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Recall: Dynamic Sets

• data structures rather than straight algorithms

• In particular, structures for dynamic sets

– Elements have a key and satellite data

– Dynamic sets support queries such as:

�Search(S, k), Minimum(S), Maximum(S), 

Successor(S, x), Predecessor(S, x)

– They may also support modifying operations like:

�Insert(S, x), Delete(S, x)
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Motivation 

• Given a sequence of values:

– How to get the max, min value efficiently?

– How to find the location of a given value?

– …

• Trivial solution 

– Linearly check elements one by one

• Searching Tree data structure supports better:

– SEARCH,  MINIMUM, MAXIMUM, 

– PREDECESSOR, SUCCESSOR, 

– INSERT, and DELETE operations of dynamic sets
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Binary Search Trees

• Binary Search Trees (BSTs) are an important data structure for 

dynamic sets

– Each node has at most two children

• Each node contains: 

– key and data

– left: points to the left child

– right: points to the right child

– p(parent): point to parent

• Binary-search-tree property: 

– y is a node in the left subtree of x:

– y is a node in the right subtree of x:

– Height: h
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Binary Search Trees

• BST property: 

key[leftSubtree(x)] ≤ key[x] ≤ key[rightSubtree(x)]

• Example:

F

B H

KDA
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Examples
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Print out Keys

• Preorder tree walk

– Print key of node before printing keys in subtrees (node left 

right)

• Inorder tree walk

– Print key of node after printing keys in its left subtree and 

before printing keys in its right subtree (left node right)

• Postorder tree walk

– Print key of node after printing keys in subtrees (left right 

node)
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Example

• Preorder tree walk

– F, B, A, D, C, E, G, I, H

• Inorder tree walk

– A, B, C, D, E, F, G, H, I

– Sorted (why?)

• Postorder tree walk

– A, C, E, D, B, H, I, G, F
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Inorder Tree Walk

• Inorder tree walk

– Visit and print each node once

– Time: 
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Inorder Tree Walk

• Example:

• How long will a tree walk take?

• Prove that inorder walk prints in monotonically 

increasing order

F

B H

KDA



CSE5311 Design and Analysis of  Algorithms 11Dept. CSE, UT Arlington

Operations

• Querying operations

– Search: get node of given key

– Minimum: get node having minimum key

– Maximum: get node having maximum key

– Successor: get node right after current node

– Predecessor: get node right before current node

• Updating operations

– Insertion: insert a new node

– Deletion: delete a node with given key
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Operations on BSTs: Search

• Given a key and a pointer to a node, returns an 

element with that key or NULL: 

TreeSearch(x, k)

if (x = NULL  or  k = key[x])

return x;

if (k < key[x]) 

return TreeSearch(left[x], k);

else

return TreeSearch(right[x], k);

Time = the length of  path from 

root to found node

Time: O(h)
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BST Search: Example

• Search for D and C:

F

B H

KDA
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Operations on BSTs: Search

• Here’s another function that does the same: 

TreeSearch(x, k)

while (x != NULL  and  k != key[x]) 

if (k < key[x])

x = left[x];

else

x = right[x];

return x;

• Which of these two functions is more efficient?
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Operations: Minimum and Maximum

• Minimum: left most node

• Maximum: right most node

• Time: O(h)
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Operations of BSTs: Insert

• Adds an element x to the tree so that the binary search 

tree property continues to hold

• The basic algorithm

– Like the search procedure above

– Insert x in place of NULL

– Use a “trailing pointer” to keep track of where you came 

from (like inserting into singly linked list)

– Time: O(h)
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Operations of BSTs: Insert
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BST Insert: Example

• Example: Insert C

F

B H

KDA

C
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BST Search/Insert: Running Time

• What is the running time of TreeSearch() or TreeInsert()?

• A: O(h), where h = height of tree

• What is the height of a binary search tree?

• A: worst case: h = O(n)  when tree is just a linear string 

of left or right children

– We’ll keep all analysis in terms of h for now

– Later we’ll see how to maintain h = O(lg n)
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Sorting With Binary Search Trees

• Informal code for sorting array A of length n:

BSTSort(A)

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

• Argue that this is Ω(n lg n)

• What will be the running time in the 

– Worst case?  

– Average case? (hint: remind you of anything?)
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Sorting With BSTs

• Average case analysis

– It’s a form of quicksort!

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7
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Sorting with BSTs

• Same partitions are done as with quicksort, but in a 

different order

– In previous example

�Everything was compared to 3 once

�Then those items < 3 were compared to 1 once

�Etc.

– Same comparisons as quicksort, different order!

�Example: consider inserting 5
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Sorting with BSTs

• Since run time is proportional to the number of 

comparisons, same time as quicksort: O(n lg n)

• Which do you think is better, quicksort or 

BSTsort?  Why?
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Sorting with BSTs

• Since run time is proportional to the number of 

comparisons, same time as quicksort: O(n lg n)

• Which do you think is better, quicksort or BSTSort?  Why?

• A: quicksort

– Better constants

– Sorts in place

– Doesn’t need to build data structure
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More BST Operations

• BSTs are good for more than sorting.  For example, 

can implement a priority queue

• What operations must a priority queue have?

– Insert

– Minimum

– Extract-Min
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BST Operations: Successor

• Time: O(h)
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Example

• Successor of 15 is 17

• Successor of 13 is 15
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BST Operations: Successor

• Two cases:

– x has a right subtree: successor is minimum node in 

right subtree

– x has no right subtree: successor is first ancestor of 

x whose left child is also ancestor of x

�Intuition: As long as you move to the left up the 

tree, you’re visiting smaller nodes.  

• Predecessor: similar algorithm
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BST Operations: Delete

• Deletion is a bit tricky

– Key point: choose a node in subtree rooted at x to replace 

the deleted node x

– Node to replace x: predecessor or successor of x

• 3 cases:

– x has no children: 

�Remove x

– x has one child: 

�Splice out x

– x has two children: 

�Swap x with successor

�Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K

or H or B
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BST Operations: Delete

• Why will case 2 always go to case 0 or case 1?

• A: because when x has 2 children, its successor is the 

minimum in its right subtree

• Could we swap x with predecessor instead of successor?

• A: yes.  Would it be a good idea?

• A: might be good to alternate

• Up next: guaranteeing a O(lg n) height tree
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Has one child

Replace z by its child
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Right child has no left subtree

Replace z by its successor y
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Right child has left subtree

1. Find successor y of  z

2. Replace y by its child

3. Replace z by y



CSE5311 Design and Analysis of  Algorithms 34Dept. CSE, UT Arlington

Replace a mode by its Child
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Deletion Algorithm
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Summary

• Binary search tree stores data hierarchically

• Support SEARCH, MINIMUM, MAXIMUM, 

PREDECESSOR, SUCCESSOR, INSERT, and 

DELETE operations

• Running time of all operation is  

• Question: What is the lower bound of h? How to 

achieve it? 


