
Session No. 5 Software Support

PROCEDURAL EMBEDDING OF
KNOWLEDGE IN PLANNER

Carl Hewi t t

A r t i f i c i a l I n t e l l i g e n c e Labora to ry ,
M . I . T . , Cambridge, Massachuset ts ,
U.S.A.

0 . A b s t r a c t
Since the l a s t I JCAI , the

PLANNER problem s o l v i n g fo rma l i sm has
con t i nued to deve lop . Our ep ls temo lgy
f o r the f ounda t i ons f o r problem s o l v i n g
has been ex tended . An overv iew of the
f o rma l i sm Is g iven from an I n f o r m a t i o n
p rocess ing v i e w p o i n t . A s imp le example
Is e x p l a i n e d us ing snapshots of the
s t a t e of the problem s o l v i n g as the
example I s worked, f i n a l l y , c u r r e n t
a p p l i c a t i o n s f o r the fo rma l i sm are

I i s ted .

1 . The S t r u c t u r a l Foundat ions o f
Problem S o l v i n g

We would l i k e to develop a
f o u n d a t i o n f o r problem s o l v i n g
analogous In some ways to the c u r r e n t l y
e x i s t i n g f ounda t i ons f o r mathemat ics .
Thus we need to analyze the s t r u c t u r e
of f o u n d a t i o n s f o r mathemat ics . A
f o u n d a t i o n f o r mathematics must p rov ide
a d e f i n i t i o n a l f o rma l i sm In which
mathemat ica l o b j e c t s can be d e f i n e d and
t h e i r e x i s t e n c e p roved . For example
set t heo ry as a f o u n d a t i o n p rov ides
t h a t o b j e c t s must be b u i l t out o f s e t s .
Then the re must be a deduc t i ve
f o r m a l i s m In which fundamental t r u t h s
can be s t a t e d and the means p rov ided to
deduce a d d i t i o n a l t r u t h s f rom those
a l r e a d y e s t a b l i s h e d . Cur rent
mathemat ica l f ounda t i ons such as set
theo ry seem q u i t e n a t u r a l and adequate
f o r the vas t body o f c l a s s i c a l
mathemat ics . The o b j e c t s and
reason ing of most mathemat ica l domains
such as a n a l y s i s and a lgebra can be
e a s i l y founded on set t h e o r y . The
e x i s t e n c e o f c e r t a i n a s t r o n o m i c a l l y
l a r g e c a r d i n a l s poses some problems f o r
set t h e o r e t i c f o u n d a t i o n s . However,
the problems posed seem to be of
p r a c t i c a l Importance on l y t o c e r t a i n
ca tego ry t h e o r i s t s . Foundat ions o f
mathemat ics have devoted a g rea t deal
o f a t t e n t i o n to the problems o f
c o n s i s t e n c y and comple teness. The
problem of cons i s t ency Is Impor tant
s i nce I f the f ounda t i ons are
i n c o n s i s t e n t then any fo rmu la
whatsoever may be deduced thus
t r i v i a l i z i n g the f o u n d a t i o n s .
Semantics f o r f ounda t i ons o f
mathemat ics are d e f i n e d model

167

t h e o r e t i c a l l y In terms o f the n o t i o n o f
s a t i s f i a b i l i t y . The problem o f
completeness is t h a t , f o r a f o u n d a t i o n
of mathematics to be I n t u i t i v e l y
s a t i s f a c t o r y a l l the t r u e fo rmu las
shou ld be proveab le s ince a f o u n d a t i o n
mathemat ics alms to be a theory of
mathemat ica l t r u t h .

S i m i l a r fundamental ques t i ons
must be faced by a f o u n d a t i o n f o r
problem s o l v i n g . However t he re are
some impor tant d i f f e r e n c e s s ince a
f o u n d a t i o n of problem s o l v i n g alms more
to be a theory of a c t i o n s and purposes
than a theory of mathemat ica l t r u t h . A
f o u n d a t i o n f o r problem s o l v i n g must
s p e c i f y a g o a l - o r l e n t e d f o rma l i sm In
which problems can be s t a t e d .
Fur thermore the re must be a f o rma l i sm
f o r s p e c i f y i n g the a l l o w a b l e methods o f
s o l u t i o n of p rob lems. As p a r t o f the
d e f i n i t i o n o f the f o r m a l i s m s , the
f o l l o w i n g elements must be d e f i n e d :
the data s t r u c t u r e , the c o n t r o l
s t r u c t u r e , and the p r i m i t i v e
p rocedures . The problem of what are
a l l o w a b l e data s t r u c t u r e s f o r f a c t s
about the wo r l d Immediate ly a r i s e s .
Being a theory of a c t i o n s , a f o u n d a t i o n
f o r problem s o l v i n g must c o n f r o n t the
problem of change: How can account be
taken of the changing s i t u a t i o n In the
wor ld? In o rder f o r the re to be
problem s o l v i n g , the re must be a
problem s o l v e r . A f o u n d a t i o n f o r
problem s o l v i n g must cons ide r how much
knowledge and what k ind of knowledge
problem s o l v e r s can have about
themse lves . In c o n t r a s t to the
f o u n d a t i o n o f mathemat ics , the
semant ics f o r a f o u n d a t i o n f o r problem
s o l v i n g should be d e f i n e d In terms of
p r o p e r t i e s of p rocedures . We would
l i k e to see mathemat ica l I n v e s t i g a t i o n s
on the adequacy of the f o u n d a t i o n s f o r
problem s o l v i n g p rov ided by PLANNER.
In chap te r C of the d i s s e r t a t i o n , we
have made the beg inn ings of one k ind of
such an I n v e s t i g a t i o n .

To be more s p e c i f i c a
f o u n d a t i o n f o r problem s o l v i n g must
concern I t s e l f w i t h the f o l l o w i n g
complex o f t o p i c s .

PROCEDURAL EMBEDDING: How can
" r e a l w o r l d " knowledge be e f f e c t i v e l y
embedded In p rocedures . What are good
ways to express problem s o l u t i o n
methods and how can p lans f o r the
s o l u t i o n of problems be fo rmu la ted?

GENERALIZED COMPILATION: What
are good methods f o r t r a n s f o r m i n g h igh
l e v e l g o a l - o r l e n t e d language in to
s p e c i f i c e f f i c i e n t a l g o r i t h m s .

168

VERIFICATION: Hovv can it be
v e r i f i e d t h a t a procedure does what Is
I n tended .

