Design and Analysis of Algorithms

CSE 5311 Lecture 10 Binary Search Trees

Junzhou Huang, Ph.D. Department of Computer Science and Engineering

Dept. CSE, UT Arlington

CSE5311 Design and Analysis of Algorithms ¹

Recall: Dynamic Sets

- •data structures rather than straight algorithms
- •In particular, structures for *dynamic sets*
	- Elements have a key and satellite data
	- –Dynamic sets support *queries* such as:

Search(S, k), Minimum(S), Maximum(S), Successor(S, x), Predecessor(S, x)

They may also support *modifying operations* like: \triangleright Insert(S, x), Delete(S, x)

Motivation

- • Given a sequence of values:
	- –How to get the max, min value efficiently?
	- –How to find the location of a given value?

–…

- Trivial solution
	- –Linearly check elements one by one
- • Searching Tree data structure supports better:
	- –SEARCH, MINIMUM, MAXIMUM,
	- –PREDECESSOR, SUCCESSOR,
	- –INSERT, and DELETE operations of dynamic sets

Binary Search Trees

- •• *Binary Search Trees* (BSTs) are an important data structure for dynamic sets
	- Each node has at most two children
- Each node contains:
	- key and data
	- left: points to the left child
	- right: points to the right child
	- p(parent): point to parent
- Binary-search-tree property:
	- y is a node in the left subtree of x:
	- y is a node in the right subtree of x:

Height: h

Dept. CSE, UT Arlington

CSE5311 Design and Analysis of Algorithms ⁴

 $y. key \leq x. key$

 $y. key \geq x. key$

Binary Search Trees

- BST property: key[leftSubtree(x)] \leq key[x] \leq key[rightSubtree(x)]
- •Example:

Examples

CSE5311 Design and Analysis of Algorithms

Print out Keys

- Preorder tree walk
	- – ^Print key of node before printing keys in subtrees (node left right)
- Inorder tree walk
	- Print key of node after printing keys in its left subtree and before printing keys in its right subtree (left node right)
- Postorder tree walk
	- ^Print key of node after printing keys in subtrees (left right node)

Example

- Preorder tree walkF, B, A, D, C, E, G, I, H
- Inorder tree walk
	- A, B, C, D, E, F, G, H, I
	- Sorted (why?)

• Postorder tree walkA, C, E, D, B, H, I, G, F

Inorder Tree Walk

INORDER-TREE-WALK (x)

- if $x \neq \text{NIL}$ $\mathbf 1$
- $\overline{2}$ $INORDER-TREE-WALK(x. left)$
- $\overline{3}$ print x . key
- $INORDER$ -TREE-WALK $(x. right)$ $\overline{4}$
- Inorder tree walk
	- V isit and print each node once
	- $-$ Time:

Inorder Tree Walk

- How long will a tree walk take?
- \bullet Prove that inorder walk prints in monotonically increasing order

Operations

- • Querying operations
	- –Search: get node of given key
	- –Minimum: get node having minimum key
	- –Maximum: get node having maximum key
	- Successor: get node right after current node
	- Predecessor: get node right before current node
- Updating operations
	- Insertion: insert a new node
	- Deletion: delete a node with given key

Operations on BSTs: Search

• Given a key and a pointer to a node, returns an element with that key or NULL:

```
TreeSearch(x, k)if (x = NULL \text{ or } k = key[x])return x;if (k < \text{key}[x])return TreeSearch(left[x], k);elsereturn TreeSearch(right[x], k);Time = the length of path from root to found nodeTime: O(h)
```
BST Search: Example

• Search for *D* and *C*:

Operations on BSTs: Search

•Here's another function that does the same:

```
TreeSearch(x, k)while (x := NULL and k := key[x])if (k < \text{key}[x])x = left[x];elsex = right[x];return x;
```
• Which of these two functions is more efficient?

Dept. CSE, UT Arlington

Operations: Minimum and Maximum

- Minimum: left most node
- •Maximum: right most node
- \bullet Time: O(h)

Operations of BSTs: Insert

- • Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
	- Like the search procedure above
	- Insert x in place of NULL
	- Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)
	- $-$ Time: O(h)

Operations of BSTs: Insert

 $TREE-INSERT(T, z)$ $\mathbf{1}$ $y = NIL$ 2 $x = T root$ 3 while $x \neq$ NIL $\overline{4}$ $y = x$ 5 if z.key $\langle x.key \rangle$ 6 $x = x.left$ $\overline{7}$ else $x = x$. right 8 $z.p = y$ if $y ==$ NIL 9 $T_{.}root = z$ // tree T was empty 10 11 **elseif** z.key < y.key 12 y.left $=z$ else y.right = z 13

