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Abstract

Variable-structure controls are normally understood to be controls that have sliding modes and robustness as their main
objective. In addition to sliding-mode controls, there are also variable-structure controls, which were developed for the purpose
of intentionally precluding sliding modes and achieving high regulation rates and short settling times. Two types of such
controls may be distinguished, variable-structure controls that switch between different parameters and a systematic further
development of them called ”soft variable-structure controls” that continuously vary controllers’ parameters or structures and
achieve nearly time-optimal control performance. This paper surveys soft variable-structure controls, compares them to other
controls, taking a submarine dive-control as an example, and presents an outlook on their auspicious further development.
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1 Introduction and history

In this section, we briefly describe the history and ob-
jectives of discontinuous controls, beginning with early
heuristic approaches, and continuing with a description
of systematic control methods and the unified frame-
work of hybrid systems. We conclude by depicting soft
variable-structure controls as a systematic further de-
velopment of discontinuous controls.

1.1 Early discontinuous controls

Beyond the initial examples of discontinuous controls,
Philon’s oil lamp in the ancient Greece in the third
century BC and two-step level controls for fluids, which
were developed by the brothers Banu Musa for the
Caliph of Baghdad in the ninth century (cf. Mayr, 1969,
1970), the earliest precursors of variable-structure con-
trols were controls incorporating relays. Such controllers
for steam engines and ships were described in (Poncelet,
1826; Fink, 1865; Farcot, 1873). Vishnegradsky (1878)
presented a first theoretical examination and, in further
work, Léauté (1885, 1891) described early attempts at
employing the phase plane. An important application
is the Tirrill-controller that was developed by A. A.
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Tirrill at General Electric in 1902 in order to control
electric generators. In the following years, the theory of
controllers incorporating relays and discontinuities was
further elaborated (Házen, 1934; Andronov & Chaikin,
1937, 1949; Oldenbourg & Sartorius, 1948; Truxal, 1955;
Smith, 1958; Zypkin, 1958).
Based on the knowledge of these relay controls, controls
switching between several subcontrollers were developed
over the period 1940 through 1960 and those controls
might well be the first to be rightly called ”variable-
structure controls” (VSC). In this first development
phase of VSC, the scientists of that time considered
second-order plants and commonly employed geomet-
ric methods in the phase plane. Their objective was
improving control-system performance, i.e., achieving
shorter settling times and reducing overshooting, than
achievable using a single linear controller only.
Flügge-Lotz was one of the first to investigate such sys-
tems, and she and Taylor expressed their intention in
the following sentence that remains valid to this day:
”The decision to introduce nonlinear components in
a control system may stem from the desire to have a
system whose performance is less tied to history than
that of linear control systems of comparable power
handling” (Flügge-Lotz & Taylor, 1956). Beyond some
early work (Bilharz, 1941; Flügge-Lotz & Klotter, 1943,
1948, 1949), typical examples of the basic ideas devel-
oped over that period may be found in, e.g., (McDonald,
1950; Flügge-Lotz, 1953; Flügge-Lotz & Wunsch, 1955;
Flügge-Lotz & Taylor, 1956; Ostrovsky 1960).
The ideas of this first development phase were seminal
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for succeeding methods in control theory: (1) an early
contribution towards adaptive control known as ”dual-
mode control” (McDonald, 1952), (2) time-optimal
control, accompanied by initial important results, in
(Bushaw, 1952, 1953; Fel’dbaum, 1953), and (3) sub-
optimal VSC lacking sliding modes aimed at achieving
short settling times (Kiendl, 1972; Becker, 1979).

1.2 Systematic design methods: sliding-mode control,
VSC precluding sliding modes, and switching su-
pervisory control

A second development phase started with the discovery
that high-frequency switching between the various con-
trollers involved, the so-called ”sliding mode,” may oc-
cur in the case of discontinuous VSC. If the control sys-
tem involved is operating in this mode, it drifts down a
switching curve towards the origin. In this sliding mode,
the control is robust with respect to variations of plant
parameters. This robustness is often the main objective
of using sliding-mode control. However, the disadvan-
tage of using sliding-mode control systems is the high-
frequency switching occurring in their actuator control
signals, which will normally reduce actuator service life
and severely limit their applicability in practical use
(Corless, 1994; Denker & Kaynak, 1994; Young, Utkin,

Özgüner, 1999). In addition to robustness, tracking,
adaptive model following, and observers having sliding
modes are further objectives (Hung, Gao & Hung, 1993;
Hsu, Costa & Lizarralde, 1993; Zinober, 1994; Edwards
& Spurgeon, 1998; Choi, Misawa & Young, 1999).
Nikol’skii (1934) was the first to use the term ”sliding
mode”. A comprehensive theory of systems and con-
trols having sliding modes was devised by Emelyanov
(1959, 1967, 1969), Emelyanov and Fedotova (1962),
and Emelyanov and Kostyleva (1964) in the Soviet
Union. Filippov (1960, 1964, 1988) developed a math-
ematical theory for such differential equations having
discontinuous right-hand sides. Sliding-mode theory has
since been continually elaborated upon by Utkin, Itkis,
and others (Utkin, 1977, 1983, 1992; Itkis, 1976; Hung,
Gao & Hung, 1993; Yu & Xu, 2000; Ha et al, 2001).
One of those extensions smoothes the operation of
sliding-mode controllers to the point where no undesir-
able high-frequency switching occurs, an improvement
that is termed ”quasi-sliding-mode” or ”pseudo-sliding-
mode” control (Hung, Gao & Hung, 1993; Zinober,
1994; Edwards & Spurgeon, 1998).
VSC for linear systems that were based on a principle
that intentionally precludes sliding modes were devised
under a third development phase. The motivation for
these controls was achieving regulation rates that would
be much better, and settling times that would be much
shorter, than those of linear controls and closer to those
of optimal controls, along with less design and imple-
mentation effort than would be required in the case of
optimal controls. Furthermore, avoiding violating con-

trol and state constraints was considered, and an impor-
tant feature of the controls developed. The intention in
devising these controls was rather similar to that of the
researchers involved in the initial development phase,
and Flügge-Lotz (1968) described this intention in an
early vision: ”It soon became apparent that, although
optimal controls are not easy to realize, discontinuous
suboptimal controls can be still profitable.”
The starting points of that third phase, which com-
menced in 1972, were the works by Kiendl (1972) on
”suboptimal controllers having piecewise-linear struc-
tures” and Kiendl and Schneider (1972). The controllers
they devised switch over to using faster-acting linear
subcontrollers during regulation cycles, which allows
much more rapid regulation than when a single linear
controller only is employed. Two different types of such
controllers were developed.
The first type switches from subcontrollers to faster
ones at certain times. A version of this type expanded to
allow use of MIMO-systems appears in (Kreitner, 1980,
1982). An extension to asymmetric control constraints
appears in (Opitz, 1982). The second type consists of a
set of nested, positively invariant sets and a set of linear
controllers in order that each controller will be assigned
to one of the nested sets. During a regulation cycle, the
trajectory runs from a positively invariant set into the
next simultaneously activating the assigned controller
and then into the next nested set, and so on. Stelzner
(1987) described a design method for such controllers
employing piecewise-linear Lyapunov functions. These
controllers having nested, positively invariant sets were
also developed in later works (Wredenhagen & Bélanger,
1994; De Doná et al, 1999; Benzaouia & Baddou, 1999),
and their authors were obviously uninformed about the
earlier works of Kiendl (1972), Kiendl and Schneider
(1972), and Stelzner (1987), which were published in
German only.
The investigations of Becker (1977, 1978, 1979), Xing-
Huo and Chun-Bo (1987), and Zimmer (1987) are to be
regarded as falling under this third development phase,
cf. also (Föllinger, 1998), and determined optimal selec-
tion strategies. The controls devised by Itschner (1975,
1977) also fall within areas covered by those works.
Maximizing system performance, while simultaneously
avoiding violating state constraints during regulation
periods were also the objectives of controls described in
(Kapasouris, Athans & Stein, 1988; Tan, 1991). All VSC
of this third development phase were developed in order
to arrive at higher regulation rates and lower settling
times than would be achievable using linear controls.
Kiendl (1972) and Wredenhagen and Bélanger (1994)
called their controllers ”piecewise-linear controllers”
and, indeed, they may be regarded as both VSC and
a subclass of piecewise-linear systems. The latter in-
cludes a wide range of different systems, structures, and
objectives, including locally linearized systems, relay
controls, and certain types of electrical circuits (Sontag,
1981; Banks & Khathur, 1989; Koutsoukos, 2000; Kout-
soukos & Antsaklis, 2002; Johansson, 2003).
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A fourth development phase established switching
between several controllers as a method of adaptive
control theory. These adaptive control techniques are
known as ”multi-model adaptive control,” ”switching
supervisory control (SSC),” and ”universal controller”
(Miller & Davison, 1989; Ryan, 1994), and are not nor-
mally regarded as part of VSC theory. They differ from
the variable-structure approach both in their objective,
which is largely achieving adaptability of the controllers
employed, and in the structures of their control systems.
In the case of multi-model adaptive control, switching is
controlled by variations of the plant. However, switch-
ing of VSC, both those with and without sliding modes,
is controlled by the plant’s state vector.
Switching in adaptive control was first introduced by
Mårtensson (1986), and further developments will be
found in, e.g., (Fu & Barmish, 1986; Middleton, Good-
win, Hill & Mayne, 1988; Morse, Mayne & Goodwin,
1992; Pait & Morse, 1994; Mareels & Polderman, 1996;
Morse, 1996; Angeli & Mosca, 2002). Morse (1995) pre-
sented an overview of some switching controls called
”prerouted,” ”hysteresis,” ”dwell-time,” and ”cyclic”
switching controls. Narendra and Balakrishnan (1994,
1997) described such ”multi-model adaptive controls”
that had the additional objectives of improving tran-
sient response and retaining stability. In (Skafidas et al,
1999), switching controls were also used for controlling
stochastic plants.

1.3 Hybrid control: a unified framework

Discontinuous controls were developed for quite different
purposes, e.g., rapid regulation and short settling times,
robustness, plant stabilization, or adaptability. Conse-
quentially, their design methods are quite different, and
the notation and classifications employed have thus far
been inconsistent. Although terms, such as ”variable-
structure control,” ”sliding-mode control,” ”discontinu-
ous control,” ”switching control,” ”piecewise-linear con-
trol,” ”variable-parameter control,” ”switching supervi-
sory control,” and ”switching adaptive control” are com-
monly encountered, they do not always have the same
meanings.
All of these switching controls and variable-structure
controls have become part of the theory of hybrid sys-
tems over the past decade. Hybrid systems are a mix-
ture of real-time continuous and discrete-event systems
(Blondel & Tsitsiklis, 1999, 2000; van der Schaft & Schu-
macher, 2000; Engell, Frehse & Schnieder 2002; Savkin
& Evans, 2002; Morari, Baotic & Borrelli, 2003) and
provide a unified framework (Branicky, Borkar & Mit-
ter, 1994, 1998; Mignone, Bemporad & Morari, 1999;
Heemels, De Schutter & Bemporad, 2001) encompassing
differing areas of system and control theory, such as re-
lay control systems, bang-bang control, piecewise-linear
systems, timed and hybrid automata, simulation and
modeling languages, rule-based control systems, multi-
model adaptive control, and variable-structure systems,

including those control systems mentioned above. Hy-
brid systems are also used in the field of fuzzy control
(Stanciulescu, 1999, 2002; Qin & Jia, 2002) and in the
field of recurrent fuzzy systems (Kempf & Adamy, 2004),
which are closely related to finite automata (Adamy &
Kempf, 2003; Kempf & Adamy 2003).
Beyond some other early research work on hybrid sys-
tems (Ören, 1977), one of the first references (perhaps
the first) covering these systems in which they are called
”hybrid” is that of Witsenhausen (1966), who defined a
special class thereof. However, the research mainstream
and the evolution of work in the field as an independent
field of research was initiated at a later date at a work-
shop held at the University of Santa Clara, CA, USA,
in 1986. The results of that workshop were published in
1987 (IEEE Report, 1987). Table 1 summarizes the his-
tory that have been described thus far.