PROCEDURAL ABSTRACTION: What
are Rood methods f o r a b s t r a c t i n g
general procedures f rom s p e c i a l cases .

One approach to f o u n d a t i o n s f o r
problem s o l v i n g r e q u i r e s t h a t t he re
should be two d i s t i n c t f o r m a l i s m s :

1: A METHODS fo rma l i sm which
s p e c i f i e s the a l l o w a b l e methods o f
s o l u t I o n

2: A PROBLEM SPECIFICATION
fo rma l i sm In which to pose p rob lems.

The problem s o l v e r Is expected to
f i g u r e out how combine I t s a v a i l a b l e
methods In o rde r to produce a s o l u t i o n
which s a t i s f i e s the problem
s p e c i f i c a t i o n . One of the aims of the
above f o r m u l a t i o n of problem s o l v i n g is
to c l e a r l y separa te the methods o f
s o l u t i o n f rom the problems posed so
t h a t i t Is Imposs ib le to " c h e a t " and
g i v e the problem s o l v e r the methods f o r
s o l v i n g the problem a long w i t h the
s ta tement of the p rob lem. lie propose
to b r i d g e the chasm between the methods
f o r m a l i s m and the problem f o r m a l i s m .
Consider more c a r e f u l l y the two
extremes In the s p e c i f i c a t i o n o f
process ing:

A : E x p l i c i t p rocess ing (e . g .
methods) is the a b i l i t y to s p e c i f y and
c o n t r o l a c t i o n s down to the f i n e s t
d e t a l l s .

B : i m p l i c i t p rocess ing (e . g .
problems) is the a b i l i t y to s p e c i f y the
end r e s u l t d e s i r e d and not have to say
very much about how It shou ld be
ach l e v e d .

PLANNER a t tempts to provide a f o rma l i sm
In which a problem s o l v e r can b r i d g e
the cont inuum between e x p l i c i t and
I m p l i c i t p r o c e s s i n g . We aim f o r a
maximum of f l e x i b i l i t y so t h a t whatever
knowledge is a v a i l a b l e can be
i nco rpo ra ted even I f I t I s f ragmen ta ry
and h e u r I s t I c .

Our work on PLANNER has been an
i n v e s t i g a t i o n in PROCEDURAL
ERISTEMOLOGY, the s tudy of how
knowledge can be embedded in
p rocedures . The THESIS OF PROCEDURAL
EMBEDDING is t h a t i n t e l l e c t u a l
s t r u c t u r e s should be ana lyzed th rough
t h e i r PROCEDURAL ANALOGUES. We w i l l
t r y to show what we mean th rough
examples:

Session No. 5 Software Support

DESCRIPTIONS are procedures
which recogn ize how w e l l some cand ida te
f i t s the d e s c r i p t i o n .

PATTERNS are
d e s c r i p t i o n s which match c o n f i g u r a t i o n s
o f d a t a . For example < e i t h e r 4
<atomic>> Is a procedure which w i l l
recogn ize something which is e i t h e r 4
or is a t o m i c .

DATA TYPES are p a t t e r n s
used In d e c l a r a t i o n s of the a l l o w a b l e
range and domain of procedures and
I d e n t i f i e r s . More g e n e r a l l y , data
types have analogues In the form of
procedures which c r e a t e , d e s t r o y ,
r e c o g n i z e , and t r a n s f o r m d a t a .

GRAMMARS: The
PROGRAMMAR language of Te r r y Wlnograd
rep resen ts the f i r s t s t ep towards one
k i nd o f p rocedura l analogue f o r n a t u r a l
language grammar.

SCHEMATIC DRAWINGS have
as t h e i r p rocedura l analogue methods
f o r r e c o g n i z i n g when p a r t i c u l a r f i g u r e s
f i t w i t h i n the schemata.

PROOFS cor respond to
procedures f o r r e c o g n i z i n g and
expanding v a l i d cha ins o f d e d u c t i o n s .
Indeed many p roo fs can f r u i t f u l l y be
cons ide red to d e f i n e procedures which
are proved to have c e r t a i n p r o p e r t i e s .

MODELS of PROGRAMS are
procedures f o r d e f i n i n g p r o p e r t i e s o f
procedures and a t t e m p t i n g to v e r i f y
these p r o p e r t i e s . Models of programs
can be d e f i n e d by procedures which
s t a t e the r e l a t i o n s t h a t must ho ld as
c o n t r o l passes th rough the program.

PLANS are g e n e r a l , goal
o r i e n t e d procedures f o r a t t e m p t i n g t o
c a r r y out some t a s k .

THEOREMS of the
OUANTIFICATIONAL CALCULUS have as t h e i r
analogues procedures f o r c a r r y i n g out
the deduc t i ons which are j u s t i f i e d by
the theorems. For example, cons ide r a
theorem of the form (IMPLIES x y) . One
p rocedura l analogue of the theorem Is
to cons i de r whether x shou ld be made a
subgoal in o rde r to t r y to prove
someth ing o f the form y . I r a G o l d s t e i n
has shown t h a t the theorems of
e lementa ry p lane geometry have very
n a t u r a l p rocedura l ana logues .

DRAWINGS: The
p rocedura l analogue of a drawing is a
procedure f o r making the d r a w i n g .

Session No. 5 Software Support

P R O G R E S S I V E R E F I N E M E N T

169

170

Rather s o p h i s t i c a t e d d i s p l a y processors
have been c o n s t r u c t e d f o r making
drawings on cathode ray t u b e s ,

RECOMMENDATIONS:
PLANNER has p r i m i t i v e s which a l l o w
recommendations as to how d i s p a r a t e
s e c t i o n s o f goal o r i e n t e d language
should be l i n k e d t o g e t h e r in o rde r to
accompl ish some p a r t i c u l a r t a s k .

GOAL TREES are represen ted by a
snapshot o f the ins tantaneous
c o n f i g u r a t i o n o f problem s o l v i n g
p rocesses .

One c o r o l l a r y of the t h e s i s of
p rocedura l embedding Is t h a t l e a r n i n g
e n t a i l s the l e a r n i n g o f the procedures
in which the knowledge to be learned is
embedded. Another aspect o f the t h e s i s
of p rocedura l embedding is t h a t the
process of go ing f rom genera l goal
o r i e n t e d language which Is capable o f
accomp l i sh ing some task to a s p e c i a l
purpose/ e f f i c i e n t / a l g o r i t h m f o r the
task shou ld I t s e l f be mechanized. By
exp ress i ng the p r o p e r t i e s o f the
s p e c i a l purpose a l g o r i t h m in terms of
t h e i r p rocedura l ana logues/ we can use
the analogues to e s t a b l i s h t h a t the
s p e c i a l purpose r o u t i n e does in f a c t do
what it is intended to do .

