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Abstract—The Samsung Exynos family of cores are high-
performance “big” processors developed at the Samsung Austin
Research & Design Center (SARC) starting in late 2011. This
paper discusses selected aspects of the microarchitecture of these
cores - specifically perceptron-based branch prediction, Spectre
v2 security enhancements, micro-operation cache algorithms,
prefetcher advancements, and memory latency optimizations.
Each micro-architecture item evolved over time, both as part
of continuous yearly improvement, and in reaction to changing
mobile workloads.

Index Terms—microprocessor, superscalar, branch prediction,
prefetching

I. INTRODUCTION

Samsung started development of the Exynos family of cores

beginning in late 2011, with the first generation core (“M1”)

supporting the newly introduced ARM v8 64-bit architecture

[1]. Several generations of the Exynos M-series CPUs [2] [3],

here referred to as M1 through M6, are found most commonly

in the Samsung Exynos-based Galaxy S7 through S20 smart

phones, and are implemented in a variety of process nodes,

from 14nm to 7nm. The cores support the ARMv8 Instruction

Set Architecture [4], both AArch32 and AArch64 variants.

The cores are superscalar out-of-order designs capable of up

to 2.9GHz, and employ up to three levels of cache hierarchy

in a multi-node cluster. Each Exynos M-series CPU cluster

is complemented by an ARM Cortex-A series cluster in a

big/little configuration in generations one through three, and

in a big/medium/little configuration in subsequent generations.

Among the numerous details from this effort, this paper

selectively covers:

• Yearly evolution of a productized core microarchitecture

(M1 through M5) and future work (M6);

• Adaptations of the microarchitecture due to changes in

mobile workloads;

This paper is part of the Industry Track of ISCA 2020’s program. All of
the authors were employed by Samsung at SARC while working on the cores
described here. The authors express gratitude to Samsung for supporting the
publication of this paper.

• Deep technical details within the microarchitecture.

The remainder of this paper discusses several aspects of

front-end microarchitecture (including branch prediction mi-

croarchitecture, security mitigations, and instruction supply)

as well as details on the memory subsystem, in particular

with regards to prefetching and DRAM latency optimization.

The overall generational impact of these and other changes is

presented in a cross-workload view of IPC.

II. METHODOLOGY

Simulation results shown here as well as the internal micro-

architectural tuning work are based on a trace-driven cycle-

accurate performance model that reflects all six of the im-

plementations in this paper, rather than a silicon comparison,

because M5 and M6 silicon were not available during the

creation of this paper.

The workload is comprised of 4,026 traces, gathered from

multiple CPU-based suites such as SPEC CPU2000 and

SPEC CPU2006; web suites including Speedometer, Octane,

BBench, and SunSpider; mobile suites such as AnTuTu and

Geekbench; and popular mobile games and applications. Sim-

Point [5] and related techniques are used to reduce the sim-

ulation run time for most workloads, with a warmup of 10M

instructions and a detailed simulation of the subsequent 100M

instructions. Note that the same set of workloads is utilized

here across all of the generations; some of the more recent

workloads did not exist during the development of M1, and

some earlier workloads may have become somewhat obsolete

by M6, but keeping the workload suite constant allows a fair

cross-generational comparison.

III. MICROARCHITECTURAL OVERVIEW

Several of the key microarchitectural features of the M1

through M6 cores are shown in Table I. Although the cores

were productized at different frequencies, performance results

in this paper come from simulations where all cores were run

at 2.6GHz, so that per-cycle comparisons (IPC, load latencies)
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are valid to compare. Selected portions of the microarchitec-

ture that are not covered elsewhere will be briefly discussed

in this section.

For data translation operations, M3 and later cores contain

a fast “level 1.5 Data TLB” to provide additional capacity at

much lower latency than the much-larger L2 TLB.

Note that, according to the table, there were no significant

resource changes from M1 to M2. However, there were several

efficiency improvements, including a number of deeper queues

not shown in Table I, that resulted in the M2 speedups shown

later in this paper.

Both the integer and floating-point register files utilize the

physical-register-file (PRF) approach for register renaming,

and M3 and newer cores implement zero-cycle integer register-

register moves via rename remapping and reference-counting.

The M4 core and beyond have a “load-load cascading”

feature, where a load can forward its result to a subsequent

load a cycle earlier than usual, giving the first load an effective

latency of 3 cycles.

In general, most resources are increased in size in succeed-

ing generations, but there are also several points where sizes

were reduced, due to evolving tradeoffs. Two examples are

M3’s reduction in L2 size due to the change from shared to

private L2 as well as the addition of an L3, and M4’s reduction

in L3 size due to changing from a 4-core cluster to a 2-core

cluster.

IV. BRANCH PREDICTION

The Samsung dynamic branch prediction research is rooted

in the Scaled Hashed Perceptron (SHP) approach [6] [7] [8]

[9] [10], advancing the state-of-the-art perceptron predictor

over multiple generations. The prediction hardware uses a

Branch Target Buffer (BTB) approach across both a smaller,

0-bubble TAKEN micro-BTB (μBTB) with a local-history

hashed perceptron (LHP) and a larger 1-2 bubble TAKEN

main-BTB (mBTB) with a full SHP. The hardware retains

learned information in a Level-2 BTB (L2BTB) and has a

virtual address-based BTB (vBTB) in cases of dense branch

lines that spill the normal BTB capacity. Function returns are

predicted with a Return-Address Stack (RAS) with standard

mechanisms to repair multiple speculative pushes and pops.

