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0 . A b s t r a c t 
Since the l a s t I JCAI , the 

PLANNER problem s o l v i n g fo rma l i sm has 
con t i nued to deve lop . Our ep ls temo lgy 
f o r the f ounda t i ons f o r problem s o l v i n g 
has been ex tended . An overv iew of the 
f o rma l i sm Is g iven from an I n f o r m a t i o n 
p rocess ing v i e w p o i n t . A s imp le example 
Is e x p l a i n e d us ing snapshots of the 
s t a t e of the problem s o l v i n g as the 
example I s worked, f i n a l l y , c u r r e n t 
a p p l i c a t i o n s f o r the fo rma l i sm are 

I i s ted . 

1 . The S t r u c t u r a l Foundat ions o f 
Problem S o l v i n g 

We would l i k e to develop a 
f o u n d a t i o n f o r problem s o l v i n g 
analogous In some ways to the c u r r e n t l y 
e x i s t i n g f ounda t i ons f o r mathemat ics . 
Thus we need to analyze the s t r u c t u r e 
of f o u n d a t i o n s f o r mathemat ics . A 
f o u n d a t i o n f o r mathematics must p rov ide 
a d e f i n i t i o n a l f o rma l i sm In which 
mathemat ica l o b j e c t s can be d e f i n e d and 
t h e i r e x i s t e n c e p roved . For example 
set t heo ry as a f o u n d a t i o n p rov ides 
t h a t o b j e c t s must be b u i l t out o f s e t s . 
Then the re must be a deduc t i ve 
f o r m a l i s m In which fundamental t r u t h s 
can be s t a t e d and the means p rov ided to 
deduce a d d i t i o n a l t r u t h s f rom those 
a l r e a d y e s t a b l i s h e d . Cur rent 
mathemat ica l f ounda t i ons such as set 
theo ry seem q u i t e n a t u r a l and adequate 
f o r the vas t body o f c l a s s i c a l 
mathemat ics . The o b j e c t s and 
reason ing of most mathemat ica l domains 
such as a n a l y s i s and a lgebra can be 
e a s i l y founded on set t h e o r y . The 
e x i s t e n c e o f c e r t a i n a s t r o n o m i c a l l y 
l a r g e c a r d i n a l s poses some problems f o r 
set t h e o r e t i c f o u n d a t i o n s . However, 
the problems posed seem to be of 
p r a c t i c a l Importance on l y t o c e r t a i n 
ca tego ry t h e o r i s t s . Foundat ions o f 
mathemat ics have devoted a g rea t deal 
o f a t t e n t i o n to the problems o f 
c o n s i s t e n c y and comple teness. The 
problem of cons i s t ency Is Impor tant 
s i nce I f the f ounda t i ons are 
i n c o n s i s t e n t then any fo rmu la 
whatsoever may be deduced thus 
t r i v i a l i z i n g the f o u n d a t i o n s . 
Semantics f o r f ounda t i ons o f 
mathemat ics are d e f i n e d model 
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t h e o r e t i c a l l y In terms o f the n o t i o n o f 
s a t i s f i a b i l i t y . The problem o f 
completeness is t h a t , f o r a f o u n d a t i o n 
of mathematics to be I n t u i t i v e l y 
s a t i s f a c t o r y a l l the t r u e fo rmu las 
shou ld be proveab le s ince a f o u n d a t i o n 
mathemat ics alms to be a theory of 
mathemat ica l t r u t h . 

S i m i l a r fundamental ques t i ons 
must be faced by a f o u n d a t i o n f o r 
problem s o l v i n g . However t he re are 
some impor tant d i f f e r e n c e s s ince a 
f o u n d a t i o n of problem s o l v i n g alms more 
to be a theory of a c t i o n s and purposes 
than a theory of mathemat ica l t r u t h . A 
f o u n d a t i o n f o r problem s o l v i n g must 
s p e c i f y a g o a l - o r l e n t e d f o rma l i sm In 
which problems can be s t a t e d . 
Fur thermore the re must be a f o rma l i sm 
f o r s p e c i f y i n g the a l l o w a b l e methods o f 
s o l u t i o n of p rob lems. As p a r t o f the 
d e f i n i t i o n o f the f o r m a l i s m s , the 
f o l l o w i n g elements must be d e f i n e d : 
the data s t r u c t u r e , the c o n t r o l 
s t r u c t u r e , and the p r i m i t i v e 
p rocedures . The problem of what are 
a l l o w a b l e data s t r u c t u r e s f o r f a c t s 
about the wo r l d Immediate ly a r i s e s . 
Being a theory of a c t i o n s , a f o u n d a t i o n 
f o r problem s o l v i n g must c o n f r o n t the 
problem of change: How can account be 
taken of the changing s i t u a t i o n In the 
wor ld? In o rder f o r the re to be 
problem s o l v i n g , the re must be a 
problem s o l v e r . A f o u n d a t i o n f o r 
problem s o l v i n g must cons ide r how much 
knowledge and what k ind of knowledge 
problem s o l v e r s can have about 
themse lves . In c o n t r a s t to the 
f o u n d a t i o n o f mathemat ics , the 
semant ics f o r a f o u n d a t i o n f o r problem 
s o l v i n g should be d e f i n e d In terms of 
p r o p e r t i e s of p rocedures . We would 
l i k e to see mathemat ica l I n v e s t i g a t i o n s 
on the adequacy of the f o u n d a t i o n s f o r 
problem s o l v i n g p rov ided by PLANNER. 
In chap te r C of the d i s s e r t a t i o n , we 
have made the beg inn ings of one k ind of 
such an I n v e s t i g a t i o n . 

To be more s p e c i f i c a 
f o u n d a t i o n f o r problem s o l v i n g must 
concern I t s e l f w i t h the f o l l o w i n g 
complex o f t o p i c s . 

PROCEDURAL EMBEDDING: How can 
" r e a l w o r l d " knowledge be e f f e c t i v e l y 
embedded In p rocedures . What are good 
ways to express problem s o l u t i o n 
methods and how can p lans f o r the 
s o l u t i o n of problems be fo rmu la ted? 

GENERALIZED COMPILATION: What 
are good methods f o r t r a n s f o r m i n g h igh 
l e v e l g o a l - o r l e n t e d language in to 
s p e c i f i c e f f i c i e n t a l g o r i t h m s . 
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VERIFICATION: Hovv can it be 
v e r i f i e d t h a t a procedure does what Is 
I n tended . 

