
Jay McGavren

A Brain-Friendly Report

Bend your
mind around

blocks and
methods

Avoid
embarrassing

mistakes

Get more
done with
less codeDo heavy lifting

easily with blocks

Using
Blocks

in Ruby

Additional
Resources
4 Easy Ways to Learn More and Stay Current

Programming Newsletter
Get programming related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O’Reilly Radar
Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O’Reilly conference.
conferences.oreilly.com

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15305

http://oreilly.com/programming/newsletter
http://webcasts.oreilly.com
http://radar.oreilly.com
http://conferences.oreilly.com

Beijing • Boston • Farnham • Sebastopol • Tokyo

Using Blocks in
Ruby

Wouldn’t it be dreamy if there
were a book on Ruby that didn’t

throw blocks, modules, and
exceptions at you all at once? I

guess it’s just a fantasy...

Jay McGavren

Using Blocks in Ruby
by Jay McGavren

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (https://www.safaribooksonline.com). For
more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Susan Conant

Cover Designer: Randy Comer

Production Editor: Melanie Yarbrough

Printing History:
October 2017 (first).

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series
designations, Head First Ruby, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc., was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and the
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-1-491-96915-1

this is a new chapter 1

Using Blocks in Ruby

A block is a chunk of code that you associate with a method call. While the
method runs, it can invoke (execute) the block one or more times. Methods and blocks
work in tandem to process your data. Blocks are a way of encapsulating or packaging
statements up and using them wherever you need them. They turn up all over Ruby
code.

Blocks are mind-bending stuff. But stick with it!

Even if you’ve programmed in other languages, you’ve probably never seen
anything like blocks. But stick with it, because the payoff is big.

Imagine if, for all the methods you have to write for the rest of your career,
someone else wrote half of the code for you. For free. They’d write all the tedious stuff
at the beginning and end, and just leave a little blank space in the middle for you to
insert your code, the clever code, the code that runs your business.

If we told you that blocks can give you that, you’d be willing to do whatever it takes
to learn them, right?

Well, here’s what you’ll have to do: be patient, and persistent. We’re here to
help. We’ll look at each concept repeatedly, from different angles. We’ll provide
exercises for practice. Make sure to do them, because they’ll help you understand and
remember how blocks work.

A few hours of hard work now are going to pay dividends for the rest of your Ruby
career, we promise. Let’s get to it!

This report is an excerpt from a larger book. Any references to chapters are referring to Head First Ruby.

http://bit.ly/head-first-ruby
http://bit.ly/head-first-ruby

2 Blocks

accepting blocks

Defining a method that takes blocks

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

This method takes a
block as a parameter!

The “call" method calls the block.

Blocks and methods work in tandem. In fact, you can’t have a block without
also having a method to accept it. So, to start, let’s define a method that works
with blocks.

(On this page, we’re going to show you how to use an ampersand, &, to accept
a block, and the call method to call that block. This isn’t the quickest way
to work with blocks, but it does make it more obvious what’s going on. We’ll
show you yield, which is more commonly used, in a few pages!)

Since we’re just starting off, we’ll keep it simple. The method will print a
message, invoke the block it received, and print another message.

If you place an ampersand before the last parameter in a method
definition, Ruby will expect a block to be attached to any call to that
method. It will take the block, convert it to an object, and store it in
that parameter.

def my_method(&my_block)
 ...
end When you call this method with a block, it will be stored in “my_block".

Remember, a block is just a chunk of code that you pass into a method.
To execute that code, stored blocks have a call instance method that
you can call on them. The call method invokes the block’s code.

def my_method(&my_block)
 ...
 my_block.call
 ...
end

No ampersand; that's
only used when you’re
defining the parameter.

Run the block's code.

Okay, we know, you still haven’t seen an actual block, and you’re going
crazy wondering what they look like. Now that the setup’s out of the
way, we can show you…

you are here 4  3

arrays and blocks

Your first block
Are you ready? Here it comes: your first glimpse of a Ruby block.

my_method do

 puts "We're in the block!"

end

A block must always
follow a method call. Start of the block

Block body

End of the block

There it is! Like we said, a block is just a chunk of code that you pass to a method. We
invoke my_method, which we just defined, and then place a block immediately
following it. The method will receive the block in its my_block parameter.

