
Learning to Program Using Python

Cody Jackson

2

Copyright © 2009-2011 Cody Jackson. This work is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite
900, Mountain View, California, 94041, USA.

The source code within this text is licensed under the GNU General
Public License (GPL). The following license information covers all code
contained herein, except those that explicitly state otherwise:

Copyright © 2006-2011 Cody Jackson. This program is
free software: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as pub-
lished by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Pub-
lic License along with this program. If not, see http://www.gnu.org/licenses/.

More information about this book, as well as source code files and to
contact the author, can be found online at http://python-ebook.blogspot.com.

For those curious, this book was initially drafted on a Mac using
Scrivener (http://www.literatureandlatte.com/). It was imported to
LYX (http://www.lyx.org) for editing, typesetting, page layout, and
other “book writing” tasks. LATEX (http://www.latex-project.org/)
was used to create the PDF and HTML versions of this book.

Contents

I The Core Language 8

1 Introduction 9
1.1 Why Python? . 10
1.2 Why Another Tutorial? 11
1.3 Getting Python . 12
1.4 Conventions Used in this Book 13

2 How is Python Different? 14
2.1 Python Concepts . 14

2.1.1 Dynamic vs Static Types 14
2.1.2 Interpreted vs. Compiled 15
2.1.3 Prototyping . 16
2.1.4 Procedural vs. Object-Oriented Programming . . 17

3 Comparison of Programming Languages 18
3.1 C . 19
3.2 C++ . 20
3.3 Java . 21
3.4 C# . 23
3.5 Python . 27

4 The Python Interpreter 29
4.1 Launching the Python interpreter 29

4.1.1 Windows . 30
4.1.2 Mac . 30

4.2 Python Versions . 31

3

CONTENTS 4

4.3 Using the Python Command Prompt 32
4.4 Commenting Python . 33
4.5 Launching Python programs 33
4.6 Integrated Development Environments 34

5 Types and Operators 36
5.1 Python Syntax . 36

5.1.1 Indentation . 36
5.1.2 Multiple Line Spanning 37

5.2 Python Object Types 38
5.3 Python Numbers . 39

6 Strings 42
6.1 Basic string operations 43
6.2 Indexing and slicing strings 45
6.3 String Formatting . 46
6.4 Combining and Separating Strings 48
6.5 Regular Expressions . 50

7 Lists 51
7.1 List usage . 52
7.2 Adding List Elements 53
7.3 Mutability . 56
7.4 Methods . 56

8 Dictionaries 58
8.1 Making a dictionary . 59
8.2 Basic operations . 60
8.3 Dictionary details . 62
8.4 Operation . 62

9 Tuples 63
9.1 Why Use Tuples? . 64
9.2 Sequence Unpacking . 65
9.3 Methods . 66

CONTENTS 5

10 Files 68
10.1 File Operations . 69
10.2 Files and Streams . 69
10.3 Creating a File . 70
10.4 Reading From a File . 71
10.5 Iterating Through Files 74
10.6 Seeking . 75
10.7 Serialization . 76

11 Statements 78
11.1 Assignment . 79
11.2 Expressions/Calls . 80
11.3 Printing . 81
11.4 if Tests . 82
11.5 while Loops . 84
11.6 for Loops . 85
11.7 pass Statement . 87
11.8 break and continue Statements 88
11.9 try, except, finally and raise Statements 88
11.10import and from Statements 88
11.11def and return Statements 88
11.12Class Statements . 89

12 Documenting Your Code 90

13 Making a Program 97
13.1 Making Python Do Something 98
13.2 Scope . 101
13.3 Default Arguments . 102

14 Exceptions 104
14.1 Exception Class Hierarchy 107
14.2 User-Defined Exceptions 109

15 Object Oriented Programming 111
15.1 Learning Python Classes 111
15.2 How Are Classes Better? 112
15.3 Improving Your Class Standing 112

CONTENTS 6

15.4 So What Does a Class Look Like? 114
15.5 “New-style” classes . 116
15.6 A Note About Style . 117

16 More OOP 118
16.1 Inheritance . 118
16.2 Operator Overloads . 120
16.3 Class Methods . 122
16.4 Have you seen my class? 123

17 Databases 125
17.1 How to Use a Database 126
17.2 Working With a Database 126
17.3 Using SQL to Query a Database 127
17.4 Python and SQLite . 129
17.5 Creating an SQLite DB 129
17.6 Pulling Data from a DB 131
17.7 SQLite Database Files 134

18 Distributing Your Program 136

19 Python 3 138

II Graphical User Interfaces 140

20 Overview of Graphical User Interfaces 141
20.1 Introduction . 141
20.2 Popular GUI Frameworks 142
20.3 Before You Start . 144

21 A Simple Graphical Dice Roller 146

22 What Can wxPython Do? 152

A String Methods 154

B List Methods 160

CONTENTS 7

C Dictionary operations 162

D Operators 166

E Sample programs 168
E.1 Dice rolling simulator 168
E.2 Temperature conversion 172
E.3 Game character attribute generator 173
E.4 Text-based character creation 176

F GNU General Public License 197

Part I

The Core Language

8

Chapter 1

Introduction

I originally wanted to learn Python because I wanted to make a com-
puter game. I had taken several programming classes in college (C,
C++, and Java) but nothing really serious. I’m not a Computer Sci-
ence major and I don’t program on a professional level.

I didn’t really like the low-level work involved with C/C++. Things
like pointers, memory management, and other concepts were difficult
for me to grasp, much less effectively use. Java, as my first pro-
gramming class in school, didn’t make any sense. I had never used
an object-oriented language before and object-oriented programming
(OOP) concepts gave me fits. It probably didn’t help that my Java
class wasn’t actually real Java; it was actually Microsoft’s “custom”
version: J++. So not only was I learning a language that had little
practical use (J++ added and cut many features found in real Java),
but the programs didn’t work correctly. Ultimately the class was can-
celed near the end of the semester and everyone received full credit.

These problems, and issues learning other programming languages,
left a bad taste in my mouth for programming. I never thought I
learned a language well enough to feel comfortable using it, much less
actually enjoy programming. But then I heard about Python on a
computer forum, and noticed several other mentions of the language
at other sites around the Internet. People were talking about how
great the language was for personal projects and how versatile it is. I
decided to give programming one more try and see if Python was the

9

CHAPTER 1. INTRODUCTION 10

language for me.
To give me more incentive to learn the language, I decided to recre-

ate a role playing game from my childhood as a computer game. Not
only would I have a reason to learn the language but, hopefully, I would
have something useful that I could give to others for their enjoyment.

1.1 Why Python?
Python is regarded as being a great hobbyist language, yet it is also an
extremely powerful language. It has bindings for C/C++ and Java so
it can be used to tie large projects together or for rapid prototyping.
It has a built-in GUI (graphical user interface) library via Tkinter,
which lets the programmer make simple graphical interfaces with little
effort. However, other, more powerful and complete GUI builders are
available, such as Qt and GTK+. IronPython, a Python version for
Windows using the .NET framework, is also available for those using
Microsoft’s Visual Studio products. Python can also be used in a real-
time interpreter for testing code snippets before adding them into a
normal "executable".

Python is classified as a scripting language. Generally speaking,
this just means that it’s not compiled to create the machine-readable
code and that the code is “tied-into” another program as a control
routine. Compiled languages, such as C++, require the programmer
to run the source code through a compiler before the software is can be
used by a computer. Depending on the program’s size, the compilation
process can take minutes to hours.

Using Python as a control routine means Python can act as a
“glue” between different programs. For example, Python is often used
as the scripting language for video games; while the heavy-duty work
is performed by pre-compiled modules, Python can act in a call/re-
sponse fashion, such as taking controller input and passing it to the
appropriate module.

Python is also considered a high-level language, meaning it takes
care of a lot of the grunt work involved in programming. For example,
Python has a built-in garbage collector so you, as a programmer, don’t
really need to worry about memory management and memory leaks,
a common occurrence when using older languages such as C.

CHAPTER 1. INTRODUCTION 11

The main emphasis of Python is readable code and enhancing pro-
grammer productivity. This is accomplished by enforcing a strict way
of structuring the code to ensure the reader can follow the logic flow
and by having an “everything’s included” mentality; the programmer
doesn’t have to worry about including a lot of different libraries or
other source code to make his program work.

One of the main arguments against Python is the use of whitespace.
As shown in Chapter 3, many other languages require the programmer
to use brackets, typically curly braces, i.e. “{}”, to identify different
blocks of code. With Python, these code blocks are identified by dif-
ferent amounts of indentation.

People who have spent a lot of time with “traditional” languages feel
the lack of brackets is a bad thing, while others prefer the white space.
Ultimately, it comes down to personal preference. I happen to like
the lack of brackets because it’s one less thing I have to troubleshoot
when there is a coding problem. Imagine that one missing bracket in
several dozen to hundreds lines of code is the reason your program
won’t work. Now imagine having to go through your code line by line
to find the missing bracket. (Yes, programming environments can help
but it’s still one extra thing to consider).

1.2 Why Another Tutorial?
Even though there are several great tutorials at the Python web site
(http://www.python.org), in addition to many books, my emphasis
will be on the practical features of the language, i.e. I won’t go into
the history of the language or the esoteric ways it can be used. Though
it will help if you have programmed before, or at least can understand
programming logic and program flow, I will try to make sure that
things start out slow so you don’t get confused.

The main purpose of this book is to teach people how to program;
Python just happens to be the language I have chosen to use. As
mentioned above, it is a very friendly language which lets you learn
how to program without getting in your way. Most people, when they
decide to learn programming, want to jump into C, C++, or Java.
However, these languages have little “gotchas” that can make learning
difficult and dissuade people from continuing with programming. My

CHAPTER 1. INTRODUCTION 12

goal is to present programming in a fun, friendly manner so you will
have the desire to learn more.

1.3 Getting Python
As of this revision, Python 3.x has been out for several years. Most
of my experience is with Python 2.4 and 2.5, though much of my
knowledge was gained from reading books written for version 2.2. As
you can see, it doesn’t necessarily mean your knowledge is obsolete
when a new version comes out. Usually the newer versions simply add
new features, often features that a beginner won’t have a need for.

Python 3.x breaks compatibility with programs written in 2.x ver-
sions. However, much of the knowledge you gain from learning a 2.x
version will still carry over. It just means you have to be aware of the
changes to the language when you start using version 3.0. Plus, the
install base of 2.x is quite large and won’t be going away for quite some
time. Due to the fact that most Linux distributions (and Mac OS X)
still have older Python versions installed by default (some as old as
v2.4), many of the code examples in this book are written for Python
2.x. Special note is made of significant changes between 2.x and 3.x
in the chapter about 19, but learning either version won’t harm you.

You can download Python from the Python web site (for Windows)
or it may already be installed on your system if you’re using a Mac,
Linux, or *BSD. However, the Unix-like operating systems, including
OS X, may not have the latest version so you may wish to upgrade,
at least to version 2.6. Version 2.6 is a modification of 2.5 that allows
use of both 2.x code and certain 3.0 functions. Essentially it lets you
code in “legacy” style while still being able to use the latest features as
desired, and testing which legacy features will be broken when moving
to 3.0.

For those interested in using Python via a USB thumbdrive, you
may be interested in Portable Python. This is a self-contained Python
environment that you can either run from the thumbdrive or install
to your computer. This is useful for people who can’t or don’t want
to install Python but would still like to use it.

I’ll assume you can figure out how to get the interactive interpreter
running; if you need help, read the help pages on the web site. Gener-

CHAPTER 1. INTRODUCTION 13

ally speaking though, you open up a command prompt (or terminal)
and type “python” at the prompt. This will open a Python session,
allowing you to work with the Python interpreter in an interactive
manner. In Windows, typically you just go to the Python file in All
Programs and click it.

1.4 Conventions Used in this Book
The latest version of Python is 3.2 while the most current “legacy”
version is 2.7. I will use the term 3.x to signify anything in the Python
3 family and 2.x for anything in the Python 2 family, unless explicitly
stated.

The term “*nix” is used to refer to any Unix-like language, in-
cluding Linux and the various flavors of BSD (FreeBSD, OpenBSD,
NetBSD). Though Mac OS X is built upon FreeBSD, it is different
enough to not be lumped in the *nix label.

Due to the word-wrap formatting for this book, some lines are
automatically indented when they are really on the same line. It may
make some of the examples confusing, especially because Python uses
“white space” like tabs and spaces as significant areas. Thus, a word-
wrapped line may appear to be an indented line when it really isn’t.
Hopefully you will be able to figure out if a line is intentionally tabbed
over or simply wrapped.

Chapter 2

How is Python Different?

So what is Python? Chances you are asking yourself this. You may
have found this book because you want to learn to program but don’t
know anything about programming languages. Or you may have heard
of programming languages like C, C++, C#, or Java and want to
know what Python is and how it compares to “big name” languages.
Hopefully I can explain it for you.

2.1 Python Concepts
If your not interested in the the hows and whys of Python, feel free to
skip to the next chapter. In this chapter I will try to explain to the
reader why I think Python is one of the best languages available and
why it’s a great one to start programming with.

2.1.1 Dynamic vs Static Types
Python is a dynamic-typed language. Many other languages are static
typed, such as C/C++ and Java. A static typed language requires
the programmer to explicitly tell the computer what type of “thing”
each data value is. For example, in C if you had a variable that was to
contain the price of something, you would have to declare the variable
as a “float” type. This tells the compiler that the only data that can be

14

CHAPTER 2. HOW IS PYTHON DIFFERENT? 15

used for that variable must be a floating point number, i.e. a number
with a decimal point. If any other data value was assigned to that
variable, the compiler would give an error when trying to compile the
program.

Python, however, doesn’t require this. You simply give your vari-
ables names and assign values to them. The interpreter takes care of
keeping track of what kinds of objects your program is using. This
also means that you can change the size of the values as you develop
the program. Say you have another decimal number (a.k.a. a floating
point number) you need in your program. With a static typed lan-
guage, you have to decide the memory size the variable can take when
you first initialize that variable. A double is a floating point value
that can handle a much larger number than a normal float (the actual
memory sizes depend on the operating environment). If you declare
a variable to be a float but later on assign a value that is too big to
it, your program will fail; you will have to go back and change that
variable to be a double.

With Python, it doesn’t matter. You simply give it whatever num-
ber you want and Python will take care of manipulating it as needed.
It even works for derived values. For example, say you are dividing
two numbers. One is a floating point number and one is an integer.
Python realizes that it’s more accurate to keep track of decimals so it
automatically calculates the result as a floating point number. Here’s
what it would look like in the Python interpreter.

>>>6.0 / 2
3 .0
>>>6 / 2 .0
3 .0

As you can see, it doesn’t matter which value is on top or bottom;
Python “sees” that a float is being used and gives the output as a
decimal value.

2.1.2 Interpreted vs. Compiled
Many “traditional” languages are compiled, meaning the source code
the developer writes is converted into machine language by the com-
piler. Compiled languages are usually used for low-level programming

CHAPTER 2. HOW IS PYTHON DIFFERENT? 16

(such as device drivers and other hardware interaction) and faster pro-
cessing, e.g. video games.

Because the language is pre-converted to machine code, it can be
processed by the computer much quicker because the compiler has
already checked the code for errors and other issues that can cause
the program to fail. The compiler won’t catch all errors but it does
help. The caveat to using a compiler is that compiling can be a time
consuming task; the actual compiling time can take several minutes to
hours to complete depending on the program. If errors are found, the
developer has to find and fix them then rerun the compiler; this cycle
continues until the program works correctly.

Python is considered an interpreted language. It doesn’t have a
compiler; the interpreter processes the code line by line and creates a
bytecode. Bytecode is an in-between “language” that isn’t quite ma-
chine code but it isn’t the source code. Because of this in-between
state, bytecode is more transferable between operating systems than
machine code; this helps Python be cross-platform. Java is another
language that uses bytecodes.

However, because Python uses an interpreter rather than compiler,
the code processing can be slower. The bytecode still has to be “deci-
phered” for use by the processor, which takes additional time. But the
benefit to this is that the programmer can immediately see the results
of his code. He doesn’t have to wait for the compiler to decide if there
is a syntax error somewhere that causes the program to crash.

2.1.3 Prototyping
Because of interpretation, Python and similar languages are used for
rapid application development and program prototyping. For example,
a simple program can be created in just a few hours and shown to a
customer in the same visit.

Programmers can repeatedly modify the program and see the re-
sults quickly. This allows them to try different ideas and see which one
is best without investing a lot of time on dead-ends. This also applies
to creating graphical user interfaces (GUIs). Simple “sketches” can
be laid out in minutes because Python not only has several different
GUI libraries available but also includes a simple library (Tkinter) by
default.

CHAPTER 2. HOW IS PYTHON DIFFERENT? 17

Another benefit of not having a compiler is that errors are im-
mediately generated by the Python interpreter. Depending on the
developing environment, it will automatically read through your code
as you develop it and notify you of syntax errors. Logic errors won’t
be pointed out but a simple mouse click will launch the program and
show you final product. If something isn’t right, you can simply make
a change and click the launch button again.

2.1.4 Procedural vs. Object-Oriented Programming
Python is somewhat unique in that you have two choices when devel-
oping your programs: procedural programming or object-oriented. As
a matter of fact, you can mix the two in the same program.

Briefly, procedural programming is a step-by-step process of devel-
oping the program in a somewhat linear fashion. Functions (sometimes
called subroutines) are called by the program at times to perform some
processing, then control is returned back to the main program. C and
BASIC are procedural languages.

Object-oriented programming (OOP) is just that: programming
with objects. Objects are created by distinct units of programming
logic; variables and methods (an OOP term for functions) are com-
bined into objects that do a particular thing. For example, you could
model a robot and each body part would be a separate object, capable
of doing different things but still part of the overall object. OOP is
also heavily used in GUI development.

Personally, I feel procedural programming is easier to learn, es-
pecially at first. The thought process is mostly straightforward and
essentially linear. I never understood OOP until I started learning
Python; it can be a difficult thing to wrap your head around, espe-
cially when you are still figuring out how to get your program to work
in the first place.

Procedural programming and OOP will be discussed in more depth
later in the book. Each will get their own chapters and hopefully you
will see how they build upon familiar concepts.

Chapter 3

Comparison of
Programming Languages

For the new programmer, some of the terms in this book will probably
be unfamiliar. You should have a better idea of them by the time you
finish reading this book. However, you may also be unfamiliar with the
various programming languages that exist. This chapter will display
some of the more popular languages currently used by programmers.
These programs are designed to show how each language can be used
to create the same output. You’ll notice that the Python program is
significantly simpler than the others.

The following code examples all display the song, “99 Bottles of
Beer on the Wall” (they have been reformatted to fit the pages). You
can find more at the official 99 Bottles website: http://99-bottles-
of-beer.net. I can’t vouch that each of these programs is valid and
will actually run correctly, but at least you get an idea of how each
one looks. You should also realize that, generally speaking, white
space is not significant to a programming language (Python being one
of the few exceptions). That means that all of the programs below
could be written one one line, put into one huge column, or any other
combination. This is why some people hate Python because it forces
them to have structured, readable code.

18

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES19

3.1 C

/∗
∗ 99 b o t t l e s o f beer in ans i c
∗
∗ by B i l l Wein : bearhear t@bearnet . com
∗
∗/
#define MAXBEER (99)
void chug (int beer s) ;

main ()
{
register beer s ;
for (bee r s = MAXBEER; beer s ; chug (beers−−))

puts ("") ;
puts ("\nTime to buy more beer ! \ n") ;
e x i t (0) ;
}

void chug (register beer s)
{
char howmany [8] , ∗ s ;
s = beer s != 1 ? " s " : "" ;
p r i n t f ("%d bo t t l e%s o f beer on the wall , \ n" , beers

, s) ;
p r i n t f ("%d bo t t l e%s o f beeeee r . . . ,\n" , beers ,

s) ;
p r i n t f ("Take one down , pass i t around , \ n") ;

i f (−−beer s) s p r i n t f (howmany , "%d" , bee r s) ; else
s t r cpy (howmany , "No more") ;

s = beer s != 1 ? " s " : "" ;
p r i n t f ("%s bo t t l e%s o f beer on the wa l l . \ n" ,

howmany , s) ;
}

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES20

3.2 C++

//C++ ver s i on o f 99 Bo t t l e s o f Beer , o b j e c t
o r i en t ed paradigm

//programmer : Tim Robinson t imtroyr@ionet .NET

#include <fstream . h>

enum Bott l e { BeerBott le } ;

class She l f {
unsigned Bot t l e sL e f t ;

public :
Sh e l f (unsigned bot t l e sbought)

: Bo t t l e sL e f t (bot t l e sbought)
{}

void TakeOneDown()
{
i f (! Bo t t l e sL e f t)

throw BeerBott le ;
Bot t l e sLe f t −−;
}

operator int () { return Bot t l e sL e f t ; }
} ;

int main (int , char ∗∗)
{
She l f Beer (99) ;
try {

for (; ;) {
char ∗ p l u r a l = (int) Beer !=1 ? " s " : "

" ;
cout << (int) Beer << " bo t t l e " <<

p lu r a l
<< " o f beer on the wall , " << endl

;
cout << (int) Beer << " bo t t l e " <<

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES21

p l u r a l
<< " o f beer , " << endl ;

Beer . TakeOneDown() ;
cout << "Take one down , pass i t around

, " << endl ;
p l u r a l = (int) Beer !=1 ? " s " : "" ;
cout << (int) Beer << " bo t t l e " <<

p lu r a l
<< " o f beer on the wa l l . " << endl

;
}

}
catch (Bot t l e) {

cout << "Go to the s t o r e and buy some more
, " << endl ;

cout << "99 b o t t l e s o f beer on the wa l l . "
<< endl ;

}
return 0 ;
}

3.3 Java

/∗∗
∗ Java 5.0 ve r s i on o f the famous "99 b o t t l e s o f

beer on the wa l l " .
∗ Note the use o f s p e c i f i c Java 5.0 f e a t u r e s and

the s t r i c t l y co r r e c t output .
∗
∗ @author k v o l s
∗/
import java . u t i l . ∗ ;
class Verse {

private f ina l int count ;
Verse (int ve r s e) {
count= 100−ve r s e ;
}
public St r ing toS t r i ng () {

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES22

St r ing c=
"{0 , cho ice ,0#no more b o t t l e s |1#1

bo t t l e |1<{0} b o t t l e s } o f beer " ;
return java . t ex t . MessageFormat . format (

c . r ep l a c e ("n" , "N")+" on the wall , "+c+
" . \ n"+

"{0 , cho ice ,0#Go to the s t o r e and buy
some more"+

"|0<Take one down and pass i t around } ,
"+c . r ep l a c e ("{0" , "{1")+

" on the wal l . \ n" , count , (count+99)
%100) ;

}
}
class Song implements I t e r a t o r <Verse> {

private int ve r s e =1;
public boolean hasNext () {

return ve r s e <= 100 ;
}
public Verse next () {

i f (! hasNext ())
throw new NoSuchElementException ("End

o f song ! ") ;
return new Verse (ve r s e++) ;

}
public void remove () {

throw new UnsupportedOperationException
("Cannot remove v e r s e s ! ") ;

}
}

public class Beer {
public stat ic void main (St r ing [] a rgs) {

I t e r ab l e <Verse> song= new I t e r ab l e <
Verse >() {
public I t e r a t o r <Verse> i t e r a t o r ()

{
return new Song () ;

}

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES23

} ;

// A l l t h i s work to u t i l i z e t h i s
f e a t u r e :

// "For each ver se in the song . . . "
for (Verse ve r s e : song) {

System . out . p r i n t l n (ve r s e) ;
}

}
}

3.4 C#

/// Implementation o f Ninety−Nine Bo t t l e s o f Beer
Song in C#.

/// What ’ s neat i s t h a t .NET makes the Binge c l a s s
a f u l l −f l e d g e d component t ha t may be c a l l e d

from any other .NET component .
///
/// Paul M. Parks
/// h t t p ://www. parkscomputing . com/
/// February 8 , 2002
///

using System ;

namespace NinetyNineBott les
{

/// <summary>
/// References the method o f output .
/// </summary>
public de l e ga t e void Writer (s t r i n g format ,

params ob j e c t [] arg) ;

/// <summary>
/// References the c o r r e c t i v e ac t i on to take

when we run out .
/// </summary>

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES24

public de l e ga t e int MakeRun() ;

/// <summary>
/// The ac t o f consuming a l l t hose beverages .
/// </summary>
public class Binge
{

/// <summary>
/// What we ’ l l be d r ink ing .
/// </summary>
private s t r i n g beverage ;

/// <summary>
/// The s t a r t i n g count .
/// </summary>
private int count = 0 ;

/// <summary>
/// The manner in which the l y r i c s are

output .
/// </summary>
private Writer Sing ;

/// <summary>
/// What to do when i t ’ s a l l gone .
/// </summary>
private MakeRun RiskDUI ;

public event MakeRun OutOfBottles ;

/// <summary>
/// I n i t i a l i z e s the b inge .
/// </summary>
/// <param name="count">How many we ’ re

consuming .
/// </param>
/// <param name="disasterWaitingToHappen">
/// Our i n s t r u c t i on s , shou ld we succeed .

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES25

/// </param>
/// <param name="wr i t e r">How our dr ink ing

song w i l l be heard .</param>
/// <param name="beverage">What to dr ink

during t h i s b inge .</param>
public Binge (s t r i n g beverage , int count ,

Writer wr i t e r)
{

this . beverage = beverage ;
this . count = count ;
this . Sing = wr i t e r ;

}

/// <summary>
/// Let ’ s g e t s t a r t e d .
/// </summary>
public void Star t ()
{

while (count > 0)
{

Sing (
@"

{0} bo t t l e {1} o f {2} on the wal l ,
{0} bo t t l e {1} o f {2} .
Take one down , pass i t around , " ,

count , (count == 1)
? "" : " s " , beverage) ;

count−−;

i f (count > 0)
{

Sing ("{0} bo t t l e {1} o f {2}
on the wal l . " ,
count , (count == 1)

? "" : " s " , beverage) ;
}
else

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES26

{
Sing ("No more b o t t l e s o f

{0} on the wal l . " ,
beverage , nu l l) ;

}

}

Sing (
@"

No more b o t t l e s o f {0} on the wal l ,
No more b o t t l e s o f {0} . " , beverage , nu l l) ;

i f (this . OutOfBottles != nu l l)
{

count = this . OutOfBottles () ;
Sing ("{0} b o t t l e s o f {1} on

the wal l . " , count , beverage) ;
}
else
{

Sing (" F i r s t we weep , then we s l e ep
. ") ;

Sing ("No more b o t t l e s o f {0} on
the wa l l . " ,
beverage , nu l l) ;

}
}

}

/// <summary>
/// The song remains the same .
/// </summary>
class SingTheSong
{

/// <summary>
/// Any other number would be s t range .
/// </summary>

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES27

const int bott leCount = 99 ;

/// <summary>
/// The entry po in t . Se t s the parameters

o f the Binge and s t a r t s i t .
/// </summary>
/// <param name="args">unused</param>
stat ic void Main(s t r i n g [] a rgs)
{

Binge binge =
new Binge (" beer " , bottleCount ,
new Writer (Console . WriteLine)) ;

b inge . OutOfBottles += new MakeRun(
SevenEleven) ;

b inge . S ta r t () ;
}

/// <summary>
/// There ’ s bound to be one nearby .
/// </summary>
/// <returns>Whatever would f i t in the

trunk .</ returns>
stat ic int SevenEleven ()
{

Console . WriteLine ("Go to the s tore ,
get some more . . . ") ;

return bott leCount ;
}

}
}

3.5 Python

#!/ usr / b in /env python
−∗− coding : i so −8859−1 −∗−
"""
99 Bo t t l e s o f Beer (by Gerold Penz)
Python can be simple , too :−)

CHAPTER 3. COMPARISON OF PROGRAMMING LANGUAGES28

"""
for quant in range (99 , 0 , −1) :

i f quant > 1 :
print (quant , " b o t t l e s o f beer on the wall

, " , quant , " b o t t l e s o f beer . ")
i f quant > 2 :

s u f f i x = s t r (quant − 1) + " bo t t l e s o f
beer on the wa l l . "

else :
s u f f i x = "1 bo t t l e o f beer on the wa l l . "

e l i f quant == 1 :
print "1 bo t t l e o f beer on the wal l , 1

b o t t l e o f beer . "
s u f f i x = "no more beer on the wa l l ! "

print "Take one down , pass i t around , " , s u f f i x
print "−−"

Chapter 4

The Python Interpreter

4.1 Launching the Python interpreter
Python can be programmed via the interactive command line (aka the
interpreter or IDE) but anything you code won’t be saved. Once you
close the session it all goes away. To save your program, it’s easiest to
just type it in a text file and save it (be sure to use the .py extension,
i.e. foo.py)

To use the interpreter, type “python” at the command prompt (*nix
and Mac) or launch the Python IDE (Windows and Mac). If you’re
using Windows and installed the Python .msi file, you should be able
to also type Python on the command prompt. The main difference
between the IDE and the command prompt is the command prompt
is part of the operating system while the IDE is part of Python. The
command prompt can be used for other tasks besides messing with
Python; the IDE can only be used for Python. Use whichever you’re
more comfortable with.

If you’re using Linux, BSD, or another *nix operating system, I’ll
assume you technologically-inclined enough to know about the ter-
minal; you probably even know how to get Python up and running
already. For those who aren’t used to opening Terminal or Command
Prompt (same thing, different name on different operating systems),
here’s how to do it.

29

CHAPTER 4. THE PYTHON INTERPRETER 30

4.1.1 Windows
1. Open the Start menu.

2. Click on “Run. . . ”

3. Type “cmd” in the text box (without the quotes) and hit Return.

4. You should now have a black window with white text. This is
the command prompt.

5. If you type “python” at the prompt, you should be dropped into
the Python interpreter prompt.

4.1.2 Mac
1. Open Applications

2. Open Utilities

3. Scroll down and open Terminal

4. You should have a similar window as Windows users above.

5. Type “python” at the prompt and you will be in the Python
interpreter.

Here is what your terminal should look like now:

Listing 4.1: Example Python interpreter
Python 2 . 5 . 1 (r251 :54863 , Jan 17 2008 , 1 9 : 3 5 : 1 7)
[GCC 4 . 0 . 1 (Apple Inc . bu i ld 5465)] on darwin
Type " help " , " copyr ight " , " c r e d i t s " or " l i c e n s e "

for more in fo rmat ion .
>>>

You may notice that the Python version used in the above examples
is 2.5.1; the current version is 3.2. Don’t panic. The vast majority of
what you will learn will work regardless of what version you’re using.
My favorite Python book, Python How to Program, is based on version
2.2 but I still use it nearly every day as a reference while coding.

CHAPTER 4. THE PYTHON INTERPRETER 31

For the most part, you won’t even notice what version is in use,
unless you are using a library, function, or method for a specific ver-
sion. Then, you simply add a checker to your code to identify what
version the user has and notify him to upgrade or modify your code
so it is backwards-compatible.

(A later chapter in this book will cover all the major differences
you need to be aware of when using Python 3.x. Right now you’re just
learning the basics that you will use regardless of which version of the
language you end up using.)

The >‌>‌> in Listing 4.1 is the Python command prompt; your code
is typed here and the result is printed on the following line, without
a prompt. For example, Listing 4.2 shows a simple print statement
from Python 2.5:

Listing 4.2: Python command prompt
>>>print "We are the kn ights who say , ’ Ni ’ . "
We are the kn ights who say , ’ Ni ’ .

4.2 Python Versions
As an aside, Python 3.x has changed print from a simple statement,
like Listing 4.2, into a bona-fide function (Listing 4.3). Since we
haven’t talked about functions yet, all you need to know is that Python
3.x simply requires you to use the print statement in a slightly different
way: parenthesis need to surround the quoted words. Just so you’re
aware.

Listing 4.3: Print function (Python 3.x)
>>>print ("We are the kn ights who say , ’ Ni ’ . ")
We are the kn ights who say , ’ Ni ’ .

The vast majority of the code in this book will be written for
Python 2.6 or earlier, since those versions are installed by default on
many *nix systems and is therefore still very popular; there is also a
lot of older code in the wild, especially open-source programs, that
haven’t been (and probably never will be) upgraded to Python 3.x. If
you decide to use other Python programs to study from or use, you

CHAPTER 4. THE PYTHON INTERPRETER 32

will need to know the “old school” way of Python programming; many
open-source programs are still written for Python 2.4.