PROCEDURAL ABSTRACTION: What 
are Rood methods f o r a b s t r a c t i n g 
general procedures f rom s p e c i a l cases . 

One approach to f o u n d a t i o n s f o r 
problem s o l v i n g r e q u i r e s t h a t t he re 
should be two d i s t i n c t f o r m a l i s m s : 

1: A METHODS fo rma l i sm which 
s p e c i f i e s the a l l o w a b l e methods o f 
s o l u t I o n 

2: A PROBLEM SPECIFICATION 
fo rma l i sm In which to pose p rob lems. 

The problem s o l v e r Is expected to 
f i g u r e out how combine I t s a v a i l a b l e 
methods In o rde r to produce a s o l u t i o n 
which s a t i s f i e s the problem 
s p e c i f i c a t i o n . One of the aims of the 
above f o r m u l a t i o n of problem s o l v i n g is 
to c l e a r l y separa te the methods o f 
s o l u t i o n f rom the problems posed so 
t h a t i t Is Imposs ib le to " c h e a t " and 
g i v e the problem s o l v e r the methods f o r 
s o l v i n g the problem a long w i t h the 
s ta tement of the p rob lem. lie propose 
to b r i d g e the chasm between the methods 
f o r m a l i s m and the problem f o r m a l i s m . 
Consider more c a r e f u l l y the two 
extremes In the s p e c i f i c a t i o n o f 
process ing: 

A : E x p l i c i t p rocess ing ( e . g . 
methods) is the a b i l i t y to s p e c i f y and 
c o n t r o l a c t i o n s down to the f i n e s t 
d e t a l l s . 

B : i m p l i c i t p rocess ing ( e . g . 
problems) is the a b i l i t y to s p e c i f y the 
end r e s u l t d e s i r e d and not have to say 
very much about how It shou ld be 
ach l e v e d . 

PLANNER a t tempts to provide a f o rma l i sm 
In which a problem s o l v e r can b r i d g e 
the cont inuum between e x p l i c i t and 
I m p l i c i t p r o c e s s i n g . We aim f o r a 
maximum of f l e x i b i l i t y so t h a t whatever 
knowledge is a v a i l a b l e can be 
i nco rpo ra ted even I f I t I s f ragmen ta ry 
and h e u r I s t I c . 

Our work on PLANNER has been an 
i n v e s t i g a t i o n in PROCEDURAL 
ERISTEMOLOGY, the s tudy of how 
knowledge can be embedded in 
p rocedures . The THESIS OF PROCEDURAL 
EMBEDDING is t h a t i n t e l l e c t u a l 
s t r u c t u r e s should be ana lyzed th rough 
t h e i r PROCEDURAL ANALOGUES. We w i l l 
t r y to show what we mean th rough 
examples: 
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DESCRIPTIONS are procedures 
which recogn ize how w e l l some cand ida te 
f i t s the d e s c r i p t i o n . 

PATTERNS are 
d e s c r i p t i o n s which match c o n f i g u r a t i o n s 
o f d a t a . For example < e i t h e r 4 
<atomic>> Is a procedure which w i l l 
recogn ize something which is e i t h e r 4 
or is a t o m i c . 

DATA TYPES are p a t t e r n s 
used In d e c l a r a t i o n s of the a l l o w a b l e 
range and domain of procedures and 
I d e n t i f i e r s . More g e n e r a l l y , data 
types have analogues In the form of 
procedures which c r e a t e , d e s t r o y , 
r e c o g n i z e , and t r a n s f o r m d a t a . 

GRAMMARS: The 
PROGRAMMAR language of Te r r y Wlnograd 
rep resen ts the f i r s t s t ep towards one 
k i nd o f p rocedura l analogue f o r n a t u r a l 
language grammar. 

SCHEMATIC DRAWINGS have 
as t h e i r p rocedura l analogue methods 
f o r r e c o g n i z i n g when p a r t i c u l a r f i g u r e s 
f i t w i t h i n the schemata. 

PROOFS cor respond to 
procedures f o r r e c o g n i z i n g and 
expanding v a l i d cha ins o f d e d u c t i o n s . 
Indeed many p roo fs can f r u i t f u l l y be 
cons ide red to d e f i n e procedures which 
are proved to have c e r t a i n p r o p e r t i e s . 

MODELS of PROGRAMS are 
procedures f o r d e f i n i n g p r o p e r t i e s o f 
procedures and a t t e m p t i n g to v e r i f y 
these p r o p e r t i e s . Models of programs 
can be d e f i n e d by procedures which 
s t a t e the r e l a t i o n s t h a t must ho ld as 
c o n t r o l passes th rough the program. 

PLANS are g e n e r a l , goal 
o r i e n t e d procedures f o r a t t e m p t i n g t o 
c a r r y out some t a s k . 

THEOREMS of the 
OUANTIFICATIONAL CALCULUS have as t h e i r 
analogues procedures f o r c a r r y i n g out 
the deduc t i ons which are j u s t i f i e d by 
the theorems. For example, cons ide r a 
theorem of the form (IMPLIES x y ) . One 
p rocedura l analogue of the theorem Is 
to cons i de r whether x shou ld be made a 
subgoal in o rde r to t r y to prove 
someth ing o f the form y . I r a G o l d s t e i n 
has shown t h a t the theorems of 
e lementa ry p lane geometry have very 
n a t u r a l p rocedura l ana logues . 

DRAWINGS: The 
p rocedura l analogue of a drawing is a 
procedure f o r making the d r a w i n g . 
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Rather s o p h i s t i c a t e d d i s p l a y processors 
have been c o n s t r u c t e d f o r making 
drawings on cathode ray t u b e s , 

RECOMMENDATIONS: 
PLANNER has p r i m i t i v e s which a l l o w 
recommendations as to how d i s p a r a t e 
s e c t i o n s o f goal o r i e n t e d language 
should be l i n k e d t o g e t h e r in o rde r to 
accompl ish some p a r t i c u l a r t a s k . 

GOAL TREES are represen ted by a 
snapshot o f the ins tantaneous 
c o n f i g u r a t i o n o f problem s o l v i n g 
p rocesses . 