• The start of the block is marked with the keyword do, and the end is marked
by the keyword end.

• The block body consists of one or more lines of Ruby code between do and
end. You can place any code you like here.

• When the block is called from the method, the code in the block body will be
executed.

• After the block runs, control returns to the method that invoked it.

We're in the method, about to invoke your block!
We're in the block!
We're back in the method!

So we can call my_method and pass it the above block. The method will receive the
block as a parameter, my_block, so we can refer to the block inside the method.

…and here’s the output we’d see:

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

my_method do
 puts "We're in the block!"
end

The block. It will be stored
in the “my_block" parameter.

The call to my_method

4 Blocks

block flow control

We declared a method named my_method, called it with a block, and got
this output:

my_method do
 puts "We're in the block!"
end

We're in the method, about to invoke your block!
We're in the block!
We're back in the method!

Let’s break down what happened in the method and block, step by step.

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

do
 puts "We're in the block!"
end

do
 puts "We're in the block!"
end

We're in the block!

We're back in the method!

The my_block.call expression runs, and control is passed to the block.
The puts expression in the block’s body runs.

2

When the statements within the block body have all run, control returns to
the method. The second call to puts within my_method’s body runs, and
then the method returns.

3

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

do
 puts "We're in the block!"
end

We're in the method, about to invoke your block!

 The first puts statement in my_method’s body runs.1

Flow of control between a method and block

The method:

The block:

you are here 4  5

arrays and blocks

You can pass many different blocks to a single method.

We can pass different blocks to the method we just defined, and do different things:

my_method do
 puts "It's a block party!"
end

We're in the method, about to invoke your block!
It's a block party!
We're back in the method!

my_method do
 puts "Wooooo!"
end

We're in the method, about to invoke your block!
Wooooo!
We're back in the method!

The code in the method is always the same, but you can change the code
you provide in the block.

Calling the same method with different blocks

puts "We're back in the method!"

puts "We're in the block!"

puts "We're in the method, about to invoke your block!"

Code from the method stays the same.

Block code changes!

puts "We're back in the method!"

puts "It's a block party!"

puts "We're in the method, about to invoke your block!"

Code from the method stays the same.

Block code changes!

puts "We're back in the method!"

puts "Wooooo!"

puts "We're in the method, about to invoke your block!"

Code from the method stays the same.

Block code changes!

6 Blocks

repeating blocks

A method can invoke a block as many times as it wants.

Calling a block multiple times

Statements in the method body run until the first my_block.call
expression is encountered. The block is then run. When it completes,
control returns to the method.

1

The method body resumes running. When the second my_block.call
expression is encountered, the block is run again. When it completes, control
returns to the method so that any remaining statements there can run.

2

def twice(&my_block)
 puts "In the method, about to call the block!"
 my_block.call
 puts "Back in the method, about to call the block again!"
 my_block.call
 puts "Back in the method, about to return!"
end

do
 puts "Woooo!"
end

This method is just like our previous one, except that it has two
my_block.call expressions:

The method name is
appropriate: as you can
see from the output, the
method does indeed call
our block twice!

In the method, about to call the block!
Woooo!
Back in the method, about to call the block again!
Woooo!
Back in the method, about to return!

def twice(&my_block)
 puts "In the method, about to call the block!"
 my_block.call
 puts "Back in the method, about to call the block again!"
 my_block.call
 puts "Back in the method, about to return!"
end

twice do
 puts "Woooo!"
end

Call the block.

Call the block AGAIN.

Declaring another
method that
takes a block.

Calling the method
and passing it a block.

def twice(&my_block)
 puts "In the method, about to call the block!"
 my_block.call
 puts "Back in the method, about to call the block again!"
 my_block.call
 puts "Back in the method, about to return!"
end

do
 puts "Woooo!"
end

you are here 4  7

arrays and blocks

Block parameters

In a similar vein, a method can pass
one or more arguments to a block.
Block parameters are similar to method
parameters; they’re values that are passed
in when the block is run, and that can be
accessed within the block body.

