
MASSEY PRODUCT AND ITS APPLICATIONS

HE WANG

Abstract. This is the note for my talk in Graduate Student Seminar NEU. W. Massey
defined Massey product as a higher order cohomology operation, which is a generalization
of cup product. A first application of Massey product is in Knot theory showing that
Borromean rings are linked with zero linking numbers. As another application, people
can use Massey product describe the differentials in spectral sequences. There are many
other important applications, such as obstruction to the formality of a space, which may
be omitted in this talk.

1. Massey Products

1.1. Cup Products review. Given a topological space X and a commutative ring R,
we can define the cohomology groups H∗(X;R). There is also a product structure on
H∗(X;R), called cup product

∪ : Hp(X;R) ∧Hq(X;R)→ Hp+q(X;R).

Example 1.1. Let T = S1 × S1 be the torus. Then H0(T ;R) = R, H1(T ;R) = R2

generated by {a, b}, H2(T ;R) = R generated by {γ}. Then, we have a ∪ b = γ = −b ∪ a
and the other cup products are zeros. In fact, the cohomology ring H∗(T ;R) of torus T
is the exterior algebra

∧
R[a, b]. In general, H∗(Tn;R) =

∧
R[a1, · · · , an].

Cup product is not easy to compute. However, many methods can be used to compute
cup product, definition combined simplicial homology, method in Hatcher’s book, inter-
section method combined Poincare duality, product formula, even (Leray-Serre) spectral
sequence etc..

Remark 1.2. Cup products are great because rings have more properties, and cup products
can be used to distinguish between spaces that might have the same cohomology groups.
In above example, the torus T = S1 × S1 can be distinguished from the the wedge sum
of two circles and one spheres S1 ∨ S1 ∨ S2, even though they have the same homology
groups, since all cup products in S1 ∨ S1 ∨ S2 are zeros.

1.2. Triple Massey Products. If x ∈ Ci(X;R), the symbol x will denote (−1)1+ix. We
first define the Massey triple product. Let x1, x2 and x3 be cocycle of degrees r1, r2 and
r3 with cohomology classes [x1] ∪ [x2] = 0 and [x2] ∪ [x3] = 0 . Thus, there are cochains
x12 of degree r1 + r2 − 1 and x23 of degree r2 + r3 − 1 such that dx12 = x̄1 ∪ x2 and
dx23 = x̄2 ∪ x3. Define the cochain ω of degree (r1 + r2 + r3 − 1) by

ω = x12 ∪ x3 + x1 ∪ x23,
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Then ω satisfies

d(ω) = (−1)r1+r2dx12 ∧ x3 + (−1)r1 x̄1 ∧ dx23
= (−1)r1+r2 x̄1 ∧ x2 ∧ x3 + (−1)r1+r2+1x̄1 ∧ x2 ∧ x3
= 0.

So, ω is in fact a cocycle.

Definition 1.3. A set of all the cohomology classes [ω] obtained by the above procedure
is defined to be the Massey triple product 〈[x1], [x2], [x3]〉 of [x1], [x2] and [x3]. Due to the
ambiguity of x12 and x23, the Massey triple product 〈[x1], [x2], [x3]〉 is an element of the
quotient group

Hr1+r2+r3−1(X)
/

([x1]H
r2+r3−1(X) +Hr1+r2−1(X)[x3]).

For example, we consider the Massey products of 1 dimensional classes u1, u2, u3 ∈
H1(X;R). Hence, 〈u1, u2, u3〉 ⊂ H2(X;R), and the indeterminacy In〈u1, u2, u3〉 of triple
Massey product 〈u1, u2, u3〉 is

In〈u1, u2, u3〉 = u1H
1(X) +H1(X)u3 ⊂ H2(X;R).

〈u1, u2, u3〉 can be seen as an element in H2(G)/In〈u1, u2, u3〉. We say 〈u1, u2, u3〉 is
vanishing if this element is 0. The Massey product 〈u1, u2, u3〉 is said to be decomposable
if it contains a cohomology class that can be written as a product αβ of two elements in
H>0(G); otherwise, it is called indecomposable.

