v A _r"ﬁﬂr" N ol X T
thed iy P "'h-'.eril,.':_| K
FROCEDURES AS A REPRESENTATIOMN FOR DATA
IN A COMPUTER PROGRAM FOR UNDERSTAMNDING

HATURAL LANGUAGE

REFERENCE oppy
. DO 15 e

Terry Winograd
Massachusetts Institute of Technology

Januvary 1971

Revised version of a dissertation submitted to the
Department of Mathematics on Aupust 24, 1970 in partial
fulfillment of the reguirements for the degree of Docter of
Fhilosophy

ACKNOWLEDGEMENTS

The author would like to express his gratitude to the many
people who helped and encouraged him in this work: to the
members of the Al group at Project MAC who provided a critical
forum for ldeas; particularly te Carl Hewitt for introducing
him to PLAMMER, to Eugene Charnlak and Gerald Sussman for their
effarts in implementing Micro=Planner, and for many hours of
provoking discussions about the probhlems of natural language and
semantics; to Professor Sevmour Papert for supervising the
thesis, to Professors Marvin Minsky and Michael Fischer for
thelr suggestions and criticisms; to the PNP=10 for patiently
and uncomplainingly typing many drafts of the text: and te Caraol

for always.

ABSTRACT

This paper describes a system for the computer
understanding of English. The system answers questions,
executes commands, and accepts information in normal English
dialog. It uses semantic information and context to understand
discourse and to disambiguate sentences. [t combines a complete
syntactic analysis of each sentence with a "heuristic
understander"” which uses different kinds of information about a
sentence, other parts of the discourse, and general information
about the world in deciding what the sentence means.

It is based on the helief that a computer cannot deal
reasonably with language unless It can "understand" the subject
It Is discussing. The program s given a detalled model of the
knowledge needed by a simple robot having only a hand and an
eye, We can give It Instructions to manipulate toy objects,
interrogate [t about the scene, and give It information Tt will
use in deduction, In addition to knowing the properties of toy
objects, the program has a simple model of its own mentality,

It can remember and discuss its plans and actions as well as
carry them out. It enters into a dialog with a person,
responding to English sentences with actions and English
replies, and asking for clarification when its heuristic
programs cannot understand a sentence through use of context and
physical knowledge.

In the programs, syntax, semantics and inference are
Integrated in a “"vertical”™ system in which esach part is
constantly communicating with the others. We have explored
several techniques for integrating the large bodies of complex
knowledge needed to understand language. We use Systemic
Grammar, a tvpe of svntactic anmalysis which Is designed to deal
with semantics., Rather than concentrating on the exact form of
rules for the shapes of linguistic constituents, it is
structured around choices for conveying meaning. It abstracts
the relevant features of the linguistic structures which are
important for interpreting their meaning.

We represent many kinds of knowledge in the form of
procedures rather than tables of rules or lists of patterns, By
developing special procedural languages for grammar, semantics,
and deductive logic, we gain the flexibility and power of
programming languages while retaining the regularity and
understandabhility of simpler rule forms. Each piece of
knowledge can he a procedure, and can call on any other piece of
knowledge in the system.

Thesis Supervisor: Seymour A, Papert, FProfessor of Applied
Mathematics

Note on the Organization of the Text

This paper was written to be readable at several different
levels of detail. The Preface is intended to he understandable
to a layman with no special knowledge of linguistics or
computers, and gives a general idea of the purposes and methods,
The Introduction glves somewhat more detail, along with a sample
of a dialog with the program, It explains more specifically how
the program is organized, and what theories were used in its
construction.

The remaining chapters each contain a general introductory
section, followed by further sections explaining the details of
the programs and theories. It should be possible to get a good
hasic understanding of the paper hy reading the introduction,
followed by the first seetion of each chapter. In addition,
there was an attempt to keep sections independent so that parts
af the paper could be selected separately. For example, the
description of the PROGRAMMAR language, and the description of
aur grammar of English can be read Independentiy.

Because of this structure, some parts of the paper are
redundant == & particularly important principle or relevant
example may be repeated at all three levels of explanation, and
in the different sections where it is needed. However it is
hoped that 1t will allow the reader to go into the content as
deeply as he wants without getting bogged down in detall.
Throughout the text, single=spaced paragraphs are used for
emphasis.

Table of Contents - Page 5

Table of Contents

Tabkle of Contents
Preface -- Talking to Computers

Chapter 1, Introduction

1.1 General Description

What is Language?

1.2 Implementation of the System
1.3 Sample Dilalog

Chapter 2. Syntax

2.1 Basic Approach to Swyntax

syntax and Meanling
Parsling

[] L]
B3 e

2,2 A Description of PROGRAMMAR

Grammar and Computers

Context=free and Context=-sensitive Grammars
Systemic Grammar

Grammars as Programs

The Form of PROGRAMMAR Grammars

¥ L] L] * L]
L} [T

Context-Sensitive Aspects
Ambigulty and Understanding
SuUMmmary

Bk Pl o2 b Fod B2 Bl Pl

[L] *

Fad Pl [Pudi Pl Pl Pl Fod Pl
G = P U R L R3S

2.3 A Grammar of English

About the Grammar

Units, Rank, and Features
The CLAUSE

Transitivity In the Clause
Moun Groups

Podt B o Pl B
& & & 8
el o el s bn
LN L VU e

Preposition Groups
Adjective Groups
Verb Groups

Words

Podd Pod Pk e
% % 8

el L e e

LD O N

1.1
1.2 Organlization of the Language Understanding Process

=

16
16

18
22

29
35
61
61

62
66

69

69
72
i3
7
79

83
91
92

82
95
104
115
120

128
131
133
139

B B B B3 Fad Pl
Pow b ok F &
- - - £l L] -
b el (LT D0 Sl ORI
= o

FrFEFoEsE

P B B
L e

Table of Contents - Page &

Conjunction
Follawing the Parser in Operation
Analysis of Word Endings

2.4 Programming Detalls

Oparation of the Svstem
Special Words
Possess | ves

The Dictionary

Backup Facilities

Auxilllary Functions

Messages

The Form of the Parsing Tree
Variables Malntalned by the Svstem
Pointers

Feature Manipulating

2.% Comparison with Other Parsers
Mder Parsers

Augmented Transitlion Metworks
Hetworks and Programs

Chapter 3, Inference

rl LM s e
= - L3 -
[
£ by -8

Wl ed R e L

L] L] L]
Bl Pl B3 B B
L WM R

rd Ll B L L A
Ll al Wl LAl Rl ol
g Ny I g W % O]

L] # L] L

3.1 Basic Approach to Meaning

Representing Enowledge
Philosophical Considerations
Complex Information

Ouestlons, Statements, and Commands

3,2 Comparison with Previous Programs

Special Format Svstems

Text Based Systems

Limited Logic Systems
General Deductive Systems
Procedural Deductive Systems

3.3 Programming in PLANMER

Basic Operation of PLANNER

Backup

Differences with Other Theorem=-Provers and Languages
Controlling the Data Base

Events and States

PLANMER Functions

1u9
153
171

176

176
178
183
184
1E6

189
190
191
192
193
195

196

196
199
201
206
208

2086
210
217
2149

221

222
224
228
230
23k

2319

239
2k
2h7
250
253
257

e e L L L
£ B E s
LA e RS

L L} - L] -

Table of Contents = Page 7

3.4 The BLOCKS World

Objects

Relations

Actions

Carrving Out Commands
Memaory

Chapter 4, Semantics

=~
L] - - - - -
Ll Nl el
L] " " - - L]
[L I T L

s E s e
* & B o @
Pl Bl Fad Pl Pl

s EFEFEFE
" L] *
[l == R R k] LA L b

Fod B3 RO B O
R

= =
L I)
P Pl
L
-
(%]

= & &
el Bl
Ll L} -
L

= & E s E
EEEEE
* & F Ll #

R I

b,1 What s Semantics?

The Province of Semantics
The Semantic System

Words

Amblpulty

Discourse

Goals of a Semantic Theory

4.2 Semantic Structures

Object Semantic Structures
FRelative Clauses

Preposition Groups

Types of Object Descriptlions
The Meaning of Questions

Interpreting Imperatives
Accepting Declarative Informatlon
Time

Semantics of Conjunction

More on Ambiguity

Ta Be and To Have
Additional Semantic Information

4.3 The Semantics of Discourse

Pronouns
Substitutes and Incompletes
Overall Discourse Context

.4 Generation of Responses

Patterned HResponses
Answering Questlions
Maming Objects and Events
Generating Discourse
Future Development

260

261
265
269
271
276

2ED
2ED

280
283
286
290
294
298

300

30l
310
316
318
314

331
333
337
347
350

356
261

69

37
317
3ED

38k

38h
387
393
396
2949

Table of Contents - Page 8

k.5 Comparison with Other Semantic Systems

1l Introductlon

2 Categorization

3 Assoclation

L Procedure

5 Evaluating the Models
E Conclusions

Chapter 5. Concluslons

5.1 Teachling, Telling and Learning

5.1.1 Types of Knowledge
5.1.2 Syntax
5.1.3 Inference
5.1.4 Semantics
5.2 Directlons for Future Research
Appendix A - Index of Syntactic Features
Appendix B - Sample Parslings
Appendix C = Sample BELOCES Theorems
Appendix D - Sample PROGRAMMAR Program
Appendix E - Sample Dictlionary Entries
Appendix F - PLAMMNER Data for Dialog 1n Sect, 1.3

Bibliography

40l

401
403
406
409
411
420

h22
L22

423
425
430
435

438

Lk
bay
450
L52
L5k
457

458

Preface - Page 9

Preface == Talking to Computers

Computers are heing used today to take over many of our
jobs. They can perform milliens of calculations In a second,
handle mountains of data, and perform routine office work much
more efficiently and accurately than humans. But when it comes
to telling them what te do, they are tyrants. They insist on
being spoken to in special computer languages, and act as though
they can't even understand a simple English sentence.

Let us envision a new way of using computers so they can
take instructions in a way suited to thelr Jobhs., We will talk
to them just as we talk to a research assistant, librarian, or
secretary, and they will carry out our commands and provide us
with the information we ask for. |If our instructions aren't
clear enough, they will ask for more infoermation before they do
what we want, and this dialog will all be in English.

Why isn't this being done now? Aren't computers
translating foreign languages and conducting psychiatric
interviews? Surely it must be easier te understand simple
requests for information than to understand Russian or a
person's psychological problems, The key to this question is in
understanding what we mean by "understanding"”., Computers are
very adept at manipulating symbols =-- at shuffling around
strings of letters and words, looking them up in dictionaries,
and rearranging them, In the early days of computing, some

peaple thought that simple applications of these capabilities

Preface = Page 10

might be just what was needed to translate languages., The
government supported a tremendous amount of research into
language translation, and a number of projects tried different
approaches,. In 1966 a committee of the National Academy of
Sciences wrote a report evaluating this research and announced
sadly that it had been a failure. Every project ran up against
the same brick wall == the computer didn't know what it was
talking about.

When a human reader sees a sentence, he uses knowledpe to
understand it. This includes not only grammar, but also his
knowledge about words, the context of the sentence, and most
Important, his knowledge about the subject matter. A computer
program supplied with only a prammar for manipulating the syntax
of language could not produce a translation of reasonable
quality.

Evervone has heard the story of the computer that tried to
translate "The spirit is willing but the flesh is weak.™ into
Russian and came out with something which meant "The vodka is
strong but the meat is rotten." Unfortunately the problem is
much more serlious than just choosing the wrong words when
translating idioms. It Isn't always possible to even choose the
right grammatical forms, We may want to translate the two
sentences "A message was delivered by the next visitor.," and "A

message was delivered by the next day." If we are translating
into a language which doesn't have the eaquivalent of our
"pnassive voice", we may need to completely rearrange the first
sentence into something corresponding to "The next visitor

delivered a message." The other sentence might become something

Preface = Papge 11

like "Before the next day, someone delivered a message." |If the
computer picks the wrong form for either sentence, the meaning
is totally garbled., I|n erder toc make the choice, it has to know
that visitors are people who can deliver messages, while days
are units of time and cannet. It has te "understand" the
meanings of the words "day" and "visitor".

In ather cases the problem is even worse. Even a knowledge
of the meanings of words is not encugh., Let us try to translate
the two sentences:

"The clity councilmen refused te give the women a
permit for a demonstration because they feared violence,"
and

"The eity councilmen refused to glve the women a
permit for a demonstration because they advocated
revolution."

If we are translating into a language (like French) which
has different forms of the word "they" for masculine and
feminine, we cannot leave the reader to figure out who "they"
refers to., The computer must make a choice and if It chooses
wrong, the meaning of the sentence is changed., To make the
decision, It has to have more than the meanings of words. |t
has to have the information and reasoning power to realize that
city counciimen are usually staunch advocates of law and order,
but are hardly likely to he revolutionaries,

For some uses, It Isn't really necessary to understand

Preface = Page 12

much. There has been much publicity about a well known
"psychiatrist" program named ELIZA, It imitates the kind of
Rogerian psychiatrist who would respond to a question 1ike "What
time is t?" by asking "Why do you want to know what time it
1s?" or muttering "You want to know what time it is!"™, This can
be done without mueh understanding., A1l It needs to do is take
the words of the question and rearrange them In some simple way
to make a new question or statement. In addition it recognizes
a few key words, to respond with a fixed phrase whenever the
patient uses one of them. |f the patient types a sentence
containing the word "mother", the program can say "Tell me mare
about vour family!™, In fact, this is just how the psychiatrist
program works, But very often It doesn't work =-- [ts answers
are silly or meaningless because it isn't really understanding
the content of what is being said.

If we really want computers to understand us, we need to
give them the ability te use more knowledee. In addition to a
grammar of the language, they need to have all sorts of
knowledge about the subject they are discussing, and they have
to use reasoning to combine facts in the right way te understand
a sentence and respond to it., The process of understanding a
sentence has to combine grammar, semantics, and reasoning in a
very intimate way, calling on each part to help with the others.

This thesls explares one way of glving the computer

knowledge In a flexible and usable form. In addition to basic
tools and operations for understanding language, we give the
computer specialized Information about the Fnglish language, the

words we will use, and the subject we will discuss. In most

earlier computer programs for understanding language, there have

Preface = Page 13

been attempts to use these kinds of Information in the form of
11sts of rules, patterns, and formulas,

In our system, knowledge ls expressed as programs In
special languages deslgned for syntax, semantics, and reasoning.
These languages have the control structure of a programming
language, with the statements of the language explicltly
controlling the process. This makes It possible to relate the
different areas of knowledge more directly and completely, The
course of the understanding process can be determined directly
by speclal knowledge about a word, & syntactlc construction, or
a partlicular fact about the world.

This glves greater flexlblility than a program with a flxed
control structure, In which the specific knowledge can only
indirectly control the process of understanding., By using
languages specially developed for representing these kinds of
knowledge, It is possible for a persen te "teach" the computer
what 1t needs to know about a new subject or a new vocabulary
without being concerned with the detalls of how the computer
will go about using the knowledge to understand language. For
simple Information, 1t Is even possible to just "tell" the
computer In English. Other systems make [t possible to "tell"
the computer new thlngs by allowing It to accept only very
specialized kinds of Information. By representing Informatlion
as programs, we can greatly expand the range of things which can
be Included.

The best way to experiment with such [deas [s to write a
working program which can actually understand language. e

would 1lke a program which can answer qguestions, carry out

commands, and accept new Information In English., |If we really

Preface = Page 1k

want it to understand language, we must give it knowledge about
the specific subject we want to talk about.

For our experiment, we pretended that we were talking to a
simple robot, with a hand and an eve and the ability to
manipulate toy blocks on a tahle. We can say, "Pick up a hlock
which is bigger than the one vou are holding and put it in the
box.", or ask a sequence of questions like "Had you touched any
pyramid hefore you put the green one on the 1ittle cube?" "When
did you pick Tt up?" "Why?", or we can give it new Information
lTike "1 1ike blocks which are not red, but | don't like anything
which supports a pyramid." The "robot" responds by carrying out
the commands (In a simulated scene on a display screen attached
to the computer), typing out answers to the guestions, and
accepting the information to use in reasoning later on.

The dialog is carried out by typing on a terminal attached
to the computer time=sharing system, There are a2 number of hard
technical problems in getting a computer to communicate by
volee, and it has not been attempted.

We had three main kinds of goals Iin writing such a program.
The first is the practical goal of having a language-
understanding system. Even though we used the rohot as our test
area, the language programs do not depend on any special subject
matter, and they have been adapted to other uses,

The second goal is gaining a better understanding of what
language is and how it is put together. To write a program we
need to make all of our knowledge ahout language very explicit,
and we have to be concerned with the entire language process,
not Just one area such as svntax, We need the most adwvanced
theories which linguists and others have developed, and we must

fit them together to get the program working. This provides a

rigid test for linguistic theories, and leads us into making new

Preface - Page 15

theorlies to fill the places where the old cnes are lacking. To
make a computer understand language, we have to Increase our
knowledge of how people understand language, and one [mportant
goal is the Improvement of our comprehenslon of language and
linguistics.

More generally, we want to understand what intelllgence s
and how 1t can be put Into computers. Language 1s one of the
most complex and unique of human activities, and understanding
its structure may lead to a better theory of how our minds work.
The technlgues needed to write a language-understanding program
may be useful in many other areas of Intelllgence such as
vision, mathematlcal problem selving, and game playling. All of
these areas have similar problems of Integrating large amounts
of knowledge into a flexible system.

With advances In artificial intelligence we will some day
be able to combine all of these areas to provide computers which
are not tyrants, but can understand what we tell them and do

what we want them to In an intelllgent way.

Section 1.1 - Page 15

Chapter | -- Introduction

1.1 General Descriptlion

This paper describes a system for the understanding of
Engllish by a computer, The system answers questions, executes
commands, and accepts information in normal English dialog. It
uses semantic Information and context to understand discourse
and to disambiguate sentences both syntactlecally and
semantically. It combines a complete syntactlc analysis of each
sentence with a "heuristie understander" which uses different
kinds of Information about a sentence, other parts of the
discourse, and general Information about the world In declding
what a sentence means,

It 15 based on the bellef that a computer cannot deal
reasonably with language unless 1t can "understand" the subject
It is discussing, The program Is glven a detalled model of a
small part of knowledge, and It can understand sentences
concerning the subject it knows about. We use as an example the
knowledge needed by a simple robot consisisting of only an eye
and @ hand. We can give it Instructions to manipulate toy
objects, interrogate it about the scene, and gilve It Information
It will use In deductlion,

In addition to knowing the properties of blocks, hands,
etc., the program has a simple model of its own mentallty. It

can remember and discuss [ts plans and actiens as well as carry

Sectlion 1,1 - Page 17

them out. It enters Into a true dialog with a person,
responding to English sentences with actions and English
replles, and asking for clarification when its heuristic
programs cannot dlsamblguate a sentence through use of context

or physical knowledge.

Section 1.1,1 - Page 18

A,1,1 What is Language?

To write a computer program which understands natural
language, we need to understand what language Is and what It
does, It should be approached not as a set of mathematical
rules and symbols, but as a system intended to communicate ldeas
from a speaker to & hearer, and we want to analvze how |t
achieves that communication. |t can be viewed as a process of
translation from a structure of "concepts" In the mind of the
speaker, Into a string of sounds or written marks, and back [nto
concepts In the mind of the hearer.

In order to talk about concepts, we must understand the
importance of mental models (see <Minsky 1965»), In the flood
of data pouring Into our bralns every moment, people recognlze
regular and recurrent patterns., From these we set up a model of
the world which serves as a framework In which to organlze our
thoughts. We abstract the presence of particular objects,
having properties, and entering Into events and relatlonships.
Our thinking s a process of manipulating the "concepis" whieh
make up thls model, OFf course, there is no way of actually
observing the Internal workings of a person's mind, but In
Section 3.1 we will discuss the justification for postulating
such a2 "model"™ In analyzing the human use of language. In
Section 3.4 we show what this model might look 1lke for a small
area of knowledge, and describe how 1t can be used for

reasoning.

section 1.1.1 - Page 19

When we communicate with others, we select concepts and
patterns from the model and map them onto patterns of sound,
which are then relnterpreted by the hearer In terms of his own
mode 1. A theory can concentrate on either half of thls process
of generation and Interpretation of language. Even though 2
complete theory must account for both, 1ts approach 1s strongly
colored by which one 1t views as logically primary. Most
current theorles are "generative', but 1t seems more interesting
to look at the interpretive side (see <Winograd 1969 for a
discusslon of the issues involved). The first task a child
faces is understanding rather than preducing language, and he
understands many utterances before he can speak any. At every
stage of development, a person can understand a much wider range
of patterns than he produces (see <MIller>, Chapter 7). A
program Is not a detailed psycheological theory of how a person
interprets language, but there may In fact be very Informative
parallels, and at a high level, It may be 2 reasonakle
simulation.

Language understanding Is 4 kind of intellectual activity,
in which a pattern of sounds or wrlitten marks is Interpreted
into a structure of concepts in the mind of the Interpreter, We
cannot think of 1t as being done in simple steps: 1. Parse; 2.
Understand the meaning; 3. Think about the meaning. The way we
parse a sentence Is controlled by a continuing semantic

interpretation which guldes us In a "meaningful" direction.

Sectioen 1,1.1 - Page 20

When we see the sentence "He gave the boy plants to water."
we don't get tangled up In an Interpretation which would be
parallel te "He gave the house plants to charity." The phrase
"boy plants" doesn't make sense 1lke "house plants" or "boy
scouts", so we reject any parsing which would use It,

Syntax, semantics, and Inference must be Integrated in a
close way, so that they can share In the responsibillity for
interpretation. Our program must Incorporate the flexibllity
needed for thls kind of "vertical" system in which each part Is
constantly talking to the others, We have explored several
techniques for Integrating the large bodlies of complex knowledge
needed to understand language. Two are particularly important.

First, we use a type of syntactic analysis which Is
designed to deal with guestions of semantics. Rather than
concentrating on the exact form of rules for shuffling around
lingulstic symbols, 1t studies the way language s structured
around cholces for conveyling meaning. The parsing of & sentence
Indicates its detalled structure, but more Important it
abstracts the "features" of the lingulstic components which are
important for interpreting thelr meaning. The syntactic theory
includes an analysis of the way language Is structured te convey
information through systematlc cholices of features. The other
parts of the program can look directly at these relevant
features, rather than having to deal with minor detalls of the

way the parsing tree looks,

Section 1,1.1 - Page 21

Second, we represent knowledge in the form of procedures
rather than tables of rules or 1ists of patterns, By developing
special procedural languages for grammar, semantics, and
deductive loegle, we gain the flexibility and power of programs
while retalning the regularlty and understandiblllity of simpler
rule forms. Slnce each plece of knowledge can be a procedure,
It can call on any other plece of knowledge of any type. The
parser can call semantlc routines to see whether the 1lne of
parsing It Is followlng makes any sense, and the semantlc
routines can call deductive programs to see whether a particular
phrase makes sense In the current context. This Is particularly
important in handling discourse, where the interpretation of a
sentence containlng such things as pronouns may depend in
complex ways on the preceding discourse and knowledge of the
subject matter,

This dual view of programs as data and data as programs
would not have been possible In traditional programming
languages, The speclial languages for expressing facts about
grammar, semantics, and deduction are embedded In LISP, and
share with It the capabllity of lgnoering the artificlial

distinction between programs and data,

Sectlon 1.1.2 - Page 22

1,1,2 Organlzation of the Language Understanding Process

We can divide the process of language understanding Into
three main areas =-- syntax, semantics, and inference. As
mentioned above, these areas cannot be viewed separately but
must be understood as part of an Integrated system.
Nevertheless, we have crganized our programs aleong these baslc
iines, since each area has lts own tools and concepts which make
it useful to write special programs for It.

Listing these aspects of language understanding separately
Is somewhat misleading, as It Is the Interconnection and
interplay between them which makes the system possible, Our
parser does not parse a sentence, then hand It off to an
interpreter, As it finds each plece of the syntactic
structure, It checks Its semantlc Intepretation, first to see If
it is plausible, then {If possible) te see If It Is In accord
with the system's knowledge of the world, both speciflc and
general, This has been done In a limlted way by other systems,

but In our program It is an integral part of understanding at
every level,

A. Syntax

First we need a system for the syntactic analysls of Input
sentences, and any phrases and other non-sentences we might want
In our dialogs. There have been many different parsing systems
developed by different language projects, each based on a
particular theory of grammar. The fype of grammar chosen plays
a major role In the type of semantic analysis which can be
carried out. A language named PROGRAMMAR was designed
speciflcally to fit the type of analysis used In this system.
It differs from other parsers In that the grammar [tself Is

written In the form of a collection of programs, and the parsing

Sectlion 1,1.2 - Page 23

system Is in effect-an interpreter for the language used In
writing those programs,

Having chosen the "type of grammar', we need to formallize a
grammar for parsing sentences In a partlicular language. Our
system includes a comprehensive grammar of English following the
lines of systemlc grammar (see Sectlon 2.3). This type of
grammar [s well suited to a complete language-understanding
system since It views language as a system for conveying meaning
and 1s highly oriented toward semantic analysis., It is Intended
to cover a wide range of syntactlc constructlons; one basic
criterion for the completeness of the grammar is that a person
with no knowledge of the system or 1ts grammar should be able to
type any reasonable sentence within the 1imitations of the
vocabulary and expect it to be understood.

B. lInference

At the other end of the linguistic process we need a
deductive system which can be used not only for such things as
resolving amblgulities and answerling guestions, but also to allow
the parser to use deduction In trylng to parse a sentence, The
system uses PLANNER, a deductlive system deslgned by Carl Hewltt
{see ¢Hewitt 1269, 1970») which Is based on a phllosophy very
similar to the general mood of this project. Deduction In
PLANMNER is not carried out In the tradlitional "loglstic
framework”" In which a general procedure acts on a set of axloms
or theorems expressed in a formal system of logic. Instead,
each theorem is in the form of a program, and the deductive
process can be directed to any deslired extent by "intelllgent
theorems." PLANMER Is actually a language for the writing of
those theorems.

This deductive system must be given a2 model of the world,
with the concepts and knowledge needed to make Its deductlions.

Useful language=-understanding can cccur only when a program (or

Section 1.1.2 - Page 24

person) has an adequate understanding of the subject he Is
talking about. We will not attempt to understand arbltrary
sentences talking about unknown subjects, but Instead will give
the system detalled knowledge about a particular subject =-- In
this case, the simple robot world of chlldren's toy blocks and
some other common objects. The deductive system has a double
task of solving goal-problems to plan and carry out actlions for
a robot within this world, and then talking about what It Is
doing and what the scene looks like. We want the robet to
discuss [Its plans and actlons as well as carry them out., We can
ask guestions not only about phvsical happenings, but also about
the robot's goals. We can ask "Why did you clear off that
black?" or "How did you do it?". This means that the model
Includes not enly the properties of bleocks, hands, and tables,
but a model of the robot mind as well. We have wrltten a2
collectlon of PLAMMER thearems and data called BLOCES,
describing the world of toy blocks seen and manipulated by the
robot, and the knowledge It needs to work with that world, (see
Section 3.4). Flgure 1 shows a typlcal scene.

C. Semantics

To connect the syntactic form of the sentence to [ts

meaning, we need a semantlic system which provides primitive
operations relevant to semantlc analysis. This Includes a
language in which we can easlily express the meanings of words

and syntactic constructions. The system Includes mechanlsms

Section 1.1.2 - Page 25

S Jobots Horit

| f’—_-__#lzlff;’T #ﬁgffr
- |
red l/ 1'.11“\
red I ,-"'f N
N#-E f&#__,_il,.r"} /

Figure 1

Sectlon 1.1.2 - Page 26

for setting up simple types of semantlic networks and using
deductions from them as a first phase of semantic analyslis. For
example, the network could Include the Infermation that a
"bBlock" is a2 physlcal object, while a "bloc" Is a political
object, and the definlition of the word "support" could use this
information In choosing the correct meanings for the sentences:

The red block supports the pyramid, and

The red bloc supports Egyvpt.

More important, the meaning of a word or construction s
also defined In the form of @ program to be interpreted In a
semantic language., |t is this procedural aspect of semantics
which 1s missing In most ether theories, which 1imit themselves
to a particular type of network or relational structure. The
meaning selected for a word can depend on any aspect of the
sentence, the discourse, or the world. In deciding on the
meaning of "one" In "Plck up the green cne'". we need a program
which can examine past sentences, This program is Tncluded as
part of the definition af the word "one",

The semantic svstem Iincludes a powerful heuristic program
for resolving ambiguities and determining the meaning of
references In discourse. In almost every sentence, reference [s
made elther explicitly (as with pronouns) or Impliclitly (as wlth
the word "too") teo objects and concepts not expllicitly mentlioned
in that sentence. To Interpret these, the program must have at
its disposal not only & detalled grammatical analysls (to check
for such things as parallel constructions), but also a powerful
deductive capacity (te see which reference assignments are
loglically plausible), and a thorough knowledge of the subject It

is discussing (to see which Interpretations are reasonable In
the current sltuation).

Sectlon 1.1.2 - Page 27

In order to deal with language In a human way, we must take
inte account all sorts of discourse knowledge. In additlion to
remembering the Immedlately previous sentences for such things
as pronoun references, the system must remember what things have
been mentloned throughout the discussion, soc that a reference to
"the pyramid" will mean "the pyramid we mentioned earlier" even
if there are several pyramids In the scene,

In additien the system must have some knowledge of the way
a person will communicate with it. |If we ask "ls there a block
on & green table?" "What color Is 1t?", the word "1t" refers to
the block. But if we had asked "Is there a green block on a
table?" "What color is 1t?", "it" must refer to the table since
we would not ask a guestion which we had answered ourselves In
the previous sentence.

Our semantic system works wlith a base of knowledge about
simple semantic features In the subject demaln, and with a
collection of definitions for Individual woerds., These
definitions are wrlitten In 2 "semantics language" which allows
simple werds to be deflned In a stralghtforward way, while
allowing more complex words te call on arbltrary amounts of
computation to Integrate thelr meaning Into the sentence,

Finally we need a generative language capaclity to produce
answers to guestlions and to ask guestlions when necessary to
resolve ambigulties, Grammatically this Is much less demanding

than the Interpretive capaclty, since humans can be expected to

Sectlon 1.1.2 - Page 18

understand a wlde range of responses, and 1t Is possible to
express almost anything In a syntactlcally simple way. However,
it takes a sophisticated semantlc and deductive capablility to
phrase things In a way which is meaningful and natural In
discourse, since the form of a response depends on both the
context and on what the speaker assumes that the hearer knows

and wants to kKnow.

Sectlon 1.2 - Page 29

1.2 Implementation of the System

The language understanding program Is written In LISP to
run under the PDP-10 |ncompatible Time-sharing System at the
Artificlal Intellligence Laboratory at MIT. When operating with
a 200 word vocabulary and a falrly complex scene, 1t occuples
approxlmately BOK of core. Thils Includes the LISP Interpreter,
all of the preograms, dlictionary entries, and data, and enough
free storage to remember a sequence of actlons and te handle
complex sentences and deductions., See Flpure 3 for a more
detailed descripton of memory usage.

The program [s organized as Indlcated In Flgure 2. (Arrows

Indicate that ene part of the program calls another directly):

/MENITUR\

IHPUT GRAMMAR .= > EEHANTF {————-ANSHER
g
ELGEKE
DIETIDHAR? PROGRAMMAR EEMAHTIE MOVER
FEATURES
PLAMMER DATA

Figure 2 == Organization of the Programs

l. MOMITOR is a small LISP program which calls the baslc
parts of the system, Since the system is organized vertlicaly,
most of the coemmunication between components s done directly,

and the monitor Is called only at the beglnnlng and end of the

fection 1.2 - Page 30

Parser Semantics Deduction Dther
PROGRAMMAR PLAMNMER LISP
lnterpreters and
Display
26,1 5.8 5.5 14.8
Knowledge GRAMMAR SEMANTICS
of English 7.3 15.2
22.5
Knowledge DICTIOHARY DICTIOMNARY BLOCKS
af Subject 1.7 6.0 8.8
16,5
Data for besertions | Display
Scene 1.3 1.2
2.5
Total 14,8 21.2 15.6 16,0
B7.G

Storage Allocatlen for Language Understanding Program
in Thousands of PODP=-10 words

Note:

Approximately 12 thousand addlitlicnal words of free

storage are necessary for a dialog llke the one described In

Section 1.3.

actions Is lncreased, more free storage 1s needed,

Flgure 2 == Memory Regulrements

As the length of dialog or complexity of the

sectlion 1.2 - Page 31

understanding process.

2. IMPUT is a LISP program which accepts typed Input in
naormal English erthography and punctuatlion, looks up words In
the dictionary, performs morphemic analvsis (e.g. reallzing that
"eunning” is the "ing" form of the word "run", and modifyling the
dictionary definition accordinglyl), and returns a string of
words, together with their definitlons, This 13 the Input with
which the grammar works.

3. The GRAMMAR Is the main coordinater of the language
understanding process, It consists of a few large programs
written in PROGRAMMAR to handle the basic units of the English
language (such as clauses, noun groups, prepositonal groups,
etc.). There are two PROGRAMMAR compilers, one which compliles
Inte LISP, which Is run Interpretively for easy debuggling, and
another which makes use of the LISP compiler te produce LAP
assembly code for effliclency.

L, SEMANTICS 1s a collection of LISP programs which work In
coordination with the GRAMMAR to Interpret sentences. In
general there are a few semantics programs corresponding to each
basic unit in the grammar, each performing one phase of the
analysls for that unlt. These semantics programs call PLANNER
to make use of deduction In Interpreting sentences.

3. ANSWER is another collectlon of LISP programs which
control the responses of the system, and take care of

remembering the discourse for future reference. It contalns a

Sectlen 1.2 - Page 32

number of heurlstic programs for producing answers which take
the discourse inte account, both in decidlng on an answer and In
Figuring out how to express It In fluent Engllish,

6. PROGRAMMAR is a parsing system which Interprets grammars
written In the form of programs. |t has mechanisms for bullding
a parsing tree, and a number of special functlions for exploring
and manlpulating this tree in the GRAMMAR programs. It Is
written In LISP,

7. The DICTIONARY actually consists of two parts. The flrst
is a set of syntactic features assoclated wlith each ward, used
by the GRAMMAR. The second Is a semantic definitlon for each
word, wrlitten In a language which Is interpreted by the
SEMANTICS programs, The form of a word's definition depends on
Tts word class (e.g. the definition of "twa" is "2"), There are
special facilities for Irregular forms (1lke "geese" or
"slept"), and only the definitions of root words are kept, since
INPUT can analvze a variety of endings., The definitlions are
actually kept on the LISP property 11st of the word, and
dictionary lookup Is handled automatically by LISP.

8. The system has a network of SEMANTIC FEATURES, kept on
property lists and used for an Initlal phase of semantic
analysis. The features subdivide the world of objects and
actions Into simple categorles, and the semantic Interpreter
uses these categories to make some of its choices between

alternative definitions for a word (for example "In" would mean

Sectlon 1.2 - Page 33

"eontalned In" when appllied to 2@ hollow object 1ike a box, but
would mean "part of" when applled to a conglomerate llke a
stack, as in "the red block In the tall stack).

9. BLOCKS is a collection of PLANNER theorems whlch contaln
the system's knowledge about the properties of the physical
world, and the methods of achleving goals and making deductlons
about 1t. It Is a very simple model, designed less for a
realistic simulation of a robot, and more to glve the system a
world to talk about Tn which one can say many different types of
things.

10, MOVER Is a set of display routlines written In LAP which
simulate the robot's world on the DEC 340 graphic display
attatched to the PDP-10 computer. It displays the scene
indlcated by the DATA currently in memory, and any action called
for is displaved In real time, so the human can get visual
feedback from his commands to the robot., The Input sentences
and responses are also displaved., Figure 1 displays a typlical
scene.,

11. PLANNER is the deductive system used by the program, and
is used at all stages of the analysis, both to direct the
parsing process and to deduce facts about the BLOCKS world.
Currently the system uses Micro-Planner, an abbreviated version
of Carl Hewitt's original language, Implemented by Terry
Winograd, Gerald Sussman, and Eugene Charniak <Sussman>. It Is

written In LISP,

Section 1.2 - Page 3k

12. The DATA about the current scene Is In the form of
PLANMER assertions describing the objects, thelr sizes, shapes,
colors, and locatiens, The system assumes 1t has some sort of
robot "eye", so all of this Information is initially known and
does not have to be entered In Engllish,

When running complled, the system Is fast enough to carry
on a real=time discourse. Each sentence takes from 5 to 20
seconds to analyze and respond to, and the display Is designed
to move at the speed of a real arm.

The program listings are all available in hard copy and
DECtape, but before Iimplementing them on another system, |t
would be wise to read about the speclal features of MACLISP
<Whiter which may be in conflict with other LISP

implementations.

Sectlon 1.3 - Page 35

1.3 Sample Dlalog

This section contains a sample of a dlalog with the
language understanding svstem. It carrlies out actions and
answers guestions about 2 simple scene containing a table, hand,
and box, and several blocks and pyramids., The lines In lower
case were typed In by a person, and the lines In upper case are
the computer's response. Indented lines are comments describing
some of the features belng exhiblited.

The dialog was carried out in real time with the response
of the "robot" displayed on & CRT screen, Flgures are Included

to show the state of the scene at various points.,

1. plick up a blg red block.

OK.
The system answers "OK" when It carries out a
command. In order to plek up the red block,
it had to clear It off by finding a space for
the green one and moving the green one away,
Figure 4 shows the scene when the command was
given, Figure 5 shows the green block beling
put out of the way, and Flgure € shows the end
result,

2. grasp the pyramid.
| DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

There are three pyramids in the scene, so the
program does nothing.

3. find a block which is taller than the one yvou are halding
and put it into the box.