BST Insert: Example

• Example: Insert CFB \mathbf{B} \mathbf{H} AA D K C

BST Search/Insert: Running Time

- •What is the running time of TreeSearch() or TreeInsert()?
- A: $O(b)$, where $b =$ height of tree
- •What is the height of a binary search tree?
- •A: worst case: $h = O(n)$ when tree is just a linear string of left or right children
	- –We'll keep all analysis in terms of h for now
	- –Later we'll see how to maintain $h = O(\lg n)$

Sorting With Binary Search Trees

- •Informal code for sorting array A of length n : BSTSort(A)for $i=1$ to n TreeInsert(A[i]);InorderTreeWalk(root);
- Argue that this is $\Omega(n \mid g n)$
- \bullet What will be the running time in the
	- Worst case?
	- Average case? (hint: remind you of anything?)

Sorting With BSTs

• Average case analysis

It's a form of quicksort!

for i=1 to n $\mathtt{TreeInsert(A[i])}$; InorderTreeWalk(root);

CSE5311 Design and Analysis of Algorithms ²¹

Sorting with BSTs

- Same partitions are done as with quicksort, but in a different order
	- – In previous example
		- Everything was compared to 3 once
		- \blacktriangleright Then those items \lt 3 were compared to 1 once
		- \blacktriangleright Etc.
	- – Same comparisons as quicksort, different order!
		- Example: consider inserting 5

Sorting with BSTs

- • Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- \bullet Which do you think is better, quicksort or BSTsort? Why?

Sorting with BSTs

- • Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- •Which do you think is better, quicksort or BSTS ort? Why?
- A: quicksort
	- Better constants
	- Sorts in place
	- Doesn't need to build data structure

More BST Operations

- • BSTs are good for more than sorting. For example, can implement a priority queue
- \bullet What operations must a priority queue have?
	- Insert
	- Minimum
	- Extract-Min

BST Operations: Successor

•Time: O(h)

Example

- •Successor of 15 is 17
- \bullet Successor of 13 is 15

BST Operations: Successor

- Two cases:
	- x has a right subtree: successor is minimum node in right subtree
	- x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
		- Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar algorithm

BST Operations: Delete

- Deletion is a bit tricky
	- – Key point: choose a node in subtree rooted at x to replace the deleted node x
	- Node to replace x: predecessor or successor of x

BST Operations: Delete

- \bullet Why will case 2 always go to case 0 or case 1?
- • A: because when x has 2 children, its successor is the minimum in its right subtree
- Could we swap x with predecessor instead of successor?
- A: yes. Would it be a good idea?
- A: might be good to alternate
- Up next: guaranteeing a O(lg n) height tree

Has one child

CSE5311 Design and Analysis of Algorithms ³¹

Right child has no left subtree

Replace z by its successor y

CSE5311 Design and Analysis of Algorithms ³²

Right child has left subtree

1. Find successor y of $\,$ 2. Replace y by its child 3. Replace z by y

Replace a mode by its Child

- \triangleright Replace the subtree rooted at node u with the subtree rooted at node ν
- \triangleright Running time: $O(1)$

 $TRANSPLANT(T, u, v)$ 1 if $u \cdot p == \text{NIL}$ 2 $T_{\cdot} root = v$ 3 elseif $u = u.p. \nleftarrow$ 4 $u.p. \text{left} = v$ 5 else u.p. right $=$ v 6 if $v \neq \text{NIL}$ 7 $\nu.p = u.p$

Deletion Algorithm

 \triangleright Main running time: find z 's successor

 \triangleright Time: $O(h)$

 $TREE-DELETE(T, z)$

if z. $left =$ NIL 1 $\overline{2}$ $TRANSPLANT(T, z, z. right)$ 3 elseif z . right == NIL $TRANSPLANT(T, z, z. left)$ $\overline{4}$ 5 else $y =$ TREE-MINIMUM(*z.right*) if $y.p \neq z$. 6 7 $TRANSPLANT(T, y, y. right)$ 8 $y. right = z. right$ 9 y . right. $p = y$ $TRANSPLANT(T, z, y)$ 10 11 $y.left = z.left$ 12 $y. left. p = y$

CSE5311 Design and Analysis of Algorithms ³⁵

Summary

- •Binary search tree stores data hierarchically
- Support SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and DELETE operations
- Running time of all operation is
- • Question: What is the lower bound of h? How to achieve it?