We are concerned as to how a
theorem prover can u n i f y s t r u c t u r a l ,
problem s o l v i n g methods w i t h domain
dependent a l g o r i t h m s and data i n to a
coherent problem s o l v i n g p rocess . By
s t r u c t u r a l methods we mean those t h a t
are concerned w i t h the formal s t r u c t u r e
of the argument r a t h e r than w i t h the
semant ics of I t s domain dependent
c o n t e n t .

An example of a s t r u c t u r a l
method Is the "consequences of the
consequent " h e u r i s t i c . By the
CONSEQUENCES OF THE CONSEQUENT
h e u r i s t i c , we mean t h a t a problem
s o l v e r should look at the consequences
of the goal t h a t is be ing a t tempted in
o rde r to get an idea of some of the
s ta tements t h a t cou ld be u s e f u l in
e s t a b l i s h i n g o r r e j e c t i n g the g o a l .

We need to d i s cove r more
power fu l s t r u c t u r a l methods. PLANNER
Is intended to p rov i de a compu ta t i ona l
bas is f o r exp ress i ng s t r u c t u r a l
methods. One of the most impor tant
Ideas in PLANNER is t h a t it b r i n g s some
of the s t r u c t u r a l methods o f problem
s o l v i n g out in to the open where they
can be analyzed and g e n e r a l i z e d . There
are a few bas ic p a t t e r n s of l o o p i n g and
r e c u r s i o n t h a t are in cons tan t use
among programmers. Examples are
r e c u r s i o n on b i n a r y t r ees as In LISP

Session No. 5 Software Support

and the FIND s ta tement of PLANNER. The
p r i m i t i v e FIND w i l l c o n s t r u c t a l i s t o f
a l l the o b j e c t s w i t h c e r t a i n
p r o p e r t i e s . For example we can f i n d
f i v e t h i n g s which are on something
which Is green by e v a l u a t i n g

<FIND 5 x
<G0AL (ON x y)>
<GOAL (GREEN y)>>

which reads " f i n d 5 x ' s such t h a t x Is
ON y and y Is GREEN."

The p a t t e r n s of l o o p i n g and
r e c u r s i o n rep resen t common s t r u c t u r a l
methods used In programs. They s p e c i f y
how commands can be repeated
I t e r a t i v e l y and r e c u r s i v e l y . One of
the main problems In g e t t i n g computers
to w r i t e programs Is how to use these
s t r u c t u r a l p a t t e r n s w i t h the p a r t i c u l a r
domain dependent commands t h a t are
a v a i l a b l e . I t i s d i f f i c u l t t o dec ide
wh ich / i f any, of the bas ic p a t t e r n s is
a p p r o p r i a t e in any g iven p rob lem. The
problem of s y n t h e s i z i n g programs out o f
canned loops Is f o r m a l l y I d e n t i c a l to
the problem o f f i n d i n g p roo f s us i ng
mathemat ica l I n d u c t i o n . We have
approached the problem of c o n s t r u c t i n g
procedures out o f goal o r i e n t e d
language f rom two d i r e c t i o n s . The
f i r s t is to use canned loops (such as
the FIND s ta temen t) where we assume a-
p r i o r l the k ind o f c o n t r o l s t r u c t u r e
t ha t Is needed. The second approach Is
to t r y to a b s t r a c t the procedure f rom
p r o t o c o l s o f I t s a c t i o n I n p a r t i c u l a r
cases .

Another s t r u c t u r a l method is
p r o g r e s s i v e r e f i n e m e n t . The way
problems are so lved by p r o g r e s s i v e
re f inement Is by repeated e v a l u a t i o n .
Ins tead of t r y i n g to do a complete
search o f the problem space a l l a t
once, repeated re f i nemen ts are made.
For example in a game l i k e chess the
same p a r t of the game t r e e might be
looked at severa l t i m e s . Each t ime
c e r t a i n paths are more deep ly exp l o red
in the l i g h t of what o t h e r searches
have revea led to be the key f e a t u r e s of
the p o s i t i o n . Problems in des ign seem
to be p a r t i c u l a r l y s u i t a b l e f o r the use
o f p r o g r e s s i v e re f i nemen t s ince
proposed des igns are o f t e n themselves
amenable to success ive r e f i n e m e n t . The
way in which p r o g r e s s i v e re f inement
t y p i c a l l y is done In PLANNER Is by
repeated e v a l u a t i o n . Thus the
exp ress ion which Is e v a l u a t e d to so l ve
the problem w i l l I t s e l f produce as I t s
va lue an exp ress ion to be e v a l u a t e d .

Session No. 5 Software Support

2. I n f o r m a t i o n Process ing Overview
Some readers w i l l p r e f e r to

read s e c t i o n 3 which has conc re te
examples be fo re the a b s t r a c t d i s c u s s i o n
in t h i s sec t I o n .

There are many ways in which
one can approach a d e s c r i p t i o n of
PLANNER. In t h i s s e c t i o n we w i l l
d e s c r i b e PLANNER from an I n f o r m a t i o n
Process ing V i e w p o i n t . To do t h i s we
w i l l d e s c r i b e the data s t r u c t u r e and
the c o n t r o l s t r u c t u r e o f the f o r m a l i s m .

DATA STRUCTURE:

ASSOCIATIVE MEMORY forms the
bas i s f o r PLANNER'S data space which
c o n s i s t s o f d i r e c t e d graphs w i t h
l a b e l e d a r c s . The o p e r a t i o n of PUTTING
and GETTING the components of data
o b j e c t s have been g e n e r a l i z e d to app ly
to any data type wha tsoever . For
example to PUT the va lue CANONICAL on
the exp ress ion (+ X Y (* X Z)) under
the I n d i c a t o r SIMPLIFIED Is one way to
record t h a t (+ X Y (* X Z)) has been
c a n o n l c a l l y s i m p l i f i e d . Then the
degree to which an exp ress ion is
s i m p l i f i e d can be determined by GETTING
the va lue under the I n d i c a t o r
SIMPLIFIED of the e x p r e s s i o n . The
o p e r a t i o n of PUT and GET can be
Implemented e f f i c i e n t l y u s i n g hash
c o d i n g . L i s t s and v e c t o r s have been
in t roduced to ga in more e f f i c i e n c y f o r
common s p e c i a l case s t r u c t u r e s . The
a s s o c i a t i v e memory Is u s e f u l to PLANNER
In many ways. M o n i t o r i n g g i ves PLANNER
the c a p a b i l i t y o f t r a p p i n g a l l read,
w r l t e , and execute re fe rences to a
p a r t i c u l a r data o b j e c t . The mon i t o r
(wh ich Is found under the i n d i c a t o r
MONITOR) of the data o b j e c t can then
take any a c t i o n t h a t i t sees f i t in
o rde r to handle the s i t u a t i o n . The
a s s o c i a t i v e memory can be used to
r e t r i e v e the va lue of an i d e n t i f i e r I
of a process p by GETTING the I
component of p. Code can be commented
by s imp ly PUTTING the a c t u a l comment
under the i n d i c a t o r COMMENT.

