The analysis of planetary gearing often is unwieldy because components
can be connected in various combinations of drive inputs and outputs.
Moreover, the ptanet gears rofate about a moving axis. To simplify matters, a
governing kinematic equation can be developed that not only yields all
possible velocity ratios, but also provides a basis for evaluating terque and

efficiency.
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THE VELOCITY relationships
among components in plane-
tary drives often prove difficult
to evaluate because planet
gears can rotate aboul a mov-
ing axis. Moreover, planetary
components usually can he
connected in various combina-
tions to provide a number of
velocity-reduction ratios.

It is not widely realized that
all the possible combinations or
connections for a given plane-
tary configuration need not be
analyzed to determine all ve-
locity ratios, For any given
planetary configuration, how-
ever complex, a single govern-
ing kinematic equation can be
developed, which then is ma-
nipulated to determine all pos-
sible velocity ratios. In addi-
tion, by relying on certain as-
sumptions, both drive torque
and efficiency can be determined
from the data on planetary
component velocities.

Angular velocities

The governing kinematic
equation for any planetary con-
figuration defines the angular
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One configuration, many combinations

A simple planetary with a single carriés, sun gear, and ring gear can be
connecled in six different ways, each with a unique velocity-reduction
ratio. The velocily of onty two drive components can be controlled
independently, thereby providing two inputs. The drive oulput velocityis a
function of these two input velocities. Usually, one drive input is fixed
stationary for speed-reduction applications,
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velocity of a drive component to
be a function of the angular ve-
locities of all the other drive
components controlled inde-
pendently. Generally, the
number of velocity terms in
this expression is one greater
than the number of indepen-
dently controlled components.
Independent control simply
means that any velocity can be
applied freely to the compo-
nent, For a drive with N inde-
pendently controlled compo-
nents,

wg = Kiwg F kwpy + ..
+kyepn e ‘ (n

where wy = angular velocity of
a given component £ 1; Wy, Wiy,
co Gpgen = angular velocities
of the NV independently con-
trolled components; and &1, k2,

. ky = constants that depend
on planetary drive geometry.
The constants are evaluated by
analyzing certain drive combi-
nations that fix components at
zero angular velocity.

The method of developing a
governing kinematic equation
for any planetary drive can be
best explained by considering

the case of a simple planetary
with a single carrier, sun gear,
and ring gear — all of which
can be connected as drive in-
puts and outputs. If the angu-

lar velocities of any two of

these three drive components
are specified (that is, two com-
ponents are selected as inputs),
then the velocity of the third
component (the output) is also
established, From Equation 1,
this relationship can be ex-
pressed as

+ i &3]

2 k,w!-;z

Although the simple plane-
tary can be connected six dif-
ferent ways, all six connections
need not be analyzed to develop
a governing kinematic equa-
tion. Any drive connection can
be considered. For instance, let
the ring gear and carrier be the
drive inputs, thereby establish-
ing the sun gear as the drive
output. Then from FEquation 9,

Wy == k|w;{ + k-)_t.r)(; (3)

where wg, ay, and we are the
absolute angular velocities of
the sun gear, ring gear, and
carrier,

Constant ks can be evaluated
by analyzing a drive connection
with zero carrier velocity.
‘Thus, given that we = 0, Equa-
tion 3 becomes

Ky = t.;)s/w;;
From the geometry, it can be
shown that
ws = (PASH( = wp)
= (P/R}(wp)

where wp = planet angular ve-
locity and S, B, and P are the
gear radii or numbers of teeth
on the sun, ring, and planet. It
follows that

= wgop = U~ o)
o e R )
= -~ RS

The remaining constant ke is
evaluated by considering a
drive connection that fixes the
ring at zers angular velocity.,
Thus, given that w; = 0, Kqua-
tion 3 can be arranged as

ky = wsluc

Because the carrier is in mo-
tion for this case, k2 canmot be
evaluated directly from gear
geomelry. Instead, the well-
known tabular method of

Applying kinematic equations to complex planetaries

Problem: Determine the governing
kinematic equation for a load-dividing
doubie planetary

Solution: The easiest way to develep a
governing kinematic equation is by

treating the drive configuration as two

separate plangtaries coupled in
tandem. From the drive schematic, it
can be seen that components C1 and
A2 are coupled so their angular
velocities are identical, Moreover, if a
and a2 are tha ratios of ring to sun gear
radii for the two planetaries, then the
governing icmamatlc equation for each
planetary is

— awop t {1+ a)ea)

WSl T

wn = = awn + [(1 4+ edec)
=T o -+ [(l - az}wm]
The above twe equations can be
sotved for wey and set equal to one
another. The resulting expression then

can be reduced to
(Iteo 4 agdug = { ooz )eors

H{TH a1+ ax)wcy)

which is the governing kinematic
equation for the double planetary
drive.