You can have a block
accept one or more
parameters from the
method by defining
them between vertical
bar (|) characters at
the start of the block:

We learned back in Chapter 2 that when
defining a Ruby method, you can specify
that it will accept one or more parameters:
def print_parameters(p1, p2)
 puts p1, p2
end

You’re probably also aware that you can
pass arguments when calling the method
that will determine the value of those
parameters.
print_parameters("one", "two")

one
two

So, when we call our method and provide a block, the arguments to call are
passed into the block as parameters, which then get printed. When the block
completes, control returns to the method, as normal.

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

give do |present1, present2|
 puts "My method gave to me..."
 puts present1, present2
end

Parameter 1 Parameter 2

Passed to block Passed to block

If there are multiple
parameters, separate
them with commas.

Arguments to call
get forwarded on to
the block:

My method gave to me...
2 turtle doves
1 partridge

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

do |present1, present2|
 puts "My method gave to me..."
 puts present1, present2
end

"2 turtle doves" "1 partridge"

Q: Can I define a block once, and use it
across many methods?

A: You can do something like this using Ruby
procs (which are beyond the scope of this book).
But it’s not something you’ll want to do in practice.
A block is intimately tied to a particular method call,
so much that a particular block will usually only
work with a single method.

Q: Can a method take more than one block
at the same time?

A: No. A single block is by far the most common
use case, to the point that it’s not worth the
syntactic mess it would create for Ruby to support
multiple blocks. If you ever want to do this, you
could also use Ruby procs (but again, that’s
beyond the scope of this book).

8 Blocks

the yield keyword

Using the “yield” keyword
So far, we’ve been treating blocks like an argument to our methods. We’ve been
declaring an extra method parameter that takes a block as an object, then using the
call method on that object.

def twice(&my_block)
 my_block.call
 my_block.call
end

We mentioned that this wasn’t the easiest way to accept blocks, though. Now, let’s
learn the less obvious but more concise way: the yield keyword.

The yield keyword will find and invoke the block a method was called with—
there’s no need to declare a parameter to accept the block.

This method is functionally equivalent to the one above:

def twice
 yield
 yield
end

Just like with call, we can also give one or more arguments to yield, which
will be passed to the block as parameters. Again, these methods are functionally
equivalent:

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

def give
 yield "2 turtle doves", "1 partridge"
end

Declaring a &block parameter
is useful in a few rare instances
(which are beyond the scope of
this book). But now that you
understand what the yield
keyword does, you should just
use that in most cases. It’s
cleaner and easier to read.

Conventional
Wisdom

you are here 4  9

arrays and blocks

Block formats
So far, we’ve been using the
do...end format for blocks.
Ruby has a second block format,
though: “curly brace” style. You’ll
see both formats being used “in
the wild,” so you should learn to
recognize both.

def run_block
 yield
end

run_block do
 puts "do/end"
end

run_block { puts "braces" }

The do…end
format we've
been using so far

“Curly brace" format
Start of block

Block body, just like
with “do…end"

do/end
braces

Aside from do and end being replaced with curly
braces, the syntax and functionality are identical.

By the way, you’ve probably noticed that all our do...end blocks span multiple
lines, but our curly-brace blocks all appear on a single line. This follows another
convention that much of the Ruby community has adopted. It’s valid syntax to do it
the other way:

But not only is that out of line with the convention, it’s really ugly.

And just as do...end blocks can accept
parameters, so can curly-brace blocks:

def take_this
 yield "present"
end

take_this do |thing|
 puts "do/end block got #{thing}"
end

take_this { |thing| puts "braces block got #{thing}" }

do/end block got present
braces block got present

take_this { |thing|
 puts "braces: got #{thing}"
}
take_this do |thing| puts "do/end: got #{thing}" end

Breaks convention!

Breaks convention
(and is really ugly)!

braces: got present
do/end: got present

End of
block

10 Blocks

understanding blocks

Tonight’s talk: A method and a block talk about
how they became associated with each other.

Method: Block:

Thanks for coming, Block! I called you
here tonight so we could educate people
on how blocks and methods work together.
I’ve had people ask me exactly what
you contribute to the relationship, and I
think we can clear those questions up for
everyone.

Sure, Method! I’m here to help whenever
you call.