A. Initial direction

The initial branch predictor design had two performance

goals: use a state-of the-art conditional predictor to reduce

MPKI, and support up to two predictions per clock for the

common case of a leading NOT-TAKEN branch. The latter

avoids incurring an extra cycle (or more) for many of the

NOT-TAKEN branches. For the workloads discussed here, the

lead branch is TAKEN in 60% of all cases, the second paired

branch TAKEN 24% of all cases, and two sequential NOT-

TAKEN 16% of all cases.

The first generation SHP consists of eight tables of 1,024

weights each, in sign/magnitude representation, along with a

“local BIAS” weight kept in the BTB entry for each branch.

Each of the SHP weight tables is indexed using an XOR hash

[11] composed of three items:

1) A hash of the global history (GHIST) [12] pattern in

a given interval for that table. The GHIST records the

outcome of a conditional branch as one bit.

2) A hash of the path history (PHIST) [13] in a given

interval for that table. The PHIST records three bits, bits

two through four, of each branch address encountered.

3) A hash of the program counter (PC) for the branch being

predicted.

The GHIST and PHIST intervals were determined empiri-

cally using a stochastic search algorithm, taking into consider-

ation both the diminishing returns of longer GHIST (shown in

Figure 1 using the publicly-available CBP5 [14] workloads),

and the cost of maintaining GHIST state. M1 utilized a 165-bit

GHIST length, and an 80-bit PHIST length.

Fig. 1. Average MPKI over all CBP5 traces of an eight-table, 1K weight
SHP vs adding GHIST range bits to the hash

To compute an SHP prediction, the signed BIAS weight

in the BTB entry is doubled [8], and added to the sum of the

signed weights read out from each of the 8 tables according to

the hashed history intervals. If the resulting sum is at least 0,

then the branch is predicted TAKEN; otherwise, it is predicted

not taken.

The predictor is updated on a misprediction, or on a correct

prediction where the absolute value of the sum fails to exceed

a threshold trained using the threshold training algorithm from

the O-GEHL predictor [15]. To update the SHP predictor,

the counters used during prediction are incremented if the

branch was taken, or decremented otherwise, saturating at

the maximum or minimum counter values. Always-TAKEN

branches — both unconditional branches, and conditional

branches that have always been taken so far — do not update

the SHP weight tables, to reduce the impact of aliasing [16].

The main BTBs are organized into 8 sequential discovered

branches per 128B cacheline as seen in Figure 2, based on

the gross average of 5 instructions per branch. As mentioned

above, additional dense branches exceeding the first 8 spill to

a virtual-indexed vBTB shown in the right of Figure 2 at an

additional access latency cost.

The indirect branch predictor is based on the virtual program

counter (VPC) predictor [17]. VPC breaks up an indirect pre-

diction into a sequence of conditional predictions of “virtual
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TABLE I
MICROARCHITECTURAL FEATURE COMPARISON

Core name
Feature M1 M2 M3 M4 M5 M6

Process Node 14nm 10nm LPE 10nm LPP 8nm LPP 7nm 5nm
Product Frequency 2.6GHz 2.3GHz 2.7GHz 2.7GHz 2.8GHz 2.8GHz (target)

Caches
L1 Instruction Cache 64KB 4w 64KB 4w 64KB 4w 64KB 4w 64KB 4w 128KB 4w

L1 Data Cache 32KB 8w 32KB 8w 64KB 8w 64KB 4w 64KB 4w 128KB 8w
L2 Cache 2048KB 16w 2048KB 16w 512KB 8w 1024KB 8w 2048KB 8w 2048KB 8w

L2 Shared/Private shared by 4 cores shared by 4 cores private private shared by 2 cores shared by 2 cores
L2 BW 16B/cycle 16B/cycle 32B/cycle 32B/cycle 32B/cycle 64B/cycle

L3 Cache Size - - 4096KB 3072KB 3072KB 4096KB
L3 Ways & Banks - - 16w 4 bank 16w 3 bank 12w 2 bank 16w 2 bank

Translationa

L1 Instruction TLB 256 pgs (64/64/4) 256 pgs (64/64/4) 512 pgs (64/64/8) 512 pgs (64/64/8) 512 pgs (64/64/8) 512 pgs (64/64/8)
L1 Data TLB 32 pgs (32/32/1) 32 pgs (32/32/1) 32 pgs (32/32/1) 48 pgs (48/48/1) 48 pgs (48/48/1) 128 pgs (128/128/1)
L1.5 Data TLB - - 512 pgs (128/4/4) 512 pgs (128/4/4) 512 pgs (128/4/4) 512 pgs (128/4/4)
Shared L2 TLB 1K pgs (1K/4/1) 1K pgs (1K/4/1) 4K pgs (1K/4/4) 4K pgs (1K/4/4) 4K pgs (1K/4/4) 8K pgs (2K/4/4)

Execution Unit Details
Dec/Ren/Ret width 4 4 6 6 6 8

Integer unitsb 2S+1CD+BR 2S+1CD+BR 2S+1CD+1C+BR 2S+1CD+1C+BR 4S+1CD+1C+BR 4S+2CD+2BR
Ld/St/Genericc pipes 1L, 1S 1L, 1S 2L, 1S 1L, 1S, 1G 1L, 1S, 1G 1L, 1S, 1G

FP pipes 1FMAC, 1FADD 1FMAC, 1FADD 3FMAC 3FMAC 3FMAC 4FMAC
Integer PRFs 96 96 192 192 192 224
FP PRFs 96 96 192 176 176 224
ROB size 96 100 228 228 228 256