1.4 Soft VSC: a systematic improvement on discontin-
uous controls

Switching between different controllers allows, among
other things, improving the performance, i.e., the reg-
ulation rates and settling times, of control systems,
compared to the case where only a single controller is
employed, provided that suitable controllers and a suit-
able switching strategy are chosen. Note that this was
the objective of, and the result obtained by, the pioneers
in the first and third development phase.
Since the control performance potentially attainable by
suitably designed VSC lacking sliding modes increases
with the total number of controllers employed, as many
controllers as possible are employed in order to arrive
at high levels of control performance. One thus ends
up employing infinitely many controllers and switch-
ing among them at infinitesimally short time intervals,
which yields either continuously varying controller
parameters or continuously varying controller struc-
tures. Controls of this type are also termed ”continuous
variable-structure controls” or, as they were originally
termed by Franke (1982b) ”soft variable-structure con-
trols.” These controls are descended from improved
discontinuous VSC of the third development phase, and
their primary purposes is achieving rapid regulation
and settling times that are nearly as short as those of
time-optimal controls. No sliding modes can arise in the
case of such controls, since they are precluded by the
latter’s principle of operation. Furthermore, their actu-
ator control signals are smooth and lack discontinuities,
in contrast to the case of switching controls.
In a phase that commenced in 1972, Kiendl, Franke, and
a number of other authors developed controls of this
type (Kiendl, 1972; Kiendl & Schneider, 1972; Albers,
1983; Franke, 1982a, 1982b, 1983, 1986; Opitz, 1984,
1986a, 1986b, 1987; Adamy, 1991; Kiendl & Scheel,
1991; Niewels & Kiendl, 2000; Niewels, 2001, 2002).
Apart from the main objective of achieving rapid reg-
ulation, the robustness of soft VSC was also examined
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Table 1
Genesis and milestones of the various development phases

220 BC Philon’s oil lamp

840 Banu Musa’s two-step controls for fluid-levels

1826 relay controls for steam engines

1885 development of the phase-plane method

1902 Tirrill-regulator for electric generators

1934 first sliding-mode control

1950 switching controls achieving short settling times
(start of the first VSC-development phase)

1959 theory of sliding-mode controls targeting robust-
ness (start of the second development phase)

1960 Fillipov’s theory covering discontinuous differen-
tial equations

1972 VSC precluding sliding modes yielding short set-
tling times (start of the third development phase,
which was based on the intention of the first de-
velopment phase)

1972 first soft VSC-concept yielding much shorter set-
tling times than earlier controls

1982 establishing soft VSC as a systematic control
method (descended from the controls of the third
development phase)

1986 switching supervisory control having adaptabil-
ity as main objective (start of the fourth devel-
opment phase)

1986 development of hybrid system theory commences
at a workshop held in Santa Clara, CA, USA

1994 hybrid systems established as a unified frame-
work for a wide class of continuous-discontinuous
structures

and proven (Franke, 1983, 1986; Niewels, 2002; Niewels
& Kiendl, 2003). In view of their purely continuous be-
havior, soft VSC are not hybrid systems. Applications
of soft VSC to, e.g., a DC-motor, a hydraulic drive, a
crane, or a submarine will be found in (Franke, 1983;
Borojevic, Garces & Lee, 1984; Lee, 1985; Borojevic,
Naitoh & Lee, 1986; Adamy, 1991; Niewels, 2002). Fur-
thermore, soft VSC is in a sense related to continuous
gain scheduling approaches (Rugh & Shamma, 2000).
This paper surveys soft VSC. These controls are often
further developments of switching controls and, in this
case, we start off by describing these precursors before
proceeding to describe the soft VSC derived from them
in order to illustrate the relationships between discon-
tinuous and soft VSC and provide a readily comprehen-
sible introduction to the subject matter. The scientists
who had developed soft VSC published their results
in German only and, in spite of our thorough searches
for works on soft VSC published by other authors, we
have been unable to find any other such works. Since
the primary literature is available in German only, we
will describe soft VSC in a manner that will be readily
comprehensible, and will design the controls without

making use of any additional information.
In the next section, we shall describe the objectives,
capabilities, and advantages of soft VSC. Soft VSC in-
corporating nested, positively invariant sets and their
further development employing implicit Lyapunov func-
tions shall be described in Section 3. In Section 4, we
shall explain the operation of a soft VSC employing a
dynamic selection strategy. In Section 5, we shall take
a look at a soft VSC having a saturation range whose
bounds are varied by the plant’s state vector. None of
these soft VSC violate control constraints. In order to
illustrate their rapid regulation process and the con-
trol performance obtained, we apply these controls to
the case of a submarine, where they are employed for
controlling dive depth.

2 What are soft variable-structure controls and
why are they useful?

In order to explain the structure and advantages of soft
VSC, let us start off by considering the case of discon-
tinuous variable-structure controls or switching controls
for n-dimensional linear plants,

ẋ = Ax + bu, (1)

having the control constraints

|u| ≤ u0. (2)

The controller

u = F(x, p), (3)

where F is a general operator, depends on the state vec-
tor, x, of the plant and a selection parameter, p, that is
computed by a selection strategy or supervisor, i.e.,

p = S(x), (4)

defined by a discontinuous function, S. The selection
strategy switches between k different selection parame-
ters, p, or a finite number, k, of subcontrollers, F(x, p),
respectively. Fig. 1 illustrates such a control.
The objectives of such discontinuous VSC are often im-
proved settling times, in the case of VSC lacking sliding
modes, robustness, in the case of sliding-mode controls,
or adaptability, in the case of switching supervisory con-
trols. However, their disadvantage is the discontinuities
occurring in their control signals, u, which occur both
in the case of discontinuous VSC lacking sliding modes
and, particularly, in the case of sliding-mode controls,
and their high-frequency switching that, in most cases,
reduces the service lives of actuators.
This disadvantage disappears if the parameter p is cho-
sen such that it depends on a continuous function, S,
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u = F(x, k)
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Fig. 1. Block schematic of a discontinuous variable-structure
control.

in which case, we will have a continuous set of subcon-
trollers, F(x, p), i.e., an infinite number, instead of a fi-
nite number, of subcontrollers and a smooth control sig-
nal. In such cases, we call the VSC a ”soft VSC.” In case
of soft VSC, we can generalize the selection strategy of
Eq. (4) to obtain

S(x, p(n), . . . , p) = 0, (5)

which also includes dynamic behavior and implicit equa-
tions. Fig. 2 illustrates its structure.
Note that the soft VSC that have been developed to date
are based on discontinuous VSC-methods lacking sliding
modes, as mentioned in the introduction, and not on the
theory of sliding-mode control or switching supervisory
control. Their objectives are thus short settling times
and high regulation rates, although other objectives may
be taken into account in future soft VSC. This fact is
important if the intention of current soft VSC, which
is totally different from that of sliding-mode controls or
switching supervisory controls, is to be understood.
In view thereof, it may be seen that both their contin-
uous control signals and larger numbers of controllers
represent benefits, which is why the infinite number of
controllers allows reducing settling times to levels that
would be unachievable if there were a finite number of
subcontrollers.
To make this more readily apparent, let us start off by
considering the case of employing a linear controller,

PSfrag replacements
ẋ = Ax + buu = F(x, p)

S(x, p(n), . . . , p) = 0

x x

p

u

Fig. 2. Block schematic of soft variable structure controls.

u = −kT x, on the plant of Eq. (1), whose control sig-
nal is constrained by Eq. (2). This linear controller has
the disadvantage that its control signal, u, monotoni-
cally decreases during regulation cycles where the state
variables, xi, involved monotonically decrease. This lin-
ear controller thus cannot make efficient use of the avail-
able range, |u| ≤ u0, of the control signal, and, conse-
quentially, regulation will not be as fast as it would be
if the control signal’s constraints were fully exploited.
However, switching between subcontrollers will allow im-
proving this situation, provided that suitable subcon-
trollers and an appropriate selection strategy have been
designed.
In order to illustrate this fact, let us now consider an
example having a finite number, k, of linear controllers,
u = −kT

p x, p = 1, ..., k. Each subcontroller, together
with Eq.(1), leads to a control system,

ẋ = (A − bkT
p )x = Âpx, (6)

where the subcontrollers, kp, have been chosen such that

the n eigenvalues, λp,j , of Âp, where Re{λp} < 0, are
given by

λp+1,j = hλp,j , h > 1. (7)

These controllers thus accelerate the control system’s
behavior when p increases, while simultaneously caus-
ing a similar behavior, since the eigenvalue configuration
remains the same (Adamy, 1991; Adamy & Könemund,
2001, 2002; Könemund et al, 1998, Niewels, 2001, 2002).
Now we choose a suitable selection strategy precluding
sliding modes that switches from a subcontroller, kp, to
another subcontroller, kp+1, such that the control con-
straint, |u| ≤ u0, will be fully exploited, but without
being violated, and such that more rapid regulation will
be obtained after each switching.
It should be obvious that employing an infinite number
of subcontrollers, k(p), by using a continuous selection
variable, p = S(x), incorporating a continuous function,
S, causes the absolute values of the eigenvalues to also
continuously increase with p, and that the regulation
rate will thus be greater, and the settling time shorter,
than would be the case if a switching controller were
employed, and much greater and much shorter, respec-
tively, than would be the case if a single linear controller
were employed.
Soft VSC even allow achieving settling times close to
those of time-optimal controls, which will be illustrated
by means of an example to be considered in the sections
that follow. In contrast to time-optimal control, much
less effort is required for designing and implementing
soft VSC. Their second objective is allowing a continu-
ous control signal, which neither switching control sys-
tems nor time-optimal control systems provide. Apart
from these two, original objectives, robustness has also
been demonstrated for these controls.
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3 VSC employing nested and implicit Lyapunov
functions

The initial concept for a soft VSC proposed by Kiendl
(1972) and Kiendl and Schneider (1972) is a system-
atic extension of their discontinuous VSC lacking sliding
modes. The subcontrollers of this discontinuous VSC are
chosen in a manner rather similar to those described in
the example of the preceding section. The control’s se-
lection strategy is based on nested, positively invariant
sets. In order to explain this control, we start off by de-
scribing the discontinuous case in the section that fol-
lows. Stelzner (1987) improved the method for designing
such controls. As mentioned in the introduction, Wre-
denhagen and Bélanger (1994) developed the same VSC
in a later work.
In a second section, we describe the concept of a soft
VSC employing nested Lyapunov functions proposed by
Kiendl and Schneider. This concept was taken up and
further developed into soft VSC employing implicit Lya-
punov functions in (Adamy, 1991). In the process of ex-
tending this kind of control, the final step has thus far
been that of (Niewels & Kiendl, 2000, 2003; Niewels,
2001, 2002), where the implicit Lyapunov approach was
generalized to the case of VSC employing multivalued
Lyapunov functions and robustness was proven.
Since the direct method of Lyapunov’s stability the-
ory (Hahn, 1967; Rouche, Habets & Laloy, 1977; Sastry,
1999) is essential to all controls described in this paper,
we shall briefly review it here for the convenience of read-
ers. We start with the following well-known theorem:

Theorem 1 The differential equation, ẋ = f(x) with a
continuous function f , having an equilibrium state, x =
0, has a unique solution. If there exists a function v(x)
having continuous partial derivatives and if

(A1) v(0) = 0,

(A2) v(x) > 0 ,x 6= 0,

(A3) v̇(x) < 0 ,x 6= 0,

then the equilibrium state, x = 0, will be asymptotically
stable and v(x) will be called a ”Lyapunov function.”