One c o r o l l a r y of the t h e s i s of 
p rocedura l embedding Is t h a t l e a r n i n g 
e n t a i l s the l e a r n i n g o f the procedures 
in which the knowledge to be learned is 
embedded. Another aspect o f the t h e s i s 
of p rocedura l embedding is t h a t the 
process of go ing f rom genera l goal 
o r i e n t e d language which Is capable o f 
accomp l i sh ing some task to a s p e c i a l 
purpose/ e f f i c i e n t / a l g o r i t h m f o r the 
task shou ld I t s e l f be mechanized. By 
exp ress i ng the p r o p e r t i e s o f the 
s p e c i a l purpose a l g o r i t h m in terms of 
t h e i r p rocedura l ana logues/ we can use 
the analogues to e s t a b l i s h t h a t the 
s p e c i a l purpose r o u t i n e does in f a c t do 
what it is intended to do . 

We are concerned as to how a 
theorem prover can u n i f y s t r u c t u r a l , 
problem s o l v i n g methods w i t h domain 
dependent a l g o r i t h m s and data i n to a 
coherent problem s o l v i n g p rocess . By 
s t r u c t u r a l methods we mean those t h a t 
are concerned w i t h the formal s t r u c t u r e 
of the argument r a t h e r than w i t h the 
semant ics of I t s domain dependent 
c o n t e n t . 

An example of a s t r u c t u r a l 
method Is the "consequences of the 
consequent " h e u r i s t i c . By the 
CONSEQUENCES OF THE CONSEQUENT 
h e u r i s t i c , we mean t h a t a problem 
s o l v e r should look at the consequences 
of the goal t h a t is be ing a t tempted in 
o rde r to get an idea of some of the 
s ta tements t h a t cou ld be u s e f u l in 
e s t a b l i s h i n g o r r e j e c t i n g the g o a l . 

We need to d i s cove r more 
power fu l s t r u c t u r a l methods. PLANNER 
Is intended to p rov i de a compu ta t i ona l 
bas is f o r exp ress i ng s t r u c t u r a l 
methods. One of the most impor tant 
Ideas in PLANNER is t h a t it b r i n g s some 
of the s t r u c t u r a l methods o f problem 
s o l v i n g out in to the open where they 
can be analyzed and g e n e r a l i z e d . There 
are a few bas ic p a t t e r n s of l o o p i n g and 
r e c u r s i o n t h a t are in cons tan t use 
among programmers. Examples are 
r e c u r s i o n on b i n a r y t r ees as In LISP 
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and the FIND s ta tement of PLANNER. The 
p r i m i t i v e FIND w i l l c o n s t r u c t a l i s t o f 
a l l the o b j e c t s w i t h c e r t a i n 
p r o p e r t i e s . For example we can f i n d 
f i v e t h i n g s which are on something 
which Is green by e v a l u a t i n g 

<FIND 5 x 
<G0AL (ON x y)> 
<GOAL (GREEN y)>> 

which reads " f i n d 5 x ' s such t h a t x Is 
ON y and y Is GREEN." 

The p a t t e r n s of l o o p i n g and 
r e c u r s i o n rep resen t common s t r u c t u r a l 
methods used In programs. They s p e c i f y 
how commands can be repeated 
I t e r a t i v e l y and r e c u r s i v e l y . One of 
the main problems In g e t t i n g computers 
to w r i t e programs Is how to use these 
s t r u c t u r a l p a t t e r n s w i t h the p a r t i c u l a r 
domain dependent commands t h a t are 
a v a i l a b l e . I t i s d i f f i c u l t t o dec ide 
wh ich / i f any, of the bas ic p a t t e r n s is 
a p p r o p r i a t e in any g iven p rob lem. The 
problem of s y n t h e s i z i n g programs out o f 
canned loops Is f o r m a l l y I d e n t i c a l to 
the problem o f f i n d i n g p roo f s us i ng 
mathemat ica l I n d u c t i o n . We have 
approached the problem of c o n s t r u c t i n g 
procedures out o f goal o r i e n t e d 
language f rom two d i r e c t i o n s . The 
f i r s t is to use canned loops (such as 
the FIND s ta temen t ) where we assume a-
p r i o r l the k ind o f c o n t r o l s t r u c t u r e 
t ha t Is needed. The second approach Is 
to t r y to a b s t r a c t the procedure f rom 
p r o t o c o l s o f I t s a c t i o n I n p a r t i c u l a r 
cases . 

Another s t r u c t u r a l method is 
p r o g r e s s i v e r e f i n e m e n t . The way 
problems are so lved by p r o g r e s s i v e 
re f inement Is by repeated e v a l u a t i o n . 
Ins tead of t r y i n g to do a complete 
search o f the problem space a l l a t 
once, repeated re f i nemen ts are made. 
For example in a game l i k e chess the 
same p a r t of the game t r e e might be 
looked at severa l t i m e s . Each t ime 
c e r t a i n paths are more deep ly exp l o red 
in the l i g h t of what o t h e r searches 
have revea led to be the key f e a t u r e s of 
the p o s i t i o n . Problems in des ign seem 
to be p a r t i c u l a r l y s u i t a b l e f o r the use 
o f p r o g r e s s i v e re f i nemen t s ince 
proposed des igns are o f t e n themselves 
amenable to success ive r e f i n e m e n t . The 
way in which p r o g r e s s i v e re f inement 
t y p i c a l l y is done In PLANNER Is by 
repeated e v a l u a t i o n . Thus the 
exp ress ion which Is e v a l u a t e d to so l ve 
the problem w i l l I t s e l f produce as I t s 
va lue an exp ress ion to be e v a l u a t e d . 
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2. I n f o r m a t i o n Process ing Overview 
Some readers w i l l p r e f e r to 

read s e c t i o n 3 which has conc re te 
examples be fo re the a b s t r a c t d i s c u s s i o n 
in t h i s sec t I o n . 

There are many ways in which 
one can approach a d e s c r i p t i o n of 
PLANNER. In t h i s s e c t i o n we w i l l 
d e s c r i b e PLANNER from an I n f o r m a t i o n 
Process ing V i e w p o i n t . To do t h i s we 
w i l l d e s c r i b e the data s t r u c t u r e and 
the c o n t r o l s t r u c t u r e o f the f o r m a l i s m . 