DATA BASE: What is most
d i s t i n c t i v e about the way in which
PLANNER uses data is t h a t It has a data
base In which da ta can be I n s e r t e d and
removed. For example I n s e r t i n g (AT Bl
P2) i n to the data base might s i g n i f y
t h a t b lock Bl Is at the p lace P2. A
c o o r d i n a t e of an e x p r e s s i o n is d e f i n e d
to be an atom In some p o s i t i o n . An
e x p r e s s i o n Is de termined by I t s
c o o r d i n a t e s . A s s e r t i o n s are s t o r e d in
buckets by t h e i r c o o r d i n a t e s u s i n g the
a s s o c i a t i v e memory in o rde r to p rov i de
e f f i c i e n t r e t r i e v a l . I n a d d i t i o n a

171

t o t a l o r d e r i n g is imposed on the
a s s e r t i o n s so t h a t the buckets can be
s o r t e d . Impera t i ves as w e l l as
d e c l a r a t i v e s can be s t o r e d In the data
base. We might asse r t t h a t whenever
an exp ress ion of the form (At o b j e c t l
p l a c e l) is removed from the data base,
then any exp ress ion in the data base of
of the form (ON o b j e c t l obJect2) should
a l s o be removed from the data base.
The data base can be t r e e s t r u c t u r e d so
t h a t I t i s p o s s i b l e to s imu l t aneous l y
have severa l l o c a l data bases which are
I n c o m p a t i b l e . Fur thermore a s s e r t i o n s
In the data base can have v a r y i n g
scopes so t h a t some will l a s t the
d u r a t i o n of a process w h i l e o t he r s are
temporary to a s u b r o u t i n e .

CONTROL STRUCTURE: PLANNER uses a
p a t t e r n d i r e c t e d m u l t i p r o c e s s back t rack
c o n t r o l s t r u c t u r e t o t i e the o p e r a t i o n
o f I t s p r i m i t i v e s t o g e t h e r ,

BACKTRACK ING: PLANNER
processes have the c a p a b i l i t y o f
b a c k t r a c k i n g to p rev ious s t a t e s . A
process can back t rack in to a procedure
a c t i v a t i o n (I . e . a s p e c i f i c instance o f
an i n v o c a t i o n of the procedure) which
has a l r e a d y re tu rned w i t h a r e s u l t .
Using the theory o f compara t ive
schemato logy, we have proved in the
d i s s e r t a t i o n t h a t the use o f back t rack
c o n t r o l enables us to ach ieve e f f e c t s
t h a t a language (such as LISP) which Is
l i m i t e d t o r e c u r s i v e c o n t r o l s t r u c t u r e
cannot a c h i e v e . B a c k t r a c k i n g cu ts
across the s u b r o u t i n e s t r u c t u r e o f
PLANNER. Backt rack c o n t r o l a l l ows the
consequences o f e l a b o r a t e t e n t a t i v e
hypotheses to be exp lo red w i t h o u t
l o s i n g the c a p a b i l i t y o f r e j e c t i n g the
hypotheses and a l l o f t h e i r
consequences. A cho ice can be made on
the bas is o f the a v a i l a b l e knowledge
and I f i t d o e s n ' t work , a b e t t e r cho ice
can be made us ing the new I n f o r m a t i o n
d i scove red w h i l e i n v e s t i g a t i n g the
f i r s t c h o i c e . A lso back t rack c o n t r o l
makes PLANNER procedures e a s i e r to
debug s ince they can be run backwards
as w e l l as fo rwards e n a b l i n g a problem
s o l v e r to " ze ro I n " on bugs.

MULTIPROCESSING g i ves PLANNER
the c a p a b i l i t y of hav ing more than one
locus o f c o n t r o l in problem s o l v i n g .
By us ing m u l t i p l e p rocesses , a r b i t r a r y
p a t t e r n s of search th rough a conceptua l
problem space can be c a r r i e d o u t .
Processes can have the power to c r e a t e ,
read , w r i t e , i n t e r r u p t , resume, s i n g l e
s t e p , and f o r k o t h e r p rocesses .

172 Session No. 5 Software Support

PATTERN DIRECTION combines aspects
o f c o n t r o l and data s t r u c t u r e . The
fundamental p r i n c i p l e o f p a t t e r n
d i r e c t e d computa t ion Is t h a t a
procedure shou ld be a p a t t e r n of what
the procedure Is In tended to
a c c o m p l i s h . In o t h e r words a
procedure shou ld not o n l y do the r i g h t
t h i n g but I t shou ld appear to do the
r i g h t t h i n g as w e l l ! PLANNER uses
p a t t e r n d i r e c t i o n f o r the f o l l o w i n g
o p e r a t i o n s :

CONSTRUCTION of s t r u c t u r e d da ta
o b j e c t s is accompl ished by t e m p l a t e s .
We can c o n s t r u c t a l i s t whose f i r s t
e lement is the va lue of x and whose
second element Is the va lue of y by the
procedure (x y) . I f x has the va lue 3
and y has the va lue (A B) then (x y)
w i l l e v a l u a t e to (3 (A B)) .

DECOMPOSITION Is accompl ished
by match ing the data o b j e c t a g a i n s t a
s t r u c t u r e d p a t t e r n . I f the p a t t e r n (x1
x2) is matched a g a i n s t the data o b j e c t
((3 4) A) then xl w i l l be g i ven the
va lue (3 4) and x2 w i l l be g i ven the
va lue A.