Load-dividing double planetary

/Carrier coupled 1o ring gear
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Sun gears mounted in
landem on same shaft
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superposition from kinematics
must be used.

This method essentialiy con-
verts the drive into a {ixed-axis
geartrain for purposes of
anaiysis. Typical results of ap-
plying the tabular method are
shown here. Note that the
entries in the last row of the
table have meaning only rela-
tive fo each other. Thus, for one
revolution of the carrier, the
sun rotates 1 + (R/S) revo-
lutions. In turn, the angular
velocities are related as

wsfwe = [1 + (R/S}]/l
which means that
ky = wgfwe = 1 4 (R/S)

If & is defined equal to R/S,
then the governing kinematic
equation for the simple plane-
tary drive is

ws = kog + e
= (= RSx4 [1 + (R/S))we
= —awp + (I + ajwe] {4

This expression can be used to
avaluate the velocity ratlios
across the planetary drive for
any possible choice of fixed
component. (See Une configura-
tion, many combinations.)
Moreover, Equation 4 applies
for drive connections where
components either rotate at dif-
ferent velocities or are locked
together.

For a complete description of
drive velocities, the velocity of
the idlers or planets must be
known as well. A general ve-
locity expression also can be
written for the planets in terms
of wp and we, as was done for
the sun gear. For the planet,

wp = k;wx - k&:c {5)

For the connection where we
= (), the constant ka is

ks = wp/up
From drive geometry, it can be
seen that the gear radii are re-
lated so that
R=2P+§
Given the above expression for
R, it can be shown that
k] = w;;/w;; = 2(!/((1‘ - l)
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Relative angular velocities for planetary with fixed ring gear

Procedure

Planet components

Ring gear Planet gear Sun gear Carrier

1. Assume all gears locked

together. Rotate carrier +1

one revolution clockwise.
9. Fix the carrier stationary,
Rotate the ring gear one -1
revolution counter-
clockwise.
3. Assuming superposition,
add the resulting 0
revolutions from the first
two steps.

+1 +1 +1
~RIP +RIS 0
1~ (RIFP) 1+ (RiS) 1

R, 8, and P denote gear radii or number of teath for the ring, sun, and planet gears,

Next, for the drive connec-
tion where wy = 0, constant A4
is

,[(4 e WI’/"-’-’C

From the table of relative an-
gular velocities for the fixed-
ring drive, it is determined that
wifwe = 1 — (R/P)
and that
ki = wpfoe = 1 — (R/P)
= (1 4 el — )

Finally, the absolute velocity
of the planets for any possible
choice of fixed component can
be summarized as

wp = [2e/{ac ~ D)]wg
{0+ L e (6)

Taken together, Equations 4
and 6 provide a complete de-
scription of the angular veloci-
ties for a simple planetary.
Similarly, comparable expres-
sions can be developed for more
complex planetary configura-
tions.

- Torgue

Unlike the case for the
equations for angular velocity,
it is impossible to develop simi-
lar expressions. that yield com-
ponent torques for every possi-
ble drive connection. However,
there are several rules that can
be applied to aid torque
analysis of planetaries.

For instance, the ratio of ring
toa'qLie to sun torque in a simple

planetary is equal to the ratio
of the ring and sun gear radii.
Moreover, the forgue ratio for
rotating input and output drive
components with external
torque is equal to the reciprocal
of the velocity ratio.

Generally, it can be assumed
that the algebraic sign of the
velocity ratio also applies to the
torque ratio if the drive input
and output shafts are parallel
and point in opposite di-
rections. This assuwmption im-
plies that the Right Hand Rule
can be used to establish a sign
convention for torque sense.
Therefore, the fingers of the
right hand indicate a positive
torque sense if the thumb
points in the shaft direction.