For stable linear systems, ẋ = Ax, it will always be
possible to compute a Lyapunov function, v(x) = xT Rx,
having a positive-definite matrix, R, by solving the so-
called ”Lyapunov equation,”

AT R + RA = −Q, (8)

for an arbitrary positive-definite matrix, Q. If there ex-
ists a Lyapunov function, v(x), for a system, ẋ = f(x)
and

G = {x | v(x) < c} (9)

is bounded, then G is a positively invariant set that is
also called a ”Lyapunov region,” i.e., a region for which
every trajectory that starts therein never leaves it.

3.1 Discontinuous VSC employing nested Lyapunov
functions

Let us consider linear plants (1) and linear subcon-

trollers, u= −kT
p x, along with a control-parameter re-

striction, |u| ≤ u0, and a selection strategy, p = S(x).
Furthermore, we only consider bounded sets, X0, of
possible initial vectors x(t = 0), since X0 = R

n is
normally not of practical interest. The control mode
consists of three major elements (Kiendl, 1972; Kiendl
& Schneider, 1972):

(B1) A family of k linear state controllers, u = −kT
p x,

each of which leads to stable control loops,

ẋ = (A − bk
T
p )x, p = 1, . . . , k (10)

whose response times decrease with increasing in-
dex, p.

(B2) For each control loop (10), there should exist a Lya-
punov region,

Gp = {x | vp(x) < cp} , (11)

where cp determines the size of Gp. Furthermore,
Gp should be such that all x ∈Gp satisfy the rela-
tion, |u| =

∣

∣kT
p x

∣

∣ ≤ u0, restricting the values of the
control parameters.

(B3) The Lyapunov regions, Gp, should be nested in ac-
cordance with

Gp+1 ⊂ Gp , p = 1, . . . , k − 1, (12)

with an increasing index, p.

Fig. 3 depicts an example of a family of nested Lya-
punov regions, where the dimensions of the respective
individual regions, Gp, have been chosen such that each
of them is tangent to the straight lines, kT

p x = u0 and

kT
p x = −u0, arising from the relation,

∣

∣kT
p x

∣

∣ ≤ u0, re-
stricting the values of the control parameter. This tan-
gential construction guarantees a good exploitation of
the control signal’s constraints during regulation cycles.
The largest region Gp must include X0.
The selection strategy, p = S(x), then determines each

of the zones, Zp = Gp\Gp+1, within which the current
state vector, x(t), will be found. The control vectors, kp,
associated with each zone, Zp, are then activated.
The trajectory is thus confined to increasingly smaller
regions, Gp, during regulation cycles, where the associ-
ated controller, kp, will be activated upon entry into each
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region, Gp. Since the controllers involved lead to control
loops (10) with response times that decrease with in-
creasing index, p, regulation proceeds much faster than
if a single controller only were employed. The running
from a Lyapunov region Gp into the next smaller one
that occurs is also the reason why sliding modes cannot
occur. Note that this control can be carried out for all
x ∈ G1, and, thus, X0 ⊆ G1 should be satisfied. For a
x /∈ G1 it might be that the control constraints |u| ≤ u0

will be violated.
Methods for designing such controls will be found in
(Kiendl, 1972; Kiendl & Schneider, 1972; Stelzner, 1987;
Wredenhagen & Bélanger, 1994). The initial step (B1)
in their design is determining the control vectors, kp,
which may be accomplished by choosing suitable sets
of eigenvalues, λp,j , for each control loop (10). Faster-
acting controllers may be obtained by, e.g., choosing
λp+1,j = h · λp,j with h > 1 as in Eq. (7).
The second step (B2) in the design is choosing a Lya-
punov region (11) for each control loop (10), which may
be accomplished by, e.g., employing quadratic Lyapunov
functions, vp(x) = xT Rpx. The matrix, Rp, comes from
the Lyapunov equation,

ÂT
p Rp + RpÂp = −Qp , Âp = A− bkT

p . (13)

The Qp appearing in Eq. (13) should be positive-definite
matrices. Qp+1 = Qp is frequently a reasonable choice.
The Lyapunov region Gp from Eq. (11) will then be an
ellipse determined by the matrix Rp.
Since the condition

∣

∣kT
p x

∣

∣ ≤ u0 is to be satisfied for all
x ∈ Gp and to be fully exploited, cp should be chosen
such that the hyperplanes ±kT

p x =u0 are tangent to the
ellipse,

Gp =
{

x | xT Rpx < cp

}

. (14)

In order to determine this cp, we solve the optimiza-
tion problem xT Rpx →max, subject to the restrictions

PSfrag replacements

kT
1 x = −u0

kT
1 x = u0

G1

G2

G3

x1

x2

Fig. 3. A family of nested Lyapunov regions.

±kT
p x =u0, whose solution yields the value sought,

cp =
u2

0

kT
p R−1

p kp

. (15)

Under the third step (B3) in the design procedure, it
should be verified that all k regions, Gp, are nested,
where a nesting condition may be formulated for this
purpose. Two regions, Gp and Gp+1, will be specified by
a point, x, that satisfies the inequalities

xT Rpx

cp
<

xT Rp+1x

cp+1
< 1. (16)

If all points that satisfy Eq. (16), then Gp+1 ⊂ Gp, which
will be precisely the case if the matrix

Rp+1

cp+1
− Rp

cp
(17)

is positive definite. This condition should be verified for
all p = 1, . . . , k − 1.
Kiendl (1972) and Stelzner (1987) also employed paral-
lelepipeds as an alternative to ellipsoidal Lyapunov re-
gions. These latter result if one employs v(x) = ||Wx||

∞

as the Lyapunov function, where ||z||
∞

is the maximum
norm of a vector z (Kiendl, Adamy & Stelzner, 1992;
 Loskot, Polánski & Rudnicki, 1998).

3.2 Soft VSC employing implicit Lyapunov functions:
basics and stability

Infinitely densely nesting the Lyapunov regions for the
final discontinuous VSC described in the section imme-
diately above yields a soft VSC (Kiendl, 1972; Kiendl &
Schneider, 1972). As for the discontinuous case, the con-
trol concept involved here consists of three elements:

(C1) A continuous family of linear state controllers, u =
−kT (p)x, all of which lead to stable control loops,

ẋ = (A − bkT (p))x. (18)

(C2) For each control loop in Eq. (18), a Lyapunov
region, G(p), must be determined for which the
restriction, |u| =

∣

∣kT (p)x
∣

∣ ≤ u0, on the control
parameter, u, should be satisfied for all x ∈ G(p).

(C3) The Lyapunov regions, G(p), involved should be in-
finitely densely nested, i.e., G(p+ε) ⊂ G(p) should
hold true for every small ε > 0, which implies that
the size of G(p) will decrease with increasing p.

Unfortunately, the soft VSC concept above yields no
concrete method for designing such controls. A suitable
design method was developed in (Adamy, 1991) and will
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be described below.
The Lyapunov regions, G(p), involved may be defined by

G(p) = {x | g(p,x) < 0} , (19)

together with a suitable function g(p,x). The control
vector, k(p), associated with a Lyapunov region, G(p),
will be activated whenever the trajectory, x(t), enters
G(p), which will occur whenever x(t) lies on the border,

∂G(p) = {x | g(p,x) = 0} , (20)

of G(p). The parameter, p, determining k(p) will thus
be determined for each x(t) during regulation cycles by
the implicit equation

g(p,x) = 0. (21)

In regard to the control, g must satisfy two conditions:

(C4) For each x, Eq. (21) must be uniquely solvable for
p.

(C5) The function g should be chosen such that the con-
trol loop (18), (21) will be stable.

Satisfying Condition (C4) is necessary in order to be able
to assign one, and only one, value, p, to each state vector
x. If this is not the case, either Eq. (21) has no solution
and no p will exist for a state vector x, or Eq. (21) has
several solutions p and several controllers k(p) will thus
be assigned to a single state vector, x. In these irregular
cases, the control described above obviously cannot be
implemented. However, Condition (C4) will be satisfied
if a function, p = p(x), is defined by Eq. (21).
Without loss of generality, Conditions (C1), (C2), and
(C3) may be reformulated such that the size of G(p)
decreases as the parameter p decreases and p = 0 for
x = 0. We will then be able to satisfy Condition (C5),
since p will also decrease along every trajectory of the
control loop (18), (21) and

v = p (22)

will be a Lyapunov function of the control loop,

ẋ = (A − bkT (v))x = Â(v)x, (23)

g(v,x) = 0, (24)

resulting from Eqs. (18), (21), and (22). Fig. 4 illustrates
the structure of this control loop.
If Eq. (24) is to actually define a Lyapunov function,

this implicit equation must satisfy two conditions that
guarantee that (C4) and (C5) will be satisfied: (1) It
must implicitly define a function, v(x). (2) This func-
tion, v(x), must be an implicit Lyapunov function of the
system of Eq. (23). These conditions will be met if the

PSfrag replacements
ẋ = Ax + buu = −kT (v)x

g(v,x) = 0

x x

v

u

Fig. 4. Structure of the control loop employing an implicitly
defined Lyapunov function v as selection strategy.

following theorem on implicit Lyapunov functions given
and proven in (Adamy, 1991) holds true for Eqs. (23)
and (24):

Theorem 2 The differential equation, ẋ = f(x) with a
continuous function f , having an equilibrium state, x =
0, has a unique solution for every initial state taken from
a neighborhood, U1, of the origin. Within a region,

H = {(v,x) | 0 < v < v̄, x ∈ U0\{0}}, (25)

where U0 ⊆ U1 is a neighborhood of the origin, there
exists a continuous function, g(v,x), that is differentiable
with respect to v and x such that

(D1) for x → 0 the limit v → 0+ results from g(v,x) = 0
and

(D2) lim
v→0+

g(v,x)>0 and lim
v→v̄−

g(v,x)<0 ∀x∈U0\{0}.

