presents a demonstration of this.  I first estimate a 

standard validity model, including only SAT scores and HSGPAs.  I then compute residuals from 

this model—individual students’ over- and under-performance—and regress them on school 

average SAT scores and on school demographic characteristics.  Positive coefficients in this latter 
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regression indicate that FGPAs are over-predicted for students with low values of the indicated 

variable and underpredicted for students with high values, holding all other variables constant.  

Table 6 thus indicates that standard models that do not take account of demographic variables 

systematically overpredict the FGPAs of students from schools with low average SAT scores, with 

high fractions black or Hispanic; with low fractions other races; and with low API scores.  By 

contrast, the individual SAT coefficient is negative, indicating overprediction for students whose 

SAT scores exceed the averages at their schools. 

VII. Conclusion 

The results presented here indicate that SAT scores are substantially more predictive of 

eventual student performance across high schools than within.15  In other words, the average SAT 

score at a student’s school is substantially more informative about that student’s eventual FGPA 

than is the student’s own score.  An admissions office that lacked individual SAT scores but used 

school mean scores (or good proxies for them) would not suffer greatly in the accuracy of its 

predictions.  On the other hand, an admissions office that ignored school mean scores would tend 

to over-predict the performance of students from low-scoring schools and under-predict the 

performance of those from high-scoring schools. 

One might conclude from this that colleges should give preferences to students from high-

scoring schools.  This would amount to penalizing students whose scores are higher than one would 

expect given their backgrounds, relative to other students from more advantaged backgrounds with 

similar test scores.  That is, students who are below average at high-scoring schools would be 

preferred over competitors who were above average at low-scoring schools.  Indeed, the optimal 

                                                 
15 A natural explanation for this result might be that the school average SAT score is more reliable than the individual 
score, so that inclusion of the average leads to substantially greater attenuation of the effect of the individual score.  As 
discussed in the Appendix, this effect, while certainly present, cannot account for the results. 



 19 

penalty is quite large:  A university choosing between applicant A and B, where A’s school has 

average scores 10 points larger than B’s school, should prefer A even if A’s own score is 20 points 

lower than B’s. 

This is the opposite of the way that colleges like to perceive themselves.  When the 

Educational Testing Service developed a formula in 1999 for identifying “strivers” (Marcus, 1999), 

students who performed better than expected given their circumstances, the implicit idea was that 

these would be students that colleges would take affirmative steps to recruit and admit.  But the 

predicted-performance-maximizing admissions rule is the opposite of this:  It would penalize strivers 

and instead provide what amounts to affirmative action for socioeconomically advantaged students.   

Whether this would represent desirable policy depends on one’s view about the appropriate 

role of school demographic characteristics in admissions decisions.  A non-trivial portion of the 

SAT’s across-school predictive power is due to its association with the school racial composition:  

Students from high-minority-share high schools earn lower FGPAs than do students from primarily 

white high schools, and the school average SAT score acts in part as a proxy for racial composition 

in models that exclude the latter.  Colleges that prefer not to discriminate against applicants from 

diverse high schools may prefer not to take advantage of the portion of the SAT average’s predictive 

power that derives from its association with racial composition variables, as to do so permits the 

SAT to “launder” the impermissible variables. 

Regardless of the college’s goals for admissions, the individual SAT score itself is less 

important than is implied by existing research.  The school average SAT, despite its association with 

school demographic characteristics, contains much of the information needed for predicting 

FGPAs.  Schools may wish to reduce the weight that they place on individual SATs, relying 

primarily on HSGPAs for within-school comparisons.  
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Technical Appendix 

The basic validity model relates the individual SAT score to the FGPA that the student 
ultimately earns: 
(1) FGPAi = 1 + SATi 1 + i. 
The SAT is judged to have predictive validity if it is an important predictor of FGPA.  One might 
use any of several measures of the SAT’s importance.  The coefficient 1, for example, measures the 
amount by which a student’s FGPA would be expected to exceed, on average, that of another 
student whose SAT score was one point lower.  Validity studies typically focus instead on an 
alternative measure,  
(2) R = corr(FGPA, SAT) = 1 * [Var(SAT) / Var(FGPA)]! 
This can alternatively be calculated as the square root of the traditional R-squared goodness-of-fit 
statistic from regression (1). 