The system has to filgure out what [s meant by
"one" and "it", as well as using deduction to
declide which block It Is holding,

section 1,3 - Page 36

Pk 1p a Big red Block

=
o |~ }’Tx
4 fl,.-"r II'\"\
et /N N
bre || o [Btee_ -7 fogfr

Figure &

Section 1.3 - Page 37

Pk sp a big red Blok.

Flgure 5

Section 1.3 - Page 38

R 0 5t stk
ox

=
Bilree
A
et VNN
:"'} VN
VAR
ﬂ‘;ﬁ_‘r'—_-l"f"‘
e

Flgure &

Sectlon 1,3 - Page 39

BY "IT", | ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAM THE
ONE | AM HOLDING.

Printed out to keep us Informed.

oK.
The hand has to set down the red block te plck
up the taller blue one. Figure 7 shows the
result.

4., what does the box contain?
THE BLUE PYRAMID AND THE BLUE BLOCK,
5. what Is the pyramid supported by?

Earller the system responded to “"the pyramid"
by saylng "l don'"t understand which pyramid
you mean.' now, It knows that we must mean
the one which was just mentioned,

THE BOX.
6. how many blocks are not In the box?

Megatives such as "not" and "na" are handled

whether they appear In clauses or noun groups
{such as "no boxes").

FOUR OF THEM.,

7. iz at Teast one of them narrower than the one which | told
you to pick up?

The phrase "at least one of them" must be
analyzed to refer back to the previous
guestion, and "the one which..." must also
refer to blocks., MHNoum groups can have
complicated numbers such as "at least
one","more than three", "exactly seven", etc.
The memory of past events 15 used to deduce
which block Is "the one which | teld vou to
plek up". Notlce the compllicated grammatical
structure In which "the one" s actually the

object of a clause embedded two levels deeper.

YES, THE RED CUBE.

8. Is It supported?

Section 1.3 = Page 40

TFoud a Bock which is taller Hian Hie ome
WMM{;:M’MH#!&# e bor.

B G N assiemse L ORI fhe Aok
mﬂﬁéﬂFé§;§Eﬂﬁﬂ".ﬂ£ﬂﬁr e ome S ame ﬁ%é?iiﬁgg

Figure 7

Section 1.3 - Page &4l

Passives can be used witheut a "by ..."
phrase.

YES, BY THE TAEBLE.

9., can the table pick up blocks?
WO,
The semantic rules make this a nonsenslical
question which therefore must be false,
10. can a pyramid be supported by a block?
YES.
The deductlive system finds an actual example,
so It knows this is possible.
11, can a pyramid support a pyramid?
| DON'T KNOW.
The question makes sense, but there [s ne
example In the scene, so there s no easy way
to tell without being able to examine the
robot's programs.,
12. stack up two pyramlds.
| CAN'T.
The robot tries and falls,
13, the blue pyramid s nice,.
| UMDERSTAND.
This data is added te the data base,
14,

1 11ke blocks which are not red, but | don't 1lke anythlng
which supports a pyramid,

I UNDERSTAND.

Two new theorems are created for proving
things about "1iking".

15. do 1 11ke the box?

RO,

The box supports whatever

it contalns,
including a pyramid,

Sectlon 1.3 - Page 42

16, do | 1ike anvthing In the box?
YEZ, TWO THINGS: THE BLUE BLOCE AND THE BLUE PYRAMID,

Presumably we 1ike anything which Is nice, and
the blue block Is certainly not red.

17. will you please stack up both of the red blocks and elther
a green cube or a pyramid?

Ok.
Logical connectives such as "and" "or"
"aither" ete. are handled in both the grammar
and semantlcs. A command [s executed evemn [f
It Tooks llke a question. The robot carries
out the command by the series of steps shown
in figures 8 through 11. It puts a green cube
on the large red block (note that It chooses
the green cube with nething on it), then
removes the small pyramid from the Tittle red
cube, so that 1t can use that cube to complete
the stack as specified.

18, which cube is sitting on the table?
THE LARGE GREEM ONE WHICH SUPPORTS THE RED PYRAMID,

Ordinarily the system would be satisfied with
ca]IInF this "a big green cube", but since we
asked "which cube" 1t has to be more specific
in naming it. The use of substitute nouns
(such as "one") and pronouns in answers makes
the discourse more natural.,

19, Is there &2 large block behind a pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEM CUBE AMND
THE BLUE ONE.

20, put a small one onto the green cube which supports a
pyramid.

"A small one" must contrast with the earller
phrase "a large block", so this means "a small
Block".

0K .

21. put the littlest pyramid on top of It.

Se
cti
o
n 1.3
- Pa
Ee
43

Mf-‘
; Y |
ﬁm'; ﬂ‘.i.-‘.i".ﬁ_
<2 ﬂ:ﬂ- -

W

o

£
igure §

——
:FWF—

Biree

1 ||
;fib\ |:

| / "I, \""-,\L‘,I-—-
v _—
= // L bte N\

Section 1.3 - Page L&

Figure 9

Section 1.3 - Page L5

it gone please stack wp both of Hee red

R

FEen
15!::.*:

Tt e i
I N
:.-’! I'L M|

rea] ’J,.-r '|I1l \)frp._,.,_n-
-

/

Figure 10

Section 1.3 - Page 46

Yl qou_please stack up both of Hee recd
dlacks Mﬂ%ﬁamm&zw;{w

oK

Figure 11

section 1,3 - Page 47

Pt the Gitlest_pypamid o fop of it
oV 4

Figure 12

‘f k. / 13"-{.@_ _l-*"}

Section 1.3 = Page L&

Words 1ike "1ittlest" are not In the
dictlonary but are interpreted from the root

forms 1ike "1ittle". The scene now looks 1ike
Flgure 12,

OK.

22, does the shortest thing the tallest pyramid's support
supports support anvthing green?

The grammar canm handle words 1lke "support"
which are both verbs and nouns without getting
confused, and can understand possesslives., To
compute the answer, see Flgure 13 for the
SCENEe.

YES, THE GREEN PYRAMID,.
23. what color Is It?

BY "IT'”i | ASSUME YOU MEAN THE SHORTEST THING THE TALLEST
PYRAMID'S SUPPORT SUPPORTS.

If we had asked "what size 1s [t?", the system
would have assumed that "it" meant the green
pyramid, but nobody would ask the color of
something which was just called "the green

pyramid", so It had to lock farther for the
reference of "it",

RED

24, how many things are on top of green cubes?

| "M NOT SURE WHAT YOU MEAM BY "ON TOP OF" IN THE PHRASE "ONM
TOP OF GREEM CUBES ",
DO YOU MEAN:
1 - DIRECTLY OM THE SURFACE
£ = ANWHERE OW TOP OF %

When there are several [Interpretations and
none Is clearly better, the system has to ask
the user for more Information. The
paraphrases were Included with the dlictionary
definlition of "on", and the request for more
information occcurs automatically when the
heuristics for resolving ambligulties aren't
sufficlient, A reqguest like this can also
occur when the meanlng of a pronoun such as
"it" or "they" 1s unclear.

Section 1.3 = Page L9

Deocs the shortest ting the Fallest prpmricl s
SUppOTE supports Support anylhizg greers :

Figure 13

Section 1.3 = Page 50

2
THREE OF THEM,

25, had vou touched any pyramid before wou put the green one on
the 11ttle cube?

YE5, THE GREEN ONE.

The system deduces from [ts memory what event
Is being referred to, and can relate other
events to it In time. The analysis Includes
complex tenses of verb groups, and there are
special facllities for keeping track of the
various forms of Irregular verbs like "have",

26, when did vou plek 1t up?

WHILE | WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A
LARGE GREEM CUBE.

& time Is described by naming the main goal
which was beling worked on.

27. why?
The system remembers Iimmediately previous
sentences to understand guestlions 1ike this
and the following ones.

TO GET RID OF IT.

By keeping track of selected parts of the
orliginal subgoal tree, the system has some
understanding of 1ts own motives.

28. why did you do that?

TO CLEAN OFF THE RED CUBE.

"That" refers to the action mentlioned in the
answer.

29, why did you clear off that cube?

Here, "that"™ means the one just referred to,

TO PUT IT ON A LARGE GREEN CUEE.

Section 1.% - Page 51

30. why did you do that?

TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN
CUEBE.

21. why did vou do that?
BECAUSE YOQU ASKED ME TO.

It remembers what [t dld, not how the request
was worded,

32. how did vyou do 1t7?

"1t" refers to the action mentioned In the
last questlion, rather than the answer.

BY PUTTING A LARGE RED BLOCE OM THE TABLE ; THEN LETTING GO
OF IT ; THEN PUTTING A LARGE GREEN CUBE OM IT ; THEN LETTING GO
OF THAT CUBE ; THEM PUTTING THE RED CUBE OM THAT CUBE ; THEN
LETTING GO OF THAT CUBE.

This Is a description of the top-level
subgoals used to achieve the goal.

33. how many objects did yvou touch while you were dolng 1t?

Time references can refer to a time span,
using words 1lke "while",

FOUR OF THEM.

34, what did the red cube support before you started to clean
[t aff?

THE GREEN PYRAMID.

By remembering what has been moved, It ls
possible to deduce things about earller states
of the scene, We can use complex nestings of
claﬂses like "before vou started to clean It
of 7,

35, there were five blocks tea the left of the box then.

"Then" must refer to the time mentioned In the
last sentence.

NO, ONLY FOUR OF THEM: THE RED CUBE , TWO LARGE GREEN CUBES
AND A LARGE RED BLOCK.

Section 1.3 - Page 512

Earlier In the dialog, Information about
"Tking" was accepted at face value, But the
system knows that It has complete Information
about about the basic properties of objects,
including leocation. It checks any statements
about location or other such properties to see
whether it agrees or disagrees,

36. put the blue pyramlid on the block In the box,

This Is syntactlically amblguous, but Is
understood wilithout amblguity since the parsing
corresponding te “put the blue pyramid which
is on the block In the box." does not make
sense In the current scene, while “"put the
blue pyramid on the block which Is In the box"
does. We can see the sltutation in Flgure 14,
and the result in Figure 15,

OK.

37. Iis there anvthing which is bigger than every pyramid but Is
not as wide as the thing that supports [t?

The system understands gquantliflers such as
"every", "any", "some", etc., and structures
such as "bigger than", "as wide as", etc.

Here "it" refers to a noun group within the
same sentence but twe levels up In the parsing
tree,

YE5, THE BLUE BLOCK.

39, does & steeple
SORRY, | DOM'T KHMOW THE WORD "STEEPLEY™., PLEASE TYPE TWO SPACES,

The system interrupts Tmmediately when 1t sees
a word 1t can't flgure ocut. The two spaces
are to clear the Tnput buffer of anvything
typed after the message was sent but before
the typist saw It.

40, a "steeple" 1s a stack which contalns twe green cubes and a
pyramid.

The quote marks Indicate that we are defining
a new word.

Section 1.3 - Page 53

hﬂﬁﬁ%ﬁwfﬁuxﬁ@ﬂwé&fgﬁ #e bor.

green —
Hege
] F
f .-’q\w. I
lr.-r'f N‘H“* | I

et ,IF lll'||_ \y.-"l-___
- B\
green

Figure 14

Section 1.3 = Page 54

At the blue pyrarmic on the Blook irn the Bor.

o T

Flgure 15

Section 1.3 - Page 55

| UMDERSTAND.
41. are there any steeples now?
ND.

The new definition is used as a description to
recognize steeples.

42, bBuild one.

oK.
The description given In the definition Is
enough to deduce a plan for bullding new
objects as well as recognizing them. The word
"one" means "a steeple', and the plan Is
carried out., Flrst, one of the large green
cubes I1s cleared off by removing the red cube
and two pyramids., Then the two green cubes
and the tall red pyramid are stacked up to fit
the description. Flgures 16 through 19 show
the inftial state, some Intermediate steps,
and the result.

k3., call the bigegest block "superblock",

OK.
We can also glve objects names,

ki, have you picked up superblock since we began?
YES.
k5, why did you drop it?
BY "IT", | ASSUME YOU MEAN THE SUPERBLOCK.
| CAN'T EXPLAIN A NON-EXISTENT EVENT,.

There s no recard In memory of any block
belng dropped.

b6, Is there anythlng to the right of the red pyramid?

YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE PYRAMID
AND THE BLOCK NAMED SUPEREBLOCK

Once an object has a name, the name s used to
help identify It in responses.

Brild e,

N

section 1,3 - Page 56

L] -

Flgure 16

Sectien 1.3 Page 57

il cwee.

Figure 17

Section 1.3 - Page 58

‘ﬂzﬂ'&:" Mz,

Figure 1B

Section 1.3 - FPage 5%

Briitd ore.
of

Figure 19

Seetlon 1.3 - Page GO

k7. thank vou.

YOU'RE WELCOME!

The speclial ldiom=-defining capabilities allow
us to Include such pleasantries without
modi fyling the grammar.

Sectlion 2.1.1 - Page 61

Chapter 2. Svntax

2.1 Baslic Approach te Syntax
£.1.1 Syntax and Meaning

The decislon to consider syntax as a proper study devold of
semantics Is a basic tenet of most current llingulstlic theorles,
Language Is viewed as a way of organizling strings of abstract
symbols, and competence is explained In terms of symbol-
manipulating rules, At one level this has been remarkably
successful. Rules have been formulated which describe In great
detall how most sentences are put together. The problem comes
in trying to relate those symbols and structures to the function
of language as a vehicle for conveylng meaning. The same
approach which has worked so well In accountling for the
machinations of syntax has been unable to provide any but the
mest rudimentary and unsatisfactory accounts of semantlies.

The problem Is not that current theories are finding wrong
answers to the guestions they ask; 1t 1s that they are asking
the wrong guestions. What Is needed s an approach which can
deal meaningfully with the guestion "How Is language organlzed
to convey meaning?" rather than "How are syntactle structures
organized when viewed In Isolation?",

How does a sentence convey meaning bevond the meanings of
Individual words? Here Is the place for syntax. The structure
of a sentence can be viewed as the result of 2 serles of
grammatical cholces made In generating It. The speaker encodes

meaning by cheoosing to bulld the sentence with certaln

"features", and the problem of the hearer ls to recognlze the

Sectlon 2.1.1 = Page G2

presence of those features and Interpret their meaning.

We want to analyze the possible cholces of features and
functions which grammatical structures can have, For example,
we might note that all sentences must be elther IMPERATIVE,
DECLARATIVE, or a QUESTION, and that in the last case they must
choose as well between being a YES-NO guestlion or 2 WH- question
containing a word such as "why" or "which". We can study the
way In which these features of sentences are organlzed == which
ones form mutually exclusive sets (called "systems"), and which
sets depend on the presence of other features (1lke the set
contalning YES-NO and WH- depends on the presence of QUESTION).
This can be done not only for full sentences, but for smaller
syntactic units such as noun groups and preposlitional groups, or
even for individual weords.

In addition we can study the different functlons a
syntactic "unlt" can have as a part of a larger unft. In
"wobody wants to be alene,", the clause "to be alone" has the
function of OBJECT in the sentence, while the noun group
"nobody" is the SUBJECT. We can note that a transitive clause
must have units to fI111 the functlons of SUBJECT and OBJECT, or
that a WH- question has to have some constituent which has the
role of "question element" (11ke "why" In "Why did he go?" or
"which dog" In "Which dog stole the show?").

In most current theorles, these features and functlons are

impliclt in the syntactic rules. There Is no expliclit mention

section 2.1.1 - Page 63

of them, but the rules are designed in such a way that every
sentence will In fact be one of the three types listed above,
and every WH- guestlion will In fact have a gquestion element.

The difficulty Is that there Is no attempt In the grammar to
distingulsh significant features such as these from the Infinite
number of other features we could note about a sentence, and
which are also Implied by the rules,.

If we look at the "deep structure'" of a sentence, agaln the
features and functions are Implicit., The fact that It s a YES-
MO guestlion Is Indicated by a question marker hanging from a
particular place In the tree, and the fact that a component ls
the object or subject Is determined from Its exact relatlon to
the branches around 1t. The problem lsn't that there |ls no way
to find these features In a parsing, but that most theories
don't bother to ask "Which features of a syntactle structure are
important to conveyling meaning, and which are just a by=preduct
of the symbol manipulations needed to produce the right word

arder,"

What we would 1lke Is a theory In which these cholices of
features are primary, Professor M.A. K. Halllday at the
University of Londeon has been working on such a theory, called

(see references <Halllday 18961, 1966a, 196Gb,
1967 <Huddleston:, <Hudson:)}. Hls theory recognlzes that
meaning Is of prime Importance to the way language Is
structured. Instead of having a2 "deep structure" which looks
1lke a kind of syntactic structure tree, he deals with "system
networks" which descrlibe the way different features interact and
depend on each other. The primary emphasis 1s on analyzing the
limited and highly structured sets of cholces which are made In
producing a sentence or constltuent, The exact way In which
these cholices are "realized" In the flnal ferm Is a necessary
but secondary part of the theory.

Section 2.1.1 - Page G&

The reallzatlon rules carry out the work which would be
done by transformatlions In transfermatlional grammar (TG). In
TG, the sentences "Sally saw the squirrel.", "The squlrrel was
seen by Sally.", and "Did Sally see the squirrel?" would be
derlived from almost ldentlecal deep structures, and the
difference in final form is produced by transformatlons, In
systemic grammar, these would be analyzed as having most of
thelr features In common, but differing In one particular
cholce, such as PASSIVE wvs. ACTIVE, or DECLARATIVE vs, QOUESTION,
The realization rules would then describe the exact word order
used to slgnal these features,

What does this theory give us to use In & language
understanding program? What kinds of parsings does [t produce?
|f we look at a typical parsing by a svstemic grammar, we note
spveral polnts, Filrst, it Is very close to the surface
structure of the sentence. There 1s no rearrangement Into
supposed "underlying" forms. Instead, each constltuent Is
marked with features Indicating Its structure and function.
Instead of saying that "Did John go?" has an underlying
structure which looks 1ike "John went.", we simply note that It
has the features QUESTIOHN and YES5-NO, and that the noun group
"John" has the function SUBJECT. Other parts of the language
understanding process do not have to be concerned with the exact
way the parsing tree Is structured, since they can deal directly

with the relevant features and fumnctlons.

Sectlon 2.1.1 - Page G5

What 1= more Important is that these features are not
random unrelated 1ists of observations. They are part of a
highly structured network, and the grammatical theery includes a
description of that network. When we do semantic analysls, we
are not faced with the task of Inventing "projectlon rules" to
deal with the raw form of specifle syntactlc rules. Instead we
can ask "What aspect of meaning does this system convey?", and
"What 1s the significance of this particular feature within Its

system?",

Sectlon 2.1.2 - Page GG

2,1.2 Parsing

In implementing a systemic grammar for a2 computer program
far understanding language, we are concerned with the process of
recognition rather than that of generation, We do not begln
with choices of features and try to produce a sentence. Instead
we are faced with a string of letters, and the job Is to
recognize the patterns and features in ft. We need the Inverse
of realization rules =- interpretation rules which look at a
pattern, identify its structure, and recognize its relevant
features. This Interpretation process Is closely related to
ather types of pattern recognition, and many interesting
parallels can be drawn with the process of interpreting a visual
scene (see <Winograd 1969>), The Important aspect of both types
of Interpretation Is looking for symbollic features which will be
relevant to understanding, se that the parsing can be Integrated
with the rest of the understanding process. In general, this
problem of lsolating Important features from complex Informatien
and representing them symbolically Is a central issue for
Artificial Intelligence, and the Idea of a "systemic" parser may
be of use in other areas.

The parsing system for our program Is actually an
Interpreter for PROGRAMMAR, a language for writlng grammars, It
is basically a top-down left-to-right parser, but 1t modifies
these properties when It Is advantageous to do se. By writing

in @ language designed for grammars, we can express the

Section 2.1.2 - Page 67

regularities of language In a straightforward way, as simply as
in @ syntax-directed parser, The primitives of the language are
those operations which have particular relevance to natural
language and its parsing.,

A program for parsing language Is as much a "generative"
description of the language as (s a set of rules for producing
sentences. The meaning of "generative" In Chomsky's ariginal
sense (<{Chemsky 1957, 1965») Is that the grammar should
associate a structural deseription to each permizslble sentence
In the language. A parsing program does just that,

By making the fermallism for grammars a programming
language, we enable the grammar to use special tools to handle
complex constructions and Irregular forms. For example, we can
set up programs to define certain words like "and", and "ar"
as "demons", which cause an Interrupt In the parsing process
whenever they are encountered In the normal left-to-right order,
in order to run a special program for conjolned structures.
ldlems can also be handled using this "Interrupt"” concept. In
fact, the process can be Interrupted at any poelnt in the
sentence, and any other computations (elther semantic or
syntactlel) can be performed before golng on. These may
themselves do blts of parsing, or they may change the course the
basic program will take after they are done,

It Is paradexical that lingulstic workers famillar with
computers have generally not appreciated the Importance of the
"control" aspect of programming, and have not used the process-
describing potentlalities of programming for thelr parsing
theorles, They have Instead restricted themselves to the
narrowest kinds of rules and transformations =-- as though a

programmer were to stick to such simple models as Turlng

machines or Post productions. Designers of computer languages

Sectlon 2.1.2 - Page 6B

today show this same tendency! See Minsky's remark In his
Turing lecture <Minsky 13970>., Our parser uses Semantic guldance
at all polints, looking for a2 meaningful parsing of the sentence
rather than trving all of the syntactlic possibilities. Section
2.2 describes PROGRAMMAR in detall, and 2.3 glives a sample
grammar for English. Sectlon 2.4 explains programming detalls,
and shows how the special features of the language are actually

used to handle specific 1inguistic problems.

Section 2.2.1 - Page 69

2.2 A Description of PROGRAMMAR

£,2,1 Grammar and Lomputers

In order to explain the features of PROGRAMMAR, we will
summarize some of the principles of grammar used In computer
language processing. The basic form of most zrammars 1s a 1ist
{ordered or unocrdered) of "replacement rules," which represent a
processs of sentence generation. Each rule states that a
certaln string of symbols (1ts left slide) can be replaced by a
different set of symbols (Its right side). These symbols
include both the actual symbols of the language (called terminal
symbols) and additional "non-terminal" symbols, One non-
terminal symbol s designated as a starting symbol, and a string
of terminal symbols 15 a sentence If and only If It can be
derived from the starting symbol through successlive application

of the rules. For example we can write Grammar 1:

5 =» MNP VP

NP =3 DETERMINER MOUHM

VP =2 VERE/INTRANSITIVE

VP => VERB/TRANSITIVE MNP
DETERMINER =-> the

HOUN =% giraffe

HNOUN =-* apple

VERB/ INTRANSITIVE =-> dreams
YERB/TRANSITIVE =-» eats

el e il el B il e b

- L] L] - - Ll [3 L] L]

U OO = O UM A B

Figure 20 -- GRAMMAR 1

Ev starting with 5 and applying the 11st of rules (1.1 1,7
1,5 1.6 1.4 1.2 1.7 1.5 1.9), we get the sentence "The glraffe

eats the apple." Several things are noteworthy here. This Is an

Sectlion 2.2.1 - Page 70

unordered set of rules, Each rule can be applied any number of
times at any point in the derivation where the symbol appears.
In additlen, each rule Is optleonal. We could just as well have
reversed the appllcations of 1.6 and 1.7 to get "The apple eats
the giraffe.", or have used 1.3 and 1.& to get "The glraffe
dreams." This type of derivation can be represented graphically

a5

f”,--"'-s\\
< r—_
DETERMIMNER HOUN VERB/TRANSITIVE NP

DETERMINER MOUN

the giraffe eats the apple

Figure 21 == Parsing Tree

We will €all this the parsing tree for the sentence, and
use the usual terminoclogy for trees (node, subtreee, daughter,
parent, etc.). In addition we will use the llngulstlic terms
"ohrase" and "constituent" interchangeably to refer to a
subtree. This tree represents the "Immediate constituent”
structure of the sentence. The PROGRAMMAR language 5 a general
parsing system which, although oriented ttoward systemic
grammar, can be used to parse grammars based on other theorles.
In descrbing PROGRAMMAR we have used a more conventional set of
notations and analysis of English In order to make the

description independent of the work presented In later sections.

Section 2.2.2 - Page 71

2.2.2 Context-free and Context-sensitive Grammars

Grammar 1 Is an example of what Is called a context-free
grammar, The left side of each rule conslists aof a single
symbol, and the indicated replacement can occur whenever that
symbol is encountered. There are a great number of different
forms of grammar which can be shown to be equivalent to this
oneé, Iin that they can characterize the same languages, |t has
been polnted ocut that they are not theoretically capable of
expressing the rules of English, to produce such sentences as,
"John, Sldney, and Chan ordered an eggroll, a ham sandwich, and
a bagel respectively." Much more Impertant, even though they
could theoretically handle the bulk of the English language,
they cannot de this at all efficiently., Consider the simple
problem of subject-verb agreement. We would 1lke a8 grammar

whlich generates "The giraffe dreams."

and "The gliraffes dream.",
but not "The giraffe dream." cor "The glraffes dreams.". In a
context-free grammar, we can do this by Introducing two starting
symbols, S/PL and 5/5G for plural and singular respectively,
then duplicating each rule to match. For example, we would
have:

3/PL =2 NG/PL VPB/PL

S/5G =» NG/SG VP/SG

NG/PL => DETERMINER NOUN/JPL
MG/5G =» DETERMINER MNOUN/SG

ol el
& o & []
I N W]

3 S P

MOUNJPL => glraffes
HNOUN/SG =-> gliraffe

=
L] L]
oo
F3 b

etc.

Section 2.2.2 - Page T2

| f we then wish toc handle the dlfference between "l am",
"he Is", etc. we must Introduce an entire new set of symbols
for first-person. This sort of duplication propagates
multiplicatively through the grammar, and arises In all sarts of
cases, For example, &8 question and the corresponding statement
wlill have much In common concerning thelr subjects, objects
verbs, ete., but In a context-free grammar, they will In general
be expanded thrﬁu;h twe entlrely different sets of symbols.

One way to avolid thils problem Is to use context-sensitive
rules. In these, the left side may Include several symbols, and
the replacement occcurs when that combination of symbols occurs

in the string being generated,

Sectlon 2,2,3 - Page 73

2,2,5 Systemic Grammar

We can add power to our grammar with context=-sensitve rules
which, for example, In expanding the symbal VERBSINTREANSITIVE,
look to the preceding symbol to declde whether 1t s singular or
plural, By using such context-sensitive rules, we can
characterlze any language whose sentences can be listed by a
deterministic (possibly neverending) process. (l.e. they have
the power of a turing machinel. There s however a problem In
implementing these rules, In any but the simplest cases, the
context will not be as obvious as In the simple example glven,
The cholce of replacements will not depend on a single word, but
may depend In a complex way on the entlre structure of the
sentence, Such dependencies cannot be expressed In our simple
rule format, and new types of rules must be developed.
Transformational grammar solves this by breakling the generatlon
process down Into the context-free base grammar which preoduces
"deep structure" and a set of transformatlons which then operate
on this structure to produce the actual “surface structure" of
the grammatical sentence, We will not go Into the detalls of
transformational grammar, but one baslc ldea Is thls separation
of the complex aspects of language Into a separate
transformational phase of the generatlon process,

systemic grammar Introduces context In a more unlflied way
into the Immediate-constlituent generatlion rules, This Is done

by introducing "features" assoclated with constltuents at every

Section 2.2.3 - Page 7k

level of the parsing tree. A rule of the grammar may depend,
for example, on whether a particular clause Is transitive or
intransitive. In the examples “"Fred found a freg.", "A frog was
found by Fred.", and "What did Fred find?", all are transitive,
but the outward forms are quite different. A context=sensitlive
rule which checked for this feature directly in the string being
generated would have to be gulte complex, Instead, we can allow
each symbol to have additional subscripts, or features which
control Its expanslon. In & way, this Is 1ike the separation of
the symbol NP Into NP/PL and MP/SG In our augmented context-free
grammar, But It Is not necessary to develop whole new sets of
symbols with a set of expansions for each. A symbol such as
CLAUSE may be associated with @ whole set of features (such as
TRANSITIVE, QUESTION, SUBJUMCTIVE, OBJECT-QUESTION, etec.) but
there is a single set of rules for expanding CLAUSE. These
rules may at various polnts depend on the set of features
present.

The power of svstemic grammar rests on the observation that
the context=-dependency of natural language is centered around
clearly dafined and highly structured sets of features, so
through thelr use a great deal of complexity can be handled very
eccnomlically. More Important for our purposes, there Is a high
caorrelation between these features and the semantic
Iinterpretation of the constlituents which exhiblit them. They
cannot be put In a8 one-to-one correspondence with semantic
properties of the phrases In which they appear, but are a
tremendous aid to interpretation.

A parsing of a sentence in a systemlc grammar mlght look

very much 1lke a context-free parsing tree, except that to each

node would be attached a number of features. These features are

Section 2.2.3 - Page 75

not random combinatlons of facts about the constltuent, but are
a part of a carefully worked out analysis of a language In terms
aof its "systems". The features are organlized In a network, with
clearly organized dependencles. For example, the features
IMPERATIVE (command) and QUESTION are mutually exclusive In a
clause, as are the features YES-NO (yes-no guestion like "0id he
go?") and WH= guestion (like "Who went?). |In additien, the
second cholce can be made only 1f the cholce QUESTION was made
In the first set. A set of mutually exclusive features [s
called a "system", and the set of other features which must be
present for the cholee to be possible Is called the "emntry
condition" for that system, This is discussed In detall in
section 2.3,

Another basic concept of systemic grammar [s that of the
rank of a constituent. Rather than having a plethara of
different non-terminal symbols, each expanding a constltuent In
a slightly different way, there are only a few baslec "units",
each having the possibility of a number of different features,
chosen from the "system network" for that unlt, |In an analysis
of English, three basic units seem to explain the structure: the
CLAUSE, the GROUP, and the WORD. In general, clauses are made
up of groups, and groups made up of words. However, through
“"rankshift", clauses or groups can serve as constltuents of
other clauses or groups. Thus, In the sentence "Sarah saw the

student sawlng logs." "the student sawlng logs" 1s a NOUN GROUP

Section 2.2.3 - Page 7B

with the CLAUSE "sawing logs" as a constituent (a modifier of
"student").

The constituents "wha", "three days", "some of the men on
the board of directors," and "anyene who doesn't understand me”
are all noun groups, exhiblting different features. This means
that a PROGRAMMAR grammar will have only a few programs, one to
deal with each of the baslc unlits. Our current grammar of
English has programs for the units CLAUSE, NOUN GROUP, VERE
GROUP, PREPOSITION GROUP, and ADJECTIVE GROUP,

Section 2.2.4 = Page 77

£,2,4% Grammars as Programs

Earlier we pointed out that a complete generative
description of a language can be in the form of a program for
parsing it. For simple grammars, there 15 a close
correspondence between the parsing program and the usual
generation rules.

We can think of a grammar as a set of Instructions for
parsing a sentence In the language. A rule 1lke: NP =3
DETERMINER MOUM can be interpreted as the Instruction "If you
want to flnd 2@ NP, look for a DETERMINER followed by a MNOUN,"
Grammar 1 could be diagrammed as shown In Flgure 22,

The basic function used Is PARSE, a functlon which trles to
add a constituent of the specifled type to the parsing tree. I f
the type has been defined as a PROGRAMMAR program, PARSE
activates the program for that unlt, giving 1t as lnput the part
of the sentence vet to be parsed and (optlionally) a list of
initial features. |If no definitlion exists, PARSE Interprets [ts
arguments as a l1lst of features which must be found In the
dictionary definition of the next word In the sentence. |f so,
it attaches a node for that word, and removes It from the
remainder of the sentence. |If not, It falls, |If a PROGRAMMAR
program has been called and succeeds, the new node Is attached

to the parsing tree, |If It falls, the tree Is left unchanged.

Section 2.2.4 - Page T8

DEFINE program SENTENCE

PARSE a NP i = RETURN fallure
EUI:%E” T
PARSE a VP A

any words
left?

Vv

RETURH success

DEFIHNE program NP

PARSE a DETERMIMER }F‘.$UFEN fallure

PARSE "a NOUN

RETU& SUCCESS

DEFINE program VP

PMSE\U: VERB => RETURN fallure
Is Tt TRANSITIVE?===SPARSE a NP

I]

v
s Tt INTRANSITIVE?

¥

RETURMN success

Figure 22 ==53Imple Parslng Program

Sectlion 2,2.5 = Page 710

2,2,5 The Form of PROGRAMMAR Grammars
Wrlitten Iin PROGRAMMAR, the programs would look 1lke:

2.1 (PDEFINE SENTENCE

2.2 (((PARSE NP) NIL FAIL)

2,3 ((PARSE VP) FAIL FAIL RETURN}})
2.k (PDEFIKE NP

2.5 (((PARSE DETERMINER) NIL FAIL)

2.6 ((PARSE NOUN) RETURN FAILJ)))

2.7 (PDEFINE VP

2.8 (((PARSE VERB) MIL FAIL)

2.9 ({150 H TRANSITIVE) NIL INTRANS)
2,10 ((PARSE NP) RETURN NIL)

2,11 INTRANS

2.12 {((150 H INTRANSITIVE) RETURM FAIL}))

Rules 1.6 to 1.9 would have the form:

2.13 (DEFPROP GIRAFFE (MOUN)Y WORD)
2.14 (DEFPROP DREAM (VERB INTRANSITIVE) WORD)
etc.

Flgure 23 -- Grammar 2

This example [llustrates some of the basic features of
PROGRAMMAR, First It Is embedded in LISP, and much of lts
syntax is LISP syntax. Units, such as SENTENCE are deflned as
PROGRAMMAR programs of no arguments. Each trles to parse the
string of words left to be parsed In the sentence. The exact
form of this Input string Is described In section 2.5,.8, The
value of (PARSE SENTENCE) will be a 1ilst structure corresponding
to the parsing tree for the complete sentence.

Each time a call 1s made to the functlion PARSE, the system

begins to build a new node an the tree. Since PROGRAMMAR

programs can call each other recursively, It |s necessary tg

Section 2.2.,5 = Page B0

keep a pushdown 1ist of nodes which are not yet completed (l.e.
the entire rightmost branch of the tree). These are all called
Mactive" nodes, and the ocne formed by the most recent call to
PARSE Is called the "currently active node".

We can examine our sample program to see the baslic
operation of the language. Whenever a PROGRAMMAR program Is
called directly by the user, a node of the tree structure Is set
up, and a set of special varlables are bound (see section
2.4.9). The lines of the program are then executed In sequence,
as In a LISP PROG, except when they have the speclal form of a
BRANCH statement (a 1lst whose first member (the CONDITION} 1=
non-atomic, and which has elither 2 or 3 other members, called
DIRECTIONS), Line 2.3 of GRAMMAR 2 Is a three-dlirectlon branch,
and all the other executable 1lnes of the program are two-
direction branches,

When a branch statement 1s encountered, the condlitlon Is
evaluated, and branching depends on its value. In a two-
direction branch, the first direction [s taken If It evaluates
to non=NIL, the second directlon If It 1s HIL. In & three-
direction branch, the first dlirectlon Is taken only If the
condition 1s non=NIL, and there 15 more of the sentence to be
parsed, |f no more of the sentence remains, and the condlition
evaluates non=HIL, the third direction is taken.

The directions can be of three types. Flrst, there are

three reserved words, NIL, RETURN, and FAIL. A direction of NIL

Sectlon 2.2.5 - Page 81

sends evaluation to the next statement In the program. EAIL
causes the program to return MIL after restoring the sentence
and the parsing tree to thelr state before that program was
called. RETURN causes the program to attach the currently
active node to the completed parsing tree and return the subtree
below that node as lts value,

If the direction Is any other atom, It acts as a GO
statement, transferring evaluation te the statement I[mmediately
following the occurence of that atom as a tag., For example, If
a fallure occurs In 1lne 2.9, evaluation continues with line
2.12, If the direction Is non-atomic, the result Is the same
as a FAIL, but the direction is put on a speclal fallure message
list, so the caliing'prﬂgram can see the reason for fallure.
DIRECTIONs can also be used In the function GOCOMD, The
statment (GOCOND TAGL TAG2) causes the program te go to TAGL If
there are words left to be parsed, and to TAG?2 octherwise,

Looking at the programs, we see that SENTEMCE wlll succeed
only if it first finds a NP, then finds a VP which uses up the
rest of the sentence. In the program VP, we see that the first
branch statement checks to see whether the next werd Is a verb,
If so, it removes it from the remaining sentence, and EOBS On,
If not, VP falls, The second statement uses the PROGRAMMAR
functlion 150, one of the functions used fer checking features,
(150 A B) checks to see whether the node or word polnted to by A

has the feature B. H is one of a number of speclal varlables

Section 2.2.5 - Page §2

used to hald Informatien associated with a node of the parsing
tree. (see section 2.4.9) It points to the last word or
constltuent parsed by that program. Thus the candltion (150 M
TRANSITIVE) succeeds only If the verb just found by PARSE has
the feature TRANSITIVE. If so, the direction NIL sends it on to
the next statement to look for a NP, and If It finds one It
returns success. If elther no such NP Is found or the verb Is
not TRANSITIVE, control goes to the tag INTRANS, and 1f the verb
is INTRAMSITIVE, the program VP succeeds., MNote that a verb can
have both the features INTRAMSITIVE and TRANSITIVE, and the
parsing wlll then depend on whether or not an object NP |s

faund,

sectlon 2.2.6 - Page B3

2,2,6 Context-Sensitive Aspects

5o far, we have done little to go bevond a context-free
grammar. How, fer example, can we handle agreement? 0One way to
do this would be for the VP program to look back In the sentence
for the subject, and check its agreement with the verb before
golng on. We need a way te ¢limb around on the parsing tree,
looking at Its structure. |In PROGRAMMAR, this Is done wlith the
pointer PT and the moving function w,

Whenever the function * Is called, Its arpguments form a
list of Iinstructlons for moving PT from [ts present position.
These instructions can be quite general, saying things 1lke
"Move left until you find a unit with feature ¥, then up untl]
you find a CLAUSE, then down to its last constitutent, and left
until you find a8 unit meeting the arbitrary condition Y." The
instruction 1ist contains non-atomic CONDITIONS and atomic
INSTRUCTIONS. The Instructlons are taken In order, and when a
condlition Is encountered, the preceding Instructlen Is evaluated
repeatedly until the condition Is satisfied, |f the conditlion
Is of the form (ATOM), It is satisfied only If the node polinted
te by PT has the feature ATOM. Any other conditlen Is evaluated
by LISP, and Is satisfied [f It returns a non=MIL value.
section 2.4.10 lists the Instructions for =,

For example, evaluating (= C U) will set the pointer to the
parent of the currently active node. (The mAemonlcs are:

Current, Up) The call (» C DLC PY (NP)) will start at the

Sectlon 2.2.6 - Page 84

current node, move down to the rightmost completed node (l.e.
not currently active) then move left until 1t finds a node with
the feature NP, (Down-Last-Completed, PreVious), |f * succeeds,
it returns the new value of PT and leaves PT set toc that value,
If it falls at any point In the 1ist, because the existing tree
structure makes a command impossible, or because a condlitlon
cannot be satisfied, PT is left at its original position, and *
returns NIL.