Latencies
Mispredict penalty 14 14 16 16 16 16

L1 hit latency 4 4 4 3d or 4 3d or 4 3d or 4
L2 avg. latency 22 22 12 12 13.5 13.5
L3 avg. latency - - 37 37 30 30
FP latenciese 5/4/3 5/4/3 4/3/2 4/3/2 4/3/2 4/3/2

aTranslation parameters are shown as total pages (#entries / #ways / #sectors)
b“S ALUs handle add/shift/logical; C ALUs handle simple plus mul/indirect-branch; CD ALUs handle C plus div; BR handle only direct branches
c“Generic” units can perform either loads or stores
dLoad-to-load cascading has a latency of only 3 cycles
eFP latencies are shown in cycles for FMAC/FMUL/FADD respectively

Fig. 2. Main and Virtual BTB branch “chains”

PCs” that each consult SHP, with each unique target up to a

design-specified maximum “chain” stored in the BTB at the

program order of the indirect branch. Figure 3 shows the VPC

algorithm with a maximum of 16 targets per indirect branch,

several of which are stored in the shared vBTB.

B. First refinement during M1 design

During early discussions, the two-bubble penalty on

TAKEN branches was clearly identified as limiting in certain

scenarios, such as tight loops or code with small basic blocks

Fig. 3. Main and Virtual BTB indirect VPC chain

and predictable branches. The baseline predictor is therefore

augmented with a micro-BTB (μBTB) that has zero-bubble

throughput, but limited capacity. This predictor is graph-based

[18] specifically using an algorithm to first filter and identify

common branches with common roots or “seeds” and then

learn both TAKEN and NOT-TAKEN edges into a “graph”

across several iterations, as seen in the example in Figure 4.

Difficult-to-predict branch nodes are augmented with use of a
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local-history hashed perceptron (LHP).

Fig. 4. Learned branch “graph” as used by the μBTB [18]

When a small kernel is confirmed as both fully fitting within

the μBTB and predictable by the μBTB, the μBTB will “lock”

and drive the pipe at 0 bubble throughput until a misprediction,

with predictions checked by the mBTB and SHP. Extremely

highly confident predictions will further clock gate the mBTB

for large power savings, disabling the SHP completely.

The above description completes an overview of the branch

prediction hardware in the M1 first-generation core. The M2

core made no significant changes to branch prediction.

C. M3 Branch Prediction: Throughput

For the M3 implementation, the rest of the core was

undergoing significant widening of the pipe (4-wide to 6-wide

throughout) as well as more than doubling of the out-of-order

window. To maintain the ability to feed a wider and more

capable microarchitecture, the branch predictor needed to be

improved.

To reduce average branch turnaround, the μBTB graph

size doubled, but reduced the area increase by only adding

entries that could be used exclusively to store unconditional

branches. For workloads that could not fit within the μBTB,

the concept of an early always-taken redirect was added for

the mBTB: Always-taken branches will redirect a cycle earlier.

Such branches are called 1AT branches, short for “1-bubble

always-TAKEN” branches.

M3 also made several changes to further reduce MPKI in

the predictor: doubling of SHP rows (reduces aliasing for

conditional branches); and doubling of L2BTB capacity.

D. M4 Branch Prediction Changes: Focus on larger work-
loads

The M4 generation predictor refinement focused on better

support for larger working set sizes. The L2BTB size was

doubled again, making this generation capable of holding four

times as many branches as the first generation. In addition,

L2BTB fills into the BTB had their latency slightly reduced,

and their bandwidth improved by 2x, emphasizing the impor-

tance of real-use-case code. This capacity and latency band-

width change significantly improved performance for mobile

workloads like BBench by 2.8% in isolation.

E. M5 Branch Prediction: Efficiency improvements

For the M5 generation, the branch predictor research focus

was on improving the predictor in terms of several different

efficiencies.

Some sections of code are very branch-sparse, some-

times with entire BTB lines devoid of any actual discovered

branches. Thus the design added state to track “Empty Line

Optimizations” (skip an entire line devoid of branches) to

reduce both the latency and power of looking up uninteresting

addresses.

The previous generation had already accelerated always-

TAKEN branches via a one-bubble redirect. In this generation,

this idea was extended in two different ways: reducing the

bubbles to zero via replication, and extending coverage to

often-TAKEN branches. The replication is done via copying

the targets of always -TAKEN and often-TAKEN branches into

their predecessor branches’ mBTB information, thus providing

zero-bubble always-TAKEN (ZAT) and zero-bubble often-

TAKEN (ZOT) prediction capability. Thus, on an mBTB

lookup for a branch, it provided both its own target, and if that

target location led next to a candidate always/often-TAKEN

branch, the target of that subsequent branch. This increased

storage cost, but greatly improved taken-branch throughput,

as shown in the example in Figure 5.

Fig. 5. Increase in branch throughput by reducing bubbles for Always Taken
(AT) and zero-often-taken (ZOT) predictions. The replication scheme allows
X to specify a redirect to both A, and to B, the target of the next branch after
address A.

With a new zero-bubble structure in the mBTB, the μBTB

and this ZAT/ZOT predictor can sometimes contend. The main

predictor has no startup penalty but uses full mBTB and SHP

resources, while the μBTB has a two-cycle startup penalty,

but can chain zero-bubble predictions without lead branches

and could also save mBTB and SHP power on tight kernels.

A heuristic arbiter is used to intelligently select which zero-

bubble predictor to use.