So most parts of a method’s job are pretty
clearly defined. My task, for example, is to
loop through each item in an array.

Right. Not a very glamorous job, but an
important one.

Sure! It’s a task lots of developers need
done; there’s a lot of demand for my
services. But then I encounter a problem:
what do I do with each of those array
elements? Every developer needs
something different! And that’s where
blocks come in…

Precisely. Every developer can write their
own block that describes exactly what they
need done with each element in the array.

I know another method that does nothing
but open and close a file. He’s very good
at that part of the task. But he has no clue
what to do with the contents of the file…

…and so he calls on a block, right? And
the block prints the file contents, or
updates them, or whatever else the
developer needs done. It’s a great working
relationship!

I handle the general work that’s needed
on a wide variety of tasks…

And I handle the logic that’s specific to an
individual task.

you are here 4  11

arrays and blocks

And here are several calls to the above methods.
Match each method call to the output it produces.

Here are three Ruby method definitions,
each of which takes a block:

def call_block(&block)
 puts 1
 block.call
 puts 3
end

def call_twice
 puts 1
 yield
 yield
 puts 3
end

def pass_parameters_to_block
 puts 1
 yield 9, 3
 puts 3
end

call_block do
 puts 2
end

B

call_block { puts "two" }

call_twice { puts 2 }

call_twice do
 puts "two"
end

pass_parameters_to_block do |param1, param2|
 puts param1 + param2
end

pass_parameters_to_block do |param1, param2|
 puts param1 / param2
end

1
3
3

C

1
12
3

D

1
two
3

E

1
two
two
3

F

1
2
3

B

1
2
2
3

A

(We've done the first one for you.)

12 Blocks

understanding blocks

And here are several calls to the above methods.
Match each method call to the output it produces.

def call_block(&block)
 puts 1
 block.call
 puts 3
end

def call_twice
 puts 1
 yield
 yield
 puts 3
end

def pass_parameters_to_block
 puts 1
 yield 9, 3
 puts 3
end

call_block do
 puts 2
end

B

call_block { puts "two" }E

call_twice { puts 2 }A

call_twice do
 puts "two"
end

F

pass_parameters_to_block do |param1, param2|
 puts param1 + param2
end

D

pass_parameters_to_block do |param1, param2|
 puts param1 / param2
end

C

1
3
3

C

1
12
3

D

1
two
3

E

1
two
two
3

F

1
2
3

B

1
2
2
3

A

Here are three Ruby method definitions,
each of which takes a block:

you are here 4  13

arrays and blocks

The “each” method
We had a lot to learn in order to get here: how to write a block, how a method calls
a block, how a method can pass parameters to a block. And now, it’s finally time to
take a good, long look at the method that will let us get rid of that repeated loop
code in our total, refund, and show_discounts methods. It’s an instance
method that appears on every Array object, and it’s called each.

The each method uses this feature of Ruby to loop through each of the items in
an array, yielding them to a block, one at a time.

["a", "b", "c"].each { |param| puts param }
a
b
c

You’ve seen that a method can yield to a block more than once, with different
values each time:

def my_method
 yield 1
 yield 2
 yield 3
end

my_method { |param| puts param }

1
2
3

If we were to write our own method that works like each, it would look very
similar to the code we’ve been writing all along:

We loop through each element in the array, just like in our total, refund, and
show_discounts methods. The key difference is that instead of putting code
to process the current array element in the middle of the loop, we use the yield
keyword to pass the element to a block.

This is just like the loops in
our “total", “refund", and
“show_discounts" methods!

class Array

 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
 end

end

Remember, “self" refers to the current object—in this case, the current array.

Then move to the next
element, just like before.

The key difference: we
yield the current element
to a block!

14 Blocks

understanding each

We’re using the each method and a block to process
each of the items in an array:

["a", "b", "c"].each { |param| puts param }

a
b
c

The “each" method, step-by-step

Let’s go step-by-step through each of the calls to the block and see what it’s doing.

 For the first pass through the while loop, index is set to 0, so the first
element of the array gets yielded to the block as a parameter. In the block
body, the parameter gets printed. Then control returns to the method,
index gets incremented, and the while loop continues.