DATA STRUCTURE: 

ASSOCIATIVE MEMORY forms the 
bas i s f o r PLANNER'S data space which 
c o n s i s t s o f d i r e c t e d graphs w i t h 
l a b e l e d a r c s . The o p e r a t i o n of PUTTING 
and GETTING the components of data 
o b j e c t s have been g e n e r a l i z e d to app ly 
to any data type wha tsoever . For 
example to PUT the va lue CANONICAL on 
the exp ress ion (+ X Y (* X Z) ) under 
the I n d i c a t o r SIMPLIFIED Is one way to 
record t h a t (+ X Y (* X Z) ) has been 
c a n o n l c a l l y s i m p l i f i e d . Then the 
degree to which an exp ress ion is 
s i m p l i f i e d can be determined by GETTING 
the va lue under the I n d i c a t o r 
SIMPLIFIED of the e x p r e s s i o n . The 
o p e r a t i o n of PUT and GET can be 
Implemented e f f i c i e n t l y u s i n g hash 
c o d i n g . L i s t s and v e c t o r s have been 
in t roduced to ga in more e f f i c i e n c y f o r 
common s p e c i a l case s t r u c t u r e s . The 
a s s o c i a t i v e memory Is u s e f u l to PLANNER 
In many ways. M o n i t o r i n g g i ves PLANNER 
the c a p a b i l i t y o f t r a p p i n g a l l read, 
w r l t e , and execute re fe rences to a 
p a r t i c u l a r data o b j e c t . The mon i t o r 
(wh ich Is found under the i n d i c a t o r 
MONITOR) of the data o b j e c t can then 
take any a c t i o n t h a t i t sees f i t in 
o rde r to handle the s i t u a t i o n . The 
a s s o c i a t i v e memory can be used to 
r e t r i e v e the va lue of an i d e n t i f i e r I 
of a process p by GETTING the I 
component of p. Code can be commented 
by s imp ly PUTTING the a c t u a l comment 
under the i n d i c a t o r COMMENT. 

DATA BASE: What is most 
d i s t i n c t i v e about the way in which 
PLANNER uses data is t h a t It has a data 
base In which da ta can be I n s e r t e d and 
removed. For example I n s e r t i n g (AT Bl 
P2) i n to the data base might s i g n i f y 
t h a t b lock Bl Is at the p lace P2. A 
c o o r d i n a t e of an e x p r e s s i o n is d e f i n e d 
to be an atom In some p o s i t i o n . An 
e x p r e s s i o n Is de termined by I t s 
c o o r d i n a t e s . A s s e r t i o n s are s t o r e d in 
buckets by t h e i r c o o r d i n a t e s u s i n g the 
a s s o c i a t i v e memory in o rde r to p rov i de 
e f f i c i e n t r e t r i e v a l . I n a d d i t i o n a 
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t o t a l o r d e r i n g is imposed on the 
a s s e r t i o n s so t h a t the buckets can be 
s o r t e d . Impera t i ves as w e l l as 
d e c l a r a t i v e s can be s t o r e d In the data 
base. We might asse r t t h a t whenever 
an exp ress ion of the form (At o b j e c t l 
p l a c e l ) is removed from the data base, 
then any exp ress ion in the data base of 
of the form (ON o b j e c t l obJect2) should 
a l s o be removed from the data base. 
The data base can be t r e e s t r u c t u r e d so 
t h a t I t i s p o s s i b l e to s imu l t aneous l y 
have severa l l o c a l data bases which are 
I n c o m p a t i b l e . Fur thermore a s s e r t i o n s 
In the data base can have v a r y i n g 
scopes so t h a t some will l a s t the 
d u r a t i o n of a process w h i l e o t he r s are 
temporary to a s u b r o u t i n e . 

CONTROL STRUCTURE: PLANNER uses a 
p a t t e r n d i r e c t e d m u l t i p r o c e s s back t rack 
c o n t r o l s t r u c t u r e t o t i e the o p e r a t i o n 
o f I t s p r i m i t i v e s t o g e t h e r , 

BACKTRACK ING: PLANNER 
processes have the c a p a b i l i t y o f 
b a c k t r a c k i n g to p rev ious s t a t e s . A 
process can back t rack in to a procedure 
a c t i v a t i o n ( I . e . a s p e c i f i c instance o f 
an i n v o c a t i o n of the procedure) which 
has a l r e a d y re tu rned w i t h a r e s u l t . 
Using the theory o f compara t ive 
schemato logy, we have proved in the 
d i s s e r t a t i o n t h a t the use o f back t rack 
c o n t r o l enables us to ach ieve e f f e c t s 
t h a t a language (such as LISP) which Is 
l i m i t e d t o r e c u r s i v e c o n t r o l s t r u c t u r e 
cannot a c h i e v e . B a c k t r a c k i n g cu ts 
across the s u b r o u t i n e s t r u c t u r e o f 
PLANNER. Backt rack c o n t r o l a l l ows the 
consequences o f e l a b o r a t e t e n t a t i v e 
hypotheses to be exp lo red w i t h o u t 
l o s i n g the c a p a b i l i t y o f r e j e c t i n g the 
hypotheses and a l l o f t h e i r 
consequences. A cho ice can be made on 
the bas is o f the a v a i l a b l e knowledge 
and I f i t d o e s n ' t work , a b e t t e r cho ice 
can be made us ing the new I n f o r m a t i o n 
d i scove red w h i l e i n v e s t i g a t i n g the 
f i r s t c h o i c e . A lso back t rack c o n t r o l 
makes PLANNER procedures e a s i e r to 
debug s ince they can be run backwards 
as w e l l as fo rwards e n a b l i n g a problem 
s o l v e r to " ze ro I n " on bugs. 