If you are using Python 3.x and you want to type every example
into your computer as we go along, please be aware that the print
statements, as written, won’t work. They will have to be modified to
use a print() function like in Listing 4.3.

4.3 Using the Python Command Prompt
If you write a statement that doesn’t require any “processing” by
Python, it will simply return you to the prompt, awaiting your next or-
der. The next code example shows the user assigning the value “spam”
to the variable can. Python doesn’t have to do anything with this, in
regards to calculations or anything, so it accepts the statement and
then waits for a new statement.

Listing 4.4: Python statements
>>>can = "spam"
>>>

(By the way, Python was named after Monty Python, not the
snake. Hence, much of the code you’ll find on the Internet, tutorials,
and books will have references to Monty Python sketches.)

The standard Python interpreter can be used to test ideas before
you put them in your code. This is a good way to hash out the
logic required to make a particular function work correctly or see how
a conditional loop will work. You can also use the interpreter as a
simple calculator. This may sound geeky, but I often launch a Python
session for use as a calculator because it’s often faster than clicking
through Windows’ menus to use its calculator.

Here’s an example of the “calculator” capabilities:

Listing 4.5: Python as a calculator
>>>2+2
4
>>>4∗4
16
>>>5∗∗2 #f i v e squared

CHAPTER 4. THE PYTHON INTERPRETER 33

25

Python also has a math library that you can import to do trigono-
metric functions and many other higher math calculations. Importing
libraries will be covered later in this book.

4.4 Commenting Python
One final thing to discuss is that comments in Python are marked
with the “#” symbol. Comments are used to annotate notes or other
information without having Python try to perform an operation on
them. For example,

Listing 4.6: Python comments
>>>d i c t = {" F i r s t phonet ic " : "Able" , "Second

phonet ic " : "Baker"} #crea t e a d i c t i ona r y
>>>print d i c t . keys () #di c t i ona r y va l u e s aren ’ t

in order
[’ Second phonet ic ’ , ’ F i r s t phonet ic ’]
>>>print d i c t [" F i r s t phonet ic "] #pr in t the key ’ s

va lue
Able

You will see later on that, even though Python is a very readable
language, it still helps to put comments in your code. Sometimes it’s to
explicitly state what the code is doing, to explain a neat shortcut you
used, or to simply remind yourself of something while you’re coding,
like a “todo” list.

4.5 Launching Python programs
If you want to run a Python program, simply type python at the shell
command prompt (not the IDE or interactive interpreter) followed by
the program name.

Listing 4.7: Launching a Python program
$python foo . py

CHAPTER 4. THE PYTHON INTERPRETER 34

Files saved with the .py extension are called modules and can be
called individually at the command line or within a program, similar
to header files in other languages. If your program is going to import
other modules, you will need to make sure they are all saved in the
same directory on the computer. More information on working with
modules can be found later in this book or in the Python documenta-
tion.

Depending on the program, certain arguments can be added to the
command line when launching the program. This is similar to adding
switches to a Windows DOS prompt command. The arguments tell
the program what exactly it should do. For example, perhaps you
have a Python program that can output it’s processed data to a file
rather than to the screen. To invoke this function in the program you
simply launch the program like so:

Listing 4.8: Launching a Python program with arguments
$python foo . py −f

The “-f” argument is received by the program and calls a function
that prints the data to a designated location within the computer’s
file system instead of printing it to the screen.

If you have multiple versions of Python installed on your computer,
e.g. the system default is version 2.5 but you want to play around
with Python 3.x, you simply have to tell the OS which version to
use (see Listing 4.9). This is important since many older Python
programs aren’t immediately compatible with Python 3.x. In many
cases, an older version of Python must be retained on a computer to
enable certain programs to run correctly; you don’t want to completely
overwrite older Python versions.

Listing 4.9: Selecting a Python version
$python2 . 5 sample . py #forc e use o f Python 2.5
$python3 . 0 sample . py #forc e use o f Python 3.0

4.6 Integrated Development Environments
I should take the time now to explain more about programming envi-
ronments. Throughout this book, most of the examples involve using

CHAPTER 4. THE PYTHON INTERPRETER 35

the Python interactive interpreter, which is used by typing “python” at
the operating system command prompt. This environment is is really
more for testing ideas or simple “one-shot” tasks. Because the infor-
mation isn’t stored anywhere, when the Python session is finished, all
the data you worked with goes away.

To make a reusable program, you need to use some sort of source
code editor. These editors can be an actual programming environ-
ment application, a.k.a. IDEs (integrated development environments),
or they can be a simple text editor like Windows Notepad. There is
nothing special about source code; regardless of the programming lan-
guage, it is simply text. IDEs are basically enhanced text editors that
provide special tools to make programming easier and quicker.

Python has many IDEs available and nearly all of them are free.
Typically, an IDE includes a source code editor, a debugger, a com-
piler (not necessary for Python), and often a graphical user interface
builder; different IDEs may include or remove certain features. Below
is a list of some common Python IDEs:

• Eric-a free application that acts as a front-end to other programs
and uses plug-ins

• IDLE-a free application included in the base Python installation;
includes an integrated debugger

• Komodo-a full-featured, proprietary application that can be used
for other programming languages

• PyDev-a plug-in for the Eclipse development environment

• Stani’s Python Editor (SPE)-a free application that includes
many development aids

Chapter 5

Types and Operators

Python is based on the C programming language and is written in C,
so much of the format Python uses will be familiar to C and C++
programmers. However, it makes life a little easier because it’s not
made to be a low-level language (it’s difficult to interact heavily with
hardware or perform memory allocation) and it has built-in "garbage
collection" (it tracks references to objects and automatically removes
objects from memory when they are no longer referenced), which al-
lows the programmer to worry more about how the program will work
rather than dealing with the computer.

5.1 Python Syntax

5.1.1 Indentation
Python forces the user to program in a structured format. Code blocks
are determined by the amount of indentation used. As you’ll recall
from the Comparison of Programming Languages chapter, brackets
and semicolons were used to show code grouping or end-of-line termi-
nation for the other languages. Python doesn’t require those; inden-
tation is used to signify where each code block starts and ends. Here
is an example (line numbers are added for clarification):

36

CHAPTER 5. TYPES AND OPERATORS 37

Listing 5.1: White space is significant
1 x = 1
2 i f x : #i f x i s t rue
3 y = 2
4 i f y : #i f y i s t rue
5 print " block 2"
6 print " block 1"
7 print " block 0"

Each indented line demarcates a new code block. To walk through
the above code snippet, line 1 is the start of the main code block.
Line 2 is a new code section; if “x” has a value not equal to 0, then
indented lines below it will be evaluated. Hence, lines 3 and 4 are in
another code section and will be evaluated if line 2 is true. Line 5 is
yet another code section and is only evaluated if “y” is not equal to
0. Line 6 is part of the same code block as lines 3 and 4; it will also
be evaluated in the same block as those lines. Line 7 is in the same
section as line 1 and is evaluated regardless of what any indented lines
may do.

You’ll notice that compound statements, like the if comparisons,
are created by having the header line followed by a colon (":"). The
rest of the statement is indented below it. The biggest thing to re-
member is that indentation determines grouping; if your code doesn’t
work for some reason, double-check which statements are indented.

A quick note: the act of saying “x = 1” is assigning a value to a
variable. In this case, “x” is the variable; by definition its value varies.
That just means that you can give it any value you want; in this case
the value is “1”. Variables are one of the most common programming
items you will work with because they are what store values and are
used in data manipulation.

5.1.2 Multiple Line Spanning
Statements can span more than one line if they are collected within
braces (parenthesis "()", square brackets "[]", or curly braces "{}").
Normally parentheses are used. When spanning lines within braces, in-
dentation doesn’t matter; the indentation of the initial bracket used to
determine which code section the whole statement belongs to. String

CHAPTER 5. TYPES AND OPERATORS 38

statements can also be multi-line if you use triple quotes. For example:

Listing 5.2: Use of triple quotes
>>> big = """This i s
. . . a mult i−l i n e b l o c k
. . . o f t e x t ; Python puts
. . . an end−of−l i n e marker
. . . a f t e r each l i n e . """
>>>
>>> big
’ This i s \012a multi−l i n e b lock \012 o f t ex t ; Python

puts \012an end−of−l i n e marker \012 a f t e r each
l i n e . ’

Note that the \012 is the octal version of \n, the “newline” indica-
tor. The ellipsis (...) above are blank lines in the interactive Python
prompt used to indicate the interpreter is waiting for more informa-
tion.

5.2 Python Object Types
Like many other programming languages, Python has built-in data
types that the programmer uses to create his program. These data
types are the building blocks of the program. Depending on the lan-
guage, different data types are available. Some languages, notably
C and C++, have very primitive types; a lot of programming time
is simply used up to combine these primitive types into useful data
structures. Python does away with a lot of this tedious work. It al-
ready implements a wide range of types and structures, leaving the
developer more time to actually create the program. Trust me; this
is one of the things I hated when I was learning C/C++. Having to
constantly recreate the same data structures for every program is not
something to look forward to.

Python has the following built-in types: numbers, strings, lists,
dictionaries, tuples, and files. Naturally, you can build your own types
if needed, but Python was created so that very rarely will you have to
"roll your own". The built-in types are powerful enough to cover the
vast majority of your code and are easily enhanced. We’ll finish up

CHAPTER 5. TYPES AND OPERATORS 39

this section by talking about numbers; we’ll cover the others in later
chapters.

Before I forget, I should mention that Python doesn’t have strong
coded types; that is, a variable can be used as an integer, a float, a
string, or whatever. Python will determine what is needed as it runs.
See below:

Listing 5.3: Weak coding types
>>> x = 12
>>> y = " lumberjack "
>>> x
12
>>> y
’ lumberjack ’

Other languages often require the programmer to decide what the
variable must be when it is initially created. For example, C would
require you to declare “x” in the above program to be of type int and
“y” to be of type string. From then on, that’s all those variables can
be, even if later on you decide that they should be a different type.

That means you have to decide what each variable will be when you
start your program, i.e. deciding whether a number variable should be
an integer or a floating-point number. Obviously you could go back
and change them at a later time but it’s just one more thing for you
to think about and remember. Plus, anytime you forget what type
a variable is and you try to assign the wrong value to it, you get a
compiler error.

5.3 Python Numbers
Python can handle normal long integers (max length determined based
on the operating system, just like C), Python long integers (max length
dependent on available memory), floating point numbers (just like C
doubles), octal and hex numbers, and complex numbers (numbers with
an imaginary component). Here are some examples of these numbers:

• integer: 12345, -32

CHAPTER 5. TYPES AND OPERATORS 40

• Python integer: 999999999L (In Python 3.x, all integers are
Python integers)

• float: 1.23, 4e5, 3e-4

• octal: 012, 0456

• hex: 0xf34, 0X12FA

• complex: 3+4j, 2J, 5.0+2.5j

Python has the normal built-in numeric tools you’d expect: expres-
sion operators (*, >‌>, +, <, etc.), math functions (pow, abs, etc.),
and utilities (rand, math, etc.). For heavy number-crunching Python
has the Numeric Python (NumPy) extension that has such things as
matrix data types. If you need it, it has to be installed separately. It’s
heavily used in science and mathematical settings, as it’s power and
ease of use make it equivalent to Mathematica, Maple, and MatLab.

Though this probably doesn’t mean much to non-programmers, the
expression operators found in C have been included in Python, however
some of them are slightly different. Logic operators are spelled out in
Python rather than using symbols, e.g. logical AND is represented by
"and", not by "&&"; logical OR is represented by "or", not "||"; and
logical NOT uses "not" instead of "!". More information can be found
in the Python documentation.

Operator level-of-precedence is the same as C, but using parenthe-
ses is highly encouraged to ensure the expression is evaluated correctly
and enhance readability. Mixed types (float values combined with in-
teger values) are converted up to the highest type before evaluation,
i.e. adding a float and an integer will cause the integer to be changed
to a float value before the sum is evaluated.

Following up on what I said earlier, variable assignments are cre-
ated when first used and do not have to be pre-declared like in C.

Listing 5.4: Generic C++ example
int a = 3 ; // i n l i n e i n i t i a l i z a t i o n o f i n t e g e r
f loat b ; // s e q u en t i a l i n i t i a l i z a t i o n o f

f l o a t i n g po in t number
b = 4 .0 f ;

CHAPTER 5. TYPES AND OPERATORS 41

Listing 5.5: Generic Python example
>>>a = 3 #in t e g e r
>>>b = 4.0 #f l o a t i n g po in t

As you can see, “a” and “b” are both numbers but Python can figure
out what type they are without being told. In the C++ example, a
float value has to be “declared” twice; first the variable is given a type
(“float”) then the actual value is given to the variable. You’ll also note
that comments in Python are set off with a hash/pound sign (#) and
are used exactly like the "//" comments in C++ or Java.

That’s about it for numbers in Python. It can also handle bit-wise
manipulation such as left-shift and right-shift, but if you want to do
that, then you’ll probably not want to use Python for your project.
As also stated, complex numbers can be used but if you ever need to
use them, check the documentation first.

Chapter 6

Strings

Strings in programming are simply text, either individual characters,
words, phrases, or complete sentences. They are one of the most com-
mon elements to use when programming, at least when it comes to
interacting with the user. Because they are so common, they are a
native data type within Python, meaning they have many powerful
capabilities built-in. Unlike other languages, you don’t have to worry
about creating these capabilities yourself. This is good because the
built-in ones have been tested many times over and have been opti-
mized for performance and stability.

Strings in Python are different than most other languages. First
off, there are no char types, only single character strings (char types
are single characters, separate from actual strings, used for memory
conservation). Strings also can’t be changed in-place; a new string
object is created whenever you want to make changes to it, such as
concatenation. This simply means you have to be aware that you
are not manipulating the string in memory; it doesn’t get changed or
deleted as you work with it. You are simply creating a new string each
time.

Here’s a list of common string operations:

• s1 = ’ ’ : empty string

• s2 = "knight’s" : double quotes

• block = """ - """ : triple-quoted block

42

CHAPTER 6. STRINGS 43

• s1 + s2 : concatenate (combine)

• s2 * 3 : repeat the string a certain number of times

• s2[n] : index (the position of a certain character)

• len(s2) : get the length of a string

• "a %s parrot" % ’dead’ : string formatting (deprecated in Python
3.x)

• “a {0} parrot”.format(“dead”) : string formatting (Python 3.x)

• for x in s2 : iteration (sequentially move through the string’s
characters)

• ’m’ in s2 : membership (is there a given character in the string?)

Empty strings are written as two quotes with nothing in between.
The quotes used can be either single or double; my preference is to use
double quotes since you don’t have to escape the single quote to use
it in a string. That means you can write a statement like

“And then he said, ‘No way’ when I told him.”
If you want to use just one type of quote mark all the time, you have

to use the backslash character to “escape” the desired quote marks so
Python doesn’t think it’s at the end of the phrase, like this:

“And then he said, \”No way\” when I told him.”
Triple quoted blocks are for strings that span multiple lines, as

shown last chapter. Python collects the entire text block into a single
string with embedded newline characters. This is good for things like
writing short paragraphs of text, e.g. instructions, or for formatting
your source code for clarification.

6.1 Basic string operations
The "+" and "*" operators are overloaded in Python, letting you
concatenate and repeat string objects, respectively. Overloading is just
using the same operator to do multiple things, based on the situation
where it’s used. For example, the “+” symbol can mean addition when
two numbers are involved or, as in this case, combining strings.

CHAPTER 6. STRINGS 44

Concatenation combines two (or more) strings into a new string
object whereas repeat simply repeats a given string a given number of
times. Here are some examples:

Listing 6.1: Operator overloading
>>> len (’ abc ’) #leng t h : number i tems
3
>>> ’ abc ’ + ’ de f ’ #concatenat ion : a new s t r i n g
’ abcdef ’
>>> ’Ni ! ’ ∗ 4 #mu l t i p l e conca t en ta t i on : "Ni !" +

"Ni !" + . . .
’ Ni ! Ni ! Ni ! Ni ! ’

You need to be aware that Python doesn’t automatically change a
number to a string, so writing “spam” + 3 will give you an error. To
explicitly tell Python that a number should be a string, simply tell it.
This is similar to casting values in C/C++. It informs Python that
the number is not an integer or floating point number but is, in reality,
a text representation of the number. Just remember that you can no
longer perform mathematical functions with it; it’s strictly text.

Listing 6.2: Casting a number to a string
>>>s t r (3) #conver t s number to s t r i n g

Iteration in strings is a little different than in other languages.
Rather than creating a loop to continually go through the string and
print out each character, Python has a built-in type for iteration.
Here’s an example followed by an explanation:

Listing 6.3: Iteration through a string
>>> myjob = " lumberjack "
>>> for c in myjob : print c , #step through i tems
. . .
l u m b e r j a c k
>>> "k" in myjob #1 means t rue
1

Essentially what is happening is that Python is sequentially going
through the variable “myjob” and printing each character that exists
in the string. for statements will be covered in depth later in the book

CHAPTER 6. STRINGS 45

but for now just be aware that they are what you use to step through
a range of values. As you can see they can be used for strings or, more
often, numbers.

The second example is simply a comparison. Does the letter “k”
exist in the value stored by “myjob”? If yes, then Python will return
a numeric value of 1, indicating yes. If “k” didn’t exist, it would
return a 0. This particular case is most often used in word processing
applications, though you can probably think of other situations where
it would be useful.

6.2 Indexing and slicing strings
Strings in Python are handled similar to arrays in C. Unlike C arrays,
characters within a string can be accessed both front and backwards.
Front-ways, a string starts of with a position of 0 and the character
desired is found via an offset value (how far to move from the end
of the string). However, you also can find this character by using a
negative offset value from the end of the string. I won’t go deeply into
it, but here’s a quick example:

Listing 6.4: String indexing
>>>S = "spam"
>>>S [0] , S [−2] #index ing from the f r on t and rear
(’ s ’ , ’ a ’)

Indexing is simply telling Python where a character can be found
within the string. Like many other languages, Python starts counting
at 0 instead of 1. So the first character’s index is 0, the second charac-
ter’s index is 1, and so on. It’s the same counting backwards through
the string, except that the last letter’s index is -1 instead of 0 (since
0 is already taken). Therefore, to index the final letter you would use
-1, the second to the last letter is -2, etc. Knowing the index of a
character is important for slicing.

Slicing a string is basically what it sounds like: by giving upper
and lower index values, we can pull out just the characters we want. A
great example of this is when processing an input file where each line
is terminated with a newline character; just slice off the last character

CHAPTER 6. STRINGS 46

and process each line. You could also use it to process command-
line arguments by "filtering" out the program name. Again, here’s an
example:

Listing 6.5: String slicing
>>>S = "spam"
>>>S [1 : 3] , S [1 :] , S [: −1] #s l i c i n g : e x t r a c t s e c t i on
(’ pa ’ , ’pam ’ , ’ spa ’)

You’ll notice that the colon symbol is used when slicing. The colon
acts as a separator between the upper and lower index values. If one
of those values is not given, Python interprets that to mean that you
want everything from the index value to the end of the string. In
the example above, the first slice is from index 1 (the second letter,
inclusive) to index 3 (the 4th letter, exclusive). You can consider the
index to actually be the space before each letter; that’s why the letter
“m” isn’t included in the first slice but the letter “p” is.

The second slice is from index 1 (the second letter) to the end of
the string. The third slice starts at the end of the string and goes
backwards.

6.3 String Formatting
Formatting strings is simply a way of presenting the information on
the screen in a way that conveys the information best. Some exam-
ples of formatting are creating column headers, dynamically creating
a sentence from a list or stored variable, or stripping extraneous in-
formation from the strings, such as excess spaces. (Python 3.x has a
new way of formatting strings; this will be discussed in the 19 section
below.)

Python supports the creation of dynamic strings. What this means
is that you can create a variable containing a value of some type (such
as a string or number) then “call” that value into your string. You can
process a string the same way as in C if you choose to, such as %d for
integers and %f for floating point numbers. Here’s an example:

Listing 6.6: Dynamic string creation
>>>S = "parrot "

CHAPTER 6. STRINGS 47

>>>d = 1
>>>print ’ That i s %d dead %s ! ’ % (d , s)
That i s 1 dead parrot !

Python also has a string utility module for tools such as case con-
version, converting strings to numbers, etc. Here’s yet another exam-
ple:

Listing 6.7: String utilities
>>> import s t r i n g #standard u t i l i t i e s module
>>> S = "spammify"
>>> s t r i n g . upper (S) #conver t to uppercase
’SPAMMIFY’
>>> s t r i n g . f i nd (S , "mm") #return index o f s u b s t r i n g
3
>>> s t r i n g . a t o i ("42") , ‘42 ‘ #conver t from/ to s t r i n g
(42 , ’ 42 ’)
>>> s t r i n g . j o i n (s t r i n g . s p l i t (S , "mm") , "XX")
’ spaXXify ’

Notice the example of the second to last line. Backquotes are used
to convert an object into a string. This is one way around the "don’t
mix strings and numbers" problem from earlier. I’ll leave the last line
example above as a mental test. See if you can figure out what the
statement is doing.

Though it’s not strictly a string operation (it can be used with just
about anything that can be measured), the len() method can be used
to give you the length of a string. For example,

Listing 6.8: Finding the length of a string
>>>s t r i n g = "The L i f e o f Brian"
>>>print l en (s t r i n g)
17
>>>len ("The Meaning o f L i f e ")
19

As shown in the second example above, you don’t necessarily have
to use a print statement (or print() function in Python 3.x) to display
a value. Simply writing what you want will print out the result. How-
ever, this doesn’t always work in your favor. Sometimes the object

CHAPTER 6. STRINGS 48

will only return a memory address, as we will see later in the book.
Generally speaking, it’s simply easier to explicitly state “print” if you
want a statement evaluated and printed out. Otherwise you don’t
know exactly what value it will return.

6.4 Combining and Separating Strings
Strings can be combined (joined) and separated (split) quite easily.
Tokenization is the process of splitting something up into individual
tokens; in this case, a sentence is split into individual words. When a
web page is parsed by a browser, the HTML, Javascript, and any other
code in the page is tokenized and identified as a keyword, operator,
variable, etc. The browser then uses this information to display the
web page correctly, or at least as well as it can.

Python does much the same thing (though with better results).
The Python interpreter tokenizes the source code and identifies the
parts that are part of the actual programming language and the parts
that are data. The individual tokens are separated by delimiters, char-
acters that actually separate one token from another.

In strings, the main delimiter is a whitespace character, such as
a tab, a newline, or an actual space. These delimiters mark off indi-
vidual characters or words, sentences, and paragraphs. When special
formatting is needed, other delimiters can be specified by the program-
mer.

Joining strings combines the separate strings into one string. Be-
cause string operations always create a new string, you don’t have to
worry about the original strings being overwritten. The catch is that
it doesn’t concatenate the strings, i.e. joining doesn’t combine them
like you would expect. Here’s an example:

Listing 6.9: Joining strings
>>>s t r i n g 1 = "1 2 3"
>>>s t r i n g 2= "A B C"
>>>s t r i n g 3 = s t r i n g 2 . j o i n (s t r i n g 1)
>>>print s t r i n g 3
1A B C A B C2A B C A B C3

CHAPTER 6. STRINGS 49

As you can see, the results are not what you expect. However,
when creating a complex string, it can be better to put the pieces into
a list and then simply join them, rather than trying to concatenate
them.

Mentioned briefly before, I will speak a little more about concate-
nation. Concatenation combines two or more strings into a new, com-
plete string. This is probably what you were thinking when I talked
about joining strings together.

Listing 6.10: String concatenation
>>>s t r i n g 1 + s t r i n g 2
’ 1 2 3A B C ’
>>>"Navy gravy . " + "The f i n e s t gravy in the Navy . "
Navy gravy . The f i n e s t gravy in the Navy .

Chances are you will use concatenation more often than joining.
To me, it simply makes more sense than messing with join(). But,
with practice, you may find joining to be easier or more efficient.

Finally, splitting strings separates them into their component parts.
The result is a list containing the individual words or characters. Here
are some examples:

Listing 6.11: Splitting strings
>>>s t r i n g = "My wi f e hates spam . "
>>>s t r i n g . s p l i t () #s p l i t s t r i n g at spaces
[’My ’ , ’ w i f e ’ , ’ hates ’ , ’ spam . ’]
>>>new_string = "1 , 2 , 3"
>>>new_string . s p l i t (" , ") #s p l i t s t r i n g at commas
[’ 1 ’ , ’ 2 ’ , ’ 3 ’]

Note how the new_string was split exactly at the commas; the
leading spaces before the numbers was included in the output. You
should be aware of how your output will be when defining the sepa-
rating characters.

As we move further into the Python language, we will look at these
and other features of strings. Console programs will benefit most from
learning how to use strings, however, word processors are obviously
another place where knowing how to manipulate strings will come in
handy.

CHAPTER 6. STRINGS 50

One final note: adding a comma at the end of a print line prevents
Python from automatically creating a newline. This is most practical
when making tables and you don’t want everything in a single column.

A handy reference of the most common string methods can be
found on page 154 in the appendix. These methods perform opera-
tions, such as split() shown above, reducing the amount of work you
have to do manually and providing a larger toolset for you to use.

6.5 Regular Expressions
I’m not going to delve into regular expressions in this book. They are a
little too complicated for an introductory book. However, I will briefly
explain so people new to programming understand how powerful of a
tool regular expressions are.

Regular expressions (regex) are standardized expressions that allow
you to search, replace, and parse text. Essentially, it’s like using the
find/replace tool in a word processor. However, regex is a complex,
formal language format that allows you to do a lot more with strings
than the normal methods allow you to do. To be honest, though, I
have never used regular expressions, simply because my programs so
far haven’t required it.

Actually, if you can get by with the normal string methods, then
by all means use them. They are quick, easy, and make it easy to
understand your code. However, regex statements can make more
sense than long, complex if/else conditions or daisy-chained string
methods.

If you feel the need to use regular expressions, please consult the
Python documentationdiscussing regular expressions. There is a lot
of information there and regex is a little too advanced for this book;
there are books solely dedicated to regex and I don’t think I can do
the topic justice.

Chapter 7

Lists

Lists in Python are one of the most versatile collection object types
available. The other two types are dictionaries and tuples, but they
are really more like variations of lists.

Python lists do the work of most of the collection data structures
found in other languages and since they are built-in, you don’t have to
worry about manually creating them. Lists can be used for any type of
object, from numbers and strings to more lists. They are accessed just
like strings (e.g. slicing and concatenation) so they are simple to use
and they’re variable length, i.e. they grow and shrink automatically
as they’re used. In reality, Python lists are C arrays inside the Python
interpreter and act just like an array of pointers.

Just so you know what exactly I’m talking about, Listing 7.1 shows
a couple of quick examples that creates a list and then does a couple
of manipulations to it.

Listing 7.1: Generic list examples
>>>l i s t = [1 , 2 , 3 , 4 , 5]
>>>print l i s t
[1 , 2 , 3 , 4 , 5]
>>>print l i s t [0] #pr in t the l i s t item at index 0
1
>>>l i s t . pop () #remove and p r i n t the l a s t item
5

51

CHAPTER 7. LISTS 52

>>>print l i s t #show tha t the l a s t item was removed
[1 , 2 , 3 , 4]

Here’s a list of common list operations:

• L1 = [] An empty list

• L2 = [0, 1, 2, 3] Four items

• L3 = [’abc’, [’def’, ’ghi’]] Nested sublists

• L2 [n], L3[n][j] L2[n:j], len(L2) Index, slice, length

• L1 + L2, L2 * 3 Concatenate, repeat

• for x in L2, 3 in L2 Iteration, membership

• L2.append(4), L2.sort(), L2.index(1), L2.reverse() Methods: grow,
sort, search, reverse, etc.

• del L2[k], L2[n:j] = [] Shrinking

• L2[n] = 1, L2[n:j] = [4,5,6] Index assignment, slice assignment

• range(4), xrange(0, 4) Make lists/tuples of integers

The biggest thing to remember is that lists are a series of objects
written inside square brackets, separated by commas. Dictionaries and
tuples will look similar except they have different types of brackets.

7.1 List usage
Lists are most often used to store homogeneous values, i.e. a list
usually holds names, numbers, or other sequences that are all one
data type. They don’t have to; they can be used with whatever data
types you want to mix and match. It’s just usually easier to think of
a list as holding a “standard” sequence of items.

The most common use of a list is to iterate over the list and perform
the same action to each object within the list, hence the use of similar
data types. Time for an example:

CHAPTER 7. LISTS 53

Listing 7.2: Iterating through a list
>>> myl i s t = ["one" , "two" , " three "]
>>> for x in myl i s t :
. . . print "number " + x
. . .
number one
number two
number three

In the above example, a list of text strings was created. Next, a
simple for loop was used to iterate through the list, pre-pending the
word “number” to each list object and printing them out. We will talk
about for loops later but this is a common use of them.

One thing to note right now, however, is that you can use whatever
value for “x” that you want, i.e. you can use whatever name you want
instead of “x”. I mention this because it kind of threw me for a loop
when I first encountered it in Python. In other languages, loops like
this are either hard-wired into the language and you have to use its
format or you have to expressly create the “x” value beforehand so
you can call it in the loop. Python’s way is much easier because you
can use whatever name makes the most sense, or you can simply use a
“generic variable” like I did. For example, I could have used “for num
in mylist:” or any other variation to iterate through the list. It’s all
up to you.

I won’t go into the simple actions for lists since they work just like
string operations. You can index, slice, and manipulate the list like
you can for strings. In reality, a string is more like a modified list that
only handles alphanumeric characters.

If you have questions, look at the chapter on Strings (Chapter 6);
if you still have questions, look at the official Python documentation.
Just remember that the resulting object will be a new list (surrounded
by square brackets) and not a string, integers, etc.

7.2 Adding List Elements
Adding new items to a list is extremely easy. You simply tell the list
to add it. Same thing with sorting a list.

CHAPTER 7. LISTS 54

Listing 7.3: Adding items to a list
>>>new l i s t = [1 , 2 , 3]
>>>new l i s t . append (54)
>>>new l i s t
[1 , 2 , 3 , 54]
>>>a_l i s t = [" eat " , "ham" , "Spam" , " eggs " , "and"]
>>>a_l i s t . s o r t () #sor t l i s t i tems (c a p i t a l l e t t e r s

come f i r s t)
>>>a_l i s t
[’Spam ’ , ’ and ’ , ’ eat ’ , ’ eggs ’ , ’ham ’]

The append() method simply adds a single item to the end of a
list; it’s different from concatenation since it takes a single object and
not a list. append() and sort() both change the list in-place and
don’t create a brand new list object, nor do they return the modified
list. To view the changes, you have to expressly call the list object
again, as shown in Listing 7.3. So be aware of that in case you are
confused about whether the changes actually took place.

If you want to put the new item in a specific position in the list,
you have to tell the list which position it should be in, i.e. you have
to use the index of what the position is. Remember, the index starts
at 0, not 1, as shown in Listing 7.4.

Listing 7.4: Adding items via indexing
>>>new l i s t . i n s e r t (1 , 69) #in s e r t ’69 ’ a t index ’1 ’
>>>new l i s t
[1 , 69 , 2 , 3 , 54]

You can add a second list to an existing one by using the extend()
method. Essentially, the two lists are concatenated (linked) together,
like so:

Listing 7.5: Combining lists
>>>newe r l i s t = ["Mary" , "had , "a" , " l i t t l e " , "spam

. "]
>>>new l i s t . extend (n ewe r l i s t) #extending with named

l i s t
>>> new l i s t

CHAPTER 7. LISTS 55

[1 , 69 , 2 , 3 , 54 , ’Mary ’ , ’ had ’ , ’ a ’ , ’ l i t t l e ’ , ’
spam . ’]

>>>newe r l i s t . extend ([" I t ’ s " , " g r ea s e " , "was " , "
white " , " as " , "snow . "]) #extending i n l i n e

>>> newe r l i s t
[’Mary ’ , ’ had ’ , ’ a ’ , ’ l i t t l e ’ , ’ spam . ’ , " I t ’ s " , ’

g r ea s e ’ , ’ was ’ , ’ white ’ , ’ as ’ , ’ snow . ’]

Be aware, there is a distinct difference between extend and append.
extend() takes a single argument, which is always a list, and adds
each of the elements of that list to the original list; the two lists are
merged into one. append() takes one argument, which can be any
data type, and simply adds it to the end of the list; you end up with
a list that has one element which is the appended object. Here’s an
example from “Dive into Python”:

Listing 7.6: Extend vs. append
>>> l i = [’ a ’ , ’ b ’ , ’ c ’]
>>> l i . extend ([’d ’ , ’ e ’ , ’ f ’])
>>> l i
[’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’] #merged l i s t
>>> len (l i) #l i s t l e n g t h
6
>>> l i [−1] #reve r s e index
’ f ’
>>> l i = [’ a ’ , ’ b ’ , ’ c ’]
>>> l i . append ([’d ’ , ’ e ’ , ’ f ’]) #l i s t o b j e c t used

as an element
>>> l i
[’ a ’ , ’ b ’ , ’ c ’ , [’ d ’ , ’ e ’ , ’ f ’]]
>>> len (l i)
4
>>> l i [−1] #the s i n g l e l i s t o b j e c t
[’ d ’ , ’ e ’ , ’ f ’]

CHAPTER 7. LISTS 56

7.3 Mutability
One of the special things about lists is that they are mutable, i.e.
they can be modified in-place without creating a new object. The big
concern with this is remembering that, if you do this, it can affect
other references to it. However, this isn’t usually a large problem so
it’s more of something to keep in mind if you get program errors.