If the pair of conditions

(D3) −∞ <
∂g(v,x)

∂v
< 0,

(D4)
∂g(v,x(t))

∂t
< 0 ∀ (v,x), where g(v,x) = 0,

are then both satisfied within H, then the equilibrium
state, x = 0, will be asymptotically stable.
Furthermore, the equation g(v,x) = 0 implicitly defines
a function, v, where 0 < v(x) < v̄, within U0\{0} that
may be made continuous at x = 0 by defining v(0) = 0.
This continued function is a Lyapunov function for the
system ẋ = f(x) within U0.

This theorem is mainly a combination of the well known
implicit-function theorem (Courant & John, 2000) and
Theorem 1. We can always assume v̄ = 1 without loss of
generality.
The above conditions may be elucidated as follows: Con-
dition (D3) provides that g will monotonically decrease
for constant x, governed by v. Due to (D2), g thus has
one, and only one, zero for v ∈ ]0, v̄ [. Regarding the
implicit-function theorem, the equation g(v,x) = 0 thus
implicitly defines a function, v(x) > 0, within H . Due to
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(D1), at x = 0, v(x) is either defined by v = 0 or may be
made continuous. Condition (C4) will thus be satisfied.
Since the implicit equation (24) has only a single solution
on the interval ]0, v̄[, the values g(ε,x) and g(v̄ − ε,x)
have opposite signs for every sufficiently small ε and ev-
ery x ∈ G(v̄ − ε). The bracketed solution may thus be
numerically computed employing the bisection method
or the more rapidly converging Pegasus method (Dowell
& Jarratt, 1972), either of which will always yield the
correct result. A typical example of how g varies with v
is shown in Fig. 5.
Applying the implicit-function theorem and introduc-

ing the abbreviations gt(v,x(t)) = ∂g(v,x(t))/∂t and
gv(v,x) = ∂g(v,x)/∂v, we then have for the time deriva-
tive of v(x):

v̇(x) = −gt(v,x(t))

gv(v,x)
. (26)

From Eq. (26) and Conditions (D3) and (D4), we have
v̇(x) < 0. v is thus a Lyapunov function for ẋ = f(x),
and Condition (C5) will also be satisfied.
Furthermore, Condition (D3) implies that

g(v1,x) ≤ g(v2,x) ∀x ∈ R
n (27)

for v1 > v2, and thus that all regions, G(v) = {x |
g(v,x) < 0}, will be nested and Condition (C3) will be
satisfied.
Condition (D4), i.e., gt(v,x) = ẋT · gradxg(v,x) < 0,
obviously implies that all trajectories will enter into the
respective region, G(v), involved. Thus, the regions G(v)
are Lyapunov regions and Condition (C2) will be satis-
fied, provided that we adjust the size of G(v) such that
all x ∈ G(v) satisfy |kT x| ≤ u0. The latter will always
be possible.
The theorem on implicit Lyapunov functions is of major
importance to control design (23), (24), since if its con-
ditions are satisfied, then the design conditions, (C2),
(C3) and (C4), (C5), will also be satisfied. However, this
theorem yields only general conditions that must be met
in order to design a stable control. That means that suit-
able functions, k(v) and g(v,x), will have to be chosen,
a procedure that will be covered in the next section.

0 0.2 0.4 0.6 0.8 1

0

4

8

12

v

g(
v,

x)

Fig. 5. A plot of the function, g(v,x), of the submarine ex-
ample appearing in Section 3.4 versus the variable v for a
fixed vector, x = [0 0 − 0.001]T .

3.3 Soft VSC employing implicit Lyapunov functions:
subcontrollers and selection strategy

The design of a specific control proceeds as follows: One
assumes, without loss of generality, that the linear sys-
tem (1) is in controllable standard form, where

A =





















0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...

0 0 0 1

−a0 −a1 −a2 · · · −an−1





















, b =





















0

0
...

0

1





















, (28)

or have been transformed into the above.
We now choose the control vector, k(v), of Eq. (23) such
that the eigenvalues, λi, of the plant (23) will be shifted
onto rays, λi(v) = λi(1)v−1, that start at λi(1) and pro-
ceed toward negative infinity with decreasing v, as illus-
trated in Fig. 6. Note that (C1) will now be satisfied. The
above choice of k(v) leads to faster linear control sub-
systems (23), since v decreases during regulation cycles.
As in the discontinuous case of Section 3.1, the aim here
is achieving increasingly higher regulation rates during
regulation cycles.
In order to achieve these ray-like eigenvalue paths, λi(v),
we need to formulate the control vector, k(v), as follows:

k(v) =















â0v
−n − a0

â1v
−(n−1) − a1

...

ân−1v
−1 − an−1















, (29)

where the âi are the coefficients of the characteristic
polynomial of Â(v = 1), as given by Eq. (23). Arranging
the coefficients, ai, of the plant in a vector,

aT = (a0, ai, ..., an−1), (30)

and the coefficients, âi, of the system controlled by k(1)
in a vector,

âT = (â0, âi, ..., ân−1), (31)

allows writing the control vector, k(v), in the form,

k(v) = D−1(v)â − a, (32)

containing the diagonal matrix,

D(v) = diag (vn, . . . , v2, v). (33)
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v → 0

v = 1

Im

Re

Fig. 6. Eigenvalue configurations of the system Â(v).

Inserting Eqs. (28) and (32) into Eq. (23), the system
matrix of the control system may be written in the form

Â(v) =
1

v
D(v)Â1D

−1(v), Â1 = Â(1). (34)

Under a further design step, we need to choose suit-
able Lyapunov regions, G(v) = {x | g(v,x) < 0}, as de-
scribed under design Condition (C2). Ellipses, G(v) =
{

x | xT R(v)x − 1 < 0
}

, are the most widespread Lya-
punov regions and are also suitable here. We multiply
the quadratic form by an additional function, e(v), where
e(v) > 0, in order to affect the size of every ellipse, G(v),
such that the pair of hyperplanes given by

∣

∣kT (v)x
∣

∣ = u0

will be tangent to the ellipse, and obtain:

G(v) =
{

x | g(v,x) = e(v) · xT R(v)x − 1 < 0
}

. (35)

Similarly to the discontinuous case of Eq. (15), we ob-
tain ellipses tangent to the two hyperplanes given by
∣

∣kT (v)x
∣

∣ = u0 using

e(v) =
kT (v)R−1(v)k(v)

u2
0

, (36)

where the only difference compared to the discontinuous
case is that k and R are continuous functions depending
on v.

3.4 Satisfying the theorem on implicit Lyapunov func-
tions

Recall that the implicit Lyapunov function,

g(v,x) = e(v) · xT R(v)x − 1 = 0, (37)

must satisfy the conditions of Theorem 2. Considering
Condition (D4), which guarantees that G(v) will be a
Lyapunov region, we have from Eq. (37) that

e(v)xT
[

ÂT (v)R(v) + R(v)Â(v)
]

x < 0. (38)

Since we provided that e(v) > 0, this equation leads to
the Lyapunov equation,

ÂT (v)R(v) + R(v)Â(v) = −Q(v), (39)

where Q(v) is a positive-definite matrix. Using Eq. (34),
we obtain:

D −1(v)ÂT
1 D(v)R(v) + R(v)D(v)Â1D

−1(v)

= −v · Q(v). (40)

This Lyapunov equation depends on v, and we are now
interested in eliminating this dependency in order to ob-
tain an equation that is mathematically easier to handle.
For this purpose, we choose the positive-definite matri-
ces, R(v) and Q(v), in the following form:

R(v) = D−1(v)R1D
−1(v), (41)

Q(v) =
1

v
D−1(v)Q1D

−1(v), (42)

where R1 and Q1 must be positive-definite matrices.
Inserting Eq. (41) and (42) into Eq. (40), Condition (D4)
of Theorem 2 takes on the form:

ÂT
1 R1 + R1Â1 = −Q1, (43)

which has then advantage that all matrices have constant
coefficients.
The choice of R(v) in Eq. (41) has the consequence that
the function e(v) of Eq. (36) becomes a polynomial of
order 2n and may be written in the form:

e(v) =
1

u2
0

[

kT (v)D(v)R−1
1 D(v)k(v)

]

=
1

u2
0

[ aT D(v)R−1
1 D(v)a

− 2âT R−1
1 D(v)a + âT R−1

1 â ] , (44)

using Eqs. (32) and (41) in Eq. (36).
In the next step, we consider Condition (D3) of Theorem
2, which guarantees that all G(v) will be nested, and
apply Eq. (37), obtaining

−∞ < e′(v) · xT R(v)x + e(v) · xT ∂R(v)

∂v
x < 0 (45)

for Condition (D3). Since e(v) > 0 and R(v) is positive
definite, this condition will be satisfied if

max
v∈[0,v̄]

e′(v) ≤ 0, (46)

and if

∂R(v)

∂v
(47)

is a negative-definite matrix. Inequality (46) may be eas-
ily checked by computing the maxima of e′ on [0, v̄], since
e(v) and its derivative, e′(v), are polynomials.
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The matrix R(v) may be differentiated using Eq. (41),
and we then obtain for Eq. (47):

∂R(v)

∂v
=

∂D−1(v)R1D
−1(v)

∂v

=
1

v
D−1(v) · (NR1 + R1N) · D−1(v), (48)

where N = diag (−n, . . . ,−1). This matrix (48) will be
negative definite if the matrix

NR1 + R1N = −S1, (49)

is negative definite. As in the case of Eq. (43), Eq. (49)
is independent of v, which is again a consequence of the
choice of R(v) used in Eq. (41).
Based on several simple considerations involving limit-
ing values, it may be shown that (D1) and (D2) of The-
orem 2 are satisfied.
Summarizing the results presented above, Theorem 2
is satisfied and designing 1 a soft VSC employing im-
plicit Lyapunov functions necessitates satisfying Eqs.
(43), (46), and (49). How this may be accomplished will
be covered in the next section.

3.5 Computing controller parameters

The considerations above imply that a soft VSC employ-
ing implicit Lyapunov functions consists of the control
loop

ẋ = (A − bkT (v))x ,k(v) = D−1(v)â − a (50)

and the selection strategy

g(v,x) = e(v) · xT R(v)x − 1 = 0, (51)

where

e(v) =
1

u2
0

[ aT D(v)R−1
1 D(v)a

− 2âT R−1
1 D(v)a + âT R−1

1 â ] , (52)

R(v) = D−1(v)R1D
−1(v), (53)

and e(v) is a polynomial of order 2n or less. Note that a
soft VSC employing implicit Lyapunov functions will be
operative for 0 < v < v̄, i.e., will operate as a soft VSC
for all x ∈G(v̄), where G(v̄) is the largest of all nested
Lyapunov regions, G(v). We may choose v̄ = 1 without
loss of generality, as mentioned above.

1 In addition to ellipsoidal Lyapunov regions G(v), regions
with other types of shapes, e.g., polyhedra, may also be em-
ployed in Eq. (37) by utilizing vector norms (Adamy, 1991).
The robustness of this type of soft VSC has been shown in
(Niewels, 2002; Niewels & Kiendl, 2003).