Given the growing capabilities of the one-bubble predictor,

the M5 design was able to decrease the area for the μBTB

by reducing the number of entries, and having the ZAT/ZOT

predictor participate more. This resulted in a better area

efficiency for a given amount of performance.

The SHP increased from 8 tables to 16 tables of 2,048 8-

bit weights in sign magnitude representation, reducing MPKI

from both alias reductions as well as increasing the number of
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unique tables. The GHIST length was also increased by 25%,

and the table hash intervals rebalanced for this longer GHIST.

Finally, one performance problem was the effective refill

time after a mispredict. If the correct-path contained several

small basic blocks connected with taken branches, it could take

many cycles to refill the pipe, which was observed in some

of our key web workloads, among others. This is shown in

Figure 6, where we assume basic block A has 5 instructions,

basic block B has 6, and basic block C has 3, and all end

with a taken branch. Once a mispredict is signaled, the branch

prediction pipe starts fetching at the correct target, A, and in

subsequent cycles predicts sequential fall-through with a fetch

width of 6, at addresses A+6 and A+12. (After a mispredict,

the μBTB is disabled until the next “seed” branch.) However,

when the branch prediction pipe reaches the third stage, it sees

that A has a predicted-taken branch to B. The core squashes

the speculative prediction lookups for A+6 and A+12, and

restarts the branch prediction pipe for address B. In this

example, assume A’s basic block contained 5 instructions. If

B also has a small basic block and a taken branch, it again

requires three cycles to fetch an additional 6 instructions. All

told, in this example, it requires 9 cycles from the mispredict

redirect to fetch 14 instructions, and the downstream core will

likely become fetch-starved.

Fig. 6. An illustration of the slow effective refill time after a mispredict to a
series of small basic blocks

In order to help mitigate this long effective refill time

after a mispredict, the M5 core added a block called the

Mispredict Recovery Buffer (MRB). After identifying low-

confidence branches [19], it records the highest probability

sequence of the next three fetch addresses. On a matching

mispredict redirect, the predicted fetch addresses can be read

sequentially out of the MRB in consecutive cycles as shown in

Figure 7, eliminating the usual branch prediction delay, and in

this example allowing 14 instructions to be provided in only 5

cycles. Note that in the third stage, the MRB-predicted target

address is checked against the newly predicted target from the

branch predictor, and if they agree, no correction is needed.

F. M6 Branch Prediction: Indirect capacity improvements

For the sixth generation, the greatest adjustment was to

respond to changes in popular languages and programming

styles in the market. The first of these changes was to increase

the size of the mBTB by 50%, due to larger working set sizes.

Second, JavaScript’s increased use put more pressure on

indirect targets, allocating in some cases hundreds of unique

indirect targets for a given indirect branch via function calls.

Unfortunately, the VPC algorithm requires O(n) cycles to train

Fig. 7. Mispredict Recovery Buffer (MRB) providing the highest probability
basic block addresses after an identified low-confidence mispredicted branch
[20]

and predict all the virtual branches for an n-target indirect
branch. It also consumes much of the vBTB for such many-

target indirect branches.

A solution to the large target count problem is to dedicate

unique storage for branches with very large target possibilities.

As a trade-off, the VPC algorithm is retained since the ac-

curacy of SHP+VPC+hash-table lookups still proves superior

to a pure hash-table lookup for small numbers of targets.

Additionally, large dedicated storage takes a few cycles to

access, so doing a limited-length VPC in parallel with the

launch of the hash-table lookup proved to be superior in

throughput and performance. This hybrid approach is shown in

Figure 8, and reduced end-to-end prediction latency compared

to the full-VPC approach.

Fig. 8. VPC reduction to 5 targets followed by an Indirect Hash

Performance modeling showed that accessing the hash-

table lookup indirect target table with the standard SHP
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GHIST/PHIST/PC hash did not perform well, as the precursor

conditional branches do not highly correlate with the indirect

targets. A different hash is used for this table, based on the

history of recent indirect branch targets.

G. Overall impact

From M1 through M6, the total bit budget for branch

prediction increased greatly, in part due to the challenges of

predicting web workloads with their much larger working set.

Table II shows the total bit budget for the SHP, L1, and L2

branch predictor structures. The L2BTB uses a slower denser

macro as part of a latency/area tradeoff.

TABLE II
BRANCH PREDICTOR STORAGE, IN KBYTES

Bit storage (KB) SHP L1BTBs L2BTB Total
M1/M2 8.0 32.5 58.4 98.9
M3 16.0 49.0 110.8 175.8
M4 16.0 50.5 221.5 288.0
M5 32.0 53.3 225.5 310.8
M6 32.0 78.5 451.0 561.5

With all of the above changes, the predictor was able to go

from an average mispredicts-per-thousand-instructions (MPKI)

of 3.62 for a set of several thousand workload slices on

the first implementation, to an MPKI of 2.54 for the latest

implementation. This is shown graphically in Figure 9, where

the breadth of the impact can be seen more clearly.

On the left side of the graph, many workloads are highly

predictable, and are unaffected by further improvements. In the

middle of the graph are the interesting workloads, like most

of SPECint and Geekbench, where better predictor schemes

and more resources have a noticeable impact on reducing

MPKI. On the right are the workloads with very hard to predict

branches The graph has the Y-axis clipped to highlight the bulk

of the workloads which have the characteristic of an MPKI

under 20, but even the clipped highly-unpredictable workloads

on M1 are improved by ~20% on subsequent generations.

Overall, these changes reduced SPECint2006 MPKI by 25.6%

from M1 to M6.