Here’s an example of changing a list using offset and slicing:

Listing 7.7: Changing a list
>>> L = [’ spam ’ , ’Spam ’ , ’SPAM! ’]
>>> L [1] = ’ eggs ’ #index assignment
>>> L
[’ spam ’ , ’ eggs ’ , ’SPAM! ’]
>>> L [0 : 2] = [’ eat ’ , ’more ’] #s l i c e assignment :

d e l e t e+i n s e r t
>>> L #rep l a c e s i tems indexed at 0 and 1
[’ eat ’ , ’more ’ , ’SPAM! ’]

Because lists are mutable, you can also use the del statement to
delete an item or section. Here’s an example:

Listing 7.8: Deleting list items
>>> L
[’SPAM! ’ , ’ eat ’ , ’more ’ , ’ p l e a s e ’]
>>> del L [0] #de l e t e one item
>>> L
[’ eat ’ , ’more ’ , ’ p l e a s e ’]
>>> del L [1 :] #de l e t e an en t i r e s e c t i on
>>> L #same as L [1 :] = []
[’ eat ’]

7.4 Methods
I’ve mentioned methods previously and I’ll talk about methods more
in the object-oriented programming chapter, but for the curious, a
method works like a function, in that you have the method name
followed by arguments in parentheses. The big difference is that a

CHAPTER 7. LISTS 57

method is qualified to a specific object with the period punctuation
mark. In some of the examples above, the list object was affected by
a method using the “.” (dot) nomenclature. The “.” told the Python
interpreter to look for the method name that followed the dot and
perform the actions in the method on the associated list object.

Because everything in Python is an object, nearly everything has
some sort of a method. You probably won’t be able to remember all
the methods for every single object type, but remembering the most
common and useful ones will speed up development. Having a list of
the methods for each object type is very handy. You’ll find lists of the
most common methods for each object type in the appendices of this
book.

Finally, you need to remember that only mutable objects can be
changed in-place; strings, tuples, and other objects will always have
to create new objects if you change them. You also need to remember
that modifying an object in place can affect other objects that refer
to it.

A complete listing of list methods can be found on page 160 in the
appendix.

Chapter 8

Dictionaries

Next to lists, dictionaries are one of the most useful data types in
Python. Python dictionaries are unordered collections of objects,
matched to a keyword. Python lists, on the other hand, are ordered
collections that use a numerical offset.

Because of their construction, dictionaries can replace many "typ-
ical" search algorithms and data structures found in C and related
languages. For those coming from other languages, Python dictionar-
ies are just like a hash table, where an object is mapped to a key
name.

Dictionaries include the following properties:

1. Accessed by keyword, not an offset. Dictionaries are similar to
associative arrays. Each item in the dictionary has a correspond-
ing keyword; the keyword is used to “call” the item.

2. Stored objects are in a random order to provide faster lookup.
When created, a dictionary stores items in any order it chooses.
To get a value, simply supply the key. If you need to order the
items within a dictionary, you have to do it yourself; there are
no built-in methods for it.

3. Dictionaries are variable length, can hold objects of any type
(including other dictionaries), and support deep nesting (multi-
ple levels of items can be in a dictionary, such as a list within a
dictionary within another dictionary).

58

CHAPTER 8. DICTIONARIES 59

4. They are mutable but can’t be modified like lists or strings; they
are the only data type that supports mapping.

5. Internally, dictionaries are implemented as a hash table.

Here’s the (now standard) list of common operations:

• d1 = {} Empty dictionary

• d2 = {’spam’ : 2, ’eggs’ : 3} Two-item dictionary

• d3 = {’food’ : {’ham’ : 1, ’egg’ : 2}} Nesting

• d2[’eggs’], d3[’food’][’ham’] Indexing by key

• d2.has_key(’eggs’), d2.keys(), d2.values() Methods: member-
ship test, keys list, values list, etc.

• len(d1) Length (number stored entries)

• d2[key] = new, del d2[key] Adding/changing, deleting

8.1 Making a dictionary
As previously stated, you create dictionaries and access items via a key.
The key can be of any immutable type, like a string, number, or tuple.
The values can be any type of object, including other dictionaries. The
format for making a dictionary is shown in Listing 8.1:

Listing 8.1: Dictionary format
>>>d i c t i ona ry = {"key name" : " va lue }

However, the key name and value can be anything allowed, such
as:

Listing 8.2: Dictionary keys example
>>>d i c t i ona ry = {"cow" : "barn" , 1 : " p ig " , 2 : ["spam" ,

" green " , " corn "] }

Notice that the brackets for dictionaries are curly braces, the sep-
arator between a key word and it’s associated value is a colon, and
that each key/value is separated by a comma. This are just some of
the things that can cause syntax errors in your program.

CHAPTER 8. DICTIONARIES 60

8.2 Basic operations
The len() function can be used to give the number of items stored in
a dictionary or the length of the key list. The keys() method returns
all the keys in the dictionary as a list. Here’s a few examples:

Listing 8.3: Some dictionary methods
>>> d2 = { ’ spam ’ : 2 , ’ham ’ : 1 , ’ eggs ’ : 3}
>>> d2 [’ spam ’] #f e t c h va lue f o r key
2
>>> len (d2) #number o f e n t r i e s in d i c t i ona r y
3
>>> d2 . has_key (’ham ’) #does the key e x i s t ? (1

means t rue)
1
>>> d2 . keys () #l i s t o f keys
[’ eggs ’ , ’ spam ’ , ’ham ’]

Since dictionaries are mutable, you can add and delete values to
them without creating a new dictionary object. Just assign a value
to a key to change or create an entry and use del to delete an object
associated with a given key.

Listing 8.4: Modifying dictionaries
>>> d2 [’ham ’] = [’ g r i l l ’ , ’ bake ’ , ’ f r y ’] #

change entry
>>> d2
{ ’ eggs ’ : 3 , ’ spam ’ : 2 , ’ham ’ : [’ g r i l l ’ , ’ bake ’ , ’

f r y ’] }
>>> del d2 [’ eggs ’] #de l e t e entry based on keyword
>>> d2
{ ’ spam ’ : 2 , ’ham ’ : [’ g r i l l ’ , ’ bake ’ , ’ f r y ’] }
>>> d2 [’ brunch ’] = ’Bacon ’ #add new entry
>>> d2
{ ’ brunch ’ : ’ Bacon ’ , ’ham ’ : [’ g r i l l ’ , ’ bake ’ , ’ f r y ’

] ,
’ spam ’ : 2}

To compare with lists, adding a new object to a dictionary only
requires making a new keyword and value. Lists will return an "index

CHAPTER 8. DICTIONARIES 61

out-of-bounds" error if the offset is past the end of the list. Therefore
you must append or slice to add values to lists.

Here is a more realistic dictionary example. The following example
creates a table that maps programming language names (the keys) to
their creators (the values). You fetch a creator name by indexing on
language name:

Listing 8.5: Using a dictionary
>>> tab l e = { ’Python ’ : ’ Guido van Rossum ’ ,
. . . ’ Perl ’ : ’ Larry Wall ’ ,
. . . ’ Tcl ’ : ’ John Ousterhout ’ }
. . .
>>> language = ’Python ’
>>> cr ea t o r = tab l e [language]
>>> cr ea t o r
’Guido van Rossum ’
>>> fo r lang in tab l e . keys () : p r i n t lang , ’\ t ’ ,

t ab l e [lang]
. . .
Tcl John Ousterhout
Python Guido van Rossum
Per l Larry Wall

From this example, you might notice that the last command is
similar to string and list iteration using the for command. However,
you’ll also notice that, since dictionaries aren’t sequences, you can’t
use the standard for statement. You must use the keys() method to
return a list of all the keywords which you can then iterate through
like a normal list.

You may have also noticed that dictionaries can act like light-
weight databases. The example above creates a table, where the pro-
gramming language “column” is matched by the creator’s “row”. If
you have a need for a database, you might want to consider using a
dictionary instead. If the data will fit, you will save yourself a lot
of unnecessary coding and reduce the headaches you would get from
dealing with a full-blown database. Granted, you don’t have the flexi-
bility and power of a true database, but for quick-and-dirty solutions,
dictionaries will suffice.

CHAPTER 8. DICTIONARIES 62

8.3 Dictionary details
1. Sequence operations don’t work. As previously stated, dictio-

naries are mappings, not sequences. Because there’s no order to
dictionary items, functions like concatenation and slicing don’t
work.

2. Assigning new indexes adds entries. Keys can be created when
making a dictionary (i.e. when you initially create the dictio-
nary) or by adding new values to an existing dictionary. The
process is similar and the end result is the same.

3. Keys can be anything immutable. The previous examples showed
keys as string objects, but any non-mutable object (like lists) can
be used for a keyword. Numbers can be used to create a list-
like object but without the ordering. Tuples (covered later) are
sometimes used to make compound keys; class instances (also
covered later) that are designed not to change can also be used
if needed.

Well, we’re nearly done with Python types. The next chapter will
cover tuples, which are basically immutable lists.

8.4 Operation
Like the other chapters, a list of common dictionary operations can be
found in the appendix on page 162.

Chapter 9

Tuples

The final built-in data type is the tuple. Python tuples work ex-
actly like Python lists except they are immutable, i.e. they can’t be
changed in place. They are normally written inside parentheses to
distinguish them from lists (which use square brackets), but as you’ll
see, parentheses aren’t always necessary. Since tuples are immutable,
their length is fixed. To grow or shrink a tuple, a new tuple must be
created.

Here’s a list of common operations for tuples:

• () An empty tuple

• t1 = (0,) A one-item tuple (not an expression)

• t2 = (0, 1, 2, 3) A four-item tuple

• t3 = 0, 1, 2, 3 Another four-item tuple (same as prior line, just
minus the parenthesis)

• t3 = (’abc’, (’def’, ’ghi’)) Nested tuples

• t1[n], t3[n][j] Index

• t1[i:j], Slice

• len(tl) Length

63

CHAPTER 9. TUPLES 64

• t1 + t2 Concatenate

• t2 * 3 Repeat

• for x in t2, Iteration

• 3 in t2 Membership

The second entry shows how to create a one item tuple. Since paren-
theses can surround expressions, you have to show Python when a
single item is actually a tuple by placing a comma after the item.
The fourth entry shows a tuple without parentheses; this form can be
used when a tuple is unambiguous. However, it’s easiest to just use
parentheses than to figure out when they’re optional.

9.1 Why Use Tuples?
Tuples typically store heterogeneous data, similar to how lists typi-
cally hold homogeneous data. It’s not a hard-coded rule but simply a
convention that some Python programmers follow. Because tuples are
immutable, they can be used to store different data about a certain
thing. For example, a contact list could conceivably stored within a
tuple; you could have a name and address (both strings) plus a phone
number (integer) within on data object.

The biggest thing to remember is that standard operations like
slicing and iteration return new tuple objects. In my programming, I
like use lists for everything except when I don’t want a collection to
change. It cuts down on the number of collections to think about, plus
tuples don’t let you add new items to them or delete data. You have
to make a new tuple in those cases.

There are a few times when you simply have to use a tuple because
your code requires it. However, a lot of times you never know exactly
what you’re going to do with your code and having the flexibility of
lists can be useful.

So why use tuples? Apart from sometimes being the only way to
make your code work, there are few other reasons to use tuples:

• Tuples are processed faster than lists. If you are creating a con-
stant set of values that won’t change, and you need to simply
iterate through them, use a tuple.

CHAPTER 9. TUPLES 65

• The sequences within a tuple are essentially protected from mod-
ification. This way, you won’t accidentally change the values, nor
can someone misuse an API to modify the data. (An API is an
application programming interface. It allows programmers to
use a program without having to know the details of the whole
program.)

• Tuples can be used as keys for dictionaries. Honestly, I don’t
think I’ve ever used this, nor can I think of a time when you
would need to. But it’s there if you ever need to use it.

• Tuples are used in string formatting, by holding multiple values
to be inserted into a string. In case you don’t remember, here’s
a quick example:

Listing 9.1: String formatting with tuples
>>>val1 = " i n t e g e r "
>>>val2 = 2
>>>"The %s value i s equal to %d" % (val1 , va l2)
’The i n t e g e r va lue i s equal to 2 ’

9.2 Sequence Unpacking
So, to create a tuple, we treat it like a list (just remembering to change
the brackets).

Listing 9.2: Packing a tuple
>>>tup le = (1 , 2 , 3 , 4)

The term for this is packing a tuple, because the data is “packed
into” the tuple, all wrapped up and ready to go. So, to remove items
from a tuple you simply unpack it.

Listing 9.3: Unpacking a tuple
>>>f i r s t , second , th i rd , f our th = tup l e
>>> f i r s t
1
>>> second

CHAPTER 9. TUPLES 66

2
>>> th i rd
3
>>> four th
4

Neat, huh? One benefit of tuple packing/unpacking is that you
can swap items in-place. With other languages, you have to create the
logic to swap variables; with tuples, the logic is inherent in the data
type.

Listing 9.4: In-place variable swapping
>>> bug = "weev i l "
>>> bird = "Afr i can swallow"
>>> bug , b i rd = bird , bug
>>> bug
’ Afr i can swallow ’
>>> bird
’ weev i l ’

Tuple unpacking and in-place swapping are one of the neatest fea-
tures of Python, in my opinion. Rather than creating the logic to pull
each item from a collection and place it in its own variable, tuple un-
packing allows you to do everything in one step. In-place swapping is
also a shortcut; you don’t need to create temporary variables to hold
the values as you switch places.

9.3 Methods
Tuples have no methods. Sorry.

The best you can do with tuples is slicing, iteration, packing and
unpacking. However, Python has a neat little trick if you need more
flexibility with tuples: you can change them into lists. Simply use
the list() function call on a tuple and it magically becomes a list.
Contrarily, you can call tuple() on a list and it becomes a tuple.

Listing 9.5: Converting lists and tuples
>>> my_list = ["moose" , "Sweden" , " l lama"]

CHAPTER 9. TUPLES 67

>>> my_tuple = ("Norwegian Blue" , " parrot " , " pet
shop")

>>> tup l e (my_list)
(’moose ’ , ’ Sweden ’ , ’ l lama ’)
>>> l i s t (my_tuple)
[’ Norwegian Blue ’ , ’ par rot ’ , ’ pet shop ’]

Obviously the benefit to this is that you can arbitrarily switch be-
tween the two, depending on what you need to do. If, halfway through
your program, you realize that you need to be able to manipulate a
tuple but you don’t want it to be always modifiable, you can make a
new variable that calls the list() function on the tuple and then use
the new list as needed.

So, now that we have the fundamental building blocks down, we
can move on to how you use them in practice. However, we’ll cover
one last essential tool that all programmers need to know how to use:
files.

Chapter 10

Files

The final built-in object type of Python allows us to access files. The
open() function creates a Python file object, which links to an external
file. After a file is opened, you can read and write to it like normal.

Files in Python are different from the previous types I’ve cov-
ered. They aren’t numbers, sequences, nor mappings; they only export
methods for common file processing. Technically, files are a pre-built
C extension that provides a wrapper for the C stdio (standard in-
put/output) filesystem. If you already know how to use C files, you
pretty much know how to use Python files.

Files are a way to save data permanently. Everything you’ve
learned so far is resident only in memory; as soon as you close down
Python or turn off your computer, it goes away. You would have to
retype everything over if you wanted to use it again.

The files that Python creates are manipulated by the computer’s
file system. Python is able to use operating system specific functions
to import, save, and modify files. It may be a little bit of work to make
certain features work correctly in cross-platform manner but it means
that your program will be able to be used by more people. Of course,
if you are writing your program for a specific operating system, then
you only need to worry about the OS-specific functions.

68

CHAPTER 10. FILES 69

10.1 File Operations
To keep things consistent, here’s the list of Python file operations:

• output = open(’/tmp/spam’, ’w’) Create output file (’w’ means
write)

• input = open(’data’, ’r’) Create input file (’r’ means read)

• S = input.read() Read entire file into a single string

• S = input.read(N) Read N number of bytes (1 or more)

• S = input.readline() Read next line (through end-line marker)

• L = input.readlines() Read entire file into list of line strings

• output.write(S) Write string S onto file

• output.writelines(L) Write all line strings in list L onto file

• output.close() Manual close (or it’s done for you when automat-
ically collected)

Because Python has a built-in garbage collector, you don’t really need
to manually close your files; once an object is no longer referenced
within memory, the object’s memory space is automatically reclaimed.
This applies to all objects in Python, including files. However, it’s
recommended to manually close files in large systems; it won’t hurt
anything and it’s good to get into the habit in case you ever have to
work in a language that doesn’t have garbage collection.

10.2 Files and Streams
Coming from a Unix-background, Python treats files as a data stream,
i.e. each file is read and stored as a sequential flow of bytes. Each
file has an end-of-file (EOF) marker denoting when the last byte of
data has been read from it. This is useful because you can write a
program that reads a file in pieces rather than loading the entire file
into memory at one time. When the end-of-file marker is reached, your

CHAPTER 10. FILES 70

program knows there is nothing further to read and can continue with
whatever processing it needs to do.

When a file is read, such as with a readline() method, the end
of the file is shown at the command line with an empty string; empty
lines are just strings with an end-of-line character. Here’s an example:

Listing 10.1: End of File example
>>> myf i l e = open (’ my f i l e ’ , ’w ’) #open/ crea t e f i l e

f o r input
>>> myf i l e . wr i t e (’ h e l l o t ext f i l e ’) #wr i t e a l i n e

o f t e x t
>>> myf i l e . c l o s e ()
>>> myf i l e = open (’ my f i l e ’ , ’ r ’) #open fo r output
>>> myf i l e . r e ad l i n e () #read the l i n e back
’ h e l l o t ext f i l e ’
>>> myf i l e . r e ad l i n e ()
’ ’ #empty s t r i n g denotes end o f f i l e

10.3 Creating a File
Creating a file is extremely easy with Python. As shown in the example
above, you simply create the variable that will represent the file, open
the file, give it a filename, and tell Python that you want to write to
it.

If you don’t expressly tell Python that you want to write to a file,
it will be opened in read-only mode. This acts as a safety feature
to prevent you from accidentally overwriting files. In addition to the
standard “w” to indicate writing and “r” for reading, Python supports
several other file access modes.

• "a": Appends all output to the end of the file; does not overwrite
information currently present. If the indicated file does not exist,
it is created.

• "r": Opens a file for input (reading). If the file does not exist, an
IOError exception is raised. (Exceptions are covered in Chapter
14.)

CHAPTER 10. FILES 71

• "r+": Opens a file for input and output. If the file does not
exist, causes an IOError exception.

• "w": Opens a file for output (writing). If the file exists, it is
overwritten. If the file does not exist, one is created.

• "w+": Opens a file for input and output. If the file exists, it is
overwritten; otherwise one is created.

• "ab", "rb", "r+b", "wb", "w+b": Opens a file for binary (i.e.,
non-text) input or output. [Note: These modes are supported
only on the Windows and Macintosh platforms. Unix-like sys-
tems don’t care about the data type.]

When using standard files, most of the information will be alphanu-
meric in nature, hence the extra binary-mode file operations. Unless
you have a specific need, this will be fine for most of your tasks. In a
later section, I will talk about saving files that are comprised of lists,
dictionaries, or other data elements.

10.4 Reading From a File
If you notice in the above list, the standard read-modes produce an
I/O (input/output) error if the file doesn’t exist. If you end up with
this error, your program will halt and give you an error message, like
below:

Listing 10.2: Input/Output error example
>>> f i l e = open ("myf i l e " , " r ")
Traceback (most r e c ent c a l l l a s t) :
F i l e "<std in>" , l i n e 1 , in <module>
IOError : [Errno 2] No such f i l e or d i r e c t o r y : ’

my f i l e ’
>>>

To fix this, you should always open files in such a way as to catch
the error before it kills your program. This is called “catching the
exception”, because the IOError given is actually an exception given
by the Python interpreter. There is a chapter dedicated to exception
handling (Chapter 14) but here is a brief overview.

CHAPTER 10. FILES 72

When you are performing an operation where there is a potential
for an exception to occur, you should wrap that operation within a
try/except code block. This will try to run the operation; if an excep-
tion is thrown, you can catch it and deal with it gracefully. Otherwise,
your program crashes and burns.

So, how do you handle potential exception errors? Just give it a
try. (Sorry, bad joke.)

Listing 10.3: Catching errors, part 1
1 >>> f = open ("myf i l e " , "w")
2 >>> f . wr i t e (" h e l l o there , my text f i l e . \ nWill you

f a i l g r a c e f u l l y ?")
3 >>> f . c l o s e ()
4 >>> try :
5 . . . f i l e = open ("myf i l e " , " r ")
6 . . . f i l e . r e a d l i n e s ()
7 . . . f i l e . c l o s e ()
8 . . . except IOError :
9 . . . print "The f i l e doesn ’ t e x i s t "
10 . . .
11 [’ h e l l o there , my text f i l e . \ n ’ , ’ Wil l you f a i l

g r a c e f u l l y ? ’]
12 >>>

What’s going on here? Well, the first few lines are simply the same
as first example in this chapter, then we set up a try/except block to
gracefully open the file. The following steps apply to Listing 10.3.

1. We open the file to allow writing to it.

2. The data is written to the file.

3. The file is closed.

4. The try block is created; the lines below that are indented are
part of this block. Any errors in this block are caught by the
except statement.

5. The file is opened for reading.

CHAPTER 10. FILES 73

6. The whole file is read and output. (The readlines() method
returns a list of the lines in the file, separated at the newline
character.)

7. The file is closed again.

8. If an exception was raised when the file is opened, the except
line should catch it and process whatever is within the exception
block. In this case, it simply prints out that the file doesn’t exist.

So, what happens if the exception does occur? This:

Listing 10.4: Catching errors, part 2
>>> try :
. . . f i l e 3 = open (" f i l e 3 " , " r ")
. . . f i l e 3 . r e a d l i n e s ()
. . . f i l e 3 . c l o s e ()
. . . except IOError :
. . . print "The f i l e doesn ’ t e x i s t . Check

f i l ename . "
. . .
The f i l e doesn ’ t e x i s t . Check f i l ename .
>>>

The file “file3” hasn’t been created, so of course there is nothing to
open. Normally you would get an IOError but since you are expressly
looking for this error, you can handle it. When the exception is raised,
the program gracefully exits and prints out the information you told
it to.

One final note: when using files, it’s important to close them when
you’re done using them. Though Python has built-in garbage col-
lection, and it will usually close files when they are no longer used,
occasionally the computer “loses track” of the files and doesn’t close
them when they are no longer needed. Open files consume system
resources and, depending on the file mode, other programs may not
be able to access open files.

CHAPTER 10. FILES 74

10.5 Iterating Through Files
I’ve talked about iteration before and we’ll talk about it in later chap-
ters. Iteration is simply performing an operation on data in a sequen-
tial fashion, usually through the for loop. With files, iteration can be
used to read the information in the file and process it in an orderly
manner. It also limits the amount of memory taken up when a file is
read, which not only reduces system resource use but can also improve
performance.

Say you have a file of tabular information, e.g. a payroll file. You
want to read the file and print out each line, with “pretty” formatting
so it is easy to read. Here’s an example of how to do that. (We’re as-
suming that the information has already been put in the file. Also, the
normal Python interpreter prompts aren’t visible because you would
actually write this as a full-blown program, as we’ll see later. Finally,
the print statements are not compatible with Python 3.x.)

Listing 10.5: Inputting tabular data
try :

f i l e = open (" pay r o l l " , " r ")
except IOError :

print "The f i l e doesn ’ t e x i s t . Check f i l ename .
"

i n d i v i d u a l s = f i l e . r e a d l i n e s ()
print "Account" . l j u s t (10) , #comma preven t s

newl ine
print "Name" . l j u s t (10) ,
print "Amount" . r j u s t (10)
for record in i n d i v i d u a l s :

columns = record . s p l i t ()
print columns [0] . l j u s t (10)
print columns [1] . l j u s t (10)
print columns [2] . r j u s t (10)

f i l e . c l o s e ()

Here is how the output should be displayed on the screen (or on
paper if sent to a printer).

CHAPTER 10. FILES 75

Account Name Balance
101 Jeffrey 100.50
105 Patrick 325.49
110 Susan 210.50

A shortcut would be rewriting the for block so it doesn’t have to
iterate through the variable individuals but to simply read the file
directly, as such:

for record in f i l e :

This will iterate through the file, read each line, and assign it to
“record”. This results in each line being processed immediately, rather
than having to wait for the entire file to be read into memory. The
readlines() method requires the file to be placed in memory before it
can be processed; for large files, this can result in a performance hit.

10.6 Seeking
Seeking is the process of moving a pointer within a file to an arbitrary
position. This allows you to get data from anywhere within the file
without having to start at the beginning every time.

The seek() method can take several arguments. The first argu-
ment (offset) is starting position of the pointer. The second, optional
argument is the seek direction from where the offset starts. 0 is the
default value and indicates an offset relative to the beginning of the
file, 1 is relative to the current position within the file, and 2 is relative
to the end of the file.

Listing 10.6: File seeking
f i l e . seek (15) #move po in t e r 15 by t e s from

beg inn ing o f f i l e
f i l e . seek (12 , 1) #move po in t e r 12 by t e s from

current l o c a t i o n
f i l e . seek (−50 , 2) #move po in t e r 50 by t e s backwards

from end o f f i l e
f i l e . seek (0 , 2) #move po in t e r at end o f f i l e

The tell() method returns the current position of the pointer
within the file. This can be useful for troubleshooting (to make sure

CHAPTER 10. FILES 76

the pointer is actually in the location you think it is) or as a returned
value for a function.

10.7 Serialization
Serialization (pickling) allows you to save non-textual information to
memory or transmit it over a network. Pickling essentially takes any
data object, such as dictionaries, lists, or even class instances (which
we’ll cover later), and converts it into a byte set that can be used to
“reconstitute” the original data.

Listing 10.7: Pickling data
>>>import cP i ck l e #import cP i c k l e l i b r a r y
>>>a_l i s t = ["one" , "two" , " buckle " , "my" , " shoe "]
>>>save_ f i l e = open (" p i c k l e d_ l i s t " , "w")
>>>cP i ck l e . dump(a_l i s t , s a v e_ f i l e) #s e r i a l i z e

l i s t to f i l e
>>>f i l e . c l o s e ()
>>>open_f i l e = open (" p i c k l e d_ l i s t " , " r ")
>>>b_l i s t = cP i ck l e . load (open_f i l e)

There are two different pickle libraries for Python: cPickle and
pickle. In the above example, I used the cPickle library rather than
the pickle library. The reason is related to the information discussed in
Chapter 2. Since Python is interpreted, it runs a bit slower compared
to compiled languages, like C. Because of this, Python has a pre-
compiled version of pickle that was written in C; hence cPickle. Using
cPickle makes your program run faster.

Of course, with processor speeds getting faster all the time, you
probably won’t see a significant difference. However, it is there and
the use is the same as the normal pickle library, so you might as well
use it. (As an aside, anytime you need to increase the speed of your
program, you can write the bottleneck code in C and bind it into
Python. I won’t cover that in this book but you can learn more in the
official Python documentation.)

Shelves are similar to pickles except that they pickle objects to an
access-by-key database, much like dictionaries. Shelves allow you to

CHAPTER 10. FILES 77

simulate a random-access file or a database. It’s not a true database
but it often works well enough for development and testing purposes.

Listing 10.8: Shelving data
>>>import she l v e #import s h e l v e l i b r a r y
>>>a_l i s t = ["one" , "two" , " buckle " , "my" , " shoe "]
>>>dbase = she l v e . open (" f i l ename ")
>>>dbase ["rhyme"] = a_ l i s t #save l i s t under key name
>>>b_l i s t = dbase ["rhyme"] #r e t r i e v e l i s t

Chapter 11

Statements

Now that we know how Python uses it’s fundamental data types, let’s
talk about how to use them. Python is nominally a procedure-based
language but as we’ll see later, it also functions as an object-oriented
language. As a matter of fact, it’s similar to C++ in this aspect; you
can use it as either a procedural or OO language or combine them as
necessary.

The following is a listing of many Python statements. It’s not
all-inclusive but it gives you an idea of some of the features Python
has.

78

CHAPTER 11. STATEMENTS 79

Statement Role Examples
Assignment Creating references new_car = “Audi”
Calls Running functions stdout.write("eggs, ham,

toast\n")
Print Printing objects print “The Killer”, joke
Print() Python 3.x print function print(“Have you seen my

baseball?”)
If/elif/else Selecting actions if "python" in text: print

“yes”
For/else Sequence iteration for X in mylist: print X
While/else General loops while 1: print ’hello’
Pass Empty placeholder while 1: pass
Break, Continue Loop jumps while 1: if not line: break
Try/except/finally Catching exceptions try: action() except:

print ’action error’
Raise Trigger exception raise locationError
Import, From Module access import sys; from wx

import wizard
Def, Return Building functions def f(a, b, c=1, *d):

return a+b+c+d[0]
Class Building objects class subclass: staticData

= []

11.1 Assignment
I’ve already talked about assignment before. To reiterate, assignment
is basically putting the target name on the left of an equals sign and
the object you’re assigning to it on the right. There’s only a few things
you need to remember:

• Assignment creates object references.

– Assignment acts like pointers in C since it doesn’t copy ob-
jects, just refers to an object. Hence, you can have multiple
assignments of the same object, i.e. several different names
referring to one object.

• Names are created when first assigned

CHAPTER 11. STATEMENTS 80

– Names don’t have to be "pre-declared"; Python creates the
variable name when it’s first created. But as you’ll see, this
doesn’t mean you can call on a variable that hasn’t been
assigned an object yet. If you call a name that hasn’t been
assigned yet, you’ll get an exception error.

– Sometimes you may have to declare a name and give it an
empty value, simply as a “placeholder” for future use in your
program. For example, if you create a class to hold global
values, these global values will be empty until another class
uses them.

• Assignment can be created either the standard way (food =
"SPAM"), via multiple target (spam = ham = "Yummy"), with
a tuple (spam, ham = "lunch", "dinner"), or with a list ([spam,
ham] = ["blech", "YUM"]).

– This is another feature that Python has over other lan-
guages. Many languages require you to have a separate
entry for each assignment, even if they are all going to have
the same value. With Python, you can keep adding names
to the assignment statement without making a separate en-
try each time.

The final thing to mention about assignment is that a name can be
reassigned to different objects. Since a name is just a reference to an
object and doesn’t have to be declared, you can change it’s "value" to
anything. For example:

Listing 11.1: Variable values aren’t fixed
>>>x = 0 #x i s l i n k e d to an i n t e g e r
>>>x = "spam" #now i t ’ s a s t r i n g
>>>x = [1 , 2 , 3] #now i t ’ s a l i s t

11.2 Expressions/Calls
Python expressions can be used as statements but since the result
won’t be saved, expressions are usually used to call functions/methods
and for printing values at the interactive prompt.

CHAPTER 11. STATEMENTS 81

Here’s the typical format:

Listing 11.2: Expression examples
spam(eggs , ham) #func t i on c a l l us ing pa r en t h e s i s
spam .ham(eggs) #method c a l l us ing dot opera tor
spam #in t e r a c t i v e p r i n t
spam < ham and ham != eggs #compound expre s s i on
spam < ham < eggs #range t e s t

The range test above lets you perform a Boolean test but in a "nor-
mal" fashion; it looks just like a comparison from math class. Again,
another handy Python feature that other languages don’t necessarily
have.