MULTIPROCESSING g i ves PLANNER 
the c a p a b i l i t y of hav ing more than one 
locus o f c o n t r o l in problem s o l v i n g . 
By us ing m u l t i p l e p rocesses , a r b i t r a r y 
p a t t e r n s of search th rough a conceptua l 
problem space can be c a r r i e d o u t . 
Processes can have the power to c r e a t e , 
read , w r i t e , i n t e r r u p t , resume, s i n g l e 
s t e p , and f o r k o t h e r p rocesses . 
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PATTERN DIRECTION combines aspects 
o f c o n t r o l and data s t r u c t u r e . The 
fundamental p r i n c i p l e o f p a t t e r n 
d i r e c t e d computa t ion Is t h a t a 
procedure shou ld be a p a t t e r n of what 
the procedure Is In tended to 
a c c o m p l i s h . In o t h e r words a 
procedure shou ld not o n l y do the r i g h t 
t h i n g but I t shou ld appear to do the 
r i g h t t h i n g as w e l l ! PLANNER uses 
p a t t e r n d i r e c t i o n f o r the f o l l o w i n g 
o p e r a t i o n s : 

CONSTRUCTION of s t r u c t u r e d da ta 
o b j e c t s is accompl ished by t e m p l a t e s . 
We can c o n s t r u c t a l i s t whose f i r s t 
e lement is the va lue of x and whose 
second element Is the va lue of y by the 
procedure (x y ) . I f x has the va lue 3 
and y has the va lue (A B) then (x y) 
w i l l e v a l u a t e to (3 (A B ) ) . 

DECOMPOSITION Is accompl ished 
by match ing the data o b j e c t a g a i n s t a 
s t r u c t u r e d p a t t e r n . I f the p a t t e r n ( x1 
x2) is matched a g a i n s t the data o b j e c t 
( ( 3 4) A) then xl w i l l be g i ven the 
va lue (3 4) and x2 w i l l be g i ven the 
va lue A. 

RETRIEVAL: An a s s e r t i o n Is 
r e t r i e v e d f rom the data base by 
s p e c i f y i n g a p a t t e r n which the 
a s s e r t i o n must match and thus b ind the 
i d e n t i f i e r s in the p a t t e r n . For 
example we can de termine if t he re is 
a n y t h i n g in the data base of the form 
(ON x A ) . if (ON B A) Is the o n l y i ter 
in the data base, then x is bound to B, 
if t h e r e Is more than one item In the 
data base which matches a r e t r i e v a l 
p a t t e r n , then an a r b i t r a r y cho ice is 
made. The f a c t t h a t a cho ice was made 
Is remembered so t h a t if a s imp le 
f a i l u r e back t r acks t o the d e c i s i o n , 
another cho ice can be made. 

INVOCATION: Procedures can be 
Invoked by p a t t e r n s of what they are 
supposed to a c c o m p l i s h . For example a 
procedure might be d e f i n e d which 
a t tempts t o s a t i s f y p a t t e r n s o f the 
form (ON x y) by caus ing x to be ON y. 
Such a procedure cou ld be Invoked by 
making (ON A B) a g o a l . The procedure 
might or might not succeed In a c h i e v i n g 
its goal depending on the env i ronment 
in which t was c a l l e d . S ince many 
theorems might match a g o a l , a 
recommendaition is a l l owed as to which 
of the cand ida te theorems might be 
u s e f u l . The recommendation is a 
p a t t e r n which a cand ida te theorem must 
match In o rde r to be invoked. 

L 
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3. An Extended example 
Th is s e c t i o n c o n t a i n s an 

extended d e s c r i p t i o n of a s imp le 
example in PLANNER. It Is p a r t i a l l y 
based on a d r a f t w r i t t e n by T. Wlnograd 
f o r the course 6 .545 . I f the reader 
would l i k e to see a more l o g i c a l l y 
sys tema t i c p r e s e n t a t i o n , he can c o n s u l t 
the the a t h o r ' s d i s s e r t a t i o n . 

The e a s i e s t way to unders tand 
PLANNER Is to watch how It works, so In 
t h i s s e c t i o n we w i l l p resent a few 
s imple examples and e x p l a i n the use of 
some of I t s most e lementary f e a t u r e s . 
These examples are not ,ntended to 
represent TOY PROBLEMS to serve as t e s t 
cases f o r "genera l problem s o l v e r s " . 
The toy problem paradigm Is m i s l e a d i n g 
because toy problems can be so lved 
w i t h o u t any rea l knowledge of the 
domain In which the toy problem Is 
posed. Indeed, It seems gauche to use 
any t h i n g as power fu l as rea l knowledge 
on such s imple prob lems. In c o n t r a s t 
we b e l i e v e t h a t rea l w o r l d problems 
r e q u i r e vas t amounts o f p rocedura l 
knowldege f o r t h e i r s o l u t i o n . We see 
I t as pa r t o f our task to p rov i de the 
I n t e l l e c t u a l c a p a b i l i t i e s needed f o r 
e f f e c t i v e problem s o l v i n g . We would 
l i k e to see the toy problem paradigm 
rep laced w i t h an INTELLECTUAL 
CAPABILITY paradigm where the o b j e c t is 
t o I l l u s t r a t e the I n t e l l e c t u a l 
c a p a b i l i t i e s needed so t h a t knowledge 
can be e f f e c t i v e l y embededed in 
p rocedures . 

F i r s t we w i l l take the most 
venerab le o f t r a d i t i o n a l d e d u c t i o n s : 

T u r i n g Is a human 
A l l humans are f a l l i b l e 

so 
T u r i n g i s f a l i b l e . 

It Is easy enough to see how 
t h i s cou ld be expressed In the usual 
l o g i c a l n o t a t i o n and handled by a 
u n i f o r m proo f p rocedu re . i n s t e a d , l e t 
us express it In one p o s s i b l e way to 
PLANNER by s a y i n g : 

<ASSERT (HUMAN TURlNG)> 

<ASSERT <DEFINE THE0REM1 
<CONSEQUENT (Y) (FALLIBLE ?Y) 

<G0AL (HUMAN ?Y)>>>> 

Func t i on c a l l s are enc losed 
between " < " and " > " . The p roo f would 
be generated by ask ing PLANNER to 
e v a l u a t e the e x p r e s s i o n : 

<G0AL (FALLIBLE TURING)> 
We Immediate ly see severa l p o i n t s . 

F i r s t , t he re are a t l e a s t two d i f f e r e n t 
k inds of I n f o r m a t i o n s t o r e d in the data 
base: d e c l a r a t i v e s and i m p e r a t i v e s . 
No t i ce t h a t f o r complex sentences 
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c o n t a i n i n g q u a n t i f i e r s o r l o g i c a l 
connec t i ves we have a cho ice whether to 
express the sentence by d e c l a r a t i v e s or 
by I m p e r a t i v e s . 