Computing the parameters of this control involves choos-
ing a suitable vector, â, in a first step and a matrix, R1,
in a second step, and verifying X0 ⊆ G(1) in a third
step. Let us now consider these steps in detail.
Step 1: Recall that the vector, â, consists of the coeffi-
cients of the characteristic polynomial of the system ma-
trix, Â1 = Â(v = 1). The best way to choose â is select-

ing eigenvalues, λi(1), of Â1 such that the linear system,

ẋ = Â1x, will exhibit good control performance.
Furthermore, we need to allow for the fact that the re-
sultant control vector, k(1) = â − a, will be chosen such
that any x ∈X0, where X0 is the set of all possible initial
state vectors, x(t = 0), satisfies the control constraints,
∣

∣kT x
∣

∣ ≤ u0.
Step 2: We need to choose the matrix R1 such that
Eqs. (43), (46), and (49) will be satisfied. Fortunately,
there will normally be a set of matrices, R1, that sat-
isfy these conditions. We thus choose from those ma-
trices that matrix, R1, that yields the region, G(1) =
{

x | e(1) · xT R1x − 1 < 0
}

, having the maximum vol-
ume. That region will also be the largest region within
which we may apply soft VSC. Since the volume of the
ellipsoid, G(1), is proportional to 1/

√

en(1) det R1, we
need to solve the constrained optimization problem

max
R1

1
√

en(1) det R1

(54)

subject to the three restrictions,

ÂT
1 R1 + R1Â1 = −Q1,

NR1 + R1N = −S1, (55)

max
v∈[0,v̄]

e′(v) ≤ 0,

where Q1 and S1 are arbitrary positive-definite matrices.
Note that this will be the case if their respective smallest
eigenvalues, λmin(Q1) and λmin(S1), are both positive.
Also note that e′(v) depends on R1. The optimization
problem may be analytically solved in simple cases only.
Solution of the optimization problem (54), (55) normally
employs numerical methods involving, e.g., a log-barrier
function (McCormick, 1983),

B(R1) =
1

√

en(1) det R1

+ r [ ln(λmin(Q1))

+ ln(λmin(S1)) + ln(− max
v∈[0,v̄]

e′(v)) ] , (56)

that transforms the restricted problem (54), (55) into an
unrestricted one,

max
T

B(R1 = TT T), (57)

where the matrix R1 is composed of a triangular ma-
trix, T, and its transpose. In contrast to the case of the
elements of the positive-definite matrix R1, the nonzero
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elements of T may be arbitrary real numbers. The pa-
rameter r determines the steepness of the barrier. The
problem (57) may now be solved using a hill-climbing
method or an evolutionary algorithm (Schwefel, 1995).
Step 3: We have to check whether X0 ⊆ G(1) is satisfied.
If this is not the case we have to restart with Step 1.
In many cases, the restrictions (55) may be met with-
out solving the optimization problem itself by choosing a
positive-definite matrix, Q1, and computing the matrix
R1 from ÂT

1 R1 + R1Â1 = −Q1. The Lyapunov equa-
tion, NR1 +R1N = −S1, will frequently be satisfied for
this R1, since N is a diagonal matrix. Furthermore, the
third restriction of (55) will also be met in many cases.
However, this simplified method will not normally yield
the optimal solution of (54), (55).

3.6 A typical example: a submarine dive control

We consider a submarine built by Kockumation AB,
Sweden, which should be equipped with a dive control
in order to allow controlling dive depth. The model for
this submarine, along with a linear and a saturated dive
control, have been described by Gutman and Hagander
(1985). The linear, time-invariant, state-space model in
controllable standard form,

ẋ =









0 1 0

0 0 1

0 0 −0.005









x +









0

0

1









u, (58)

describes its vertical motion. Its dive depth is repre-
sented by x1, its vertical velocity by x2, and its vertical
acceleration by x3.
The control parameter, u, is confined to the range

|u| ≤ u0 = 2.5 · 10−5. (59)

Consider the set of possible initial state vectors, x(0),
given by

X0 = {x | |x1| ≤ 10, |x2| ≤ 0.05, |x3| ≤ 0.0046} . (60)

Design of a soft VSC employing implicit Lyapunov func-
tions may then proceed as in the preceding section.
Step 1: We choose the eigenvalue configuration

λ 1(1) = −0.00369

λ 2/3(1) = −0.00246± j0.00492 (61)

which leads to

âT = [1.1165 · 10−7 4.8413 · 10−5 8.6100 · 10−3]. (62)

The vectors aT = [0 0 0.005] and â jointly define the
control vector, k(v) = D−1(v)â − a.

Step 2: Solving either of the optimization problems (54),
(55) or (57) yields a finally optimized matrix,

R1 =









1 2.5921 · 102 7.9935 · 103

2.5921 · 102 9.9489 · 104 6.5779 · 106

7.9935 · 103 6.5779 · 106 9.7977 · 108









. (63)

Step 3: Note that G(1) includes X0 and that control may
thus be carried out for any initial state x ∈ X0.
According to (50), (51), (52), and (53) and the param-
eters determined above, the closed loop system is given
by

ẋ=











0 1 0

0 0 1

−1.1165 ·10−7

v3
−4.8413 ·10−5

v2
−8.6100 ·10−3

v











x (64)

and the implicit equation g(v,x) = 0 leads to the poly-
nomial

v2ng(v,x) = c6(x)v6 + c5(x)v5 + c4(x)v4 + c3(x)v3

+ c2(x)v2 + c1(x)v + c0 = 0, (65)

which is the selection strategy, where

c0(x) = 1.7803 · 10−4x2
1

c1(x) = 0.0923x1x2 − 2.7854 · 10−4x2
1

c2(x) = 2.8461x1x3 + 17.7119x2
2 + 1.3924 · 10−4x2

1

− 0.1444x1x2

c3(x) = 0.0722x1x2 + 2.3421 · 103x2x3 − 4.4531x1x3

− 27.7120x2
2

c4(x) = 1.7443 · 105x2
3 + 13.8531x2

2 + 2.2261x1x3

− 3.6645 · 103x2x3

c5(x) = 1.8319 · 103x2x3 − 2.7291 · 105x2
3

c6(x) = 1.3643 · 105x2
3 − 1. (66)

The polynomial (65), whose coefficients vary with x, has
only one root in ]0, v̄ = 1[. The value of the implicit Lya-
punov function v ∈]0, v̄ = 1[ can thus alway reliably de-
termined from Eq. (65) as mentioned in Section 3.2.
In practical applications, we would discontinue using the
VSC at some low value of v, e.g., v = 0.05, and carry on
from there using the linear control vector, k(v), rather
continuing to use the VSC until v ≈ 0, since the latter
would lead to computational problems occurring in con-
junction with Eq. (64).
A detailed comparison of the soft VSC above to time-
optimal control, linear control, saturated linear control
and the soft VSC described in the subsequent sections,
is given in Fig. 13(a), 13(b), and 14, presenting plots of
dive depth, x1, and of the actuator control signals, u,
involved, and in Section 6.
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4 Bilinear and dynamic soft VSC

The starting point of soft VSC that employ a differen-
tial equation as their selection strategy was the work of
Becker (1977, 1978, 1979) regarding how a time-optimal
switching strategy might be computed for two given
subcontrollers and a given plant. The major result of
his work was that computing such an optimal switching
strategy is a very time-consuming task and of little use
for practical applications. He also proposed a simple
Lyapunov-based switching control and interpreted it as
a bilinear control system. Longchamp (1980) as well as
Xing-Huo and Chun-Bo (1987) cover similar controls.
The aims of these switching controls are achieving high
regulation rates and precluding sliding modes. Unfortu-
nately, the latter cannot be guaranteed.
Franke (1982a, 1982b, 1983, 1986) was inspired by these
bilinear VSC, and his idea was reliably precluding sliding
modes by making the switching variable, p, continuous
using a differential equation, ṗ = f(p,x). He presented
examples of their high regulation rates and proved their
robustness. We call these soft VSC ”dynamic soft VSC,”
due to their dynamic selection strategy, ṗ = f(p,x). An
application of these soft VSC is described in (Borojevic,
Garces & Lee, 1984; Lee, 1985; Borojevic, Naitoh & Lee,
1986). In order to guarantee their stability, Franke used
Lyapunov’s direct method. Opitz (1984, 1986a, 1986b,
1987) extended the control described above to the point
where only a single output-parameter vector or value,
and no state vector, is required for regulation. Proof of
stability is based on hyperstability theory in this case.
In the next section, we shall start off by describing
Becker’s discontinuous bilinear VSC in order to both il-
lustrate the historical background and provide a readily
comprehensible introduction to the motivation that led
Franke to his soft VSC.

4.1 Bilinear VSC

Once again, we consider linear plants, ẋ = Ax + bu.
Becker (1979) employed a pair of linear subcontrollers,
u = −kT

p x, and switched between them such that a
Lyapunov function of the control loop invariably takes
on its least value. Cf. also the depiction appearing in
(Föllinger, 1998). He thus employed a selection strategy
involving a quadratic switching surface and a selection
variable, p, that could take on either of the pair of values
1 and −1. The control equation for this approach is

u = −1

2

[

(k2 + k1)
T

+ p (k2 − k1)
T
]

x. (67)

For p = 1, k2 will be active; for p = −1, k1 will be
active. Inserting Eq. (67) into ẋ = Ax + bu, we obtain
the control loop,

ẋ = Âx + pMx, (68)

which is bilinear in p and x, where

Â = A − 1

2
b (k2 + k1)

T
, M = −1

2
b (k2 − k1)

T
. (69)

The control vectors, k2 and k1, are chosen such that Â
will be stable. In the following, we shall assume that no
sliding mode exists for this bilinear control system.
Becker then employs a Lyapunov function, v (x) =
xT Px, for the system of Eq. (68). In order that the
equilibrium state, x = 0, will be globally asymptotically
stable, we demand that

v̇ (x) = ẋT Px + xT Pẋ < 0. (70)

Note, that we must exclude all x at the discontinuity of
the switching surface in Eq. (70). In order to complete
the stability considerations, we have to consider differ-
ential inclusions (Filippov, 1988). Since these consider-
ations do not restrict the results in the following and to
simplify matters we do not describe these considerations
here.
Substituting ẋ in Eq. (70) using Eq. (68) we obtain

v̇ (x) = xT (ÂT P + PÂ)x

+ pxT
(

MT P + PM
)

x < 0 (71)

that must be satisfied for all x ∈ R
n\{0} not lying on

the switching surface. We thus choose a positive-definite
matrix, Q, in

ÂT P + PÂ = −Q (72)

in order to provide that the first term in Eq. (71) will
be negative, which will allow using Eq. (72) to compute
the positive-definite matrix, P.
We then choose a selection strategy, p = S(x), such that
v̇ (x) will be minimized, which will be the case if

p = −sgn
(

xT
(

MT P + PM
)

x
)

, (73)

in which case, the Lyapunov function will decrease as
rapidly as possible during regulation cycles. The motiva-
tion for this choice is the implication that a rapidly de-
creasing Lyapunov function normally leads to x rapidly
reaching the equilibrium point, x = 0.
Becker’s VSC-system consists of Eq. (68), combined with
the selection strategy of Eq. (73). He recommended se-
lecting the pair of subcontrollers such that they will dif-
fer from one another as much as possible (Becker, 1979;
Föllinger, 1998) in order to allow achieving more rapid
regulation and shorter settling times than in case where
a single linear controller only is employed.
As Becker noted, the design of the above control is not
aimed at allowing sliding modes, although such may well
occur. He thus sought criteria that would allow deter-
mining whether a given control system (68), (73) will
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exhibit a sliding mode. Unfortunately, the condition for
the occurrence of sliding modes that he obtained is a suf-
ficient condition only, such that sliding-modes can never
be reliably precluded.
Franke (1981) proved that the above control is robust
against disturbances and parameter variations in the
absence of sliding modes. As mentioned above, we de-
scribed Becker’s bilinear VSC in view of their histori-
cal relevance to the development of dynamic soft VSC,
rather than their theoretical or practical significance.