We can now add another branch statement to the VP program
in sectlion 2.2.5 between lines 2.8 and 2.9 as follows:

NGULARYC1SQ H SINGULAR))

({ORCANDCISO(* C PV DLC)SI
|50 H PLURALID})

2087 (AND(1S0 PT PLURAL)(

2.8.3 MIL (AGREEMENT))

This is an example of a branch statement with an error
message. It moves the pointer from the currently active node
{the VP) to the previous node {(the NP} and down to Its last
contituent (the nounl). It then checks to see whether this
shares the feature SINGULAR with the last constlituent parsed by
WP (the verb). |If not It checks to see whether they share the
feature PLURAL. HMotice that once PT has been set by », It
Fremalns at that position, |f agreement 1s found, evaluation
contlnues as before with 1lne 2.9. |If not, the program VP falls
with the message (AGREEMENT).

Se Far we have not made much use of features, except on

words. As the grammar gets more complex, they become much more

Important. bs a simple example, we may wish to augment our

Sectlon 2,2.6 - Page 85

grammar to accept the noun groups "these flish," "this fish,"

"the giraffes,"

and "the glraffe," but not "these glraffe," or
"this giraffes." We can no longer check a single word for
agreement, since "fish" glives no clue to number in the first
two, while “"the" gives no clue in the third and fourth. Humber
Is a feature of the entire noun group, and we must Interpret it
in some cases from the form of the noun, and In others from the
form of the determiner.

We can rewrlte our programs to handle thls complexlity as

shown In Grammar 33

5.1 (PDEFINE SENTEMNCE
5.2 (((PARSE MPINIL EAIL)
3.3 ((PARSE VP) FAIL FAIL RETURMI))
3.4 (PDEFINE NP
3.5 (((AND(PARSE DETERMIMNER)(FQ DETERMIMED)IMIL NIL EAIL)
3.6 ((PARSE MOUNIMIL FAILD
3.7 ({CO DETERMIMED)YDET HIL)
5.8 CCAMDCw HYCTRNSF (DUOTECSIMGULAR PLURALIIJIIRETURM FAILY
3.9 DET
3.10 ({TRMSF (MEET(FE{(= H PV (DETERMINER)))
3.11 (QUOTE(S IMEGULAR PLURALYII)
.12 RETURHN
3.13 FAILY))
3.1 C(PODEFINE VP
3.15 (((PARSE VERB)MIL FAIL)
3,16 ((MEET(FE H)(FE(+* C PV (NP))})(QUOTE(SINGULAR PLURAL}))
3.17 MIL
.18 (AGREEMEMNT))
3.19 ({150 H TRANSITIVEINIL IMTRANS)
3.20 ({(PARSE MHPIRETURM HMIL)
3,21 (C15SQ H INTRANSITIVE)RETURE FAILY))
Flgure 24 == Grammar 3

Section 2.,2.6 - Page 86

We have used the PROGRAMMAR functlons FO and TRHSF, which
attach features to constituents. The effect of evaluating (FQ
A) Is to add the feature A to the 1lst of features for the
currently active node of the parsing tree. TRENSF s used to
transfer features from the pointer te the currently active node.
lts argument is a list of features to be loocked for. For
example, line 3.8 looks for the features SINGULAR and PLURAL In
the last constituent parsed (the MOUNMN), and adds whichever ones
it finds to the currently active node. The branch statement
beginning with 1ine 3,10 is more complex, The function = finds
the DETERMINER of the NP being parsed. The function FE finds
the list of features of this node, and the function MEET
intersects this with the 1ist of features (SINGULAR PLURALJ.
This intersection Is then the set of allowable features to be
transferred to the NP node from the WOUN, Therefore if there Is
no agreement beween the NOUN and the DETERMIMER, TRNSF falils to
find any features to transfer, and the resulting fallure causes
the rejection of such phrases as "these giraffe."

Iln 1ine 3.7 we use the function CO which checks for
features on the current node, (CQ DETERMINED) will be nen=MNIL
only if the current node has the feature DETERMINED. (l.e. it
was put there in line 3.5) Therefore, a noun group with a
determiner 1s marked with the feature DETERMIMED, and is also
given features cerrresponding to the Intersection of the number

features assoclated with the determiner If there s one, and the

Sectlon 2.2.6 - Page 87

noun. Notice that thlis grammar can accept noun groups witheut
determiners, as Iin "Giraffes eat apples." since line 3.5 falls
only if a DETERMINER is found and there are no more words in the
sentence.

In conjunction with the change to the NP program, the VP
program must be modified to check with the NP for agreement.

The branch statement beginning on Line 3.16 does this by making
sure there Is a number feature common to hoth the subject and
the verb.

This brief description explains some of the baslc features
of PROGRAMMAR, In a simple grammar, thelr Importance [s not
ocbvlious, and indeed there seem to be easier wavs te achleve the
same effect. As grammars become more complex, the special
aspects of PROGRAMMAR become more and more important. The
flexibility of writing a grammar as a program Is needed both to
handle the complexities of English syntax, and to combine the
semantic analysis of language with the syntactic analysis in an
intimate way., Section 2.3 describes a fairly complex grammar of
Engllish, and sectlien 4.2 describes the way It Is Integrated wlth
the semantlic programs., A number of the other features and

details of PROGRAMMAR are described In Sectlon 2.4,

Sectlon 2.2,7 - Page 88

2,2,7 Amblguity and Understanding
Readers familiar with parsing systems may by now have

wondered about the problem of ambipuity. As explained, 2
PROGRAMMAR program tries to find a possible parsing for a
sentence, and as soon as [t succeeds, 1t returns [ts answer.
This is not a defect of the system, but an actlive part of the
concept of language for which It was designed. The language
precess [s not segmented Into the operation of & parser,
followed by the cperatlion of a semantic Interpreter. Rather,
the process Is unified, with the results of semantic
Interpretation beling used to guide the parsing. This Is very
difflcult in other forms of grammar, with their restricted types
of context-dependence. But It Is straightforward to Implement
in PROGRAMMAR., For example, the last statement In a program for
MP may be a call te a noun-phrase semantlc interpreter. If it
is Impossible te interpret the phrase as it Is found, the
parsing Is Immediately redirected.

The way of treating ambigulty is not through listing all
1743 possible interpretations of a sentence, but In being
Intelligent in locking for the first one, and being even more
intelligent In looking for the next one 1f that falls. There Is
no automatic backup mechanism In PROGRAMMAR, because blind
automatic backup Is tremendously inefficent. A good PROGRAMMAR
program will check ltself when a fallure occurs, and based on

the structures [t has seen and the reasons for the fallure, It

Sectlon 2.2.7 - Page #9

will decide specifically what should be trled next. This [s the
reason for Internal failure-messsages, and there are facllities
for performing the specific backup steps necessary. (See
section 2.4.5)

As a concrete example, we might have the sentence "| rode
down the street in a car." At a certaln point In the parsing,
the NP program may come up with the constituent "the street In a
car", Before going on, the semantlic aznalyzer will reject the
phrase "In a car" as a possible modifler of "street", and the
program will attach It Instead as a modifier of the actlon
represented by the sentence. 5Since the semantie system Is a
part of a complete deductive understander, with a definlte
world-model, the semantic evaluation which guldes parsing can
include both general knowledge (cars don't contaln streets) and
specific knowledge (Melvin owns a red car, for example). Humans
take advantage of this sort of knowledge In thelr understanding
of language, and it has been pointed out by a number of
linguists and computer scientists that good cemputer handl ing of
language will not be possible unless computers can do 560 as
well,

Few sentences seem ambiguous to humans when flrst read.
They are guided by an understanding of what Is said to plck a
single parsing and a very few different meanings. By using this
same knowledge to gulde Its parsing, & computer understanding
system can take advantage of the same technlgue to parse
meaningful sentences quickly and efficlently.

We must be careful to distinguish between grammatical and

semantic ambiguity. Although we want toe choose a single parsing

Section 2.2.7 - Page 90

wlthout considering the alternatives simultaneously, we want to
handle semantic ambigulty very differently. There may be
several Interpretations of a sentence which are all more or less
meaningful, and the choice between them will depend on & complex
evaluation of our knowledge of the world, of the knowledge the
person speaking has of the world, and of what has been sald

recently.

Sectlon 2,2.8 - Page 91

2,2,8 Summary
In understanding the reason for developing PROGRAMMAR,

several factors are Important. The first Is that only through
the flexibility of expressing a grammar as a program can we
introduce the type of intelligence necessary for cemplete
language understanding. PROGRAMMAR is able to take Into account
the fact that language Is structured In order te convey meaning,
and that our parsing of sentences depends Intimately on our
understanding that meaning. PROGRAMMAR can take advantage of
this to deal more efficiently with natural language than a
general rule-based system, whether context-free or
transformational. More Impeortant, the analysis returned by
PROGRAMMAR Is designed to serve as a part of a total
understanding process, and to lend itself directly to semantie
interpretation. This was one reason for selecting systemic
grammar, and has gulded much of the design of the system. The
exact way In which semantic Interpretation can be dene, and the
reasons why a systemic analysis Is Important will be discussed

In sections k.1 and L,2,

Sectlon 2.3.,1 - Page 92

2.3 A Grammar of English
2.3.1 About the Grammar

This sectlon describes the grammar of English used by our
system, It 1s based on the principles of systemlc grammar
(¢<Halliday 1961, 1966a, 1966b, 1967>), and emphasizes the
analysis of the significant features exhibited by llngustic
structures, rather than thelr detalled form. Instead of giving
a set of grammar rules or algorithms, this sectlon will try to
convey an Impressionistic overview of English grammar, giving
examples of the most Important features. Section 2.3.11 follows
the parser through two sample sentences, showling hew the grammar
is used, The actual PROGRAMMAR grammar contains the detalls,
and is avallable on request. A few particularly Interesting
parts of the detailed grammar are described In section 2.4,
nppendix A Is a glossary of features with references to the
pages on which they are [llustrated.

Before beginning, several warnings are In erder. Flrst,
this 1s not by any means a complete grammar of English, The
task of codifying an entire language in any formalism Is so
large that it would be folly to try In the course of a single
recearch project. Our goal was to cover a large enough portion
of English syntax so that a user could converse comfortably with
the system about its toy-block worid, There are whole areas of
syntax which are involved with conveying Information of types

not lncluded In this narrow fleld (such as the emoticnal

section 2.3.1 - Page 93

reaction, mood, and emphasis of the speaker). These are not
handled at all, and even within the toy-block world, there are
numerous sentences and constructions which the grammar Is not
vet equipped to handle. It will be of interest to see whether
the basic structure of the syntactic theory is flexible enough
to add the great amount of complexlity which could be Included In
a more complete grammar.

second, the grammatical theory Is used In a very Impure
way. The main consideration was to produce a working grammar
whieh ecould serve In a language-understanding program. The
demands of practicality often overrode more theoretlcal
eriteria, and the resulting grammar Is not very "pretty". This
Is especlally true since It has evolved In a contlnuous process
of writing and debugging, and has not vet undergone the
"polishing" which removes the traces of its earller stages of
development.

Demands of time made It Impossible to coordinate the
writing of the grammar with other current versions of svestemlc
grammar, so the analysis is non-standard, often disagreeing with
Halliday's analysis or other more complete versions. Some
differences are simply notational (using dilfferent names for the
same thing), others are Intentional simplifications (Malliday's
analysis Is much more complete), and some represent actual
theoretical differences (for example, our analysis of the

transitivity system puts much of the structure Into the semantiec

Section 2.3.1 - Page 9%

rather than syntactiec rules, while Halliday's [s more purely
syntactic.)., We will not deseribe the differences In detail,
since this s not a proposal for a specific version of English
grammar. It Is Instead a proposal for a way of leoking at
language, and at English, pointing out some of the interesting

features,

Section 2.3.2 - Page 45

2.3,2 Units, Rank, and Features

We will begin by describing some of the basic concepts of
systemic grammar, before glving detalls of thelr use |n our
analysls. Some of the description Is a repetition of material
In Sectlon 2.1. In that sectlon we needed to glve encugh
explanation of systemic grammar to explaln PROGRAMMAR. Here we
give a more thorough explanation of Its detalls.

The first Is the notion of syntactic wunits In analyzing the
constituent structure of a2 sentence (the way It Is bullt up out
of smaller parts). |If we look at other forms of grammar, we see
that syntactlc structures are usually represented as a binary
tree, with many levels of branching and few brarches at any
node. The tree Is not organized Inte "grouplings" of phrases
which are used for conveylng different parts of the meaning.
For example, the sentence "The three big red dogs ate a raw
steak." would be parsed with something 1lke the flrst tree In
Figure 25,

iystemic grammar pays more attentlon to they way language
Is organized into units, each of which has a special role in
conveying meaning. In English we can distingulsh three basic
ranks of unlts, the CLAUSE, the GROUP, and the WORD. There are
several types of groups: NOUM GROUP (NG), VERE GROUP (VG)
PREPOSITION GROUP (PREPG) and ADJECTIVE GROUP (ADJG). In a
systemic grammar, the same sentence might be viewed as having

the second structure In Flgure 25.

Section 5.1.2 - Page

. Jffwfﬁﬁnmn-__hhhivp
;’H Q\ Hf .hhﬁu
DET HF1 VE H P,
/N | /!
the HLUM MP2 ate DET MP
| | ™~ |
three ADJ Hiﬁ a ADJ HPL
blg Al Mrﬂ raw WOUM
red MOURN séeak
dapgs
Tree 1

——{_'_____,_..,--r:uiuse \\-N

MG VG G
I | e |hhﬂu
DET HliIH .ﬁ.li:'.J Mihj HDILIT-! Ulli- DET .&Iild MOUKN
I |
the three blg red dogs ate 2 raw steak
Tree 2

Figure 25 - Parsing Trees

Sectlon 2.3.2 - Page 97

In thls analysis, the WORD ls the hasie bullding block.
There are word classes 1lke "adjective" , "noun", "verb", and
each word 1s an Integral unit -- 1t is not chopped Into
hypothetical bits (1lke analyzing "dogs" as being composed of
"dog" and "-s" or "dog" and "plural™). Instead we view each
word as exhibiting features. The word "dogs" is the same hasic
vocabulary Item as "dog", but has the feature "plural" Instead
of "singular". The words "took", "take", "taken", "taking",
ete., are all the same basic word, but with differing features
such as "past participle" (EN), "infinitive" (INF), "-ing"
{ING), etc. When discussling features, we will use several
notational conventions, Any werd appearing in all upper-case
letters, Is the actual symbol used to represent a feature In our
grammar and semantic programs, A feature name enclosed In
quotes Is an English verslon which Is more Informative. Usually
the program versicon Is an abbreviatlion of the English version,
and sometimes we will indicate this by typing the letters of the
abbreviation in upper-case, and the rest in lower-case. Thus |f
"determiner" is abbreviated as DET, we may write DETerminer, We
may even write things 1ike QuaNTIFieR, When we want te be more
careful, we will write “quantifler" (ONTFR),

The next larger unlt than the WORD Is the GROUP, of whieh
there are the four types mentlioned above, FEach ore has a
particular function In conveying meaning. Moun groups (NG)

describe objects, verb groups (VG) carry complex messages ahout

Sectlon 2.3.2 - Page 93

the time and modal {logicall) status of an event or relatioenship,
preposition groups (PREPG) describe simple relationships, while

adjective groups (ADJG) convey other kinds of relationships and

descriptiens of objects. These semantic functions are described
In more detail In section &.2.

Each GROUP can have "slots" for the words of which It Is
composed. For example, a NG has slots for "determiner" (DET),
"oumbers" (NUM), "adjectives" (ADJ), "classifiers" (CLASF), and
a WOUM. Each group can also exhiblt features, just as a word
can. A NG can be "singular" (NS) or "plural™ (NPL), "definlte"
(DEF) as in "the three dogs" or "indefinite" (INDEF) as iIn "a
steak", and so ferth, A VG can be "negative" (HNEG) or not, can
be MODAL (as in "could have seen"), and It has a tense. (See
Section 2.3.8 for an analysls of complicated tenses, such as "He
would have been going to be fixing Tt.")

Finally, the top rank Is the CLAUSE. We speak of clauses
rather than sentences since the sentence Is more a unit of
discourse and semantics than a separate syntactic structure. It
is either a single clause or a series of clauses joined together
In a simple structure such as "A and B and...". We study these
conjolning structures separately since they occur at all ranks,
and there Is no real need to have a separate syntactlc unit for
sentence.

The clause is the most complex and diverse unit of the

language, and Is used to express complex relationships and

Section 2.3.2 - Page 99

events, invelving time, place, manner and many other aspects of
meaning. |t can be a QUESTION, a DECLARATIVE, or an IMPERATIVE,
it can be "passive" (PASV) or "actlve" (ACTV), It can be a YES-
NO question or a WH=- questien (1ike "Why...?" or "Which...?),

Locking at our sample parsing tree, Tree ? in Flgure 25, we
see that the clauses are made up of groups, which are In turn
made up of words However few sentences have this simple three-
layer structure. Groups often contalnm other groups (for
example, “the call of the wild" Is a MG, which contalns the
PREPG "of the wild" which in turn contains the MG “the wild"),
Clauses can be parts of other clauses (as In "Joln the Navy to
see the world."), and can be used as parts of groups In many
different ways (for example, Tn the MG "the man who came to
dinner" or the PREPG "by leaving the country".) This phenomenon
is called rapkshift, and Is one of the basic princlples of
systemic grammar,

If the units can appear anywhere In the tree, what Is the
advantage of grouping constituents Into "units" Instead of
having a detailed structure like the cne shown In our first
parsing tree? The answer Is In the "features" we were noting
above. Each unit has assoclated with It a set of features,
which are of primary significance In conveying meaning. We
mentioned that a clause could have features such as IMPERATIVE,
DECLARATIVE, QUESTION, ACTV, PASY, YES=NO, and WH=. These are

not unrelated observations we can make about a clause, They are

Section 2.3.2 - Page 100

related by a definite loglical structure. The cholce between
YES-NO and WH- is meaningless unless the clause Is a OUESTION,
but if It Is a QUESTION, the cholce must be made. Similarly,
the chalce between OUESTION, IMPERATIVE, and DECLARATIVE 1is
mandatory for a MAJOR clause (one which could stand alone as a
sentence), but is not possible for a "secondary" (SEC) clause,
such as "the country whigh possesses the bombk." The chelce
between PASYV (as in "the ball was attended by John",) and ACTV
(as in "John attended the ball.,") Is en a totally different
dimension, since It can be made regardless of which of these
other features are present.

We can represent these logical relationships graphlically
using a few simple conventicns. A set of mutually exclusive
features (such as QUESTION, DECLARATIVE, and IMPERATIVE) Is
called a system, and s represented by connecting the features

with a vertical bar:

QUEST I ON

DECLARATIVE

IMPERATIVE

The vertical order Is not Important, since a system Is a

set of unordered features among which we will choose one. Each
eystem has an entry condition which must be satisfled In order
£ar the cholee to be meaningful. This entry conditlon can be an
arbitrary boolean condition on the presence of other features.

The simplest case (and most coemmon) Is the presence of a single

Sectlon 2.3.2 - Page 101

other feature. For example, the system just depicted has the

feature MAJOR as Its entry condition, slnce only MAJOR clauses

make the cholce between DECLARATIVE, IMPERATIVE, and QUESTION.
This simple entry condition Is represented by a horlzontal

line, with the condition on the left of the system being

entered, We can diagram some of our CLAUSE features as:

DECLARATIVE
MAJOR IMPERAT I VE

CLAUSE YES-NO
SEC QUESTIDN——!
¥WH-

Often there are Independent systems of cholces sharing the

same entry condltion. For example, the cholce between SEC and
MAJOR and the cholce between PASV and ACTV both depend directly
on the presence of CLAUSE. This type of relationship wil] be
indicated by a bracket In place of a vertlical bar.

MAJOR=——, ..

SEC

CLAUSE
PASY

ACTV
If we want to asslgn a name to a system (to talk about it),
we can put the name above the llne leading Into It:
VOICE |FAE'I.I'
ACTY
We can look at these notatlons as representing the loglcal

operatlons of "or" and “and", and we can use them to represent

more complex entry condlitions, |f the cholece between the

features C and D depends on the presence of elther A or B, we

A] lD
B ————y C

and 1f the entry condition for the "C-D" system Is the

draw;

presence of both A gnd B, we write:

A— c
B— D

Finally, we can allow "unmarked" features, In cases where
the cholce 15 between the presence or absence of something of
interest. We might have a system 1lke;

NEGATIVITY |HEGATIVE

in which the feature "non-negative" Is not glven a name, but Is

assumed unless the feature NEGATIVE is present.

We will explaln our grammar by presenting the system
networks for all three ranks -- CLAUSE, GROUP,and WORD, and
glving examples of sentences exhibiting the features. We have
not attempted to show all of the loglcal relationships In the
networks =- our networks may Indicate combinations of features
whieh are actually not possible, and would need a more complex
network te represent properly. We have chosen clarity over
completeness whenever there was a conflict. In additlon, we

have represented "features" of unlts (l.e. descriptions of thelr

Section 2.3.2 - Page 103

structure) and "functions" (descriptions of thelr use) in the
same network. In a more theoretical presentation, It would be
preferable to distinguish the two. The names chosen for
features were arblitrary mnemonies Invented as they were needed,
and are nelther as clear nor as systematic as they might be In a

"eleaned up" verslon,

Sectlon 2.3.3 - Page 10&

2.5.3 The CLAUSE

The structure exhiblting the greatest variety In Engllsh Is
the CLAUSE. It can express relatlonships and events Invelving
time, place, manner, and other modiflers. |Its structure
indicates what parts of the sentence the speaker wants to
emphaslize, and can express various kinds of focus of attention
and emotlion., |t determines the purpose of an utterance ==
whether It Is a question, command, or statement -- and Is the
baslc unit which can stand alone, Other units can occur by
themselves when thelr purpose Is understood, as In answer to a
question, but the clause is the primary unit of discourse,

The CLAUSE has several main ingredients and & number of
optional ocnes. Except for speclal types of incomplete clauses,
there Is always a verb group, containing the verb, which
indlcates the basic event or relatlonship being expressed by the
CLAUSE. Almost every CLAUSE contalns a subject, except for
IMPERATIVE (In whilch the semantlc subject s understood to be
the person belng addressed), and embedded clauses In which the
subject 1les somewhere else In the syntactlc structure, |In
addlitlien to the subject, a CLAUSE may have various kinds of
objects, which will be explained In detall later. It can take
many types of modiflers (CLAUSES, GROUPS, and WORDS) which
Indicate time, place, manner, causality, and a varlety of other
aspects of meaning, One part of the CLAUSE system network Is

shown in Flgure 26.

Section 2,3.3 - Page 105

IMPERATIVE DANGLIHNG
F'FEEP*—l
MAJOR DECLARATIVE ——
YES=NO SHORT
OQUESTIOH ADJ*—l
CLAUSE -] e _———
ADVMEAS »
BOUMD
SUBJw
ADJUNCT TO SLIE--—I
SUBJT*
I NG
S E C NESL*
EN
OBJ2w
TO OBt =
RS ()= LOBJ*
IMG
G et TRANS2TO=
WHRS
MEAS#
WHRS CGHF‘*—’
SUBING TIME=
I MG
4 \--- DOWN«

— SUBTO
TO
RSNG THAT
REPORT
ITSUBJ
SUBJ

— 0BJ1

0BJ2
OB J =
LOBJ

--- PREPOBY

1 RELDEL

UPREL

Flgure 26 == NETWORK 1

Cectlon 2,3.3 - Page 106

Beglnning at the top of the network, we see a cholce
between MAJOR (a clause which could stand alone as a sentence)
and "secondary" (SEC). A MAJOR clause |s elther an IMPERATIVE
(a command), a DECLARATIVE, or a QUESTION. fuestions are elfther
YES=NO -- answerable by "yes" or "no", as In:

(sl) DIld vou l1ike the show?
or WH- (lnvelving a question element 1ike "when", "where',
"which", "how", etc.). The cholce of the WH- feature leads Into
a whole network of further cholces, which are shared by QUESTION
and two kinds of SECondary clauses we will discuss later. In
order to share the network, we have used a simple notational
trick -- the symbals contaln a "+", and when they are belng
applied to & guestlion, we replace the * with "0", while when
they are applied to relative clauses, we use "REL"., For
example, the feature "PREP*" in the network will be referred to
as PREPQ when we find It In a questlon, but PREPREL when It Is
in a relative clause, This Is due to the way the grammar
evolved, and In later versions we will probably use only one
name for these features, Thils complex of features [s basically
the cholce of what element of the sentence [s belng guestlioned.
English allows us to use almost any part of a clause as a
reauest for Information. Feor example, In a PREPQ, a
preposltional group In the clause |s used, as [n:

{s2) With what did you erase Jt?

We more commonly find the prepesition In a DANGLING position, as

Section 2,3,3 = Page 107

In:

{(s3) What did you erase It with?
We can tell by tracing back through Metwork 1 that sentence s3
has the features PREPQ, DANGLING, WH=-, QUESTION, and MAJOR,
We can use a speclal gquestlion adverb to ask questlions of
time, place, and manner, as In:
(sk) MWhy did the chicken cross the road?
(s5) MWhen were you born?

i
(s6) How will vou tell her the news?
(s7) MHhere has my 1lttle dog gone?

These are all marked by the feature ADJQ. In discourse they can
also appear In a short form (SHORT) In which the entire
utterance Is a2 single word, as In:

{s8) Why?
We can use the word "how" in connectlon with a measure adverb
(1ike "fast") to ask an ADVMEASO, Vike:

(s9) How fast can he run the mile?

The most flexible type of WH- question uses an entlre noun
group as the question element, using & speclal pronoun (11lke
"what" or "whe") or a determiner (1lke "which™, or "how many™)
to Indicate that it Is the guestion element. These clauses have
the feature NGO, and they can be further divided according to
the function of the NG In the clause, It can have any of the
possible NG functlons (these will be described more formally
with regard to the next network). For example, It can be the
subject, glving a SUBJO, 1lke:

{510) MWhich hand holds the M and M's?

Sectlon 2.3,3 - Page 108

It can be the subject of a THERE clause (see belew), glving us a
SUBJTO:
{511} How many Puerto Rlicans are there In Beston?
& complement s the second half of an "is" clause, 1lke:
{(¢12) Her halr 15 red.
and it can be used to form a COMPO:
{s13) Mhat color was her halr?
or with a "measure" In a MEASO:
{s14) How deep Is the ocean?
The noun group can be an object, leading to the feature
0BJO, as int

{s15) What do you want? or
{s16) MWho did you glve the book?

These are both 0OBJ1d, since the first has enly cne object
{"what"), and the second questlons the flrst, rather than the
second object ("who", Instead of "the book"). We use the
ordering of the DECLARATIVE form "You gave me the book". If
this were reversed, we would have an 0BJ20Q, 1lke:

{s17) MHhat did you glve him?

If we use the word "to" to express the flirst object with a

two object verb 1ike "glve", we can get a TRANSTO20, 1ike:

(s18) To whom did you glve the book? or
(s19) Who did you give the book to?

Sometimes a NG can be used to Indlicate the time In a
clause, glving us a TIMEQ:

{s20) What day will the lTceman come?

Section 2.3.3 - Page 109

In @ more complex style, we can embed the guestlen element
within an embedded clause, such as:

(s21) Mhich gcar did your brother say that
he was expecting us to tell Jane to buy?

The NG "which car" Is the guestion element, but Is In fact
the object of the clause "Jane to buy...", which is embedded
several layers deep. Thils kind of NGO Is called DOWNG. The
role of the guestion element In the embedded elause can Inelude
any of those which we have been describing. For example It
could be the object of a preposition, as In

(s22) Mhat state did you say Linceln was bern |n?

Looking at the network for the features of SECondary
clauses, we see three maln types =- ADJUNCT, "Rank-S5hilfted
Qualifier" (RS0Q), and "Rank-Shifted to act as a Moun Group"
(RSNG). ADJUNCT clauses are used as modlflers to other
clauses, glving time references, causal relatlonships, and other
similar Information. We can use a BOUND clause contalning a
"binder" such as "before", "while", "because", "[f", ga',

"unless", ete., as 1n:

(s23) MWhile Herg flddled, Rome burned.
(s2k) 1f 1%t ralns, stay home.
(s25) Is the sky blue begause It |s gold?
To express manner and purpose, we use a T0 clause ar an NG

clause:

(526) He died fo save us from our sins.
(527) The bridge was bullt using primitive tools.

The RSQ clause Is 2 constituent of a NG, following the noun

Sectlon 2.3.3 = Page 110

in the "qualifier" posltion (see Sectlion 2,3.5 for a description
of the positions In a NG). It Is one of the most commonly used
cecondary clauses, and can be of four different types, Three of
them are classified by the form of the verb group within the
clause == TO, ING, and EN (where we use "en" to represent a past
participle, such as "broken"):

{s28) the man to see about & Jjob

{s29) the plece holding the door on
(s30) a face weathered by sun and wind

Motlece that the noun belng modified can have varlous roles
In the clause. In examples 28 and 29, "plece" Is the subject of
"hold", while "man" ls the object of "see'". We could have sald:

(s31) the man to do the jgh
In which "man" Is the subject of "de". Our semantic analysls
sorts out these possibilities In determining the meaning of a
secondary clause,

The fourth type of RS0 clause Is related to WH- questions,
and Is called a WHRS. It uses a wh= element 11ke "which" or
"what", or a word llke "that" to relate the clause to the noun
it 1= modlfying., The different ways It can use thls "relating"
element are very simllar to the different possibilitlies for a
question element In a WH- questlion, and In fact the two share
part of the network. Here we use the letters REL to indicate we
are talking about a relative clause, so the feature PREP* In
Hetwork 1 becomes PREPREL. |In sentences (s2Z) through (s22), we

1lustrated the dlfferent types of WH- gquestions. We can show

paralliel

Sectlon 2.3.3 - Page 111

sentences for WHRS RS0 clauses. The foallowing list

shows some examples and the relevant feature names:

(s32)
{533)
(s34)
(s35)
{s36)
(537}
(538)
(539)
(s}

(s41)
(sk2)
(sh3)
(ski)
(sL5)
(5LE)
(s47)
(s4E)
(s49)

{(s50)

the
the
the
the
the
the
the
the
the

the
the
the
the
the
the
the
the
the

thing with which you erased It PREPREL
thing that vou erased It with PREPREL DANGLING
reason why the chicken crossed the road RELADJ
day when vou were born RELADJ
way we will fell her the pews RELADJ
place my 1ittle dog has gone RELADJ
reason why RELADJ SHORTREL
:ang Hh]EhpEEEEE é%g gzgiﬁgli SUBJREL
umber o uerto Ricans Boston
=UBJTREL are io
color her halr was last week COMPREL
depth the ocean will be MEASREL
information that you want OBJ1REL
man you gZave the book OBJIREL
book whigh you gave hilm OBJ2REL
man to whom you gave the bogk TRANSTOZREL
man you gave the book to TRANSTOZREL
day the lceman came TIMEREL
car your prother sald he was expegting us to

fell Jane fo buy DOWNREL

the

state you sald Lincoln was born In DOWNREL

Notice that In sentences 36, 37, L0, &1, L2, L&, L7, L8,

49, and 50, there Is no relatlive word like "which" or "that",

These could just as well all have been put In, but English gives

us the option of omitting them. When they are absent, the

CLAUSE

is marked with the feature RELDEL,

Returning to our network, we see that there |s one other

type of basic clause, the RSNG. This Is a clause which Is rank-

shifted to serve as a NG. It can functlon as a part of another

clause, a preposition group, or an adjectlve group. There are

four basic types. The flrst two are TO and ING, as In:

(s51)
(s52)
{553)

I 11ke o flv. TD

Bullding houses Is hard work. ING

He got It by saving coupons. ING

Section 2.3.3 - Page 1112

Motlee that In 251, the RSNG clause s the object (OBJ1), In
=57 it Is the subject (SUBJ), and In s53 It is the object of a
preposition (PREPOBJ). We can have a separate subject within

the TO and ING clauses, glving us the features SUBTO and SUBING:

{g5k) | wanted Ruth ;$ lead the revglution. SUBTO
(555} They liked John's leading L. SUBING

The SUBING form takes Its subject In the possessive.

In additlen to ING and TO, we have the REPORT CLAUSE, which
has the structure of an entlre sentence, and [s used as a
participant In a relation about things 11ke hearing, knowlng,

and saving:

(s56) She heard that the gther team had won,

(s57) That she wasn't there surprised us,

(s58) | knew he gould do It.

The word "that" 1t used In =56 and s57 to mark the beginning
of the REPORT CLAUSE, so they are assigned the feature THAT.
The absence of "that" Is left unmarked.

If the subject of a clause Is In turn @ RSNG clause, we may

have trouble understanding Tt:
(s59) That anvone who knew the gombination could have
opened the lock was obvlious.

There Is a speclal mechanism for rearranging the sentence by

using the word "1t", so that the complicated subject comes last:

(s60) It was obvious that anvone who knew the gombination
could have gpened the lock,

In this case, we say that the RSNG clause Is serving as an

sectlon 2.3.3 - Page 113

ITSUBJ. TO and ING clauses can do the same:

{s61l) It will be fun to see them agaln,
(s62) It was dangerous golng up wlthout a parachute,

The final type of RSNG Is the WHRS, which Is almost
identical to the WHRS RSQ described above. Rather than ED
through the detalls agaln, we will Indlcate how a few of our RSO
examples (sentences s32 to s50) can be converted, and will leave

the reader to do the rest.

(s63) | don't know what he did it with, PREPREL DANGLING

(s6k) Ask him when he was born, RELADJ
(s65) He told me why, RELADJ SHORTREL

(s66) It Is amazling how manvy Puerto Ricans there are [n
Boston, SUBJTREL
{s67) Only her halrdresser knows what color her halr was,
COMPREL
etc,

Let us examine one case more carefully:

(sG8) | knew which car vour brother sald that he
was gxpecting us to tell Jane to buy,

Here we have a2 DOWNREL clause, "which car....buy", serving
as the object of the CLAUSE "| knew...". However, thls means
that somewhere below, there must be another clause with a slot
Into which the relative element can flt., In this case, It Is
the RSNG TO clause "Jane to buy", which Is missing Its ohject,
This clause then has the feature UPREL, which Indicates that Its

missing constituent [s somewhere above In the structure. More

specifically It Is OBJIUPREL,
Once this connection Is found, the program might change the
polnters In the structure to place the relative as the actual

0BJ1 of the embedded clause structure. In the current grammar,

Section 2.3.3 - Page 1l&

the polnters are left untouched, and special commands te the

moving function % are used when the object 1s referenced by the

semantlec program.

section 2.3.4 - Page 115

2.3.4 Jransitivity In the Clause

In addition to the systems we have already descrlbed, there
is a TRANSITIVITY system for the CLAUSE, whlch describes the
number and nature of Tts baslc constltuents. We ment!loned
earller that a CLAUSE had such components as a subject and
varlous objects. The transitivity system speclfles these
exactly. We have adopted a very surface-oriented notlen of
transitivity, In which we note the number and basic nature of
the objects, but do not deal with thelr semantie roles, such as
"range" or "beneflciary". Halliday's analysls <Halllday 1967
is somewhat different, as It Includes aspects which we prefer to

handle as part of the semantlc analysis. Our simplifled network

Sectlon 2.3.4 - Page 116

THERE
BE

INT
b1 TRNS
TRANS
CLAUSE—— ¢~ |TRaNs2

TRANSL
ITRNSL

INT

PRT =

ACTY—
e AGENT
PASY

Figure 27 ==NETWORK 12

The first basic division Is Inte clauses with the main verb
"be', and those with other verbs., This Is done since BE clauses
have very different possibllities for conveylng meaning, and
they do not have the full range of syntactic cholces open to
other clauses. BE clauses are divided Into two types =-- THERE
clauses, 1lke:

{s69) There was an old woman who lived in a shoe.
and INTensive BE clauses:
{(s70) War 15 hell.