Second, one of the most Impor tant 
p o i n t s about PLANNER is t h a t it Is an 
e v a l u a t o r f o r s t a temen ts . I t accepts 
input in the form of express ions 
w r i t t e n in the PLANNER language and 
eva lua tes them, p roduc ing a va lue and 
s ide e f f e c t s . ASSERT is a f u n c t i o n 
w h i c h , when e v a l u a t e d , s to res I t s 
argument In the data base of 
a s s e r t i o n s . In t h i s example we have 
de f i ned a theorem of the CONSEQUENT 
type (we w i l l see o the r types l a t e r ) . 
Th is s t a t e s tha t if we ever want to 
e s t a b l i s h a goal of the form (FALLIBLE 
?Y) , we can do t h i s by accomp l i sh ing 
the goal (HUMAN ?Y), where Y is a 
I d e n t i f i e r . The s t range p r e f i x 
c h a r a c t e r " ? " Is pa r t o f PLANNER'S 
p a t t e r n match ing c a p a b i l i t i e s (which 
are e x t e n s i v e and make use of the 
p a t t e r n - m a t c h i n g language MATCHLESS 
which Is exp la i ned In chapter 4 of the 
d i s s e r t a t i o n ) . If we ask PLANNER to 
prove a goal of the form (A Y ) , there 
Is no obv ious way of knowing whether A 
and Y are cons tan ts ( l i k e TURING and 
HUMAN In the example) or i d e n t i f i e r s . 
LISP so lves t h i s problem by us ing the 
f u n c t i o n QUOTE to I n d i c a t e c o n s t a n t s . 
in p a t t e r n match ing t h i s Is 
Inconven ien t and makes most p a t t e r n s 
much b u l k i e r and more d i f f i c u l t to 
read . I n s t e a d , PLANNER uses the 
o p p o s i t e conven t ion -- a cons tan t is 
represented by the atom I t s e l f , w h i l e a 
I d e n t i f i e r must be I n d i c a t e d by adding 
an a p p r o p r i a t e p r e f i x . Th is p r e f i x 
d i f f e r s acco rd ing to the exact use o f 
the i d e n t i f i e r in the p a t t e r n , but f o r 
the t ime be ing l e t us j u s t accept " ? " 
as a p r e f i x n d i c a t i n g a i I d e n t i f i e r . 
The d e f i n i t i o n of the theorem ind i ca tes 
t h a t It has one i d e n t i f i e r , Y by the 
(Y) f o l l o w i n g CONSEQUENT. 

The t h i r d s ta tement I l l u s t r a t e s 
the f u n c t i o n GOAL, which t r i e s to prove 
an a s s e r t i o n . Th is can f u n c t i o n in 
severa l ways. if we had asked PLANNER 
to eva lua te <G0AL (HUMAN TURING)> it 
would have found the requested 
a s s e r t i o n immediate ly in the data base 
and succeeded ( r e t u r n i n g as its va lue 
some i n d i c a t o r t h a t I t had succeeded) . 
However, (FALLIBLE TURING) has not been 
a s s e r t e d , so we must r e s o r t to theorems 
to prove I t . La te r we w i l l see t h a t a 
GOAL s ta tement can g i ve PLANNER va r i ous 
k inds of adv ice on which theorems are 
a p p l i c a b l e to the goal and should be 
t r i e d . For the moment, take the 
d e f a u l t case, in which the e v a l u a t o r 
t r i e s a l l theorems whose consequent is 
of a form which matches the goal ( I . e . 
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a theorem w i t h a consequent (?Z TURING) 
would be t r i e d , but one of the form 
(HAPPY ?Z) or (FALLIBLE ?Y ?Z) would 
n o t ) . A s s e r t i o n s can have an a r b i t r a r y 
l i s t s t r u c t u r e f o r t h e i r fo rmat - - they 
are not l i m i t e d to two-member l i s t s o r 
three-member l i s t s as in these 
examples. ) The theorem we have Jus t 
d e f i n e d would be f o u n d , and In t r y i n g 
I t , the match o f the consequence to the 
goal would cause the I d e n t i f i e r Y to be 
bound to the cons tan t TURING. 
T h e r e f o r e , the theorem se ts up a new 
goal (HUMAN TURING) and t h i s succeeds 
Immediate ly s ince I t Is In the data 
base. In g e n e r a l , the success of a 
theorem w i l l depend on e v a l u a t i n g a 
PLANNER program of a r b i t r a r y 
c o m p l e x i t y . in t h i s case I t c o n t a i n s 
o n l y a s i n g l e GOAL s t a t e m e n t , so I t s 
success causes the e n t i r e theorem to 
succeed, and the goal (FALLIBLE TURING) 
is p roved . The f o l l o w i n g Is the 
p r o t o c o l o f the e v a l u a t i o n : 

<GOAL (FALLIBLE TURING)> 
(FALLIBLE TURING) Is not In the 

data base so a t tempt to invoke a 
theorem to e s a b l i s h the goal 

e n t e r THEOREMl 
Y becomes TURING 
<GOAL (HUMAN TURING)> 

Is s a t i s f i e d s ince the goal is In the 
data base 

r e t u r n (FALLIBLE TURING) 

The way In which I d e n t i f i e r s are 
bound by match ing Is of key Importance 
to PLANNER. Consider the q u e s t i o n " I s 
a n y t h i n g f a l l i b l e ? " , o r I n l o g i c 
(EXISTS X (FALLIBLE X ) ) . Th is cou ld be 
expressed in PLANNER as : 

