
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311

Lecture 10 Binary Search Trees

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Recall: Dynamic Sets

• data structures rather than straight algorithms

• In particular, structures for dynamic sets

– Elements have a key and satellite data

– Dynamic sets support queries such as:

�Search(S, k), Minimum(S), Maximum(S),

Successor(S, x), Predecessor(S, x)

– They may also support modifying operations like:

�Insert(S, x), Delete(S, x)

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Motivation

• Given a sequence of values:

– How to get the max, min value efficiently?

– How to find the location of a given value?

– …

• Trivial solution

– Linearly check elements one by one

• Searching Tree data structure supports better:

– SEARCH, MINIMUM, MAXIMUM,

– PREDECESSOR, SUCCESSOR,

– INSERT, and DELETE operations of dynamic sets

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Binary Search Trees

• Binary Search Trees (BSTs) are an important data structure for

dynamic sets

– Each node has at most two children

• Each node contains:

– key and data

– left: points to the left child

– right: points to the right child

– p(parent): point to parent

• Binary-search-tree property:

– y is a node in the left subtree of x:

– y is a node in the right subtree of x:

– Height: h

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Binary Search Trees

• BST property:

key[leftSubtree(x)] ≤ key[x] ≤ key[rightSubtree(x)]

• Example:

F

B H

KDA

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Examples

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Print out Keys

• Preorder tree walk

– Print key of node before printing keys in subtrees (node left

right)

• Inorder tree walk

– Print key of node after printing keys in its left subtree and

before printing keys in its right subtree (left node right)

• Postorder tree walk

– Print key of node after printing keys in subtrees (left right

node)

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Example

• Preorder tree walk

– F, B, A, D, C, E, G, I, H

• Inorder tree walk

– A, B, C, D, E, F, G, H, I

– Sorted (why?)

• Postorder tree walk

– A, C, E, D, B, H, I, G, F

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Inorder Tree Walk

• Inorder tree walk

– Visit and print each node once

– Time:

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Inorder Tree Walk

• Example:

• How long will a tree walk take?

• Prove that inorder walk prints in monotonically

increasing order

F

B H

KDA

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Operations

• Querying operations

– Search: get node of given key

– Minimum: get node having minimum key

– Maximum: get node having maximum key

– Successor: get node right after current node

– Predecessor: get node right before current node

• Updating operations

– Insertion: insert a new node

– Deletion: delete a node with given key

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Operations on BSTs: Search

• Given a key and a pointer to a node, returns an

element with that key or NULL:

TreeSearch(x, k)

if (x = NULL or k = key[x])

return x;

if (k < key[x])

return TreeSearch(left[x], k);

else

return TreeSearch(right[x], k);

Time = the length of path from

root to found node

Time: O(h)

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

BST Search: Example

• Search for D and C:

F

B H

KDA

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Operations on BSTs: Search

• Here’s another function that does the same:

TreeSearch(x, k)

while (x != NULL and k != key[x])

if (k < key[x])

x = left[x];

else

x = right[x];

return x;

• Which of these two functions is more efficient?

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Operations: Minimum and Maximum

• Minimum: left most node

• Maximum: right most node

• Time: O(h)

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Operations of BSTs: Insert

• Adds an element x to the tree so that the binary search

tree property continues to hold

• The basic algorithm

– Like the search procedure above

– Insert x in place of NULL

– Use a “trailing pointer” to keep track of where you came

from (like inserting into singly linked list)

– Time: O(h)

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Operations of BSTs: Insert

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

BST Insert: Example

• Example: Insert C

F

B H

KDA

C

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

BST Search/Insert: Running Time

• What is the running time of TreeSearch() or TreeInsert()?

• A: O(h), where h = height of tree

• What is the height of a binary search tree?

• A: worst case: h = O(n) when tree is just a linear string

of left or right children

– We’ll keep all analysis in terms of h for now

– Later we’ll see how to maintain h = O(lg n)

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Sorting With Binary Search Trees

• Informal code for sorting array A of length n:

BSTSort(A)

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

• Argue that this is Ω(n lg n)

• What will be the running time in the

– Worst case?

– Average case? (hint: remind you of anything?)

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Sorting With BSTs

• Average case analysis

– It’s a form of quicksort!

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Sorting with BSTs

• Same partitions are done as with quicksort, but in a

different order

– In previous example

�Everything was compared to 3 once

�Then those items < 3 were compared to 1 once

�Etc.

– Same comparisons as quicksort, different order!

�Example: consider inserting 5

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Sorting with BSTs

• Since run time is proportional to the number of

comparisons, same time as quicksort: O(n lg n)

• Which do you think is better, quicksort or

BSTsort? Why?

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Sorting with BSTs

• Since run time is proportional to the number of

comparisons, same time as quicksort: O(n lg n)

• Which do you think is better, quicksort or BSTSort? Why?

• A: quicksort

– Better constants

– Sorts in place

– Doesn’t need to build data structure

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

More BST Operations

• BSTs are good for more than sorting. For example,

can implement a priority queue

• What operations must a priority queue have?

– Insert

– Minimum

– Extract-Min

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

BST Operations: Successor

• Time: O(h)

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Example

• Successor of 15 is 17

• Successor of 13 is 15

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

BST Operations: Successor

• Two cases:

– x has a right subtree: successor is minimum node in

right subtree

– x has no right subtree: successor is first ancestor of

x whose left child is also ancestor of x

�Intuition: As long as you move to the left up the

tree, you’re visiting smaller nodes.

• Predecessor: similar algorithm

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

BST Operations: Delete

• Deletion is a bit tricky

– Key point: choose a node in subtree rooted at x to replace

the deleted node x

– Node to replace x: predecessor or successor of x

• 3 cases:

– x has no children:

�Remove x

– x has one child:

�Splice out x

– x has two children:

�Swap x with successor

�Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K

or H or B

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

BST Operations: Delete

• Why will case 2 always go to case 0 or case 1?

• A: because when x has 2 children, its successor is the

minimum in its right subtree

• Could we swap x with predecessor instead of successor?

• A: yes. Would it be a good idea?

• A: might be good to alternate

• Up next: guaranteeing a O(lg n) height tree

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

Has one child

Replace z by its child

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Right child has no left subtree

Replace z by its successor y

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Right child has left subtree

1. Find successor y of z

2. Replace y by its child

3. Replace z by y

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Replace a mode by its Child

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

Deletion Algorithm

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Summary

• Binary search tree stores data hierarchically

• Support SEARCH, MINIMUM, MAXIMUM,

PREDECESSOR, SUCCESSOR, INSERT, and

DELETE operations

• Running time of all operation is

• Question: What is the lower bound of h? How to

achieve it?