A THERE CLAUSE has only a subject, marked SUBJT, while an INT

Section 2,.3.4 - Page 117

CLAUSE has a SUBJect and a COMPlement. The COMPlement can ke
either a NG, as In 570 or:

(£71) He was an agent of the FRL,
aor a PREPG:

(s72) The king was In the gounting house,
or an ADJG:

{s73) Her strength was fantastig,
(s74) My daddy ls stronger than yours,

Other clauses are divided according to the number and type
of cbjects they have., A CLAUSE with no objects Is Intransit]ve
(ITRNS):

(575} He Is running.
With one object It ls transitive (TRANS):
(876) He runs a millinge maghlne,
With two objects TRANSZ:
(s77) | gave my lgve a cherry,
Some verbs are of a special type which use a locatlion as a

"put", as in:

(s78) Put the bleck on the table,

Mote that this cannot be conslidered a TRANS with a

second object. One example Is

modifler, as In:

(s79) He runs a milling machine In Chlcago,
slnce the verb "put" demands that the lecatlion be glven. We
cannot say "Put the block." This type of CLAUSE Is called
TRANSL, and the locatlion object Is the LOBJ. The LOBJ can be a

PREPG as In s78, or a speclal adverb, such as "there" or

Sectlon 2.3.4 - Page 118

"somewhere'", as In:

{s80) Where did you put It? or
(s81) Put it there,

Some intransitive verbs also need a locatlional object for
certalin meanings, such as:
(s82) The block 15 sitting on the table,
This s called ITRNSL.
Finally, there are INTensive clauses which are not BE
clauses, but which have a COMPlement, as In:

{58%) He felt sick, and
(sEL) He made me slick,

We have not run Inte these with our simple subject matter, and a
further analysis will be needed to handle them properly.

Any of the constituents we have been mentioning can be
madl fled or deleted when these features interact with the
features described In Network 1., For example In:

{s85) the block which | told you te put on the fable
the underlined CLAUSE Is TRANSL, but Its OBJ1 Is missing slince
1t is an UPREL.

English has a way of making up new words by combining a
verb and a "particle" (PRT), produclng a combinatien 11ke "plck
up", "turn on", "set off", or "drop out", These do not simply
combine the meanings of the verb and particie, but there is a
special meaning attached to the pair, which may be very
different from either word In Isolation., Our dictionary

contains a table of such palrs, and the grammar programs use

Sectlon 2.3.4 - Page 119

them. A CLAUSE whose verb is a part of PRT palr has the feature
FRT. The particle can appear either Immediately after the word:

(s86) He threw away the plan.

or In a displaced positlon (marked by the feature DPRT):

{587) He threw the plans away,

Regardless of whether there 1s a PRT or not, we have the
cholce between the features passive (PASV) and active (ACTV).
ACTV places the semantic subject flirst:

(588) The President started the war,

while PASV puts the semantlec object flirst:

(s89) The war was started by the Preslident.

If there Is a PREPG beginning with "by", it Is Interpreted as
the semantic subject (as In s89), and the CLAUSE has the feature
AGENT,

I'f the CLAUSE Is active and Its subejct Is a RSNG CLAUSE,
we can use the IT form described earliier. This Is marked by the
feature IT, and its subject Is marked ITSUBJ, as In sentences

60, 61, and 62,

Section 2.3.5 - Page 120

2.3,5 MHoun Groups

The best way to explaln the syntax of the MOUN GROUP Is to
look at the "slot and flller" analysis, which describes the
different componente It can have. Some types of NG, such as
those with prenouns and proper nouns, will not have this same
construction, and they will be explalned separately later.

LLI L Lo

We will dlagram the typclal NG structure, uslng a
Indicate that the same element can occur more than once. Most
of these "slots" are optional, and may or may not be filled In
any particular NG. The meanings of the different symbols are

explained below.

| I l l ! I

DET ORD HUM ADJw CLASF* NOUN Q=

Flgure 28 =-- NG Structure

The most Important Ingredient Is the NOUN, which Is almest
always present (1f It lsn't, the NG Is INCOMplete)., |t gives
the basic Information about the cbject or cbjects belng referred
to by the NG. |Immediately preceding the NOUN, there are an
arbltrary number of “"classiflers" (CLASF)., Examples of CLASF
are:

(s890) plant 1ife
(s91) water meter cover adjustment screw

Notlce that the same class of words can serve as CLASF and NOUN

-- In fact Halllday uses one word class (called NOUN), and

Sectlon 2.3.5 - Page 121

distingulshes between the functlions of "head" and “"classifier".
We have separated the two because our dictionary glves the
meaning of words according to thelr word class, and nouns often
have a speclal meaning when used as a CLASF.

Preceding the CLASFs we have adjectives (ADJ), such as "big
beautiful soft red..." We can distingulsh adjectives from
classifliers by the fact that adjectlives can be used as the
complement of a BE CLAUSE, but classiflers cannot. We can say
"red hair", or "horse halr", or "That halr is red.", but we
cannot say "That halr Is horse.", since "horse" 1s a CLASF, not
an ADJ. Adjectives can also take on the COMPARative and
SUPerlative forms ("red, redder, and reddest"), while
classifiers cannot ("horse, horser, and horsest"1!7).

Immediately followlng the MOUN we can have varlous
qualifiers (0QJ), which can be a PREPG:

(s892) the man In the mogn
or an ADJG:

(s93) a night darker than doom
or a CLAUSE RSQ:

(s84) the woman who gonducts the grchestra
We have already discussed the many types of RSQ clauses. In
later sectlons we will discuss the PREPG and ADJG types which
can occur as quallflers,
Finally, the first few elements In the NG work together to

give Its loglical description -- whether It refers to a single

Sectlon 2.3.5 = Page 122

cbject, a class of objects, a group of objects, etc, The
determiner (DET) Is the normal start for a NG, and can be a word
such as "a", or "that", or a possessive. It Is followed by an
"srdinal"™ (ORD). There Is an Infinlte sequence of number
ordinals ("first, second, third...") and a few others such as
"1ast" and "next"., These can be recognlized since they are the
only words that can appear between a DET 1lke "the" and a
number, as [nt
{595) the next three days

Flnally there Is a NUMber. It can elther be a simple
Integer 1ike "one", "two", etc. or a more complex constructlon
such as "at least three", or "mere than a thousand". It Is
possible for a NG to have all of Its slots filled, as In:

DET ORD HUM ADJ ADJ CLASF CLASF MOUN
the flrst three old red clty fire hydrants

O({PREPG) Q{CLAUSE)
wlthout covers you can flnd

It Is Is alsoc possible to have cembinatlens of almost any
subset., With these baslc components In mind, let us look at the

system network for NG In Flgure 29.

Section 2.3.5 - Page 123

QUEST
PHDHG—I
-=- DEM

e TPRONG

— DEF POSES
PROPNG

MDET -
- (’ NUMD
DE T s —

SUBJT INDE F === QUEST
SUBJ—1 e

-

--- OF

DBJ1 o ———
NG=

DEJ2 — INCOM
OB s QNTFR HEG r—
OFOBYJ -—I S

PREPOBJ

COMP
TIME
DEFPOSS
POSS
HS
=t NPL
NFS

Filgure 29 --NETWOREK 3

First we can lock at the major types of NG, A NG made up
of @ pronoun Is called a PRONG, It can be elther a QOUESTlon,
1ike "who!" or "what", or a non-gquestion (the unmarked case) 1lke
"1, "them", "it", etc. The feature TPRONG marks a NG whose
head Is a special TPROMN, llike "something", "everything",

"anything", etc. These enter Into a pecullar construction

Sectlon 2.3.5 = Page 124

contalning only the head and quallifiers, and In which an
adjective can follow the head, as In:
{s95) anything green which Is bigger than the moon

The feature PROPNG marks an NG made up of proper nouns,
such as "John", "0Oklahoma", or "The Union OFf Soviet Seclallst
Republics,"

These three speclal classes of NG do not have the structure
described above, The PRONG 1s a slngle PRONoun, the PROPNG Is a
string of PROPNs, and the TPROMG has Its own speclal syntax.

The rest of the NGs are the unmarked {(normal) type. They could
be class|fled accordlng to exactly which constituents are
present, but In dolng so we must be aware of our basle goals In
systemlc grammar. We could note whether or not a NG contalned a
CLASF or not, but thls would be of mlner slgnlflcance., On the
other hand, we do note, for example, whether 1t has a DET, and
what type of DET It has, slnce this Is of key Importance In the
meaning of the NG and the way It relates to other units. We
distingulsh betwen those with a determiner (marked DET) and
those wlthout one (HDET), as Int

(s97) Cats adore flsh, NDET
(598) The cat adored g flsh, DET

The DET can be DEFInite {1ike "the" or "that"), INDEFInlte
(11ke "a" or "an"), or a quantifier (QNTFR) (1ike "some",
"eyery", or "ne"). The DEFInite determiners can be elther
DEMonstrative ("this", "that", ete.) or the word "the" (the

unmarked case), or a POSSessive MG, The NG "the farmer's son"

Sectlon 2.3.5 - Page 125

has the NG "the farmer" as Its determiner, and has the feature
POSES to indlicate thls,
An INDEF NG can have a number as a determiner, such as:

(s99) five gold rings
(s100) atf least a dozen eggs

In which case It has the feature NUMDET, or It can use an IMNDEF
determiner, such as "&". In elther case It has the cholee of
being a QUESTIon. The question form of a NUMDET Is "how many",
while for other cases It Is "which" or "what",

Finally, an NG can be determined by a guantifler (QNTFR) .,
Although quantifiers could be subclassifled along varlous 1lnes,
we do so In the semantliecs rather than the syntax. The only
classiflcatlons used syntactically are between singular and
plural (see below), and between NEGative and non-negative,

If a NG Is elther NUMD or ONTFR, 1t can be of a speclal
type marked OF, 11ke:

(s101) three of the offlces
(s102) all gf vour dreams

An OF NG has a DETerminer, followed by "of", followed by a
DEFInite MG.
A determined NG can also choose to be INCOMplete, leaving

out the HOUM, as an

(s103) Give me three,
{s104) | want pone,

Notice that there Is a correspondence between the cases which
can take the feature OF, and those which can be INCOM. We

cannot say elther "the of them" or "Glve me the.". Possess|ves

Sectlon 2.3.5 - Page 116

are an exception (we can say "Glve me Juan's." but not "Juan's
of them"), and are handled separately (see below).

The middle part of Metwork 3 describes the different
possible functions a NG can serve. In describlng the CLAUSE, we
described the use of an NG as a SUBJ, COMP, and OBJects of
varfous types. In additieon, It ean serve as the object of a
PREPG (PREPOBJ), In:

(s105) the rape of the lock
If It Is the object of "of" In one of our special OF NGs, It s
called an OFOBJ:

(s106) none of your Lricks
A NG can also be used to Indicate TIME, as In:

{s107) Yesterday the world ended.
{s108) The day she left, all work stopped.

Finally, & NG can be the P055éssive determiner for another
MG. In:
(s109) the cook's kettles
the NG "the cook" has the feature POSS, Indicating that It Is
the determiner for the NG "the cook's kettle", which has the
feature POSES.
When a PROMNG Is used as a POS5, It must use a speclal
possessive prenoun, 11ke "my", "wour", etc., We can use a POSS
In an lncomplete NG, like

{5110) Show me yours,
{s111) John's Is covered with mud.

There Is a speclal class of pronouns used In these NG's

Sectlon 2.3.5 - Page 127

(labelled DEFPOSS), such as "yours", "mine", etc.

Continulng to the last part of Network 3, we see features
of person and number, These are used to match the noun to the
verb {if the NG Is the subject) and the determiner, to avold
ungrammatical comblnations like "these kangarce" or "the women
wins", In the case of a PRONG, there are special pronouns for
first, second, and third person, singular and plural, The
feature NFS occurs only with the flrst-person singular pronouns
("M, "me", "my", "mine"), and no distinction Is made between
other persons, since they have no effect on the parsing, A1l
singular pronouns or other singular NGs are marked with the

"wou" 1s alwavs treated as [If |t were

feature N5, The pronoun
plural and no distinction is made between "we", "you", "they",
or any plural (NPL) NG as far as the grammar Is concerned, Of
course there is a semantic difference, which will be considered

In later chapters.

Section 2.3.6 - Page 128

2,3.6 Preposlition Groups

The PREPG I|s a comparatively simple structure used to
express a relatlonship. It consists of a PREPosition followed
by an object (PREPOBJ), which Is either a NG or a RSNG CLAUSE.
In some cases, the preposition consists of a two or three word
combination instead of a single word, as In:

(s112) pext to the table
{5113} on top of the house

The grammar Includes provision for this, and the dictionary
liste the possible combinations and thelr meanings. The words
in such a combinatlon are marked as PREPZ. The network for the

PREPG 15 in Flgure 30.

COMP
' LOEJ
ADJUNCT
AGENT

OUEST
RELPREPG

PRE PG e _ |UPREL

An
OF

Flgure 30 =-- MNETWORK &

UPQUEST

The PREPG can serve as a constltuent of a CLAUSE In several

ways. |t can be a COMPlement:

{s114) Is it In the kitchen?

section 2,3.6 - Page 129

a locational ocbject (LOBJ):
{s115) Put It gn the table,
an ADJUMET:

(s116) He got It by selllng his soul,
or an AGENT:

(s117) It was bought by the devi],
|f the PREPG is a constituent of a OUESTION CLAUSE, It can he
the question element by having a QUEST MG as [te object:

(s118) In clty

(s119) for how many days

(s120) by whom
In which case the PREPG Is also marked OUEST. A PREPREL CLAUSE
contalns a RELPREPG:

(s121) the place In which she works

I'f the CLAUSE is an UPQUEST or an UPREL, the PREPC can be

the constlituent which Is "missing" the plece which provides the
upward reference. In thls case It Is also marked UPREL:

(5122) the lady | saw you wlth
or UPQUEST:

(5123) Who did you knit it for?
In these cases, it Is alsc marked SHORT to Indicate that the
object Is not expllicitly In the PREPG. It can alse be short |f
It Is a PREPG In a DANGLING PREPQ or PREPREL CLAUSE:

(s124) what do vou keep It |n?

Within a NG, a PREPG serves as a qualifler (0Q):

(s125) the man In the lron mask

Sectlon 2.3.6 - Page 130

or as the body of an OF NG:
{s126) some of the pegple

Sectlon 2.3.7 - Page 132

(s131) as guick as a flash
COMPARative:

{s132) This one Is bigger,
or OQUEETlon:

{s133) How well can he take dictation?

The network |s arranged to show that a qualifier ADJG can
be only of the first two forms == we cannot say "a man bigger"
without using "than", or say "a man blg". In the speclal case
of a TPRON such as "anvthing" as In:

{s134) anything strange
the word "strangze" ls considered an ADJ which Ts & direct
constltuent of the NG, rather than an ADJG.

The grammar does not yet account for more complex uses of

the word "than".

Section 2,.3.8%8 - Page 133

2,3,8 Nerb Groups
The Engllish verb group Is designed te convey a complex
combination of tenses so that an event can relate several time

references. For example, we might have:

(5135} By next week vou will have been living

here for a month.
This is said to have the tense "present In past In future", |ts
basic reference Is to the future == "pext week", but 1t refers
back to the past from that time, and alse Indlcates that the
event Is stlil going on, This type of recursive tense structure
has been analyzed by Halllday <Hallliday 1966b> and our gErammar
adopts a variant of his scheme.

Essentially the chui:e s between four tenses, PAST,
PRESENT, FUTURE, and MODAL. Once a cholce between these has
been made, a second, thlrd, fourth, and even fifth cholee can be
made recursively. The combination of tenses Is reallzed In the
syntax by a sequence of the auxilllary verbs "be", "have", and
"golng to", along wlith the ING, EN, and INFinltive forms of the
verbs. The restrictions on the recursion are:

1. PRESENT can occcur only at the outer ends of the serles

(at first and/or final cholce),

2, Except In the flnal twe positions, the same tense
cannot be selected twice consecutively,

5. Future can occur only once other than In last
positlion,

4. Modal can be only In flnal position,

Sectlon 2.3.8 = Page 134

It |s Important to distinguish between the posltion of a
word In the V6 and the position of its tesnse in the recursive
tense feature -=- the direction Is reversed. In 5133, "will" 1s
the first word, and "1iving" the last, while the tense Is
PRESENT In PAST In FUTURE. Some sample verb groups and thelr

tenses are: (from <Halllday 1966b3)

ACTIVE

took = past
takes - present
wlill take - future
can take = modal
has taken - past in present
was taking = present in past
was going to have taken = past In future in past
was going to have been taking - present In past In future In past

PASSIVE

is taken = present
could have been taken - past In modal
has been golng to have been taken -

past In future In past In present

Figure 32 -- Verb Group Tenses

The structure of a finite VG (one taking part In this tense
system -- see below for other types) Is a sequence of verbs and
auxilliaries In which the last Is the "main verb" (marked MVE
and remembered by the parser), and the first s either a MODAL,
the word "will", or a "finite" verb (one carrying tense and
number agreement with the subject). Interspersed In the
sequence there may be adverbs, or the word "not" {or Its reduced

form "n't"), The best way to describe the relatlonship between

Section 2.3.8 - Page 135

the sequence of verbs and the tense is by giving 2 flow chart
for parsing a VG. This 1s 2 good example of the usefulness of
representing syntax In the form of procedures, as It describes a
relatively complex system in a clear and succlnct way.

In the flow chart (Flgure 33) the varlable T represents the

" Indlcates the addition of a member to

tense, and the symbol
the front of a 1ist. The "=" Indicates replacement In the
FORTRAN sense, and the function "REMOVE" removes words frem the
Input string. The features used are those described for verhs
In sectlon 2,3.9. The command (FQ PASV) Iindicates that the
entire VG Is to be marked with the feature PASY (passlive volce).

The flow chart does not Indicate the entlire parsing, but only

that part relevant to determining the tense.

Sectlon 2.3.8 = Page 13E
EHTER
Hent word ext wurd Haext word Mext word
PAST? —4 PRES? WILL? MODAL?
T = (PAST) T = (PRES) T = { UTUHEJ T (MODAL)

Mext ward DO and

2red wnrd INF? Remuzﬁ:l word

Next wurd HAHE
and 2nd word ENT

Mext word BE?===»2nd Word GOING ===»T = FUTURE . T

= PAST . FRemove 1 word

and 3Ird TO
and Lth INE?

Next word I|NG?======»T = PRES
Mext word EN? II#'FE PASY

Remave 3 words=

. T

Flgure 33 == Syntax of VG Tense Structure

Section 2.3,8 - Page 137

This system of tenses Is operative only for EINITE verh

groups. The network for the VG In general is:

FINITE
IMPER
F-
TODEL
TO
ING
VG e BE
— PASY
IAETU
NEG
_ |---
Figure 34 ==NETWORK &

There are several types of VG which do not enter the normal
tense system, but which have a speclallzed form. The IMPER VG
is used In Imperatives:

{(s136) Flre when ready.
{(s137) Don't drop the baby,

It consists of a verb In the INFinltive form, possibly preceded
by the auxllliary "do" or Its negative form "don'"t", The EN VG
s used In EN RS0Q CLAUSES, Vlike:

(s138) a man forsaken by his friends
and conslsts of a past particple verb. The ING VG Is made up of

an ING verb or the verb "being" followed by an EN verb., It Is

Sectlon 2.3.8 - Page 138

used In various tyvpes of ING clauses:

(s139) pBelng married is great.
{s140) the glrl sltting near the wall

Similarly, the TO VG Is used In TO clauses. In the case of
conjoined structures, the "to" may be omitted from the second
clause, as In:

{s141) We wanted to stop the war and gnd repression.
Such a VG Is marked TODEL.

We separate those verb groups whose main verb Is "be" from
the others, as they do not undergo the further cholce between
PASY and ACTV. These correspond to the same features for
clauses, and are seen In the structure by the fact that a PASY
VG contalns a form of the auxilllary "be" followed by the maln
verk In the EN form, as in:

{2142) The paper was flnlshed by the deadline.
{s143%) He wanted to be kissed by the bride,

Finally, any VG can be NEGative, elther by using a negative
form of an auxilltary 11ke "don't", "hasn't", or "won't", or by

Including the word "net",

Section 2.3.9 = Page 139

£.3,9 Mords

Our grammar uses a number of separate word classes, each of
which can be divided Intc subclasses by the features asslgned to
individual words. It was necessary to make arbltrary decisions
as to whether a distinction between groups of words should he
represented by different classes or different features within
the same class, Actually we could have a much more tree-1ike
structure of word classes, In which the Ideas of classes and
features were comblined. Slnce this has not vet been done, we
will present a list of the different classes In alphabetical
order, and for each of them give descriptions of the relevant
features. Many words can be used In more than one class, and
some classes overlap to a large degree (such as NOUN and CLASF).
In our dictionary, we simply 1ist all of the syntactie features
the word has for all of the classes to which It can belong.

When the parser parses a word as a member of a certaln class, It

sorts out those features which are applicable, Flgure 35 [s a

llst of the word classes and thelr features,

ADJ == Adjective Is one of the constltuents of a NG as well as
being the maln part of an ADJG. This class Includes words
1ike "big", "ready", and "strange". The only features are
SUPerlative (as In "blggest") and COMPARative (as In
"blgger").

ADV == We use the name "adverb" te refer to a whole group of

words used to modlfy other words or clauses, It s sort of a

CLASS
ADV
BINDER
CLASF
DET

ADJ
NMOUN
HUM
NUMD
ORD
PREP
PREP2
PRON
PROMREL
FROFN
PRT
QADd
TPRON

VB

Section 2.3.% - Page 140

FEATURES
ADV ADVADV LOBJ PLACE PREPADV TIMW TIMZ VBAD
BINDER
CLASF

DEF DEM DET INCOM INDEF MEG NONUM NPL N3 OFD PART
OQDET QNTFR

ADJ COMPAR SUP

MASS NOUN NPL WS POSS TIME TIMl

HPL NS NUM

NUMD MUMDALOME MUMDAN NUMDAT

QRD TIMORD

PLACE PREP NEED2Z

PREP2

DEFPOSS NEG MFS NPL NS OBJ POSS PRON REL SUBJ

NPL NS PROMREL

NPL NS POSS PROPN

PRT

PLACE QaDJ

NEG MPL NS TPRON

AUY BE DD EN HAVE IMPERF IMF ING INGOB INGDB2Z INT
ITRNS ITRNSL MODAL MVB MEG PAST PRES OUAX REPOB REPOB2

SUBTOE SUBTOB2Z TOOE TOOB2Z TO2Z TRANS TRAMSL TRANSLZ TRANSZ
VE VFS VPL VPRT V3PS WILL

Figure 35 -- Word Classes and Applicable Features

section 2.3.9 = Page 141

"mixed bag" of words which don't really flt anywhere else,
The basic classiflcation depends on what |s being modified,
and has the terms (ADVADV VBAD PREPADY CLAUSEADV). An ADVADV
Is a word 1ike "very" which modifles other adverbs and
adjectives, A VBAD modifies verbs, and Includes the class
of words ending In "=1y" 1ike "quickly" and "easTiy", A
PREPADV modifies prepositions, as "directly" in "directly
above the stove". A CLAUSEADV ls a constituent of a clause,
and can be either TIMW or PLACE. A TIMW 1like "usually",
"never", "then", or "often" appears as a CLAUSE constituent
specifying the time. The PLACE ADV "there" can elther be an
adjunct, as Int

(514} There | saw a miracle,
or an LOBJ, as In:

(s145) Put It there,

BINDER == Binders are used to "bind" a secondary clause te a

major clause, as In:

(s146) E;fg:g you got there, we left,
(s167) 1'11 go If vou de.

We do not assign any other features te binders,

CLASF == In Sectlon 2.3.5 we discussed the use of CLASF as a
constituent of a NG. The CLASF Is often another HOUN, but It
appears Iin a position like an adjective, as In "boy scout",

DET =- DETerminers are used as 2 constituent of a NG, as
described in 2.3.5. They can have a number of different

features, as described in the network:

Sectlon 2.3.9 - Page 142

aDET
INDEF
DEM
DEF
',F'" ==

—_ f’ \DFD-INCDM
iHEG
DET ONTFR l
NONUM
MPL --{
NS ~ e
o
MASS

Flgure 36 =-- METWORK 7

A DET can be INDEFInite, 1ike "a" or "an" or the
question determiners (QDET) "which", "what™, and "how many'.
It can be DEFInite, 1ike "the" or the DEMonstrative
determiners "this", "that", "those", and "these". Or It can
be a quantlifier (QNTFR) 11ke "any", "every", “"some', etec.
Quantiflers can have the feature OFD, Indicating that they
can be used In an OF NG like:

{s148) some of my best friends
We originally had a separate feature named INCOM indicating
whether they could be used In an Incomplete NG 1lke:

(s149) Buy some,
but later analysls showed these features were the same. HNot
all quantifiers are OFD == we cannot say "every of the cats"

or "Buy every." Quantliflers can also be NEGative, like none"

Sectien 2.3.9 - Page 143

or "no", or can be NONUM, Indicating that they cannot be used

with a number, such as "many" or "none" (we can say "any three
cats" or “no three cats", but not "none three" or "many three").
The NG program takes these features Into account In declding
what NG constltuents to look far. It also has to find agreement
In number between the DET and the MOUN. A DET can have the
features "singular"™ (NS}, "plural"™ (NPL) or MASS (11ke "some" or
"na", which can go with MASS nouns 1ike “water"). A DET can
have more than one of these -- "the" has all three, while "al]"
Is MASS and NPL, and "a" Is just NS,

NOUN == The main constlituent of a NG Is lts NOUM. It has a
feature of number, fdentical to that of the DETerminers It must
match. The word "parsnip" Is NS, "parsnips" Is NPL, and
"wheat" 1s MASS. Some nouns may have more than one of these,
such as "fish", which Is all three since It can be used In "a
fish", “three fish", or "Fish Is my favorite food."™ In
addition, a NOUN can be POSSessive, like "parsnip's",

In order to tell whether @ NG Is functioning as a time
element In a CLAUSE, we need to know whether Its NOUN ecan refer
to time, We therefore have two features == TIME words 1lke
"day", and "month", as In:

(s150) The next day It started to snow.
and TIMl words 1ike "yesterday" and "tomorrow". This

iTlustrates the Interaction between syntax and semantics. A

Section 2.3.9 - Page 1lhb

phrase 1lke "the next visit" can be used to Indicate a time,
since a "visit" is an event. The actual distinction should
be the semantic difference between "event" and "non-event"

The grammar could be easlily changed to look at the
semantic features rather than syntactic features of the NOUN
in deciding whether it could be the head of a TIME NG,

NMUM == The class of NUMbers Is large (uncountably Infinite) but
not very Interesting syntactically. For our purposes we anly
note the features NS (for "one") and NPL (for all the rest).
In fact, our system does not accept numbers In numeric form,
and has only been taught to count to ten.

NUMD -- In complex number speclflcatlons, 1lke "at least three"
or “"more than a2 millien", there Is a NUMD. The features they
can have are (HUMDAN NUMDAS NUMDAT WUMDALOME). NUMDAN werds
such as "more" and "fewer" are used with "than", while MUMDAS
words such as "few" flt Into the frame "as...as", and NUMDATs
are preceded by "at", as In "at least", and "at most",
NUMDALOME indicates that the NUMD can stand alone with the
number, and includes "exactly" and "approximately".

ORD -- The class of ORDInals Includes the ordinal numbers
"first", "second", ete., and a few other words which can fit
inte the position between a determiner and a number, 1lke
"hext", "last", and "enly". MNotlce that SUPerlative
ADJectives can also f111 this slet In the NG.

PREP =-- Every PREPG beglins with a PREPosltion, elther alone, or

sectlion 2.3,9 - Page 145

as part of a combination such as "on top of", |In the
combination case, the werds followlng the initlal PREP have
the feature PREPZ. A PREP which cannot appear wlthout a
FREPZ (such as "next" which appears In "next ta") are marked
MEEDZ,

PRON == PRONouns can be classifled aleng a number of dimenslons,
and we can think of a large multi-dimensional table with most
of its positions filled., They have number features (NS NPL
NF5) (note that Instead of the more usual divisian into
first, second, and third person, singular and plural, we have
used a reduced one in which classes with the same syntactlc
behavier are lumped together). Thev can be POSSessIve, such
as "your" or "my", or POSSDEF, like "wours" er "mine". Some
of the personal proncuns distlngulsh between a SUBJect form
1ike "1" and an OBJect form 1lke "me". there are also
special classes 1like DEMonstrative ("this" and "that") and

PRONREL -- the pronouns used In relative clauses, such as

who'', "which", and "that". Those which can be used as a

question element, such as "which" and "who" are marked QUEST.

PROPN -- Proper nouns Include single words 1]ke "carol", or
phrases such as "The American Legion" which could be parsed,
but are interpreted as representing a particular object
{physical or abstract). A PROPN can be NPL or NS, and |s
assumed to be NS unless deflined otherwise,

PRT == In Section 2,.3.4, we discussed clauses which use a

Sectlon 2.3.9 = Page 146

combination of & "particle" and a verb, 11ke "plck up" or

"enock out". The second word of these s a PRT.

QADJ -- One class of QUESTION CLAUSE uses a QADJ such as

"where", "when", or "how" as its question element. They can
also be used In various kinds of relative clauses, as

explalned In Section 2.3.3.

TPRON -- There 15 a small class of words made up of & guantifier

VB

and the suffix "-thing" which enter Into a special type of NG
construction 11ke "anvthing green". This Is net an
abbreviation for & quantifier followed by a noun, since the
NG "any block green" would have the same structure but Is not
grammatical.

-- The verb has the most complex network of features of any
word in our grammar. They describe lts tense, transitivity,
number, and use, as well as marking speclal verbs like "be'.
The network is In Flgure 37.

Verbs are divided Into AUXI11laries and others
{unmarked). AUXT111aries are the "helping verbs" which
combine with others In complex VG structures, They can have
special NEGative forms, 1lke "ean't", or can appear standing
alene at the beginning of a QUESTION, In which case they have
the functlon QAUX, as in:

{5151} MWill | ever finish?
The auxilllaries Include "be", "do", "have", "will", and the

MODALs 11ke "could" "can", and "must". Separate features are

Sectlon 2.3.9 - Page 147

'll'ﬂ_

AU K s—

WILL
MODAL
VFS
VPL
./
V3PS

VPRT

PRES
PAST
I NG
EN
INF

——— ITRANSITIVITY SYSTEM
Y (SEE TEXT)

Flgure 37 =- MNETWOREK &

Section 2.3.9 - Page 148

used for these as they are critical In determining the
structure of a VY&, An AUX can choose from the system of
person and number, distinguishing "third-person singular"
(V3pS) as In "is", "plural", as in "have", or "flrst
stngular" (VFS), used only for "am",

Non-auxilliary verbs can be VPRT, which cembine with a
PRT, and they have a whole cluster of transitivity features.
In Section 2.3.4 we described the different transltivity
features of the CLAUSE, and these are controlled by the verh,
We therefore have the features (TRANS ITRNS TRANSZ TRANSL
ITRNSL INT) In additien, the verb can control what types of
aeNG CLAUSE can serve as Its varlous objects. The feature
names combine the type of CLAUSE (ING TO REPORT SUBTO SUBING)
with elther -0B or =0B2, to get a product set of features
like SUBTOE and INGOBZ,

For example, the verb "want'" has the features TOOB and
SUBTOBE, but not INGOB, REPOB, etc, since "| want to go." and
W| want you to go." are grammatical, but "I want going.", "I
want that wou gﬂ.", etc, are not,

Einally, all of these kinds of verbs can be In varlous
fForms such as ING ("breaking"), EN ("broken"), INFInltive
{("break), PAST ("broke"), and PRESent {("breaks"). The
network does not 11lustrate all of the relations, as some

types (11ke MODAL) do not make all of these cholces.

Section 2.3,10 - Page 140

2,5,10 Conjunction

One of the most complex parts of English Is the system of
conjunction, This section presents a simplifled version which
has been Implemented using the speclal interrupt feature of
PROGRAMMAR (see Section 2.4,2 for detalls)., This makes the
parsing particularly simple,

The basic concept Is that any unlt In a sentence can be

replaced by a COMPOUND unit of the same type. |n the centence:

(s152) | baked a chocolate cake, three ples, and some
hashish brownles,

the object Is a COMPOUND NG with three components. There can be
a compound ADJ, as In:

(5153) a red or vellow flag

or a phrase can be ambiguous, as In:
(s154) black cats and horses
This can be Interpreted as having elther a COMPOUND NG,
composed of the NGs "black cats" and "horses", or a single NG
with a COMPOUND MNOUM, "cats and horses",
The features of a COMPOUMD unlt are determined by Its
components and by the type of conjunctlon. The conjunctlen

features are from the followling network:

sectlon 2.3.10 - Page 150

AND
' oR
NOR

BUTHOT

COMPOUND =1 BOTH

LIST

-t LISTA
-

FIGURE 38 -- METWORK 9

The first choice s the actual conjunction used., The
feature BOTH indicates a word at the beginning of a COMPOUND
structure, as In:

(5155) both vou and your family
the speciflc word depends on the conjunction == "both' with
"and", "either" with "“or, and aelther" with "nor". The
features BOTH and NOR combine in:

(s156) nelither you nor |

A conjolned structure can be made up of twe elements with a
conjunctien {as In the previous three examples), or a LIST
connected with commas and a conjunction before the last element

fas in s152), or 1t can be a list connected with conjunctions {(a

Sectlon 2.3,10 - Page 151

LISTA), as In:

(s157) cabbages and kings gnd sealing wax and things

Every constituent but the first Is marked with the feature
COMPOMENT. The COMPOUND unit also takes on features from [ts
constituents. |t may have features such as number and tense,
relevant to [ts syntactlc functlion. For example, a COMPOUND NG
with the feature AND must be plural (NPL), while one with the
feature OR will have the number feature of lts Iniftial
constituent.
Finally, there can be "forked" structures 1ike:

({s158) We dropped the watermelon and ran.
NMotice that this cannot be viewed in the same way, since
"dropped the watermelon"™ Is not a single constituent of any
unit, This sentence Is viewed as a conjunctlion of two clauses,
sharing the subject "we". The second clause Is marked with the
feature SUBJFORK to indicate this, Similarly, the subject and
verb can be shared, as In:

(s158) He gave Greg the apple and Gloria the pear.
The clause "Glorlia the pear" Is marked as VBFORK and SUBJFORK.
The only constituents relative to @ fork are those necessary for
the clause structure. In:

{(5160) They easily saw the trouble and cheerfully flxed It,
the parser does not determine whether the "easily" applles to
both constituents. but leaves thls declslon to semantles., This

is In keeping with our orlentatlion of syntax to surface

Sectlon 2.3.10 - Page 1532

structure and the belief that much of "deep structure" Is more

the province of the semantic analyzer.

Section 2,3,11 = Page 153

2,3,11 Followling the Parser ln Operation

Let us follow the parser through two examples to see how
the grammar |s used In practice. We will not actually wateh all
of the detalls, or deal with the way semantic programs are
intermized with the grammar. Instead we will follow a somewhat
reduced verslon, to get a feeling for the way the grammar works,
and the way It Interacts with the different features descrlbed
above, We have chosen one very simple sentence, and another
which Is difficult enough to exercise some of the more complex
features of the grammar. The first sentence Iz the flrst
sentence of our sample dialog (Sectlon 1.3):

Pick up a blg red block.

The system beglns trying to parse a sentence, which, as
explained above, means looking for a MAJOR CLAUSE, It actlvates
the grammar by calling (PARSE CLAUSE MAJOR)., Since CLAUSE s
one of our unlts, there is a program deflned for It. The CLAUSE
program |s called with an Inltial feature 1ist of (CLAUSE
MAJOR) ,

The CLAUSE program looks at the flrst word, In order to
declde what unlt the CLAUSE begins with., If It sees an adverh,
It assumes the sentence beglins with a single-word modlfler. |If
It sees a PREPosition, It looks for an Inltlal PREPG. If It
sees a BINDER, It calls the CLAUSE program to look for a BOUND
CLAUSE. In English (and possibly all languages) the flrst word

of a construction often glves a very good clue as to what that

Cection 2.3.11 - Page 135G

construction will be, We have "advance notlice" of what
structures to look for, and this makes parsing much easler., Our
grammar trles to make as much use as possible of these natural
Mglgnals", In thls case, the Initial word Is a verb, and this
Indicates that we may have an IMPERATIVE CLAUSE. The program
calls (PARSE VG IMPER) to start the VG program with the inltlal
VG feature 11st (VG IMPER), looking for a VG of the right type.
The VG program checks this Initial feature list, and sees that
It is looking for an IMPERative VG. This must elther begin with
some form of the verb "do", or with the main verb lItself. Since
the next word Is not "do", 1t calls (PARSE VB INF (MVB)). This
is a different kind of call to PARSE, since VB Is not a unit we
have defined. It Is a ward class, and the call says to check
the next word In the Input {In this case still the first word)
to see whether It Is Indeed the IMFinitive form of a VerB, |If
so, It Is to be attached to the parsing tree, and glven the
additional feature MVB (main verb)., The current structure can

be dlgﬁ:fmmed=

{CLAUSE MAJOR) (plck...)
(VG IMPER)w (plek...)
(YR8 MVE IMNF TRAMS VPRT) plek

Figure 38 -- Syntactie Structure 1

We use several conventlions for diagramming syntactlc
structures, Rather than using & tree format (which quickly
grows off of the page), we use a format more like a traditional

outline, with the sub-phrases of any phrase Indicated

Sectfon 2.3,11 - Page 155

Immediately below It and Indented. We use the symbol "+" o
indicate the program which Is currently active, and show the
actual words of each plece of the sentence to the rlight of the
outline, putting unlts larger than WORD In parentheses, A
series of dots In the English words to the right of & unit
Indicates that the program for that unlt has not yet finished,

Flgure 39 shows that we have a CLAUSE, with a constituent
which is a VG, and that the VG program [Is actlve. The VG so far
consists of only a VB, MNetice that some new properties have
appeared on the list for VB, We have not mentloned TRANS or
VPRT. These came from the deflnltlon of the word "piek" when we
called the function PARSE for a word (see sectlon 2.h.4 for
detalls),

Ordinarily the VG program checks for various kinds of tense
and number, but In the speclial case of an IMPER VB, |t returns
immedlately after finding the verb. We will see other cases In
the next example.