RETRIEVAL: An a s s e r t i o n Is
r e t r i e v e d f rom the data base by
s p e c i f y i n g a p a t t e r n which the
a s s e r t i o n must match and thus b ind the
i d e n t i f i e r s in the p a t t e r n . For
example we can de termine if t he re is
a n y t h i n g in the data base of the form
(ON x A) . if (ON B A) Is the o n l y i ter
in the data base, then x is bound to B,
if t h e r e Is more than one item In the
data base which matches a r e t r i e v a l
p a t t e r n , then an a r b i t r a r y cho ice is
made. The f a c t t h a t a cho ice was made
Is remembered so t h a t if a s imp le
f a i l u r e back t r acks t o the d e c i s i o n ,
another cho ice can be made.

INVOCATION: Procedures can be
Invoked by p a t t e r n s of what they are
supposed to a c c o m p l i s h . For example a
procedure might be d e f i n e d which
a t tempts t o s a t i s f y p a t t e r n s o f the
form (ON x y) by caus ing x to be ON y.
Such a procedure cou ld be Invoked by
making (ON A B) a g o a l . The procedure
might or might not succeed In a c h i e v i n g
its goal depending on the env i ronment
in which t was c a l l e d . S ince many
theorems might match a g o a l , a
recommendaition is a l l owed as to which
of the cand ida te theorems might be
u s e f u l . The recommendation is a
p a t t e r n which a cand ida te theorem must
match In o rde r to be invoked.

L

Session No. 5 Software Support

3. An Extended example
Th is s e c t i o n c o n t a i n s an

extended d e s c r i p t i o n of a s imp le
example in PLANNER. It Is p a r t i a l l y
based on a d r a f t w r i t t e n by T. Wlnograd
f o r the course 6 .545 . I f the reader
would l i k e to see a more l o g i c a l l y
sys tema t i c p r e s e n t a t i o n , he can c o n s u l t
the the a t h o r ' s d i s s e r t a t i o n .

The e a s i e s t way to unders tand
PLANNER Is to watch how It works, so In
t h i s s e c t i o n we w i l l p resent a few
s imple examples and e x p l a i n the use of
some of I t s most e lementary f e a t u r e s .
These examples are not ,ntended to
represent TOY PROBLEMS to serve as t e s t
cases f o r "genera l problem s o l v e r s " .
The toy problem paradigm Is m i s l e a d i n g
because toy problems can be so lved
w i t h o u t any rea l knowledge of the
domain In which the toy problem Is
posed. Indeed, It seems gauche to use
any t h i n g as power fu l as rea l knowledge
on such s imple prob lems. In c o n t r a s t
we b e l i e v e t h a t rea l w o r l d problems
r e q u i r e vas t amounts o f p rocedura l
knowldege f o r t h e i r s o l u t i o n . We see
I t as pa r t o f our task to p rov i de the
I n t e l l e c t u a l c a p a b i l i t i e s needed f o r
e f f e c t i v e problem s o l v i n g . We would
l i k e to see the toy problem paradigm
rep laced w i t h an INTELLECTUAL
CAPABILITY paradigm where the o b j e c t is
t o I l l u s t r a t e the I n t e l l e c t u a l
c a p a b i l i t i e s needed so t h a t knowledge
can be e f f e c t i v e l y embededed in
p rocedures .

F i r s t we w i l l take the most
venerab le o f t r a d i t i o n a l d e d u c t i o n s :

T u r i n g Is a human
A l l humans are f a l l i b l e

so
T u r i n g i s f a l i b l e .

It Is easy enough to see how
t h i s cou ld be expressed In the usual
l o g i c a l n o t a t i o n and handled by a
u n i f o r m proo f p rocedu re . i n s t e a d , l e t
us express it In one p o s s i b l e way to
PLANNER by s a y i n g :

<ASSERT (HUMAN TURlNG)>

<ASSERT <DEFINE THE0REM1
<CONSEQUENT (Y) (FALLIBLE ?Y)

<G0AL (HUMAN ?Y)>>>>

Func t i on c a l l s are enc losed
between " < " and " > " . The p roo f would
be generated by ask ing PLANNER to
e v a l u a t e the e x p r e s s i o n :

<G0AL (FALLIBLE TURING)>
We Immediate ly see severa l p o i n t s .

F i r s t , t he re are a t l e a s t two d i f f e r e n t
k inds of I n f o r m a t i o n s t o r e d in the data
base: d e c l a r a t i v e s and i m p e r a t i v e s .
No t i ce t h a t f o r complex sentences

173

c o n t a i n i n g q u a n t i f i e r s o r l o g i c a l
connec t i ves we have a cho ice whether to
express the sentence by d e c l a r a t i v e s or
by I m p e r a t i v e s .

Second, one of the most Impor tant
p o i n t s about PLANNER is t h a t it Is an
e v a l u a t o r f o r s t a temen ts . I t accepts
input in the form of express ions
w r i t t e n in the PLANNER language and
eva lua tes them, p roduc ing a va lue and
s ide e f f e c t s . ASSERT is a f u n c t i o n
w h i c h , when e v a l u a t e d , s to res I t s
argument In the data base of
a s s e r t i o n s . In t h i s example we have
de f i ned a theorem of the CONSEQUENT
type (we w i l l see o the r types l a t e r) .
Th is s t a t e s tha t if we ever want to
e s t a b l i s h a goal of the form (FALLIBLE
?Y) , we can do t h i s by accomp l i sh ing
the goal (HUMAN ?Y), where Y is a
I d e n t i f i e r . The s t range p r e f i x
c h a r a c t e r " ? " Is pa r t o f PLANNER'S
p a t t e r n match ing c a p a b i l i t i e s (which
are e x t e n s i v e and make use of the
p a t t e r n - m a t c h i n g language MATCHLESS
which Is exp la i ned In chapter 4 of the
d i s s e r t a t i o n) . If we ask PLANNER to
prove a goal of the form (A Y) , there
Is no obv ious way of knowing whether A
and Y are cons tan ts (l i k e TURING and
HUMAN In the example) or i d e n t i f i e r s .
LISP so lves t h i s problem by us ing the
f u n c t i o n QUOTE to I n d i c a t e c o n s t a n t s .
in p a t t e r n match ing t h i s Is
Inconven ien t and makes most p a t t e r n s
much b u l k i e r and more d i f f i c u l t to
read . I n s t e a d , PLANNER uses the
o p p o s i t e conven t ion -- a cons tan t is
represented by the atom I t s e l f , w h i l e a
I d e n t i f i e r must be I n d i c a t e d by adding
an a p p r o p r i a t e p r e f i x . Th is p r e f i x
d i f f e r s acco rd ing to the exact use o f
the i d e n t i f i e r in the p a t t e r n , but f o r
the t ime be ing l e t us j u s t accept " ? "
as a p r e f i x n d i c a t i n g a i I d e n t i f i e r .
The d e f i n i t i o n of the theorem ind i ca tes
t h a t It has one i d e n t i f i e r , Y by the
(Y) f o l l o w i n g CONSEQUENT.