11.3 Printing
Printing in Python is extremely simple. Using print writes the output
to the C stdout stream and normally goes to the console unless you
redirect it to another file.

Now is a good time to mention that Python has 3 streams for
input/output (I/O). sys.stdout is the standard output stream; it is
normally send to the monitor but can be rerouted to a file or other
location. sys.stdin is the standard input stream; it normally receives
input from the keyboard but can also take input from a file or other
location. sys.stderr is the standard error stream; it only takes errors
from the program.

The print statement can be used with either the sys.stdout or
sys.stderror streams. This allows you to maximize efficiency. For
example, you can print all program errors to a log file and normal
program output to a printer or another program.

Printing, by default, adds a space between items separated by com-
mas and adds a linefeed at the end of the output stream. To suppress
the linefeed, just add a comma at the end of the print statement:

Listing 11.3: Print example (no line feed)
print lumberjack , spam , eggs ,

To suppress the space between elements, just concatenate them
when printing:

CHAPTER 11. STATEMENTS 82

Listing 11.4: Printing concatenation
print "a" + "b"

Python 3.x replaces the simple print statement with the print()
function. This is to make it more powerful, such as allowing overload-
ing, yet it requires very little to change. Instead of using the print
statement like I have throughout the book so far, you simply refer to
it as a function. Here are some examples from the Python documen-
tation page:

Old: print "The answer is", 2*2

New: print("The answer is", 2*2)

Old: print x, #Trailing comma suppresses newline

New: print(x, end=" ") #Appends a space instead of
a newline

Old: print #Prints a newline

New: print() #You must call the function!

Old: print >‌> sys.stderr, "fatal error"

New: print("fatal error", file=sys.stderr)

Old: print (x, y) #prints repr((x, y))

New: print((x, y)) #Not the same as print(x, y)!

11.4 if Tests
One of the most common control structures you’ll use, and run into
in other programs, is the if conditional block. Simply put, you ask a
yes or no question; depending on the answer different things happen.
For example, you could say, “If the movie selected is ‘The Meaning of
Life’, then print ‘Good choice.’ Otherwise, randomly select a movie
from the database.”

CHAPTER 11. STATEMENTS 83

If you’ve programmed in other languages, the if statement works
the same as other languages. The only difference is the else/if as
shown below:

Listing 11.5: Using if statements
i f item == "magnet" :

k i t c h en_ l i s t = [" f r i d g e "]
e l i f item == "mirror " : #op t i ona l cond i t i on

bathroom_list = [" s ink "]
e l i f item == " shrubbery " : #op t i ona l cond i t i on

l and s cape_ l i s t = ["pink f lamingo "]
else : #op t i ona l f i n a l cond i t i on

print "No more money to remodel "

Having the elif (else/if) or the else statement isn’t necessary but I
like to have an else statement in my blocks. It helps clarify to me what
the alternative is if the if condition isn’t met. Plus, later revisions can
remove it if it’s irrelevant.

Unlike C, Pascal, and other languages, there isn’t a switch or case
statement in Python. You can get the same functionality by using
if/elif tests, searching lists, or indexing dictionaries. Since lists and
dictionaries are built at runtime, they can be more flexible. Here’s an
equivalent switch statement using a dictionary:

Listing 11.6: Dictionary as a switch statement
>>>cho i c e = ’ham ’
>>>print { ’ spam ’ : 1 . 25 , #a dic t i onary−based ’

sw i t ch ’
. . . ’ham ’ : 1 . 99 ,
. . . ’ eggs ’ : 0 . 99 ,
. . . ’ bacon ’ : 1 . 1 0 } [cho i c e]
1 .99

Obviously, this isn’t the most intuitive way to write this program.
A better way to do it is to create the dictionary as a separate ob-
ject, then use something like has_key() or otherwise find the value
corresponding to your choice.

To be honest, I don’t think about this way of using dictionaries
when I’m programming. It’s not natural for me yet; I’m still used to

CHAPTER 11. STATEMENTS 84

using if/elif conditions. Again, you can create your program using
if/elif statements and change them to dictionaries or lists when you
revise it. This can be part of normal refactoring (rewriting the code
to make it easier to manage or read), part of bug hunting, or to speed
it up.

11.5 while Loops
while loops are a standard workhorse of many languages. Essentially,
the program will continue doing something while a certain condition
exists. As soon as that condition is not longer true, the loop stops.

The Python while statement is, again, similar to other languages.
Here’s the main format:

Listing 11.7: while loops, part 1
while <tes t >: #loop t e s t

<code block> #loop body
else : #op t i ona l e l s e s ta tement

<code block> #run i f didn ’ t e x i t l oop wi th
break

break and continue work the exact same as in C. The equivalent of
C’s empty statement (a semicolon) is the pass statement, and Python
includes an else statement for use with breaks. Here’s a full-blown
while example loop:

Listing 11.8: while loops, part 2
while <tes t >:

<statements>
i f <tes t >: break #e x i t loop now i f t rue
i f <tes t >: continue #return to top o f loop now

i f t rue
else :

<statements> #i f we didn ’ t h i t a ’ break ’

break statements simply force the loop to quit early; when used
with nested loops, it only exits the smallest enclosing loop. continue

CHAPTER 11. STATEMENTS 85

statements cause the loop to start over, regardless of any other state-
ments further on in the loop. The else code block is ran “on the way
out” of the loop, unless a break statement causes the loop to quit early.

For those who are still confused, the next section will show how
these statements are used in a real-world program with prime numbers.

11.6 for Loops
The for loop is a sequence iterator for Python. It will work on nearly
anything: strings, lists, tuples, etc. I’ve talked about for loops before,
and we will see a lot of them in future chapters, so I won’t get into
much more detail about them. The main format is below in Listing
11.9. Notice how it’s essentially the same as a while loop.

Listing 11.9: for loops
for <target> in <object >: #ass i gn o b j e c t i tems

to t a r g e t
<statements>
i f <tes t >: break #e x i t loop now , s k i p e l s e
i f <tes t >: continue #go to top o f loop now

else :
<statements> #i f we didn ’ t h i t a ’ break ’

From Learning Python from O’Reilly publishing:

“When Python runs a for loop, it assigns items in the se-
quence object to the target, one by one, and executes the
loop body for each. The loop body typically uses the assign-
ment target to refer to the current item in the sequence,
as though it were a cursor stepping through the sequence.
Technically, the for works by repeatedly indexing the se-
quence object on successively higher indexes (starting at
zero), until an index out-of-bounds exception is raised. Be-
cause for loops automatically manage sequence indexing be-
hind the scenes, they replace most of the counter style loops
you may be used to coding in languages like C.”

In other words, when the for loop starts, it looks at the first item in
the list. This item is given a value of 0 (many programming languages

CHAPTER 11. STATEMENTS 86

start counting at 0, rather than 1). Once the code block is done doing
its processing, the for loop looks at the second value and gives it a
value of 1. Again, the code block does it’s processing and the for
loop looks at the next value and gives it a value of 2. This sequence
continues until there are no more values in the list. At that point
the for loop stops and control proceeds to the next statement in the
program.

Listing 11.10 shows a practical version of a for loop that imple-
ments break and else statements, as explained in the Python docu-
mentation.

Listing 11.10: break and else statements
>>> fo r n in range (2 , 10) :
. . . f o r x in range (2 , n) :
. . . i f n % x == 0 : #i f the remainder

o f n/x i s 0
. . . p r i n t n , ’ equals ’ , x , ’ ∗ ’ , n/x
. . . break #ex i t immediately
. . . e l s e :
. . . # loop f e l l through without f i nd i n g a

f a c t o r
. . . p r i n t n , ’ i s a prime number ’
. . .
2 i s a prime number
3 i s a prime number
4 equa l s 2 ∗ 2
5 i s a prime number
6 equa l s 2 ∗ 3
7 i s a prime number
8 equa l s 2 ∗ 4
9 equa l s 3 ∗ 3

Related to for loops are range and counter loops. The range()
function auto-builds a list of integers for you. Typically it’s used to
create indexes for a for statement but you can use it anywhere.

Listing 11.11: Using the range() function
>>>range (5) #crea t e a l i s t o f 5 numbers , s t a r t i n g

at 0

CHAPTER 11. STATEMENTS 87

[0 , 1 , 2 , 3 , 4]
>>>range (2 , 5) #s t a r t a t 2 and end at 5 (remember

the index va l u e s)
[2 , 3 , 4]
>>>range (0 , 10 , 2) #s t a r t a t 0 , end at 10 (index

va lue) , wi th an increment o f 2
[0 , 2 , 4 , 6 , 8]

As you can see, a single argument gives you a list of integers,
starting from 0 and ending at one less than the argument (because
of the index). Two arguments give a starting number and the max
value while three arguments adds a stepping value, i.e. how many
numbers to skip between each value.

Counter loops simply count the number of times the loop has been
processed. At the end of the loop, a variable is incremented to show
that the loop has been completed. Once a certain number of loops
have occurred, the loop is executed and the rest of the program is
executed.

11.7 pass Statement
The pass statement is simply a way to tell Python to continue mov-
ing, nothing to see here. Most often, the pass statement is used while
initially writing a program. You may create a reference to a func-
tion but haven’t actually implemented any code for it yet. However,
Python will be looking for something within that function. Without
having something to process, the Python interpreter will give an ex-
ception and stop when it doesn’t find anything. If you simply put a
pass statement in the function, it will continue on without stopping.

Listing 11.12: pass statements
i f va r i ab l e > 12 :

print "Yeah , that ’ s a big number . "
else : pass

CHAPTER 11. STATEMENTS 88

11.8 break and continue Statements
Already mentioned, these two statements affect the flow control within
a loop. When a particular condition is met, the break statement
“breaks” out of the loop, effectively ending the loop prematurely (though
in an expected manner). The continue statement “short circuits” the
loop, causing flow control to return to the top of the loop immediately.

I rarely use these statements but they are good to have when
needed. They help ensure you don’t get stuck in a loop forever and
also ensure that you don’t keep iterating through the loop for no good
reason.

11.9 try, except, finally and raise State-
ments

I’ve briefly touched on some of these and will talk about them more
in the Exceptions chapter. Briefly, try creates a block that attempts
to perform an action. If that action fails, the except block catches any
exception that is raised and does something about it. finally performs
some last minute actions, regardless of whether an exception was raised
or not. The raise statement manually creates an exception.

11.10 import and from Statements
These two statements are used to include other Python libraries and
modules that you want to use in your program. This helps to keep
your program small (you don’t have to put all the code within a single
module) and “isolates” modules (you only import what you need). im-
port actually calls the other libraries or modules while from makes the
import statement selective; you only import subsections of a module,
minimizing the amount of code brought into your program.

11.11 def and return Statements
These are used in functions and methods. Functions are used in
procedural-based programming while methods are used in object-oriented

CHAPTER 11. STATEMENTS 89

programming. The def statement defines the function/method. The
return statement returns a value from the function or method, allowing
you to assign the returned value to a variable.

Listing 11.13: Defining functions
>>> a = 2
>>> b = 5
>>> def math_function () :
. . . return a ∗ b
. . .
>>> product = math_function ()
>>> product
10

11.12 Class Statements
These are the building blocks of OOP. class creates a new object. This
object can be anything, whether an abstract data concept or a model
of a physical object, e.g. a chair. Each class has individual character-
istics unique to that class, including variables and methods. Classes
are very powerful and currently “the big thing” in most programming
languages. Hence, there are several chapters dedicated to OOP later
in the book.

Chapter 12

Documenting Your Code

Some of this information is borrowed from Dive Into Python, a free
Python programming book for experienced programmers. Other info
is from the Python Style Guide and the Python Enhancement Proposal
(PEP) 257. (Note that in this section, the information presented may
be contrary to the official Python guides. This information is presented
in a general format regarding docstrings and uses the conventions that
I have developed. The reader is encouraged to review the official doc-
umentation for further details.)

You can document a Python object by giving it a docstring. A
docstring is simply a triple-quoted sentence giving a brief summary of
the object. The object can be a function, method, class, etc. (In this
section, the term “function” is used to signify an actual function or a
method, class, or other Python object.)

Listing 12.1: docstring example
def bu i ldConnect ionStr ing (params) :
"""Bui ld a connect ion s t r i n g from a d i c t i ona r y o f

parameters .
Returns s t r i n g . """

As noted previously, triple quotes signify a multi-line string. Ev-
erything between the start and end quotes is part of a single string,
including carriage returns and other quote characters. You’ll see them
most often used when defining a docstring.

90

CHAPTER 12. DOCUMENTING YOUR CODE 91

Everything between the triple quotes is the function’s docstring,
which documents what the function does. A docstring, if it exists,
must be the first thing defined in a function (that is, the first thing
after the colon).

You don’t technically need to give your function a docstring, but
you should; the docstring is available at runtime as an attribute of the
function. Many Python IDEs use the docstring to provide context-
sensitive documentation, so that when you type a function name, its
docstring appears as a tooltip.

From the Python Style Guide:

“The docstring of a script should be usable as its ’usage’
message, printed when the script is invoked with incor-
rect or missing arguments (or perhaps with a "-h" option,
for "help"). Such a docstring should document the script’s
function and command line syntax, environment variables,
and files. Usage messages can be fairly elaborate (several
screenfuls) and should be sufficient for a new user to use the
command properly, as well as a complete quick reference to
all options and arguments for the sophisticated user.”

To be honest, I don’t adhere to this rule all the time. I normally
write a short statement about what the function, method, class, etc.
is supposed to accomplish. However, as my programs evolve I try to
enhance the docstring, adding what inputs it gets and what the output
is, if any.

There are two forms of docstrings: one-liners and multi-line doc-
strings. One-liners are exactly that: information that doesn’t need a
lot of descriptive text to explain what’s going on. Triple quotes are
used even though the string fits on one line to make it easy to later
expand it. The closing quotes are on the same line as the opening
quotes, since it looks better. There’s no blank line either before or
after the docstring. The docstring is a phrase ending in a period.
It describes the function’s effect as a command ("Do this", "Return
that"). It should not restate the function’s parameters (or arguments)
but it can state the expected return value, if present.

Listing 12.2: Good use of docstring
de f kos_root () :

CHAPTER 12. DOCUMENTING YOUR CODE 92

"""Return the pathname o f the KOS root d i r e c t o r y ."""
g l oba l _kos_root
i f _kos_root : r e turn _kos_root
. . .

Again, I have to admit I’m not the best about this. I usually put
the end quotes on a separate line and I have a space between the
docstring and the start of the actual code; it makes it easier to simply
add information and helps to delineate the docstring from the rest of
the code block. Yes, I’m a bad person. However, as long as you are
consistent throughout your projects, blind adherence to “the Python
way” isn’t necessary.

As a side note, it’s not totally wrong to have the end quotes on a
separate line; the multi-line docstring should (according to PEP 257)
have them that way while a one-line docstring should have the end
quotes on the same line. I’ve just gotten in the habit of using one
method when writing my docstrings so I don’t have to think about it.

Multi-line docstrings start out just like a single line docstring. The
first line is a summary but is then followed by a blank line. After
the blank line more descriptive discussion can be made. The blank
line is used to separate the summary from descriptive info for auto-
matic indexing tools. They will use the one-line summary to create a
documentation index, allowing the programmer to do less work.

When continuing your docstring after the blank line, make sure
to follow the indentation rules for Python, i.e. after the blank line
all of your docstring info is indented as far as the initial triple-quote.
Otherwise you will get errors when you run your program.

More info from the Python Style Guide:

“The docstring for a module should generally list the classes,
exceptions and functions (and any other objects) that are
exported by the module, with a one-line summary of each.
(These summaries generally give less detail than the sum-
mary line in the object’s docstring.)”

The docstring for a function or method should summarize its behavior
and document its arguments, return value(s), side effects, exceptions
raised, and restrictions on when it can be called (all if applicable).
Optional arguments should be indicated. It should be documented
whether keyword arguments are part of the interface.

CHAPTER 12. DOCUMENTING YOUR CODE 93

The docstring for a class should summarize its behavior and list the
public methods and instance variables. If the class is intended to be
subclassed, and has an additional interface for subclasses, this interface
should be listed separately (in the docstring). The class constructor
should be documented in the docstring for its __init__ method (the
“initialization” method that is invoked when the class is first called).
Individual methods should be documented by their own docstring.

If a class subclasses another class and its behavior is mostly inher-
ited from that class, its docstring should mention this and summarize
the differences. Use the verb “override” to indicate that a subclass
method replaces a superclass method and does not call the superclass
method; use the verb “extend” to indicate that a subclass method calls
the superclass method (in addition to its own behavior).

Python is case sensitive and the argument names can be used for
keyword arguments, so the docstring should document the correct ar-
gument names. It is best to list each argument on a separate line, with
two dashes separating the name from the description

If you’ve made it this far, I’ll help you out and summarize what you
just learned. Python has a documentation feature called “docstring”
that allows you to use comments to create self-documenting source
code. Several Python IDEs, such as Stani’s Python Editor (SPE), can
use these docstrings to create a listing of your source code structures,
such as classes and modules. This makes it easier on the programmer
since less work is required when you create your help files and other
program documentation. Documentation indexers can pull the doc-
strings out of your code and make a listing for you, or you could even
make your own script to create it for you. You are also able to man-
ually read the docstrings of objects by calling the __doc__ method
for an object; this is essentially what the above IDEs and indexers
are doing. Listing 12.3 shows how a docstring for Python’s random
module.

Listing 12.3: docstring for Python’s random module
>>>import random
>>>pr in t random .__doc__
Random va r i ab l e gene ra to r s .

i n t e g e r s
−−−−−−−−

CHAPTER 12. DOCUMENTING YOUR CODE 94

uniform with in range

sequences
−−−−−−−−−

pick random element
p ick random sample
generate random permutation

d i s t r i b u t i o n s on the r e a l l i n e :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

uniform
t r i a n gu l a r
normal (Gaussian)
lognormal
negat ive exponent i a l
gamma
beta
pareto
Weibull

d i s t r i b u t i o n s on the c i r c l e (ang l e s 0 to 2
p i)

−−−

c i r c u l a r uniform
von Mises

General notes on the under ly ing Mersenne Twister
core genera tor :

∗ The per iod i s 2∗∗19937−1.
∗ I t i s one o f the most e x t en s i v e l y t e s t ed

gene ra to r s in e x i s t e n c e .
∗ Without a d i r e c t way to compute N s t ep s forward ,

the semant ics o f jumpahead (n) are weakened to
simply jump to another d i s t an t s t a t e and r e l y
on the l a r g e per iod to avoid over lapp ing
sequences .

∗ The random () method i s implemented in C,

CHAPTER 12. DOCUMENTING YOUR CODE 95

execute s in a s i n g l e Python step , and i s ,
t h e r e f o r e , th r ead sa f e .

This doesn’t really tell you everything you need to know about
the module; this is simply the description of the random module. To
get a comprehensive listing of the module, you would have to type
“help(random)” at the Python interpreter prompt. Doing this will
give you 22 pages of formatted text, similar to *nix man pages, that
will tell you everything you need to know about the module.

Alternatively, if you only want to know the functions a module
provides, you can use the dir() function, as shown in Listing 12.4.

Listing 12.4: Functions for random module
>>>d i r (random)
[’BPF’ , ’LOG4’ , ’NV_MAGICCONST’ , ’RECIP_BPF’ , ’

Random’ , ’SG_MAGICCONST’ ,
’ SystemRandom ’ , ’TWOPI’ , ’WichmannHill ’ , ’

_BuiltinMethodType ’ , ’_MethodType ’ ,
’__all__ ’ , ’__builtins__ ’ , ’__doc__’ , ’__file__ ’ ,

’__name__’ , ’__package__ ’ ,
’_acos ’ , ’ _cei l ’ , ’_cos ’ , ’_e ’ , ’_exp ’ , ’ _hexl i fy

’ , ’ _inst ’ , ’ _log ’ , ’_pi ’ ,
’_random ’ , ’ _sin ’ , ’ _sqrt ’ , ’ _test ’ , ’

_test_generator ’ , ’_urandom ’ , ’_warn ’ ,
’ be tavar i a t e ’ , ’ cho ice ’ , ’ d i v i s i on ’ , ’ expovar iate

’ , ’ gammavariate ’ , ’ gauss ’ ,
’ g e t randb i t s ’ , ’ g e t s t a t e ’ , ’ jumpahead ’ , ’

lognormvar iate ’ , ’ normalvar iate ’ ,
’ pa r e tovar i a t e ’ , ’ randint ’ , ’ random ’ , ’ randrange ’ ,

’ sample ’ , ’ seed ’ , ’ s e t s t a t e ’ ,
’ s h u f f l e ’ , ’ t r i angu l a r ’ , ’ uniform ’ , ’

vonmisesvar iate ’ , ’ we i bu l l v a r i a t e ’]

Naturally, the only way to harness the power of docstrings is to
follow the style rules Python expects, meaning you have to use triple-
quotes, separate your summary line from the full-blown description,
etc. You can document your Python code without following these rules
but then it’s up to you to create a help file or whatever. I haven’t
had any problems with my docstrings yet but only because I slightly

CHAPTER 12. DOCUMENTING YOUR CODE 96

modify how they are formatted (having a space between the docstring
and code, putting end quotes on a separate line, etc.) Be careful if
you desire to not follow the Style Guide.

Not only will it make your life easier when you finish your project,
but it also makes your code easier to read and follow. (Wish the people
at my work could learn how to document their code. Even just a few
comments explaining what a function does would help. :))

Chapter 13

Making a Program

After having used it for many years now, I’ve come to find that Python
is an extremely capable language, equal in power to C++, Java, et al.
If you don’t need the "finesse" the major languages provide, I highly
recommend learning Python or another dynamic language like Ruby.
You’ll program faster with fewer errors (like memory management)
and can harness the power of a built-in GUI for rapid prototyping of
applications. You can also use these languages for quick scripts to
speed repetitive tasks. Plus, they are inherently cross-platform so you
can easily switch between operating systems or find a larger market for
your programs. Heck, Python is used extensively by Google, NASA,
and many game publishers, so it can’t be all that bad.

One of the biggest complaints people have is the forced use of white
space and indentation. But if you think about it, that’s considered a
"good coding practice"; it makes it easier to follow the flow of the
program and reduces the chance of errors. Plus, since brackets aren’t
required, you don’t have to worry about your program not working
because you forgot to close a nested if statement. After a few days of
using Python, you won’t even notice, though I imagine you’ll notice
how "sloppy" other languages look.

Now, on with the show...

97

CHAPTER 13. MAKING A PROGRAM 98

13.1 Making Python Do Something
So far I’ve talked about how Python is structured and how it differs
from other languages. Now it’s time to make some real programs.
To begin with, Python programs are comprised of functions, classes,
modules, and packages.

1. Functions are programmer created code blocks that do a specific
task.

2. Classes are object-oriented structures that I’ll talk about later;
suffice to say they are pretty powerful structures that can make
programming life easier, though they can be difficult to learn
and wield well.

3. Modules are generally considered normal program files, i.e. a file
comprised of functions/classes, loops, control statements, etc.

4. Packages are programs made up of many different modules.

In reality, I consider modules and packages to be "programs". It just
depends on how many separate files are required to make the program
run. Yes, it is possible to have a single, monolithic file that controls
the entire program but it’s usually better to have different parts in
different files. It’s actually easier to keep track of what’s going on and
you can cluster bits of code that have common goals, e.g. have a file
that holds library functions, one that handles the GUI, and one that
processes data entry.

An important module to know is the Python standard library.
There are two versions: Python 2.6 and Python 3.0. The library
is a collection of common code blocks that you can call when needed.
This means you don’t have to "rebuild the wheel" every time you want
to do something, such as calculate the tangent of a function. All you
have to do is import the portion of the standard library you need, e.g.
the math block, and then use it like regular Python code. Knowing
what’s in the standard library separates the good programmers from
the great ones, at least in my book.

That being said, let’s make a simple Python program. This pro-
gram can be made in IDLE (the standard Python programming envi-
ronment that comes with the Python install), a third-party program-
ming environment (such as SPE, Komodo, Eclipse, BoaConstructor,

CHAPTER 13. MAKING A PROGRAM 99

etc.), or a simple text editor like Window’s Notepad, vim, emacs, BBE-
dit, etc. (More programs can be found in the appendix on page 168).

Listing 13.1: First example program
def square (x) : #de f i n e the func t i on ; "x" i s the

argument
return x ∗ x #pass back to c a l l e r the

square o f a number

for y in range (1 , 11) : #cyc l e through a l i s t o f
numbers
print square (y) #pr in t the square o f a number

Listing 13.1 is about as simple as it gets. First we define the
function called square() (the parenthesis indicates that it’s a function
rather than a statement) and tell it that the argument called “x” will
be used for processing. Then we actually define what the function
will do; in this case, it will multiply “x” times itself to produce a
square. By using the keyword return, the square value will be given
back to whatever actually called the function (in this case, the print
statement).

Next we create a for loop that prints the squared value of each
number as it increases from 1 to 11. This should be fairly easy to
follow, especially with the comments off to the side. Realize that
many programs you’ll see aren’t commented this much; quite often,
the programs aren’t commented at all. I like to think that I have a
sufficient amount of documentation in my code (you’ll see later) so
that it’s pretty easy for even new programmers to figure out what’s
going on.

To run this program, simply save it with a filename, such as “first_program.py”.
Then, at the command prompt simply type “python first_program.py”.
The results should look like this:

Listing 13.2: First example program output
$python f i rst_program . py #your command prompt

by d i f f e r from "$"
1
4
9

CHAPTER 13. MAKING A PROGRAM 100

16
25
36
49
64
81
100

Let’s look at another program, this one a little more complex.

Listing 13.3: Second example program and output
def adder (∗ args) : #accept mu l t i p l e arguments

sum = args [0] #crea t e a b lank l i s t
for next in args [1 :] : #i t e r a t e through

arguments
sum = sum + next #add arguments

return sum
>>> adder (2 , 3)
5
>>> adder (4 , 5 , 56)
65
>>> adder ("spam" , " eggs ")
’ spameggs ’
>>> adder ([1 , 2 , 3] , [4 , 5 , 6])
[1 , 2 , 3 , 4 , 5 , 6]

This little program is pretty powerful, as you can see. Essentially,
it takes a variable number of arguments and either adds them or con-
catenates them together, depending on the argument type. These
arguments can be anything: numbers, strings, lists, tuples, etc.

A note about the *args keyword. This is a special feature of Python
that allows you to enter undesignated arguments and do things to
them (like add them together). The “*” is like a wildcard; it signifies
that a variable number of arguments can be given. A similar argument
keyword is **kwargs. This one is related (it takes an unlimited number
of arguments) but the arguments are set off by keywords. This way,
you can match variables to the arguments based on the keywords.
More information can be seen in Section 13.3 (Default Arguments)
below.

CHAPTER 13. MAKING A PROGRAM 101

13.2 Scope
What? You didn’t know snakes got bad breath? (I know, bad joke.)
Seriously though, scope describes the area of a program where an iden-
tifier (a name for something, like a variable) can access it’s associated
value. Scope ties in with namespaces because namespaces pretty much
define where an identifier’s scope is.

In simple terms, namespaces store information about an identifier
and it’s value. Python has three namespaces: local, global, and built-
in. When an identifier is first accessed, Python looks for it’s value
locally, i.e. it’s surrounding code block. In the example above, “x” is
defined within the function square(). Every function is assigned its
own local namespace. Functions can’t use identifiers defined in other
functions; they’re simply not seen. If a function tries to call a variable
defined in another function, you’ll get an error. If a function tried
to define a previously defined variable, you’ll just get a brand new
variable that happens to have the same name but a different value.

However, if an identifier isn’t defined locally, Python will check if
it’s in the global namespace. The global namespace is different from
the local one in that global identifiers can be used by other functions.
So if you made global variable cars_in_shop = 2, all functions in
the program can access that variable and use it as needed. So you
can define a variable in one location and have it used in multiple
places without having to make it over and over. However, this isn’t
recommended because it can lead to security issues or programming
problems. For instance, making a variable global means any function
can access them. If you start having multiple functions using the same
variable, you don’t know what is happening to the variable at any given
time; there is no guarantee its value will be what you expect it to be
when you use it.

This isn’t to say that global variables are a strict no-no. They
are useful and can make your life easier, when used appropriately.
But they can limit the scalability of a program and often lead to
unexplained logic errors, so I tend to stay away from them.

The built-in namespace is set aside for Python’s built-in functions.
(Kinda convenient, huh?) So keywords and standard function calls
like range() are already defined when the Python interpreter starts
up and you can use them "out of the box".

CHAPTER 13. MAKING A PROGRAM 102

As you may have figured out, namespaces are nested:
built-in

↪→ global
↪→ local

If an identifier isn’t found locally, Python will check the global
namespace. If it’s not there Python will check the built-in namespace.
If it still can’t find it, it coughs up an error and dies.

One thing to consider (and I touched on slightly) is that you can
hide identifiers as you go down the namespace tree. If you have
cars_in_shop = 2 defined globally, you can make a function that has
the exact same name with a different value, e.g. cars_in_shop = 15.
When the function calls this variable, it will use the value of 15 vs.
2 to calculate the result. This is another problem of global variables;
they can cause problems if you don’t have good variable names since
you may forget which variable you’re actually using.

13.3 Default Arguments
When you create a function, you can set it up to use default values
for it’s arguments, just in case the item calling it doesn’t have any
arguments. For example:

Listing 13.4: Default arguments
def per imeter (l ength = 1 , width = 1) :

return l ength ∗ width

If you want to call this particular function, you can supply it with
the necessary measurements [perimeter(15, 25)] or you can supply one
[perimeter(7)] or you can just use the defaults [perimeter()]. Each
argument is matched to the passed in values, in order, so if you’re
going to do this make sure you know which arguments are going to be
matched, i.e. if you supply just one argument, it will replace the first
default value but any other values will remain as defaults.

You can also use keyword arguments, which match arguments
based on a corresponding keyword. This way, you don’t have to worry
about the order they are given. So for the “perimeter()” example
above, you could simply say “perimeter(width = 12)”. This will make
the function use 1 for the length and 12 for the width. This is easier

CHAPTER 13. MAKING A PROGRAM 103

than remembering the order of the arguments; however, it also means
more typing for you. If you have a lot of functions with these types of
arguments, it can become tedious.

Additionally, once you give a keyword for an argument, you can’t
go back to not naming them then try to rely on position to indicate
the matchup. For example:

Listing 13.5: Default arguments and position
def abst rac t_funct ion (c o l o r = "blue " , s i z e = 30 ,

range = 40 , noodle = True) :
pass

#c a l l the func t i on
abst rac t_funct ion (" red " , noodle = False , 45 , range

= 50) #not a l l owed

Trying it call it this way will give you an error. Once you start
using keywords, you have to continue for the rest of the argument set.

That’s about it for programming with functions. They’re pretty
simple and the more examples you see, the more they’ll make sense.
Python is cool since you can mix functions and classes (with methods)
in the same module without worrying about errors. This way you
aren’t constrained to one way of programming; if a short function will
work, you don’t have to take the time to make a full-blown class with
a method to do the same thing.

If you don’t want to deal with object-oriented programming, you
can stick with functions and have a good time. However, I’ll start to
cover OOP in later chapters to show you why it’s good to know and
use. And with Python, it’s not as scary as OOP implementation in
other languages.

Chapter 14

Exceptions

I’ve talked about exceptions before but now I will talk about them in
depth. Essentially, exceptions are events that modify program’s flow,
either intentionally or due to errors. They are special events that can
occur due to an error, e.g. trying to open a file that doesn’t exist, or
when the program reaches a marker, such as the completion of a loop.
Exceptions, by definition, don’t occur very often; hence, they are the
"exception to the rule" and a special class has been created for them.

Exceptions are everywhere in Python. Virtually every module in
the standard Python library uses them, and Python itself will raise
them in a lot of different circumstances. Here are just a few examples:

• Accessing a non−existent dictionary key will raise a KeyError
exception.

• Searching a list for a non−existent value will raise a ValueError
exception.

• Calling a non−existent method will raise an AttributeError ex-
ception.

• Referencing a non−existent variable will raise a NameError ex-
ception.

• Mixing datatypes without coercion will raise a TypeError excep-
tion.