When the VG program succeeds, CLAUSE takes over agaln.
Since It has found the right kind of V& for an IMPERative
CLAUSE, It puts the feature IMPER on the CLAUSE feature 1lst,

It then checks to see whether the MVE has the feature VPRT,
Indicating It Is a speclal kind of verb which takes a particle,
It discovers that "pick" Is such a verb, and next checks to spe
If the next word Is a PRT, which It Is. It then checks In the

dictlionary to see If the comblnation "plek up" Is deflned, and

Sectlon 2.3.11 - Page 156

when 1t dlscovers thls Is true, it calls (PARSE PRT) to add "up"
to the parsing tree. HNotice that we might have let the VG
program do the work of looking for a PRT, but It would have run
Into difficulties with sentences 1lke "Pick the red block up."
in which the PRT Is displaced, By letting the CLAUSE program do
the looking, the problem 1s simplified.

As sgon as It has parsed the PRT, the CLAUSE program marks
the feature PRT on Its own feature list., It then locks at the
dietionary entry for "plck up" to see what transitivity features
are there. It Is TRAMSItlve, which Indlcates that we should
look for one object == 0BJ1l. The dictionary entry does not
indlcate that this Is a verb which can take speclal types of
RSNG clauses as objects, so the object must be either a NG or a
WHRS clause (which can appear wherever a NG can). |[|f the object
were @ WHRS clause, It would begin with a relative pronoun, 1Hke
“"pick up what | teld you to." Slnce the next word 1s "a", thls
le not the case, so the CLAUSE program looks for an object by
calling (PARSE NG OBJ 0BJ1), asking the NG program to find a NG

which can serve as an 0BJ1l. The structure Is now:

{CLAUSE MAJOR |MPER PRT) (plck up...)
(VG IMPER) (plck)
(VB MVB IMF TRANS PRT) pick
{PRT) up
(NG 0BJ OBJ1l)w (...)
Figure &0 -- Syntactlc Structure 2

The NG program |s started and notices that the upecoming

Section 2.3.11 - Page 157

word Is a DET, "a". It calls (PARSE DET) to add It to the
parsing tree, then uses the function TRNSF toe transfer relevant
features from the DET to the entire NG, It 1s Interested In the
type of determination (DEF ws. INDEF vs. QNTFR), and the number
(N wvs. NPL). It alsc adds the feature DET to the NG to
indlcate that It has a determiner. The feature 1lst for the NG
is now:

(NG OEJ OBJ1 DET INDEF NS)

since "a" is a singular Indefinite determiner., The NG program
then notices the feature INDEF, and decides not to lock for a
number or an ordinal (we can't say "a next three blocks"), or
For the OF construction ("a of them" is Impossible). It goes on
immediately to look for an ADJective by calllng (PARSE ADJ).
When thls succeeds with the next word "wlg", 2 simple pregram
loop returns to the (PARSE ADJ) statement, whlch succeeds agaln
with "red". on the next trip it falls, and sends the program on
to Took for a classiflier, since "block” fsn't an ADJ. But
“"block" Isn't a CLASF elther In our dictlonary, so the NG
program goes on to look for a NOUM, by calling (PARSE NOUN).
This succeeds with the NOUN "block", which Is slngular, and the
program checks to see If [t agrees with the number features
already present from the determiner (to elimlnate IMlegal
combinations 1lke "these boy"). In this case, both are singular
(NS), so the program Is satisfied, Ordinarily It would go on te

look for quallfiers, but In thils case there |& nothlng left In

Sectlon 2.3.11 - Page 1538

the sentence. Remember that we have an especlally easy way of
indlcating In a PROGRAMMAR program what actlion should be taken
at any polnt 1f the sentence runs cut. We can do It by simply
putting a third directlion In any branch statement. In this-
caze, since we have found all of the baslc constltuents we need
for a NG, the "third branch" tells us that the NG program should
return success, |f we had run out after the determiner, It
would have sent us to cheek for an INCOMplete NG, while If we
had run cut after an ADJ It would have entered a backup program
which would check to see whether It had misinterpreted a NOUN as
an ADJ.

In this case, the NG program returns, and the CLAUSE
program similarly notlices that the sentence has ended. Slince a
TRANS verb needs only one object, and that object has been
found, the CLAUSE program marks the feature TRAMS, and returns,
ending the parsing. In actual use, a semantic program would be
called here to understand and execute the command -- In fact,
semantic programs would have been called at varfous polnts

throughout the process, The final result looks 1lke:

Section 2.3,11 = Page 159

{CLAUSE MAJOR IMPER PRT TRANS) (plick up a blg red block)

(VG IMPER) (pick)
(VB MVE INF TRANS VPRT) pick
(PRT) up
(NG OBJ 0OBJ1 DET INDEF MS) (a blg red block)
(DET INDEF N5) a
CADJ) big
(ADJ) red
(NOUN NS) Block.

Flgure 41 =-- Syntactic Structure 3

Section 2.3.11 - Page 160

Now let us take a more complex sentence, 1lke:

How many blocks are supported by the cube which |
wanted vou to plck up?

We will not go Into as much detall, but will emphasize the
new Features exhibited by thls example. First, the parser
recognlzes that this sentence Is a guestion by Its punctuation.
It ends with a questien mark., This "cheating" Is not really
necessary, and In the future the grammar will be revised to look
for the other signals of a guestion (for example, beginning with
a determiner 1lke "how many" or "which").

In any event, the feature OQUESTION 1z noted, and the
program must declde what type of guestion It Is. It checks to
see If the CLAUSE begins with a QADJ 1lke "why", "where', etc.
or with a PREPesition which might begln a PREPG QUEST (like "In
what vear...").

A11 of these things fall In our example, so It declides the
CLAUSE must have a NG as [ts question element, (called MNGQ),
marks this feature, and calls (PARSE NG QUEST). The NG program
starts out by noticlng QUEST en Its Inlftial feature 1ist, and
looking for a question determiner (DET QDET). Since there are
only three of these ("which", "what", and "how many"}, the
program checks for them explicitly, parsing "how'" as a QDET, and
then calllng (PARSE MIL MANY), to add the word "many" to the
parsing tree, without worryving about its features. (The call
(PARSE NIL X) checks to see If the next word is actually the

word "x")).

Section 2,3,11 - Page 161

Since a determiner has been found, Its propertlies are added
to the NG feature 1ist, (in this case, (NUMDET INDEF HPL)), and
the MG program goes on with [ts normal business, looking for
adjectives, classifiers, and a noun. It finds only the NOUN
"blocks" with the features (HOUN MPL). The word "block" appears
In the dictionary with the feature N5, but the Input program
which recognized the plural ending changed NS to MPL for the
form "blocks". Agreement s checked between the NOUW and the
rest of the NG, and since "how many" added the feature NPL, all
Is well, This time, there |Is more of the sentence left, so the
NG program contlinues, looking for a quallfler, It checks to
see |f the next word Is a PREPositlien (as In “"blocks gn the
table), a relatlive word {("blocks whigh...), a past participle
("blocks suppported by...), an ING verb ("blocks sltting on...)

a comparative adjective ("blocks blgger than...) or the word

n 1] {1I

as blocks gs blg as...). |If any of these are true, It tries

to parse the appropriate gquallfylng phrase. |If not, It tries to
find an RSO CLAUSE ("blocks the blogk supports). In thls case,
all of these fall since the next word Is "are", so the NG
program decldes 1t will find no quallifiers, and returns what It

already has, This glives us:

(CLAUSE MAJOR QUESTION NGQ)=* ({how many blocks...)
(WO QUEST DET WUMDET NPL IMDEF) {how many Bleacks)

(DET QDET MPL INDEF) Faw

() many

(HOUN NPL) blocks

Figure 42 -- Syntactlic Structure &L

Sectlon 2.3.11 - Page 162

Mext the CLAUSE program wants a VG, so [t calls (PARSE VG
MAUX)., The feature MAUX Indlcates that we want a VG which does
not consist of only an AUXI11Tary verb, 1lke "be" or "have", |If
we saw such a VG, 1t would Indicate a structure 1ike "How many
blocks gre the boxes supporting?"', In which the question NG s
the object of the CLAUSE. We are Interested In first checking
for the case where the guestion NG Is the subject of the CLAUSE,

The VG program Is designed to deal with combinations of
auxilliary verbs 1lke "had been going te be,.." and notes that
the first verb s a2 form of "he", It calls (PARSE VB AUX BE),

" Is an aux!1llary rather than the maln verb

assuming that "are
of the sentence (If this turns out wrong, there Is backup). It
transfers the Initial tense and person features from this verb
to the entire VG (The English VG always uses the leading verb
for these features, as In "He has been,,.", where It is "has"
which agrees with "he") In this case "are" Is plural (VPL) and
present tense (PRES).

When "be" Is used as an auxiiliary, 1t Is followed by &
verb In elther the ING or the EN form. Since "“supported" is an
EN form (and was marked that way by the Input programl), The VG
program calls (PARSE VB EN (MVB)), marking “supported" as the
maln verb of the clause., The use of a "be" followed by an EN
form indicates a PASV VG, so the feature PASY Is marked, and the
VG program is ready to check agreement. Notlce that so far we

haven't found a SUBJect for this clause, since the QUESTIion NG

Sectlon 2.3.11 - Page 163

might have been an object, as In "Hgw many blocks does the box
support?" However the VG program |s aware of thls, and reallzes
that instead of checking agreement with the constltuent marked
SUBJ, Tt must use the one marked QUEST. It uses PROGRAMMAR's
pointer-moving functions to find this constituent, and notes
that Tt Is NPL, which agrees with VPL. VG therefore Is happy

and returns Its value, We now have:

(CLAUSE MAJOR QUESTION NGOQ)w {how many blocks are supported...)
(MG QUEST DET NUMDET MWPL INDEF) (how many blocks)
(DET QDET NPL INDEF) R
() many
(NOUMN NPL) blocks
(VG MAUX VPL PASV (PRES)) {are supported)
(VB AUX BE PRES VPL) are
(VB MVB EN TRANS) supported
Figure 43 =-- Syntactlc Structure 5§

The CLAUSE program resumes, and marks the feature SUBJO,
since It found the right kind of VG to Indlicate that the MG "how
many blocks" Is Indeed the subject. It next checks to see |f we
have & PRT slituation as we did In our flrst example. We don't,
so0 it next checks to see [f the VG Is PASV, and marks the clause
wlith the feature PASV., This Indicates that there will be no
objects, but there might be an AGENT phrase, It checks that the
next word Is "by", and calls (PARSE PREPG AGENT).

The PREPG pregram 1s fairly simple -- It flrst calls (PARSE
PREP), then (PARSE NG 0BJ PREPOBJ). The word "by" Is a PREP, so

the flirst call succeeds and NG s called and operates as

Sectlon 2.3.11 - Page 1G4

deseribed before, finding the DET "the" and the NOUN "cube", and
checking the appropriate number features. In this case, "the"
Is both HPL and NS, while "cube" Is only NS, so after checking
the MG has only the feature NS.

The NG program next looks for gqualifiers, as described
above, and this time it succeeds. The word "which" slgnals the
presence of a RS0 WHRS CLAUSE modifyling "cube'". The NG program
therefore calls (PARSE CLAUSE RS0 WHRE). The parsing tree now
locks 11ke:

(CLAUSE MAJOR QUESTION NGO SUBJO PASY)
{how many blocks are supported by the cube,..)

(MG QUEST DET NUMDET NPL IMDEF) {how many blocks)
{DET ODET NPL INDEF) how
() many
{HOUN MPL) blacks
(VG MAUY VPL PASY (PRES)) (are supported)
(VE AUX BE PRES VPL) are
(VE MVE EN TRANS) supported
{PREPG AGENT) {by the cube...)
(PREP} by
(NG 0OBJ PREPOBJ DET DEF ME) {the cube...)
(DET DEF NPL NS5) the
{NOUN HNS) cube
(CLAUSE RS0 WHRS)#® P |
Flgure 44 =-- Syntactiec Structure B

The CLAUSE program s Immediately dispatched by the feature
WHRS to look for a RELWD. 1t finds "which", and marks Itself as
MGREL. |t then goes on to look for a (VG MNAUX) just as our

QUESTION NGQ clause did above, Remember that WH- gquestions and

sectlon 2.3.11 - Page 165

WHRS clauses share a great deal of the network, and they share
much of the program as well, This time the VG program falls,
since the next word Is "1", so the CLAUSE program decldes that
the clause "which I..." Is not a SUBJREL. It adds the temporary
feature NSUBREL, Indicating this negative knowledge, but not
deciding vet just what we do have. |t then goes to the polnt In
the normal clause program which starts looking for the major
constituents of the clause =-- subject, verb, etc, We call
(PARSE NG SUBJ) and succeed with the PRONG "I". We then look
for a2 VG, and find "wanted". |In this case, slince the verb Is
PAST tense, it doesn't need to agree with the subject (only the
tenses beglinning with PRES show agreement). The feature MAGR
marks the non-applicability of agreement., The parsing tree from

the WHRS node on down 1s now:

(CLAUSE RS0 WHRS NGREL NSUBREL)= (which | wanted,..)
{RELWD) whilch
(MG SUBJ PRONG MFS) 1)
(PROM MF5)
(VG NAGR (PAST)) {wanted)
(VE MVB PAST TRANS TOOBJ SUBTORJ) wanted
Figure 45 =-- Syntactle Structure 7

The CLAUSE program notes that the MVE Is TRANS and begins
to look for an DBJ1., This time It also notes that the verb lg a
TOOBJ and a SUBTOBJ (it can take a TO clause as an object, as In

"I wanted to go.", or a SUBTD, as In "I wanted you to go." Since

Section 2.3.11 - Page 166

the next word Isn't "to", it decides to look for a SUBTO clause,
calling (PARSE CLAUSE RSNG OBJ OBJ1 SUBTD). |In fact, this
checking for different kinds of RSNG clauses Is done by a small
functlon named PARSEREL, which looks at the features of the MVE,
and calls the appropriate clauses, PARSEREL Is used at several
polnts In the grammar, and one of maln advantages of writing
grammars as programs s that we can wrlte such auxilllary
programs (whether In PROGRAMMAR or LISP) to make full use of
regularities In the syntax.

The CLAUSE program Is called recursively to look for the
SUBTO clause "vou to plek up"., |If finds the subject "you", and
calls (PARSE VG TO) since It needs a verb group of the "to"
type. The VG program notlces this feature and finds the
appropriate VG {which Is again MAGR). The PRT mechanlism
operates as described In the first example, and the bottom of

our structure now looks like:

Section 2.3.11 - Page 1E7

(CLAUSE RS0Q WHRS NGREL NSUBREL) (which | wanted you to plck up)

(RELWD) which

(NG SUBJ PRONG MNFS) ()]
{PRON MFS) I

(VG MAGR (PAST)) (wanted)

(VE MVE PAST TRANS TOOBJ SUBTOBJ) wanted

(CLAUSE RSNG SUBTC OBJ OBJ1 PRT)*= (vou to pleck up)

(NG SUBJ PROMG NPL) {you)
(PRON MPL) you

(VG TO MAGR) (te plck)
) to
(VB MVB INF TRAMS VPRT) plck

{(PRT) up
Flgure 46 == Syntactie Structure 8

Notice that we have a transitive verb-particle combinatlion,
"pieck up", with no ebject, and no words left In the sentence.
Ordinarily this would cause the program to start backtracking --
checking to see If the MVB is also Intransitive, or 1f there Is
some way to reparse the clause. However we are In the speclal
clrcumstance of an embedded clause which Is somewhere on the
parsing tree below 2 relatlve clause with an "unattached"
relative. In the clause "which | toeld you to pleck up",¥"Is
the subject, and the CLAUSE "yvou to pick up" Is the abject. The
“"which" has not been related to anything. There Is a small
program named UPCHECK which uses PROGRAMMAR's ability to look
around on the parsing tree. It looks for this speclal
sltuation, and when It finds 1t does three things: 1) Mark the

current clause as UPREL, and the appropriate type of UPREL for

Section 2.3.11 = Page lGE

the thing 1t Is missing {(In this case DBJIUPREL). 2} Remove
the feature NSUBREL from the clause with the unattached relative
3) Replace It with DOWNREL te indicate that the relative has
been found below. Thls can all be done with simple programs
using the basic PROGRAMMAR primitives for moving around the
tree (see sectlon 2.k.10) and manipulating features at nodes
(see 2.4,11). The Information which Is left In the parsing tree
Is sufficlent for the semantic routlines to flgure out the exact
relationships between the various pleces Involwved,

In this example, once the CLAUSE "to pick up" has been
marked as OBJIUPREL, It has enough objects, and can return
success since the end of the sentence has arrived., The CLAUSE
"which | want vou to pick up" has an object, and has Its
relative pronoun matched to something, so It also succeeds, as
does the WG "the cube...", the PREPG "by the cube..", and the
MAJOR CLAUSE. The final result Is shown In Figure L7,

Even in thils falrly lengthy description, we have left out
much of what was gelng on. For example we have not mentloned
a2ll of the places where the CLAUSE program checked for adverbs

(1ike "usually" or "gquickly"), or the VG program looked for

not", etc. These are all "gquick" checks, slnce there Is a
FPROGRAMMAR command which checks the features of the next word,
In following the actual programs, the course of the process
would be exactly as descrlibed, without backups or other attempts

to parse major structures,

Sectlon 2.3.11 - Page 169

{CLAUSE MAJOR QUESTION NGQ SUBJQ PASV AGENT)

(NG QUEST DET NUMDET WPL INDEF) {how many blocks)
(DET QDET NPL IMNDEF) how
() many
{NOUMN NPL) blocks
(VG NAUX VPL PASY (PRES)) (are supported)
(VB AUX BE PRES VPL) are
(VB MVE EN TRANS) supported
{PREPG AGENT) (by the cube which | wanted you te plck up)
{PREP) by

(NG OBJ PREPOBJ DET DEF N3)

(the cube which | wanted you to plck up)
{DET DEF NPL NS) the
[MOUN HNS) cube

(CLAUSE RSO WHRS MGREL DOWMREL TRANS)
(which | wanted wou to plck up)

(REL¥D) whilch

{MG SUBJ PROMNG MFS) (1)

(PROM MNFS) |

(VG MAGR (PAST)) (wanted)

(YR MVE PAST TRANS TOOBJ SUBTOBJ) wanted
(CLAUSE RSNG SUBTOD 0OBJ OBJ1 PRT

TRANS UPREL OBJIUPREL} (vou to plck up)

(NG SUBJ PRONG MPL) {you)

{PROKN NPL) You

(VG TO MAGR) (te plek)

() to

(VB MVB INF TRANS VPRT) pleck

{PRT) up

Flgure 47 - Syntactic Structure 9
"How many blocks are supported by the cube
which | wanted you to plck up?"

Sectlon 2,3.11 = Page 170

This may seem llke a2 quite complex precess and complex
grammar, compared to other systems, or even our own examples In
Sectlon 2.2. This Is because language |s Indeed a highly
complex phenomencn. We have trled to handle a great deal more
of the complexlty of English than any of the previous language-
understanding systems, It Is only due to the fact that
PROGRAMMAR glives us an easy framework in which to include
complexity that [t was at all possible te Include such a
detailed grammar as only one part of a2 project carried out by a

single person in less than two years.

Section 2.3.12 - Page 171

2.,3,12 Anglysis of Word Endings

This section describes the "spelling rules" used by the
program in recognizing Inflectional endings of words, FEor
spoken language, these would be called the "morphophonemle"
rules, but since we deal with written language, thev are
"morpho-graphemic,"

These rules enable & reader to recognlze that, for example,
"pleasing" Is a form of "please", while "beating" Is a form of
"beat". There Is a structure of conventlions for doubling
consonants, dropping "e", changing "IV to "y", ete, when adding
endings, and a corresponding set for removing them,

A word 11ke "running" need not have separate entry In the
dictionary, since it Is a regular Inflected form of "run"., The
program can use an |nterpretive procedure to discover the
underlylng form and attach the appropriate syntactic features
for the Inflectlon,

In desligning a formallism for these rules, It seems most
natural te express them as a program for Interpretation. The
flow chart In Figure 4B is designed to handle a number of
Inflectlional endings == "=n't" for negative, "='s" apnd "=-'" fgp
possessive, "-s" and its various forms for plur2l nouns and
singular third-persen verbs, "-lng", "-ed", and "-en" verb
forms, the superlative "-est" and comparative "-er", and the

adverblal "=1y",

As the flowchart shows, these endings share many aspects of

Sectlon 2.3.12 - Page 172

START

endsN'T?====scutoff N'T
em}!ﬂ g r=——wcyutoff 5, ST RY
em}!ﬂ?-%cutnﬁ

enHE‘.?_ﬂicutﬂFF 5

Ist=E?
En:‘j&; rmem==pcutoff |E=====padd Y
2nd=H? Ird=T?

2ng=)? %tnff YE=====3wadd FE
TRY %mr TRY ————add LE
en;fL"r'?-#cutan L?élstﬂl?—*cumﬂ: I-ﬁ-add ¥
end=ING?

;uﬂrf ING Is 1st VOWEL?===1ste=|?——>lstaY?
:r.'::l-ED? 1E-H? T?W-E s‘:‘in

cutdff ED nd=T? RY = 3dd E

end=EN? 1ste2nd?====Ds lst L nuum
cutoff EN
end=ERY 1;P2nd VOWEL? cutan 1lst
cutoff ER \lL T‘ﬁat LIf‘lU!!}" nd=RL?
:*LIEE T Is 3rd VOWEL? s 1st MOEND?
cutaff EST dd ===

Flgure 8 == Analysis of English Erdings

Sectlon 2,3,12 - Page 173

morphographemlc structure, and the program representation [s
able to capture these generallities as well as detallling those
aspects peculiar to each ending. It Is not a complete
deseription, but covers a wide varlety of words, and could
easily be expanded to treat more special cases,

The description uses a few simple notatlons In additlon to
normal flowchart conventlons, "No" and "ves" answers to branch
conditlions are represented by single and double arrows
respectively, The functlon "cutoff" indicates what Is to be
cut off of the end of the word, The ordinals "1st", "Znd", ete.
count letters from the end of the word backwards, lgnoring those
which have been cut off, Several classes of letters are
relevant to endings =-- VOWEL Includes (A E | O U Y), LIQUID Is
(L RSV Z), and NOEND s (C G S V Z). The label "TRY"
represents the part of the program which tries looking up the
supposed root In the dictionary., |t uses whatever letters have
not been "eut off"., At some places, the program tries an
interpretation, then If that falls, carries out a different
analysis and tries agaln.

The program can correctly analyze such roots as: bashes -
bash, bathes - bathe, leaning - lean, leaving - leave, dented -
dent, danced - dance, dogs - dog, klsses - kiss, curved - curve,
curled - curl, rotting - rot, rolling = rell, played = play,
plied - ply, realest - real, palest = pale, knlves = knife,

prettily - pretty, nobly = noble, etc.

Sectlon 2.3,12 = Page 174

It is Important to note that exceptions do not need to be
expllcitly Included 1n the analysis program. The word "was" Is
directly In the dictlonary, and the rules will therefore never
be applied In trylng to analyze it. The distinction between
lexical ldiosyncracies and generallities Is emplrical. A
productive rule 11ke the one relating "sang" and "sing", or
"rang" and "ring" might well be Included In a more complete
program, while less productlive ones (such as relating "will" to
"won't") will be left as separate dictionary entries.

It Is tempting to see this program as a simple finite state
machine, but this is not the best formallsm for several reasons,
First, the tests which can be done to a word In declding on a
transltion are not, In general, simple checks of the next Input
letter, Whether a certaln analysls Is possible may depend, feor
example, on how many syllables there are In the word, or on some
complex phonological calculation involving vowel shifts,
Semantic and syntactle Information should be applied as well In
many cases.

The morphographemic analysis alone Is sufficlent to do a
great deal of the Interpretation of English endings. In fact,
some systems (<Thorne 1969») use It to avold having a dictlonary
of open class words. The Inflection of the words In the Input
determines thelr syntactlec class possiblilities. Of course,
without a dlctionary, they cannot attempt to deal with the

meaning of words, beyond trying to match them with other

sectlon 2.35.12 - Page 175

occurences of the same root,

People rarely operate at this level of lgnorance. They use
thelr lexical knowledge te realize that "under" Is not a
comparative form of some adjective "und", and that "bely" Is not
an adverbial form of "be". This knowledge can readily be
integrated into the Interpretive program. Once a possible
morphographemic analysis Is found, the hypothetlcal root can be
checked in the dictlenary., If it Is not there, the program can
try another analysis, HNotice that in the flow chart, words
ending In a2 double LIQUID, followed by an Inflection, are flrst
tried In the form with the doubled conscnant (as in "rollling" -
"rol1"), then If that falls, another try Is made with the single
consonant ("patrolled" - "patrol"),

If the root Is found In the dlictlioary, Its syntactic class
Is checked to see If the ending Is appropriate (e.g. a "-est"
ending can apply only to an ADJ). The 1ist of syntactic
features Is changed to take the ending Into account. For
example, the ending "-s" changes the feature MS (slngular noun)
te NPL (plural noun) and the feature INF {Infinltive verb) to
ViPS (third=-person singular verh). A word which fits into more
than one category may have more than one set of features
changed, In determining all of the posslible Interpretations,

The problems involved In analyzing more compllicated
endings, such as the "-tion", "-ment", and "-er" endings of

nominalizations will be discussed In a later paper.

Sectlon 2.4.1 - Page 176

2.4 Programming Detalls

2.4,1 DOperation of the System

Since the grammar Is Itself a program, there Is not much
overhead mechanism needed for the basic operation of the parser.
Instead, the system consists mostly of speclal functions to be
used by the grammar. The system maintains a number of global
varfables, and keeps track of the parsing tree as It §s bullt by
the maln functlon, PARSE. When the function PARSE Is called for
a UNIT which has been defined as a PROGRAMMAR program, the
system collects Informatlion about the currently actlive node, and
gsaves It on a pushdown 1ist, It then sets up the necessary
variables to establlish a new active node, and passes control to
the PROGRAMMAR program for the appropriate unit., |f thls
program succeeds, the system attaches the new node to the tree,
and returns centrel to the node on the tep of the PDL, |If It
falls, It restores the tree to lts state before the program was
called, then returns control. A PROGRAMMAR program [s actually
converted by a simple compliler te a LISP program and run In that
form, The variables and functions avallable for writing
PROGRAMMAR programs are described In the rest of part 2.k, In
order to make these detalls more Independent of our detalled
grammar of Engllsh, we will continue to use a simplified grammar
whenever possible. We use the hypothetlcal grammar begun In

2.2, and try to use full length feature names for easler

understanding.

Section 2.4.1 - Page 177

When the functlion PARSE Is called with a flrst argument
whlch has not been defined as a2 PROGRAMMAR program, It checks to
see whether the next word has all of the features llsted In the
arguments., |If so, It forms & new node polnting to that word,
with a 1lst of features which Is the Intersection of the list of
features for that word with the allowable features for the word
class indicated by the first argument of the call. For example,
the word "blocks" will have the possiblility of belng elther a
plural noun ar a third-person-singular present-tense verh.
Therefore, before any parsing It will have the features (NOUNM
VERE N=-PL VB-3P5 TRANSITIVE PRESENT). |If the expression (PARSE
VERE TRANSITIVE) Is evaluated when "blocks" is the next word In
the sentence to be parsed, the feature 1ist of the resulting
node will be the Intersection of thils combined 1ist with the
st of allowable features for the word-class VERB., |If we have
defined:

(DEFPROP VERB (VERE INTRANSITIVE TRANSITIVE PRESENT PAST
VB=3PS WB-PL) ELIM),

the new feature 1lst will be (VERE TRANSITIVE PRESENT VB-
3P5)., (ELIM Is simply a property Indlcator chosen to Indicate
this 1ist which ELIMInates features), Thus, even though words
may have more than one part of speech, when they appear In the
parsing tree, they wlll exhiblt only those features relevant to

thelr actual use In the sentence.

Sectlon 2.4.2 - Page 172

2.4,2 Special Words

Some words must be handled in a very special way In the
grammar. The most prevalent are conjunctions, such as "and" and
"but", When one of these Is encountered, the normal process [s
Interrupted and a special program is called to decide what steps
should be taken In the parsing. This is done by glving these
words the grammatical features SPEC or SPECL. Whenever the
function PARSE Is evaluated, before returning It checks the next
word In the sentence to see If it has the feature SPEC, |If so,
the SPEC property on the property list of that word Indicates a
function to be evaluated before parsing contlnues. This program
can In turn call PROGRAMMAR programs and make an arblitrary
number of changes to the parsing tree before returning control
to the normal parsing procedure, SPECL has the same effect, but
is checked for when the function PARSE Is called, rather than
before It returns, Varlous other speclal variables and
functlons allow these programs to control the course of the
parsing process after they have been evaluated, By using these
special words, It Is possible to write amazingly simple and
efficient programs for some of the aspects of grammar which
cause the greatest difflculty. This Is possible because the
general form of the grammar Is a program.

For example, "and" can be defined as a pregram which s

diagrammed:

Section 2.4.2 = Page 179

Parse a unit of the same type
a5 the currently active node :iﬂeturn fallure

Replace the node with a new node
combining the old one and the one
you have just found

Return success

Figure 43 -- Conjunctlen Program

For example, glven the sentence "The glraffe ate the apples
and peaches," the program would first encounter "and" after
parsing the NOUN apples. It would then trvy to parse a second

NOUN, and would succeed, resulting in the structure:

EEHTEﬂaiHMH
” NﬂUN
DETERMINER HUUH VERB DETERﬁ|HEH NUUH hﬁhﬂ UN

I

the tlraFfe ate the apples and peaLhes

Flgure 50 == Conjolned Noun Structure

If we had the sentence, "The giraffe ate the apples and
drank the vodka.," the parser would flrst try the same thing.

However, "drank" is not a NOUM, so the AND program would fall

Section 2.4.2 - Page 180

and the MOUN "apples" would be returned unchanged. This would
cause the NP "the apples" to succeed, so the AND program would
be called again. It would fall to find a NP beglnning with
"drank", so the MP "the apples" would be returned, causing the
VP to succeed. This time, AND would try to parse a VP and would
find "drank the vodka". It would therefore make up a comblined
VP and cause the entire SENTENCE to be completed with the

Structure’

SENTENCE \\.‘-
v

HP/ P\'I.I'F'
~ /“‘\

P MNP NP
/rj\-. | ™\
DET Hml.ll"-l ‘U'E?E D'IET NOUN VERE DET MOLM
the giraffe ate the apples and drank the vodka

Flgure 51 == Conjoined Clauses

The program te actually do this would take only 3 or b
lines In a PROGRAMMAR grammar., In the actual system, It Is more
complex as It handles lists (1lke "A, B, and C")} other
conjunctions (such as "but") and special constructions (such as
"hoth A and B™). The conjunctlon program s called by all of
the conjunctions, the words "elther", "neither", and "both", and
the mark "," which appears as a separate word In the Input.

The functlion =+ [s used to look ahead for a repetition of

the speclal word, as In "...and...and...". |If one Is found, a

Section 2.4.2 - Page 181

unit of the type most recently parsed s parsed agaln, tryling to
extend all the way to the repeated conjunction or comma, This
is Tterated as long as there are repetlitions, with speclal
checks made for structures 1ike "A, B, and c¢" or "A and B but
not C". As each new node is parsed, Tts structure lsz saved, and
when the last Is found, a new node Is created for the compound.
Its features combine those for the type of conjunctlon with
those approprlate for the type of unit {(e.g. a compound MG
connected with "and" Is given the feature "plural™ (NPL).) The
11st of constltuent structures Is put on the tree as a llst of
subnodes of the cenjoined structure, which then replaces the
orfginal unit on the parsing tree.

Compounds with a preceding word I1lke "both" are parsed
differently, since the word Is encountered before any unlt has
been parsed. In this case It Is possible to adopt the more
general phllosophy of attempting the longest possible unlit
first. These words have a SPECL definition, so the program is
called as the next unlt Is about to be parsed. The conjunction
program locks for the matching conjunction ("and" with “both",
"or" with "elther", and "nor" with "nelther") and tries to parsze
the unit extending only to the conjunctlon. |f this succeeds,
the normal conjunction procedure s fellowed. |If not, some sub-
component Is the conjolned eone, and nothing happens untll the
parser attempts a sub=-unit, when the process s repeated,

A SPECL program can modify the parsing In several ways.

Sectlon 2.4.2 - Page 182

For example It can call the function FLUSHME, which simply
removes the word from the lnput sentence (l.e. it Is lgnored).
It can take arbltrary actlons on the current parsing tree, can
indlcate to PROGRAMMAR that it should SKIP parsing the unit and
use instead results provided by the SPECL program, or It can
indlcate an action to be taken after the normal parsing s DONE.
Finally, a SPEC or SPECL program can abort the entire parsing,
indicating a response to the user, For example, the word
"thank" calls a SPECL program which checks to see [f the next
word Is "you". |If so, the parsing Is glven up, and the system
replies "YOU'RE WELCOME". Currently there [s no backup
procedure to modlfy the Interpretation of an ambigucus structure
1ike "4 and B or C". This will In fact be parsed as (A and (B
or C)), HMotlice that "elther A and B or C" will be parsed
correctly as ((A and B) or C).

The exact format for a SPEC er SPECL definition Is a LISP
list to which wil] be appended two ltems == the inltial feature
11st of the unit belng parsed and an Indicator of whether 1t Is
a word or a unit which called the program. The resultant form

is then EVALled.

Section 2.4.3 - Page 183

2,4,3 Possessives

One of the best examples of the advantages of procedural
grammars s the abillity te handle left-branching structures 1lke
poOsSseEss i ves. In a normal top-down parser, these present
difficulties, since any NG can begin with a possessive NG, which
can In turn begin with a possessive NG, etc., as In "my mother's
slster's student's cat's fur". Speclal care must be taken to
avold Infinite loops.

In our grammar thls Is handled by a check after the NOUN or
PRONOUN 1s found in a NG. |If it has the feature "possessive"
(POSS) (e.g. "my" or "block's") a node Is created for the NG
thus far parsed, and thls is placed on the tree as a constltuent
{the determiner) of a NG to be contlinued. The program then
returns to the polnt where |t was after finding 2 determlner,
and continues lookling. This can happen any number of times, but
in each case Is triggered by the presence of another P0O55ess|ve
word, It therefore loops only as much as necessary. This
departure from top-down parsling Invelves no changes to the
parser, and only & simple loop in the program. Any other left-

branching structure can be handled similarly.

Section 2.4.4 - Page 1BL

4.4.4 The Dictionary

Since PROGRAMMAR [s embedded In LISP, the facllitles of
LISP for handllng atom names are used directly, To defline a
word, a 1lst of grammatical features [s put on Its property llst
under the Indicator WORD, and a semantic deflnitlon under the
indicator SMNTC. Two facllities are Included to aveld having to
repeat Information for different forms of the same word. Flrst,
there is an alternate way of deflnlng words, by using the
property Indlicator WORD1. This Indlicates that the word given Is
an Inflected form, and Its propertles are a modifled form of the
properties of Its root. A WORD1 definltion has three elements,
the root word, the 1list of features to be added, and the 11st of
features to be removed. For example, we might define the word
"zo" by: (DEFPROP GO (VERE INTRANSITIVE INFIMITIVE) WORD) We
could then define "went" as (DEFPROP WENT (GO
(PAST)(INFINITIVE)) WORD1) This Indicates that the feature
INFINITIVE 1s to be replaced by the feature PAST, but the rest
{(Including the semantic definition) 13 to remaln the same as for
“E.ﬂ'".

The other facllity Is an automatlc svystem whlich checks for
simple modiflcatlons, such as plurals, "-Ing," forms, "-er" and
"-gst" forms and so forth. |f the word as typed In Is not
deflned, the program locks at the way It Is spelled, trles to
remove Its ending {(taking Into account rules such as changlng

"eunning" to "run", but "buzzing" to "buzz"). It then tries to

Sectlion 2.k.4 - Page 185

find a definltion for the reduced root word, and If It succeeds,
It makes the appropriate changes for the ending (such as
changling the feature SINGULAR to PLURAL). The program which
does thls Is not a part of the PROGRAMMAR system but Is
specifically bullt for English. It Is described In sectlon
2.3.12.

Everything else described In this sectlon is deslgned
generally for the parsing of any language. In any particular
language, thls input funtlon would have to be wrltten according
to the speclal rules of morphographemlic structure. The
requl rement for such a program s that Its output must be a
1ist, each member of which corresponds to a word In the original
sentence, and Is in the form described In sectlen 2.4,8, This
list Is bound to the varfable SENT, and 1s the way In which
PROGRAMMAR sees lts Input.

The other form of data In the dictlonary Is tables of verb-
particle and prepositlion-preposition combinations 1ike "plck up"
or "on top of". The table s stored on the property 1ist of the
inltial word under the Indicator PRTT or PREPP respectively. It
Is an assoclation 11st, each member of which has the second word
of the combination as its CAR, and a word parsing structure (see
section 2.4.8) as Ilts CADR, There may be more than one
combination for the same inltial word (e,gz. "plick up", "pick
out"), and a three-word combinatlion can be defined by making the

CADR be an assoclation l1ist of the same form for a thlrd word.

Section 2.&,5 - Page 188

2.4,5 Backup Faclilitles

As explained In section 2.2.7, there !s no automatic
backup, but there are a number of speclal functlons which can be
used In writing grammars. The simplest, (POPTO X) simply
removes nodes from the tree, The argument Is a 1ist of
features, and the effect [s to remove daughters of the currently
active node, beglnning with the rightmost and working leftward
until one Is reached with all of those features. (POP X) Is the
same, except that [t also removes the node with the Indicated
features. If no such node exlsts, nelther function takes any
action., (POP) Is the same as (POP NIL), and a non=nil value Is
returned by both functions if any action has been taken.