Example 1.4. Let T = S1 × S1 be the torus. Then H0(T ;R) = R, H1(T ;R) = R2

generated by {a, b}, H2(T ;R) = R generated by {γ}. Since a ∪ a = 0, we can define
〈a, a, a〉. However, it is vanishing by the reason of definition. In fact, all Massey products
in T are vanishing.

1.3. Quadruple Massey Products. We can generalize the triple Massey products to
the 4th order Massey product. Let u, v, w and x be homogeneous elements from H∗(X;R)
or degree p, q, r and s respectively. Assume 〈u, v, w〉 and 〈v, w, x〉 exist and vanish simul-
taneously, then we can define the fourth order Massey product 〈u, v, w, x〉.

Let x1, x2, x3, x4 be the representative cocycles for u, v, w, x respectively. Because of
the existence of 〈u, v, w〉 and 〈v, w, x〉, we have cochains x12, x23, x34 such that

dx12 = x̄1 ∪ x2, dx23 = x̄2 ∪ x3, dx34 = x̄3 ∪ x4.

Since both 〈u, v, w〉 and 〈v, w, x〉 vanish, there exist cochains x13 and x24 such that

d(x13) = x1 ∪ x23 + x12 ∪ x3, d(x24) = x2 ∪ x34 + x23 ∪ x4.

One can show that the cochain

ω = x1 ∪ x24 + x12 ∪ x34 + x13 ∪ x4

is actually a cocycle of degree p+ q+ r+ s− 2. The quadruple Massey product 〈u, v, w, x〉
is defined to be the set of all cohomology class [ω] ∈ Hp+q+r+s−2(X;R).
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1.4. Higher Order Massey Products. Let’s use the following convention to describe
higher Massey product.

It is better to look at the data for triple Massey product (and quadruple Massey product)
in matrix 

1 x1 x12 ∗
1 x2 x23

1 x3
1

 ,


1 x1 x12 x13 ∗

1 x2 x23 x24
1 x3 x34

1 x4
1


First, we consider the Massey products of 1 dimensional classes u1, u2, · · · , uk ∈ H1(X;C).

Definition 1.5. Given u1, · · · , uk ∈ H1(G;C). We call a defining system for the k-fold
Massey product 〈u1, · · · , uk〉 an array of 1-cochains M = {mi,j ∈ C1(G;C) | 1 ≤ i < j ≤
k + 1, (i, j) 6= (1, k + 1)} such that

(1) mi,i+1 is a cocycle representing ui;

(2) δmi,j =
j−1∑

s=i+1
mi,s ∪ms,j .

The value of the product at M , denoted 〈u1, · · · , uk〉M is defined to be the cohomology
class in H2(G;C) represented by the cocycle

ω =

k∑
s=2

m1,s ∪ms,k+1.

The product 〈u1, · · · , uk〉 is defined only if such an M exists, and is taken to be the subset
of H2(G;C) consisting of all elements of the form 〈u1, · · · , uk〉M :

〈u1, · · · , uk〉 = {〈u1, · · · , uk〉M |M a defining system}.

The indeterminacy of Massey product 〈u1, · · · , uk〉 is

In〈u1, · · · , uk〉 = {a− b | a, b ∈ 〈u1, · · · , uk〉} ⊂ H2(G;C).

Remark 1.6. There is a unique matrix associated to each defining system M as follows.

1 m1,1 m1,2 m1,3 · · · m1,n−1
1 m2,2 m2,3 · · · m2,n−1 m2,n

1 m3,3 · · · m3,n−1 m3,n

1
. . .

...
...

mn−1,n−1 mn−1,n
1 mn,n

1


The index of the input is a little different from the triple and quadruple Massey products.

The reason is that people want to use this as a subgroup of matrix group.