4.2 Dynamic soft VSC: basics and stability

The problems that arise in the case of the bilinear VSC
above are that undesirable sliding modes might occur
and that their occurrence cannot be precluded. In order
to remedy that situation, Franke (1982a, 1982b, 1983,
1986) made Becker’s discontinuous selection variable, p,
continuous by means of a differential equation

ṗ=f(p,x). (74)

Switching and sliding modes can thus no longer occur,
and the bilinear VSC becomes a soft VSC. In addition to
smoothly varying actuator control signals, another ben-
efit of this approach is the infinite number of subcon-
trollers available for reducing settling times and acceler-
ating regulation.
Franke also considered linear plants 2 ,

ẋ = Ax + bu, (75)

duly allowing for the control constraints,

|u| ≤ u0.. (76)

Once again, a bounded set X0 of possible initial values
x(t = 0) is considered. Similarly to the case of the con-
troller of Eq. (67), the variable-structure controller is

u = −(k+p·l)T x. (77)

Combining the equations for the plant (75) and the con-
troller (77), we obtain

ẋ = (A − bkT − pblT )x = (A0 − pblT )x, (78)

where the control vector, k, is chosen such that A0 =
A− bkT will be stable. Using Eqs. (74) and (78), we

2 In this paper, we describe a slightly simplified version of
Franke’s soft VSC in order to allow explaining its main fea-
tures in the simplest-possible terms. The original version in-
cluded methods for designing controllers for linear MIMO
systems, systems with distributed parameters, and consid-
erations related to command signals.

obtain the differential equation,

[

ẋ

ṗ

]

=

[

(A0 − pblT )x

f(p,x)

]

, (79)

for the entire control system shown in Fig. 7.
The stability, compliance with control constraints, and
performance of this control system are largely depen-
dent upon the selection strategy employed, i.e., upon
the function f . Most of the following considerations will
thus be involved in constructing such a function, f .
We demand that the control system (79) has a single
asymptotically stable equilibrium point,

[

x

p

]

=

[

0

0

]

. (80)

In order to comply with this demand, we consider a
positive-definite quadratic form,

v(p,x) = x
T
Rx+qp2, (81)

with the intention of choosing the function f such that
v(p,x) will be a Lyapunov function for the control sys-
tem (79) that will guarantee asymptotic stability. Using
Theorem 1, the latter will be the case if

v̇(p,x) = ẋT Rx + xT Rẋ+2qpṗ < 0. (82)

Using Eq. (79), we obtain

v̇(p,x) = xT (AT
0 R + RA0)x−pxT (lbT R + RblT )x

+ 2pqf(p,x) < 0, (83)

which yields

v̇(p,x) = xT (AT
0 R + RA0)x

+ 2p
[

−xT RblT x+qf(p,x)
]

<0. (84)

In order to simplify this expression, we define a function,
r, such that

−xT RblT x+qf(p,x) = −p · r(p,x). (85)

Using this Eq. (85) in Eq. (84), we obtain

v̇(p,x) = xT (AT
0 R + RA0)x−2p2r(p,x) < 0. (86)

Eq.(86) will obviously be satisfied, and the control sys-
tem (79) will be stable if

AT
0 R + RA0 = −Q (87)
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u

Fig. 7. Structure of the control system conforming to dy-
namic soft VSC.

is a negative-definite matrix and

r(p,x) > 0. (88)

Since A0 has exclusively eigenvalues with negative real
parts, there always exists a positive-definite solution, R,
for an arbitrarily chosen positive-definite matrix, Q. The
first stability condition (87) will thus always be satisfi-
able. The second stability condition (88) is both easy to
satisfy, since we can arbitrarily choose a positive func-
tion, r, in Eq. (86), and allows choosing r such that the
control constraints (76) involved will be met, which we
shall do in the next section.

4.3 Dynamic soft VSC: selection strategy

From Eq. (85), we obtain the selection strategy

ṗ = f(p,x) =
xTRblTx−p · r(p,x)

q
, (89)

where we intend to choose the function r such that,
as mentioned above, compliance with the control con-
straints, |u| ≤ u0, will be maintained, which is equiva-
lent to maintaining compliance with the inequalities

−u0 ≤ −kT x−p·lT x ≤u0 (90)

obtained from Eqs. (76) and (77). We convert Eq. (90)
into

−u0 − kT x

lT x
≤ p ≤ u0 − kT x

lT x
for lT x >0, (91)

u0 − kT x

lT x
≤ p ≤ −u0 − kT x

lT x
for lT x <0 (92)

and obtain constraints for the selection variable, p, in-
stead of constraints imposed on actuator control signals,
u.
The bounds defined by Eqs. (91) and (92) become very
large when x approaches the equilibrium point x = 0, in
which case, the selection variable, p, is allowed to take on
very large values that can cause implementation prob-
lems and strongly amplify noise and disturbances in the

actuator control signal in Eq. (77). Since these are un-
desirable effects, we impose additional restrictions on p
by demanding that

−P ≤ p ≤ P, (93)

where P is a large positive number.
Combining the inequalities (91), (92) and (93), we obtain

α(x) ≤ p ≤ β(x), (94)

where the bounds involved depend upon the state vector,
x, as follows:

α(x)=



























u0− kT x

lT x
, lT x ≤ −u0 + kT x

P

−P ,
−u0+kT x

P
<lT x<

u0+kT x

P
,

−u0− kT x

lT x
, lT x ≥ u0 + kT x

P

(95)

β(x)=



























−u0 − kT x

lT x
, lTx ≤ −u0 − kT x

P

P ,
−u0−kTx

P
<lTx<

u0−kT x

P
.

u0− kT x

lT x
, lTx ≥ u0 − kT x

P

(96)

Fig. 8 presents plots of the functions α(x) and β(x) for
the case where they are functions of a single variable, x.
We next choose the function, r(p,x) > 0, used in the

selection strategy (89) such that inequality (94) will be
satisfied. Recall that compliance with the control con-
straints (76) will also be maintained in this case.
A suitable choice for r is the function

r(p,x)=























µ(1− α(x)

p
)+µ0

α(x)

p
, p ≤ α(x)

µ0 , α(x)<p<β(x)

µ(1− β(x)

p
)+µ0

β(x)

p
, p ≥ β(x)

(97)

such that Eq. (89) represents an anti-windup system, as
shown in Fig. 9. The constant µ � 1 determines the

PSfrag replacements

x

α(x), β(x)
+P

−P
−k

l

β(x)

α(x)

Fig. 8. The functions α(x) and β(x) for the case where they
are functions of a single variable, x.
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q

Fig. 9. Block schematic of the differential equation,
ṗ = f(p,x), representing an anti-windup system.

slope within the anti-windup region that prevents the
value of the integrator’s output parameter from falling
below α(x) or exceeding β(x). The constant 0 < µ0 � 1
determines the slope in the region where the anti-windup
is inactive. Note that with this choice both the con-
straints (90), (94) and the stability condition (88) will
be satisfied.
Remaining to be resolved is the matter of why the dy-
namic soft VSC given by Eqs. (75), (77), and (89) has a
higher regulation rate and a shorter settling time than
a single linear controller. To illustrate these features,
assume that a disturbance, x0 = x(t = 0), is to be
attenuated to x = 0 and that the selection variable is
p(t = 0) ≈ 0 at the beginning of the regulation process.
In this particular case, we have p · r(p(t = 0),x0) ≈ 0
and, consequentially, from Eq. (89), we have that

ṗ ≈ xTRblTx

q
. (98)

|p| will then increase during the regulation process and,
consequentially, the derivative, v̇, appearing in Eq. (86)
will decrease to the point where v̇ � 0. The Lyapunov
function, v, will thus rapidly decrease and tend toward
zero, yielding a very rapid regulation process.
The linear subsystems, A − bkT −pblT , might become
unstable during the regulation process, which is not a
restriction, since stability will still be guaranteed.
At the conclusion of the regulation cycle, the state vec-
tor, x, will continually decrease to smaller values. The
term xTRbl

T
x appearing in Eq. (89) will thus approx-

imately equal zero, in which case, we obtain ṗ ≈ −p ·
r(p,x)/q for Eq. (89). Since p · r(p,x)/q is positive for
p > 0 and negative for p < 0, the parameter p tends
toward zero and the active linear controller will largely
consist of the k appearing in Eq. (78).

4.4 Computing controller parameters

Summarizing the results of the foregoing sections, a dy-
namic soft VSC consists of the plant (75) controlled by
the soft variable-structure controller (77), i.e.,

ẋ = (A − bkT − pblT )x, (99)

where p is determined by the selection strategy (89),

ṗ =
xTRblTx−p · r(p,x)

q
, (100)

where the function r is given by Eq. (97). In order to
design this control, we need to determine the linear con-
trol vectors k and l, the matrix R, the parameter q, and
the parameters P, µ, µ0 of the function r. Unfortunately,
Franke did not describe a method for choosing these pa-
rameters. We propose the following five steps:
Step 1: Choose a control vector, k, such that A0 =
A−bkT will be stable and will exhibit good control per-
formance, i.e., there will be only slight overshooting and
settling times will be short. Furthermore, k will have to
be chosen such that any initial state vector, x ∈ X0, will
satisfy the control constraints,

∣

∣kT x
∣

∣ ≤ u0. Stable con-
trol can then take place for all x ∈ X0.
Step 2: Choose an control vector, l: Plotting a root lo-
cus depending on p for the system might be a helpful
heuristic approach to choosing a control vector, l, since
it would yield information on the eigenvalues of the lin-
ear subsystems (99). However, no relationships between
l and control performance have become known to date.
Step 3: The positive-definite matrix R may be computed
using Eq. (87). We thus need to choose an arbitrary
positive-definite matrix Q, e.g., the identity matrix, and
find a solution to the Lyapunov equation (87).
Step 4: The parameters, µ, µ0, and P , of the function
r(p,x) need to be chosen. A small value of µ0 satisfying
0 < µ0 � 1 should be chosen. The slope, µ, of the anti-
windup should be large, since it will then guarantee the
efficiency of the anti-windup and compliance with the
actuator constraints, ±u0. The bounds, ±P , of the se-
lection variable should also be chosen large.
Step 5: The parameter q allows affecting the rate of vari-
ation of p in Eq. (100). A suitable value for q may be
determined by simulating the dynamic soft VSC system
for different values, q, and choosing that value that yields
the best-possible results.
In some cases, performance may be optimized by repeat-
ing the five steps above.