A very Important feature s the CUT varlable. One way to
do backup I1s to first try to find the longest possible
constituent at any point, then If for any reason an impasse [s
reached, to return and try agaln , 1imiting the consltuent from
golng as far along In the sentence., For example, In the
sentence "Was the typewriter sitting on the cake?", the parser
will first find the auxilliary verb "was", then try to parse the
subject. It will find the noun group "the typewriter sitting on
the cake", which In another context might well be the subject
("the typewriter sitting on the cake Is broken."). It then
tries to find the verb, and discovers none of the sentence Is
left., To back up, It must change the subject. A very clever

program would look at the structure of the noun group and would

Section 2.4.5 - Page 1E7

realize that the modifying clause "“sitting on the cake" must he
dropped. A more simple-minded but still effective approach
would use the followlng Instructions:

(=+ K PW)

(POP)

((CUT PTWISUBJECT (ERROR))

The first command sets the pointer PTW to the last word In
the constituent (in this case, "cake"). The next removes that
constltuent. The third sets a special pointer, CUT to that
locatlon, then sends the program back to the point where 1t was
looking for a subject. It would now try to find a subject
again, but would not be allowed to go as far as the word "cake".

' an analog to "The

It might now find "the typerwriter sitting,'
man sltting 1s my uncle," |f there were a good semantic
program, 1t would realize that the verb "sit" cannot be used
with an inanimate object without & locatlon speclfied. This
would prevent the constlituent "the tvpewrliter slitting" from ever
being parsed, Even If this does not happen, the program would
fall to find a verb when It looked at the remalning sentence,
"on the cake." By golng through the cutting loop agaln, 1t would

' and would continue

find the proper subject, "the tvpewrlter,'
through the sentence,

Once a CUT polint has been set for any actlve node, no
descendant of that node can extend bevond that point until the
CUT 1s moved, Whenever a PROGARAMMAR program Is called, the

varlable END s set to the current CUT palnt of the noade which

Section 2.4.5 - Page 188

called It, The CUT polnt for each constituent Is inltlally set
to 1ts END, When the functlen PARSE Is called for a word, It
first checks to see If the current CUT has been reached (1.e. N
and CUT are the same), and If so It falls., The third branch in
a three-direction branch statement is taken [f the current CUT
point has been reached. The CUT pointer Is set with the

function CUT of one argument.

Section 2.4.6 - Page 189

2.4.6 Auxilllary Functlons

Since PROGRAMMAR grammars are programs, they can call
subroutines just as any other program. These subroutlnes can
use PROGRAMMAR primitives 1lke PARSE and *, as well as returning
values for use In the main program. One example used In our
grammar [s UPCHECK, used to see If the current node |s embedded
in @ structure which could be an UPREL 1ike "the man | wanted

you to see,"

It 1s used In conjunction with UPMOD which makes
the appropriate changes to the parsing tree. They both use
primitives 1lke = to find and change the elements.

In order to simplify the search for rank-shifted clauses, a
function PARSEREL was written. It takes as arguments a llist of
clause types (11ke REPORT, ING, etc.) a corresponding 1list of
features to look for an the maln verb, a polnter to that verb,
and the rest of the Informatlon to be Included In the call to
PARSE. PARSEREL then loops through these 1lsts, attempting to
parse varlous types of RSNG clauses [f they are In accord with
the restrictlons associated with the verb and the use of the

clause In the sentence. |t uses the function PARSE to modlfy

the parsing tree before returning teo the main CLAUSE program,

Sectlon 2.4.7 - Page 190

2.4.7 Messages

To write good parsing programs, we may at times want to
know why a particular PROGRAMMAR program falled, or why a
certain poeinter command could not be carried ocut, In order to
facilitate this, two message varlables are kept at the top level
of the system, MES, and MESP, Messages can be put on MES In two
ways, either by using the special fallure directions In the
branch statements (see section 2.2.5) or by using the functions
M and MQ, which are exactly 1lke F and FO, except they put the
indicated feature onto the message 1ist ME for that unlt. When
a unlt returns either failure er success, MES 1s bound to the
current value of ME, so the calllng program can recelve an
arbitrary 1ist of messages for whatever purpose It may want
them. MESP always contains the last failure message recelved

From *+« apF *,

Section 2,4.8 - Page 191

2,4,8 The Form of the Parsing Tree

Each node

information:

FE the
NE the
i the
H the
oM a5

Is actually a 1ist structure with the following

list of features assoclated with the node

place In the sentence where the constituent
begins

place Iimmediately after the constituent

subtree below that node (actually a list of
its daughters in reverse order, so that
H points to the last constltuent parsed)

pace reserved for semantic information

These symbols can be used in two wavs, |f evaluated as

variahles, they
for the current
node, |If used
appropriate wval
(NB H) glves th
the last constl

feature 1lst of

Each word
containing the
FE
SMWORD
WORD
ROOT

will always return the designated Information
ly active node. € is always a polnter to that
as functions of one argument, they glve the
ues for the node polnted te by that argument; so
e locatlon In the sentence of the flirst word of
tuent parsed, while (FE(NE M)} would glve the
that word,

in the sentence is actually a llst structure
4 fTtems:
as above

the semantic definitlion of the word

the word Itself (a pointer to an atom)

the root of the word (e.g. "run™ [f the
word Is "running").

Sectlen 2.4.9 = FPage 192

2.4.9 Varlables Maintained by the System

There are two types of varlables, those bound at the top

level, and those which are rebound every time a PROGRAMMAR

program is called.

Yariables bound at the top level

M

SENT
FT PTW

MES MESP

Alwavs points to next word In the

sentence to be parsed

Alwavs polints to the entire sentence
Tree and sentence polnters.

See Section 2.4.10

List of messages passed up from lower

levels, See Section 2.4.7

Special varlables bound at each level

C FE NHE &M H
WM CUT END

UNIT

REST

TL T2 T3

MVEB
ME

See section Z.L.8

See section 2.4.5. HN always
equals (NOT(EQ M CUT))

the name of the currently actlive
PROGRAMMAR progpram

the 1ist of arguments for the call
to PARSE (These form the Initlal
feature 1ist for the node, but as
other features are added, REST
continues to hold only the eariginal
anes, J

Three temporary PROG variables for use
by the program In any way needed.

Bound only when a CLAUSE Is parsed
used as a polnter to the maln verb

List of messages to be passed up to
next level Ses Sectlion 2.04.7

section 2.L.10 - Page 193

£.4,10 Pointers

The system always malntalns tweo polnters, PT to a place on
the parsing tree, and PTW to a place In the sentence. These are
moved by the functions * and *+ respectively, as explalned In

sectlon 2.2.10. The Instructions for PT are:

C set PT to the currently active node

H set PT to most recent (rightmest) daughter of ©

DL (down=last} move PT to the rlghtmost daughter
of 1ts current value

DLE {down-last completed) like DL, except It only

moves to nodes which are not on the push-down
list of active nodes.

DF (down=-flirst) 1ike DL, except the leftmost

PV {previous) move PT to Its left-adjacent sister

N (next) move PT to Its rlght-adjacent slister

u {up) move PT to parent node of Its current value
] Move PT to next word In sentence to be parsed

The peinter PTW always polnts to a place In the sentence.

It Ts moved by the functlon *#¢ which has the same syntax as =,

and the commands:

N set PTW to the next word In the sentence

FW (first-word) set PTW to the first word of the
constltuent pointed to by PT

LW (last-word) 1lke FW

AW {after-word) like FW, but first word after the
constituent

NwW (next=ward) Set PTW to the next word after Its
current value

Pl (previous=ward) 1lke NW

SFW {sentence-first-word) set PTW to the flrst word

In the sentence
SLW {sentence-last-word) 1lke SFW

Since the polnters are bound at the top level, & program
which calls others which move the polnters may want te preserve
thelr location. PTW Is a simple varlable, and can be saved wlth

a SETQ, but PT operates by keeping track of the way It has been

Sectlon 2.4.10 - Page 194

moved, In order to be able te retrace 1ts steps. This Is
necessary since LISP 1ists are threaded in only one directlon
{in this case, from the parent node to Its daughters, and from a
right sister to its left sister), The return path is bound to
the varlable PTR, and the command (PTSV X) saves the values of
both PT and PTR under the variable X, while (PTRS X) restores

both values.

Sectlon 2.4.11 - Page 1495

L.0,11 Feature Manipulating

As explalined In section 2.2.6, we must be able to attach
features to nodes In the tree., The functlons F, F, and TRHSF
are used for puttlng features onto the current node, while R and
RQ remove them. (F A) sets the feature 1ist FE to the union of
Its current value with the list of features A. (F0 A) adds the
single feature A (l.e. It guotes Its argument). (TRNSF A B} was
explained In Section 2.2,7, R and RO are inverses of F and F(O,
The functions 15X, 150, CO, and NO are used to examine features.
If A points to a node of the tree or word of the sentence, and B
points to a feature, (15X A B) returns non-nil If that node has
that feature. (15Q A B) is equivalent to (IS5 A (NUOTE B)), (caQ
B) Is the same as (150 C B) (where C always polints to the
currently active nodel), and (NQ B) Is the same as (150 N B) (N
always polnts to the next word In the sentence left to be
parsed) .

The functlon HEXTW checks to see of the root of the next
word matches the argument. (NEXTW BE) evaluates te non-HIL only
if the next word is some form of the verb "be", PUTF and REMF
are used to add and remove features from some node other than
the current one. They are FEXPRS whose argument Is a 1ist of
features, which are put on or removed froem the node currently

polnted to by the pointer PT.

Sectlon 2.5.1 - Page 196

2.5 Comparlson with Other Parsers
2,5,1 Qlder Parsers

When work first began on analyzing natural language wlth
computers, no theories of syntax exlsted which were explicit
enough te be used. The early machine-translator designers were
forced to develaop their own lingulstics as they worked, and they
produced rough and ready versions. The parsers were collectlons
of "packaging routlnes", "inserted structure passes", "labeling
subroutines", etc. (see <{Garvin®) which evolved gradually as
the grammars were expanded to handle more and more complex
sentences. They had the same difficultlies as any program
designed In thls way == as they became more complex It became
harder and harder to understand the Interactions within them.
Making extensions which were intended to deal with & 1Imited
antlcipated set of inputs tended to make 1t difficult to extend
the system later,

When the machine-translatlion effort falled, 1t seemed clear
that it had been premature to try handling all of Engllish
without a better background of 1inguistic theory and an
understanding of the mathematical prepertlies of grammars.
Computer programs for natural language took two separate paths.
The first was to lgnore traditional syntax entlrely, and te use
some sort of more general pattern matching process to get
Information out of sentences. Systems such as STUDENT, SR,

ELIZA, and Semantic Memory made no attempt to do a complete

section 2.5.1 - Page 197

syntactic analysls of the Inputs. They either 1imited the user
to 2 small set of fixed Input forms or limited thelr
understanding to those things they could get while ignoring
syntax.

The other approach was to take a simplified subset of
English which could be handled by a well-understood form of
grammar, such as one of the variations of context=-free grammars,
There has been much Interesting research on the properties of
abstract languages and the algorithms needed to parse them.
Using this theory, a serles of parsing algorithms and
representations were developed, For a summary of the computer
parsers designed before 1966, see <Bobrow 196L», A more recent
development was Early's context-free parser <Farly? which
operates in a time proportional to the cube of the length of a
sentence.

The problem faced by all of these parsers (Including the
mammath Harvard Syntactic Analyzer (<Kuno*). 13 that such
simple models are not adequate for handling the full complexity
of natural language. This Is discussed theoretically In
{Chomsky 1957% but for our purposes It Is more Important to note
that many aspects which could theoretically be handled would be

Included only at the expense of gross inefficlency and
unnecessary complexity.

several people attempted to use Chomsky's transformatlional
grammar as the basis for parsers. (see <Petrlck? and <Zwlicky>)
They tried te "unwind" the transformations to reproduce the deep
structure of a sentence, which could then be parsed by a context
free "base component". It scoon became apparent that this was a

very difficult task. Although transformational grammar s

Section 2.5.1 - Page 18E

thearetically a "neutral" description of language, 1t is In
fact highly biased toward the process of generating sentences
rather than interpreting them. Adapting generation rules to use
in interpretation 1s relatively easy for a context-free grammar,
but extremely difflcult for transformational grammars. <Woods
1969 discusses the problems of "combinatorial explesion"
inherent in the Inverse transformational process. The
transformational parsers have not gone beyond the stage of

handling small subsets of English In an inefficlent way,

Sectlon 2.5.2 - Page 189

2.5,7 Augmented Iransitlon Nefworks

In the past two vears, three related parsing systems have
been developed to deal with the full complexity of natural
language. The first was by Thorne, Bratley, and Dewar (<Thorne
1968 and 1969»), and the more recent ocnes are by Bobrow and
Fraser (<{Bobrow 1969>) and Woods (<{Woeds 1969>), The three
programs operate In very similar wavs, and slince Woods' is the
most advanced and best documented, we wlll use it far
comparison. In hls paper Woods compares hls system with the
other two.

The basic fdea of these parsers 1s the “augmented
transition network". The parser 1s seen as a transition network
much 1ike a finlte-state recognlzer used for regular languages
In automata theory.

The first extension Is In allowing the networks to make
recursive calls to other networks (or to themselves). The
condition for following a particular state transitlion 18 not
limited to examining & single Input symbol., The condition on
the arc can be something 1ike "NP" where NP Is the name of an
Inftlal state of another network. Thils recursively called NP
network then examines the Input and operates as a recognizer.
If It ever reaches an accepting state, It stops, and parsing
continues from the end of the NP arc In the origlinal network.
These "recursive translition networks" have the power of a

context-free grammar, and the correspondence between a network

Section 2.5%.2 - Page 200

and [ts equivalent grammar is gquite simple and direct.

To parse the full range of natural language, we need a
eritical addition. Instead of using "recursive transition
networks"™ these parsers use "augmented transition networks",
which can "make changes In the contents of a set of registars
associated with the network, and whose transitlons can be
conditional on the contents of those reglsters. (<Woods 1969>),.
This Is done by "adding to each arc of the transitlion network an
arbitrary condltion which must be satisfled In order for the arc
to be followed, and a set of structure bullding actlons to be
executed [f the arc is followed,"

Augmented transition networks have the power of Turing
machines (since they have changeable reglisters and can transfer
control depending on the state of those registers). Clearly
they can handle any type of grammar which could possibly be
parsed by any machlne., The advantages 1le In the ways In which
these augmented networks are close to the actual operations of

language, and glive a natural and understandable representation

for grammars,

Section 2.5.3 = Page 201

£.5,3 Metworks and Programs

How does this type of parser compare with PROGRAMMART s
there anything in common between grammars which are networks and
grammars which are programs? The reader may have already seen
the "joke" iIn this guestion, In fact these are just two

different ways of talking abhout dolng exactly the same thingl

Picture a flowchart for a PROGRAMMAR grammar, In which
calls to the function PARSE are drawn on the arcs rather than at
the nodes. Every arc then Is either &8 reauest te accept the
next word In the Input (when the argument of PARSE Is a word
class), or a recursive call to one of the grammar programs. At
each node (i.e. segment of program between conditionals and
PARSE calls) we have "a set of arblitrary structure bullding
actions." Our flowchart Is just like an augmented transition
network.

Now pleture how Woods' networks are fed to the computer.
He uses a notatlon (see <Woods 1969 p. 17) which looks wvery
much like a LISP-embedded computer language, such as PROGRAMMAR
or PLANMER. In fact, the networks could be translated almost
directly Into PLANNER programs {(PLANMER rather than LISP or

PROGRAMMAR because of the automatlc backup features =- see
discussion below).

It is an Interesting lesson In computer sclence to look at
Woods' discusslen of the advantages of networks, and “"translate"
them Inte the advantages of programs. For example, he talks
about efficiency of representation. "A major advantage of the
transition network model Is...the abllity to merge the common
parts of many context free rules.”

Looking at grammars as programs, we can ca1l‘thr5 "sharlng
subroutines". He says "The augmented transitlion network,
through its use of flags allows for the merging of simllar parts

of the network by recording Information in reglsters and

Interrogating it...and to merge states whose transitions are

Section 2,.53.3 = Page 202

similar except for conditions on the contents of the registers,"
This is the use of subroutines with parameters. In addition,
the networks can "capture the regularities of the
language...whenever there are two essentially ldentical parts of
the grammar which differ only in that the finlte control part of
the machlne Is remembering some piece of Informatlon...it Is
sufficient to explicitly store the distinguishing plece of
information in a register and use only a single copy of the
subgraph." This is eclearly the use of subroutines with an
argument!

Similarly we can go through the arguments about efflclency,
the ease of mixing semantics with syntax, the abl1lty to Include
operations which are "natural" te the task of natural language
analysis, etc. A1l of them apply ldentlically whether we are
looking at "transition networks" or "programs".

What about "persplculty"? Woods claims that sugmented
transition networks retain the perspicuity (ease of reading and
understanding by humans) of simpler grammar forms. He says that
transformatlional grammars have the problem that "the effect of a
given rule Is Intimately bound up with fts Interrelation to
other rules...it may require an extremely complex analysis to
determine the effect and purpose." (<{Woods 1969%> p.38) This Is
true, but it would alsc be true for any grammar complex encugh
to handle all of natural language, The simple examples of

transitlon networks are indeed easy to read (as are simple

Section 2.5.3 - Page 203

examples of most grammars), but In 2 network for a complete
language, the purpose of a gliven state would be intimately bound
up with its interrelatien te cther states, and the grammar will
not be as “persplcuous" as we might hope. This Is just as true
for programs, but ne more so., If we lock at the flow chart
inatead of the listing, programs are equally persplicucus to
networks.

If the basic principles are really the same, are there any
differences at all between Woods' system and ours? The answer
is yes, they differ not in the theoretical power of the parser,
but in the types of analysls being carried out.

The most Important difference is the theory of grammar
being used. All of the network svystems are based on
transformational grammar. They try to reproduce the “"deep
structure" of a sentence while dolng surface structure
recognition. This Is done by uslng special commands to
expliclitly bulld and rearrange the deep structures as the
parsing goes along. PROGRAMMAR is criented towards systemic
grammar, with Tts ldentiflcation of slgniflcant features in the
constltuents belng parsed. |t therefore emphasizes the ablillty
to examine the features of constituents anywhere on the parsing
tree, and to manipulate the feature descriptiens of nodes.

In section 2.1 we discussed the advantages of systemic grammar
for a language understanding system. Elther type of parser
could be adapted to any type of grammar, but PROGRAMMAR was
specially designed to Include "natural" operations for systemlc
understanding of sentences,

A second difference is In the Implementation of speclal

additions to the basic parser. For example In sectlon 2.4.2 we

discussed the way In which words 1lke "and" could be defined to

Sectlion 2.5.3 - Page 204

act as "demons" which Interrupt the parsing at whatever point
they are encountered, and start a speclal program for
interpreting conjoined structures. This has many uses, both In
the standard parts of the grammar (such as "and") and In
handling fdioms and unusual structures. |f we think In network
terms, this Is 1ike having 2 separate arc marked "and" leading
from every node in the network, Such a feature could probably
be added to the network formulatlen, but Tt seems much more
natural to think In terms of programs and interrupts.

A third difference 1s the backup mechanism. The network
approach assumes some form of nendeterminism., |f there are
several arcs leaving 2 node, there must be some way to try
following all of them. Either we have to carry forward
simultanecus interpretations, or keep track of our cholces In
such a way that the network can automatically revise lts cholce
if the original cholce does not lead to an accepting state,
This could be dene In the program approach by using a language
such as PLANMER with lts automatic backup mechanisms. But in
sectlon 2.2.7 we discussed the question of whether It Is even
desirable to do se In handling natural language.

We pointed out the advantage of an Intelllgent parser which
can understand the reasons for Its fallure at a certaln polnt,
and can gulde ltself accordingly instead of backing up bBlindly.
This Is Important for efflelency, and Woods [s wvery concerned

with ways to modify the networks to avold unnecessary and

sectlon 2.5.3 - Page 205

wasteful backup by "making the network more deterministic,”
(¢Woeds 1969> p. 45). It might be Interesting to explore a
compromise solution In which automatic backup facilltles
exlsted, but could be turned on and off, We could de this by
Elving PROGRAMMAR special commands whlich would cause It to
remember the state of the parsing so that later the grammar
could ask to back up to that state and try semething else. This
is an Interesting area for further work on PROGRAMMAR,

It Is difficult to compare the performance of different
parsers since there Is no standard grammar or set of test
sentences. Bobrow and Woods have not published the results of
any experiments with a large grammar, but Thorne has publlished
two papers (<Thorne 1968, 1969>) with a number of sample
parsings. Our system, with Its ecurrent grammar of Engllish has
successfully parsed all of these examples, They took from 1 to
5 seconds aplece. Some samples of more complicated parslings

done by the system are glven In Appendlix B,

Section 3.1.1 = Page 2086

CHAPTER 3. Inference

3.1 Baslc Approach to Meaning

3,1.1 Representing knowledse

We have described the process of understanding language as
a conversion from a string of of sounds or letters to an
internal representation of "meaning". In order to do this, a
language-understanding system must have some formal way to
express its knowledge of a subject, and must be able to
represent the "meaning” of a sentence In this formallsm. The
formalism must be structured in such a way that the system can
use Its knowledpe to make deductions, accept new Information,
answer questions, and interpret commands. Choosling a form for
thlis information is of central importance to both a practical
system and a theory of semantics.

Filrst we must decide what kinds of things are to be
represented In the formalism., As a beginning, we would like to

' and "relations."

he able to represent "objects", "properties,’
Later we will have to show how these can be combined to express
more complicated knowledge. We will describe ways to express
the meaning of a wide varlety of complex sentences.

Using a simple prefix notation, we can represent such facts

as "Bolse Is a city." and "Noah was the father of Jafeth.," as:

(CITY BOISE) (FATHER-OF NOAH JAFETH)

Section 3,1,1 - Page 207

Here, BEDISE, MOAH, and JAFETH are specific objects, CITY Is
a property which objects can have, and FATHER-0F is a relation.
It Is a practical convenience to list properties and relations
first, even though this may not follow the natural English
order, so we will do so throughout. Hotice that propertlies are
in fact speclal types of relations which deal with only one
cbiject. Propertles and relatlions will be dealt with In
identical ways throughout the system. In fact, it Is not at all
obvious which concepts should be considered propertles and whilch
relations. For example, "DeGaulle Is old." might be expressed
as (0OLD DEGAULLE) where OLD Is a property of ohjects or as (AGE
DEGAULLE OLD), where AGE is a relatlon between an object and lts
age. In the second expression, OLD appears In the positlion of
an object, even though It can hardly be construed as a
particular object 1ike BOISE or DEGAULLE. This supgests that we
might like to let properties or relations themselwves have
properties and enter into other relations. This has a deep
logical consequence which will be discussed In later sections,

In order to avold confusion, we will need some conventions
about notation. Most objects and relatlonships de ngt have
slmple English names, and those that do often share their names
with a range of other meanings. The house on the corner by the
market doesn't have a proper name 1lke Jafeth, even theugh It Is
Just as much a2 unique object. For the Internal use of the

system, we will give It a unlque name by stringing together a

Section 3.1.1 - Page 208

descriptive word and an arbitrary number, then preflxling the
result with a colen to remind us It 1s an object. The house
mentioned above might be called :HOUSE374, Properties and
relatlons must also go under an assumed name, since (FLAT X)
miecht mean very different things depending on whether X (5 a
tire or a musical note. We can do the same thing (using a
different punctuation mark, #) to represent these two meanings
as #FLAT1 and #FLATZ. When the meaning Intended is clear, we
will omit the numbers, but leave the punctuation marks to remind
us that 1t Is & property or relation rather than a specific
object. Thus, our facts listed above should be written:

(#CITY :BOISE) (#FATHER-OF :MODAH :JAFETH), and elther

(#0LD :DEGAULLE) or (#AGE :DEGAULLE #0OLD).

We are letting properties serve In a dual function == we
can use them to sav things about objects (as In "The sky Is
blue." == (#BLUE :SKY)) or we can say things about them as If
they were objects (as In "Blue Is & coloar." -- (#COLOR #BLUE)).
We want to extend this even further, and allow entire
relatlonships to enter Into other relationships., (We
distinguish between "relation'", the abstract symbol such as
#FATHER-OF, and "relationship", a particular instance such as
(#FATHER=-0F :HOAH :JAFETH)). In 2cecord with our earlier
convention about naming things, we can give the relatlionship a
name, so that we can treat It 1ike an object and say (#KHOW :|

*RELTR) where :REL7E Is a name for a particular relatlonship

Sectlon 3.1.1 = Page 209

Tike (#FATHER-OF :NOAH tJAFETH). We can keep stralght which
name goes with which relationship by putting the name directly
inte the relatlonship. Our example would then become (#FATHER=
OF :MOAH :JAFETH :REL76). There is no speclal reason to put
the name last, except that It makes indexing and reading the
statements easier. We can tell that :REL76 Is the name of this
relation, and not a participant since FATHER-OF relates only two
objects. Similarly, we knew that 1t has to be a participant In
the relationship (#KNOW :1 :REL76) since #KNOW needs two
arguments.

We now have a system which can be used to describe more
complicated facts. "Harry slept an the parch after he gave
Alice the jewels," would become & set of assertions:

(#SLEEP :HARRY :REL1) (#LOCATION :REL1 :PORCH)

(#GIVE :HARRY :ALICE :JEWELS :REL2) (#AFTER :REL1 :REL2)

This example points out several facts abut the notation,
The number of participants In a2 relatlenship depends on the
particular relation, and can vary from 0 te any number. e do
not need to give every relationship a name -- it Is present only
If we want to be able to refer to that relationship elsewhere.
This will often be done for events, which are a tvpe of
relationship with speclal preperties (such as tlme and place of

CCCUFFrence) .

Section 3.1.2 - Page 210

3,1,2 Philosophical Considerations

Bafore golng on, let us stop and ask what we are dolng. In
the preceding paragraphs, we have developed a notation for
representing certaln kinds of meaning. |In doing so we have
glibly passed over lssues which have troubled philsophers and
linguists for thousands of years. Countless treatises and
debates have tried te analyze just what 1t means to be an
"object" or a "property", and what logleal status a symbol such
a5 #BLUE or #CITY should have. We will not attempt to glve a
philosophical answer to these guestions, but instead take a more
pragmatic approach to meaning.

Language 1s & process of communicatien between people, and
iz inextricably enmeshed In the knowledge that those people have
about the world., That knowledge is not a neat collection of
definltions and axloms, cemplete, concise and consistent.

Rather It is a collection of concepts designed to manipulate
ideas. It is In fact Incomplete, highly redundant, and often
inconsistent. There Is no self-contained set of "primitives"
from which everything else can be defined, Definitions are
circular, with the meaning of each concept depending on the
other concepts.

This might seem like a meaningless change == saying that the
meaning of words Is represented by the equally mysterious
meanings of "concepts" which exist In the speaker's and hearer's

minds, but which are cpen to nelther immediate Introspection nor

Section 3.1.2 - Page 211

experiment. However, there Iz a major difference, The structure
of concepts which is postulated can be manipulated by & logical
system within the computer. The "internal representation" of a
sentence is something which the system can obey, answer, or add
to [ts knowledge. |t can relate a sentence to other concepts,
draw conclusions from 1t, or store it In a way which makes It
useable in further deductions and analysis,

This can be compared to the use of "forces" In physies, We
have no way of directly observing a force like gravity, but by
postulating Its existence, we can write equations describing it,
and relate these eqguations to the phvsical events Tnvolved.
Similariy, the "concept" representation of meaning is not
intended as a direct picture of something which exlsts In a
person's mind. It 1s a fiction of the sclentlst, valld enly In
that It gives him a way to make sense of data, and predict
actual behavior,

The justificatlon for our use of concepts in this system
Is the way It actually carries out a dialog which simulates In
many ways the behavior of a2 human language user. For a wider
field of discourse, It would have to be expanded In its details,
and perhaps In some aspects of Its overall structure. However
the Idea Is the same =-=- that we can In fact galn a better
understanding of language use by postulating these fictitious
concepts and structures, and analyzing the ways In which they
interact with language.

The success of such a theory at actualy describing language
will depend largely on the power and flexiblllty aof the

representation used for the concepts, Later sectlons of thls

chapter discuss the reasons why PLANNER 1s particularly well

Section 3.1.2 - Page 212

suited for this jaob,

We would like to consider some concepts as “atomic". (i.e.
concepts which are considered to have thelr own meaning rather
than being just comhinations of other more basic concepts). A
property or relation s atemic not because of some special
logical status, but because It serves a useful purpose In
relation to the other concepts In the speaker's model of the
world, For example, the concept #0LD [s surely not primitive,
since it can be defined In terms of #AGE and number. However,
as an atemle preperty It will often appear In knowledge about
people, the way they look, the way they act, etc. Indeed, we
could omit it and always express something like "having an age
greater than 30", but our model of the world will be simpler and
more useful If we have the concept #0LD avalilable Instead.

There Is no sharp line dividing atomic concepts from non=-
atomic ones, It would be absurd to have separate atomic
concepts for such things as #CITY-0F-POPULATION-23,4E5 or
#PERSON-WEIGHING-BETWEEN=-178-AKD-181. But It might In fact bhe
useful to distinguish between #BIG-CITY, #TOWM, and #VILLAGE, or
between #FAT, and #THIN, slince our model may often use these
distinctions.

I1f our "atomlc" concepts are not loglcally primitive, what
kind of status do they have? What Is thelir "meaning"? How are
they defined? The answer 1s agaln relative to the world-model

of the speaker. Facts cannct be classified as '"those which

Sectlion 3,1.2 - Page 213

define a concept" and "those which describe 1t." Ask semeone to
define #PERSON or #JUSTICE, and he will come up with a formula
or slogan which s very limited, #JUSTICE is defined In his
world=model by a series of examples, experlences, and specifle
cases, The model Is circular, with the meaning of any concept
depending on the entire knowledge of the speaker, (not just the
kind which would be Included in a dictienary). There must he a
close simllarity between the models held by the speaker and
listener, or there could be no communication., |f my concept of
¥DEMOCRACY and yours do not celnclde, we may have great
difficulty understanding each other's political viewpoints,
Fortunately, on simpler things such as #BLUE, #D0G, and #AFTER,
there is a pretty ﬁnnd chance that the models will be
practically identical., In fact, for simple concepts, we can
choose a few primary facts about the concept and use them as a
"definition" , which corresponds to the traditional dictlionary,
Returning to our notatlon, we see that It Is Intentionally
general, so that out system can deal with concepts as people do,
In English we can treat events and relationships as objects, as
In "The war destroyed Johnsen's rapport with the people." Within
our representation of meaning we can simllarly treat an event
such as #WAR or a relationship of #RAPPORT in the same way we
treat objects. We do net draw a sharp philosophical distinetion
between "specific objects", "properties", relatlionships",

"events", etc.

Section 3.1.3 - Page 11k

3.1.3 Complex Informaticn

We now have a way to store a data base of assertions about
particular objects, properties, and relatlonships. Mext, we
want to handle more complex Informatlion, such as "All canaries
are yvellow.", or "A thesis Is acceptable If elther it s long or
it contalns a persuasive argument.” This could be done using
a formal language such as the predicate calculus. Baslec loglcal
relations such as implies, or, and, there-exlsts, etc. are
represented symbollcally, and Infermatien Is translated into a

"Eapmula, Thus we might have:

(FORALL (¥) (IMPLIES{#CANARY X)(#COLOR X #YELLOW)))

(FORALL (X)}(IMPLIES
(AND (#THESIS X)
(OR (#LONG X)
(EXISTS (Y)
(AND (#PERSUASIVE Y)

{ PARGUMENT Y)
(#CONTAINS X Y)1)))

(# ACCEPTABLE X)))

Filgure 52 == Predicate Calculus Representation

Several notational conventlons are used, Flrst, we need
varlables =& that we can say things about objects wlthout naming
particular ones. This Is done with the guantifiers FORALL and
EXISTS. Second, we need loglical relations 1lke AND, OR, NOT,
and IMPLIES. Using this formallism, we can represent a question
as a formula to be "proved". To ask "ls Sam's thesls

acceptabie?" we could glve the formula (#ACCEPTABLE tSAM=-THESI15)

Sectlon 3.1.3 - Page 215

to a theorem prover to prove by manfpulating the formulas and
assertions In the data base according to the rules of loglec., We
would need some addlitional theorems which would allow the
theorem prover to prove that a thesis [s long, that an argument
s acceptable, etc.

In some theoretlcal sense, predicate calculus formulas
could express all of our knowledge, but In a practlical sense
there Is somethlng missing. A persen would alsc have knowledge
about how to go about doing the deduction., He would know that
he should check the length of the thesis flrst, since he might
be able to save himself the bother of reading It, and that he
might even be able to avold counting the pages [If there [s &
table of contents. In additlon to complex Informatlion about
what must be deduced, he alsoc knows a lot of hints and
"heuristies" telling how to do It better for the particular
subject belng dliscussed,

Most "theorem-proving" systems do not have any way to
Include this additlional Intelllgence. Instead, they are 1imlted
to a kind of "working in the dark"™. A uniform proof procedure
gropes Its way through the collectlon of theorems and
assertlons, according to some general procedure which does not
depend on the subject matter. |t trlies to comblne any facts
which might be relevant, worklng from the bottom up. In our
example gliven above, we mlight have a very complex theorem for
decliding whether an argument s persuasive. A unlform proof
procedure might spend a great deal of time checking the
persuasiveness of every argument It knew about, since a clause
of the form (PERSUASIVE X) might be relevant to the proof. What
we would prefer [Is a way for a theorem to gulde the process of

deduction In an intelligent way. Carl Hewltt has worked with

Sectlion 3,1.3 - Page 216

this problem and has developed a theorem-proving language called
PLANNER <Hewltt 1968, 1969>. In PLANMER, theorems are In the
form of programs, which describe how to go about proving a goal,
or how to deduce conseguences from an assertlion. This Is
described at length In section 3.3, and ferms the baslis for the
inference part of our English understander., In PLANNER, our
sentence about thesls evaluatlon could be represented as shown
in Figure 53.

This 1s similar in structure to the predicate calculus
representation given above, but there are Important dlfferences.
The theorem Is a program, where each logical operator indicates
a definite serles of steps to be carrled out. THGODAL says to
try to find an assertion In the data base, or to prove 1t using
other theorems. THUSE gives advice on what other theorems to
use, and In what order. THAND and THOR are egquivalent to the
logleal AND and OR except that they give a speclific order In
which things should be tried, (The "l1lsping" Is to
differentiate PLANNER names from the standard LISP functlions AND
and OR, Thls same convention Is used for all functions which
have LISP analogs.)

The theorem EVALUATE says that |If we ever want to prove
that a thesls s acceptable, we should flrst make sure It Is a
thesls by looking In the data base. Mext, we should try to
prove that It Is leng, flrst by using the theaorem CONTENTS-CHECK

{which would check the table of contents), and If that falls, by

Section 3,1.3 - Page 217

(DEFINE THEOREM EVALUATE
JEVALUATE Is the name we are
;Elving to the theorem

(THCONSE(X ¥)
sthis Indlcates the type of
stheorem and names |[ts
;varlables

(THGOALC#THES IS $%7X))
}show that X Is a thesls
sthe "3 Indicates a variable

{THOR
;THOR 1s 1lke "or", trying things
:In the arder gliven untl] ene works

(THGOAL(#LONG $?7X)(THUSE COMTENTS-CHECEK COUNTPAGES))
:THUSE says to try the theocrem
snamed CONTEMTS=-CHECK first,
:then If that doesn't work, try
:the one named COUNTPAGES

{ THAND
;THAND 1s 1lke "and"

(THGOAL(#CONTAINS £7X $£7Y))
:find something ¥ which Is
scontalned In X

(THGOAL(*ARGUMENT $£7Y))
;show that It ls an argument

(THGOAL(#PERSUASIVE $?Y)({THTBF THTRUE)}))))
:prove that It Is persuasive, usling
:any theorems which are appllicable

Figure 53 =- PLANMNER Representation

Sectlon 3.1.3 - Page Z18

using a theorem named COUNTPAGES (which might In fact call a
simple LISP program which thumbs through the paper.) If they
both fall, then we look In the data base for something contalned
In the thesis, check that 1t is an argument, and then finally
try to prove that it Is persuaslive., Here, we have used (THTBF
THTRUE), which Is PLAMNER'S way of saying "try anything you know
which can help prove It". PLANMER must then go searching
through all of Its theorems on persuasivensess, just as any
other theorem prover would. There are two Important changes,
though. Flirst, we never need to look at persuasiveness at all
1f we are able to determine that the thesis s long. Second, we
oenly look at the persuaslveness of arguments whilch we already
know are a part of the thesis. We do not get sidetracked Into
looklng at the persuasliveness theorems except for the cases we
really want.

PLAMNER also does a number of other things, 1ike
malntaining a dynamic data base (assertlons can be added or
removed to reflect the way the world changes In the course of
time), allewing us to control how much deduction will be done
when new facts are added to the data base, etc. These are all

discussed In section 3.3.

Section 3.1.k = Page 219

2.1.4 Questions, Statements, and Commands

PLAMNER Is partlcularly convenlent for a language-
understanding system, since It can express statements, commands,
and questlons dlirectly, We have already shown how assertions
can be stated In simple PLANNER format. Commands and gquestions
are also easlly expressed, Since a theorem Is written In the
form of a procedure, we can let steps of that procedure actually
be actlons to be taken by & robot. The command "Plick up the
block and put It In the box." could be expressed as a PLANNER
program:

(THAND{THGOAL(#PICKUP :BLOCK23))
{THGOAL(#PUTIN :BLOCK23 :BOX7)))

Remember that the prefix ":" and the number Indicate a specific
object. The theorems for #PICKUP and #PUTIN would also be
programs, describlng the seguence of steps to be done.