1

"a"

{ |param| puts param }

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

a

 Now, on the second pass through the while loop, index is set to 1, so
the second element in the array will be yielded to the block as a parameter.
As before, the block body prints the parameter, control then returns to the
method, and the loop continues.

2

"b"

{ |param| puts param }

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

b

 After the third array element gets yielded to the block for printing and control
returns to the method, the while loop ends, because we’ve reached the end of
the array. No more loop iterations means no more calls to the block; we’re done!

3

"c"

{ |param| puts param }

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

c

That’s it! We’ve found a method that can handle the repeated looping code, and
yet allows us to run our own code in the middle of the loop (using a block). Let’s
put it to use!

you are here 4  15

arrays and blocks

DRYing up our code with “each” and blocks
Our invoicing system requires us to implement these three methods. All three of
them have nearly identical code for looping through the contents of an array.

But now we’ve finally mastered the each method, which loops over
the elements in an array and passes them to a block for processing.

["a", "b", "c"].each { |param| puts param }

a
b
c

Given an array of prices, add them all together
and return the total.

Given an array of prices, subtract each price from
the customer’s account balance.

Given an array of prices, reduce each item’s price
by 1/3, and print the savings.

Refactored

It’s been difficult to get rid of that duplication, though, because all three methods
have different code in the middle of that loop.

Let’s see if we can use each to refactor our three methods and eliminate the
duplication.

def total(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount += prices[index]
 index += 1
 end
 amount
end

def refund(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount -= prices[index]
 index += 1
 end
 amount
end

def show_discounts(prices)
 index = 0
 while index < prices.length
 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 index += 1
 end
end

This line in the middle
differs, though…

Differs…

Differs…

Highlighted lines are
duplicated among the
three methods.

16 Blocks

using each

DRYing up our code with “each” and blocks
(continued)

The each method looks like it will be perfect for getting rid of the repeated
looping code! We can just take the code in the middle that adds to the total, and
place it in a block that’s passed to each.

index = 0
while index < prices.length
 amount += prices[index]
 index += 1
end

prices.each { |price| amount += price }

Let’s redefine our total method to utilize each, then try it out.

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

prices = [3.99, 25.00, 8.99]

puts format("%.2f", total(prices))

Start the total at 0.

Process each price.
Add the current price
to the total.

Return the final total.

37.98

Perfect! There’s our total amount. The each method worked!

From here…

We don't have to pull the item
out of the array anymore;
“each" does that for us!

…to here!

First up for refactoring is the total method. Just like the others, it contains code
for looping over prices stored in an array. In the middle of that looping code,
total adds the current price to a total amount.

you are here 4  17

arrays and blocks

For each element in the array,
each passes it as a parameter to
the block. The code in the block
adds the current array element to
the amount variable, and then
control returns back to each.

1
3.99

do |price|
 amount += price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

2
25.00

do |price|
 amount += price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

3
8.99

do |price|
 amount += price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices = [3.99, 25.00, 8.99]
puts format("%.2f", total(prices))

37.98

DRYing up our code with “each” and blocks
(continued)

We’ve successfully refactored the total method!

But before we move on to the other two methods, let’s take a closer look at how that
amount variable interacts with the block.

Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer’s account balance.

Given an array of prices, reduce each item’s price

by 1/3, and print the savings.

Refactored

18 Blocks

blocks and variables

Blocks and variable scope
We should point something
out about our new total
method. Did you notice
that we use the amount
variable both inside and
outside the block?

As you may remember
from Chapter 2, the scope
of local variables defined
within a method is limited
to the body of that method.
You can’t access variables
that are local to the
method from outside the
method.

The same is true of blocks,
if you define the variable
for the first time inside the
block.

But, if you define a variable
before a block, you can
access it inside the block
body. You can also continue
to access it after the block
ends!

Error undefined local variable
or method `greeting'

Error undefined local variable
or method `greeting'

greeting = nil

run_block do
 greeting = "hello"
end

puts greeting

Define the variable
BEFORE the block.

Assign a new value
within the block.

Print the variable.

def run_block
 yield
end

run_block do
 greeting = "hello"
end

puts greeting

Define the variable
within the block.