The t h i r d s ta tement I l l u s t r a t e s
the f u n c t i o n GOAL, which t r i e s to prove
an a s s e r t i o n . Th is can f u n c t i o n in
severa l ways. if we had asked PLANNER
to eva lua te <G0AL (HUMAN TURING)> it
would have found the requested
a s s e r t i o n immediate ly in the data base
and succeeded (r e t u r n i n g as its va lue
some i n d i c a t o r t h a t I t had succeeded) .
However, (FALLIBLE TURING) has not been
a s s e r t e d , so we must r e s o r t to theorems
to prove I t . La te r we w i l l see t h a t a
GOAL s ta tement can g i ve PLANNER va r i ous
k inds of adv ice on which theorems are
a p p l i c a b l e to the goal and should be
t r i e d . For the moment, take the
d e f a u l t case, in which the e v a l u a t o r
t r i e s a l l theorems whose consequent is
of a form which matches the goal (I . e .

174

a theorem w i t h a consequent (?Z TURING)
would be t r i e d , but one of the form
(HAPPY ?Z) or (FALLIBLE ?Y ?Z) would
n o t) . A s s e r t i o n s can have an a r b i t r a r y
l i s t s t r u c t u r e f o r t h e i r fo rmat - - they
are not l i m i t e d to two-member l i s t s o r
three-member l i s t s as in these
examples.) The theorem we have Jus t
d e f i n e d would be f o u n d , and In t r y i n g
I t , the match o f the consequence to the
goal would cause the I d e n t i f i e r Y to be
bound to the cons tan t TURING.
T h e r e f o r e , the theorem se ts up a new
goal (HUMAN TURING) and t h i s succeeds
Immediate ly s ince I t Is In the data
base. In g e n e r a l , the success of a
theorem w i l l depend on e v a l u a t i n g a
PLANNER program of a r b i t r a r y
c o m p l e x i t y . in t h i s case I t c o n t a i n s
o n l y a s i n g l e GOAL s t a t e m e n t , so I t s
success causes the e n t i r e theorem to
succeed, and the goal (FALLIBLE TURING)
is p roved . The f o l l o w i n g Is the
p r o t o c o l o f the e v a l u a t i o n :

<GOAL (FALLIBLE TURING)>
(FALLIBLE TURING) Is not In the

data base so a t tempt to invoke a
theorem to e s a b l i s h the goal

e n t e r THEOREMl
Y becomes TURING
<GOAL (HUMAN TURING)>

Is s a t i s f i e d s ince the goal is In the
data base

r e t u r n (FALLIBLE TURING)

The way In which I d e n t i f i e r s are
bound by match ing Is of key Importance
to PLANNER. Consider the q u e s t i o n " I s
a n y t h i n g f a l l i b l e ? " , o r I n l o g i c
(EXISTS X (FALLIBLE X)) . Th is cou ld be
expressed in PLANNER as :

<THPROG (X) <GOAL (FALLIBLE ?X)>>
No t i ce t h a t THPROG (PLANNER'S

e q u i v a l e n t of a LISP PROG, complete
w i t h GO s t a t e m e n t s , t a g s , RETURN, e t c .)
In t h i s case I t ac ts as an e x i s t e n t i a l
q u a n t i f i e r . I t p rov ides a b i n d i n g -
p lace f o r the i d e n t i f i e r X, but does
not i n i t i a l i z e i t -- i t leaves I t in a
s t a t e p a r t i c u l a r l y marked as
unass lgned . To answer the q u e s t i o n ,
we ask PLANNER to e v a l u a t e the e n t i r e
THPROG exp ress ion above. To do t h i s It
s t a r t s by e v a l u a t i n g the GOAL
e x p r e s s i o n . Th is searches the data
base f o r an a s s e r t i o n of the form
(FALLIBLE ?X) and f a l l s . i t then looks
f o r a theorem w i t h a consequent of t h a t
f o r m , and f i n d s the theorem we d e f i n e d
above. Nov/ when the theorem is c a l l e d ,
the i d e n t i f i e r Y In the theorem Is
l i n k e d to the i d e n t i f i e r X in the g o a l ,
but s ince X has no va lue y e t , Y does
not rece i ve a v a l u e . The theorem then
se ts up the goal (HUMAN ?Y) w i t h Y as
an i d e n t i f i e r . The PLANNER p r i m i t i v e

Session No. 5 Software Support

GOAL uses the da ta -base sea rch ing
mechanism to look f o r any a s s e r t i o n
which matches t h a t p a t t e r n (I . e . an
i n s t a n t i a t i o n) , and f i n d s the a s s e r t i o n
(HUMAN TURING). Th is causes Y (and
t h e r e f o r e X) to be bound to the
cons tan t TURING, and the theorem
succeeds, c o m p l e t i n g the p roo f and
r e t u r n i n g the va lue (FALLIBLE TURING).

There seems to be something
m i s s i n g . So f a r , t h e data base has
con ta i ned o n l y the r e l e v a n t o b j e c t s ,
and t h e r e f o r e PLANNER has found the
r i g h t a s s e r t i o n s immed ia te l y . Consider
the problem we would get if we added
new I n f o r m a t i o n by e v a l u a t i n g the
s t a t e m e n t s :

<ASSERT (HUMAN S0CRATES)>
<ASSERT (GREEK SOCRATES)>

Our data base now c o n t a i n s the
asse r t i o n s :

(HUMAN TURING)
(HUMAN SOCRATES)
(GREEK SOCRATES)

and t h e o r e m l :

<CONSEQUENT (Y) (FALLIBLE ?Y)
<GOAL (HUMAN ?Y)>>

What If we now ask , " I s the re a
f a l l i b l e Greek?" In PLANNER we would do
t h i s by e v a l u a t i n g the e x p r e s s i o n :