Massey product has the following properties. ([7])
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Proposition 1.7. ([7]) Let u1, u2, · · · , uk ∈ H∗(X;C). Then,
1.(Linearity) If k ∈ R, then for all 1 ≤ i ≤ n,

k〈u1, · · · , un〉 ⊆ 〈u1, · · · , kui, · · · , un〉.
2.(Naturality) If f : X〉Y is a continuous map, then

f∗(〈u1, · · · , un〉) ⊆ 〈f∗(u1), · · · , f∗(un)〉.
3.(Associativity) For v ∈ H∗(X),

〈u1, · · · , un〉v ⊆ 〈u1, · · · , unv〉,
v〈u1, · · · , un〉 ⊆ (−1)deg v〈vu1, · · · , un〉

.

4.(Symmetry) If pj = deg uj and l =
∑

1≤r<s≤n
prps + (n − 1)

n∑
r=1

pr + (n − 1)(n − 2)/2,

then
〈un, · · · , u1〉 = (−1)l〈u1, · · · , un〉.

The last property in ([7]) maybe not precisely, we will see that in the examples of Bor-
romean ring. I change it by David Kraines’s paper ”Massey Higher Products”

2. Classical Application: Borromean rings

2.1. Some Knot Theory. Let L be an oriented tame ordered link in S3, with com-
ponents L1, · · · , Ln. Its complement, S3\

⋃
i Li, has the homotopy type of a connected

2-dimensional finite CW-complex. More precisely, let nS1 be the disjoint union of n cir-
cles S1, S2, · · ·Sn. A link is a embedding l : nS1 → S3. Denote Ti be Si × D2, we can
extend l to an embedding T1 ∪ · · · ∪ Tn → S3. Let X be the closure of S3 −

⋃
Ti, a

compact 3-manifold with boundary
⋃
Si × S1. In G = π1(X) ∼= π1(S

3\L), the images of
the zi × S1(zi ∈ Si) are called the meridians mi. The images of the Si are called the
longitudes li. The linking number lij = lk(Li, Lj) is the image of the i-th longitude in the
Z ∼= H1(X(Lj);Z). In particular, lii = 0 and lij = lji.

If L = β̂ is the closure of a pure braid β ∈ Pn, then G = π1(X) is a commutator-
relator group with presentation G = 〈x1, · · · , xn | β(xi)x

−1
i = 1, 1 ≤ i < n〉. Another

efficient way to compute the fundamental group of X is using Wirtinger presentation.
Select an orientation of L. Label the three arcs at a crossing with gi for distinct is. For
convenience, were going to label gi, gj , gk as below. Following the picture, define the

relations gj = gkgig
−1
k and gj = g−1k gigk.

+

gigj

gk

–

gk

gi gj

Figure 1. Wirtinger relation
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Example 2.1. The link group of the Hopf link. We use clockwise orientation. Then the

a b

Figure 2. Hopf link

link group of Hopf link is 〈a, b | a = bab−1〉.

The homology groups of X are computed by Alexander duality,

H̃i(S
3 \ L) ∼= H̃3−i−1(L),

that is H̃0(X) = 0, H1(X) = Rn, H2(X) = Rn−1, Hi≥3(X) = 0.
Let {e1, · · · , en} be the basis for H1(X) dual to the meridians of L. Choose arcs ci,j

in X connecting Li to Lj , and let γi,j ∈ H2(X) be their duals. Then {γ1,n, · · · , γn−1,n}
forms a basis for H2(X). Let li,j = lk(Li, Lj) be the linking numbers of L. Then the cup
product in H∗(X) is given by

ei ∪ ej = li,j · γi,j
Hence, the linking numbers determine and are determined by cup products.

There is an algorithm to compute the linking number of two knots from a link. Label
each crossing as positive or negative, according to the following rule. (Right(left) rule).

+ + – –

Figure 3. Linking numbers

Linking numbers=(n1+n2−n3−n4)/2, where where n1, n2, n3, n4 represent the number
of crossings of each of the four types.

2.2. Borromean rings.

Example 2.2. Let X be the complement in S3 of the 3-component Borromean link L,
see Figure 4.