Try to print the variable.

def my_method
 greeting = "hello"
end

my_method

puts greeting

Define the variable
within the method.

Call the method.

Try to print the variable.

hello

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

you are here 4  19

arrays and blocks

Blocks and variable scope (continued)
Since Ruby blocks can access variables
declared outside the block body, our
total method is able to use each with
a block to update the amount variable.

We can call total like this:

total([3.99, 25.00, 8.99])

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

The amount variable is set to 0, and then each is called on the array. Each of the
values in the array is passed to the block. Each time the block is called, amount is
updated:

When the each method completes, amount is still set to that final value, 37.98.
It’s that value that gets returned from the method.

1
3.99

do |price|
 amount += price
end

Updated from
0 to 3.99

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

2
25.00

do |price|
 amount += price
end

Updated from
3.99 to 28.99

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

3
8.99

do |price|
 amount += price
end

Updated from
28.99 to 37.98

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

20 Blocks

using each

We’ve revised the total method to get rid of the repeated loop code. We need to do
the same with the refund and show_discounts methods, and then we’ll be done!

Much cleaner, and calls to
the method still work just
the same as before!

prices = [3.99, 25.00, 8.99]
puts format("%.2f", refund(prices))

-37.98

Using “each” with the “refund” method

Updated from
0 to -3.99

3.99
1

do |price|
 amount -= price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

Updated from
-28.99 to -37.98

8.99
3

do |price|
 amount -= price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

The process of updating the refund method is very similar to the process we used
for total. We simply take the specialized code from the middle of the generic
loop code, and move it to a block that’s passed to each.

Within the call to each and the block, the flow of control
looks very similar to what we saw in the total method:

From
here…

…to
here!

def refund(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount -= prices[index]
 index += 1
 end
 amount
end

def refund(prices)
 amount = 0
 prices.each do |price|
 amount -= price
 end
 amount
end

Again, we don't have to pull the item out
of the array; “each" gets it for us!

Updated from
-3.99 to -28.99

25.00
2

do |price|
 amount -= price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

you are here 4  21

arrays and blocks

Again, as far as users of your method are concerned, no one will notice you’ve
changed a thing!

prices = [3.99, 25.00, 8.99]
show_discounts(prices) Your discount: $1.33

Your discount: $8.33
Your discount: $3.00

Using “each” with our last method
One more method, and we’re done! Again, with show_discounts, it’s a matter
of taking the code out of the middle of the loop and moving it into a block that’s
passed to each.

3.991 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
end

Your discount: $1.33

25.002 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
end

Your discount: $8.33

8.993 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
end

Your discount: $3.00

Here’s what the calls to the block look like:

def show_discounts(prices)
 index = 0
 while index < prices.length
 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 index += 1
 end
end

def show_discounts(prices)
 prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
 end
end

From
here… To

here!

Using “each” with the “refund” method

22 Blocks

our complete code

We’ve done it! We’ve refactored the repetitive loop code out of our
methods! We were able to move the portion of the code that differed into
blocks, and rely on a method, each, to
replace the code that
remained the same!

We’ve gotten rid of the repetitive loop code!

Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer’s account balance.

Given an array of prices, reduce each item’s price

by 1/3, and print the savings.

Refactored

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

def refund(prices)
 amount = 0
 prices.each do |price|
 amount -= price
 end
 amount
end

def show_discounts(prices)
 prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
 end
end

prices = [3.99, 25.00, 8.99]

puts format("%.2f", total(prices))
puts format("%.2f", refund(prices))
show_discounts(prices)

Start the total at 0.

Process each price.
Add the current price
to the total.

Return the final total.
Start the total at 0.

Process each price.
Refund the current price.

Return the final total.

Process each price.
Calculate discount.

Format and print the current discount.

$ ruby prices.rb
37.98
-37.98
Your discount: $1.33
Your discount: $8.33
Your discount: $3.00

prices.rb

Our complete invoicing methods

Do this! Save this code in a file named
prices.rb. Then try running it
from the terminal!

you are here 4  23

arrays and blocks

Pool Puzzle
Your job is to take code snippets from the pool and place
them into the blank lines in the code. Don’t use the same
snippet more than once, and you won’t need to use all
the snippets. Your goal is to make code that will run and
produce the output shown.