Earller we asked about Sam's thesls In predicate calculus
In PLANNER we can ask:
(THGOAL (#ACCEPTABLE :SAM-THESIS)(THUSE EVALUATE))

Here we have specifled that our theorem EVALUATE Is to be
used, |If we evaluated this PLANNER statement, the theorem would
be called, and executed just as descrlibed on the previous pages,
PLANNER would return one of the values "T" or "NIL" depending on
whether the statement Is true or false.

For a questlon 1lke "What natlons have never fought a war?"

FLANNER has the functlion THFIND. We would ask:

Sectlon 3,1.4 - Page 220

(THFIND ALL £7X (X ¥Y)
(THGOALCE#NATION $7X))
(THNOT

(THANDCTHGOAL(#WAR £7%Y))
(THGOAL(#PARTICIPATED §7X §%TY)))))
and PLANNER would return a 11st of all such countries, Uslng
our conventlions for glving names to relations and events, we
could even ask:
(THFIND ALL $7X (X ¥ Z EVENT)

(THGOAL(#CHICKEN $7Y))

(THGOAL(#ROAD $7?21))

(THGOAL(#CROSS $7?Y $7I $7EVENT))

(THGOAL(#CAUSE $7X SPEVENT)))

This brief description has explalned the baslc concepts
underlyving the deductive part of our language understanding
program. To go with 1t, we need a complex model of the subject
belng dliscussed, This Is described In sectlon 3.4. Section 3.3

glves more detalls about the PLANNER language and [ts uses.

Section 3.2 - Page 221

3.2 Comparison with Previous Programs

In Section 3.1 we discussed ways of representing
information and meaning within a language-comprehending system.
In erder to compare ocur ldeas wlith those In previous SYstems, we
will establish a broad classification of the fleld, Of course,
no set of plgeon-holes can completely characterlze the
differences between programs, but they can glve us some
viewpolnts from which to analyze different people's work, and
can help us see past the superficlal differences. We will deal
enly with the ways that programs represent thelr Information
gbout the subject matter they dlscuss. Issues such as parsing
and semantic analysls technliques are discussed In other
sections. We will distingulish four basic types of systems
called "special format", "text based”, "restricted loglc", and

"general deductive",

Section 3.2.1 = Page 222

3,2,1 Specglal Format Sysfems

Most of the early language undestanding programs were of
the speclial format type. Such systems usually use two speclal
formats designed for their particular subject matter =-- one for
representing the knowledge they keep stored away, and the other
for the meaning of the English ITnput. Some examples are:
BASEBALL <P.F.Green», which stored tables of baseball results
and Interpreted questions as "specificatlon lists" requesting
data from those tables: SAD SAM <Lindsay>, which Interpreted
sentences as simple relationship facts about people, and stored
these In & network structure; STUDENT <Bobrow 136L>, which
interpreted sentences as llnear equations and could store other
|inear egquatlons and manipulate them to solve algebra problems;
and ELIZA <Welzenbaum 19G66», whose Internal knowledge Is a2 set
of sentence rearrangements and key words, and which sees Input
as a simple string of words,

These programs all make the assumption that the only
relevant information In a sentence Is that which fits thelr
partlcular format. Although they may have very sophisticated
mechanisms for using thls Information (as In CARPS <Charnlak>,
which can solve word problems In calculus), they are each bullt
for a special purpose, and do not handle information with the
Flexlbillty which would allow them to be adapted to other uses.
Mevertheless, thelr restricted domaln often allows them to use

very clever tricks, which achleve Impressive results with a

Sectlon 3.2.2 - Page 223

minimum of concern for the complexlities of language.

Section 3.2,2 - Page 22k

3,2.2 Jext Based Systems

Some researchers were not satisfled with the limitations
inherent In the speclal-format appreoach. They wanted systems
which were not 1imited by thelr construction to a particular
specialized field. Instead they used English text, with all of
Its generallty and diversity, as a basis for storing
Information. In these "text based" systems, a body of text Is
stored directly, under some sort of Indexing scheme. An English
sentence Input to the understander [s interpreted as a request
to retrleve a relevant sentence or group of sentences from the
text. Varilous Ingenious methods were used to find possibly
relevant sentences and declde which were most likely to sastisfy
the request.

PROTOSYHNTHEX | <Simmens 1966> had an Index specifylng all
the places where each "content word" was found In the text. It
tried to find the sentences which had the most words In common
with the request (using a special welghting formula), then did
some syntactle analysls to see whether the words In common were
In the right grammatical relatienship to each other. Semantic
Memory ¢Quilllan 1966 stored a slightly processed version of
English dictlionary definitlons in which multiple-meaning words
were aliminated by having humans Indlicate the correct
Interpretation. It then used an assoclative Indexing scheme
which enabled the system to follow a chain of Tndex references.

An lnput request was In the form ¢f two words Instead of a

Section 3,2,2 - Page 225

sentence. The response was the shortest chaln which connectad
them through the assoclative Index {e.g. 1f there Is a
definltion containing the words A and B and one contalning B and
C, & request to relate A and C will return both sentences),

Even with complex Indexing schemes, the text based approach
has a basic problem., It canm enly spout back speciflec sentences
which have been stored away, and can not answer any questlion
which demands that something be deduced from more than one plece
of Information. In additlion, Its responses often depend on the
exact way the text and questlons are stated In Engllish, rather

than deallng with the underlylng meanling,

Section 3.2.3 = Page 226

3,2,3 Limited Loglc Systems

The "1imlted logic" approach attempted te correct these
faults of text based systems, and has been used for most of the
more recent language understanding programs. Flrst, some sort
of more formal notation Is substituted for the actual English
sentences In the base of stored knoledge. This notation may
take many different forms, such as "desription 11sts" {Raphael
1964, "kernels" <Simmons 1968> "concept-relation-concept
triples" <Simmens 1969», "data nodes" <Quillian 13832 , "rings"
¢Thompson?, "relational cperators” <Tharp? , etc. Each of these
forms |s designed for efficient use in a particular system, but
at heart they are all doing the same thing == providing a
notation for slmple assertions of the sort described In section
3.1.1. It is relatively unimportant which spacial form Is
chosen. A1l of the different methods can provide a unftform
formallsm which frees simple informatlion from being tied down to
a speclfic way of expressing It In English. Once this Is done,
a system must have a way of translating from the English Input
sentences into this Internal assertion format, and the greatest
bulk of the effort In language understanding systems has been
this "semantlc analysis". We wlll discuss it at length In
chapter 4. For now we are more Interested In what can be done
with the assertions once they have been put Into the deslred
form.

Some systems (see <Quilllan 19693, <Tharp>) remaln close to

Sectlion 3.,2.3 - Page 227

text based systems, only partlally breaklng down the Initlial
text Input., The text Is processed by some sort of dependency
analysis and left In a network form, elther emphaslzing semantlc
relationships or remaining closer to the syntactle dependency
analysis.What [s common to these systems |s that they do not
attempt to answer questlons from the stored Informatlion., As
with text based systems, they try to answer by giving back bits
of Informaticon directly from the data base, Thay may have
clever ways to decide what parts of the data are relevant to a
request, but they do not try to break the questlon down and
answer It by loglcal inference. Because of this, they suffer
the same deflciencles as text based systems, They have a mass
of Information stored away, but little way to use It except to
print It back out.

Most of the systems which have been developed recently flt
more comfortably under the classification "1imited logie". In
addition to thelr data base of assertlons (whatever they are
called), they have some mechanism for accepting meare complex
information, and using it to deduce the answers to more complex
questions. By "complex Information" we mean the type of
knowledge described In sectlon 3.1.3. This Includes knowledge
contalning loglecal quantiflers and relationships (such as "Every
canary Is efther vellow or purple,”" or "If A Is a part of B and
B Is & part of C, then A 15 a part of C."). By "ecomplex

questions", we mean guestlons which are not answerable by glving

Section 3.2.3 - Page 228

out one of the data base assertlons, but demand some logical
Inference to produce an answer.

One of the earllest limlted logic pregrams was SIR <Raphael
18645, which could answer questions using simple loglecal
relations (1ike the "part" example in the previcus paragraph).
The complex Information was not expressed as data, but was bullt
directly Intoe the SIR operating program. This meant that the
types of complex Information 1t could use were highly 1imited,
and could not be easily changed or expanded., The complex
questions It could answer were similar to those In many later
limited logic systems, conslsting of four basic types. The
simplest is a questlon which translates Into a single assertion
to be verifled or falsifled (e.g. "Is John 2 bagel?") The second
ls an assertion In which one part Is left undetermined (e.g.
"Who 1s a bagel?") and the system responds by "fllling In the
blank". The third type Is an extenslon of this, which asks for
all possible blank-fillers (e.g. "Name all bagels."), and the
fourth adds ecounting to this listing facillity to answer count
questions (e.g."How many bagels are there?"). SIR had speclal
logle for answering "how many" questlons, using Information 1lke
"a hand has 5 fingers.", and In a simllar way each 1lmited logle
system had speclal bullt-1n mechanisms to answer certaln types
of gquestions.

The DEACON system ¢Thompson had speclal "verb tahles" to

handle time questions, and a bottom-up analysis method which

Sectlen 3.2.3 - Page 229

allowed guestlons to be nested. For example, the questlion "Whe
Is the commander of the batallion at Fort Fubar?" was handled by
first Tnternally answering the questlion "What batalllon s at
Fort Fubar?" The answer was then substltuted directly Into the
erlginal question to make It "Who 1s the commander of the &9th
batalllien?", whleh the system then answered. PROTOSYNTHEX |1
“Simmons 1968> had special loglc for taklng advantage of the
transitivity of "Is" (e.g. "A boy Is a person.", "A person ls an
animal." therefore "A,.."). PROTOSYNTHEX |11 <Simmons 1969 and
SAMEMLAQ Il <Shapliro» bootstrapped thelr way out of first-order
legle by allowing simple assertions about relationships (e.g.
“"Morth-of ls the converse of South=of."). CONVERSE tKellogg>
converted guestlions Into a "query language" which allowed the
form of the question to be more complex but used simple table
lookup for finding the answers,

A1l of the limited loglec systems are baslically simllar, In
that complex Informatlon is not part of the data, but Is bullt
Into the system programs. Those systems which could add te
thelr Initial data base by accepting English sentences could
accept only simple assertlens as Input. The questions could not
Involve complex quantiflied relationships {e.g. "ls there a

country which Is smaller than every U.5, state?).

Sectlon 3.2.4 - Page 230

3,2,% General Deductive Systems

The problems of limited loglc systems were recognized very
early (see <Raphael 1964} p. 90), and people looked for a more
general approach to storing and using complex Informatlon. |If
the knowledge could be expressed In some standard mathematical
notation (such as the predicate calculus), then all of the work
loglelans have done on theorem proving could be utilized to make
an effleient deductive system, By expressing a questien as a
thesrem to be proved (see section 3.1.3), the theorem prover
could actually deduce the Information needed to answer any
question which could be expressed In the formallism., Complex
information not easily useable In limited loglc systems could be
neatly expressed in the predicate calculus, and a body of work
already existed on computer theorem proving. This led to the
"general deductive" approach to language understandling programs.

The early programs used logical systems less powerful than
the full predicate calculus (see <Bar=HIillel>, {Coles 1968», and
<Dar)lngton®) but the big boost to theorem proving research was
the development of the Robinson rescluticen algorithm {RobinsonZ,
a very simple "complete uniform proof procedure"” for the first
order predicate calculus, This meant that It became easy to
write an automatle theorem proving program with two Important
characteristics. First, the procedure is "uniform" -- we need
not (and In fact, cannot) tell It how to go about proving things

in a way sulted to partlicular subject matter. It has Its own

Section 3,2,.4 - Page 231

fixed procedure for building proofs, and we can only change the
cets of loglical statements (or "axloms") for It to work on.
Second, It guarantees that If any proof is possible using the
rules of predicate calculus, the procedure will eventually find
It (even though 1t may take a very long tilme)., These are very
pretty properties for an abstract deductive system, but the
guestion we must ask |5 whether thelr theoretical beauty Is
worth payving the price of low practicallty, We would 1lke to
argue that In fact they have lad te the worst deflclencles of
the theorem-proving questlon-answerers, and that a very
different approach Is called for.

The "uniform procedure" approach was adopted by a number of
systems (see {Green 1968, 196%») as an alternative to the kind
of speclalized limited logic discussed In the previous sectlion.
It was felt that there must be a way to present complex
information as data rather than embedding 1t Into the Inner
workings of the language understanding system. There are many
benefits in having a uniform notatlon for representing problems
and knowledge In a way which does not depend on the gqulirks of
the particular program which wlll Interpret them. It enables a
user to descrlibe a body of knowledge te the computer In a
"neutral™ way without knowing the details of the guestion-
answering system, and guarantees that the system will be

applicable to any subject, rather than belng speclallzed to

handle only one,

Section 3.2.4 - Page 232

Predicate calculus seemed to be a good uniform notatlon,
but In fact It has a serlous deficlency. By putting complex
information inte a "neutral" logical formula, these systems
lgnored the fact that an Important part of a persen's knowledge
concerns how to go about flguring things out. Our heads don't
contaln neat sets of logical axioms from which we can deduce
everything through a "proof procedure". Instead we have a large
set of heurlistics and procedures for solving problems at
different levels of generality., Of course, there |5 no reason
why a computer should do things the way a person does, but In
ignoring this type of knowledge, programs run Into tremendous
problems of efficlency. As soon as a "uniform procedure"
theorem prover gets a large set of axloms (even well below the
number needed for really understanding language), It becomes
bogged down In searching for a proof, since there 1s no easy way
to gulde 1ts search according to the subject matter. In
addition, a proof which takes many steps (even [f they are In a
sequence which can be easlly predicted by the nature of the
theorem) may take Impossibly long since 1t Is very difficult te
describe the correct proving procedure to the system.

It Is possible to write theorems in a clever way [n order
to Impllicitly gulde the deduction process, and a recent paper
{Green 1969> describes some of the problems in "technigues for
"srogramming” In first-order logic". First order loglc Is a
declarative rather than Imperative language, and to get an
Imperative effect (l.e. telling it how to go about dolng
somethlng) takes a good deal of careful thought and clever
trickery.

It might be possible to add strategy Information to a
predicate caleulus theorem prover, but with current systems such
as 0OA3, "To change strategles In the current verslon, the user
must know about set-of-support and other program parameters such
as level bound and term-depth bound. To radically change the
strategy, the user presently has to know the LISP language and

must be able to modify certaln strategy sections of the

Section 3.2.4 - Page 233

program." (<Green 19693 p.236). |In newer programs such as QAb,
there will be a speclal strategy language to go along with the
theorem-proving mechanisms. It will be interesting to see how
close these new strategy languages are to PLANNER, and whether
there is any advantage to be galned by putting them In a hybrid
with a resclutlon-based system. As to the completeness .
argument, there are good reasons not to have a complete system -

- these are discussed later In this sectlon.

Sectlon 3.2.5 - Page 234

3.2,5 Procedural Deductive Systems

The problem with the 1imited logic systems wasn't the fact
that they expressed thelr complex Information in the form of
programs or procedures. The problem was that these programs
were organized in suech a way that "...each change In a
subprogram may affect more of the other subprograms. The
structure grows more awkward and difficult to
generalize...Finally the system may become too unwileldy for
further experimentation." (<Raphael 1964» p.%1). Nevertheless,
It was necessary to bulld In more and more of these subprograms
in order to accept new subject matter.

What was needed was the development of new programming
technigues so that systems could retaln the capabllity of using
procedural Information, but at the same time express this
infermation in a simple and straightforward way which did not
depend on the peculiarities and special strucuture of a
particular program cor subject of discussion.

A system which partlially fits this description Is Woods'
{Wioods 1968>., It uses a quantificational gquery language for
expressing questlons, then assumes that there are "semantlc
primitives"™ In the form of LISP subroutines which decide such
predicates as (CONNECT FLIGHT-23 BOSTOM CHICAGD) and which
evaluate functions such as "number of stops", "owner", etc. The
thing which makes thls system different from the limited logic

systems Is that the entire system was designed without reference

Sectlon 3,.2.5% - Page 235

to the way the partlicular "primitive" functions would operate on
the data base. In a way, this Is avolding the [ssue, since the
information which the system was desligned to handle (the
Official Alrline Guide) is particularly amenable to simple
table-lookup routines, |If we had to handle less structured
information of the type usually done with theorem provers, these
primitive routines might Indeed rum Into the same problems of
interconnectedness described In the quote above, and would
become harder and harder to generallze,

PLAMNMER was deslgned by Carl Hewltt as a goal-oriented
procedural language to deal with these problems. It has speclal
mechanisms for deallng with assertlens in an efficlent way, and
In addition has the capablity te Include any complex Informatlion
which can be expressed In the predicate calculus. More
important, the complex information Is expressed In the form of
procedures, which can include all sorts of knowledge of how to
best go about proving things. The language is "goal-oriented",
in that we do not have to be concerned about the detalls of
interaction between the different procedures, |f at dilfferent
places in our knowledge we have theorems which ask whether an
object Is sturdy (for example In a theorem about support, about
building houses, etc.) they are not forced to speclfy the
program which will serve as sturdiness=inspectar. Instead they
say something 1ike "Try to find an assertlon that X 1s sturdy,

or prove It using anything vou can." |If we know of speclal

Section 3.2.5 - Page 236

procedures which seem most 1lkely to glve a gulck answer, we can
specify that these should be trled flrst. But If at some point
we add a new sturdiness-tester, we do not need to find out which
theorems use (t. We need only add it to the data base, and the
system will automatically try It (along with any other
sturdiness-testers) whenever any theorem glves the go-ahead.

The ablllty to add new theorems without relating them to
other theorems Is the advantage of a "unlform" notatien. |In
fact PLANMER is a uniform notatlon for expressing procedural
knowledge just as predicate calculus s a notatlon for a more
1imited range of Information. The advantage s that PLANNER has
a hierarchical control structure. In additlon to specifylng
logical relationships, a theorem can take over control of the
deduction process.

We can have complete control over how the system will
operate. In any theorem, we can tell it to try to prove a
subgoal using only certaln theorems (If we know that the goal Is
bound to fall unless one of them works), we can tell It to try
things in a certain order {and the cholce of this order can
depend on arbltrarily complex caleculations which take place when
the subgoal Is set up) or we can even write a "spoller" theorem,
which can tell the system that a2 goal Is certaln to fall, and
that no other theorems should even be trled.

Notlce that this control structure makes 1t very difficult
to characterlze the abstract loglcal propertles of PLANNER, such
as conslstency and completeness, It Is worth pointing out here
that completeness may In fact be a bad property. |t means (we

bellieve, necessarlly) that If the theorem-prover Is glven

something to prove which Is In fact false, 1t wlill exhaust every

Section 3.2.5 - Page 237

possible way of tryvlng te prove It., By forsaklng completeness,
we allow ourselves to use good sense In declding when to glve
up.

In a truly uniform system, the theorem prover |Is forced to
"rediscover the world" every time It answers a question., Every
goal forces It to start from scratch, looking at all of the
theorems In the data base (perhaps using some subject-matter-
free heuristics to make a rough selectlion). Because it does not
want to be limited to domalin-dependent Information, It cannot
use [t at all. PLANNER can operate In this "blindman" mode |f
we ask 1t to (and It Is less efficlient at dolng se¢ than a
procedure speclially Invented to operate thls wav), but It should
have to do this only rarely -- when discovering somethling which
was not known or understood when the basic theorems were
written, The rest of the time It can go about proving things
which It knows how to do, without a tremendous overhead of
having to plece together a proof from scratch each time, As
mentloned above, It mlght be possible te patch "strategy
programs" onte thecrems In conventlonal theorem=-provers ln order
to accompllsh the same goal. In PLANNER we have the advantage
that this can be done naturally using the notatlion, and the
strategy ls embedded In the PLANNER thecrems, whlich themselves
can be looked at as data. |In an advanced system a PLANNER
program could be written to learn from experlence. Once the

"&1lndman mode" finds a proof, the method It used could be

Sectlon 3,2.5 - Page 233

remembered and tried first when a2 simlilar goal Is generated
again. See section 5.1 for more discussion of learning.

To those accustomed to uniform proof procedures, this all
sounds like cheating. |s the system really proving anvthing If
you are glving It clues about what to do? Why Is Tt different
from a simple set of programmed LISF procedures 1lke those
envisioned by Woods? Flirst, the language is deslgned so that
theorems can be wrlitten ITndependently of each other, without
worrying about when they will be called, or what other theorems
and data they will need to prove their subgoals,

The language Is designed so that If we want, we can wrlits
theorems In a form which Is almest identical te the predicate
calculus, so we have the beneflts of a uniform system. On the
other hand, we have the capablllty to add as much subject-
dependent knowledge as we want, tellling theorems abeout other
thecrems and proof procedures, The system has an automatlc
goal=tree backup system, so that even when we are specifying a
particular order In which to do things, we may not know how the
system will go about doing them. It will be able to follow our
suggestions and try many different theorems to establish a geoal,
backing up and trylng another automatically If one of them leads
to a fallure (see sectlion 3.3).

In summary, the maln advance In a deductlve system using
PLANNER 1s in allowing ourselves to have a data base of
procedures rather than formulas to express complex Informatlon.
This combines the generallty and power of a thecrem prover with
the abllity te accept procedural knowledge and heuristics
relevant to the data, It provides a flexible and powerful tool
to serve as the basls for a language understanding system, The
rest of this chapter descrlibes the PLANNER language and the way

It Is used in our system.

Sectien 3.3.1 - Page 23%

3.3 Programming in PLANNER
2.3.1 Baslc QOperation of PLANNER
The easlest way to understand PLANNER Is to watch how |t
works, so In this section we will present a few simple examples
and explain the use of some of Its most elementary features,

Filrst we will take the most venerable of traditional

deductions:

Turlng s & human

A1l humans are falllble
S0

Turling Is fallible.

It Is easy encugh to see how this could be expressed In the
usual logical notation and handled by a unlform proof procedure,

Instead, let us express [t In one possible way to PLANNER by
saying:
(THASSERT (HUMAN TURIMNG))

:This asserts that Turing is human,
(DEFPROP THEOREM1

(THCONSE (X) (FALLIBLE $7X)
(THGOAL (HUMAN $7X)))
THEOREM)

+This is one way of saylng that all humans
;are fallible.

The proof would be generated by asking PLANNER to evaluate

the expression:

(THGOAL (FALLIBLE TURING) (THTBF THTRUE))

We Immedlately see several polnts., Flrst, there are two
different ways of stering Information. Simple assertions are
stored in a data base of assertions, while more complex

sentences contalning quantiflers or loglcal connectlves are

Section 3.3.1 - Page 240

axpressed In the form of theorems.

Second, one of the most important polints about PLANMER 1s
that It is an evaluator for statements written In a programming
language. It accepts Input In the form of expressions wrlitten
in the PLANMER language, and evaluates them, producling a value
and slde effects., THASSERT Is a functlon which, when evaluated,
stores Its argument In the data base of assertlons or the data
base of theorems (which are cross-referenced In various ways to
glve the system efficient look=up capabilities). A theorem Is
defined with DEFPROP as are functions in LISP.

In this example we have defined a theorem of the THCONSE
type (THCONSE means consequent; we will see other types later).
This states that 1f we ever want to establish a goal of the form
(EALLIBLE $7X), we can do this by accompllishing the goal (HUMAN
$7X), where X 1s a varlable. The strange prefix characters are
part of PLANNER's pattern matching capabllitles. I|f we ask
PLANNER to prove a goal of the form (A X), there Is no obvious
way of knowing whether A and X are constants {11ke TURING and
HUMAN i1n the example) or varlables, LISP solves this problem by
using the function QUOTE to indicate constants. In pattern
matching this Is Inconvenient and makes most patterns much
bulkler and more dlfflcult to read. Instead, PLANNER uses the
opposlte conventleon =-- a constant s represented by the atom
itself, while a variable must be Indlecatec by adding an

appropriate prefix., This prefix differs according to the exact

Sectlion 3.3.1 - Page 241

use of the varlable In the pattern, but for the time beling let
us just accept $? as a prefix Indlcating a variable. The
definition of the theorem Indicates that It has one varliable, X,
by the (X) following THCONSE,

The third statement 1llustrates the function THGDAL, which
calls the PLANNER Interpreter to try to prove an assertion.

This can function In several ways. |f we had asked PLANNER to
evaluate (THGOAL (HUMAN TURING)) it would have found the
requested assertion Immedlately In the data base and succeeded
{returning as Its value some Indicator that It had succeeded).
However, (FALLIBLE TURING) has not been asserted, so we must
resort to theorems to prove It.

Later we will see that a THGOAL statement can glve PLANNER
various kinds of advice on which theorems are appllicable to the
goal and should be trled. For the moment, (THTBF THTRUE) Is
advice that causes the evaluator to try all theorems whose
consequent s of a form which matches the goal. (l.e. a theorem
with a consequent ($%Z TURING) would be tried, but one of the
form (HAPPY $7Z) or (FALLIBLE $7Y $?I) would not. Assertlons
can have an arbitrary 1ist structure for thelr format -- they
are not limited to two-member 1ists or three-member 1lsts as In
these examples,) The theorem we have just defined would be
found, and in trying It, the match of the consequent te the
goal would cause the varlable $%X to be assigned te the constant

TURING. Therefore, the theorem sets up a new goal (HUMAN

Section 3.3.1 - Page 242

TURING) and this succeeds Immediately since It Is in the data
base, In general, the success of a theorem will depend on
evaluating a PLANNER program of arbitrary complexity. In this
case It contalns only a single THGOAL statement, so [ts success
causes the entire theorem to succeed, and the goal (FALLIBLE
TURING) is proved.

Consider the question "ls anything fallible?", or In
logic, (EXISTS (Y)(FALLIBLE Y)). This requlres a variable and
It could be expressed in PLANNER as:

{THPROG (¥) (THGOAL (FALLIELE $?Y)(THTBF THTRUE)))

Motice that THPROG (PLAMMER's equivalent of a LISP PROG,
complete with GO statements, tags, RETURK, etec.) acts as an
existential quantifier. It provides a binding-place for the
variable ¥, but does not Initlallze it == it leaves It In a
state particularly marked as unassigned. To answer the
gquestion, we ask PLANNER te evaluate the entlre THPROG
expresslon above, To do this It starts by evaluating the THGOAL
expression. This searches the data base for an assertion of the
form (FALLIBLE $7Y) and falls, It then looks for a theorem with
a consequent of that form, since the recommendation (THTEF
THTRUE) says to loock at all possible thecrems which mlight be
applicable. When the theorem deflined above Is called, the
variable ¥ in the theorem Is ldentifled with the varlable ¥ In
the goal, but since Y has no value yet, X does not recelve a

value, The theorem then sets up the goal (HUMAN $?X) with X as

Sectlion 3.3.1 = Page 243

a variable. The data-base searching mechanism takes thls as a
command to look for any assertlon which matches that pattern
(l.e. an instantiation), and finds the assertion (HUMAN TURING).
This causes X (and therefore Y) to be assigned to the constant
TURING, and the theorem succeeds, completing the proof and

returning the value (FALLIELE TURING).

Section 3.3.2 - Page I4L

3.3.2 Backup

There seems to be something mlissing., So far, the data base
has contained only the relevant objects, and therefore FLANNER
has found the right assertions immedlately. Consider the
problem we would get 1f we added new Information by evaluating
the statements:

(THASSERT (HUMAN SOCRATES))
(THASSERT (GREEK SOCRATES))

Our data base now contains the assertlions:
[HUMAN TURING)
{HUMAN SOCRATES)
(GREEK SOCRATES)
and the theorem:

{THCONSE (X) (FALLIBLE %£7X)
(THGOAL (HUMAN $7TXJ)))

What 1f we now ask, "Is there a falllble Greek?" In PLANNER
we would do this by evaluating the expresslon:

(THPROG (X) (THGOAL (FALLIBLE %7?X)(THTEBF THTRUE})
{THGOAL (GREEK %£7X)))

THPROG acts 1ike an AND, Insisting that all of its terms
are satisfled before the THPROG Is happy. MNotice what might
happen. The first THGOAL may be satisfled by the exact same
deduction as before, since we have not removed Information. |If
the data-base searcher happens to run Into TURING before It
finds SOCRATES, the goal (HUMAN $7X) will succeed, assigning $7X
to TURING. After (FALLIBLE $7?X) succeds, the THPROG will then
establish the new goal (GREEK TURING), which Is doomed to fall

sinece It has not been asserted, and there are no appllicable

Sectlon 3.3.2 - Page 245

theorems, |If we think in LISP terms, thlis Is a serflous problem,
since the evaluation of the flrst THGOAL has been completed
before the second one Is called, and the "push-down 1ist" now
contalns only the THPROG. |If we try to go back to the beglinnling
and start over, it wlll again find TURING and so on, ad
Infinitum,

One of the most Important features of the PLANNER language
Is that backup In case of fallure Is always possible, and
moreover thlis backup can go to the last place where a declsion
of any sort was made. Here, the declslion was to pick a
particular assertion from the data base to match a goal. Other
decisions might be the choice of a theorem to satisfy a goal, or
8 decision of other types found In more complex PLANMER
functlons such as THOR (the equivalent of LISP OR). PLANMER
keeps enough information to change any declslon and send
evaluation back down & new path,

In our example the declslion was made Inside the theorem for
FALLIBLE, when the goal (HUMAN $7X) was matched to the assertlion
(HUMAN TURING). PLANMER wlll retrace Its steps, try to find a
different assertion which matches the goal, find (HUMAN
SOCRATES), and contlnue with the proof. The theorem will
succeed with the value (FALLIBLE SOCRATES), and the THPROG will
proceed to the next expression, (THGOAL (GREEK $7?X)). Slnce X
has been asslgned to SOCRATES, thls will set up the goal (GREEK
SOCRATES) which will succeed Immedlately by finding the

Section 3.3.2 - Page 246

corresponding assertlon In the data base. Slince there are no
more expressions In the THPROG, [t will succeed, returnlng as
itz value the value of the last expression, (GREEK SOCRATES).
The whole course of the deductlon process depends on the fallure
mechanism for backling up and trying thlngs over (thls Is
actually the process of trying different branches down the
subgoal tree.) A1l of the functicns like THCOND, THAND, THOR,
etc. are controlled by success vs, failure. Thus [t is the
FLANNER executlve which establishes and manipulates subgeoals In

looking for a proof.

Sectlon 3.3.3 - Page 247

2.3,2 Differences with Other Theorem=-Provers and Languages
Although PLANMER 1s written as a programming language, It

differs In several eritical ways from anvything which 1s normally

considered a programming language, Flirst, It Is goal-directed,

Theorems can be thought of as subroutines, but they can be
called through a very general pattern-matcher which loocks at the
goal which Is to be satisfled, This Is 1lke having the abllltly
to say "Call a subroutine which will achieve the desired result
at this point." Second, the evaluator has the mechanism of
success and failure to handle the exploration of the subgoal
tree, Other languages, such as LISP, with & baslc recursive
evaluator have no way to do thils. Third, PLAMNER contalns a
bookkeeping system for matching patterns and manlpulating a data
base, and for handlling that data base efficiently,

How 1s PLAMMER different from a theorem prover? What Is
gained by writing theocrems in the form of programs, and giving
them power to call other programs which manipulate data? The
key Is in the form of the data the theorem-prover can accept.
Most svystems take declarative informatlon, as In predicate
calculus, Thils Is In the form of expressions which represent
"facts" about the world., These are manipulated by the theorem=-
prover according to some fixed unliform process set by the
system, PLANMNER can make use of Imperative Information,
telling It how to go about proving & subgoal, or to make use of
an assertion. Thls produces what Is called hierarchical gontrol
structure. That s, any theorem can Indicate what the theorem
prover Is supposed to do as It continues the proof, It has the
full power of a general programming language to evaluate
functions which can depend on both the data base and the subgoal
tree, and to use [ts results to control the further proof by
maklng assertions, declding what theorems are to be used, and
specifying 2 sequence of steps to be followed,

What does this mean In practical terms? In what way does

It make a "better" theorem prover? We will give several

Sectlion 3.3.3 - Page 24E

examples of areas where the approach 1s Important.

First, consider the basic problem of deciding what subgoals
te try in attempting to satisfy a goal. Very often, knowledge
of the subject matter wlill tell us that certaln methods are very
likely to succeed, others may be useful If certain other
condltions are present, while others may be possibly valuable,
but not 1lkely. We would 1lke to have the abllity to use
heuristic programs to determine these facts and direct the
theorem prover accordingly. |t should be able to direct the
search for goals and solutlons In the best way possible, and
able to bring as much Intellligence as possible to bear on the
declislion. In PLAMMER this Is done by adding to our THGOAL
statement a recommendation list which can specify that OMLY
certaln theorems are to be tried, or that certaln ones are to be
tried FIRST In a specifled order. Since theorems are programs,
subroutines of any type can be called to help make this declsion
before establishing a new THGOAL. Each theorem has a name (In
our definition at the beginning of Sectlien 3.1.1, the theorem
was glven the name THEOREM1), to facillitate referring to It
explliclitly,

The simplest kind of recommendation i1s THUSE, which takes a
list of theorems (by names) and recommends that they be tried In
the order listed. A more general recommendation uses fllters
which look at the thecrem and declide whether 1t should be tried.

The user defines his own filters, except for the standard fllter

Sectlion 3.3.3 - Page 249

THTRUE, which accepts any theorem,

The filter command for theorems [s THTBF, so a
recommendation 1ist of the form:

({THUSE TH1 TH2)(THTBF TEST)(THUSE TH-DESPERATION})
would mean to first try the theorem named TH1l, then THZ, then
any theorem which passes the filter named TEST (which the user
would deflne), then If all that falls, use the theorem named TH-
DESPERATION, In our programs, we have made use of only the
simple capabilitles for choosing theorems == we do not define
filters other than THTRUE. However, there Is5 alsoc a capabllity
for filtering assertlions In & simllar way, and we do use thils,

as explained in section 4.3,

Section 3.3.4 - Page 250

3.3,4 Controlling the Data Base

An Important problem Is that of maintaining 2 data base
with a reasonable amount of material. Consider the first
example above, The statement that all humans are falllble,
while unambiguous In a declarative sense [s actually amblguous
In its imperative sense (i.e. the way it is to be used by the
theorem prover). The first way is to simply use It whenever we
are faced with the need to prove (FALLIBLE $7%X). Ancther way
might be to watch for a statement of the form (HUMAN $7X) to be
asserted, and to Immediately assert (FALLIBLE $%X) as well,
There is no abstract logical difference, but the Iimpact on the
data base is tremendous. The more concluslions we draw when
information Is asserted, the easler proofs will be, since they
will not have to make the additional steps to deduce these
consequences over and over again. However since we don't have
infinite speed and size, It Is clearly folly to think of
deducing and asserting evervthing possible {or even evervthing
interesting) about the data when it Is entered., |f we were
working with totally abstract meaningless theorems and axioms
{an assumption which would not be incompatible with many
theorem=proving schemes), this would be an insoluble dilemma.
But PLANNER Is designed to work in the real world, where our
knowledge Is much more structured than a set of axlioms and rules
of inference. We may very well, when we assert (LIKES $7X

POETRY) want to deduce and assert (HUMAM $7X), since In

Sectlon 3.3.4 - Page 251

deducing things about an ohject, It will very often be relevant
whether that object is human, and we shouldn't need to deduce It
each time. 0On the other hand, It would be s11ly to assert (HAS-
AS=PART $7?X SPLEEN), since there Is a horde of facts equally
Important and equally limited In use. Part of the knowledge
which PLANMNER should have of a subject, then, Is what facts are
Important, and when to draw consequences of an assertion. This
is done by having theorems of an antecedent type:
(DEFPROP THEOREM2
(THANTE (X ¥} C(LIKES §7X §?Y)
(THASSERT (HUMAN $7X))})

THEOREM)

This says that when we assert that X 1lkes something, we
should also assert (HUMAN $7X). Of course, such theorems do not
have to be so simple. A fully general FLANNER program can be
activated by an THANTE theorem, dolng an arbitrary (that Is, the
programmer has free cholce) amount of deductlon, asssertlon,
etc. Knowledge of what we are doing In a particular problem may
indicate that it s sometimes a good Idea to do this kind of
deduction, and other times not. As with the CONSEQUENT
theorems, PLANNER has the full capaclity when something Is
asserted, to evaluate the current state of the data and proof,
and speciflcally declide which ANTECEDENT theorems should be
called.

PLAMNER therefore allows deductlons to use all sorts of
knowledge about the subject matter which go far bevond the set

of axloms and basic deductiwve rules. PLAMMWER ltself 1s subject-

Section 3.3.4 - Page 252

independent, but its power s that the deductlon processs never
needs to operate on such a level of [gnorance, The programmer
can put In as much heuristlic knowledge as he wants to about the
subject, just as a good teacher would help a class to understand
a mathematical theory, rather than just telllng them the axloms

and then gliving theorems to prove,

Section 3.3.5 - Page 253

2,3.5 Events and States

Another advantage In representing knowledge In an
Imperative form Is the use of a theorem prover In deallng with
processes Involving a sequence of events, Consider the case of
a robot manipulating blocks on a table. It might have data of
the form, "blockl is on block2," "block2 Is behind bleck3", and
"If x Is en v and you put It en 2, then % Is on 2z, and Is no
longer on ¥ unless v 1s the same as 2", Many examples In papers
on theorem provers are of this form (for example the classlc
"monkey and bananas" preblem). The problem Is that a
declarative theorem prover cannot accept a statement 1lTke (ON Bl
BE2) at face value. It clearly Is not an axlom of the system,
since Its validlity will change as the process goes on. |t must
be put In a form (ON Bl B2 S50) whare S0 Is a symbol for an
inftial state of the world., See <Green 1969> for a discussion
of such "state" problems.