V. BRANCH PREDICTION SECURITY

During the evolution of the microarchitectures discussed

here, several security vulnerabilities, including Spectre [21],

became concerning. Several features were added to mitigate

security holes. In this paper’s discussion, the threat model is

based on a fully-trustworthy operating system (and hypervisor

if present), but untrusted userland programs, and that userland

programs can create arbitrary code, whether from having full

access, or from ROP/widget programming.

This paper only discusses features used to harden indirect

and return stack predictions. Simple options such as erasing all

branch prediction state on a context change may be necessary

in some context transitions, but come at the cost of having

to retrain when going back to the original context. Separating

storage per context or tagging entries by context come at a

significant area cost. The compromise solution discussed next

Fig. 9. MPKIs across 4,026 workload slices. Y-axis is clipped at 20 MPKI
for clarity. Note that M2, which had no substantial branch prediction change
over M1, is not shown in this graph.

provides improved security with minimal performance, timing,

and area impact.

The new front-end mechanism hashes per-context state and

scrambles the learned instruction address targets stored in

a branch predictor’s branch-target buffers (BTB) or return-

address-stack (RAS). A mixture of software- and hardware-

controlled entropy sources are used to generate the hash

key (CONTEXT HASH) for a process. The hashing of these

stored instruction address targets will require the same exact

numbers to perfectly un-hash and un-scramble the predicted

taken target before directing the program address of the CPU.

If a different context is used to read the structures, the

learned target may be predicted taken, but will jump to an

unknown/unpredictable address and a later mispredict recovery

will be required. The computation of CONTEXT HASH is

shown in Figure 10.

The CONTEXT HASH register is not software accessible,

and contains the hash used for target encryption/decryption.

Its value is calculated with several inputs, including:

• A software entropy source selected according to the user,

kernel, hypervisor, or firmware level implemented as

SCXTNUM ELx as part of the security feature CSV2

(Cache Speculation Variant 2) described in ARM v8.5

[4].

• A hardware entropy source, again selected according to

the user, kernel, hypervisor, or firmware level.

• Another hardware entropy source selected according to

the security state.

• An entropy source from the combination of ASID (pro-

cess ID), VMID (virtual machine ID), security state, and

privilege level.

Note that the CONTEXT HASH computation is performed

completely in hardware, with no software visibility to inter-

mediate values, even to the hypervisor.
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Fig. 10. Computation of CONTEXT HASH encryption/decryption register
[22]. This computation is only performed during a context switch, and takes
only a few cycles.

The computation of the CONTEXT HASH register also

includes rounds of entropy diffusion [23] — specifically a

deterministic, reversible non-linear transformation to average

per-bit randomness. The small number of cycles required

for the hardware to perform multiple levels of hashing and

iterative entropy spreading have minimal performance impact,

given the latency of a context switch.

Within a particular processor context, CONTEXT HASH

is used as a very fast stream cipher to XOR with the indirect

branch or return targets being stored to the BTB or RAS, as in

Figure 11. Such a simple cipher can be inserted into the RAS

and BTB lookups without much impact to the timing paths, as

compared to a more rigorous encryption/decryption scheme.

Fig. 11. Indirect/RAS Target Encryption [22]

To protect against a basic plaintext attack, a simple substi-

tution cipher or bit reversal can further obfuscate the actual

stored address. When the branch predictor is trained and

ready to predict jump targets from these common structures,

the hardware will use the program’s CONTEXT HASH to

perfectly invert and translate out the correct prediction target.

This approach provides protection against both cross-

training and replay attacks. If one attacker process tries

to cross-train an indirect predictor with a target, it will

be encrypted with CONTEXT HASHattack into the predictor

structures, and then read out and decoded in the victim’s

execution with the differing CONTEXT HASHvictim, which

will result in the victim beginning execution at a different

address than the intended attack target. With regard to a replay

attack, if one process is able to infer mappings from a plaintext

target to a CONTEXT HASH-encrypted target, this mapping

will change on future executions, which will have a different

process context (process ID, etc.).
In addition, the operating system can intentionally periodi-

cally alter the CONTEXT HASH for a process or all processes

(by changing one of the SW ENTROPY * LVL inputs, for

example), and, at the expense of indirect mispredicts and re-

training, provide protection against undesired cross training

during the lifetime of a process, similar to the concept in

CEASER [24].

VI. MICRO-OPERATION CACHE (UOC)

M1 through M4 implementations fetched and decoded in-

structions as is common in a modern out-of-order pipeline:

fetch instructions from the instruction cache, buffer them in

the instruction queue, and generate micro-ops (μops) through

the decoder before feeding them to later pipe stages. As the

design moved from supplying 4 instructions/μops per cycle in

M1, to 6 per cycle in M3 (with future ambitions to grow to 8

per cycle), fetch and decode power was a significant concern.

The M5 implementation added a micro-operation cache [25]

[26] as an alternative μop supply path, primarily to save fetch

and decode power on repeatable kernels. The UOC can hold up

to 384 μops, and provides up to 6 μops per cycle to subsequent

stages. The view of instructions by both the front-end and by

the UOC is shown in Figure 12.

Fig. 12. Instruction-based and μop-based views

The front end operates in one of three different UOC modes:

FilterMode, where the μBTB predictor determines predictabil-

ity and size of a code segment; BuildMode, where the UOC is
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allocating appropriate basic blocks; and FetchMode, where the

instruction cache and decode logic are disabled, and instruction

supply is solely handled by the UOC. Each mode is shown in

the flowchart of Figure 13, and will be described in more detail

in the next paragraphs.