The computation of triple Massey products of Borromean link L is given by Massey in
[5]. 〈α1, α2, α3〉 exists and non-vanishing. Next, we use an alternative method to compute
the Massey product.
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a

b

c

cbc−1aca−1

bab−1

Figure 4. Borromean link L

Figure 5. 3-component unlink

2.3. Fox calculus and computation of Massey products.

Definition 2.3. Let ZF be the group ring of F, with augmentation map ε : ZF→ Z given
by ε(ei) = 1. The Fox derivative is ∂i : ZF→ ZF, given by

(1)

 ∂i(1) = 0;
∂i(ej) = δij ;
∂i(uv) = ∂i(u)ε(v) + u∂i(v)

.

We use ∂
∂ei

to denote ∂i sometimes. By the formula (1), we can get ∂x−1

∂x = −x−1.

Lemma 2.4. We have some computation results:

(a) ∂i[u, v] = (1− uvu−1)∂i(u) + (u− [u, v])∂iv.
(b) εI(w) = 0, if w ∈ Fq, and |I| < q.
(c) εI(uv) = εI(u) + εI(v), if u, v ∈ Fp, and |I| = q.

Let G = 〈x1, · · · , xn | r1, · · · , rm〉 be a commutator-relators group, such that H2(G) is
free abelian with basis {θ1, · · · , θm}, and their dual {γ1 · · · , γm} form a basis for H2(G).
Suppose H1(G) have dual basis {e1, · · · , en}.



MASSEY PRODUCT AND ITS APPLICATIONS 7

Proposition 2.5. [6] Under above assumption, the cup-product map µ : H1(G)∪H1(G)→
H2(G) is given by

(2) ei ∪ ej = µ(ei ∧ ej) =

m∑
k=1

εi,j(rk)γk.

Let αi =
n∑

j=1
ai,jej . Let J = (j1, · · · , jk) be a fixed sequence, ∂J be the iterated Fox

derivative ∂j1 ◦ · · · ◦ ∂jk and εJ = ε ◦ ∂J , where ε : ZF → Z is the augmentation, for free
group F with generators x1, · · · , xn. Suppose ri satisfies

(3) εj1,··· ,jt−s(ri) = 0,

for all (j1, · · · , jt−s) satisfying

1 ≤ s < t ≤ k + 1, (s, t) 6= (1, k + 1), as,j1 · · · at−1,jt−s 6= 0.

Proposition 2.6. [2] Suppose ri ∈ [F, F ] is not a proper power, J = (j1, · · · , jk) is a
fixed sequence and above (3) holds. Then there exists a defining system M for the Massey
product 〈−α1,−α2, · · · ,−αk〉 and

(〈−α1, · · · ,−αk〉M , [{ri}]) =
∑
J

aJεJ(ri)

where aJ = a1j1a2j2 · · · akjk .
Example 2.7 (Example 2.2 continued). Go back to our example of Borromean link.
A presentation for the fundamental group G = π1(X) can be computed by Wirtinger
presentation (see [3] Change a, b, c to x3, x2, x1.)

G = 〈x1, x2, x3 | [x2x3x−12 , x1] = [x3, x1], [x3x1x
−1
3 , x2] = [x1, x2]〉.

Using Hall-Witt identities, we can simplify these relations. For the first relation r1, it is
the same as [[x1, x2], x3], and the relation r2 is the same as [[x2, x3], x1]. That is

G = 〈x1, x2, x3 | [x1, [x2, x−13 ]], [x2, [x3, x
−1
1 ]], 〉.

Using formula, we have (〈e1, e2, e3〉, θ1) = −ε(1,2,3)(r1) = 1 and (〈e1, e2, e3〉, θ2) =
−ε(1,2,3)(r2) = 0.Hence, (〈e1, e2, e3〉 = γ1 and using similar computation, we have (〈e2, e1, e3〉 =
−γ2.

(123) (231) (312)
(312) (132) (213)

r1 -1 1 0
r2 0 -1 1
r3 1 0 -1

Remark 2.8. From this example, we could know that 〈e1, e2, e3〉 may not equal 〈e2, e3, e1〉.
Maybe one exists but the other one even does not, in group

G = 〈x1, x2, x3 | [x1, [x2, x−13 ]], [x1, x3]〉
for example. However, we know that 〈e1, e2, e3〉 = 〈e3, e2, e1〉 by symmetry property. (See
the property.)
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2.4. Magnus expansion and Milnor invariants. The free group on n generators will
be denoted F (n), or just F when no ambiguity exists. For a groupG, {Γk(G)}k≥1(sometimes
denoted by ) is the lower central series of the group G, which is defined inductively by
the formulas:

Γ1G = G;
Γk+1(G) = [ΓkG,G], k ≥ 1.