As discussed above, typical validity models control for the students high school GPA 
(hereafter, HSGPA), and judge the SAT’s contribution only by the extent to which predictions are 
improved by its addition to the model.  This implies a regression of the form 
(3) FGPAi = 2 + SATi 2 + HSGPAi 2 + i. 
The SAT’s contribution might be measured by 2 or by the increment to R over a model that 
excludes the SAT.  These are related by 
(4) R = 2 * [ ( 1 – 2 ) * Var(SAT) / Var(FGPA)] !,  
where  = corr(SAT, HSGPA). 
 A standard omitted variables formula gives the relationship between 2 and 1: 
(5) 2 = 1 –  * 2, 
where  =  * [Var(HSGPA) / Var(SAT)] !.  Assuming that both  and 2 are positive, 2 will be 
smaller than 1.  Moreover, because (1 – 2) is less than 1, R must be less than R by an even 
greater degree:  ( R / R) " ( 2 / 1).  Thus, by either measure, the SAT’s estimated contribution 
must (weakly) decline with the addition of HSGPA to the prediction model. 
 Any additional control variables are simply added as additional controls in (3).  Once again, 
the SAT’s R necessarily declines when these are included.  For likely parameter values,  will 
decline as well, although it is in principle possible for it to increase.16  As it makes no sense to credit 
the SAT with predictive power that is available in any case from other aspects of the application, the 
conceptually correct measure of the SAT’s contribution is the  or R from a model that controls 
for all other variables available for consideration in the admissions decision. 

A. Selection, Bias, and Restriction of Range 
The discussion thus far presumed that the validity model, (3), was estimated on a random 

sample of applicants to a college.  This is infeasible, as FGPAs are only observed for those students 
who are admitted and who enroll.  The distribution of each variable, and the correlations among 
variables, are likely to be different in the sample of matriculants than in the population of applicants.  
This introduces two important complications.  First, sample selection may bias estimates of the 
regression coefficients in models like (3).  Second, even with unbiased estimates of 2 and 2, R 
may be biased by the “restriction of range” of SAT scores and HSGPAs in the sample of admittees, 

                                                 
16  would decline if the partial correlation of the added variables with SAT and the partial correlation with FGPA are of 
opposite signs.  
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as the admissions process almost certainly causes the variance of these variables (as well as 
Var(FGPA) and ) to be lower in the sample than in the population. 

The validity literature has long noted the second problem, and estimates of R are typically 
“corrected for restriction of range,” computed using estimates of Var(SAT) from population rather 
than sample data, with a similar correction for Var(FGPA).17  But the first problem has generally 
been ignored.  Rothstein (2004) points out that usual practice cannot be justified by any sample 
selection assumptions, and that restriction-of-range corrected estimates of the SAT’s validity are 
consistent only if sample selection is random (i.e. uncorrelated with  or SAT) conditional on 
HSGPA.  This is implausible at any college that considers the SAT in admissions.  With endogenous 
sample selection, 1 and likely 2 and 2 are biased.  Rothstein (2004) proposes an alternative 
procedure for restriction of range correction that produces consistent estimates of R so long as the 
coefficients of model (3) can be estimated without bias. 

In the current paper, I present only the coefficients from models like (3), and do not extend 
them to estimate R.  This avoids the complication of correction for restriction of range.  It is still 
necessary to obtain unbiased regression coefficients.  As noted by Rothstein (2004), sufficient 
conditions for unbiasedness are that all of the variables considered in the admissions decision are 
included as predictor variables in model (3), and that decisions to enroll once admitted are not 
correlated with the regression error .  These conditions are implausible in most contexts, as the 
researcher rarely has access to all variables used in admissions.  I argue in Section III, however, that 
it is somewhat plausible in the data used for the current analysis. 

B. Reliability 
No exam is perfectly reliable.  It is well known that measurement error in tests—an 

imperfect correlation between an underlying “true” score and the actual score obtained on a test of 
finite length—attenuates coefficients in prediction models.  Under conventional assumptions, 
standard formulae for errors-in-variables regression models give the large-sample attenuation bias 
(Deaton, 1997, p. 99).  Let r be the reliability of the SAT exam.  Then the coefficient of the 
univariate regression of FGPAs on SATs is attenuated by a factor r: 
(6) . 
The attenuation factor for a multivariate regression of FGPAs on SATs and other variables 
(HSGPA, etc.) is slightly more complex:  

(7) , 

where Q2 is the explained share of variance from a regression of SAT on the other included 
variables.  This is a declining function of Q2, so the more variables that we include in our model, the 
greater the attenuation of the SAT coefficient. 