Finally, the reaction torque
of a drive can be determined
simply by choosing a positive
torque direction and summing
all the external torques acting
on the drive system so that

ETE,\'lrnm.' =
Eticiency

Given data on component ve-
locities and torques, drive effi-
clency also can be evaluated.
Most analyses of efficiency con-
sider the concept of power flow
whereby gear mesh losses oceur
at some constant percentage of
the power transferred across
each mesh. For instance, a
parallel-shaft geartrain with
four consecutive meshes will
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Froblem: Determine the torque ratio
and reaction lorgue for a simple
planetary with a fixed ring gear.
Solutien: From Equation 4, the
velocity ralio for this drive is

ws/w(; == (1 + {X)

Evaluating ﬁ@r@gue from velocity data

Flanetary with fixed ring gear

when o,=0, wy = drive input velocity,
\t and we = drive oulput velocity.

% = Torque with Because the sun and carrier both
rolate and have external torque, the
torque ratic is equal to the reciprocat
of the velocity ratio. Thus,

.
&
v

clockwise direction

=
P | ‘g\\ Torquerwilh

countercliockwise
{? direction

T/l = wyfwe = 1+ a

Mareover, because the velosity ratio is
5 positive, the input and output torgues
are also positive according (o the
Right Hand Rule, Finally, the reaction
torque T, acting al the ring gear and
Te housing is

U S

2:vI[.(‘.\'.'mul-'h' = {
Ts — To 4+ T = 0
Ts = [({ + a)T5) A T = 0

TR = CYTS
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have an overall efficiency of
(0.99)* = 0.961 or 96.1%, as-

instance, consider the four-
mesh parallel-shaft drive. A 1%

Therefore, the following
simplified procedure for es-

suming a 1% loss at each mesh.

Unfortunately, the applica-
tion of power flow concepts to
planetary drives usually re-
quires difficult-to-derive math-
ematical expressions. Gener-
ally, it is simpler to just add up
the assumed losses at each
mesh and then compute the ef-

loss at the four meshes gives a
system efficiency of [1 — (4 x
0.01)] = 0.96 or 96.0%. The
difference between the results
of both efficiency-prediction
methods is essentially insignif-
fcant. In fact, an unrealistically
high power loss of 5% must be
assumed for a drive with eight

timating efficiency can be used
for most drives with negligible
impact on accuracy. First, the
angular velocity and torque of
one gear in each mesh must be
determined to compute the
transmitted power, Then, a cer-
tain percentage of transmitted
power is attribuied to mesh

iosses, For instance, a 1% loss
can be assumed for internal
meshes and a 2% loss for exter-
nal meshes. Finally, the com-
puted losses then are summed
and subtracted from the input
power to determine the overall
efficiency.

The procedure is quite
straightforward if the actual
velocity of tonth engagement,
which for planetaries is the ve-
locity relative to the carrier, is
used for determining the
transmitted power losses. Also,
absolute values must be used
for the torque and velocity
quantities so as to avoid the
possibility of negative power
losses, resulting from algebra
inherent in the power loss
cquations, [Viie)

consecutive meshes before the
difference in estimated effi-
ciency approaches 10%.

ficiency. This simplication can
be applied to either parallel-
shaft or planetary gearing. For

Esﬁ;matmg efficiency from ve!omty data

Problem: Determine the etficiency of a
fixed-ring simple planetary.

Also, the gear velocities are
determined relative to the carrier.
Given that for a fixed-ring planstary
the torque ratio is To/Te=1 + a and that
the reaction torque is Ty=aTy, it can be
shown that

Solution: Assuming a 1% loss at the
internal mesh between the ring and
planet and a 2% loss at the external
mesh between the planet and sun, the
drive power losses can be estimaled
as

= (0.03qmc'fc)/(i + o)

Thus, the drive effictency » is

1= (weTe = L){w T¢)
= (1 + 697a)/(l + a)

L=0.0] r(mk "'w(‘)T,l(;

+0.02

{ws —wc) Ty

where the absolute values for power
fosses guarantee positive quantities.

where w7, is the input power.
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