<THPROG (X) <GOAL (FALLIBLE ?X)>> 
No t i ce t h a t THPROG (PLANNER'S 

e q u i v a l e n t of a LISP PROG, complete 
w i t h GO s t a t e m e n t s , t a g s , RETURN, e t c . ) 
In t h i s case I t ac ts as an e x i s t e n t i a l 
q u a n t i f i e r . I t p rov ides a b i n d i n g -
p lace f o r the i d e n t i f i e r X, but does 
not i n i t i a l i z e i t -- i t leaves I t in a 
s t a t e p a r t i c u l a r l y marked as 
unass lgned . To answer the q u e s t i o n , 
we ask PLANNER to e v a l u a t e the e n t i r e 
THPROG exp ress ion above. To do t h i s It 
s t a r t s by e v a l u a t i n g the GOAL 
e x p r e s s i o n . Th is searches the data 
base f o r an a s s e r t i o n of the form 
(FALLIBLE ?X) and f a l l s . i t then looks 
f o r a theorem w i t h a consequent of t h a t 
f o r m , and f i n d s the theorem we d e f i n e d 
above. Nov/ when the theorem is c a l l e d , 
the i d e n t i f i e r Y In the theorem Is 
l i n k e d to the i d e n t i f i e r X in the g o a l , 
but s ince X has no va lue y e t , Y does 
not rece i ve a v a l u e . The theorem then 
se ts up the goal (HUMAN ?Y) w i t h Y as 
an i d e n t i f i e r . The PLANNER p r i m i t i v e 
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GOAL uses the da ta -base sea rch ing 
mechanism to look f o r any a s s e r t i o n 
which matches t h a t p a t t e r n ( I . e . an 
i n s t a n t i a t i o n ) , and f i n d s the a s s e r t i o n 
(HUMAN TURING). Th is causes Y (and 
t h e r e f o r e X) to be bound to the 
cons tan t TURING, and the theorem 
succeeds, c o m p l e t i n g the p roo f and 
r e t u r n i n g the va lue (FALLIBLE TURING). 

There seems to be something 
m i s s i n g . So f a r , t h e data base has 
con ta i ned o n l y the r e l e v a n t o b j e c t s , 
and t h e r e f o r e PLANNER has found the 
r i g h t a s s e r t i o n s immed ia te l y . Consider 
the problem we would get if we added 
new I n f o r m a t i o n by e v a l u a t i n g the 
s t a t e m e n t s : 

<ASSERT (HUMAN S0CRATES)> 
<ASSERT (GREEK SOCRATES)> 

Our data base now c o n t a i n s the 
asse r t i o n s : 

(HUMAN TURING) 
(HUMAN SOCRATES) 
(GREEK SOCRATES) 

and t h e o r e m l : 

<CONSEQUENT (Y) (FALLIBLE ?Y) 
<GOAL (HUMAN ?Y)>> 

What If we now ask , " I s the re a 
f a l l i b l e Greek?" In PLANNER we would do 
t h i s by e v a l u a t i n g the e x p r e s s i o n : 

<THPROG (X) 
<G0AL (FALLIBLE ?X)> 
<GOAL (GREEK ?X)>> 

THPROG is a wishy-washy v e r s i o n 
of the LISP f u n c t i o n PROG. If THPROG 
runs I n t o a f a i l u r e t r y i n g to e v a l u a t e 
one of the exp ress ions in its body, 
then i t back t racks to the l a s t dec lson 
t h a t was made and dumps the 
r e s p o n s i b i l i t y of how to proceed on the 
procedure which made the d e c i s i o n . 
No t i ce what might happen. The f i r s t 
GOAL may be s a t i s f i e d by e x a c t l y the 
same deduc t i on as b e f o r e , s i nce we have 
not removed I n f o r m a t i o n . I f the d a t a ­
base searcher happens to run I n t o 
TURING be fo re It f i n d s SOCRATES, the 
goal (HUMAN ?Y) w i l l succeed, b i n d i n g Y 
and thus X to TURING. A f t e r (FALLIBLE 
?X) succeeds, the THPROG w i l l then 
e s t a b l i s h the new goal (GREEK TURING), 
which is doomed to f a i l s i nce it has 
not been a s s e r t e d , and t he re are no 
a p p l i c a b l e theorems. if we t h i n k in 
LISP te rms , t h i s is a s e r i o u s p rob lem, 
s ince the e v a l u a t i o n of the f i r s t GOAL 
has been completed be fo re the second 
one is c a l l e d , and the " s t a c k " now 
c o n t a i n s o n l y the r e t u r n address f o r 
THPROG and the i d e n t i f i e r X. If we t r y 
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to go back to the beg inn ing and s t a r t 
over , I t w i l l again f i n d TURING and so 
on, ad I n f i n i t u m . 

One of the most Important f ea tu res 
of the PLANNER language Is tha t 
back t rack ing in case of f a i l u r e Is 
always p o s s i b l e , and moreover t h i s 
back t rack ing can go to the l a s t place 
where a dec is ion of any so r t was made. 
Here, the dec i s ion was to p ick a 
p a r t i c u l a r a s s e r t i o n from the data base 
to match a g o a l . Another k ind of 
dec is ion Is the choice of a theorem to 
t r y to achieve a g o a l . PLANNER keeps 
enough In fo rmat ion to change any 
dec i s ion and send e v a l u a t i o n back down 
a new pa th . 

In our example the dec i s i on was 
made Ins ide the theorem f o r FALLIBLE, 
when the goal (HUMAN ?Y) was matched to 
the a s s e r t i o n (HUMAN TURING). PLANNER 
w i l l re t race I t s s teps , t r y t o f i n d a 
d i f f e r e n t a s s e r t i o n which matches the 
g o a l , f i n d (HUMAN SOCRATES), and 
cont inue w i t h the p roo f . The theorem 
w i l l succeed w i t h the value (FALLIBLE 
SOCRATES), and the THPROG w i l l proceed 
to the next exp ress ion , <G0AL (GREEK 
?X)>. Since X has been bound to 
SOCRATES, t h i s w i l l set up the goal 
(GREEK SOCRATES) which w i l l succeed 
Immediately by f i n d i n g the 
corresponding a s s e r t i o n in the data 
base. Since there are no more 
expressions in the THPROG, It w i l l 
succeed, r e t u r n i n g as its value the 
value of the l a s t exp ress ion , (GREEK 
SOCRATES). The whole course of the 
deduct ion process depends on the 
f a i l u r e mechanism f o r back t rack ing and 
t r y i n g th ings over ( t h i s I s a c t u a l l y 
the process o f t r y i n g d i f f e r e n t 
branches down the conceptual goal 
t r e e . ) A l l o f the f u n c t i o n s l i k e 
THCOND, THAND, THOR, e t c . are 
c o n t r o l l e d by success vs . f a i l u r e , 
ra the r than NIL vs . non-NIL as In LISP. 
This then Is the PLANNER execut ive 
which es tab l i shes and manipulates 
subgoals in l ook ing f o r a p roo f . 