This effect cannot be neglected in the current study, as declines in the SAT coefficient that 
derive purely from the addition of variables that “soak up” the signal in the SAT do not offer 
evidence for the differential predictive power of demographic and non-demographic components of 
the SAT score.  Moreover, because the school average SAT score is likely more reliable than is the 
individual SAT, its inclusion will tend to reduce the individual SAT coefficient even if across- and 

                                                 
17 Note that Var(FGPA)=Var( 2 + SAT* 2 + HSGPA* 2) + Var( ).  In range-corrected estimates of R, the first 
term of this is computed from population data (using sample estimates of the regression coefficients).  Var( ) is 
assumed consistently estimated from the sample residuals. 
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within-school variation in the characteristics measured by the SAT are equally predictive of future 
performance. 

Equation (7), however, helps us to understand the extent to which declines in the SAT 
coefficient with the addition of more variables can be written off as purely statistical.  The reliability 
of the SAT is quite high, above 0.9.18  Table 2 indicates that while SAT scores vary substantially 
across high schools—more than do HSGPAs or FGPAs—three-quarters of the variation in SAT 
scores is still within schools.  Thus, the addition of school effects to prediction models should be 
expected to reduce the attenuation factor in (7) from 0.9, with only the SAT included as a predictor, 
to 0.86 (=(0.9-0.25)/(1-0.25)), with the school effects.19  The small difference between these suggests 
that any large change in the estimated SAT coefficient cannot be attributed to reliability issues, and 
must indicate that SATs convey different information across and within high schools. 
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Table 1.  Basic validity models on full sample and eligible subsample

(A) (B) (C) (D) (E) (F)
SAT / 1000 1.36 0.94 1.28 0.94

(0.03) (0.03) (0.03) (0.03)
HS GPA 0.62 0.51 0.67 0.57

(0.01) (0.01) (0.01) (0.01)
N 18,711 18,711 18,711 17,504 17,504 17,504
R2 0.19 0.14 0.24 0.17 0.13 0.22

Full Sample UC-eligible subsample

Notes:  Dependent variable is freshman GPA.  All models include campus and major (as of the 
freshman year) fixed effects.  Statistics are uncorrected for restriction of range.  Sample in columns 
D-F excludes students who appear to be ineligible according to the UC published rules (and who 
therefore appear to have been admitted "by exception").



Table 2.  Across- and within-school share of variance of SATs, HSGPAs, and FGPAs

All SAT-takers
FGPA HS GPA SAT SAT

(A) (B) (C) (D)
Standard deviation 0.63 0.39 169 225

S.D. of school mean (indiv. level) 0.23 0.14 88 112
S.D. of deviation from school mean 0.58 0.36 144 195

Between-school share of variance 14% 13% 27% 25%
Within-school share of variance 86% 87% 73% 75%

UC students, eligible subsample



Table 3.  Validity models on eligible subsample, distinguishing within- and across-school variation

School averages are computed over:

Est.  
sample

Eligible 
applicants who 

enroll at UC

Eligible 
UC 

applicants
All UC 

applicants

Eligible 
SAT-
takers

All SAT-
takers

(A) (B) (C) (D) (E) (F) (G) (H)
SAT / 1000 0.94 0.50 0.49 0.49 0.49 0.53

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
HS GPA 0.57 0.73 0.72 0.73 0.72 0.68

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Mean SAT at school / 1000 1.28 1.27 1.33 1.34

(0.06) (0.06) (0.06) (0.06)
Mean GPA at school -0.63 -0.64 -0.72 -0.45

(0.03) (0.03) (0.04) (0.03)
School FEs n y n n n n
N 17,504 17,504 17,504 17,504 17,504 17,504
R2 0.22 0.34 0.26 0.26 0.26 0.25

SAT / 1000 0.59 0.59 0.59 0.62 0.64 0.67
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

HS GPA 0.62 0.62 0.62 0.62 0.63 0.62
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Mean SAT at school / 1000 1.11 1.12 1.16 1.05 0.89 0.86
(0.06) (0.06) (0.06) (0.05) (0.04) (0.05)

School FEs n n n n n n
N 17,504 17,504 17,504 17,504 17,251 17,260
R2 0.24 0.24 0.24 0.24 0.24 0.24

Notes:  All models include campus and major fixed effects.  Statistics are uncorrected for restriction of range.  Sample in 
all columns excludes students who are not UC-eligible.