4.5 Continuation of the example of the dive control

According to the procedure described above, the follow-
ing steps are carried out for designing a dive control for
the submarine of Section 3.6:
Step 1: We choose the eigenvalues λ1,2,3 = −3.0 · 10−3

for A0 and compute

kT = [2.70 · 10−8 2.70 · 10−5 4.00 · 10−3]. (101)

If this control vector is employed, the constraints, |u| ≤
u0, will be satisfied for all initial states, x ∈ X0.
Step 2: The chosen vector

lT = [7.9918 · 10−7 2.5836 · 10−4 2.7840 · 10−2] (102)
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yields good control behavior of the closed-loop system.
Step 3: We choose Q = diag(1, 1, 1) and obtain the ma-
trix sought

R =









6.8750 · 106 1.8750 · 109 1.8519 · 1011

1.8750 · 109 6.4815 · 1011 6.9445 · 1013

1.8519 · 1011 6.9445 · 1013 7.7162 · 1015









(103)

from Eq. (87).
Step 4: The parameter µ0 = 1 · 10−2 was chosen very
small and µ = 1 ·106 very large. The value of parameter,
P , must be a large number: P = 1 · 102.
Step 5: This step consists of scaling using q in order
to adjust the rate of variation of the variable p. After
several simulation runs, we found that q = 1 · 104 was a
reasonable choice. The determination of the parameters
of the dynamic soft VSC has thus been completed.
For comparing the dynamic soft VSC with the other
controls, see again Fig. 13(a), 13(b), and 14 and the
detailed comparison in Section 6.

5 Soft VSC with variable saturation

The superior control performance of the VSC described
above is largely attributable to the fact that the control
parameter, u, available within the constraints |u| ≤ u0

may be efficiently utilized, since even for small excur-
sions, x, |u| will remain close to u0, which is not the
case for linear controllers. The VSC described by Albers
(1983) is based on this same principle.

5.1 Soft VSC with variable saturation: fundamentals of
the control concept

Here, once again, linear plants

ẋ = Ax + bu (104)

subject to a restriction, |u| ≤ u0, on their control pa-
rameter, u, and a bounded set X0 of possible initial vec-
tors x(t = 0) are considered. The starting point is a pair
of state controllers, k1 and k2, along with a saturation
term,

u = u1 + u2, (105)

u1 = −kT
1 x, (106)

u2 = −sat(us(x), ũ) , ũ = kT
2 x, (107)

combined with variable limits, ±us(x), imposed on the
saturation term

sat (us(x), ũ) =















us(x)

ũ

−us(x)

, ũ ≥ us(x)

, |ũ| < us(x)

, ũ ≤ −us(x)

. (108)
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Fig. 10. Structure of the VSC with variable saturation.

Fig. 10 depicts the structure of this control, which oper-
ates in the following manner: The variable limit, us(x),
will be chosen such that us(x) = 0 for large vectors, x.
Regulation for large vectors x will thus be linear, and
employs u1. In this particular case, the available range
of the actuator control signal, u, falling within the con-
straints, |u| ≤ u0, will be efficiently utilized by taking
u = −kT

1 x.
In the case of moderate vectors, x, the actuator con-

trol signal, u1 = −kT
1 x, will no longer efficiently uti-

lize the available range, [−u0, u0]. The regulation rate
will thus not be as high as it might be. In order to
improve this situation, the nonlinear component, u2, is
blended into the actuator control signal, u, appearing in
Eq. (105). The variable-saturation limit, us(x), will shift
from us(x) = 0 for large x to a positive value us(x) > 0
for moderate x in order to allow that. Regulation will
then take place faster than when u1 alone is employed,
where the nonlinear component, u2, should increase as
excursions of the state vector, x, decrease.
The control will become linear once again for very small
excursions of the state vectors, x, since x will be so small
that |ũ| =

∣

∣kT
2 x

∣

∣ < us(x). Regulation will then be ac-

complished employing u = −
(

kT
1 + kT

2

)

x, where the
control vector, k1 + k2, is chosen such that regulation
will be stable and more rapid than when k1 alone is em-
ployed.
We can reformulate the nonlinear control law (105),
(106), and (107) such that its soft VSC-character will
become more apparent and the structure of the control
loop will correspond to that shown in Fig. 2. We thus
rewrite Eq. (105) to yield

u = −kT
1 x−pkT

2 x, (109)

where

p =
us(x)

kT
2 x

sat

(

1,
kT

2 x

us(x)

)

, (110)
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and

sat

(

1,
kT

2 x

us(x)

)

=



































1

kT
2 x

us(x)

−1

,
kT

2 x

us(x)
≥ 1

, | kT
2 x

us(x)
| < 1

,
kT

2 x

us(x)
≤ −1

. (111)

The parameter, p, is the selection variable determining
the linear subcontrollers appearing in Eq. (109). Fig. 11
depicts the structure of the reformulated system.
Note that the parameter p can only vary over the

range 0 ≤ p ≤ 1, since Eq. (110) implies that p = 1 for
∣

∣kT
2 x/us(x)

∣

∣ < 1 and 0 ≤ p ≤ 1 for
∣

∣kT
2 x/us(x)

∣

∣ ≥ 1.
Fig. 12 illustrates how the parameter p and control
component u2 are interrelated for a fixed us(x).

In the case of the control loop, we have from
ẋ = Ax + bu and Eq. (109) that

ẋ = (A − bk
T
1 −pbkT

2 )x = Â(p)x. (112)

The next major task is choosing, or devising, the selec-
tion strategy appearing in Eq. (110), i.e., choosing the
variable limit us(x), such that the soft VSC (110), (112)
will satisfy the following two conditions:

(E1) The restrictions |u| ≤ u0 must apply.

(E2) We presume that (E1) holds. The stability of
the equilibrium state, x = 0 of the control sys-
tem (110), (112), must then be guaranteed, where
merely an asymptotic stability of all possible tra-
jectories that start within a region

G =
{

x | xT Rx ≤ vG

}

, (113)

rather than globally asymptotic stability, is re-
quired. The matrix R is positive definite.

Consequently, X0 should be included in G. How the two
Conditions (E1) and (E2) may be satisfied will be taken
up in the next section.
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Fig. 11. Structure of the reformulated VSC.
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5.2 Soft VSC with variable saturation: stability and se-
lection strategy

One starts off by assuming that Condition (E1) will be
satisfied and then derives stability conditions for the con-
trol loop (112). The equilibrium state, x = 0, of this
control loop will be asymptotically stable if

v(x) = xT Rx, (114)

is a Lyapunov function within G, i.e., if v̇(x) < 0 within
G, for a suitable positive-definite matrix, R. G will then
be a Lyapunov region of the control system. The condi-
tion v̇(x) < 0 yields the Lyapunov equation

ÂT (p)R + RÂ(p) = −Q(p), (115)

which will always lead to positive-definite matri-
ces, Q(p), over a particular interval, [pmin, 1], where
pmin ≥ 0, since the control system (112) has been de-
signed above such that it will be stable for p = 1. Stable
control may then take place for all p ∈ [pmin, 1], and we
will thus obtain the broadest-possible stability range if
pmin = 0.
Since the matrix Â(p) linearly depends upon p, all we
need to do is verifying that the two matrices, Q(pmin)
and Q(1), are positive definite in order to guarantee
that Q(p) will be positive definite for all p ∈ [pmin, 1]
(Garofalo, Celentano & Glielmo, 1993).
The sufficient condition for stable control,

pmin ≤ p ≤ 1, (116)

limits the acceptable choices of the variable-saturation
function, us(x), employed in the selection strategy (110),
as we shall see below. We shall consider the case where
∣

∣kT
2 x/us(x)

∣

∣ ≥ 1 in Eq. (111), i.e., the saturated case in
Eq. (111). We then have that

sat

(

1,
kT

2 x

us(x)

)

= ±1 , for

∣

∣

∣

∣

kT
2 x

us(x)

∣

∣

∣

∣

≥ 1. (117)

We thus obtain for Eq. (110)

p =
us(x)
∣

∣kT
2 x

∣

∣

, for

∣

∣

∣

∣

kT
2 x

us(x)

∣

∣

∣

∣

≥ 1. (118)
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Employing (118) in the condition of (116) and allowing
for the fact that p ≤ 1 will be satisfied for any us, we
obtain the condition

us(x) ≥ pmin

∣

∣kT
2 x

∣

∣ . (119)

Eq. (119) provides an initial criterion for choosing us(x).
In order to make this condition more specific and elimi-
nate the dependence of the right-hand side of Eq. (119)
upon x, we need to estimate the maximum value that
may be attained by the

∣

∣kT
2 x

∣

∣ appearing in Eq. (119).
Since exclusively values of x ∈ G are of interest and G is
a Lyapunov region, the maximum value of |kT

2 x| lies on
the boundary of G. We may thus determine this maxi-
mum of |kT

2 x| by solving the optimization problem

∣

∣kT
2 x

∣

∣ → max , with xT Rx = vG. (120)

Solution of the problem (120) yields

max
xT Rx=vG

∣

∣kT
2 x

∣

∣ =
√

vGkT
2 R−1k2. (121)

Eq. (119) will thus be satisfied for x ∈ G if, along with
Eq. (121),

us(x) ≥ pmin

√

vGkT
2 R−1k2, (122)

which is the stability condition that must be taken into
account in choosing us(x), holds.
In addition to satisfying this condition (122), us(x) must
also be chosen such that Condition (E1), which has thus
far been presumed to be satisfied, will also be satisfied,
i.e., that

|u| = |u1 + u2| ≤ u0 (123)

will also be satisfied. Eq. (123) will be satisfied if

|u1| + |u2| ≤ u0. (124)

The magnitude of the term, |u2|, appearing in Eq. (124)
may be estimated as follows:

|u2| ≤ us(x). (125)

The maximum value of |u1| that might occur over a tra-
jectory that starts within G may also be estimated em-
ploying the Lyapunov function (114). In order to esti-
mate it, we consider a trajectory x̃(t) of the control loop
that starts at the boundary of the Lyapunov region

E(x) = {x̃ | x̃T Rx̃ ≤ v(x)}, (126)

within which x̃ will never leave that ellipsoid, and |u1| =
∣

∣kT
1 x̃

∣

∣ will thus assume its maximal value at the bound-
ary of the region E(x). Proceeding similarly to the case

of Eq. (120), this value may be determined from the op-
timization problem

∣

∣kT
1 x̃

∣

∣ → max , with x̃T Rx̃ = v(x). (127)

The solution is

max
x̃T Rx̃=v(x)

∣

∣kT
1 x̃

∣

∣ =
√

v(x)kT
1 R−1k1. (128)

It thus follows that

|u1| =
∣

∣kT
1 x̃

∣

∣ ≤
√

v(x)kT
1 R−1k1 for x̃ ∈ E(x). (129)

Inserting Eqs. (125) and (129) into Eq. (124), we obtain

√

v(x)kT
1 R−1k1 + us(x) ≤ u0. (130)

Eq. (130) will surely be satisfied if one chooses a us(x)
given by

us(x) = u0 −
√

v(x)kT
1 R−1k1, (131)

which is the saturation function, us(x), sought. The en-
tire soft VSC will then be given by Eqs. (110), (112),
and (131).
The stability condition (122) may now be more accu-
rately formulated employing Eq. (131):

u0 ≥ pmin

√

vGkT
2 R−1k2 +

√

v(x)kT
1 R−1k1, (132)

which may be further simplified such that it is indepen-
dent of x. The maximum value of v(x) for x ∈ G is vG.
Eq. (132) will thus surely be satisfied if

u0 ≥ √
vG ·

(

pmin

√

kT
2 R−1k2 +

√

kT
1 R−1k1

)

. (133)

In the following section, we shall summarize the results
and describe the procedure for computing a soft VSC
with variable saturation.