104

CHAPTER 14. EXCEPTIONS 105

One use of exceptions is to catch a fault and allow the program to
continue working; we have seen this before when we talked about files.
This is the most common way to use exceptions. When programming
with the Python command line interpreter, you don’t need to worry
about catching exceptions. Your program is usually short enough to
not be hurt too much if an exception occurs. Plus, having the excep-
tion occur at the command line is a quick and easy way to tell if your
code logic has a problem. However, if the same error occurred in your
real program, it will fail and stop working.

Exceptions can be created manually in the code by raising an ex-
ception. It operates exactly as a system-caused exceptions, except
that the programmer is doing it on purpose. This can be for a number
of reasons. One of the benefits of using exceptions is that, by their
nature, they don’t put any overhead on the code processing. Because
exceptions aren’t supposed to happen very often, they aren’t processed
until they occur.

Exceptions can be thought of as a special form of the if/elif state-
ments. You can realistically do the same thing with if blocks as you
can with exceptions. However, as already mentioned, exceptions aren’t
processed until they occur; if blocks are processed all the time. Proper
use of exceptions can help the performance of your program. The more
infrequent the error might occur, the better off you are to use excep-
tions; using if blocks requires Python to always test extra conditions
before continuing. Exceptions also make code management easier: if
your programming logic is mixed in with error-handling if statements,
it can be difficult to read, modify, and debug your program.

Here is a simple program that highlights most of the important
features of exception processing. It simply produces the quotient of 2
numbers.

Listing 14.1: Exceptions
f irst_number = raw_input ("Enter the f i r s t number . "

) #ge t s input from keyboard
sec_number = raw_input ("Enter the second number . ")
try :

num1 = f l o a t (f irst_number)
num2 = f l o a t (sec_number)
r e s u l t = num1/num2

CHAPTER 14. EXCEPTIONS 106

except ValueError : #not enough numbers entered
print "Two numbers are r equ i r ed . "

except ZeroDiv i s i onError : #t r i e d to d i v i d e by 0
print "Zero can ’ t be a denominator . "

else :
print s t r (num1) + "/" + s t r (num2) + "=" + s t r (

r e s u l t)
#a l t e r n a t i v e format
#a t u p l e i s r e qu i r ed f o r mu l t i p l e va l u e s
#pr in t ed va l u e s have f l o a t i n g numbers wi th one

decimal po in t
print "%.1 f /%.1 f=%.1 f " % (num1 , num2 , r e s u l t)

As you can see, you can have several "exception catchers" in the
same try block. You can also use the else statement at the end to
denote the logic to perform if all goes well; however, it’s not necessary.
As stated before, the whole try block could also have been written as
if/elif statements but that would have required Python to process each
statement to see if they matched. By using exceptions, the "default"
case is assumed to be true until an exception actually occurs. These
speeds up processing.

One change you could make to this program is to simply put it
all within the try block. The raw_input() variables (which capture
input from the user’s keyboard) could be placed within the try block,
replacing the "num1" and "num2" variables by forcing the user input
to a float value, like so:

Listing 14.2: User input with try statements
try :

numerator = f l o a t (raw_input ("Enter the
numerator . "))

denominator = f l o a t (raw_input ("Enter the
denominator . "))

This way, you reduce the amount of logic that has to be written,
processed, and tested. You still have the same exceptions; you’re just
simplifying the program.

Finally, it’s better to include error-checking, such as exceptions, in
your code as you program rather than as an afterthought. A special

CHAPTER 14. EXCEPTIONS 107

"category" of programming involves writing test cases to ensure that
most possible errors are accounted for in the code, especially as the
code changes or new versions are created. By planning ahead and
putting exceptions and other error-checking code into your program
at the outset, you ensure that problems are caught before they can
cause problems. By updating your test cases as your program evolves,
you ensure that version upgrades maintain compatibility and a fix
doesn’t create an error condition.

14.1 Exception Class Hierarchy
Table 14.1 shows the hierarchy of exceptions from the Python Library
Reference. When an exception occurs, it starts at the lowest level
possible (a child) and travels upward (through the parents), waiting
to be caught. This means a couple of things to a programmer:

1. If you don’t know what exception may occur, you can always
just catch a higher level exception. For example, if you didn’t
know that ZeroDivisionError from the previous example was a
"stand-alone" exception, you could have used the ArithmeticEr-
ror for the exception and caught that; as the diagram shows,
ZeroDivisionError is a child of ArithmeticError, which in turn is
a child of StandardError, and so on up the hierarchy.

2. Multiple exceptions can be treated the same way. Following on
with the above example, suppose you plan on using the ZeroDi-
visionError and you want to include the FloatingPointError. If
you wanted to have the same action taken for both errors, sim-
ply use the parent exception ArithmeticError as the exception
to catch. That way, when either a floating point or zero division
error occurs, you don’t have to have a separate case for each one.
Naturally, if you have a need or desire to catch each one sepa-
rately, perhaps because you want different actions to be taken,
then writing exceptions for each case is fine.

CHAPTER 14. EXCEPTIONS 108

Table 14.1: Exception Hierarchy
BaseException
+– SystemExit
+– KeyboardInterrupt
+– GeneratorExit
+– Exception

+– StopIteration
+– StandardError
| +– BufferError
| +– ArithmeticError
| | +– FloatingPointError
| | +– OverflowError
| | +– ZeroDivisionError
| +– AssertionError
| +– AttributeError
| +– EnvironmentError
| | +– IOError
| | +– OSError
| | +– WindowsError (Windows)
| | +– VMSError (VMS)
| +– EOFError
| +– ImportError
| +– LookupError
| | +– IndexError
| | +– KeyError
| +– MemoryError
| +– NameError
| | +– UnboundLocalError
| +– ReferenceError
| +– RuntimeError
| | +– NotImplementedError
| +– SyntaxError
| | +– IndentationError
| | +– TabError
| +– SystemError
| +– TypeError
| +– ValueError
| +– UnicodeError
| +– UnicodeDecodeError
| +– UnicodeEncodeError
| +– UnicodeTranslateError
+– Warnings (various)

CHAPTER 14. EXCEPTIONS 109

14.2 User-Defined Exceptions
I won’t spend too much time talking about this, but Python does
allow for a programmer to create his own exceptions. You probably
won’t have to do this very often but it’s nice to have the option when
necessary. However, before making your own exceptions, make sure
there isn’t one of the built-in exceptions that will work for you. They
have been "tested by fire" over the years and not only work effectively,
they have been optimized for performance and are bug-free.

Making your own exceptions involves object-oriented programming,
which will be covered in the next chapter. To make a custom exception,
the programmer determines which base exception to use as the class
to inherit from, e.g. making an exception for negative numbers or one
for imaginary numbers would probably fall under the ArithmeticError
exception class. To make a custom exception, simply inherit the base
exception and define what it will do. Listing 14.3 gives an example of
creating a custom exception:

Listing 14.3: Defining custom exceptions
import math #necessary f o r square roo t f unc t i on

class NegativeNumberError (Ar i thmet icError) :
"""Attempted improper opera t ion on nega t i v e number

. """
pass

def squareRoot (number) :
"""Computes square roo t o f number . Raises

NegativeNumberError
i f number i s l e s s than 0 . """
i f number < 0 :

raise NegativeNumberError , \
"Square root o f negat ive number not

permitted "

return math . s q r t (number)

The first line creates the custom exception NegativeNumberError,
which inherits from ArithmeticError. Because it inherits all the fea-

CHAPTER 14. EXCEPTIONS 110

tures of the base exception, you don’t have to define anything else,
hence the pass statement that signifies that no actions are to be
performed. Then, to use the new exception, a function is created
(squareRoot()) that calls NegativeNumberError if the argument value
is less than 0, otherwise it gives the square root of the number.

Chapter 15

Object Oriented
Programming

15.1 Learning Python Classes
The class is the most basic component of object-oriented programming.
Previously, you learned how to use functions to make your program do
something. Now will move into the big, scary world of Object-Oriented
Programming (OOP).

To be honest, it took me several months to get a handle on objects.
When I first learned C and C++, I did great; functions just made sense
for me. Having messed around with BASIC in the early ’90s, I realized
functions were just like subroutines so there wasn’t much new to learn.
However, when my C++ course started talking about objects, classes,
and all the new features of OOP, my grades definitely suffered.

Once you learn OOP, you’ll realize that it’s actually a pretty pow-
erful tool. Plus many Python libraries and APIs use classes, so you
should at least be able to understand what the code is doing.

One thing to note about Python and OOP: it’s not mandatory
to use objects in your code. As you’ve already seen, Python can do
just fine with functions. Unlike languages such as Java, you aren’t
tied down to a single way of doing things; you can mix functions and
classes as necessary in the same program. This lets you build the code

111

CHAPTER 15. OBJECT ORIENTED PROGRAMMING 112

in a way that works best; maybe you don’t need to have a full-blown
class with initialization code and methods to just return a calculation.
With Python, you can get as technical as you want.

15.2 How Are Classes Better?
Imagine you have a program that calculates the velocity of a car in
a two-dimensional plane using functions. If you want to make a new
program that calculates the velocity of an airplane in three dimensions,
you can use the concepts of your car functions to make the airplane
model work, but you’ll have to rewrite the many of the functions to
make them work for the vertical dimension, especially want to map
the object in a 3-D space. You may be lucky and be able to copy and
paste some of them, but for the most part you’ll have to redo much of
the work.

Classes let you define an object once, then reuse it multiple times.
You can give it a base function (called a method in OOP parlance)
then build upon that method to redefine it as necessary. It also lets
you model real-world objects much better than using functions.

For example, you could make a tire class that defines the size of the
tire, how much pressure it holds, what it’s made of, etc. then make
methods to determine how quickly it wears down based on certain
conditions. You can then use this tire class as part of a car class, a
bicycle class, or whatever. Each use of the tire class (called instances)
would use different properties of the base tire object. If the base tire
object said it was just made of rubber, perhaps the car class would
"enhance" the tire by saying it had steel bands or maybe the bike class
would say it has an internal air bladder. This will make more sense
later.

15.3 Improving Your Class Standing
Several concepts of classes are important to know.

1. Classes have a definite namespace, just like modules. Trying to
call a class method from a different class will give you an error
unless you qualify it, e.g. spamClass.eggMethod().

CHAPTER 15. OBJECT ORIENTED PROGRAMMING 113

2. Classes support multiple copies. This is because classes have
two different objects: class objects and instance objects. Class
objects give the default behavior and are used to create instance
objects. Instance objects are the objects that actually do the
work in your program. You can have as many instance objects
of the same class object as you need. Instance objects are nor-
mally marked by the keyword self, so a class method could be
Car.Brake() while a specific instance of the Brake() method
would be marked as self.Brake(). (I’ll cover this in more depth
later).

3. Each instance object has its own namespace but also inherits
from the base class object. This means each instance has the
same default namespace components as the class object, but ad-
ditionally each instance can make new namespace objects just
for itself.

4. Classes can define objects that respond to the same operations
as built-in types. So class objects can be sliced, indexed, con-
catenated, etc. just like strings, lists, and other standard Python
types. This is because everything in Python is actually a class
object; we aren’t actually doing anything new with classes, we’re
just learning how to better use the inherent nature of the Python
language.

Here’s a brief list of Python OOP ideas:

• The class statement creates a class object and gives it a name.
This creates a new namespace.

• Assignments within the class create class attributes. These at-
tributes are accessed by qualifying the name using dot syntax:
ClassName.Attribute.

• Class attributes export the state of an object and its associated
behavior. These attributes are shared by all instances of a class.

• Calling a class (just like a function) creates a new instance of
the class. This is where the multiple copies part comes in.

CHAPTER 15. OBJECT ORIENTED PROGRAMMING 114

• Each instance gets ("inherits") the default class attributes and
gets its own namespace. This prevents instance objects from
overlapping and confusing the program.

• Using the term self identifies a particular instance, allowing for
per-instance attributes. This allows items such as variables to
be associated with a particular instance.

15.4 So What Does a Class Look Like?
Before we leave this particular tutorial, I’ll give you some quick exam-
ples to explain what I’ve talked about so far. Assuming your using the
Python interactive interpreter, here’s how a simple class would look
like.

Listing 15.1: Defining a class
>>> class Hero : #de f i n e a c l a s s o b j e c t
. . . def setName (s e l f , va lue) : #de f i n e c l a s s

methods
. . . s e l f . name = value #s e l f i d e n t i f i e s a

p a r t i c u l a r in s tance
. . . def d i sp l ay (s e l f) :
. . . print s e l f . name #pr in t the data f o r a

p a r t i c u l a r in s tance

There are a few things to notice about this example:

1. When the class object is defined, there are no parenthesis at
the end; parenthesis are only used for functions and methods.
However, see Section 15.5 for a caveat.

2. The first argument in the parentheses for a class method must
be self. This is used to identify the instance calling the method.
The Python interpreter handles the calls internally. All you have
to do is make sure self is where it’s supposed to be so you don’t
get an error. Even though you must use self to identify each
instance, Python is smart enough to know which particular in-
stance is being referenced, so having multiple instances at the
same time is not a problem. (self is similar to this, which is
used in several other languages like Java).

CHAPTER 15. OBJECT ORIENTED PROGRAMMING 115

3. When you are assigning variables, like “self.name”, the variable
must be qualified with the "self" title. Again, this is used to
identify a particular instance.

So, lets make a few instances to see how this works:

Listing 15.2: Creating class instances
>>> x = Hero ()
>>> y = Hero ()
>>> z = Hero ()

Here you’ll notice that parenthesis make an appearance. This is
to signify that these are instance objects created from the Hero class.
Each one of these instances has the exact same attributes, derived from
the Hero class. (Later on I’ll show you how to customize an instance
to do more than the base class).

Now, lets add some information.

Listing 15.3: Adding data to instances
>>> x . setName ("Arthur , King o f the Br i tons ")
>>> y . setName (" S i r Lancelot , the Brave")
>>> z . setName (" S i r Robin , the Not−Quite−So−Brave−

As−Sir−Lance lot ")

These call the setName() method that sits in the Hero class.
However, as you know by now, each one is for a different instance; not
only do x, y, and z each have a different value, but the original value
in Hero is left untouched.

If you now call the display() method for each instance, you should
see the name of each hero.

Listing 15.4: Displaying instance data
>>> x . d i sp l ay ()
Arthur , King o f the Br i tons
>>> y . d i sp l ay ()
S i r Lancelot , the Brave
>>> z . d i sp l ay ()
S i r Robin , the Not−Quite−So−Brave−As−Sir−Lance lot

CHAPTER 15. OBJECT ORIENTED PROGRAMMING 116

You can change instance attributes "on the fly" simply by assigning
to self in methods inside the class object or via explicitly assigning to
instance objects.

Listing 15.5: Modifying instances
>>> x . name = " S i r Galahad , the Pure"
>>> x . d i sp l ay ()
S i r Galahad , the Pure

That’s probably enough for this lesson. I’ll cover the rest of classes
in the next chapter but this is hopefully enough to give you an idea
of how useful classes and OOP in general can be when programming.
The vast majority of languages in current use implement OOP to one
extent or another, so learning how to use classes and objects will help
you out as you gain knowledge. Thankfully Python implements OOP
in a reasonable way, so it’s relatively painless to learn in Python rather
than something like C++, at least in my experience.

15.5 “New-style” classes
Starting with Python 2.2, a new type of class was developed for Python.
This new class provided a way for programmers to create a class de-
rived, directly or indirectly, from a built-in Python type, such as a list,
string, etc.

You can make a new class like the above examples, where no paren-
thesis are used. However, you can also expressly inherit your new class
from the object class, or you can derive a new class from one of the
built-in types. Listing 15.6 shows how this would look. Deriving your
custom classes from object is a good idea, since Python 3.x only uses
the “new-style” and omitting object can cause problems. More infor-
mation can be found at Introduction To New-Style Classes In Python
and Python’s New-style Classes.

Listing 15.6: New-style classes
class NewStyleUserDef inedClass (ob j e c t) :

pass
class DerivedFromBuiltInType (l i s t) :

pass

CHAPTER 15. OBJECT ORIENTED PROGRAMMING 117

class Indirect lyDerivedFromType (DerivedFromBuiltInType) :
pass

15.6 A Note About Style
As mentioned previously, Python has a certain “style-syntax” that is
considered the “right” way to write Python programs. PEP 8 is the
document that describes all of the “approved” ways of writing. One of
these is how to identify classes, functions, methods, etc.

Classes should be written with the first letter capitalized; any
additional words in the class name should also be capitalized: class
SpamAndEggs(object). Functions and methods should be written in
lower-case, with each word separated by underscores: def bunny_vicious_bite().
Constants (variables that don’t change value) should be written in all
upper case: MAX_VALUE = 22.

There are many other stylistic ideas to be concerned about. I’ll
admit, I’m not the best about following Python’s stylistic conventions
but I try to follow them as best I can remember. Even if I don’t follow
“the Python way”, I do try to be consistent within my own programs.
My personal suggestion is to read PEP 8 and look at the source code
for different Python programs, then pick a style that works best for
you. The most important thing is to have a consistent style.

Chapter 16

More OOP

Last chapter I told you some of the basics about using Python classes
and object-oriented programming. Time to delve more into classes
and see how they make programming life better.

16.1 Inheritance
First off, classes allow you to modify a program without really making
changes to it. To elaborate, by subclassing a class, you can change
the behavior of the program by simply adding new components to it
rather than rewriting the existing components.

As we’ve seen, an instance of a class inherits the attributes of that
class. However, classes can also inherit attributes from other classes.
Hence, a subclass inherits from a superclass allowing you to make a
generic superclass that is specialized via subclasses. The subclasses can
override the logic in a superclass, allowing you to change the behavior
of your classes without changing the superclass at all.

Let’s make a simple example. First make a class:

Listing 16.1: Defining a superclass
>>>class F i r s tC l a s s : #de f i n e the s up e r c l a s s
. . . def s e tdata (s e l f , va lue) : #de f i n e methods
. . . s e l f . data = value #’ s e l f ’ r e f e r s to an

ins tance

118

CHAPTER 16. MORE OOP 119

. . . def d i sp l ay (s e l f) :

. . . print s e l f . data

. . .

Then we make a subclass:

Listing 16.2: Defining a subclass
>>>class SecondClass (F i r s tC l a s s) : #in h e r i t s from

F i r s tC l a s s
. . . def d i sp l ay (s e l f) : #red e f i n e s ’ d i s p l a y ’
. . . print "Current va lue = ’%s ’ " % s e l f . data
. . .

As you can see, SecondClass “overwrites” the display method. When
a FirstClass instance is created, all of its actions will be taken from
the methods defined in FirstClass. When a SecondClass instance is
created, it will use the inherited setdata() method from FirstClass
but the display method will be the one from SecondClass.

To make this easier to understand, here are some examples in prac-
tice.

Listing 16.3: More inheritance examples
>>>x=F i r s tC l a s s () #ins tance o f F i r s tC l a s s
>>>y=SecondClass () #ins tance o f SecondClass
>>>x . se tdata ("The boy c a l l e d Brian . ")
>>>y . se tdata (42)
>>>x . d i sp l ay ()
The boy c a l l e d Brian .
>>>y . d i sp l ay ()
Current va lue = ’ 42 ’

Both instances (x and y) use the same setdata() method from
FirstClass; x uses it because it’s an instance of FirstClass while y uses
it because SecondClass inherits setdata() from FirstClass. However,
when the display method is called, x uses the definition from First-
Class but y uses the definition from SecondClass, where display is
overridden.

Because changes to program logic can be made via subclasses, the
use of classes generally supports code reuse and extension better than

CHAPTER 16. MORE OOP 120

traditional functions do. Functions have to be rewritten to change how
they work whereas classes can just be subclassed to redefine methods.

On a final note, you can use multiple inheritance (adding more
than one superclass within the parenthesis) if you need a class that
belongs to different groups. In theory this is good because it should
cut down on extra work. For example, a person could be a chef, a
musician, a store owner, and a programmer; the person could inherit
the properties from all of those roles. But in reality it can be a real
pain to manage the multiple inheritance sets. You have to ask yourself,
“Is it really necessary that this class inherit from all of these others?”;
often the answer is, “No”.

Using multiple inheritance is considered an “advanced technique”
and therefore I won’t discuss it. Actually, I don’t use it; if I encounter a
situation where I could use it, I try and rethink the program’s structure
to avoid using it. It’s kind of like normalizing databases; you keep
breaking it down until it’s as simple as you can get it. If you still
need multiple inheritance, then I recommend getting a more advanced
Python book.

16.2 Operator Overloads
Operator overloading simply means that objects that you create from
classes can respond to actions (operations) that are already defined
within Python, such as addition, slicing, printing, etc. Even though
these actions can be implemented via class methods, using overload-
ing ties the behavior closer to Python’s object model and the object
interfaces are more consistent to Python’s built-in objects, hence over-
loading is easier to learn and use.

User-made classes can override nearly all of Python’s built-in oper-
ation methods. These methods are identified by having two underlines
before and after the method name, like this: __add__. These meth-
ods are automatically called when Python evaluates operators; if a user
class overloads the __add__ method, then when an expression has
“+” in it, the user’s method will be used instead of Python’s built-in
method.

Using an example from the Learning Python book, here is how
operator overloading would work in practice:

CHAPTER 16. MORE OOP 121

Listing 16.4: Operator overloading example
>>>class ThirdClass (SecondClass) : #is−a

SecondClass
. . . def __init__(s e l f , va lue) : #on "ThirdClass (

va lue)"
. . . s e l f . data = value
. . . def __add__(s e l f , o ther) : # on " s e l f + other

"
. . . return ThirdClass (s e l f . data + other)
. . . def __mul__(s e l f , o ther) : #on " s e l f ∗ o ther "
. . . s e l f . data = s e l f . data ∗ other
. . .
>>>a = ThirdClass ("abc") #new __init__ c a l l e d
>>>a . d i sp l ay () #inh e r i t e d method
Current va lue = ’ abc ’
>>>b = a + "xyz" #new __add__ ca l l e d : makes a

new ins tance
>>>b . d i sp l ay ()
Current va lue = ’ abcxyz ’
>>>a∗3 #new __mul__ c a l l e d : changes in s tance in−

p lace
>>>a . d i sp l ay ()
Current va lue = ’ abcabcabc ’

ThirdClass is technically a subclass of SecondClass but it doesn’t
override any of SecondClass’ methods. If you wanted, you could put
the methods from ThirdClass in SecondClass and go from there. How-
ever, creating a new subclass allows you flexibility in your program.

When a new instance of ThirdClass is made, the __init__ method
takes the instance-creation argument and assigns it to self.data. Third-
Class also overrides the “+” and “*” operators; when one of these is
encountered in an expression, the instance object on the left of the
operator is passed to the self argument and the object on the right
is passed to other. These methods are different from the normal way
Python deals with “+” and “*” but they only apply to instances of
ThirdClass. Instances of other classes still use the built-in Python
methods.

One final thing to mention about operator overloading is that you

CHAPTER 16. MORE OOP 122

can make your custom methods do whatever you want. However,
common practice is to follow the structure of the built-in methods.
That is, if a built-in method creates a new object when called, your
overriding method should too. This reduces confusion when other
people are using your code. Regarding the example above, the built-
in method for resolving “*” expressions creates a new object (just
like how the “+” method does), therefore the overriding method we
created should probably create a new object too, rather than changing
the value in place as it currently does. You’re not obligated to “follow
the rules” but it does make life easier when things work as expected.

16.3 Class Methods
Instance methods (which is what we’ve been using so far) and class
methods are the two ways to call Python methods. As a matter of
fact, instance methods are automatically converted into class methods
by Python.

Here’s what I’m talking about. Say you have a class:

Listing 16.5: Class methods, part 1
class Pr intC la s s :

def printMethod (s e l f , input) :
print input

Now we’ll call the class’ method using the normal instance method
and the “new” class method:

Listing 16.6: Class methods, part 2
>>>x = Pr intC la s s ()
>>>x . printMethod ("Try spam ! ") #ins tance method
Try spam !
>>>Pr intCla s s . printMethod (x , "Buy more spam ! ") #

c l a s s method
Buy more spam !

So, what is the benefit of using class methods? Well, when using
inheritance you can extend, rather than replace, inherited behavior by
calling a method via the class rather than the instance.

Here’s a generic example:

CHAPTER 16. MORE OOP 123

Listing 16.7: Class methods and inheritance
>>>class Super :
. . . def method (s e l f) :
. . . print "now in Super . method"
. . .
>>>class Subc las s (Super) :
. . . def method (s e l f) : #over r i d e method
. . . print " s t a r t i n g Subc las s . method" #

new ac t i on s
. . . Super . method (s e l f) #de f a u l t ac t i on
. . . print " ending Subc las s . method"
. . .
>>>x = Super () #make a Super in s tance
>>>x . method () #run Super . method
now in Super . method
>>>x = Subc las s () #make a Subc l a s s in s tance
>>>x . method () #run Subc l a s s . method which c a l l s

Super . method
s t a r t i n g Subc las s . method
now in Super . method
ending Subc las s . method

Using class methods this way, you can have a subclass extend the
default method actions by having specialized subclass actions yet still
call the original default behavior via the superclass. Personally, I
haven’t used this yet but it is nice to know that it’s available if needed.

16.4 Have you seen my class?
There is more to classes than I have covered here but I think I’ve
covered most of the basics. Hopefully you have enough knowledge to
use them; the more you work with them the easier they are to figure
out. I may have mentioned it before, but it took me almost six months
to get my head around using classes. Objects were a new area for me
and I couldn’t figure out how everything worked. It didn’t help that
my first exposure to them was Java and C++; my two textbooks just
jumped right into using objects and classes without explaining the

CHAPTER 16. MORE OOP 124

how’s and why’s of them. I hope I did better explaining them than
my text books did.

There are several “gotchas” when using classes, such as learning
the difference between “is-a” and “has-a” relationships, but most of
them are pretty obvious, especially when you get error messages. If
you really get stumped, don’t be afraid to ask questions. Remember,
we were all beginners once and so many of us have encountered the
same problem before.

Chapter 17

Databases

Databases are popular for many applications, especially for use with
web applications or customer-oriented programs. There is a caveat
though; databases don’t have the performance that file-system based
applications do.

Normal files, such as text files, are easy to create and use; Python
has the tools built-in and it doesn’t take much to work with files.
File systems are more efficient (most of the time) in terms of perfor-
mance because you don’t have the overhead of database queries or
other things to worry about. And files are easily portable between
operating systems (assuming you aren’t using a proprietary format)
and are often editable/usable with different programs.

Databases are good when discrete "structures" are to be operated
on, e.g. a customer list that has phone numbers, addresses, past or-
ders, etc. A database can store a lump of data and allow the user or
developer to pull the necessary information, without regard to how the
data is stored. Additionally, databases can be used to retrieve data
randomly, rather than sequentially. For pure sequential processing, a
standard file is better.

Obviously, there is more to the file-system vs. database battle than
what I just covered. But, generally speaking, you will be better suited
using a file-system structure than a database unless there is a reason
to use a database. My personal recommendation is that, unless you
are creating a server-based application, try using a local file rather

125

CHAPTER 17. DATABASES 126

than a database. If that doesn’t work, then you can try a database.

17.1 How to Use a Database
A database (DB) is simply a collection of data, placed into an arbitrary
structured format. The most common DB is a relational database;
tables are used to store the data and relationships can be defined
between different tables. SQL (Structured Query Language) is the
language used to work with most DBs. (SQL can either be pronounced
as discrete letters "S-Q-L" or as a word "sequel". I personally use
"sequel".)

SQL provides the commands to query a database and retrieve or
manipulate information. The format of a query is one of the most pow-
erful forces when working with DBs; an improper query won’t return
the desired information, or worse, it will return the wrong information.
SQL is also used to input information into a DB.

While you can interact directly with a DB using SQL, as a pro-
grammer you have the liberty of using Python to control much of the
interactions. You will still have to know SQL so you can populate and
interact with the DB, but most of the calls to the DB will be with the
Python DB-API (database application programming interface).

17.2 Working With a Database
This book is not intended to be a database or SQL primer. However,
I will provide you with enough information to create simple database
and an application that uses it. First I will cover the basic principles
of databases and SQL queries then we will use Python to make and
manipulate a small database.

First off, consider a database to be one or more tables, just like
a spreadsheet. The vertical columns comprise different fields or cat-
egories; they are analogous to the fields you fill out in a form. The
horizontal rows are individual records; each row is one complete record
entry. Here’s a pictorial summary, representing a customer list. The
table’s name is "Customers_table":

CHAPTER 17. DATABASES 127

Index Last_Name First_Name Address City State
0 Johnson Jack 123 Easy St. Anywhere CA
1 Smith John 312 Hard St. Somewhere NY

The only column that needs special explanation is the Index field.
This field isn’t required but is highly recommended. You can name
it anything you want but the purpose is the same. It is a field that
provides a unique value to every record; it’s often called the primary
key field. The primary key is a special object for most databases;
simply identifying which field is the primary key will automatically
increment that field as new entries are made, thereby ensuring a unique
data object for easy identification. The other fields are simply created
based on the information that you want to include in the database.

To make a true relational database, you have one table that refers
to one or more tables in some fashion. If I wanted to make a order-
entry database, I could make another table that tracks an order and
relate that order to the above customer list, like so:

Key Item_title Price Order_Number Customer_ID
0 Boots 55.50 4455 0
1 Shirt 16.00 4455 0
2 Pants 33.00 7690 0
3 Shoes 23.99 3490 1
4 Shoes 65.00 5512 1

This table is called "Orders_table". This table shows the various
orders made by each person in the customer table. Each entry has a
unique key and is related to Customers_table by the Customer_ID
field, which is the Index value for each customer.

17.3 Using SQL to Query a Database
To query a table using SQL, you simply tell the database what it
is your are trying to do. If you want to get a list of the customers
or a list of orders in the system, just select what parts of the table
you want to get. (Note: the following code snippets are not Python
specific; additionally, SQL statements are not case-sensitive but are
usually written in uppercase for clarity.)

CHAPTER 17. DATABASES 128

Listing 17.1: Returning data with SQL
SELECT ∗ FROM Customers_table

The result should pretty look just like the table above; the com-
mand simply pulls everything from Customers_table and prints it.
The printed results may be textual or have grid lines, depending on
the environment you are using but the information will all be there.

You can also limit the selection to specific fields, such as:

Listing 17.2: Limiting results with SQL
SELECT Last_name , First_name FROM Customers_table
SELECT Address FROM Customers_table WHERE State == "NY"

The second SQL query above uses the "WHERE" statement, which
returns a limited set of information based on the condition specified.
If you used the statement as written, you should only get back the
addresses of customers who live in New York state. Obviously this is
a good idea because it limits the results you have to process and it
reduces the amount of memory being used. Many system slowdowns
can be traced to bad DB queries that return too much information
and consume too many resources.

To combine the information from two tables, i.e. to harness the
power of relational databases, you have to join the tables in the query.

Listing 17.3: Joining database tables
SELECT Last_name , First_name , Order_Number FROM

Customers_table , Orders_table WHERE
Customers_table . Index = Orders_table .
Customer_ID

This should give you something that looks like this:

Listing 17.4: SQL query results
Johnson Jack 4455
Johnson Jack 4455
Johnson Jack 7690
Smith John 3490
Smith John 5512

Again, the formatting may be different depending on the system
you are working with but it’s the information that counts.

CHAPTER 17. DATABASES 129

17.4 Python and SQLite
Starting with v2.5, Python has included SQLite, a light-weight SQL
library. SQLite is written in C, so it’s quick. It also creates the
database in a single file, which makes implementing a DB fairly simple;
you don’t have to worry about all the issues of having a DB spread
across a server. However, it does mean that SQLite is better suited to
either development purposes or small, stand-alone applications. If you
are planning on using your Python program for large-scale systems,
you’ll want to move to a more robust database, such as PostgreSQL
or MySQL.

However, this doesn’t mean SQLite isn’t useful. It’s good for pro-
totyping your application before you throw in a full-blown DB; that
way you know your program works and any problems are most likely
with the DB implementation. It’s also good for small programs that
don’t need a complete DB package with its associated overhead.

So, how do you use SQLite with Python? I’ll show you.

17.5 Creating an SQLite DB
Because SQLite is built into Python, you simply import it like any
other library. Once imported, you have to make a connection to it;
this creates the database file. A cursor is the object within SQLite
that performs most of the functions you will be doing with the DB.