Table 4.  Models for school average SAT scores

(A) (B) (C) (D) (E)
-179.0 -82.0 16.6 29.4 55.4
(12.2) (9.0) (8.8) (8.9) (9.4)

Fraction Black -372.1 -224.7 -78.8 -36.9
(19.1) (17.2) (30.7) (30.3)

Fraction Hispanic -266.4 -1.8 50.5 63.4
(9.9) (15.8) (18.0) (17.5)
-41.8 45.4 12.4 14.9
(14.5) (12.5) (13.6) (13.1)

130.1 62.5 49.6
(6.7) (13.6) (13.2)

493.8 308.4
(86.7) (87.9)

0.38
(0.05)

N 723 723 723 723 723
R2 0.23 0.70 0.80 0.81 0.82

Fraction other race (Asian, Native 
American, etc.)
Average parental education

Inverse Mills ratio

Notes:  Dependent variable is the school average SAT score, computed over all test-takers at the 
school.  Sample consists of public schools in California with non-missing data.  Regressions are 
weighted by the number of SAT-writers at the school.  Inverse Mill's ratio is computed from the 
measured school SAT participation rate.

School Characteristics Index

Academic Performance Index



Table 5.  School demographics and school average scores as predictors of collegiate grades

(A) (B) (C) (D) (E) (F) (G) (H)
Individual SAT / 1000 0.94 0.59 0.92 0.58 0.58 0.58 0.58 0.58

(0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)
Individual HSGPA 0.57 0.62 0.58 0.63 0.64 0.64 0.64 0.64

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
1.11 1.17 0.86 0.88 0.87 0.83

(0.06) (0.06) (0.08) (0.09) (0.09) (0.09)
HS:  Fraction Black -0.20 -0.21 -0.11 -0.10

(0.05) (0.05) (0.08) (0.08)
HS:  Fraction Hispanic -0.11 -0.13 -0.10 -0.09

(0.03) (0.04) (0.05) (0.05)
0.17 0.16 0.13 0.12

(0.03) (0.03) (0.03) (0.03)
-1.24 -6.18 -7.39
(1.64) (3.57) (3.59)

0.34 0.00
(0.22) (0.24)

0.53
(0.13)

N 17,504 17,504 14,141 14,141 14,141 14,141 14,141 14,141
R2 0.22 0.24 0.22 0.24 0.25 0.25 0.25 0.25

CA Public schools

Notes:  All models include campus and major fixed effects.  Statistics are uncorrected for restriction 
of range.  Sample in all columns excludes students who are not UC-eligible; columns C-H additionally 
exclude students from private or non-California high schools.

HS:  Average parental 
education / 100

HS:  Mean SAT in sample / 
1000

HS:  School Characteristics 
Index
HS:  Academic Performance 
Index / 1000

Full sample

HS:  Fraction other race (Asian, 
Native American, etc.)



Table 6.  School-level variables and over-/under-prediction

(A) (B) (C) (D) (E) (F) (G) (H)
Individual SAT / 1000 0.00 -0.32 -0.02 -0.33 -0.33 -0.33 -0.33 -0.33

(0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)
Individual HSGPA -0.06 -0.02 -0.06 -0.02 -0.01 -0.01 -0.01 -0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
1.01 1.05 0.74 0.78 0.77 0.73

(0.05) (0.06) (0.08) (0.09) (0.09) (0.09)
HS:  Fraction Black -0.19 -0.21 -0.11 -0.10

(0.05) (0.05) (0.08) (0.08)
HS:  Fraction Hispanic -0.11 -0.15 -0.11 -0.11

(0.03) (0.04) (0.05) (0.05)
0.15 0.14 0.11 0.10

(0.03) (0.03) (0.03) (0.03)
-1.79 -6.71 -7.75
(1.63) (3.55) (3.57)

0.34 0.03
(0.22) (0.24)

0.46
(0.13)

N 18,690 18,690 15,044 15,044 15,044 15,044 15,044 15,044
R2 0.00 0.02 0.00 0.02 0.03 0.03 0.03 0.03

CA Public schools

Notes:  Dependent variable in every column is the residual FGPA from a prediction model that is 
estimated on UC-eligible students and includes HSGPA, SAT, and campus and major fixed effects.  
Samples for reported regressions are not restricted to UC-eligible students.  Samples in columns C-H, 
however, exclude students from private or non-California high schools.

HS:  Average parental 
education / 100

HS:  Mean SAT in sample / 
1000

HS:  School Characteristics 
Index
HS:  Academic Performance 
Index / 1000

Full sample

HS:  Fraction other race (Asian, 
Native American, etc.)