<THPROG (X)
<G0AL (FALLIBLE ?X)>
<GOAL (GREEK ?X)>>

THPROG is a wishy-washy v e r s i o n
of the LISP f u n c t i o n PROG. If THPROG
runs I n t o a f a i l u r e t r y i n g to e v a l u a t e
one of the exp ress ions in its body,
then i t back t racks to the l a s t dec lson
t h a t was made and dumps the
r e s p o n s i b i l i t y of how to proceed on the
procedure which made the d e c i s i o n .
No t i ce what might happen. The f i r s t
GOAL may be s a t i s f i e d by e x a c t l y the
same deduc t i on as b e f o r e , s i nce we have
not removed I n f o r m a t i o n . I f the d a t a ­
base searcher happens to run I n t o
TURING be fo re It f i n d s SOCRATES, the
goal (HUMAN ?Y) w i l l succeed, b i n d i n g Y
and thus X to TURING. A f t e r (FALLIBLE
?X) succeeds, the THPROG w i l l then
e s t a b l i s h the new goal (GREEK TURING),
which is doomed to f a i l s i nce it has
not been a s s e r t e d , and t he re are no
a p p l i c a b l e theorems. if we t h i n k in
LISP te rms , t h i s is a s e r i o u s p rob lem,
s ince the e v a l u a t i o n of the f i r s t GOAL
has been completed be fo re the second
one is c a l l e d , and the " s t a c k " now
c o n t a i n s o n l y the r e t u r n address f o r
THPROG and the i d e n t i f i e r X. If we t r y

Session No. 5 Software Support 175

176 Session No. 5 Software Support

on No. 5 Software Support 177

Session No. 5 Software Support
178

Session No. 5 Software Suppor* 179

180

to go back to the beg inn ing and s t a r t
over , I t w i l l again f i n d TURING and so
on, ad I n f i n i t u m .

One of the most Important f ea tu res
of the PLANNER language Is tha t
back t rack ing in case of f a i l u r e Is
always p o s s i b l e , and moreover t h i s
back t rack ing can go to the l a s t place
where a dec is ion of any so r t was made.
Here, the dec i s ion was to p ick a
p a r t i c u l a r a s s e r t i o n from the data base
to match a g o a l . Another k ind of
dec is ion Is the choice of a theorem to
t r y to achieve a g o a l . PLANNER keeps
enough In fo rmat ion to change any
dec i s ion and send e v a l u a t i o n back down
a new pa th .

In our example the dec i s i on was
made Ins ide the theorem f o r FALLIBLE,
when the goal (HUMAN ?Y) was matched to
the a s s e r t i o n (HUMAN TURING). PLANNER
w i l l re t race I t s s teps , t r y t o f i n d a
d i f f e r e n t a s s e r t i o n which matches the
g o a l , f i n d (HUMAN SOCRATES), and
cont inue w i t h the p roo f . The theorem
w i l l succeed w i t h the value (FALLIBLE
SOCRATES), and the THPROG w i l l proceed
to the next exp ress ion , <G0AL (GREEK
?X)>. Since X has been bound to
SOCRATES, t h i s w i l l set up the goal
(GREEK SOCRATES) which w i l l succeed
Immediately by f i n d i n g the
corresponding a s s e r t i o n in the data
base. Since there are no more
expressions in the THPROG, It w i l l
succeed, r e t u r n i n g as its value the
value of the l a s t exp ress ion , (GREEK
SOCRATES). The whole course of the
deduct ion process depends on the
f a i l u r e mechanism f o r back t rack ing and
t r y i n g th ings over (t h i s I s a c t u a l l y
the process o f t r y i n g d i f f e r e n t
branches down the conceptual goal
t r e e .) A l l o f the f u n c t i o n s l i k e
THCOND, THAND, THOR, e t c . are
c o n t r o l l e d by success vs . f a i l u r e ,
ra the r than NIL vs . non-NIL as In LISP.
This then Is the PLANNER execut ive
which es tab l i shes and manipulates
subgoals in l ook ing f o r a p roo f .

We would now l i k e to g ive a
somewhat more formal d e s c r i p t i o n of the
behavior of PLANNER on the above
problem. if we intoduce s u i t a b l e
n o t a t i o n our problem s o l v i n g p ro toco ls
can be made much more succ inc t and
t h e i r s t r u c t u r e made v i s i b l e . Also by
f o r m a l i z i n g the n o t i o n s , we can make
PLANNER cons t ruc t and analyze
p r o t o c o l s . This provides one k ind of
t oo l by which PLANNER can understand
I t s own behavior and make
g e n e r a l i z a t i o n s on how to proceed.

In t h i s case the p ro toco l I s :

1: en te r THPROG
2:

Session No. 5 Software Support

X Is rebound but not I n i t i a l i z e d
3:

<G0AL (FALLIBLE ?X)> w i l l at tempt a
pa t t e rn d i r e c t e d invocat ion s ince
no th ing In the data base matches
(FALLIBLE ?X).

en ter THE0REM1
5:

match (FALLIBLE ?Y) w i t h
(FALLIBLE ?X) thus l i n k i n g Y to X

the s i t u a t i o n is shown in
snapshot number 1
G:

<G0AL (HUMAN ?Y)> f i n d s
(HUMAN TURING) In the data base
7:

Y gets the value TURING
thus g i v i n g X the value TURING
8:

r e tu rn (HUMAN TURING)
9:

THE0REM1 re tu rns (FALLIBLE
TURING)
10:

<G0AL (GREEK TURING)) f a l l s s ince
It Is not In the data base and there
are no matching consequents

Thus PLANNER must backt rack to step 7
and t r y aga in . The s i t u a t i o n Is shown
In snapshot number 2. For the
convenience of the reader , we w i l l
repeat the f i r s t s i x steps from above
and then cont inue the p r o t o c o l .

1: enter THPROG
2:

X Is rebound but not I n i t i a l i z e d
3:

<G0AL (FALLIBLE ?X)>
4:

en ter THE0REM1
5:

match (FALLIBLE ?Y) w i t h
(FALLIBLE ?X) thus l i n k i n g Y to X
6:

<G0AL (HUMAN ?Y)> f i n d s
(HUMAN TURING) In the data base
1 1 :

Y gets the value
SOCRATES thus g i v i n g X the va lue
SOCRATES
12:

r e tu rn (FALLIBLE SOCRATES)
13:

THE0REM1 re tu rns (FALLIBLE
SOCRATES)
14:

<G0AL (GREEK S0CRATES)>
15: r e tu rn (GREEK SOCRATES) as the top
leve l va lue

The s i t u a t i o n is shown in snapshot
number 3.