Listing 17.5: Creating a SQLite database
import s q l i t e 3 #SQLite v3 i s the ve r s i on

cu r r en t l y inc luded wi th Python
connect ion = s q l i t e 3 . connect ("Hand_tools . db") #

The . db ex t ens i on i s op t i ona l
cur so r = connect ion . cu r so r ()

#Al t e rna t i v e DB crea ted only in memory
#mem_conn = s q l i t e 3 . connect (" :memory : ")
#cursor = mem_conn. cursor ()

cur so r . execute ("""CREATE TABLE Tools

CHAPTER 17. DATABASES 130

(id INTEGER PRIMARY KEY,
name TEXT,
s i z e TEXT,
p r i c e INTEGER) """)

for item in (
(None , "Knife " , "Small " , 15) , #The end comma

i s r e qu i r ed to separa t e t u p l e i tems
(None , "Machete" , "Medium" , 35) ,
(None , "Axe" , "Large" , 55) ,
(None , "Hatchet " , "Small " , 25) ,
(None , "Hammer" , "Small " , 25)
(None , " Screwdr iver " , "Small " , 10) ,
(None , "Prybar" , "Large" , 60) ,
) : cu r so r . execute ("INSERT INTO Tools VALUES (? ,

? , ? , ?) " , item)

connect ion . commit () #Write data to database
cur so r . c l o s e () #Close database

The above code makes a simple, single-table database of a collec-
tion of hand tools. Notice the question marks used to insert items into
the table. The question marks are used to prevent a SQL injection
attack, where a SQL command is passed to the DB as a legitimate
value. The DB program will process the command as a normal, le-
gitimate command which could delete data, change data, or otherwise
compromise your DB. The question marks act as a substitution value
to prevent this from occurring.

You’ll also note the ability to create a DB in memory. This is
good for testing, when you don’t want to take the time to write to
disc or worry about directories. If you have enough memory, you
can also create the DB completely in memory for your final product;
however, if you lose power or otherwise have memory problems, you
lose the complete DB. I only use a RAM DB when I’m testing the
initial implementation to make sure I have the syntax and format
correct. Once I verify it works the way I want, then I change it to
create a disc-based DB.

CHAPTER 17. DATABASES 131

17.6 Pulling Data from a DB
To retrieve the data from an SQLite DB, you just use the SQL com-
mands that tell the DB what information you want and how you want
it formatted.

Listing 17.6: Retrieving data from SQLite
cur so r . execute ("SELECT name , s i z e , p r i c e FROM Tools ")
too l sTup le = cur so r . f e t c h a l l ()
for tup l e in too l sTup le :

name , s i z e , p r i c e = tup l e #unpack the t u p l e s
item = ("%s , %s , %d" % (name , s i z e , p r i c e))
print item

Which returns the following list:

Listing 17.7: Returned data
Knife , Small , 15
Machete , Medium , 35
Axe , Large , 55
Hatchet , Small , 25
Hammer , Small , 25
Screwdriver , Small , 10
Prybar , Large , 60
Knife , Small , 15
Machete , Medium , 35
Axe , Large , 55
Hatchet , Small , 25
Hammer , Small , 25
Screwdriver , Small , 10
Prybar , Large , 60

Alternatively, if you want to print out pretty tables, you can do
something like this:

Listing 17.8: “Pretty printing” returned data
cur so r . execute ("SELECT ∗ FROM Tools ")
for row in cur so r :

print "−" ∗ 10

CHAPTER 17. DATABASES 132

print "ID : " , row [0]
print "Name : " , row [1]
print " S i z e : " , row [2]
print "Pr i ce : " , row [3]
print "−" ∗ 10

Which gives you this:

Listing 17.9: Output of “pretty printed” data
−−−−−−−−−−
ID : 1
Name : Knife
S i z e : Small
Pr i ce : 15
−−−−−−−−−−
−−−−−−−−−−
ID : 2
Name : Machete
S i z e : Medium
Pr ice : 35
−−−−−−−−−−
−−−−−−−−−−
ID : 3
Name : Axe
S i z e : Large
Pr i ce : 55
−−−−−−−−−−
−−−−−−−−−−
ID : 4
Name : Hatchet
S i z e : Small
Pr i ce : 25
−−−−−−−−−−
−−−−−−−−−−
ID : 5
Name : Hammer
S i z e : Small
Pr i ce : 25
−−−−−−−−−−

CHAPTER 17. DATABASES 133

−−−−−−−−−−
ID : 6
Name : Screwdr iver
S i z e : Small
Pr i ce : 10
−−−−−−−−−−
−−−−−−−−−−
ID : 7
Name : Prybar
S i z e : Large
Pr i ce : 60
−−−−−−−−−−
−−−−−−−−−−
ID : 8
Name : Knife
S i z e : Small
Pr i ce : 15
−−−−−−−−−−
−−−−−−−−−−
ID : 9
Name : Machete
S i z e : Medium
Pr ice : 35
−−−−−−−−−−
−−−−−−−−−−
ID : 10
Name : Axe
S i z e : Large
Pr i ce : 55
−−−−−−−−−−
−−−−−−−−−−
ID : 11
Name : Hatchet
S i z e : Small
Pr i ce : 25
−−−−−−−−−−
−−−−−−−−−−
ID : 12

CHAPTER 17. DATABASES 134

Name : Hammer
S i z e : Small
Pr i ce : 25
−−−−−−−−−−
−−−−−−−−−−
ID : 13
Name : Screwdr iver
S i z e : Small
Pr i ce : 10
−−−−−−−−−−
−−−−−−−−−−
ID : 14
Name : Prybar
S i z e : Large
Pr i ce : 60
−−−−−−−−−−

Obviously, you can mess around with the formatting to present
the information as you desire, such as giving columns with headers,
including or removing certain fields, etc.

17.7 SQLite Database Files
SQLite will try to recreate the database file every time you run the
program. If the DB file already exists, you will get an “OperationalEr-
ror” exception stating that the file already exists. The easiest way to
deal with this is to simply catch the exception and ignore it.

Listing 17.10: Dealing with existing databases
try :

cu r so r . execute ("CREATE TABLE Foo (id INTEGER
PRIMARY KEY, name TEXT)")

except s q l i t e 3 . Operat iona lError :
pass

This will allow you to run your database program multiple times
(such as during creation or testing) without having to delete the DB
file after every run.

CHAPTER 17. DATABASES 135

You can also use a similar try/except block when testing to see if
the DB file already exists; if the file doesn’t exist, then you can call
the DB creation module. This allows you to put the DB creation code
in a separate module from your “core” program, calling it only when
needed.

Chapter 18

Distributing Your
Program

This will be a short chapter because distributing your Python program
to others is generally pretty easy. The main way for users to get your
program is by getting the raw .py files and saving them to a storage
location. Assuming the user has Python installed on his system, all he
has to do is call your Python program like normal, e.g. python foo.py.
This is the same method you have been using in this book and it is
the easiest way to deal with Python files.

Another way of distributing your source code is providing the byte-
code compiled versions; the files that end with .pyc that are created
after you first run your program. These compiled versions are not
the programmer-readable files of your program; they are the machine-
ready files that are actually used by the computer. If you want a
modicum of security with your program but don’t want the whole
hassle of dealing with obfuscation or other ways of hiding your work,
you may want to use .pyc files.

If you want to distribute your program like a “normal” Python
application, i.e. invoking it with the setup.py command, you can use
Python’s distutils module. I won’t go into specifics on this utility;
suffice to say that many installable Python programs use this same
method to package themselves. It helps to keep everything together

136

CHAPTER 18. DISTRIBUTING YOUR PROGRAM 137

and reduce the number of individual files a user needs to keep track
of when running your program. More information about distutils can
be found at the Python distutils documentation.

Alternatively, you can package your program as a Python egg.
Eggs are analogous to the JAR files in Java; they are simply a way of
bundling information with a Python project, enabling run-time check-
ing of program dependencies and allowing a program to provide plu-
gins for other projects. A good example of a Python program that
uses eggs is Django, the web framework project. The nice thing about
Python eggs is that you can use the “Easy Install” package manager,
which takes care of finding, downloading, and installing the egg files
for you.

For people who don’t have (or want) Python installed on their
systems, you can compile your program to a binary executable, e.g. a
.exe file. For Unix and Linux systems, you can use the Freeze utility
that is included with the Python language. Note that, for the most
part, this is really unnecessary because Python is nearly always a
default installed application on *nix operating systems and, generally
speaking, people who are using these systems can probably handle
working with Python files. But, the capability is there if you want to
do it.

For Windows, which doesn’t have Python installed by default, you
are more likely to want to create a standard executable file (though you
can still offer the raw .py files for the more adventurous or power users).
The utility for this is called py2exe. py2exe is a utility that con-
verts Python scripts to normal executable Windows programs. Again,
Python isn’t required to be installed on the computer so this is one of
the most popular ways to create Python programs for Windows. How-
ever, the file size can be considerably larger for a converted program
vs. the raw .py files.

Finally, for Mac users, you can use the py2app utility. It functions
just like py2exe, creating a compiled version of your Python program
for Mac users. OS X, the current operating system for Macs, includes
Python with the OS install so technically you could just distribute the
source code. But most Mac users don’t know how to use Python so
creating a “normal” program for them is probably preferable.

Chapter 19

Python 3

As mentioned at the beginning of this book, the newest version of
Python is version 3.2, as of this writing. Python 2.7 is the final version
for Python 2.x; no new releases for Python 2 will be released.

Python 3.x is the future of the language. It is not fully backwards-
compatible with Python 2.x, breaking several features in order clean
up the language, make some things easier, and in general improve the
consistency of the language. (More information can be found at the
Python web site).

As mentioned previously, most *nix distributions and Mac OS X
include Python 2.x by default. The vast majority of information on
the Internet is geared towards Python 2.x, including packages and
libraries. So, unless you are sure that all users of your programs are
using Python 3.x, you may want to learn 2.x.

This is a short summary of the major changes between the Python
2.x versions and Python 3.2, the latest version. Not all changes to the
language are mentioned here; more comprehensive information can be
found at the official Python web site or the “What’s New in Python
3.2” page. Some of the information here has already been talked about
previously in this book; it is mentioned here again for easier reference.

• The print statement has been replaced with a print() function,
with keyword arguments to replace most of the special syntax of
the old print statement.

138

CHAPTER 19. PYTHON 3 139

• Certain APIs don’t use lists as return types but give views or iter-
ators instead. For example, the dictionary methods dict.keys(),
dict.items(), and dict.values() return views instead of lists.

• Integers have only one type now (“long” integers for those who
know them in other languages)

• The default value for division (e.g. 1/2) is to return a float value.
To have truncating behavior, i.e. return just the whole number,
you must use a double forward slash: 1//2.

• All text (a.k.a. “strings”) is Unicode; 8-bit strings are no longer.

• “!=” is the only way to state “not equal to”; the old way (“<>”)
has been removed.

• Calling modules from within functions is essentially gone. The
statement “from module import *” can only be used at the mod-
ule level, not in functions.

• String formatting has been changed, removing the need for the
“%” formatting operator.

• The exception APIs have been changed to clean them up and
add new, powerful features.

• raw_input() has been changed to just input().

• The C language API has been modified, such as removing sup-
port for several operating systems.

If you need to port Python 2.x code to version 3.0, there is a simple
utility called “2to3” that will automatically correct and modify the
legacy code to the new version. Generally speaking, you simply call
the 2to3 program and let it run; it is robust enough to handle the vast
majority of code changes necessary. However, the library is flexible
enough to allow you to write your own “fixer” code if something doesn’t
work correctly.

Part II

Graphical User Interfaces

140

Chapter 20

Overview of Graphical
User Interfaces

20.1 Introduction
Graphical user interfaces (GUIs) are very popular for computers nowa-
days. Rarely will you find a program that doesn’t have some sort of
graphical interface to use it. Most non-graphical programs will be
found in *nix operating systems; even then, those programs are usu-
ally older ones where the programmer didn’t want (or see the need
for) a graphical interface.

Unless you are a power-user or feel very comfortable using command-
line tools, you will interact with your computer via a graphical inter-
face. A graphical interface entails the program creating what is com-
monly called a “window”. This window is populated by “widgets”, the
basic building blocks of a GUI. Widgets are the pieces of a GUI that
make it usable, e.g. the close button, menu items, sliders, scrollbars,
etc. Basically, anything the user can see is a widget.

Because most people are used to using windows to manipulate their
computer, it’s worthwhile to know how to create a GUI. Though it’s
easier and often faster to make a command-line program, very few
people will use it. Humans are visual creatures and people like “flashy”
things. Hence, putting a nice graphical interface on your program

141

CHAPTER 20. OVERVIEW OF GRAPHICAL USER INTERFACES142

makes it easier for people to use, even if it’s faster/easier to use the
command line.

There are many GUI development tools available. Some of the
most popular are Qt, GTK, wxWidgets, and .NET. All but MFC
are cross-platform, meaning you can develop your program in any
operating system and know that it will work in any other operating
system. However, some programs created in Microsoft’s Visual Studio
will only run on Microsoft Windows.

20.2 Popular GUI Frameworks
Though this tutorial will focus on wxPython, a GUI library based
on wxWidgets, I will give a brief rundown of several other graphical
libraries. As a disclaimer, the only GUI libraries I am familiar with
are wxPython and Tkinter; some information below may be incorrect
or outdated but is correct to the best of my knowledge.

• Qt- Based upon technology from Trolltech (and subsequently
purchased by Nokia), Qt is one of the most popular libraries
for cross-platform development. It is the main graphical library
for the KDE desktop. Qt has several licenses available, with the
main ones being for commercial and open-source use. If your ap-
plication will be commercial, i.e. closed-source, you have to pay
for a license to use it. If your application will be open-sourced,
then you can use the GPL license; however, you will be unable
to commercialize your program without “upgrading” the license.
Qt includes a graphical layout utility, allowing the user to drag
& drop graphical widgets for quick design of the interface. Alter-
natively, the developer can hand-code the interface layout. Qt
also support non-GUI features, including SQL database access,
XML parsing, network support, et al. Qt is written in C++ but
a Python binding is available via PyQt.

• GTK+- Originally created for development of the GIMP image
software (GTK stands for GIMP Tool Kit), GTK+ evolved into
the graphical library that powers the GNOME desktop. Many
of the applications written for KDE will run on GNOME and
vice versa. GTK+ is open-sourced under the GPL license. This

CHAPTER 20. OVERVIEW OF GRAPHICAL USER INTERFACES143

was intentional by the creators. When Qt was chosen to power
the KDE desktop, Trolltech had a proprietary license for it. Be-
cause this goes against the Free Software philosophy, GTK was
created to allow people to use the GNOME desktop and GTK
applications as open-source software. GTK doesn’t necessarily
have a built-in drag & drop interface, though the wxGlade utility
provides this functionality. The original GTK was written in C
while GTK+ is written in C++, using OOP practices. PyGTK
is the Python binding for GTK+.

• wxPython- wxPython is a Python-implementation of wxWid-
gets, meaning Python programs interact with Python wrappers
of the underlying C/C++ code. wxWidgets is a general purpose
GUI library originally developed for use with C/C++ programs.
wxPython is Free/Open Source Software (FOSS), licensed under
the GPL. Programs written with wxPython use the native wid-
gets of an operating system, so the programs don’t look out of
place.

• Tkinter- A graphical library created for the Tcl/Tk language.
Tkinter is the default GUI library for Python development due
to it’s inclusion in the core Python language. Tkinter programs
don’t necessarily “blend in” with other applications, depending
on operating system. Some of the widgets can look like older
versions of Windows, which some developers feel is an issue. The
Tkinter toolset is fairly limited but easy to learn, making it easy
to make simple GUI programs in Python.

• MFC/.NET- These two libraries were created by Microsoft for
Windows development. MFC is the GUI library used with C++
programs while .NET is used with .NET languages, such as C#
and VB.NET. Unlike the previous libraries mentioned, MFC is
not cross-platform. Some open-source projects, like Mono, have
been started to use the .NET framework on non-Windows com-
puters but some additional effort is required to ensure true cross-
platform compatibility. MFC is considered a legacy framework;
.NET is the new way of creating Windows programs. IronPython
is a .NET enabled version of Python, for those interested in us-
ing Python with Visual Studio. The Visual Studio development

CHAPTER 20. OVERVIEW OF GRAPHICAL USER INTERFACES144

suites include the GUI libraries required for widget layout.

20.3 Before You Start
For purposes of this book, I will be talking about wxPython. Though
it requires you to download additional software (unlike Tkinter which
is included with Python), it has more widgets available to you (making
it more versatile) and it allows you to use graphical layout tools, like
wxGlade, to design the GUI. Otherwise you have to manually place
each item in the code, run the program to see how it looks, and go
back into your code to make changes. Graphical layout tools let you
place widgets wherever you want; when done, you “run” the program
which creates the source code template that auto-populates all the
widgets. Then you only have to write the underlying logic that make
your program work.

Before you start creating a GUI with wxPython, you need to know
how to program in Python. This may seem pretty obvious but some
people may expect wxPython is self-contained; no additional knowl-
edge required. If you don’t already have Python installed on your
computer, you will have to download and install it from the Python
web site; this is most common for Windows users. Linux and Mac
users already have Python installed.

Additionally, you should have made a few command-line programs
in Python so you know how to handle user input and terminal output.
My personal suggestion for learning wxPython is to take a command-
line program and turn it into a graphical program. This way, you
already know how the program works and what the necessary input
and expected output should be. All you need to do is create the
graphical elements.

I will make a plug for my preference of Python development envi-
ronments: SPE. SPE (Stani’s Python Editor) is an integrated devel-
opment environment that provides code completion (reduces typing),
integrated Python shell (for testing bits of code before you put them
into your program), Python calltips (displays expected arguments for
the method/function), and various helper tools like notes and todo
lists.

Additionally, SPE includes wxPython, which is nice because it was

CHAPTER 20. OVERVIEW OF GRAPHICAL USER INTERFACES145

created with wxPython. It also includes wxGlade, so you can make
quick GUIs without having to install wxGlade separately.

Chapter 21

A Simple Graphical Dice
Roller

I’m going to show a simple wxPython program to highlight the various
portions you should be familiar with. But first, I’m giving you a
program that I wrote a few years ago so you can see how a command-
line program can be easily converted to a GUI program.

Listing 21.1 is a program I created that turns the command-line
dice roller in Appendix E.1 into a GUI. You’ll notice that there are
comments in the program indicating that the program was generated
by wxGlade. You want to make sure any additions or changes to
the wxGlade-generated code is outside of the begin/end comments.
Whenever you make changes to your program using wxGlade, the
code within those sections is generated by wxGlade; any code you put
in there will be overwritten.

Note: the following program isn’t fully functional. It displays the
required information but only the 1d6 button works. The reader is
encouraged to revise the code to make the other buttons to work.

Listing 21.1: Graphical Dice Rolling Program
1 #!/ usr / b in /env python
2 # −∗− coding : i so −8859−15 −∗−
3 # generated by wxGlade 0 . 6 . 2 on Fri Aug 29

09 :24 :23 2008

146

CHAPTER 21. A SIMPLE GRAPHICAL DICE ROLLER 147

4
5 import wx
6 from d i c e_ r o l l e r import mult iDie
7 # beg in wxGlade : ex t racode
8 # end wxGlade
9
10 class MyFrame (wx . Frame) :
11 def __init__ (s e l f , ∗ args , ∗∗kwds) :
12 # beg in wxGlade : MyFrame .__init__
13 kwds [" s t y l e "] = wx .

DEFAULT_FRAME_STYLE
14 wx . Frame . __init__ (s e l f , ∗ args ,

∗∗kwds)
15 s e l f . panel_1 = wx . Panel (s e l f , −1

)
16 s e l f . label_1 = wx . Stat i cText (

s e l f . panel_1 , −1, "Dice ␣Rol l ␣
Simulator ")

17 s e l f . text_ctr l_1 = wx . TextCtrl (
s e l f . panel_1 , −1, "")

18 s e l f . button_1 = wx . Button (s e l f .
panel_1 , −1, "1d6")

19 s e l f . button_2 = wx . Button (s e l f .
panel_1 , −1, "1d10")

20 s e l f . button_3 = wx . Button (s e l f .
panel_1 , −1, "2d6")

21 s e l f . button_4 = wx . Button (s e l f .
panel_1 , −1, "2d10")

22 s e l f . button_5 = wx . Button (s e l f .
panel_1 , −1, "3d6")

23 s e l f . button_6 = wx . Button (s e l f .
panel_1 , −1, "d100")

24
25 s e l f . __set_properties ()
26 s e l f . __do_layout ()
27
28 s e l f . Bind (wx .EVT_BUTTON, s e l f .

pressed1d6 , s e l f . button_1)

CHAPTER 21. A SIMPLE GRAPHICAL DICE ROLLER 148

29 # end wxGlade
30
31 def __set_properties (s e l f) :
32 # beg in wxGlade : MyFrame . __set_properties
33 s e l f . S e tT i t l e ("frame_1")
34 # end wxGlade
35
36 def __do_layout (s e l f) :
37 # beg in wxGlade : MyFrame . __do_layout
38 s izer_1 = wx . BoxSizer (wx .

VERTICAL)
39 gr id_sizer_1 = wx . Gr idS i ze r (4 ,

2 , 0 , 0)
40 gr id_sizer_1 .Add (s e l f . label_1 ,

0 , 0 , 0)
41 gr id_sizer_1 .Add (s e l f .

text_ctrl_1 , 0 , 0 , 0)
42 gr id_sizer_1 .Add (s e l f . button_1 ,

0 , 0 , 0)
43 gr id_sizer_1 .Add (s e l f . button_2 ,

0 , 0 , 0)
44 gr id_sizer_1 .Add (s e l f . button_3 ,

0 , 0 , 0)
45 gr id_sizer_1 .Add (s e l f . button_4 ,

0 , 0 , 0)
46 gr id_sizer_1 .Add (s e l f . button_5 ,

0 , 0 , 0)
47 gr id_sizer_1 .Add (s e l f . button_6 ,

0 , 0 , 0)
48 s e l f . panel_1 . S e tS i z e r (

gr id_sizer_1)
49 s i zer_1 .Add (s e l f . panel_1 , 1 , wx .

EXPAND, 0)
50 s e l f . S e tS i z e r (s i zer_1) s i zer_1

. Fi t (s e l f)
51 s e l f . Layout ()
52 # end wxGlade
53

CHAPTER 21. A SIMPLE GRAPHICAL DICE ROLLER 149

54 def pressed1d6 (s e l f , event) :
55 """ Ro l l one 6−s i ded d i e . """
56
57 s e l f . text_ctr l_1 . SetValue ("")

#c l e a r s any va lue in t e x t
box

58 va l = s t r (mult iDie (1 , 1))
59 s e l f . text_ctr l_1 . SetValue (va l)
60
61 # end o f c l a s s MyFrame
62
63 i f __name__ == "__main__" :
64 app = wx . PySimpleApp (0)
65 wx . In i tAl l ImageHandle r s ()
66 frame_1 = MyFrame (None , −1, "")
67 app . SetTopWindow (frame_1)
68 frame_1 . Show ()
69 app . MainLoop ()

Now we will walk through the wxDiceRoller program, discussing the
various sections. Line 1 is the normal “she-bang” line added to Python
programs for use in Unix-like operating systems. It simply points
towards the location of the Python interpreter in the computer system.

Lines 2, 3, 6, and 7 are auto-generated by wxGlade. Lines 6 and 7
delineate any additional code you want your program to use; normally
you won’t have anything here.

Lines 4 and 5 import necessary modules for the program. Obvi-
ously, wx is the library for wxPython; dice_roller is the program I
wrote (found in Appendix E.1). Line 5 imports just the multiDie()
function from the dice_roller program, rather than the entire program.

Line 10 creates the class that will create the GUI. wxGlade allows
you specify the name for your program’s objects; the default for the
class is MyFrame. The more complex your program, the more classes
you will want to have in your program. However, wxGlade creates one
class (normally) and simply populates it with the elements you add.
This particular class is a child of the wx.Frame class, one of the most
common arrangements you will use.

Line 11 initializes the class, defining initial values and creating the

CHAPTER 21. A SIMPLE GRAPHICAL DICE ROLLER 150

widgets that are seen by the user. It’s a standard Python initialization
statement, accepting various arguments and keywords so you can pass
in whatever information you need. The arguments for this program
will be discussed later.

Line 12 is another default comment generated by wxGlade, simply
telling you where the auto-generated code starts so you don’t “step”
on it.

Line 13 is one of the keywords passed into the class, in this case
causing the frame to be created in the default style, which adds several
standard widgets such as minimize, maximize, and close buttons.

Line 14 is simply the initialization statement for the wx.Frame
class. What you have essentially done is make an instance of wx.Frame
by creating the MyFrame class. However, before MyFrame can be
created/used, an instance of wx.Frame has to be created first.

Line 15 creates a panel within the frame. A panel is the most
common item for placing widgets in. You can add widgets to the
frame directly but using a panel adds certain inherent features, such
as allowing the Tab key to cycle through fields and buttons.

Lines 16-23 simply add widgets to the panel. These particular
widgets simply create the dice rolling form by creating a label, an
output field, and the “dice” buttons.

Lines 24 & 25 simply call their respective methods, which are ex-
plained below.

Line 28 binds the clicking of the 1d6 button to the event that
calculates and returns the “die roll”.

Line 29 indicates the end of the auto-generated wxGlade code.
Lines 31-34 are the set_properties() method. This method sets

the properties of your program, in this case the title of the window
that is created upon running the program.

Lines 36-52 are the do_layout() method. This method actually
places the various widgets within the window upon creation.

Line 38 creates a sizer, an object that holds other objects and can
automatically resize itself as necessary. When using wxGlade, this
sizer is automatically created when creating your frame.

Line 39 is a different type of sizer, this one making a grid. The
buttons and other widgets are added to the grid in a sequential fashion,
starting in the top left cell. This is good to know when you are hand-
coding a grid or trying to auto-populate a grid from a list. Lines 40-47

CHAPTER 21. A SIMPLE GRAPHICAL DICE ROLLER 151

simply add the various widgets to the grid’s cells.
Lines 48 & 49 add the sizers to their respective containers, in this

case the BoxSizer (Line 48) and the panel (Line 49).
Line 50 calls the Fit method, which tells the object (sizer_1) to

resize itself to match the minimum size it thinks it needs.
Line 51 lays out and displays the widgets when the window is

created.
Lines 54-59 comprise the method that calculates the die roll and

returns that value to the output field in the window.
Line 61 is the end of the “core” logic, i.e. the part that creates the

GUI and calculates the results when a button is pushed.
Lines 63-69 come from standard Python programming. This block

tests whether the program is being imported into another program or
is being run by itself. This gives the developer a chance to modify the
program’s behavior based on how it is being executed. In this case, if
the program is being called directly, the code is configured to create an
instance of the MyFrame class and run it. The MainLoop() method,
when invoked, waits for user input and responds appropriately.

This “initial” program is quite long, longer than you would nor-
mally expect for an introductory program. Most other tutorials or
introductory books would start out with a much smaller program (not
more than 10-20 lines). I decided to use this program because the
actual logic flow is quite simple; most of the code is taken up by wid-
get creation and placement. It’s not only a functional and reasonably
useful program, it shows a relatively wide range of wxPython code.

You can compare this program to the command-line program in
the Appendix to see what changes are made for a graphical version.
You can see that much of the program is taken up with the “fluff” of
widgets. Obviously, if a program isn’t expected to be used often by
regular users, there is little need to make a GUI for it. You’ll probably
spend more time getting the widgets placed “just so” than you will
designing the logic to make it work. Graphical tools like wxGlade can
make it easier but it still takes time.

Chapter 22

What Can wxPython Do?

wxPython is a stable, mature graphical library. As such, it has widgets
for nearly everything you plan on creating. Generally speaking, if you
can’t do it with wxPython, you’ll probably have to create a custom
GUI, such as used in video games.

I won’t cover everything wxPython can do for you; looking through
the demonstration code that comes with wxPython will show you all
the current widgets included in the toolkit. The demonstration also
shows the source code in an interactive environment; you can test
different ideas within the demonstration code and see what happens
to the resulting GUI.

wxPython has several standard, built-in frames and dialogs. Frames
include a multiple document interface (having files of the same type
contained within the parent window, rather than separate windows)
and a wizard class for making simple user walk-throughs.

Included dialogs range from simple “About” boxes and file selec-
tions to color pickers and print dialogs. Simple modifications to the
source code makes them plug & play-ready for your application.

The main group of objects you will be using are the core widgets
and controls. These are what you will use to build your GUI. This
category includes things like buttons, check boxes, radio buttons, list
boxes, menus, labels, and text boxes. As before, the wxPython demo
shows how to use these items.

There are also many different tools shown in the wxPython demo.

152

CHAPTER 22. WHAT CAN WXPYTHON DO? 153

Most of them you will probably never use, but it’s nice to know wx-
Python includes them and there is some source code for you to work
with.

One thing I’ve noticed, however, is that the sample demonstrations
don’t always show how to best to use the widgets. For example, the
wizard demo certainly displays a simple wizard with previous/next
buttons. But it doesn’t have any functionality, such as accepting in-
put from the user for file names or dynamically changing the data
displayed. This makes it extremely difficult to make your applications
work well if you are coding off the beaten path, such as writing your
program without the help of wxGlade or incorporating many different
widgets into a program.

If you really want to learn wxPython, you pretty much have to
either keep messing with the sample programs to figure out how they
work and how to modify them to your needs, or look for a book about
wxPython. Unfortunately, there are very few books on the subject
and they can be hard to find. The Amazon website is probably your
best bet. Alternatively, you can move to Qt, which has very extensive
documention since it is marketed towards commercial developers.

Appendix A

String Methods

This list is an abbreviated version of the Python Language Library’s
section of string methods. It lists the most common string methods
you’ll probably be using.

• str.capitalize()

– Return a copy of the string with only its first character
capitalized.

• str.center(width[, fillchar])

– Return centered in a string of length width. Padding is
done using the specified fillchar (default is a space).

• str.count(sub[, start[, end]])

– Return the number of non-overlapping occurrences of sub-
string sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

• str.endswith(suffix[, start[, end]])

– Return True if the string ends with the specified suffix, oth-
erwise return False. suffix can also be a tuple of suffixes to
look for. With optional start, test beginning at that posi-
tion. With optional end, stop comparing at that position.

154

APPENDIX A. STRING METHODS 155

• str.expandtabs([tabsize])

– Return a copy of the string where all tab characters are
replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset
to zero after each newline occurring in the string. If tabsize
is not given, a tab size of 8 characters is assumed. This
doesn’t understand other non-printing characters or escape
sequences.

• str.find(sub[, start[, end]])

– Return the lowest index in the string where substring sub is
found, such that sub is contained in the range [start, end].
Optional arguments start and end are interpreted as in slice
notation. Return -1 if sub is not found. An alternative
method is index(), which uses the same parameters but
raises ValueError when the substring isn’t found.

• str.format(format_string, *args, **kwargs)

– Perform a string formatting operation. The format_string
argument can contain literal text or replacement fields de-
limited by braces {}. Each replacement field contains either
the numeric index of a positional argument, or the name of a
keyword argument. Returns a copy of format_string where
each replacement field is replaced with the string value of
the corresponding argument. >‌>‌> "The sum of 1 + 2 is
{0}".format(1+2) ’The sum of 1 + 2 is 3’

– See Format String Syntax for a description of the various
formatting options that can be specified in format strings.

– This method of string formatting is the new standard in
Python 3.x, and should be preferred to the % formatting
described in the text. However, if you are using a version
of Python before 2.6, you will have to use the % method.

• str.isalnum()

APPENDIX A. STRING METHODS 156

– Return true if all characters in the string are alphanumeric
and there is at least one character, false otherwise.

• str.isalpha()

– Return true if all characters in the string are alphabetic and
there is at least one character, false otherwise.

• str.isdigit()

– Return true if all characters in the string are digits and
there is at least one character, false otherwise.

• str.islower()

– Return true if all cased characters in the string are lowercase
and there is at least one cased character, false otherwise.

• str.isspace()

– Return true if there are only whitespace characters in the
string and there is at least one character, false otherwise.

• str.isupper()

– Return true if all cased characters in the string are upper-
case and there is at least one cased character, false other-
wise.

• str.join(seq)

– Return a string which is the concatenation of the strings in
the sequence seq. The separator between elements is the
string providing this method.

• str.ljust(width[, fillchar])

– Return the string left justified in a string of length width.
Padding is done using the specified fillchar (default is a
space). The original string is returned if width is less than
len(s). There is also a right justify method [rjust()] with
the same parameters.

APPENDIX A. STRING METHODS 157

• str.lower()

– Return a copy of the string converted to lowercase.