5.3 Computing controller parameters

In view of the results obtained in the preceding sections
above, soft VSC exploiting variable saturation consist of
the plant (104) and the controller (109), i.e.,

ẋ = (A − kT
1 b − pkT

2 b)x, (134)

where it follows from equations (110) and (131) that the
variable parameter p will be determined by

p =
us(x)

kT
2 x

sat

(

1,
kT

2 x

us(x)

)

(135)
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and

us(x) = u0 −
√

v(x)kT
1 R−1k1 , v(x) = xT Rx. (136)

Designing a soft VSC with variable saturation thus in-
volves choosing the two control vectors k1 and k2 and
the matrix R. Simple means for designing the controller
will be described in the four steps appearing below.
Step 1: We need to pick a linear controller, k1, that
yields already good control performance and is such that
A− kT

1 b will become a stable system.
Step 2: Assuming the best case, pmin = 0, and allowing
for the considerations applying to Eq. (115), we solve
the Lyapunov equation

ÂT (0)R + RÂ(0) = −Q(0), (137)

where Q(0) is an arbitrarily chosen positive-definite ma-
trix, and obtain R.
Step 3: We need to determine the maximum value of
vG occurring in the stability condition (133), which for
pmin = 0 may be simplified to

u0 ≥ √
vG ·

√

kT
1 R−1k1, (138)

such that the Lyapunov region, G = {x | xT Rx ≤ vG},
will be large enough that X0 ⊆ G. Stable control may
then take place for any x ∈ X0. If this condition cannot
be met, the design procedure must be restarted, starting
with Step 1, but, this time, employing a smaller control
vector k1.
Step 4: We need to find the control vector, k2 in Â(1) =

A− bkT
1 − bkT

2 , such that the Lyapunov equation

ÂT (1)R + RÂ(1) = −Q(1), (139)

will yield a positive-definite matrix, Q(1). A condition is
that the control exploiting k1 +k2 should operate much
faster than if k1 alone is employed.
In the worst case, i.e., if no solutions satisfying the sta-
bility conditions, (137), (138) and (139), can be found,
varying the value of pmin in Eq. (133) and restarting
the design procedure should lead to a feasible parameter
combination.

5.4 The conclusion of the example of the submarine

Reconsidering the submarine, design of its dive control
will proceed as described in the preceding section.
Step 1: We choose the same eigenvalues as in Eq. (61)
and the same control vector k1 = k(1) with

kT
1 =[1.1165 · 10−7 4.8413 · 10−5 3.6100 · 10−3] (140)

employed for the implicit soft VSC in Section 3.6.
Step 2: Since we are using the same controller, we also

obtain the same matrix R of Eq. (63) as in Section 3.6.
Step 3: This step shows that X0 ⊆ G. Condition (138)
will be satisfied for the R appearing above.
Step 4: We choose the control vector

kT
2 =[4.4605 · 10−7 1.4542 · 10−4 1.5000 · 10−2] (141)

which satisfies the demands of Step 4.
The subsequent section compares this control with the
others.

6 Comparing the controls

Fig. 13(a) presents plots of dive depth, x1, of the sub-
marine for the case of regulation from the initial state,
xT = [0 0 − 0.004], which is a downward acceler-
ation that was also considered in (Gutman & Hagan-
der, 1985), and continuing until the equilibrium state,
xT = 0, is reached for the cases where the different soft
VSC, a linear, a time-optimal (Athans & Falb, 1966),
and a saturated linear control (Gutman & Hagander,
1985), respectively, are employed. Comparing their re-
spective control performance in terms of settling time
and regulation rate, we see that the VSC yields control
performance similar to that of time-optimal controls.
The saturated linear control’s behavior is better than
that of the linear control, but both yield performance
that is vastly inferior to those of the time-optimal con-
trol and the VSC in respect to settling time, regulation
rate, and control over dive depth.
Fig. 13(b) depicts the actuator control signals, u, of the
respective controls. It may be seen that the soft VSC
exploit the feasible range of values falling within the
interval ±u0 much better than the linear control or sat-
urated linear control, although not as well as the time-
optimal control. However, the latter lacks a smoothly
varying actuator control signal.
For small initial vectors, the differences between the

settling times and regulation rates of soft VSC and those
of linear controls become larger due to the former’s
much better exploitation of the feasible range, ±u0, of
actuator control signals. The dive depth, x1, for an ini-
tial state, xT = [0 0 − 0.0008], which is one-fifth of
the one previously considered, is shown in Fig. 14.
Summarized, soft VSC are capable of achieving ex-

tremely short settling times, TS, as the typical example
above we have chosen from a set of other examples
yielding similar results demonstrates. In many cases,
their regulation curves, x(t), are close to those of time-
optimal controls. In particular, for soft VSC with im-
plicit Lyapunov functions this is the normal case. How-
ever, this cannot be guaranteed, and, unfortunately, no
estimation of the settling times of all soft VSC is known
yet. Saturated linear controllers also achieve short set-
tling times. This advantage over linear controls becomes
more obvious as disturbances or initial vectors, x(0),
become smaller.
A further benefit of soft VSC is the smoothness of
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(a) Dive depth, x1, as a function of time, t.
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(b) Actuator-control parameter, u, as a function of
time, t.

Fig. 13. Results of regulation from an initial state,
x

T = [0 0 − 0.004], to the equilibrium state, x
T = 0,

employing linear control (1), saturated linear control (2),
time-optimal control (3), soft VSC employing implicit Lya-
punov functions (4), dynamic soft VSC (5), soft VSC with
variable saturation (6).

their actuator control signals, u, where ”smoothness”
includes lack of discontinuities and chattering, and
low signal variation rates. The bang-bang curves, u, of
time-optimal controls have some discontinuities that
actuators are either incapable of handling, or have hard
times handling, in practical cases.
Compared to linear state controllers, the effort involved
in designing soft VSC is greater than when the pole-
placement method and only slightly greater than when
LQC-methods are employed for designing the linear
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Fig. 14. Dive depth, x1, as a function of time, t. Regulation
from the initial state x

T = [0 0 − 0.0008] to the equilib-
rium state x

T = 0 using linear control (1), saturated linear
control (2), time-optimal control (3), soft VSC employing
implicit Lyapunov functions (4), dynamic soft VSC (5), soft
VSC with variable saturation (6).

controls. However, much less design effort is required
than in case of time-optimal feedback controls.
The effort involved in implementing soft VSC is also
much less than in case of time-optimal feedback con-
trols. In the case of dynamic soft VSC and soft VSC
with variable saturation, some simple nonlinearities will
have to be implemented. In the case of soft VSC with
implicit Lyapunov functions, implementation is slightly
more complex, since we need to solve an implicit equa-
tion online. However, since this equation can always be
solved and the solver can be implemented on a digital
unit that is currently normally used for control tasks,
this implicit equation is not a drawback. Of course, the
linear controller and the saturated linear controller are
simplest to implement.

7 Open problems and challenges

Soft VSC is one of the newer branches of VSC, and its
evolution has not yet come to an end. We list below the
questions remaining open and the enhancements that
would be desirable:
(1) It might prove useful if the methods for computing
the parameters of the soft VSC described here were to
be improved and their design could be simplified.
(2) In the case of those soft VSC described here, lin-
ear state-space controllers and three different types of
selection strategies, an implicit function, a differential
equation, and an explicit function, have been employed.
Development of new soft VSC incorporating other con-
trollers and selection strategies is another challenge.
(3) Soft VSC have thus far been developed for linear
plants only, although there is an auspicious potential for
extending them to the control of nonlinear plants. This
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represents yet another challenge to further research.
(4) Short settling times and high regulation rates are
the main objectives of soft VSC. The robustness of soft
VSC has also been partially examined, but has not yet
become part of design procedures.
(5) Soft VSC with linear subcontrollers may be inter-
preted as bilinear systems that are linear in the state
space variables, xi, and linear in the selection variable,
p, but ”bilinear” in the sense that both are considered
simultaneously. It will be of interest for the theory of
soft VSC to examine them in this regard.

8 Summary and conclusions

This review covers soft variable-structure controls and
their design. Soft variable-structure controls represent
a systematic advance on the variable-structure controls
lacking sliding modes that were formerly developed in
order to achieve superior regulation rates and preclude
sliding modes. Consequentially, the regulation rates and
settling times of soft variable-structure controls are even
better than those of their discontinuous precursors and
can be nearly equal those of time-optimal controls. How-
ever, soft variable-structure controls are much easier to
compute and implement and have smoothly varying ac-
tuator control signals. Soft variable-structure controls
have been developed solely for linear plants, although
the concepts involved may also be applied to nonlinear
plants. This might well be the major challenge to future
work on advancing soft variable-structure controls.
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Flügge-Lotz, I. & Klotter, K. (1949). On the Motions of an
Oscillating System Under the Influence of Flip-Flop Con-
trols. N.A.C.A. Technical Memorandum 1237, (English
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 Loskot, K., Polánski, A & Rudnicki, R. (1998). Further Com-
ments on ”Vector Norms as Lyapunov Functions for Lin-
ear Systems”. IEEE Trans. Automat. Contr. 43(2), 289-
291.

Mareels, I. & Polderman, J. W. (1996). Adaptive Systems:
An Introduction. Basel: Birkhäuser.
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Birkhäuser.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New
York: John Wiley & Sons.

Skafidas, E., Evans, R. J., Mareels, I. M. Y. & Nerode,
A. (1999). Optimal Controller Switching for Stochas-
tic Systems. In Antsaklis, P.: Hybrid Systems V. Berlin:
Springer, 341-355.

Smith, O. J. M. (1958). Feedback Control Systems. New York:
McGraw-Hill.

Sontag, E. D. (1981). Nonlinear Regulation: The Piecewise
Linear Approach. IEEE Trans. Automat. Contr. 26(2),
346-358.

Stanciulescu, F. (1999). A Hybrid Control System Using a
Fuzzy Knowledge-Based Controller and its Application
to Control a Complex System. Proc. Europ. Contr. Conf.
ECC’99, Karlsruhe.

Stanciulescu, F. (2002). Stability of hybrid control systems:
criteria of stability and risk analysis. Proc. 15th IFAC
Triennial World Congr., Barcelona.
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