Note: each
thing from the
pool can only
be used once!

def pig_latin(words)

 original_length = 0
 = 0

 words. do
 puts "Original word: #{word}"
 += word.length
 letters = word.chars
 first_letter = letters.shift
 new_word = "#{letters.join}#{first_letter}ay"
 puts "Pig Latin word: #{ }"
 += new_word.length
 end

 puts "Total original length: #{ }"
 puts "Total Pig Latin length: #{new_length}"

end

my_words = ["blocks", "totally", "rock"]
pig_latin()

Original word: blocks
Pig Latin word: locksbay
Original word: totally
Pig Latin word: otallytay
Original word: rock
Pig Latin word: ockray
Original total length: 17
Total Pig Latin length: 23

File Edit Window Help

Output:

new_length

each

|word|

original_length
new_word

new_length

original_length
my_words

yield

newshrink

24 Blocks

understanding blocks and variables

Pool Puzzle Solution

Original word: blocks
Pig Latin word: locksbay
Original word: totally
Pig Latin word: otallytay
Original word: rock
Pig Latin word: ockray
Original total length: 17
Total Pig Latin length: 23

File Edit Window Help

Output:

def pig_latin(words)

 original_length = 0
 = 0

 words. do
 puts "Original word: #{word}"
 += word.length
 letters = word.chars
 first_letter = letters.shift
 new_word = "#{letters.join}#{first_letter}ay"
 puts "Pig Latin word: #{ }"
 += new_word.length
 end

 puts "Total original length: #{ }"
 puts "Total Pig Latin length: #{new_length}"

end

my_words = ["blocks", "totally", "rock"]
pig_latin()

each |word|

original_length

original_length

my_words

new_length

new_word
new_length

you are here 4  25

arrays and blocks

Utilities and appliances, blocks and methods
Imagine two electric appliances: a mixer and a drill. They have very different jobs:
one is used for baking, the other for carpentry. And yet they have a very similar
need: electricity.

Now, imagine a world where, any time you wanted to use an electric mixer or drill,
you had to wire your appliance into the power grid yourself. Sounds tedious (and
fairly dangerous), right?

That’s why, when your house was built, an electrician came and installed power
outlets in every room. The outlets provide the same utility (electricity) through the
same interface (an electric plug) to very different appliances.

The electrician doesn’t know the details of how your mixer or drill works, and he
doesn’t care. He just uses his skills and training to get the current safely from the
electric grid to the outlet.

Likewise, the designers of your appliances don’t have to know how to wire a home
for electricity. They only need to know how to take power from an outlet and use it
to make their devices operate.

You can think of the author of a method that takes a block
as being kind of like an electrician. They don’t know how
the block works, and they don’t care. They just use their
knowledge of a problem (say, looping through an array’s
elements) to get the necessary data to the block.

You can think of calling a method with a block as being kind of like plugging an
appliance into an outlet. Like the outlet supplying power, the block parameters
offer a safe, consistent interface for the method to supply data to your block. Your
block doesn’t have to worry about how the data got there, it just has to process the
parameters it’s been handed.

def wire
 yield "current"
end

Not every appliance uses electricity, of course; some require other utilities. There
are stoves and furnaces that require gas. There are automatic sprinklers and spray
nozzles that use water.

Just as there are many kinds of utilities to supply many kinds of appliances, there
are many methods in Ruby that supply data to blocks. The each method was just
the beginning. Blocks, also sometimes known as lambdas, are crucial components
of Ruby. They are used in loops, in functions that have to run code at some future
time (known as callbacks), and other contexts.

wire { |power| puts "Using #{power} to turn drill bit" }
wire { |power| puts "Using #{power} to spin mixer" }

Like a power outlet

Using current to turn drill bit
Using current to spin mixer

Start your free trial at:
oreilly.com/safari

(No credit card required.)

Sign up for a 10-day free trial to get unlimited access to all of the content on Safari,
including Learning Paths, interactive tutorials, and curated playlists that draw

from thousands of ebooks and training videos on a wide range of topics,
including data, design, DevOps, management, business—and much more.

©2016 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. D2565

Learn from experts.
Find the answers you need.