We would now l i k e to g ive a 
somewhat more formal d e s c r i p t i o n of the 
behavior of PLANNER on the above 
problem. if we intoduce s u i t a b l e 
n o t a t i o n our problem s o l v i n g p ro toco ls 
can be made much more succ inc t and 
t h e i r s t r u c t u r e made v i s i b l e . Also by 
f o r m a l i z i n g the n o t i o n s , we can make 
PLANNER cons t ruc t and analyze 
p r o t o c o l s . This provides one k ind of 
t oo l by which PLANNER can understand 
I t s own behavior and make 
g e n e r a l i z a t i o n s on how to proceed. 

In t h i s case the p ro toco l I s : 

1: en te r THPROG 
2: 
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X Is rebound but not I n i t i a l i z e d 
3: 

<G0AL (FALLIBLE ?X)> w i l l at tempt a 
pa t t e rn d i r e c t e d invocat ion s ince 
no th ing In the data base matches 
(FALLIBLE ?X). 

en ter THE0REM1 
5: 

match (FALLIBLE ?Y) w i t h 
(FALLIBLE ?X) thus l i n k i n g Y to X 

the s i t u a t i o n is shown in 
snapshot number 1 
G: 

<G0AL (HUMAN ?Y)> f i n d s 
(HUMAN TURING) In the data base 
7: 

Y gets the value TURING 
thus g i v i n g X the value TURING 
8: 

r e tu rn (HUMAN TURING) 
9: 

THE0REM1 re tu rns (FALLIBLE 
TURING) 
10: 

<G0AL (GREEK TURING)) f a l l s s ince 
It Is not In the data base and there 
are no matching consequents 

Thus PLANNER must backt rack to step 7 
and t r y aga in . The s i t u a t i o n Is shown 
In snapshot number 2. For the 
convenience of the reader , we w i l l 
repeat the f i r s t s i x steps from above 
and then cont inue the p r o t o c o l . 

1: enter THPROG 
2: 

X Is rebound but not I n i t i a l i z e d 
3: 

<G0AL (FALLIBLE ?X)> 
4: 

en ter THE0REM1 
5: 

match (FALLIBLE ?Y) w i t h 
(FALLIBLE ?X) thus l i n k i n g Y to X 
6: 

<G0AL (HUMAN ?Y)> f i n d s 
(HUMAN TURING) In the data base 
1 1 : 

Y gets the value 
SOCRATES thus g i v i n g X the va lue 
SOCRATES 
12: 

r e tu rn (FALLIBLE SOCRATES) 
13: 

THE0REM1 re tu rns (FALLIBLE 
SOCRATES) 
14: 

<G0AL (GREEK S0CRATES)> 
15: r e tu rn (GREEK SOCRATES) as the top 
leve l va lue 

The s i t u a t i o n is shown in snapshot 
number 3. 

So f a r we have seen tha t a l though 
PLANNER is w r i t t e n as an e v a l u a t o r , It 
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d i f f e r s In several c r i t i c a l ways from 
any th ing which is normal ly considered a 
programming language. F i r s t , I t is 
g o a l - d i r e c t e d . Theorems can be 
thought of as sub rou t i nes , but they can 
be c a l l e d by s p e c i f y i n g the goal which 
is to be s a t i s f i e d . This is l i k e 
having the a b l l l t l y to say "Ca l l a 
subrou t ine which w i l l achieve the 
des i red r e s u l t a t t h i s p o i n t . " Second, 
the eva lua to r has the mechanism of 
success and f a i l u r e to handle the 
e x p l o r a t i o n of the conceptual goal 
t r e e . In PLANNER there Is no e x p l i c i t 
goal t r e e . The conceptual goal t ree is 
represented by a SNAPSHOT of a 
CONFIGURATION of PROCESSES. Thus 
PLANNER has powerful con t ro l s t r u c t u r e 
p r i m i t i v e s to a l low the concept lona l 
goal s t r u c t u r e to be e a s i l y and 
n a t u r a l l y r e f l e c t e d In the execut ion of 
PLANNER processes, Other e v a l u a t o r s , 
such as LISP, w i t h a basic recurs ive 
eva lua to r have no way to do t h i s . 
T h i r d , PLANNER conta ins a la rge set of 
p r i m i t i v e commands f o r matching 
pa t te rns and man ipu la t ing a data base, 
and f o r hand l ing tha t data base 
e f f I c l e n t l y . 

On the o ther s i d e , we con ask how 
I t d i f f e r s from other theorem provers . 
What Is gained by w r i t i n g theorems In 
the form of programs, and g i v i n g them 
power to c a l l o ther programs which 
manipulate data? The key is In the 
form of the data the theorem-prover can 
accept . Most systems take d e c l a r a t i v e 
I n f o r m a t i o n , as in p red ica te c a l c u l u s . 
This Is In the form of expressions 
which represent " f a c t s " about the 
w o r l d . These are manipulated by the 
theorem-prover accord ing to some f i x e d 
un i fo rm process set by the system. 
PLANNER can make use of Imperat ive 
I n f o r m a t i o n , t e l l i n g it how to go about 
prov ing a subgoal , or to make use of an 
a s s e r t i o n . This produces what is 
c a l l e d HIERARCHICAL con t ro l s t r u c t u r e . 
That I s , any theorem can ind ica te what 
the theorem prover is supposed to do as 
I t cont inues the p roo f . I t has the 
f u l l power to eva luate expressions 
which can depend on both the data base 
and the subgoal t r e e , and to use its 
r e s u l t s to c o n t r o l the f u r t h e r proof by 
making a s s e r t i o n s , dec id ing what 
theorems are to be used, and s p e c i f y i n g 
a sequence of steps to be f o l l o w e d . 

4. Current A p p l i c a t i o n s f o r PLANNER 
The PLANNER formal Ism Is 

c u r r e n t l y being used in a v a r i e t y of 
a p p l i c a t i o n s . it is being used as 
par t of the conceptual machinery of a 
robot at M . I .T . and S tan fo rd . The 
formal ism is used f o r the f o l l o w i n g 
purposes in a robo t : 
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semantic basis f o r na tu ra l language 
f o r m u l a t i n g and execut ing plans of 

act Ion 
f i n d i n g high leve l d e s c r i p t i o n s o f 

v i sua l scenes 
Other a p p l i c a t i o n s are its use as a 
procedural model f o r : 

a r c h i t e c t u r e design 
c h i l d r e n s t o r i e s 
models of programs 
elementary Eucl idean geometry 
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