Fig. 13. Modes of UOC operation

The FilterMode is designed to avoid using the UOC Build-

Mode when it would not be profitable in terms of both power

and performance. In FilterMode, the μBTB predictor checks

several conditions to ensure the current code segment is highly

predictable, and will also fit within both the μBTB and UOC

finite resources. Once these conditions are met, the mechanism

switches into BuildMode.
To support BuildMode, the μBTB predictor is augmented

with “built” bits in each branch’s prediction entry, tracking

whether or not the target’s basic block has already been seen

in the UOC and back-propagated to the predictor. Initially,

all of these “built” bits are clear. On a prediction lookup, the

#BuildTimer is incremented, and the “built” bit is checked:

• If the “built” bit is clear, #BuildEdge is incremented, and

the basic block is marked for allocation in the UOC.

Next, the UOC tags are also checked ; if the basic block

is present, information is propagated back to the μBTB

predictor to update the “built” bit. This back-propagation

avoids the latency of a tag check at prediction time, at

the expense of an additional “build” request that will be

squashed by the UOC.

• If the “built” bit is set, #FetchEdge is incremented.

When the ratio between #FetchEdge and #BuildEdge

reaches a threshold, and the #BuildTimer has not timed out,

it indicates that the code segment should now be mostly or

completely UOC hits, and the front end shifts into FetchMode.
In FetchMode, the instruction cache and decode logic are

disabled, and the μBTB predictions feed through the UAQ into

the UOC to supply instructions to the rest of the machine. As

long as the μBTB remains accurate, the mBTB is also disabled,

saving additional power. While in FetchMode, the front end

continues to examine the “built” bits, and updates #BuildEdge

if the bit is clear, and #FetchEdge if the bit is set. If the ratio

of #BuildEdge to #FetchEdge reaches a different threshold, it

indicates that the current code is not hitting sufficiently in the

UOC, and the front end shifts back into FilterMode.

VII. L1 DATA PREFETCHING

Hardware prefetching into the L1 Cache allows data to

be fetched from memory early enough to hide the memory

latency from the program. Prefetching is performed based on

information from demand loads, and can be limited by the size

of the cache and maximum outstanding misses. Capacity of

this cache grew from 32KB in M1, to 64KB in M3, to 128KB

in M6. Outstanding misses grew from 8 in M1, to 12 in M3,

to 32 in M4, and 40 in M6. The significant increase in misses

in M4 was due to transitioning from a fill buffer approach to

a data-less memory address buffer (MAB) approach that held

fill data only in the data cache.

A. Algorithm

The L1 prefetcher detects strided patterns with multiple

components (e.g. +1×3, +2×1, meaning a stride of 1 repeated

3 times, followed by a stride of two occuring only once).

It operates on the virtual address space and prefetches are

permitted to cross page boundaries. This approach allows

large prefetch degrees (how many outstanding prefetches are

allowed to be outstanding at a time) to help cover memory

latency and solve prefetcher timeliness issues. This design

also inherently acts as a simple TLB prefetcher to preload the

translation of next pages prior to demand accesses to those

pages.

The prefetcher trains on cache-misses to effectively use load

pipe bandwidth. To avoid noisy behavior and improve pattern

detection, out-of-order addresses generated from multiple load

pipes are reordered back into program order using a ROB-like

structure [27] [28]. To reduce the size of this re-order buffer,

an address filter is used to deallocate duplicate entries to the

same cache line. This further helps the training unit to see

unique addresses.

The prefetcher training unit can train on multiple streams

simultaneously and detect multi-strides, similar to [29]. If the

same multi-stride pattern is repeated, it can detect a pattern.

For example, consider this access pattern:

A; A+2; A+4; A+9; A+11; A+13; A+18 and so on

The above load stream has a stride of +2, +2, +5, +2, +2,

+5. The prefetch engine locks onto a pattern of +2×2, +5×1

and generates prefetches A+20, A+22, A+27 and so on. The

load stream from the re-order buffer is further used to confirm

prefetch generation using a confirmation queue. Generated

prefetch addresses get enqueued into the confirmation queue

and subsequent demand memory accesses will match against

the confirmation queue. A confidence scheme is used based

on prefetch confirmations and memory sub-system latency to

scale prefetcher degree (see next section for more details).
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B. Dynamic Degree and One-pass/Two-pass

In order to cover the latency to main memory, the required

degree can be very large (over 50). This creates two problems:

lack of miss buffers, and excess prefetches for short-lived

patterns. These excess prefetches waste power, bandwidth and

cache capacity.

A new adaptive, dynamic degree [30] mechanism avoids

excessive prefetches. Prefetches are grouped into windows,

with the window size equal to the current degree. A newly

created stream starts with a low degree. After some number of

confirmations within the window, the degree will be increased.

If there are too few confirmations in the window, the degree

is decreased. In addition, if the demand stream overtakes the

prefetch stream, the prefetch issue logic will skip ahead of the

demand stream, avoiding redundant late prefetches.

To reduce pressure on L1 miss buffers, a “two pass mode”

scheme [31] is used, starting with M1, as shown in Figure 14.

Note that M3 and beyond added an L3 between the L2 and

interconnect. When a prefetch is issued the first time, it will not

allocate an L1 miss buffer, but instead be sent as a fill request

into the L2 (1). The prefetch address will also be inserted

(2) into a queue, which will be held until sufficient L1 miss

buffers are available. The L2 cache will issue the request to the

interconnect (3) and eventually receive a response (4). When a

free L1 miss buffer is available, an L1 miss buffer will allocate

(5) and an L1 fill request will occur (6 and 7).