So f a r we have seen tha t a l though
PLANNER is w r i t t e n as an e v a l u a t o r , It

Session No. 5 Software Support

d i f f e r s In several c r i t i c a l ways from
any th ing which is normal ly considered a
programming language. F i r s t , I t is
g o a l - d i r e c t e d . Theorems can be
thought of as sub rou t i nes , but they can
be c a l l e d by s p e c i f y i n g the goal which
is to be s a t i s f i e d . This is l i k e
having the a b l l l t l y to say "Ca l l a
subrou t ine which w i l l achieve the
des i red r e s u l t a t t h i s p o i n t . " Second,
the eva lua to r has the mechanism of
success and f a i l u r e to handle the
e x p l o r a t i o n of the conceptual goal
t r e e . In PLANNER there Is no e x p l i c i t
goal t r e e . The conceptual goal t ree is
represented by a SNAPSHOT of a
CONFIGURATION of PROCESSES. Thus
PLANNER has powerful con t ro l s t r u c t u r e
p r i m i t i v e s to a l low the concept lona l
goal s t r u c t u r e to be e a s i l y and
n a t u r a l l y r e f l e c t e d In the execut ion of
PLANNER processes, Other e v a l u a t o r s ,
such as LISP, w i t h a basic recurs ive
eva lua to r have no way to do t h i s .
T h i r d , PLANNER conta ins a la rge set of
p r i m i t i v e commands f o r matching
pa t te rns and man ipu la t ing a data base,
and f o r hand l ing tha t data base
e f f I c l e n t l y .

On the o ther s i d e , we con ask how
I t d i f f e r s from other theorem provers .
What Is gained by w r i t i n g theorems In
the form of programs, and g i v i n g them
power to c a l l o ther programs which
manipulate data? The key is In the
form of the data the theorem-prover can
accept . Most systems take d e c l a r a t i v e
I n f o r m a t i o n , as in p red ica te c a l c u l u s .
This Is In the form of expressions
which represent " f a c t s " about the
w o r l d . These are manipulated by the
theorem-prover accord ing to some f i x e d
un i fo rm process set by the system.
PLANNER can make use of Imperat ive
I n f o r m a t i o n , t e l l i n g it how to go about
prov ing a subgoal , or to make use of an
a s s e r t i o n . This produces what is
c a l l e d HIERARCHICAL con t ro l s t r u c t u r e .
That I s , any theorem can ind ica te what
the theorem prover is supposed to do as
I t cont inues the p roo f . I t has the
f u l l power to eva luate expressions
which can depend on both the data base
and the subgoal t r e e , and to use its
r e s u l t s to c o n t r o l the f u r t h e r proof by
making a s s e r t i o n s , dec id ing what
theorems are to be used, and s p e c i f y i n g
a sequence of steps to be f o l l o w e d .

4. Current A p p l i c a t i o n s f o r PLANNER
The PLANNER formal Ism Is

c u r r e n t l y being used in a v a r i e t y of
a p p l i c a t i o n s . it is being used as
par t of the conceptual machinery of a
robot at M . I .T . and S tan fo rd . The
formal ism is used f o r the f o l l o w i n g
purposes in a robo t :

181

semantic basis f o r na tu ra l language
f o r m u l a t i n g and execut ing plans of

act Ion
f i n d i n g high leve l d e s c r i p t i o n s o f

v i sua l scenes
Other a p p l i c a t i o n s are its use as a
procedural model f o r :

a r c h i t e c t u r e design
c h i l d r e n s t o r i e s
models of programs
elementary Eucl idean geometry

5. BIBLIOGRAPHY
Ba lze r , R. EXDAMS - Extendable

Debugging and Mon i to r i ng System. Proc
SJCC 1969, 34. May, 1969.

Ba lze r , R. M., On the Future of
Computer Program S p e c i f i c a t i o n and
Organ i za t i on . December 1070.

Dennis, Jack B. Programming
G e n e r a l i t y , P a r a l l e l i s m and Computer
A r c h l t e c t u e . Computation S t ruc tu res
Group Memo No. 32. August 1968.

Ear ley Jay, Toward an
Understanding of Data S t r u c t u r e s .
Computer Science Departement,
U n i v e r s i t y o f C a l i f o r n i a , Berke ley .

F l kes , R., Re f -A r f : A System
f o r So lv ing Problems Stated as
Procedures A r t i f i c i a l I n t e l l i g e n c e
(1970) .

F i she r , D. A . , Contro l
S tu rc tu res f o r Programming Languages.
1970.

H e w i t t , C, PLANNER: a Language
f o r Proving Theorems, A r t i f i c i a l
I n t e l l i g e n c e Memo 137, Massachusetts
I n s t i t u t e of Technology (p r o j e c t MAC),
Ju ly 1967.

H e w i t t , C. PLANNER: A Language
f o r Man ipu la t i ng Models and Proving
Theorems in a Robot, Proceedings of the
I n t e r n a t i o n a l J o i n t Conference on
A r t i f i c i a l I n t e l l i g e n c e . Washington D.
C. May 1969.

Hew i t t , C. Teaching Procedures
In Humans and Robots. Conference on
S t r u c t u r a l Learn ing . A p r i l 5 , 1970.
P h i l a d e l p h i a , Pa.

H e w i t t , C. Desc r i p t i on and
Theore t i ca l Ana lys is (us ing Schemas) of
PLANNER: A Language f o r Proving
Theorems and Man ipu la t i ng Models In a
Robot. Phd. Feb. 1971.

H e w i t t , C. and Pat terson M.
Comparative Schematology. Record of
Pro jec t MAC Conference on Concurrent
Systems and P a r a l l e l Compuatlon. June
2-5 , 1970. A v a i l a b l e from ACM.

Kay, Alan C, React ive Engine,
Ph. D. thes i s U n i v e r s i t y of Utah, 1970.

McCarthy, J . ; Abrahams, Paul
W.; Edwards, Daniel J . ; Ha r t , Timothy
P.; and Lev in , Michael I , 1962. L isp
1.5 Programmer's Manual, M. I. T.
Press.

McCarthy, J. and Hayes, P.,

182 Session No. 5 Software Support

Some Ph i losoph ica l Problems form the
Standpoint o f A r t i f i c i a l I n t e l l i g e n c e .
S tan fo rd A. I, Memo 73.

Newe l l , A . , Shaw, J . C , and
Simon, H. A . , 1059. Report on a General
Prob lem-so lv ing Program, Proceedings of
the I n t e r n a t i o n a l Conference on
In fo rmat ion Process ing, P a r i s : UNESCO
House, pp. 256-26'*.

P e r i l s , A. J. The Synthesis of
A l g o r i t h m i c Systems. JACM. Jan. 19C7.

Winograd, T. Procedures as a
Representat ion f o r Data In a Computer
Program f o r Understanding Natural
Language. MAC TR-84. February 1971.