• str.lstrip([chars])

– Return a copy of the string with leading characters re-
moved. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars
argument defaults to removing whitespace. The chars ar-
gument is not a prefix; rather, all combinations of its val-
ues are stripped. Naturally there is an opposite method
[rstrip()] that removes the trailing characters.

• str.replace(old, new[, count])

– Return a copy of the string with all occurrences of substring
old replaced by new. If the optional argument count is
given, only the first count occurrences are replaced. str.rfind(sub[,
start[, end]]) Return the highest index in the string where
substring sub is found, such that sub is contained within
s[start,end]. Optional arguments start and end are inter-
preted as in slice notation. Return -1 on failure. str.rindex(sub[,
start[, end]]) Like rfind() but raises ValueError when the
substring sub is not found.

• str.split([sep[, maxsplit]])

– Return a list of the words in the string, using sep as the de-
limiter string. If maxsplit is given, at most maxsplit splits
are done (thus, the list will have at most maxsplit+1 ele-
ments). If maxsplit is not specified, then there is no limit
on the number of splits (all possible splits are made).

– If sep is given, consecutive delimiters are not grouped to-
gether and are deemed to delimit empty strings (for ex-
ample, ’1„2’.split(’,’) returns [’1’, ”, ’2’]). The sep argument
may consist of multiple characters (for example, ’1<>2<>3’.split(’<>’)
returns [’1’, ’2’, ’3’]). Splitting an empty string with a spec-
ified separator returns [”].

APPENDIX A. STRING METHODS 158

– If sep is not specified or is None, a different splitting al-
gorithm is applied: runs of consecutive whitespace are re-
garded as a single separator, and the result will contain no
empty strings at the start or end if the string has leading
or trailing whitespace. Consequently, splitting an empty
string or a string consisting of just whitespace with a None
separator returns [].

– For example, ’ 1 2 3 ’.split() returns [’1’, ’2’, ’3’], and ’ 1 2 3
’.split(None, 1) returns [’1’, ’2 3 ’]. str.splitlines([keepends])
Return a list of the lines in the string, breaking at line
boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

• str.startswith(prefix[, start[, end]])

– Return True if string starts with the prefix, otherwise return
False. prefix can also be a tuple of prefixes to look for. With
optional start, test string beginning at that position. With
optional end, stop comparing string at that position.

• str.strip([chars])

– Return a copy of the string with the leading and trailing
characters removed. The chars argument is a string spec-
ifying the set of characters to be removed. If omitted or
None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all
combinations of its values are stripped.

• str.swapcase()

– Return a copy of the string with uppercase characters con-
verted to lowercase and vice versa.

• str.title()

– Return a titlecased version of the string: words start with
uppercase characters, all remaining cased characters are
lowercase. There is also a method to determine if a string
is a title [istitle()].

APPENDIX A. STRING METHODS 159

• str.upper()

– Return a copy of the string converted to uppercase.

Appendix B

List Methods

Even though this is a complete list of methods, more information about
Python lists can be found at the Python web site’s discussion of data
structures.

• list.append(x)

– Add an item to the end of the list; equivalent to a[len(a):]
= [x].

• list.extend(L)

– Extend the list by appending all the items in the given list;
equivalent to a[len(a):] = L.

• list.insert(i, x)

– Insert an item at a given position. The first argument is the
index of the element before which to insert, so a.insert(0,
x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

• list.remove(x)

– Remove the first item from the list whose value is x. It is
an error if there is no such item.

160

APPENDIX B. LIST METHODS 161

• list.pop([i])

– Remove the item at the given position in the list, and return
it. If no index is specified, a.pop() removes and returns the
last item in the list. (The square brackets around the i in
the method signature denote that the parameter is optional,
not that you should type square brackets at that position.
You will see this notation frequently in the Python Library
Reference.)

• list.index(x)

– Return the index in the list of the first item whose value is
x. It is an error if there is no such item.

• list.count(x)

– Return the number of times x appears in the list. list.sort()
Sort the items of the list, in place.

• list.reverse()

– Reverse the elements of the list, in place.

Appendix C

Dictionary operations

Full documentation of these operations and dictionaries in general can
be found in the Python documentation.

• len(d)

– Return the number of items in the dictionary d.

• d[key]

– Return the item of d with key key. Raises a KeyError if
key is not in the map.

• d[key] = value

– Set d[key] to value.

• del d[key]

– Remove d[key] from d. Raises a KeyError if key is not in
the map.

• key in d

– Return True if d has a key key, else False.

• key not in d

162

APPENDIX C. DICTIONARY OPERATIONS 163

– Equivalent to not key in d.

• clear()

– Remove all items from the dictionary.

• copy()

– Return a shallow copy of the dictionary.

• fromkeys(seq[, value])

– Create a new dictionary with keys from seq and values set
to value.

– fromkeys() is a class method that returns a new dictionary.
value defaults to None.

• get(key[, default])

– Return the value for key if key is in the dictionary, else
default. If default is not given, it defaults to None, so that
this method never raises a KeyError.

• items()

– Return a copy of the dictionary’s list of (key, value) pairs.
Note: Keys and values are listed in an arbitrary order which
is non-random, varies across Python implementations, and
depends on the dictionary’s history of insertions and dele-
tions. If items(), keys(), values(), iteritems(), iterkeys(),
and itervalues() are called with no intervening modifica-
tions to the dictionary, the lists will directly correspond.
This allows the creation of (value, key) pairs using zip():
pairs = zip(d.values(), d.keys()). The same relationship
holds for the iterkeys() and itervalues() methods: pairs =
zip(d.itervalues(), d.iterkeys()) provides the same value for
pairs. Another way to create the same list is pairs = [(v,
k) for (k, v) in d.iteritems()].

• iteritems()

APPENDIX C. DICTIONARY OPERATIONS 164

– Return an iterator over the dictionary’s (key, value) pairs.
See the note for dict.items().

• iterkeys()

– Return an iterator over the dictionary’s keys. See the note
for dict.items().

• itervalues()

– Return an iterator over the dictionary’s values. See the note
for dict.items().

• keys()

– Return a copy of the dictionary’s list of keys. See the note
for dict.items().

• pop(key[, default])

– If key is in the dictionary, remove it and return its value,
else return default. If default is not given and key is not in
the dictionary, a KeyError is raised.

• popitem()

– Remove and return an arbitrary (key, value) pair from the
dictionary.

– popitem() is useful to destructively iterate over a dictionary,
as often used in set algorithms. If the dictionary is empty,
calling popitem() raises a KeyError. setdefault(key[, de-
fault]) If key is in the dictionary, return its value. If not,
insert key with a value of default and return default. default
defaults to None.

• update([other])

– Update the dictionary with the key/value pairs from other,
overwriting existing keys. Return None.

APPENDIX C. DICTIONARY OPERATIONS 165

– update() accepts either another dictionary object or an
iterable of key/value pairs (as a tuple or other iterable
of length two). If keyword arguments are specified, the
dictionary is then is updated with those key/value pairs:
d.update(red=1, blue=2).

• values()

– Return a copy of the dictionary’s list of values. See the note
for dict.items().

Appendix D

Operators

Table D.1 is a list of the operators found in Python. These include
standard mathematics functions, logical operators, etc.

Table D.1: Python Operators

Symbol Type What It Does
+ Math Addition
- Math Subtraction
* Math Multiplication
/ Math Division (floating point)
// Math Division (truncation)
** Math Powers
% Modulos Returns the remainder from division
<‌< Shift Left bitwise shift
>‌> Shift Right bitwise shift
& Logical And
| Logical Or
^ Logical Bitwise XOR
~ Logical Bitwise Negation
< Comparison Less than
> Comparison Greater than
== Comparison Exactly equal to

166

APPENDIX D. OPERATORS 167

!= Comparison Not equal to
>= Comparison Greater than or equal to
<= Comparison Less than or equal to
= Assignment Assign a value
+= Assignment Add and assign
-= Assignment Subtract and assign
*= Assignment Multiply and assign
/= Assignment Divide and assign
//= Assignment Truncate divide and assign
**= Assignment Power and assign
%= Assignment Modulus and assign
>‌> Assignment Right shift and assign
<‌< Assignment Left shift and assign
And Boolean
Or Boolean
Not Boolean

Appendix E

Sample programs

All of the programs in this section are written for Python 2.6 or be-
low. However, these programs are available electronically from this
book’s web site in both Python 2.x and Python 3.x versions. If you
downloaded the torrent file, then all the software versions are included.

E.1 Dice rolling simulator
Listing D.1 is one of the first programs I ever wrote. I have the source
code listed in its entirety to show the various features that I suggest
should be included in a well-written program. Take a look at it and I
will discuss the various sections afterward.

Listing E.1: Random dice roller
1 #####################################
2 #Dice_ro l l e r . py
3 #
4 #Purpose : A random number genera t ion program tha t

s imu la t e s
5 # var ious d i ce r o l l s .
6 #Author : Cody Jackson
7 #Date : 4/11/06
8 #
9 #Copyright 2006 Cody Jackson

168

APPENDIX E. SAMPLE PROGRAMS 169

10 #This program i s f r e e so f tware ; you can
r e d i s t r i b u t e i t and/or modify i t

11 #under the terms o f the GNU General Pub l i c License
as pub l i s h ed by the Free

12 #Software Foundation ; e i t h e r ve r s i on 2 o f the
License , or (at your opt ion)

13 #any l a t e r ve r s i on .
14 #
15 #This program i s d i s t r i b u t e d in the hope t ha t i t

w i l l be u s e fu l , but
16 #WITHOUT ANY WARRANTY; wi thout even the imp l i ed

warranty o f
17 #MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU
18 #General Pub l i c License f o r more d e t a i l s .
19 #
20 #You shou ld have r e c e i v ed a copy o f the GNU

General Pub l i c License
21 #along wi th t h i s program ; i f not , wr i t e to the

Free Sof tware Foundation ,
22 #Inc . , 59 Temple Place , Su i t e 330 , Boston , MA

02111−1307 USA
23 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 #Version 1.0
25 # I n i t i a l b u i l d
26 #Version 2.0
27 # Added suppor t f o r AD&D 1 s t e d i t i o n d i ce (d4 ,

d8 , d12 , d20)
28 #####################################
29
30 import random #randin t
31
32 def randomNumGen(cho i c e) :
33 """Get a random number to s imu la t e a d6 , d10 ,

or d100 r o l l . """
34
35 i f cho i c e == 1 : #d6 r o l l
36 d i e = random . rand int (1 , 6)

APPENDIX E. SAMPLE PROGRAMS 170

37 e l i f cho i c e == 2 : #d10 r o l l
38 d i e = random . rand int (1 , 10)
39 e l i f cho i c e == 3 : #d100 r o l l
40 d i e = random . rand int (1 , 100)
41 e l i f cho i c e == 4 : #d4 r o l l
42 d i e = random . rand int (1 , 4)
43 e l i f cho i c e == 5 : #d8 r o l l
44 d i e = random . rand int (1 , 8)
45 e l i f cho i c e == 6 : #d12 r o l l
46 d i e = random . rand int (1 , 12)
47 e l i f cho i c e == 7 : #d20 r o l l
48 d i e = random . rand int (1 , 20)
49 else : #simple error message
50 print "Shouldn ’ t be here . I nva l i d cho i c e "
51 return d i e
52
53 def mult iDie (dice_number , die_type) :
54 """Add d ie r o l l s t oge ther , e . g . 2d6 , 4d10 , e t c

. """
55
56 #−−− I n i t i a l i z e v a r i a b l e s
57 f i n a l_ r o l l = 0
58 va l = 0
59
60 while va l < dice_number :
61 f i n a l_ r o l l += randomNumGen(die_type)
62 va l += 1
63 return f i n a l_ r o l l
64
65 def t e s t () :
66 """Test c r i t e r i a to show s c r i p t works . """
67
68 _1d6 = mult iDie (1 , 1) #1d6
69 print "1d6 = " , _1d6 ,
70 _2d6 = mult iDie (2 , 1) #2d6
71 print "\n2d6 = " , _2d6 ,
72 _3d6 = mult iDie (3 , 1) #3d6
73 print "\n3d6 = " , _3d6 ,

APPENDIX E. SAMPLE PROGRAMS 171

74 _4d6 = mult iDie (4 , 1) #4d6
75 print "\n4d6 = " , _4d6 ,
76 _1d10 = mult iDie (1 , 2) #1d10
77 print "\n1d10 = " , _1d10 ,
78 _2d10 = mult iDie (2 , 2) #2d10
79 print "\n2d10 = " , _2d10 ,
80 _3d10 = mult iDie (2 , 2) #3d10
81 print "\n3d10 = " , _3d10 ,
82 _d100 = mult iDie (1 , 3) #d100
83 print "\n1d100 = " , _d100 ,
84
85 i f __name__ == "__main__" : #run t e s t () i f c a l l i n g

as a separa t e program
86 t e s t ()

The first section (lines 1-28) is the descriptive header and license in-
formation. It gives the name of the file, a purpose statement, author,
date created, and the license under which it is distributed. In this
case, I am releasing it under the GNU General Public License, which
basically means that anyone is free to take and use this software as
they see fit as long as it remains Free (as in freedom) under the terms
of the GPL. For convenience, I have included a copy of the GPL in
Appendix F. Obviously, you are free to choose whatever type of license
to use with your software, whether release it as open-source or lock it
down as completely proprietary.

Line 30 imports the random module from the Python standard
library. This is used to call the randint() function to do the random-
ization part of the program. Lines 32-51 are where the random number
generator is made. The user determines what type of die to roll, e.g.
a 6-sided or a 10-sided, and it returns a random number. The random
number is an integer based on the range of values as determined by
the user. As currently written, this generator program can be used
with several different games, from board games to role-playing games.

Lines 53-63 define the function that actually returns a value sim-
ulating a dice roll. It receives the die type and the quantity to “roll”
from the user then calls the random number function in the previous
block. This function has a while loop that will continue to roll dice
until the number specified by the user is reached, then it returns the

APPENDIX E. SAMPLE PROGRAMS 172

final value.
Lines 65-83 constitute a test() function. This is a common feature

of Python programs; it allows the programmer to verify that the pro-
gram is working correctly. For example, if this program was included
in a computer game but the game appeared to be having problems
with dice rolls, by invoking this program by itself the test() function
is automatically called (by lines 85 & 86). Thus, a developer could
quickly determine if the results from this program make sense and
decide if it was the cause of the game’s problems.

If this program is called separately without arguments, the test()
function is called by lines 85 & 86 and displays the various results.
However, if the program is called with arguments, i.e. from the com-
mand line or as part of a separate program, then lines 85 & 86 are
ignored and the test() function is never called.

This is a very simple program but it features many of the basic
parts of Python. It has if/else statements, a while loop, returns, func-
tions, module imports, et al. Feel free to modify this program or try
your hand at writing a similar program, such as a card dealing simu-
lator. The more comfortable you are at writing simple programs, the
easier it will be when your programs get larger and encompass more
features.

E.2 Temperature conversion

Listing E.2: Fahrenheit to Celsius converter
#####################################
#Create a char t o f f a h r enh e i t to c e l s i u s

convers ions from 0 to 100 degrees .
#Author : Cody Jackson
#Date : 4/10/06
#####################################

def f ah r enhe i t (c e l s i u s) :
"""Converts c e l s i u s temperature to f a h r enh e i t

"""

APPENDIX E. SAMPLE PROGRAMS 173

fahr = (9 . 0 / 5 . 0) ∗ c e l s i u s + 32
return f ahr

#−−−Create t a b l e
print " Ce l s i u s | Fahrenheit \n" #header

for temp_c in range (0 , 101) :
temp_f = fah r enhe i t (temp_c)
print temp_c , " | %.1 f \n" % temp_f

Listing E.2 is a short, simple program to convert Fahrenheit to Celsius.
Again, it was one of the first programs I wrote. This one isn’t nearly
as complicated as Listing D.1 but you can see that it gets the job
done. I didn’t include the GPL information in this one since Listing
E.1 already showed you what it looks like.

This particular program doesn’t take any user input; it simply
creates a table listing the values from 0 to 100 degrees Celsius. As
practice, you might want to convert it to accept user input and display
only one temperature conversion.

E.3 Game character attribute generator
Listing E.3 shows a short program I wrote to generate character at-
tributes for a role-playing game. It’s pretty self-explanatory but I will
add comments below.

Listing E.3: Attribute generator
1 #####################################
2 #Attr i bu te_genera tor . py
3 #
4 #Purpose : Create the a t t r i b u t e s f o r a charac t e r .
5 #Author : Cody Jackson
6 #Date : 4/17/06
7 #
8 #Version : 2
9 #Changes − changed a t t r i b u t e v a r i a b l e s to

d i c t i o n a r i e s
10 #####################################
11

APPENDIX E. SAMPLE PROGRAMS 174

12 import d i c e_ r o l l e r #mult iDie
13
14 def s e tAt t r i bu t e () :
15 """Generate va lue f o r an a t t r i b u t e . """
16
17 a t t r i b = d i c e_ r o l l e r . mult iDie (2 , 2)
18 return a t t r i b
19
20 def h i tPo in t s (bui ld , body_part = 3) :
21 """Generate h i t po in t s f o r each body par t . """
22
23 i f body_part == 1 : #head
24 hp = bu i ld
25 e l i f body_part == 2 : #tor so
26 hp = bu i ld ∗ 4
27 e l i f body_part == 3 : #arms & l e g s
28 hp = bu i ld ∗ 2
29 return hp
30
31 def makeAttrib () :
32 #−−−Make d i c t i ona r y o f a t t r i b u t e s
33 a t t r i b_d i c t = {}
34
35 #−−−Get va l u e s f o r core a t t r i b u t e s
36 a t t r i b_d i c t [" s t r "] = s e tAt t r i bu t e () #

s t r en g t h
37 a t t r i b_d i c t [" i n t e l "] = s e tAt t r i bu t e () #

i n t e l l i g e n c e
38 a t t r i b_d i c t [" w i l l "] = s e tAt t r i bu t e () #

wi l l power
39 a t t r i b_d i c t [" charisma"] = se tAt t r i bu t e ()
40 a t t r i b_d i c t [" bu i ld "] = s e tAt t r i bu t e ()
41 a t t r i b_d i c t ["dex"] = s e tAt t r i bu t e () #

de x t e r i t y
42
43 #−−−Get va l u e s f o r secondary a t t r i b u t e s
44 a t t r i b_d i c t ["mass"] = (a t t r i b_d i c t . get (" bu i ld "

) ∗ 5) + 15 #ki lograms

APPENDIX E. SAMPLE PROGRAMS 175

45 a t t r i b_d i c t [" throw"] = at t r i b_d i c t . get (" s t r ")
∗ 2 #meters

46 a t t r i b_d i c t [" load "] = (a t t r i b_d i c t . get (" s t r ")
47 + at t r i b_d i c t . get (" bu i ld ")) ∗ 2 #

ki lograms
48
49 return a t t r i b_d i c t
50
51 ##Get b u i l d va lue from a t t r i b u t e d i c t i ona r y to

c a l c u l a t e hp
52 a t t r i b s = makeAttrib ()
53 bu i ld = a t t r i b s . get (" bu i ld ")
54
55 def makeHP(bu i ld) :
56 #−−−Make d i c t i ona r y o f h i t po in t s
57 hp_dict = {}
58
59 #−−−Get h i t po in t s
60 hp_dict ["head"] = h i tPo in t s (bui ld , 1)
61 hp_dict [" t o r s o "] = h i tPo in t s (bui ld , 2)
62 hp_dict ["rarm"] = h i tPo in t s (bu i ld)
63 hp_dict [" larm"] = h i tPo in t s (bu i ld)
64 hp_dict [" r l e g "] = h i tPo in t s (bu i ld)
65 hp_dict [" l l e g "] = h i tPo in t s (bu i ld)
66
67 return hp_dict
68
69 def t e s t () :
70 """Show t e s t va l u e s . """
71
72 a t t r i b s = makeAttrib ()
73 bu i ld = a t t r i b s . get (" bu i ld ")
74 hp = makeHP(bu i ld)
75 print a t t r i b s
76 print hp
77
78 i f __name__ == "__main__" :
79 t e s t ()

APPENDIX E. SAMPLE PROGRAMS 176

Line 12 imports the dice rolling program from Listing E.1. This is
probably the most important item in this program; without the dice
roller, no results can be made.

Line 14 is a function that calls the dice roller module and returns
a value. The value will be used as a character’s physical or mental
attribute.

Line 20 starts a function that generates a character’s hit points,
based on individual body parts, e.g. head, arm, torso, etc. This
function uses a default value for body_part ; this way I didn’t have to
account for every body part individually.

Line 31 is a function to store each attribute. A dictionary is used
to link an attribute name to its corresponding value. Each attribute
calls the setAttribute() function (Line 14) to calculate the value.
The completed dictionary is returned when this function is done.

Line 51 shows a “block comment”, a comment I use to describe
what a block of related code will be doing. It’s similar to a doc string
but is ignored by the Python interpreter. It’s simply there to help
the programmer understand what the following lines of code will be
doing. The code following the block comment is delimited by a blank
line from any non-related code.

Line 55 is a function that puts hit point values into a dictionary,
and follows the pattern of makeAttrib() (Line 31) function above.

Line 69 is a testing function. When this program is called on its
own (not part of another program), such as from the command line,
it will make a sample character and print out the values to show that
the program is working correctly. Line 78 has the command that
determines whether the test() function will run or not.

E.4 Text-based character creation
The next few pages (Listing E.4) are a console-based (non-graphical)
character creation program that I wrote shortly after the attribute
generator above. This was the basis for a game I was making based on
the Colonial Marines from the Aliens movie. It’s not perfect, barely
complete enough for real use, but it is useful for several reasons:

1. It’s object-oriented, showing how inheritance, “self”, and many
of the other features of OOP actually work in practice.

APPENDIX E. SAMPLE PROGRAMS 177

2. It takes user input and outputs data, so you can see how in-
put/output functions work.

3. Nearly all the main features of Python are used, notably lists
and dictionaries.

4. It’s reasonably well documented, at least in my opinion, so fol-
lowing the logic flow should be somewhat easy.

Many tutorial books I’ve read don’t have an in-depth program that
incorporates many of the features of the language; you usually just get
a bunch of small, “one shot” code snippets that only explain a concept.
The reader is usually left on his own to figure out how to put it all
together.

I’ve included this program because it shows a good number of con-
cepts of the Python language. If ran “as is”, the built-in test function
lets the user create a character. It doesn’t include file operations but
I’ll leave it as a challenge for the reader to modify it to save a complete
character. It’s also not written in Python 3.x, so I can’t guarantee that
it will run correctly if you have that version installed.

You’ll note the “commented out” print statements in the test()
function. Using print statements in this manner can be a good way of
making sure your code is doing what it should be, by showing what
various values are within the program.

Listing E.4: Non-graphical character creation
#####################################
#BasicCharacter . py
#
#Purpose : A r e v i s e d ve r s i on o f the Marine

charac t e r us ing c l a s s e s .
#Author : Cody Jackson
#Date : 6/16/06
#
#Copyright 2006 Cody Jackson
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Version 0.3
Removed MOS sub s e t c a t a g o r i e s ; added va l u e s to

MOS d i c t i ona r y

APPENDIX E. SAMPLE PROGRAMS 178

Added d e f a u l t MOS s k i l l s
Added Tank Commander and APC Commander MOS’ s
Combined separa t e Character and Marine c l a s s

t e s t s i n t o one t e s t method
Added charac t e r i n i t i a t i v e methods
#Version 0 . 2 . 1
Corrected Marine rank methods
#Version 0.2
Added Marine s u b c l a s s
#Version 0.1
I n i t i a l b u i l d
#####################################

#TODO: make I /O opera t i ons (save to f i l e)
from d i c e_ r o l l e r import mult iDie

class Character :
"""Creat ion o f a ba s i c charac t e r type . """

#−−−Class a t t r i b u t e s
de f au l t_a t t r i b s = {}

def __init__(s e l f) :
"""Constructor to i n i t i a l i z e each data

member to zero . """

#−−−General i n f o
s e l f . name = ""
s e l f . gender = ""
s e l f . age = 0

#−−−At t r i b u t e i n f o
s e l f . a t t r i b = 0
s e l f . a t t r i b_d i c t = s e l f . d e f au l t_a t t r i b s .

copy () #ins tance ve r s i on
s e l f . s e tAt t r i bu t e (" s t r ")
s e l f . s e tAt t r i bu t e (" i n t e l ")
s e l f . s e tAt t r i bu t e (" bu i ld ")

APPENDIX E. SAMPLE PROGRAMS 179

s e l f . s e tAt t r i bu t e (" char ")
s e l f . s e tAt t r i bu t e (" w i l l ")
s e l f . s e tAt t r i bu t e ("throw")
s e l f . s e tAt t r i bu t e ("mass")
s e l f . s e tAt t r i bu t e (" load ")
s e l f . s e tAt t r i bu t e ("dex")
s e l f . c o r e I n i t i a t i v e = 0

#−−−Hit po in t i n f o
s e l f . hp_dict = {}
s e l f . body_part = 0
s e l f . s e tH i tPo in t s ("head")
s e l f . s e tH i tPo in t s (" to r s o ")
s e l f . s e tH i tPo in t s ("rarm")
s e l f . s e tH i tPo in t s (" larm")
s e l f . s e tH i tPo in t s (" l l e g ")
s e l f . s e tH i tPo in t s (" r l e g ")

#−−−S k i l l s i n f o
s e l f . c h o s e nSk i l l s = {}
s e l f . s u b s k i l l s = {}
s e l f . s k i l l P o i n t s = 0
s e l f . s k i l l L e v e l = 0
s e l f . s k i l l Ch o i c e = 0
s e l f .maximum = 0
s e l f . s ub s k i l lCho i c e s = []
s e l f . b a s e S k i l l s = ["Armed Combat" , "

Unarmed Combat" , "Throwing" , "Small
Arms" , "Heavy Weapons" , "

Veh ic l e Weapons" , "Combat Engineer " , "
F i r s t Aid" , "Wheeled
Veh i c l e s " , "Tracked Veh i c l e s " , "
A i r c r a f t " , " I n t e r r o ga t i on " , "
Swimming" , "Reconnaissance " , "Mechanic"
, "Forward Observer " , "
I nd i r e c t F i re " , " E l e c t r on i c s " , "
Computers" , "Gunsmith" ,

APPENDIX E. SAMPLE PROGRAMS 180

"Supply" , "Mountaineering " , "Parachute
" , "Small Boats" ,

"Harsh environments " , "Xenomorphs" , "
Navigat ion " , " S t ea l th " ,

"Chemistry" , "Bio logy "]

#−−−Equipment l i s t
s e l f . equipment = []

#−−−Get marine in fo−−−−−−−−−−−−−−−−−−
def setName (s e l f) :

"""Get the name o f the charac t e r . """

s e l f . name = raw_input (" Please ente r your
cha rac t e r ’ s name . \ n")

def setGender (s e l f) :
"""Get the gender o f the charac t e r . """

while 1 :
s e l f . gender = raw_input (" S e l e c t a

gender : 1=Male , 2=Female : ")
i f i n t (s e l f . gender) == 1 :

s e l f . gender = "Male"
break

e l i f i n t (s e l f . gender) == 2 :
s e l f . gender = "Female"
break

else :
print " Inva l i d cho i c e . P lease

choose 1 or 2 . "
continue

def setAge (s e l f) :
""" Ca l cu l a t e the age o f character , between

18 and 45 years o ld . """

s e l f . age = 15 + mult iDie (3 , 2) #3d10

APPENDIX E. SAMPLE PROGRAMS 181

#−−−Create a t t r i b u t e s−−−−−−−−−−−−−−−−−−
def s e tAt t r i bu t e (s e l f , a t t r) :

"""Generate va lue f o r an a t t r i b u t e ,
between 2 and 20. """

#−−−Get secondary a t t r i b u t e s
i f a t t r == "throw" :

s e l f . a t t r i b_d i c t [a t t r] = s e l f .
a t t r i b_d i c t [" s t r "] ∗ 2 #meters

e l i f a t t r == "mass" :
s e l f . a t t r i b_d i c t [a t t r] = (s e l f .

a t t r i b_d i c t [" bu i ld "] ∗ 5) + 15 #kg
e l i f a t t r == " load " :

s e l f . a t t r i b_d i c t [a t t r] = (s e l f .
a t t r i b_d i c t [" s t r "] +
s e l f . a t t r i b_d i c t [" bu i ld "]) #kg

#−−−Get core a t t r i b u t e s
else :

s e l f . a t t r i b_d i c t [a t t r] = mult iDie (2 ,
2) #2d10

def s e tH i tPo in t s (s e l f , body_part) :
"""Generate h i t po in t s f o r each body part ,

based on ’ b u i l d ’ a t t r i b u t e . """

i f body_part == "head" :
s e l f . hp_dict [body_part] = s e l f .

a t t r i b_d i c t [" bu i ld "]
e l i f body_part == " to r s o " :

s e l f . hp_dict [body_part] = s e l f .
a t t r i b_d i c t [" bu i ld "] ∗ 4

else : #arms & l e g s
s e l f . hp_dict [body_part] = s e l f .

a t t r i b_d i c t [" bu i ld "] ∗ 2

def s e t I n i t i a t i v e (s e l f) :

APPENDIX E. SAMPLE PROGRAMS 182

""" E s t a b l i s h e s the core i n i t i a t i v e l e v e l
o f a charac t e r .

This i n i t i a t i v e l e v e l can be modi f ied f o r
d i f f e r e n t charac t e r t ype s . """

s e l f . c o r e I n i t i a t i v e = mult iDie (1 , 1)

#−−−Choose s k i l l s −−−−−−−−−−−−−−−−−−
def p r i n t S k i l l s (s e l f) :

""" Print l i s t o f s k i l l s a v a i l a b l e f o r a
charac t e r . """

print "Below i s a l i s t o f a v a i l a b l e s k i l l s
f o r your cha rac t e r . "

print "Some s k i l l s may have
s p e c i a l i z a t i o n s and w i l l be noted when
chosen . "

for i in range (l en (s e l f . b a s e S k i l l s)) :
print " " , i , s e l f . b a s e S k i l l s [i] ,

#5 spaces between columns
i f i % 3 == 0 :

print "\n"

def s e t S k i l l s (s e l f) :
""" Ca l cu l a t e s k i l l p o in t s and p i ck base

s k i l l s and l e v e l s .

S k i l l p o in t s are randomly determined by
d i ce r o l l . Certain s k i l l s have
s p e c i a l t y areas a v a i l a b l e and are
chosen s e pa r a t e l y . """

s e l f . s k i l l P o i n t s = mult iDie (2 , 2) ∗ 10
while s e l f . s k i l l P o i n t s > 0 :

#−−−Choose s k i l l
s e l f . p r i n t S k i l l s ()

APPENDIX E. SAMPLE PROGRAMS 183

print "\n\nYou have" , s e l f . s k i l l P o i n t s
, " s k i l l l e v e l po in t s a v a i l a b l e . "

s e l f . s k i l l Ch o i c e = in t (raw_input ("
Please p ick a s k i l l : "))

s e l f . p ick = s e l f . b a s e S k i l l s [s e l f .
s k i l l Ch o i c e] #Chosen s k i l l

print "\nYou chose " , s e l f . s k i l lCho i c e ,
s e l f . b a s e S k i l l s [s e l f . s k i l l Ch o i c e] ,
" . "

#−−−Determine maximum s k i l l l e v e l
i f s e l f . s k i l l P o i n t s > 98 :

s e l f .maximum = 98
else : s e l f .maximum = s e l f . s k i l l P o i n t s

#−−−Choose s k i l l l e v e l
print "The maximum po in t s you can use

are " , s e l f .maximum, " . "
s e l f . s k i l l L e v e l = in t (raw_input ("What

s k i l l l e v e l would you l i k e ? "))
i f s e l f . s k i l l L e v e l > s e l f . s k i l l P o i n t s :

#Are a v a i l a b l e po in t s exceeded ?
print "Sorry , you don ’ t have that

many po in t s . "
continue

s e l f . c h o s e nSk i l l s [s e l f . p ick] = s e l f .
s k i l l L e v e l #Chosen s k i l l l e v e l

s e l f . s k i l l P o i n t s −= s e l f . s k i l l L e v e l #
Decrement s k i l l p o in t s

#−−−Pick s p e c i a l t y
i f s e l f . s k i l l L e v e l >= 20 : #Minimum

l e v e l f o r a s p e c i a l t y
s e l f . p i c kSubSk i l l (s e l f . p ick)

def p i ckSubSk i l l (s e l f , s k i l l) :
""" I f a base s k i l l l e v e l i s 20 or grea ter ,

a s p e c i a l t y may be a v a i l a b l e ,

APPENDIX E. SAMPLE PROGRAMS 184

depending on the s k i l l .