This scheme is suboptimal for cases where the working

set fits in the L2 (since every first pass prefetch to the L2

would hit). To counteract this, the mechanism also tracks the

number of first pass prefetch hits in the L2, and if they reach a

certain watermark, it will switch into “one pass mode”. In this

mode, shown on the right in Figure 14, only step 2 is initially

performed. When there are available miss buffers (which may

be immediately), steps 5, 6, and 7 are performed, saving both

power and L2 bandwidth.

C. Spatial Memory Streaming Prefetcher

The multi-strided prefetcher is excellent at capturing regular

accesses to memory. However, programs which traverse a

linked-list or other certain types of data structures are not

covered at all. To attack these cases, in M3 an additional L1

prefetch engine is added — a spatial memory stream (SMS)

prefetcher [32] [33]. This engine tracks a primary load (the

first miss to a region), and attaches associated accesses to

it (any misses with a different PC). When the primary load

PC appears again, prefetches for the associated loads will be

generated based off the remembered offsets.

Also, this SMS algorithm tracks confidence for each associ-

ated demand load. Only associated loads with high confidence

are prefetched, to filter out the ones that will appear transiently

along with the primary load. In addition, when confidence

drops to a lower level, the mechanism will only issue the first

pass (L2) prefetch.

With two different prefetch engines, a scheme is required

to avoid duplicate prefetches. Given that a trained multi-stride

engine can prefetch further ahead of the demand stream than

Fig. 14. One-pass/two-pass prefetching scheme for M1/M2.

the SMS engine, confirmations from the multi-stride engine

suppress training in the SMS engine.

D. Integrated Confirmation Queues

To cover memory latency and allow multiple load streams

to operate simultaneously, the size of the confirmation queue

needs to be considerably large. Also, at the start of pattern

detection, the prefetch generation can lag behind the demand

stream. Since confirmations are based on issued prefetches,

this can result in few confirmations. As prefetch degree is a

function of confirmations, this mechanism can keep the degree

in a low state and prefetches may never get ahead of the

demand stream.

To combat the above issues, the M3 core introduced an in-

tegrated confirmation scheme [34] to replace the confirmation

queue. The new mechanism keeps the last confirmed address,

and uses the locked prefetch pattern to generate the next N
confirmation addresses into a queue, where N is much less

than the stream’s degree. This is the same logic as the prefetch

generation logic, but acts independently. This confirmation

scheme reduces the confirmation structure size considerably

and also allows confirmations even when the prefetch engine

has not yet generated prefetches.

VIII. LARGE CACHE MANAGEMENT AND PREFETCHERS

Over six generations, the large cache (L2/L3) hierarchy

evolved as shown in Table III below. M3 added a larger

but more complex three-level hierarchy, which helps balance

latency versus capacity objectives with the increasing working

set needs of modern workloads.
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TABLE III
EVOLUTION OF CACHE HIERARCHY SIZES

L2 Cache L3 Cache
M1/M2 2MB –
M3 512KB 4MB
M4 1MB 3MB
M5 2MB 3MB
M6 2MB 4MB

A. Co-ordinated Cache Hierarchy Management

To avoid data duplication, the outer cache levels (L3) are

made exclusive to the inner caches (L1 and L2). Conventional

exclusive caches do not keep track of data reuse since cache

lines are swapped back to inner-level caches. The L2 cache

tracks both frequency of hits within the L2, as well as

subsequent re-allocation from the L3 cache. Upon L2 castout,

these details are used to intelligently choose to either allocate

the castouts into the L3 in an elevated replacement state, or

an ordinary replacement state, or avoid allocation altogether.

This bidirectional coordination allows the caches to preserve

useful data in the wake of transient streams, or when the appli-

cation working set exceeds the total cache capacity. Amongst

the hardware overhead, each cache tag stores some meta-

data to indicate the reuse or dead behavior of the associated

lines, and for different transaction types (prefetch vs. demand).

This meta-data is passed through request or response channels

between the cache levels. There are some cases that needed to

be filtered out from being marked as reuse, such as the second

pass prefetch of two-pass prefetching. More information can

be found in the related patent [35].

B. Buddy Cache Prefetcher

The L2 cache tags are sectored at a 128B granule for a

default data line size of 64B. This sectoring reduces the tag

area and allows a lower latency for tag lookups. Starting in M4,

a simple “Buddy” prefetcher is added that, for every demand

miss, generates a prefetch for its 64B neighbor (buddy) sector.

Due to the tag sectoring, this prefetching does not cause any

cache pollution, since the buddy sector will stay invalid in

absence of buddy prefetching. There can be an impact on

DRAM bandwidth though, if the buddy prefetches are never

accessed. To alleviate that issue, a filter is added to the Buddy

prefetcher to track the patterns of demand accesses. In the case

where access patterns are observed to almost always skip the

neighboring sector, the buddy prefetching is disabled.

C. Standalone Cache Prefetcher

Starting in M5, a standalone prefetcher is added to prefetch

into the lower level caches beyond the L1s. This prefetcher

observes a global view of both the instruction and data

accesses at the lower cache level, to detect stream patterns

[36]. Both demand accesses and core-initiated prefetches are

used for its training. Including the core prefetches improves

their timeliness when they are eventually filled into the L1.

Among the challenges of the standalone prefetcher is the out-

of-orderness of program accesses observed at the lower-level

cache that can pollute the patterns being trained. Another

challenge is the fact that it operates on physical addresses,

which limits its span to a single page. Similarly, hits in the L1

can filter the access stream seen by the lower levels of cache,

making it difficult to isolate the real program access stream.