The Lie bracket [x, y] is induced from the group commutator [x, y] = xyx−1y−1. Group G
is said to be nilpotent of class ≤ k if Γk+1(G) = {1}.

Magnus gives us a useful criterion for determining the place of an element in the lower
central series filtration of the free group. There is a well-defined ring homomorphism
δ : ZF (n) → P , called the Magnus Expansion, where P = Z[[X1, · · · , Xn]] is the power
series ring in n non-commuting variables X1, · · · , Xn. If F (n) = F (x1, · · · , xn) then

δ(xi) = 1 +Xi;
δ(x−1i ) = 1−Xi +X2

i −X3
i + · · · .

If y ∈ F, denote

δ(y) = 1 +
∑

µ(i1, · · · , is)Xi1 · · ·Xis .

By Magnus, y ∈ Fk if and only if all coefficient, µ(i1, · · · , is), vanish for s ≤ k − 1.
Now, we review the definition Milnor’s µ̄-invariants. For link L with complement X,

choose a path to each component Li from a common basepoint. Combining this with
meridianal circles linking each component once defines a map τ :

∨
n S

1 → X. This de-
termines a homomorphism τ∗ : F (n)→ π1(X). The path to the i-th component, together
with a null homologous pushoff of the i-th component into the link exterior, determines a
longitude li ∈ π1(X). According to Milnor, a collection of meridians determines a presen-
tation for the group

π1(X)/π1(X)k = 〈x1, · · · , xn | [xi, lki ], Fk〉
where Fk is the low central series of free group F (x1, · · · , xn), lki is a word in the xi’s
representing the image of the i-th longitude li in π1(X)/π1(X)k

Definition 2.9. The integer µ̄(i1, · · · , is, j), the Milnor µ̄ invariant of the based link
(L, τ), is the coefficient µ(i1, · · · , is) in δ(lkj ). This will be called a Milnor invariant of
length s+ 1.

Milnor shows that a link has vanishing Milnor invariants of length ≤ k if and only if
the longitudes lie in the k-th term of the lower central series of the fundamental group of
the link complement.

Now suppose the longitudes of L are contained in π1(X)k, then all Milnor invariants
of length ≤ k vanish, and Milnor invariants of length k + 1 is well defined. For Milnor
invariants of length ≥ k + 2, they are well defined modulo the GCD(all Milnor invariants
µ(J), where J is obtained from (i1, · · · , ik, j) by removing at least one index). This is
similar as the Massey products.

Example 2.10 (Example 2.2 continued).

G = 〈x1, x2, x3 | [x1, [x2, x−13 ]], [x3, [x1, x
−1
2 ]]〉.
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G/Gq = 〈x1, x2, x3 | [x1, [x2, x−13 ]], [x2, [x3, x
−1
1 ]], [x3, [x1, x

−1
2 ]], Fq]〉.

Hence, l3 = [x1, x
−1
2 ] = x1x

−1
2 x−11 x2, and

δ(l3) = δ(x1)δ(x
−1
2 )δ(x−11 )δ(x2) = 1−X1X2 +X2X1 + higher terms.

So, µ̄(1, 2, 3) = −1 and µ̄(2, 1, 3) = +1.

3. Another Application: Spectral Sequences for Twisted Cohomology

3.1. Twisted Cohomology. Let M be a smooth compact closed manifold of dimension
n, and Ω∗(M) the space of smooth differential forms over R on M . We have the de Rham
cochain complex (Ω∗(M), d), where d : Ωp(M)→ Ωp+1(M) is the exterior differentiation,
and its cohomology H∗(M) (the de Rham cohomology).