Chosen s k i l l t e x t s t r i n g passed in as
argument . """

s e l f . s k i l l = s k i l l

#−−−Set s p e c i a l i t y l i s t s
i f s e l f . s k i l l == "Armed Combat" :

s e l f . s ub s k i l lCho i c e s = ["Blunt Weapons
" , "Edged Weapons" , "Chain Weapons"
]

e l i f s e l f . s k i l l == "Unarmed Combat" :
s e l f . s ub s k i l lCho i c e s = ["Grappling " , "

Pummeling" , " Throt t l i ng "]
e l i f s e l f . s k i l l == "Throwing" :

s e l f . s ub s k i l lCho i c e s = ["Aerodynamic" ,
"Non−aerodynamic"]

e l i f s e l f . s k i l l == "Small Arms" :
s e l f . s ub s k i l lCho i c e s = ["Flamer" , "

Pulse R i f l e " , "Smartgun" , " Sniper
r i f l e " ,
" P i s t o l "]

e l i f s e l f . s k i l l == "Heavy Weapons" :
s e l f . s ub s k i l lCho i c e s = ["PIG" , "RPG" ,

"SADAR" , "HIMAT" , "Remote Sentry "]
e l i f s e l f . s k i l l == "Veh ic l e Weapons" :

s e l f . s ub s k i l lCho i c e s = [" A i r c r a f t " , "
Land Veh i c l e s " , "Water Veh i c l e s "]

e l i f s e l f . s k i l l == "Combat Engineer " :
s e l f . s ub s k i l lCho i c e s = ["Underwater

demo l i t i on s " , "EOD" , "Demol i t ions " ,
"Land s t r u c t u r e s " , "Veh ic l e use " ,

"Br idges "]
e l i f s e l f . s k i l l == " A i r c r a f t " :

s e l f . s ub s k i l lCho i c e s = ["Dropship" , "
Conventional " , " He l i c op t e r "]

e l i f s e l f . s k i l l == "Swimming" :

APPENDIX E. SAMPLE PROGRAMS 185

s e l f . s ub s k i l lCho i c e s = ["SCUBA" , "
Snorke l "]

e l i f s e l f . s k i l l == "Mechanic" :
s e l f . s ub s k i l lCho i c e s = ["Wheeled" , "

Tracked" , " A i r c r a f t "]
e l i f s e l f . s k i l l == " E l e c t r on i c s " :

s e l f . s ub s k i l lCho i c e s = ["Radio" , "ECM"
]

e l i f s e l f . s k i l l == "Computers" :
s e l f . s ub s k i l lCho i c e s = ["Hacking" , "

Programming"]
e l i f s e l f . s k i l l == "Gunsmith" :

s e l f . s ub s k i l lCho i c e s = ["Small Arms" ,
"Heavy Weapons" , " Veh i c l e s "]

e l i f s e l f . s k i l l == "Parachute " :
s e l f . s ub s k i l lCho i c e s = ["HALO" , "HAHO"

]
e l i f s e l f . s k i l l == "Harsh Environments" :

s e l f . s ub s k i l lCho i c e s = ["No atmosphere
" , "Non−t e r r a "]

else :
return

s e l f . statement (s e l f . s k i l l)
for i in range (l en (s e l f . s ub s k i l lCho i c e s)) :

print i , s e l f . s ub s k i l lCho i c e s [i]
s e l f . cho i c e = in t (raw_input ())
i f s e l f . cho i c e == −1: #Sp e c i a l i z a t i o n

not d e s i r ed
return

else : #Sp e c i a l i t y chosen
print "You chose the " , s e l f .

s ub s k i l lCho i c e s [s e l f . cho i c e] , "
s p e c i a l t y . \ n\

I t has an i n i t i a l s k i l l l e v e l o f 10 . "
s e l f . s u b s k i l l s [s e l f . s ub s k i l lCho i c e s [

s e l f . cho i c e]] = 10
print s e l f . s u b s k i l l s

APPENDIX E. SAMPLE PROGRAMS 186

return

def statement (s e l f , s k i l l) :
""" Pr in t s a gener i c s ta tement f o r choos ing

a s k i l l s p e c i a l t y . """

s e l f . s k i l l = s k i l l
print "\n" , s e l f . s k i l l , "has

s p e c i a l i z a t i o n s . I f you d e s i r e to
s p e c i a l i z e in \

a f i e l d , \ np l ease choose from the f o l l ow i ng l i s t .
Enter −1 i f you don ’ t want a\n\

s p e c i a l i z a t i o n . \ n"

#−−−Equipment acces s methods−−−−−−−−−−−−−−−−−−
def setEquipment (s e l f , item) :

"""Add equipment to charac t e r ’ s inven tory .
"""

s e l f . equipment . append (item)

def getEquipment (s e l f) :
"""Disp lay equipment in inven tory . """

print s e l f . equipment

class Marine (Character) :
""" S p e c i a l i z i a t i o n o f a ba s i c charac t e r wi th

MOS and d e f a u l t s k i l l s . """

def __init__(s e l f) :
""" I n i t i a l i z e Marine s p e c i f i c va l u e s . """

#−−−Class a t t r i b u t e s
s e l f . mar ine In i t = 0
#−−−Rename a t t r i b u t e s
Character . __init__(s e l f)
s e l f . i n t e l = s e l f . a t t r i b_d i c t [" i n t e l "]

APPENDIX E. SAMPLE PROGRAMS 187

s e l f . char = s e l f . a t t r i b_d i c t [" char "]
s e l f . s t r = s e l f . a t t r i b_d i c t [" s t r "]
s e l f . dex = s e l f . a t t r i b_d i c t ["dex"]
s e l f . w i l l = s e l f . a t t r i b_d i c t [" w i l l "]

#−−−Rank a t t r i b u t e s
s e l f . rank = ""
s e l f . rankName = ""
s e l f . mod i f i e r = s e l f . i n t e l ∗ . 1 #rank

mod i f i e r

#−−−MOS a t t r i b u t e s
s e l f . mos = ""
s e l f . mosSpec ia l ty = ""
s e l f . mosSe lect ion = {0 : "Supply" , 1 : "Crew

Chie f " , 2 : " In f an t ry "}

#−−−Determine rank−−−−−−−−−−−−−−−−−−
def setRank (s e l f) :

"""Determine rank o f Marine . """

i f (s e l f . i n t e l + s e l f . char) > 23 : #
sen ior ranks
s e l f . r o l l = mult iDie (1 , 2) + s e l f .

modi f i e rValue ()
s e l f . rank = s e l f . seniorRank (s e l f . r o l l)

else : #jun io r ranks
s e l f . r o l l = mult iDie (1 , 2)
s e l f . rank = s e l f . lowerRank (s e l f . r o l l)

#−−−Convert numerical rank to f u l l name
i f s e l f . rank == "E1" :

s e l f . rankName = "Pr ivate "
e l i f s e l f . rank == "E2" :

s e l f . rankName = "Pr ivate F i r s t Class "
e l i f s e l f . rank == "E3" :

s e l f . rankName = "Lance Corporal "
e l i f s e l f . rank == "E4" :

APPENDIX E. SAMPLE PROGRAMS 188

s e l f . rankName = "Corporal "
e l i f s e l f . rank == "E5" :

s e l f . rankName = "Sergeant "
e l i f s e l f . rank == "E6" :

s e l f . rankName = " S t a f f Sergeant "
e l i f s e l f . rank == "E7" :

s e l f . rankName = "Gunnery Sergeant "
e l i f s e l f . rank == "E8" :

s e l f . rankName = "Master Sergeant "
e l i f s e l f . rank == "O1" :

s e l f . rankName = "2nd Lieutenant "
e l i f s e l f . rank == "O2" :

s e l f . rankName = "1 s t Lieutenant "
e l i f s e l f . rank == "O3" :

s e l f . rankName = "Captain"
e l i f s e l f . rank == "O4" :

s e l f . rankName = "Major"
else : print " Inva l i d rank . "

def modi f i e rValue (s e l f) :
"""Determine rank modi f i e r va lue . """

i f s e l f . mod i f i e r % 1 < . 5 : #round down
s e l f . mod i f i e r = in t (s e l f . mod i f i e r)

e l i f s e l f . mod i f i e r %1 >= . 5 : #round up
s e l f . mod i f i e r = in t (s e l f . mod i f i e r) + 1

return s e l f . mod i f i e r

def lowerRank (s e l f , r o l l) :
"""Determine rank o f j un io r marine . """

i f s e l f . r o l l == 1 :
s e l f . rank = "E1"

e l i f s e l f . r o l l == 2 :
s e l f . rank = "E2"

e l i f s e l f . r o l l == 3 or s e l f . r o l l == 4 :
s e l f . rank = "E3"

e l i f s e l f . r o l l == 5 or s e l f . r o l l == 6 :

APPENDIX E. SAMPLE PROGRAMS 189

s e l f . rank = "E4"
e l i f 7 <= s e l f . r o l l <= 9 :

s e l f . rank = "E5"
e l i f s e l f . r o l l == 10 :

s e l f . rank = "E6"
else : #Shouldn ’ t reach here

print "Ranking r o l l i n v a l i d "
return s e l f . rank

def seniorRank (s e l f , r o l l) :
"""Determine rank and i f charac t e r i s

s en io r e n l i s t e d or o f f i c e r . """

i f s e l f . r o l l > 5 : #Character i s o f f i c e r
s e l f . new_roll = mult iDie (1 , 2) + s e l f .

modi f i e rValue ()
i f 1 <= s e l f . new_roll <= 3 :

s e l f . rank = "O1"
e l i f 4 <= s e l f . new_roll <= 7 :

s e l f . rank = "O2"
e l i f 8 <= s e l f . new_roll <= 10 :

s e l f . rank = "O3"
e l i f s e l f . new_roll > 10 :

s e l f . rank = "O4"
else : #Shouldn ’ t reach here

print "Ranking r o l l i n v a l i d "
else : #Character i s s en io r e n l i s t e d

s e l f . new_roll = mult iDie (1 , 2)
i f 1 <= s e l f . new_roll <= 4 :

s e l f . rank = "E6"
e l i f 5 <= s e l f . new_roll <= 8 :

s e l f . rank = "E7"
e l i f 9 <= s e l f . new_roll <= 11 :

s e l f . rank = "E8"
e l i f s e l f . new_roll > 11 :

s e l f . rank = "E9"
else : #Shouldn ’ t reach here

print "Ranking r o l l i n v a l i d "

APPENDIX E. SAMPLE PROGRAMS 190

return s e l f . rank

#−−−Get MOS−−−−−−−−−−−−−−−−−−
def requ i rements (s e l f) :

"""Adds e l i g i b l e MOS’ s to s e l e c t i o n
d i c t i ona r y .

Takes var ious charac t e r a t t r i b u t e s and
determines i f a d d i t i o n a l MOS cho i c e s

are a v a i l a b l e . """

i f s e l f . i n t e l >= 11 :
s e l f . mosSe lect ion [3] = "Medical "

##Value "4" i s miss ing due to changing
p o s i t i o n s

i f s e l f . s t r >= 12 :
s e l f . mosSe lect ion [5] = "Heavy Weapons"

i f (s e l f . dex + s e l f . i n t e l + s e l f . w i l l) >=
40 :
i f mult iDie (1 , 3) >= 85 :

s e l f . mosSe lect ion [6] = "Scout/
Sniper "

i f (s e l f . s t r + s e l f . dex + s e l f . i n t e l +
s e l f . w i l l) >= 50 :
i f mult iDie (1 , 3) >= 85 :

s e l f . mosSe lect ion [7] = "Recon"
i f s e l f . s t r >= 10 and s e l f . i n t e l >= 10 :

s e l f . mosSe lect ion [8] = "Combat
Engineer "

i f s e l f . dex >= 11 : #Armor MOS’ s
s e l f . mosSe lect ion [9] = "Tank Driver "
s e l f . mosSe lect ion [1 0] = "Tank Gunner"
s e l f . mosSe lect ion [1 1] = "APC Driver "
s e l f . mosSe lect ion [1 2] = "APC Gunner"

i f s e l f . i n t e l + s e l f . w i l l >= 27 : #
In t e l l i g e n c e MOS’ s
s e l f . mosSe lect ion [1 5] = " I n t e l l i g e n c e

Analyst "

APPENDIX E. SAMPLE PROGRAMS 191

s e l f . mosSe lect ion [1 6] = " In t e r r o ga t o r "
s e l f . mosSe lect ion [1 7] = " I n t e l l i g e n c e :

Xenomorphs"
i f s e l f . i n t e l >= 10 and s e l f . dex >= 10 and

("O1" <= s e l f . rank <= "O4") :
s e l f . mosSe lect ion [1 8] = " P i l o t "
s e l f . mosSe lect ion [1 9] = "Co−P i l o t /

Gunner"
##Tank and APC Commander MOS have the

same requirements as p i l o t s
but are added a f t e r the ’Armor ’

MOS’ s .
s e l f . mosSe lect ion [1 3] = "Tank

Commander"
s e l f . mosSe lect ion [1 4] = "APC Commander

"

def el ig ibleMOS (s e l f) :
""" Disp lays MOS’ s a v a i l a b l e to charac t e r .

"""

print "You are e l i g i b l e f o r the f o l l ow i ng
MOS’ s : "

for key in s e l f . mosSe lect ion . keys () :
print key , s e l f . mosSe lect ion [key]

s e l f . mosChoice = in t (raw_input ("""\nPlease
choose the number o f

the MOS you want : """))
s e l f . mos = s e l f . mosSe lect ion [s e l f .

mosChoice] #Rename s e l e c t i o n
print "You chose the " , s e l f . mos , "

s p e c i a l t y . "
##Subc l a s s e s removed f o r p o s s i b l e l a t e r

use
#i f s e l f . mosChoice == 2 or s e l f . mosChoice

== 4 or s e l f . mosChoice == 9 or
s e l f . mosChoice == 10:

APPENDIX E. SAMPLE PROGRAMS 192

s e l f . mosSpec ia l ty = s e l f . subClass (
s e l f . mosChoice)

#i f s e l f . mosSpec ia l ty == "":
s e l f .mos = s e l f . mosSe lec t ion [s e l f .

mosChoice]
#e l s e :
s e l f .mos = s e l f . mosSe lec t ion [s e l f .

mosChoice] +
" (" + s e l f . mosSpec ia l ty + ")"
return s e l f . mos

def mosSk i l l s (s e l f , mosChoice) :
"""Determine d e f a u l t s k i l l l e v e l s based on

MOS. """

i f s e l f . mosChoice == 0 : #Supply
s e l f . c h o s e nSk i l l s ["Supply"] = 20

e l i f s e l f . mosChoice == 1 : #Crew Chie f
s e l f . c h o s e nSk i l l s ["Mechanic"] = 20

e l i f s e l f . mosChoice == 2 : #In fan t r y
s e l f . c h o s e nSk i l l s ["Small Arms"] = 20
s e l f . c h o s e nSk i l l s ["Armed Combat"] = 10
s e l f . c h o s e nSk i l l s ["Unarmed Combat"] =

10
s e l f . c h o s e nSk i l l s ["Swimming"] = 10

e l i f s e l f . mosChoice == 3 : #Medical
s e l f . c h o s e nSk i l l s [" F i r s t Aid"] = 20

e l i f s e l f . mosChoice == 4 : #Not a va lue
pass

e l i f s e l f . mosChoice == 5 : #Heavy Weapons
s e l f . c h o s e nSk i l l s ["Heavy Weapons"] =

20
s e l f . c h o s e nSk i l l s ["Small Arms"] = 10
s e l f . c h o s e nSk i l l s ["Armed Combat"] = 10
s e l f . c h o s e nSk i l l s ["Unarmed Combat"] =

10
e l i f s e l f . mosChoice == 6 : #Scout / Sniper

s e l f . c h o s e nSk i l l s ["Recon"] = 15

APPENDIX E. SAMPLE PROGRAMS 193

s e l f . c h o s e nSk i l l s ["Forward Observer "]
= 10

s e l f . c h o s e nSk i l l s ["Small Arms"] = 25
s e l f . c h o s e nSk i l l s ["Armed Combat"] = 10
s e l f . c h o s e nSk i l l s ["Unarmed Combat"] =

10
s e l f . c h o s e nSk i l l s ["Swimming"] = 10
s e l f . c h o s e nSk i l l s ["Navigat ion "] = 10

e l i f s e l f . mosChoice == 7 : #Recon
s e l f . c h o s e nSk i l l s ["Recon"] = 20
s e l f . c h o s e nSk i l l s ["Forward Observer "]

= 10
s e l f . c h o s e nSk i l l s ["Small Arms"] = 20
s e l f . c h o s e nSk i l l s ["Armed Combat"] = 10
s e l f . c h o s e nSk i l l s ["Unarmed Combat"] =

10
s e l f . c h o s e nSk i l l s ["Swimming"] = 10
s e l f . c h o s e nSk i l l s ["Mountaineering "] =

10
s e l f . c h o s e nSk i l l s ["Parachute "] = 10
s e l f . c h o s e nSk i l l s ["Navigat ion "] = 10

e l i f s e l f . mosChoice == 8 : #Combat
Engineer
s e l f . c h o s e nSk i l l s ["Combat Engineer "] =

20
e l i f s e l f . mosChoice == 9 : #Tank Driver

s e l f . c h o s e nSk i l l s ["Tracked Veh i c l e s "]
= 20

e l i f s e l f . mosChoice == 11 : #APC Driver
s e l f . c h o s e nSk i l l s ["Wheeled Veh i c l e s "]

= 20
e l i f s e l f . mosChoice == 10 or s e l f .

mosChoice == 12 : #Vehic l e Gunners
s e l f . c h o s e nSk i l l s [" Veh ic l e Weapons"] =

20
s e l f . c h o s e nSk i l l s [" I n d i r e c t F i re "] =

10

APPENDIX E. SAMPLE PROGRAMS 194

e l i f s e l f . mosChoice == 13 or s e l f .
mosChoice == 14 : #Vehic l e Commanders
s e l f . c h o s e nSk i l l s ["Navigat ion "] = 15
s e l f . c h o s e nSk i l l s ["Tracked Veh i c l e s "]

= 10
s e l f . c h o s e nSk i l l s ["Wheeled Veh i c l e s "]

= 10
s e l f . c h o s e nSk i l l s [" Veh ic l e Weapons"] =

10
s e l f . c h o s e nSk i l l s [" I n d i r e c t F i re "] =

10
s e l f . c h o s e nSk i l l s ["Forward Observer "]

= 10
e l i f s e l f . mosChoice == 15 : #Analyst

s e l f . c h o s e nSk i l l s [" E l e c t r on i c s "] = 20
s e l f . c h o s e nSk i l l s ["Computers"] = 20

e l i f s e l f . mosChoice == 16 : #In t e r r o ga t i on
s e l f . c h o s e nSk i l l s [" E l e c t r on i c s "] = 10
s e l f . c h o s e nSk i l l s ["Computers"] = 10
s e l f . c h o s e nSk i l l s [" I n t e r r o ga t i on "] =

20
e l i f s e l f . mosChoice == 17 : #Xenomorphs

s e l f . c h o s e nSk i l l s [" E l e c t r on i c s "] = 10
s e l f . c h o s e nSk i l l s ["Computers"] = 10
s e l f . c h o s e nSk i l l s ["Xenomorphs"] = 20
s e l f . c h o s e nSk i l l s ["Bio logy "] = 10
s e l f . c h o s e nSk i l l s ["Chemistry"] = 10

e l i f s e l f . mosChoice == 18 : #Pi l o t
s e l f . c h o s e nSk i l l s [" A i r c r a f t "] = 20
s e l f . c h o s e nSk i l l s ["Vehic l Weapons"] =

10
e l i f s e l f . mosChoice == 19 : #Co−P i l o t /

Gunner
s e l f . c h o s e nSk i l l s [" A i r c r a f t "] = 10
s e l f . c h o s e nSk i l l s [" Veh ic l e Weapons"] =

20
else : print "∗∗ Inva l i d opt ion ∗∗" #

Shouldn ’ t reach

APPENDIX E. SAMPLE PROGRAMS 195

#−−−Base i n i t i a t i v e −−−−−−−−−−−−−−−−−−
def mar i n e I n i t i a t i v e (s e l f) :

"""Creates the base l e v e l f o r a Marine
charac t e r type .

Marines wi th an MOS of Sniper /Scout , Recon
, or P i l o t gain +1 to i n i t i a t i v e .

Marines wi th an MOS of Suppy , I n t e l l i g e n c e
, or Medical l o s e −1 to i n i t i a t i v e . """

i f s e l f . mosChoice == 6 or s e l f . mosChoice
== 7 or s e l f . mosChoice == 18 :
s e l f . mar ine In i t = s e l f . c o r e I n i t i a t i v e

+ 1
e l i f s e l f . mosChoice == 0 or s e l f . mosChoice

== 3 or 15 <= s e l f . mosChoice <= 17 :
s e l f . mar ine In i t = s e l f . c o r e I n i t i a t i v e
−1

else : s e l f . mar ine In i t = s e l f .
c o r e I n i t i a t i v e

def t e s t () :
marine = Character ()
marine = Marine ()
marine . setName ()
marine . setGender ()
marine . setAge ()
marine . s e t S k i l l s ()
marine . setEquipment ("Rucksack")
marine . setEquipment ("Knife ")
marine . setEquipment (" F l a sh l i g h t ")
#pr in t "\nName = " , marine . name
#pr in t "Gender = " , marine . gender
#pr in t "Age = " , marine . age
#fo r key in marine . a t t r i b_d i c t . keys () :
pr i n t key , marine . a t t r i b_d i c t [key]
#fo r key in marine . hp_dict . keys () :

APPENDIX E. SAMPLE PROGRAMS 196

pr in t key , marine . hp_dict [key]
#pr i n t marine . c h o s e nS k i l l s
#pr i n t marine . s u b s k i l l s
#marine . getEquipment ()
marine . setRank ()
print "Rank : " , marine . rank
#pr in t "Rank name : " , marine . rankName
marine . requ i rements ()
marine . e l ig ibleMOS ()
print "Your MOS i s : " , marine .mos
marine . mosSk i l l s (marine . mosChoice)
print marine . c h o s e nSk i l l s
marine . s e t I n i t i a t i v e ()
marine . ma r i n e I n i t i a t i v e ()
print "Your I n i t i a t i v e i s : " , marine .

mar ine In i t

i f __name__ == "__main__" :
t e s t ()

Appendix F

GNU General Public
License

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are de-
signed to take away your freedom to share and change the works. By
contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most of our soft-
ware; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

197

APPENDIX F. GNU GENERAL PUBLIC LICENSE 198

To protect your rights, we need to prevent others from denying
you these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the software, or
if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same freedoms
that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the GPL clearly ex-
plains that there is no warranty for this free software. For both users’
and authors’ sake, the GPL requires that modified versions be marked
as changed, so that their problems will not be attributed erroneously
to authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufac-
turer can do so. This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals
to use, which is precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains,
we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of soft-
ware on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

Terms and Conditions

APPENDIX F. GNU GENERAL PUBLIC LICENSE 199

1. Definitions.

“This License” refers to version 3 of the GNU General Public
License.

“Copyright” also means copyright-like laws that apply to other
kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under
this License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part
of the work in a fashion requiring copyright permission, other
than the making of an exact copy. The resulting work is called
a “modified version” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Program or a
work based on the Program.

To “propagate” a work means to do anything with it that, with-
out permission, would make you directly or secondarily liable
for infringement under applicable copyright law, except execut-
ing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification),
making available to the public, and in some countries other ac-
tivities as well.

To “convey” a work means any kind of propagation that enables
other parties to make or receive copies. Mere interaction with a
user through a computer network, with no transfer of a copy, is
not conveying.

An interactive user interface displays “Appropriate Legal No-
tices” to the extent that it includes a convenient and prominently
visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided), that licensees
may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands
or options, such as a menu, a prominent item in the list meets
this criterion.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 200

2. Source Code.

The “source code” for a work means the preferred form of the
work for making modifications to it. “Object code” means any
non-source form of a work.

A “Standard Interface” means an interface that either is an of-
ficial standard defined by a recognized standards body, or, in
the case of interfaces specified for a particular programming lan-
guage, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything,
other than the work as a whole, that (a) is included in the normal
form of packaging a Major Component, but which is not part of
that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard
Interface for which an implementation is available to the public in
source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on)
of the specific operating system (if any) on which the executable
work runs, or a compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object code form
means all the source code needed to generate, install, and (for an
executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in
performing those activities but which are not part of the work.
For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code
for shared libraries and dynamically linked subprograms that the
work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and
other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Correspond-
ing Source.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 201

The Corresponding Source for a work in source code form is that
same work.

3. Basic Permissions.

All rights granted under this License are granted for the term
of copyright on the Program, and are irrevocable provided the
stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The out-
put from running a covered work is covered by this License only
if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do
not convey, without conditions so long as your license otherwise
remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in con-
veying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on
terms that prohibit them from making any copies of your copy-
righted material outside their relationship with you.

Conveying under any other circumstances is permitted solely
under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary.

4. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technologi-
cal measure under any applicable law fulfilling obligations under
article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of
such measures.

When you convey a covered work, you waive any legal power to
forbid circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License
with respect to the covered work, and you disclaim any intention

APPENDIX F. GNU GENERAL PUBLIC LICENSE 202

to limit operation or modification of the work as a means of
enforcing, against the work’s users, your or third parties’ legal
rights to forbid circumvention of technological measures.

5. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you
convey, and you may offer support or warranty protection for a
fee.

6. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifica-
tions to produce it from the Program, in the form of source code
under the terms of section 4, provided that you also meet all of
these conditions:

(a) The work must carry prominent notices stating that you
modified it, and giving a relevant date.

(b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this Li-
cense to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable sec-
tion 7 additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This Li-
cense gives no permission to license the work in any other
way, but it does not invalidate such permission if you have
separately received it.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 203

(d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and inde-
pendent works, which are not by their nature extensions of the
covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its re-
sulting copyright are not used to limit the access or legal rights
of the compilation’s users beyond what the individual works per-
mit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

7. Conveying Non-Source Forms.

You may convey a covered work in object code form under the
terms of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this
License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical prod-
uct (including a physical distribution medium), accompa-
nied by the Corresponding Source fixed on a durable phys-
ical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical prod-
uct (including a physical distribution medium), accompa-
nied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support
for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source
for all the software in the product that is covered by this
License, on a durable physical medium customarily used for
software interchange, for a price no more than your reason-
able cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a net-
work server at no charge.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 204

(c) Convey individual copies of the object code with a copy
of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such
an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access
to the Corresponding Source in the same way through the
same place at no further charge. You need not require re-
cipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a net-
work server, the Corresponding Source may be on a differ-
ent server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear
directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that
it is available for as long as needed to satisfy these require-
ments.

(e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is
excluded from the Corresponding Source as a System Library,
need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which
means any tangible personal property which is normally used
for personal, family, or household purposes, or (2) anything de-
signed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product re-
ceived by a particular user, “normally used” refers to a typical
or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A

APPENDIX F. GNU GENERAL PUBLIC LICENSE 205

product is a consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-consumer uses,
unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any meth-
ods, procedures, authorization keys, or other information re-
quired to install and execute modified versions of a covered work
in that User Product from a modified version of its Correspond-
ing Source. The information must suffice to ensure that the
continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been
made.

If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying
occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this
section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third
party retains the ability to install modified object code on the
User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not
include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or in-
stalled by the recipient, or for the User Product in which it has
been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information
provided, in accord with this section must be in a format that
is publicly documented (and with an implementation available
to the public in source code form), and must require no special
password or key for unpacking, reading or copying.

8. Additional Terms.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 206

“Additional permissions” are terms that supplement the terms
of this License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in
this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but
the entire Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may at your
option remove any additional permissions from that copy, or from
any part of it. (Additional permissions may be written to require
their own removal in certain cases when you modify the work.)
You may place additional permissions on material, added by you
to a covered work, for which you have or can give appropriate
copyright permission.

Notwithstanding any other provision of this License, for mate-
rial you add to a covered work, you may (if authorized by the
copyright holders of that material) supplement the terms of this
License with terms:

(a) Disclaiming warranty or limiting liability differently from
the terms of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices
or author attributions in that material or in the Appropri-
ate Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that mate-
rial, or requiring that modified versions of such material
be marked in reasonable ways as different from the original
version; or

(d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or

(e) Declining to grant rights under trademark law for use of
some trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified

APPENDIX F. GNU GENERAL PUBLIC LICENSE 207

versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual as-
sumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or convey-
ing under this License, you may add to a covered work material
governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or con-
veying.

If you add terms to a covered work in accord with this section,
you must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions;
the above requirements apply either way.

9. Termination.

You may not propagate or modify a covered work except as ex-
pressly provided under this License. Any attempt otherwise to
propagate or modify it is void, and will automatically termi-
nate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a) pro-
visionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copy-
right holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is re-
instated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you

APPENDIX F. GNU GENERAL PUBLIC LICENSE 208

have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

10. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive
or run a copy of the Program. Ancillary propagation of a cov-
ered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you per-
mission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore,
by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

11. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automati-
cally receives a license from the original licensors, to run, modify
and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of
an organization, or substantially all assets of one, or subdividing
an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to
that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the
predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 209

You may not impose any further restrictions on the exercise of
the rights granted or affirmed under this License. For example,
you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any
portion of it.

12. Patents.
A “contributor” is a copyright holder who authorizes use under
this License of the Program or a work on which the Program is
based. The work thus licensed is called the contributor’s “con-
tributor version”.
A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired
or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contrib-
utor version, but do not include claims that would be infringed
only as a consequence of further modification of the contributor
version. For purposes of this definition, “control” includes the
right to grant patent sublicenses in a manner consistent with
the requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-
free patent license under the contributor’s essential patent claims,
to make, use, sell, offer for sale, import and otherwise run, mod-
ify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any ex-
press agreement or commitment, however denominated, not to
enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to make such
an agreement or commitment not to enforce a patent against
the party.
If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not avail-
able for anyone to copy, free of charge and under the terms of

APPENDIX F. GNU GENERAL PUBLIC LICENSE 210

this License, through a publicly available network server or other
readily accessible means, then you must either (1) cause the Cor-
responding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the require-
ments of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowl-
edge that, but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in
that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or ar-
rangement, you convey, or propagate by procuring conveyance of,
a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all recipi-
ents of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is condi-
tioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a
covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which
you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work
from you, a discriminatory patent license (a) in connection with
copies of the covered work conveyed by you (or copies made from
those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless
you entered into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or lim-
iting any implied license or other defenses to infringement that
may otherwise be available to you under applicable patent law.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 211

13. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agree-
ment or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If
you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obli-
gations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a
royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the
Program.

14. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work
licensed under version 3 of the GNU Affero General Public Li-
cense into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning
interaction through a network will apply to the combination as
such.

15. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new
versions of the GNU General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU
General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of
that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a ver-
sion number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 212

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that
proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.

Later license versions may give you additional or different per-
missions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow
a later version.

16. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, RE-
PAIR OR CORRECTION.

17. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW
OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANYOTHER PARTYWHOMODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDEROROTHER

APPENDIX F. GNU GENERAL PUBLIC LICENSE 213

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

18. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approx-
imates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accom-
panies a copy of the Program in return for a fee.

End of Terms and Conditions

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the
greatest possible use to the public, the best way to achieve this
is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice
is found.

<one line to give the program’s name and a brief idea of what
it does.>
Copyright (C) <textyear> <name of author>
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public Li-
cense along with this program. If not, see <http://www.gnu.org/licenses/>.

APPENDIX F. GNU GENERAL PUBLIC LICENSE 214

Also add information on how to contact you by electronic and
paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY;
for details type ‘show w’. This is free software, and you are
welcome to redistribute it under certain conditions; type ‘show
c’ for details.

The hypothetical commands show w and show c should show the
appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work as a programmer)
or school, if any, to sign a “copyright disclaimer” for the program,
if necessary. For more information on this, and how to apply and
follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating
your program into proprietary programs. If your program is a
subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