For those reasons, the standalone prefetcher uses an algorithm

to handle long, complex streams with larger training structures,

and techniques to reuse learnings across 4KB physical page

crossings. The standalone prefetcher also employs a two-

level adaptive scheme to maintain high accuracy of issued

prefetches as explained below.

D. Adaptive Prefetching

The standalone prefetcher is built with an adaptive scheme

shown in Figure 15 with two modes of prefetching: low

confidence mode and high confidence mode. In low confidence

mode, “phantom” prefetches are generated for confidence

tracking purposes into a prefetch filter, but not issued to the

memory system or issued very conservatively. The confidence

is tracked through demand accesses matching entries in the

prefetch filter. When confidence increases beyond a threshold,

high confidence mode is entered.

In high confidence mode, prefetches are issued aggressively

out to the memory system. The high-confidence mode relies

on cache meta-data to track the prefetcher’s confidence. This

meta-data includes bits associated with the tags to mark

whether a line was prefetched, and if it was accessed by a de-

mand request. If the confidence reduces below a threshold, the

prefetcher transitions back to the low confidence mode. Hence,

the prefetcher accuracy is continuously monitored to detect

transitions between application phases that are prefetcher

friendly and phases that are difficult to prefetch or when the

out-of-orderness makes it hard to detect the correct patterns.

Fig. 15. Adaptive Prefetcher State Transitions

IX. MEMORY ACCESS LATENCY OPTIMIZATION

The Exynos mobile processor designs contain three dif-

ferent voltage/frequency domains along the core’s path to

main memory: the core domain, an interconnect domain, and

a memory controller domain. This provides flexibility with
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regards to power usage in different mobile scenarios: GPU-

heavy, core-heavy, etc. However, this requires four on-die

asynchronous crossings (two outbound, two inbound), as well

as several blocks’ worth of buffering, along that path. Over

several generations, the Exynos designs add several features

to reduce the DRAM latency through multiple levels of the

cache hierarchy and interconnect. These features include data

fast path bypass, read speculation, and early page activate.

The CPU memory system on M4 supports an additional

dedicated data fast path bypass directly from DRAM to the

CPU cluster. The data bypasses multiple levels of cache return

path and interconnect queuing stages. Also a single direct

asynchronous crossing from the memory controller to the

CPU bypasses the interconnect domain’s two asynchronous

crossings.

To further optimize latency, the CPU memory system on M5

supports speculative cache lookup bypass for latency critical

reads. The read requests are classified as “latency critical”

based on various heuristics from the CPU (e.g. demand load

miss, instruction cache miss, table walk requests etc.) as well
as a history-based cache miss predictor. Such reads specula-

tively issue to the coherent interconnect in parallel to checking

the tags of the levels of cache. The coherent interconnect

contains a snoop filter directory that is normally looked up

in the path to memory access for coherency management. The

speculative read feature utilizes the directory lookup [37] to

further predict with high probability whether the requested

cache line may be present in the bypassed lower levels of

cache. If yes, then it cancels the speculative request by inform-

ing the requester. This cancel mechanism avoids penalizing

memory bandwidth and power on unnecessary accesses, acting

as a second-chance “corrector predictor” in case the cache miss

prediction from the first predictor is wrong.

The M5 CPU memory system contains another feature to

reduce memory latency. For latency critical reads, a dedicated

sideband interface sends an early page activate command to the

memory controller to speculatively open a new DRAM page.

This interface, like the fast data path mechanism described

above, also bypasses two asynchronous crossings with one.

The page activation command is a hint the memory controller

may ignore under heavy load.

X. OVERALL IMPACT ON AVERAGE LOAD LATENCY

The net impact of all of the generational changes on average

load latency is shown in Figure 16. These include the cache

size, prefetching, replacement algorithms, and DRAM latency

changes discussed in the above sections. Note that the 3-cycle

cascading load latency feature is clearly visible on the left

of the graph for workloads that hit in the DL1 cache. It also

partially contributes to lower DL1 cache hit latencies for many

other workloads that occasionally miss. There are many other

changes not discussed in this paper that also contributed to

lower average load latency.

Overall, these changes reduce average load latency from

14.9 cycles in M1 to 8.3 cycles in M6, as shown in Table IV.

Fig. 16. Evolution of Average Load Latency

TABLE IV
GENERATIONAL AVERAGE LOAD LATENCIES

M1 M2 M3 M4 M5 M6
Avg. load lat. 14.9 13.8 12.8 11.1 9.5 8.3

XI. CONCLUSION

This paper discusses the evolution of a branch predictor im-

plementation, security protections, prefetching improvements,

and main memory latency reductions. These changes, as well

as dozens of other features throughout the microarchitecture,

resulted in substantial year-on-year frequency-neutral perfor-

mance improvements.

Throughout the generations of the Exynos cores, the focus

was to improve performance across all types of workloads, as

shown in Figure 17:

• Low-IPC workloads were greatly improved by more

sophisticated, coordinated prefetching, as well as cache

replacement/victimization optimizations.

• Medium-IPC workloads benefited from MPKI reduction,

cache improvements, additional resources, and other per-

formance tweaks.

• High-IPC workloads were capped by M1’s 4-wide design.

M3 and beyond were augmented in terms of width

and associated resources needed to achieve 6 IPC for

workloads capable of that level of parallelism.

The average IPC across these workloads for M1 is 1.06,

while the average IPC for M6 is 2.71, which showcases

a compounded growth rate of 20.6% frequency-neutral IPC

improvement every year.
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