Let H be
∑[n−1

2
]

i=1 H2i+1, where H2i+1 is a closed (2i + 1)-form. Then one can define
a new operator D = d + H on Ω∗(M), where H is understood as an operator acting by
exterior multiplication (for any differential form w, H(w) = H ∧ w). It is easy to show
that

D2 = (d+H)2 = d2 + dH +Hd+H2 = 0.

However D is not homogeneous on the space of smooth differential forms Ω∗(M) =⊕
i≥0

Ωi(M).

Define Ω∗(M) a new (mod 2) grading

(4) Ω∗(M) = Ωo(M)⊕ Ωe(M),

where

(5)
Ωo(M) =

⊕
i≥0

i≡1 (mod 2)

Ωi(M) and Ωe(M) =
⊕
i≥0

i≡0 (mod 2)

Ωi(M).

Then D is homogenous for this new (mod 2) grading:

Ωe(M)
D−→ Ωo(M)

D−→ Ωe(M).

Define the twisted de Rham cohomology groups of M :

(6) Ho(M,H) =
ker[D : Ωo(M)→ Ωe(M)]

im[D : Ωe(M)→ Ωo(M)]

and

(7) He(M,H) =
ker[D : Ωe(M)→ Ωo(M)]

im[D : Ωo(M)→ Ωe(M)]
.
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3.2. Spectral Sequence. As a review, we only give the definition of spectral sequence
here, more details in my another note on spectral sequence.

Definition 3.1. A spectral sequence is a collection of differential bigraded R-modules
{Ep,q

r , dr}, where r = 1, 2, · · · and

Ep,q
r+1
∼= Hp,q(E∗,∗r ) ∼= ker(dr : Ep,q

r → E∗,∗r )/im(dr : E∗,∗r → Ep,q
r ).

In practice, we have the differential dr of bidegree (r, 1 − r) (for a spectral sequence of
cohomology type) or (−r, r − 1) (for a spectral sequence of homology type).

As in [1], there is a filtration on (Ω∗(M), D):

(8) Kp = Fp(Ω
∗(M)) =

⊕
i≥p

Ωi(M).

This filtration gives rise to a spectral sequence

(9) {Ep,q
r , dr}

converging to the twisted de Rham cohomology H∗(M,H) with

(10) Ep,q
2
∼=
{
Hp(M) q is even,
0 q is odd.

That is

(11)
⊕

p+q=1
Ep,q
∞ ∼= Ho(M,H) and

⊕
p+q=0

Ep,q
∞ ∼= He(M,H).

Theorem 3.2. [4] For H =
∑[n−1

2
]

i=1 H2i+1 and [xp]2t+3 ∈ Ep,q
2t+3 (t ≥ 1), the differential of

the spectral sequence (9), d2t+3 : Ep,q
2t+3 → Ep+2t+3,q−2t−2

2t+3 is given by

d2t+3[xp]2t+3 = (−1)t[〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3,

and [〈H3, · · · , H3︸ ︷︷ ︸
t+1

, xp〉A]2t+3 is independent of the choice of the defining system.

Atiyah and Segal in [1] gave the differential expression in terms of Massey products
when H = H3, without a detailed proof. The above theorem generalizes the result to a
more general case. W.Li, X.Liu and myself give an explicitly proof for the general result
in paper [4] (arXiv:0911.1417).

4. Other Applications

There are many applications of Massey product in many fields of mathematics. I copy
some applications from a talk note of Laurence R. Taylor. See which is your staff.

1. Uehara and Massey used the triple product to settle the signs in the Jacobi identity
for Whitehead products. (1956).

2. Massey used the triple product to elucidate some of the cup product structure of
sphere bundles. (1958).
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3. J.May (1969) described a generalization called Matrix Massey products, which can
be used to describe the differentials of the EilenbergMoore spectral sequence.

4. Some Massey triple products of Pontryagin classes of normal bundles to foliations
vanish. Shulman (1974).

5. Massey triple products vanish in a compact Kahler manifold. Deligne, Griffiths,
Morgan and Sullivan (1975).

6. Symplectic manifolds can have non-trivial rational Massey triple products. Babenko
and Tamanov, and Rudyak and Tralle (2000).
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