The third statement might be expressed as:
(FORALL (X Y Z S)CAND (ON X ¥ (PUT X ¥ 5))
(ORCEQUAL ¥ Z)
(HNOTCON X Z (PUT X Y S5))))))

In this representation, PUT Is a functlon whose value Is
the state which results from putting X on Y when the previous
state was 5. We run Into a problem when we try to ask (ON I W
(PUT X ¥ S)) T.e. Is block I on block W after we put X on Y? A

human knows that 1f we haven't touched 7 or W we could just ask

(ON Z W S) but Iin general 1t may take a complex deductlon to

Section 3.3.5 - Page 254

declde whether we have actually moved them, and even [if we
haven't, It will take a whole chaln of deductions (tracing back
through the time sequence) to prove they haven't been moved. In
FPLANMER, where we zpeclfy a process directly, this whole type of
problem can be handled In an intultively more satlisfactory way
by using the primitive function THERASE.

Evaluating (THERASE (OM $7?X $?Y)) removes the assertion (ON
21X &%) from the data base, |f we think of theorem provers as
working with a set of axioms, It seems strange to have a
function whose purpose Is to erase axioms., |f Instead we think
of the data base as the "state of the world" and the operation
of the prover as manipulating that state, It allows us to make
great simpllfications. Mow we can simply assert (0N Bl B2)
wWlthout any explicit mention of states, We can express the
necessary theorem as:

(DEFPROP THEOREM3
(THCONSE (X ¥ Z) (PUT $7X $7Y)
(THGOAL CON $7X S57?Z))
(THERASE (ON $7%X $7%Z))
(THASSERT (OQON $7X $?Y)))

THEQREM)

This says that whenever we want to satisfy a goal of the
form (PUT $%X $?Y), we should flrst find out what thing Z the
thing X is sitting on, erase the fact that It Is slitting on Z;
and assert that It Is slitting on Y. We could alse do a number of
other things, such as proving that It Is Indeed possible to put

X on ¥, or addlng 2 list of speclflic Instructlons to a movement

plan for an arm to actually execute the goal.ln a more complex

Section 3.3.5 - Page 1255

case, other interactions might be Involved., For example, [f we
are keeping assertlons of the form (ABOVE $7X %$7?Y) we would need
to delete those assertions which became false when we erased (0OM
$7X §?L) and add those which became true when we added (ON $7X
$7Y). ANTECEDENT theorems would be called by the assertion (ON
$7X §7?Y) to take care of that part, and a similar group called
ERASING theorems can be called in an exactly znalogous way when
an assertion is erased, to derive conseguences af the erasure,
Again we emphasize that which of such theorems would be called
is dependent on the way the data base |s structured, and Is
determined by knowledge of the subject matter. |In this example,
we would have to declde whether It was worth adding all of the
ABOVE relations to the data base, with the resultant need to
check them whenever something s moved, or Instead to omlit them
and take time to deduce them from the ON relaticon each time they
are needed.

Thus in PLANMNER, the changing state of the world can be
mirrored In the changing state of the data base, avoiding any
need to make expliclit mention of states, with the requlsite
overhead of deductions, This Is possihble since the Information
is given in an Imperative form, specifyling theorems as a serles
of speciflic steps to be executed,

If we Took back to the distinction between assertions and
theorems made on the first page, It would seem that we have

established that the base of assertlons Is the "current state of

sectlfon 3,3.5 - Page 236

the world", while the base of theorems [s5 our permanent
knowledge of how to deduce things from that state. This is not
exactly true, and one of the most excliting possibllities In
PLANMER 1s the capabllity for the program [tself to create and
medl fy the PLANNER functions which make up the theorem base.
Rather than simply making assertions, a particular PLANNER
function might be wrlitten to put together a new theorem or make
changes to an existing theorem, in a way dependent on the data
and current knowledge. It seems likely that meaningful
"earning" involves thls type of behavior rather than simply
modi fylng parameters or adding more Individual facts

{assertlons) to a declarative data base.

Section 3.3.6 - Page 257

243,06 PLANNER Functlions

There are a number of other PLANNER commands, designed to
sult a range of problem=solving needs. They are described In
detail in <Hewltt 1969, 1970> and We will describe only those
which are of particular use In our guestion answerlng program
and which we will want to refer to later.

We have already menticned the basic functlons and descrlibed
how they operate. THGOAL looks for assertions In the data base,
and calls theorems to achieve goals. THAND takes a 1lst of
PLANNER expresslons and succeeds only If they all succeed In the
order they are listed. THOR takes a similar 1ist and tries the
expresslions In order, but succeeds as soon as one of them does.
Remember that In case of a fallure farther along In the
deduction, THOR can take back Its decislion and continue on down
the list. The other simple LISP functions PROG, COND, and MOT
have thelr PLANNER analogs, THPROG, THCOMND, and THMOT, which
operate just as thelr LISP counterparts, except that they are
controlled by the distinctlion between "fallure" and "success"
instead of the distinction between NIL and non-NIL, THPROG acts
ITike THAND, failling If any one of 1ts members falls,

One of the most useful PLANNER functlons Is THFIND, which
s used to find all of the ebjects or assertions satlsfylng a
given PLANNER condition. For example, [f we want to find all of

the red blocks, we can evaluater

Section 3,3.6 - Page 253

(THFIND ALL $7X (X)

(THGOAL(BLOCK $7X))
(THGOALCCOLOR $7X RED)))

The function THFIND takes four pleces of Information.
First, there is a parameter, telling It how many objects to look
for. When we use ALL, it looks for as many as It can find, and
succeeds [f It finds any. |If we use an Integer, It succeeds as
soon as it finds that many, without looking for more. |If we
want to be more complex, we can tell It three things: a. how
many It needs to succeed; b, how many It needs to quit lookling,
and &, whether to succeed or fall If It reaches the upper limit
set in b.

Thus If we want to find exactly 3 objects, we can use a
parameter of (3 & MNIL), which means "Don't succeed unless there
are three, loock for a fourth, but If you find It, fall",

The second bit of Information tells It what we want In the
11st It returns. For our purposes, this will always be the
variable name of the object we are interested in, The third
item 1s 2 1ist of variables to be used, and the fourth [s the
body of the THFIND statement., It Is this body that must be
satlsfied for each object found., It is ldentlcal to the body of
a THPROG, and can have tags and THGD statements as well as a
series of expressions to be evaluated.

Another function used extensively by the semantic
interpreter Is THAMONG. This takes twe arguments, the second Is

a list, and the flrst Is the name of & variable. |f the

Section 3.3.6 - Page 259

varlable Is assigned, THAMONG acts just llke LISP MEMQ,
succeeding [f the value of the variable Is contalined In the
list. However, If the varlable s unasslgned, THAMOMNG assligns
It to the first member of the 1lst, then succeeds. |If this
causes a fallure to back up to the THAMONG, It binds the
variable instead to the second member and tries agaln. This
contlinues untll the entlre expression succeeds with some
assignment or the 1lst s exhausted, In which case THAMONG
returns fallure. WUsing thls, along with the normal binding
mechanism In THGOAL statements, failure can be used to run a
loop through a2 1ist of objects which are specified by glving a

PLANNER goal or arblitrary expresslion which they satsify.

Sectfon 3.4 - Page 260

3.4 The BLOCKS World

We need a subject to discuss with our language=
understanding program which gives a variety of things teo say and
In which we can carry on a discourse, containing statements,
questions, and commands. We have chosen to pretend we are
talklng to a very simple type of robot (like the cnes being
developed in Al projects at Stanford and MIT) with only one arm
and an eye. It can look at a scene contalning toy objects 1lke
blocks and balls, and can manipulate them with [ts hand,

We have not tried to use an actual robot or to simulate It
in physlical detall. Since we are interested primarily In
complex language activity, we have adopted a very simplified
model of the werld, and the "robot" exlists only as a display on

the CRT scope attached to the computer.

Sectlon 3.k.1 - Page 261

2.4.]1 Objects

First we must decide what objects we will have In the
world., In 3.1, we adopted some conventlons for notation Inm
representing objects and assertiens. Any symbol which beglns
with ":" represents a specific object, while anything beginning
with "#" Is the name of a property or relation.

The model begins with the two particlpants In the
discussion, the robot {(named :SHRODLU), and the person {(called
tFRIEND). The robot has a hand (:HAND), and manipulates objects
on a table (:TABLE), which has on it a2 box (:BOX). The rest of
the physical objects are tovs -- blocks, pyramids, and balls.
We glve them the names :Bl, :B2, :B3,...

Next we must decide on the set of concepts we will use to

describe these objects and thelr propertlies. We can represent

these In the form af a8 tree:

#TABLE

#BOX #BELOCK
#PHYSOB == #MAN | P fEALL
#ROBOT #HAND #PYRAMID
#FERSOM #STACK

#COLOR
#PROPERTY
#SHAPE

Flgure 54 -- Classiflicatlon of Objects and Properties

The symbol #PHYSOB stands for "physical object", and #MANIP for

“"manipulable object™ (l.e. something the robot can plck up).

Sectlon 3.4.1 - Page 262

We could use these as simple predicates, and have
assertions 1lke (#ROBOT :SHRDLU), (#HAND :HAND), and (#PYRAMID
:B5) te say that Shrdlu Is a roboet, the hand Is a hand, and :B5
is a pyramid. In section L,4.3, we describe the way the
language programs choose an English phrase to describe an
object. In order to do so, they need a basic noun -- the one we
would use to say "this is a ...". |If we represented the
concepts in the above tree using simple predicates, and then
used the same form for other predicates, such as colors (for
example, (#BLUE :B5)), the language generating routines would
have no easy way to know which was the "basic" property. It
would be necessary to keep lists and continually check.

Instead, we adopt a different way of writing these concepts. We
use the concept #15 te mean "has as its baslec description", and
write (#15 :SHRODLU #ROBOT), (#1015 :HAND #HAND), and (#I5 :BS
#PYRAMID) .

Looking at the tree, we see that the propertles #PHYSOE and
#MANIP cannot be represented in this fashlon, since any object
having them alsoc has a basiec description. We therefore write
{(#MANIP :E5) and (#PHYSOE :TAEBLE).

Mext, we would 1lke to asslgn physlcal properties to these
objects, such as size, shape, color, and location, Shape and
color are handled with simple assertions 1ike (#COLOR :BOX
fWHITE) and (#SHAPE :B5 #POINTED). The possible snapes are
#ROUND, #POINTED, AND #RECTANGULAR, and the colors are #BLACK,

Sectieon 3,4,1 - Page 263

#RED, #WHITE, #GREEMN., and #BLUE. Of course it would involve no
programming to Introduce other shape or color names -- all that
we would de Is use them in an assertion, 1lke (#COLOR :Bll
#MAUVE), and add an assertion telling what type of thing they
are, The property names themselves can be seen as objects, and
we have the concepts #COLOR and #SHAPE, to make assertions 1lke
(#15 #BLUE #COLOR), and (#|5 #RECTANGULAR #SHAPE).

5lze and locatlon are more complex, as they depend on the
way we choose to represent physical space. We have adopted a
standard three-dimensional coordinate system, with coordinates
ranging from 0 to 1200 In 211 three directions. (The number
1200 was chosen for convenience In programming the display).

The coocrdinate point (0 0 0) Is in the front lower left-hand
corner of the scene,

We have made the simplifyling assumption that objects are
not allowed to rotate, and therefore always keep their
orlentation alligned with the coordinate axes. We can represent
the positlon of an object by giving the coordinates of Its front
lower left-hand corner, and can specify I1ts slze by glving the
three dimensions. We use the symbols #51ZE and #AT, and put the
coordinate triples as a single element In the assertlons. For
example, we might have (#AT :B5 (400 G600 200)), and (#SI1ZE :BS
(100 100 300)).

Since we assume that the robot has an eye, the system

begins the dialog with complete information about the objects In

Sectlon 3,4.1 - Page 264

the scene, thelir shapes, sizes, colors, and locatlons, In
addition to the PLANNER assertlions, the system keeps a table of
sizes and locatlions for more efflicient calculation when looking

for an empty space to set somethlng down.

Section 3.4.2 - Page 265

2.4,2 Relations

The baslc relatlons we wlll need for thls model are the
spatial relatlons between objects. 5Slnce we are Interested In
moving objects around In the scene, one of the most Important
relations Is #SUPPORT. The Iniftlal data base contalns all of
the applicable support relations for the inftlal scene, and
every time an object Is moved, an antecedent theorem removes the
old assertion about what was supporting It, and puts In the
correct new one, We have adopted a very simpliflied notion of
support, In which an object Is supported by whatever Is directly
below lts center of gravity, at the level of Its bottom face.
Therefore, an object can support several others, but there Is
only one thing supporting It. Of course this Is an extreme
simplification since It does not recognize that a simple bridee
is supported. |If this program were to be adapted to use with an
actual robot, a much more general ldea of support would be
necessary. Aleng with the #SUPPORT relatlens, we keep track of
the property #CLEARTOP. The assertion (#CLEARTOP X) will be In
the data base If and only If there |s no assertion (#SUPPORT X
¥) for any object ¥. It Is also kept current by antecedent
theorems which are called whenever an object Is moved. This
happens automatically whenever an assertion of the form (#AT 0BY
(X ¥ Z)) 1s made. The theorems make the approprliate check to
sea whather the #CLEARTOP status of any object has changed, and

If so the necessary erasures and assertions are made.

Section 3,4,2 - Page 266

A second relation which 1s kept In the data base Is
SCONTAIN. The first participant must be the box, since this Is
the only contalner In the scene. The Information about what Is
contained in the box Is also kept current by an antecedent
theorem. The relation #GRASPING Is used to Indicate what
object (iIf any) the robot's hand is grasplng. It Is
thearetically a two-place predicate, relating a grasper and a
graspee, as In (#GRASPING :SHRDLU :B2). Since there 13 only one
hand in our scene, it is clear who must be doing the grasping,
so the assertion 15 reduced to (#GRASPING :B2),

The other relation which Is stored In the data base Is the
#PART relatlion between an object and a stack, We can glve a
name to a stack, such as :51, and assert (#PART :B2 :51). As
objects are moved, the changes to the data base are again made
automatically by antecedent theorems which notice changes of
lecation.

As we explained In section 3.3.3, we must declide what
relations are useful enough to occupy space In our data base,
and which should be recomputed from simpler Information each
time we need them. We have included relations 1ike #SUPPORT and
#CONTAIN because they are often referenced In declding how to
move objects. We can think of other relatlons, such as the
relative position of twe objects, which can be computed from
thelr locatlions, and are not used often encugh to be worth

keeping In the data base and partlially recomputing every time

Section 3.4.2 - Page 267

something is moved., We represent these relations using the
symbols #RIGHT, #BEHIND, and #ABOVE. (These represent the
directlion of the positive coordinate axls for X, ¥, and I
respectively), We do not need the converse relatlons, slnce we
can represent a fact like ":Bl Is below :B2" by (#ABOVE :B2
tBl), and our semantic system can convert what Is sald toe this
standard format. The symbel #0N Is used to represent the
transitive closure of #SUPPORT. That Is, Z Is #0N A If A
supports B, B supports C,...supports Z,

The three spatial relations use a common consequent theorem
called TC-LOC which decides If they are true by looking at the
coordinates and sizes of the objects, The #0N relation has a
consequent theorem TC-0WN which looks for chains of support.
{(Notice that the prefix TC~- stands for Theorem Consequent, and
is attached to all of our conseaquent theorems. Similarly, TA-
and TE- are used for antecedent and erasling theorems,)

The measurements of #HE|GHT, #WIDTH, and #LENGTH are
represented as a simple assertion, 1lke (#HEIGHT :B3 100), but
they are not stored In the data base. They are computed when
needed from the #51ZE assertion, and can be accessed by using
the theorem TC-MEASURE, or by using a functional notatlon. The
expresslion (#HEIGHT X) evaluates to the helght of whatever
object the varlable X Is bound te. |If #S1ZE Is used In this
way, it returns a measure of "overall slze" to be used for

comparisons 11ke "blgger". Currently it returns the sum of the

section 3.4.2 - Page 268

X, ¥, and I coordinates, but It could be easlly changed to be
more In accord with human psychology.

In order to compare measurements, we have the relation
#MORE, The sentence ":Bl Is shorter than :B2" 1s equivalent to
the assertion (#MORE #HEIGHT :B2 :Bl). Agaln, we do not need
the relation "less" since we can simply reverse the order of the
objects. The relatlon #ASMUCH is used In the same way, to
express "greater than or equal', Instead of "strictly greater
than". Hone of these assertions are stored (If we have ten
objects, there will be almost 400 relationships), but are
computed from more baslic information as they are needed.

One final relatlionshlip Is #LIEE, which relates a person or
robot to any object. There Is a theorem which shows that the
robot 1lkes everything, but knowledge about what the human user
11kes s gathered from his statements, The semantlc programs
can use statements about lfking to generate further PLANNER
theorems which are used to answer guestlons about what :FRIEND

1ikes.

Section 3.4.3 - Page 269

2.4,3 Actions

The only events that can take place in our world are
actlens taken by the robet In moving 1ts hand and manipulating
objects. At the most basic level, there are only three actlaons
which can occur -- MOVETO, GRASP, and UNGRASP. These are the
actual commands sent to the display routines, and could
theoretically be sent directly to a physical robot svstem,

The result of calling a conseguent theorem to achleve a
goal requiring motion, 1lke (#PUTOM :B3 :BL4), Is a plan -- &
Iist of Instructions using the three elementary functlons.
MOVETO moves the hand and whatever 1t Is currently grasping to a
set of speciflied coordinates. GRASP sets an Indlcator that the
grasped object 1s to be moved along with the hand, and UNGRASP
unsets lt. The robot grasps by moving 1ts hand directly over
the center of the object on Its top surface, and turnlng on a
"magnet". It can do this toe any manlpulable object, but can
only grasp one thing at a time. Uslng these elementary actlons,
we can bulld a hlerarchy of actions, Including goals which may
Invelve a whole seguence of deductlons and actions, 1lke
#STACKUP.

The semantic programs never need to worry about detalls
Involving physical coordinates or specific motion Instructlens,
but can produce Tnput for higher-level theorems which do the
detalled work.

At a slightly higher level, we have the PLANMER concepts

Section 3.4.3 - Page 270

#MOVEHAND, #GRASP and #UNGRASP, and corresponding consequent
theorems to achleve them, There Is & significant difference
between these and the functlons llsted above. Callling tne
functlon MOVETO actually causes the hand to move. On the other
hand, when PLANNER evaluates a statment 1lke:

(THGOAL(#MOVEHAND (G600 200 300))(THUSE TC-MOVEHAND))
nothing 1s actually moved. The theorem TC-MOVEHAND s called,
and [t creates a plan to do the motion, but 1f this move causes
us to be unable to achieve a goal at some later point, the
PLANNER backup mechanism will automaticaly erase [t from the
plan. The robot plans the entire action before actually meving
anything, trying all of the means it has to achleve lts goal.

The theorems also do some checkling to see [f we are trylng

to do something impossible. For example, TC=-MOVEHAND makes sure
the action would not involve placing a block where there [s
already an object, and TC-UNGRASP falls unless there is

something supporting the object it wants toe let go of.

Section 3.4,k - Page 271

£a8.4 Larrving Out Commands

Some theorems, 1ike TC-GRASP, are more complex, as they can
cause a serles of actions, |In this section we will follow
PLANNER through such an action, using the simplified theorems of
flgure 55, |If PLANMER trles the goal:

(THGOAL (#GRASP :B1)(THUSE TC-GRASP))

the theorem TC-GRASP can do a number of things. It checks to
make sure :Bl is a graspable cbject by looking In the data base
for (#MANIP :Bl)., |If the hand Is already grasping the object,
It has nothing more te do., If not, 1t must flrst get the hand
to the object. This may invelve compllications == the hand may
already be holding something, or there may be cbjects sltting on
top of the one It wants to grasp. In the first case, 1t must
get rid of whatever is in the hand, using the the command #GET-
RID=0F. The easliest way to get rid of somethlng Is to set It
on the table, so TC-GET-RID-0F creates the goal (#PUTON $7X
:TABLE), where the variable $7X Is bound to the object the hand
is helding. TC-PUTON must In turn find a big enough empty place
to set down Its burden, using the command #F|NDSPACE, which
performs the necessary calculations, using Information about the
sizes and locatlons of all the objects, TC=PUTON then creates a
goal using #PUT, which calculates where the hand must be moved
to get the object into the desrired place, then calls #MOVEMAND
to actually plan the move. If we look at the loglcal structure

of our active geals at this polnt, assuming that we want to

Section 3.4.4 - Page 272

(DEFTHEOREM TC-CLEARTOP
(THCONSE (X Y) (#CLEARTOP $7X)
G0 (THCOND ((THGOAL (#SUPPORT $7X $_Y))
(THGOAL (#GET=RID=0F %£7Y)
(THUSE TC=-GET=RID=0F})
(THGOD GO))
{{THASSERT (#CLEARTOP $7X))))))

{DEFTHEOREM TC-GET-RID-OF
{THCONSE (X ¥Y) (#GET-RID-0OF $7X)
({ THOR
{THGOAL (#PUTON %7X :TABLE){(THUSE TC-PUTON))
(THGOAL (#PUTOM $£7X $?Y)(THUSE TC-PUTON}}}))

(DEFTHEOREM TC=GRASP
(THCONSE (X Y} (#GRASP $%X)
{THGOALC#MANIP $£2X))
(THCOND ((THGOAL (#GRASPING $7X)))
((THGOAL (#GRASPING $_Y))
(THGOAL (#GET-RID-OF $7Y)
(THUSE TC-GET-RID-0F))))
{T))

(THGOAL (#CLEARTOP $7X) (THUSE TC-CLEARTOP))
(THSETQ $_Y (TOPCENTER $§7X))
(THGOAL (#MOVEHAND $7Y)
{THUSE TC=-MOVEHAND))
(THASSERT (#GRASPING $7X))))

(DEFTHEQOREM TC=PUT
(THCONSE (X Y Z) (#PUT $7X $7Y)

(CLEAR $7Y (SIZE $7X) $7X)
(SUPPORT £7Y (SIZE $7X) $?X)
(THGOAL (#GRASP $7X) (THUSE TC-GRASP))
(THSETQ $_7 (TCENT £7Y (SI1ZE $%?X)))
(THGOAL (#MOVEHAND $7Z) (THUSE TC-MOVEHAND))
(THGOAL (#UNGRASP) (THUSE TC-UNGRASP))))

{DEFTHEOREM TC=FUTOM
(THCONSE (X Y Z) (#PUTON $7X $7Y)
(NOT (EQ $7X $7Y))
(THGOAL (#FINDSPACE $7Y S$E (SIZE $7X) $%X $_1)
{THUSE TC-FINDSPACE TC-MAKESPACE))
(THGOAL (#PUT $7X $7Z) (THUSE TC=PUT))))

Figure 55 == Simplifled PLAMNER Theorems

sectlon 3,.4.,4 - Page 273

grasp :Bl, but were already grasplng :B2Z, we see:
(#GRASP :B1)
(#GET-RID=-0OF :B2)
(#PUTON :B2 :TABLE)
(#PUT :B2 (453 201 0))
(#MOVEHAND (553 301 100))

After moving, TC-PUT calls #UNGRASP, and we have achleved
the first part of our original goal =-- emptying the hand., HNow
we must clear off the block we want to grasp. TC=GRASP sets up
the goal:

(THGOAL(#CLEARTOP :B2)(THUSE TC-CLEARTOP))

This Is a good example of the double use of PLANNER goals to
both search the data base and carry out actlons. |f the
assertlon (#CLEARTOP :B1) is present, It satisfies this goal
Immediately without calling the theorem. However If :Bl Is not
already clear, this THGOAL statement calls TC=CLEARTOP which
takes the necessary actions,

TC-CLEARTOP will try to #GET-RID-0F the objects on top of
:Bl. This will In turn use ¥PUTON, which uses #PUT. But TC-PUT
may have more to do this time, since the hand 1s not already
grasping the object it has to move., It therefore sets up a goal
to #GRASP the object, calling TC=GRASP. We have gone full
circle, and are back In the theorem we started In. Of course
this Is no problem In a recursive language, and the process

continues as It should until all of the goals have been

achieved, or all of the methods Included In the theorems have
Falled.

Section 3.4.4 - Page 274

Wle have gone through this example in some detall to glve a
feellng for the goal-oriented preograms used by PLANNER. The
programs are highly recursive, with a clear subgoal structure,
and with theorems often calling themselves to achieve subgoals.
During all of this, PLANNER is keeping track of what [s being
done in such a wav that It can back up and try something
different 1f necessary. For example, If TC-GET-RID-0OF puts an
abject on the table, and it later Is In the way of something
which must be done, a fallure will propagate back to TC-GET=-RID-
OF, and it will try putting It somewhere else,

Figure 56 1ists the different action concepts more
systematically, showing the form of the goal statements, and the
actions taken by the theorems correspendlng te them. |In our
program, the names of the thecorems are formed by adding the
prefix TC- for a consequent theorm, TA- for antecedent, and TE-
for erasing., This Is strictly for programmer convenlence In
recognizing the purpose of a theorem from Its name, All of
these goals can be used internally within the BLOCKS system, and
most of them can be called directly by the semantlc programs, as
direct translatlions of English commands. Some, 1ike #MOVEHAND
cannot be called by the lingulstic programs, slince the semantlc
routines do not include a way to specify exact coordinates In

English.

Cection 3.4,k - Page 275

Command Effect

(#MOVEHAND (X ¥ Z)) Move the center of the hand te location
(X ¥). Anything belng grasped goes
along automatically.

{#FUNGRASP) Let go of whatever the hand Is holding.
Fails If the object s not supported,

(#GRASP X) Grasp object X, dolng anvy manipulatlons
necessary to get to [t,

(#PUT W (X ¥ Z)) Put W at locatleon (X ¥ Z). Falls unless
the space s empty,.

(#RAISEHAND) Ralse the hand and whatever It holds as
high as it will go.

(#PICKUP X) Grasp X and ralse the hand.

(#PUTON X ¥) Put object X on object ¥. |[If there Is

not enough free space on Y, move
objects to make It,

(#PUTIN X ¥Y) The same as #PUTOMN, except that Y must be
a box, and different methods are used
to flnd space,

(#GET-RID-0OF X) Try to put X on the table, and If that
fails put it on anything else,.

(#CLEARTOP X) Get rid of everything which s an X.

(#STACKUP (X ¥...)) Stack X, ¥, ... on top of each other,

in order of slze.

(#FINDSPACE A (X ¥ I) B $_C)

This goal can be achieved by two different
theorems. TC=FIKDSPACE trles to find a
space of size (X Y I) on top of object
A, counting any space occupied by B as
empty. §_C Is a varlable bindlng used
to return the answer. I[|f this falls,
TC=-MAKESPACE can create the space by
meving objects,

Flgure 56 -- BLOCKS Commands

Sectlon 3.4.5 - Page 276

2.4,5 Memory

In order to answer gquestlons about past events, the BLOCKS
programs remember selected parts of thelr subgoal tree. They do
this by creating objects called events, and putting them on an
EVENTLIST. The system does not remember the detalled series of
specific steps 1ike #MOVEHAMD, but keeps track of the larger
goals 1lke #PUTON and #STACKUP. The time of events s measured
by @ clock which starts at 0 and Is incremented by 1 every time
any motion occurs, The theorems which want to be remembered use
the functlions MEMORY and MEMOREND, calling MEMORY when the
theorem 1s entered and MEMOREND when It exlts, MEMOREND causes
an event to be created, combining the origlinal goal statement
with an arbitrary name (chosen from E1, E2,...). Recall from
Section 3.1 that a relatlon can Include [ts own name, so that
other relations can refer to It. |[|f we call TC-PUTON with the
goal (#PUTON £7X 47Y), with the variables X and ¥ bound to @Bl
and :B2 respectively, the resulting event which Is put Into the
data base Is (#PUTOM E1 :Bl :B2). The event name s second,
instead of last as described In 3,1 for unimportant technical
reasons which will be changed In later verslons.

In additlon to putting thils assertion In the data base,
MEMOREND puts Information on the property list of the event name
== the starting time, ending time, and reason for each event.
The reasen s the name of the event nearest up In the subgoal

tree which Is being remembered, The reason for goals called by

sectlon 3.4.5 - Page 277

the 1ingulstic part of the system Is a special symbol meaning
"because you asked me to', MEMORY Is called at the beglinning of
a theorem to establish the start time and declare that theorem
as the "reason" for the subgoals it calls.

A second kind of memory keeps track of the actual physical
motions of objects, noting each time one Is moved, and recording
its name and the location 1t went to, This list can be used to
establish where any object was at any past tlime,.

When we want to plck up block :Bl, we can say:
(THGDAL(#PICKUP :B1)), and It Is Interpreted as a command. How
can we ask "Did you pick up :B1?"? When the robot picked It up,
an assertion like (#PICKUP E2 :Bl) was stored In the data base,
Therefore If we ask PLANMNER

(THPROG(X)
(THGOAL (#PICKUP $7X :B1)))

it will find the assertion, binding the variable ¥ to the event
name E2. Since the property list of E2 glves its starting and
ending times, and Its reason, this 1s sufficlent Informatlon to
answer most guestions.

| f we want to ask something l1ike "Did you pick up :Bl
before vou bullt the stack?" we need some way to look for
particular time Intervals, This Is done by using a modified
version of the event description, Including a time Indlcator.
The exact form of the time Indicator Is described In the sectlon
on semantics, but the way it Is used to establlish 2 goal Is:

(THGOAL(#PICKUP $%X :Bl $?TIME)(THUSE TCTE-PICKUP})

Section 3.4,5 - Page 278

The prefix TETE- on the name of a theorem means that It
includes a time and an event name, Ordinarlly when such a
theorem is entered, the varlable TIME weould have a value, while
the wariable X would not. The theocrem looks through the data
base for stored events of the form (#PICKUP $?X :Bl) and checks
them to see |f they agree with the time TIME,

For some events, 1ike #PUTON, this Is sufficient slnce the
system remembers every #PUTOM 1t does. For others, 1lke #PICKUP
less information Is kept. When #PICKUP Is called a5 a goal at
the top level, It Is remembered, But the system does not
remember each time something was plcked up In the course of
moving the toys around. The fact that a block was plcked up can
be deduced from the fact that it was put somewhere, and the
theorem TCTE-PICKUP actually looks at a number of different
types of events (1lke ¥PUTOM and #PUTIN) to find all the
occaslions on which an object was really plcked up.

For spatial relations, we alsc need to be able te Include
time, for example, "Was the block behind the pyramid before...?"
In thls case, no assertions are stored, since the memory of
motion events I1s sufficient to reconstruct the scene. There are
speclal thecrems with the prefix TCT- which try te verify a
relation with a time condition, For example, we can ask "Is :B1
on :B27?" with the goal

{THGOAL(#0ON :B1 :B2){THUSE TC-ON))

To ask "Was :B1 on :B2 before...?" we bind the variable TIME to

Sectlon 3.4.5 - Page 279

the representation of the time we are Interested In, and ask
(THGOAL(#OMN :B1 :B2 S$?TIME) (THUSE TCT-0OM))
The theorem TCT=0ON Is the same as TC-OM except that It deals
with the specified time Instead of the present. Similar TCT-
theorems exlst for all of the spatial relatlons, and for
properties which change In time, such as #FCLEARTOP and #AT.
Appendix C Is a listing of parts of the BLOCKS program as
it was used In generating the sample dlialog. PLAMNER theorems
are sufficiently self-explanatory that only a few comments have
been Included. The auxilllary LISP functliens (such as the one
which decides whether a2 space Is empty) are not Included, but
are avallable en request, along with the complete RLOCKS

listings.

Sectlon L.1.1 - Page 280

Chapter 4., Semantlcs

4.1 what |s Semantics?

k,1.1 the Province of Semantics

The field of semantlcs has always been a hazy swampland.
There Is 1ittle agreement among "semanticlsts" where [ts borders
1le or what the terrain looks 1lke. Legiclans, phllesophers,
and linguists all approach It with the tools of their own trade,
and the problem of just defining "semantlics" and "meanling" have
occupled volumes of debate.

In trylng to program computers to understand natural
language, 1t has been necessary to have a more expliclt and
complete notlon of semantlcs. The attempts at writing language
understanding programs have made 1t more clear just what a
semantic theory has to do, and how It must connect with the
syntactic and loglcal aspects of language. In practical terms,
we need a transducer which can work with a syntactic analysis,
and produce data which Is acceptable te a loglcal deductlive
system,

In the preceding chapters we have described the two ends of
a language system =-- a syntactlic parser wlith a grammar of
English, and a deductive system with a base of knowledge about a

partlicular subject, What does our semantlc theory have to do to

Sectlion 4,1.1 - Page 281

fill the gap?

In sectlon 3,1.2 we outlined the basis for a theory of
semantics, It Includes a world of "concepts" and structures of
concepts which are postulated by the lingulst In trylng to
explain linguistic phenomena. These are not a psychologlcal
realfty, but a formallsm In which he can systematically express
those aspects of meaning which are relevant to language use. By
manipulating structures In this formalism as 2 part of analyzlng
sentences In natural language, the theory can directly deal with
problems of relating Meaning to parts of the speaker's and
hearer's knowledge which are not mentioned explicitly In the
sentence beling analyzed.

A semantic theory must describe the relationship between
the words and syntactlic structures of natural language and the
postulated formallism of concepts and ocperations on concepts, In

our theory, this relationship |s described as a set of
procedures which analvze llngulstic forms to produce

representations of meaning In the Internal conceptual formallsm,
Just as with the grammar, this does not purport to be a model of
an actual process taking place In the hearer or speaker. The
process description |s used because [t Is a powerful way to
describe "neutral" relationships, as well as belng
psychologically suggestive,

The theory must describe relatlenshlips at three dlfferent
levels, Flrst, there must be a way to deflne the meanings of
words, We polnted out In the sectlon on "meaning" (sectlon
3.1) that the real "meaning" of a word or concept cannot be
defined In simple dictlonary terms, but Involves lts
relatlionship to an entlre vocabulary and structure of concepts.

However, we can talk about the formal description attached teo a

Section L.1,1 - Page 281

word which allews It to be integrated Into the system. In the
rest of this chapter, we will use the word "meaning" In this
more 1imited sense, describing those formal aspects of the
meaning of a word (or syntactic construction) which are attached
to it as Its dictionary definition.

The formalism for definitions should not depend on the
details of the semantic programs, but should allow users to add
ta the vocabulary In a simple and natural way. |t should also
be possible to handle the guirks and ldlesyncracies of meaning
which words can have, Instead of 1imiting ourselves to "well-
behaved" standard words,

At the next level we must relate the meanings of the words
In a sentence ta each other and to the meaning of the syntactlc
structures. We need an analysis of the ways in which Engllish
structures are desligned to convey meaning, and what role the
di fferent words and syntactlc features play In thils meaning.

Finally, a sentence In natural language [s never
interpreted in Isalation. It Is always part of a context, and
its meaning |s dependent on that context. A theory should
explain the different ways In which the "setting" of a sentence
can affect Its meaning. 1t must deal both with the llngulstic
setting (the context within the discourse) and the real-world
setting (the way meaning Interacts with knowledge of non-

llngulistic facts.)

Section k.1.2 - Page 283

b,1,2 The Semantlc System

With definlte goals In mind for a semantic svstem, we can

consider how to Implement ft. First let us look at what It
should know about English., As we have been emphasizing
throughout the paper, 2 language |s not a set of abstract
symbols, It 1s a system for conveving meaning, amnd has evolved
with very special mechanisms for conveying just those aspects of
meaning needed for human communication.

Section 3,1 discussed the person's "model of the world"
which is organlzed around notions of "objects", having
"properties" and entering Into "relatlenships.” In 3.1.3, these
are comblined to form more compllcated logical expresslions.
Leoking at the properties of Engllish syntax (as described In
Section 2.3) we see that these basic elements of the "world
model" are just what Engllish Is good at conveying.

For describlng objects, there 1s the NOUN GROUP. It
contains a noun, which Indlicates the kind of object; adiectlives
and classiflers, which describe further properties of the
object; and a complex svstem of quantiflers and determiners
describing 1ts logical status -- whether it Is a particular
object, (“"the sun"), a class of ocbjects ("people"), a
particular set of objects ("John's 1izards"), an unspecifled set
containing 2 specifled number of objects (“"three bananas"), etc.
The detalls (described In sectlon 4.2) are complex, but the

important thing 1s the exlstence of a systematic structure.

Section &4.1.2 - Page 284

For describing relatlonshlips and events, there are the
CLAUSE, PREPOSITION GROUP, and ADJECTIVE GROUP, The CLAUSE Iis
especlally suited for dealing with relationships having a
particular time reference, working In coordination with the VERE
GROUP, which functions to convey Information about tlme, using
an Ingenlous svstem of tenses., Clauses can also he used to
represent an event or relatlonship as an object (as In "His
Zolng pleased me."), or to modify a particular object within a
MOUN GROUP {in "the man whe broke the bank"). The PREPG Is a
less flexible and simpler way of expressing relationships which
do not need modiflers such as time, place, and manner (such as
“the man |n the blue vest"). The ADJG Is used In some
constructions to describe properties and some special kinds of
relationships of objects (such as "Her gift was blgger than a
breadbox.")

The semantic system Is bullt around a group of about a
dozen programs which are experts at locking at these particular
syntactic structures. They look at both the structures and the
meanings of the words to bulld up PLANMER expressions which will
be used by the deductive mechanism. It Is Important to remember
that the parser uses syvstemlc grammar so the semantlc programs
can look directly for features such as PASSIVE or PLURAL or
QUESTION to make decislons about the meaning of the sentence ar
phrase,

Sinee each of these semantic "specliallsts" ecan work

sectlion L,1,2 - Page 285

separately, there Is no need to walt for &2 complete parsing
befoare beginning semantlc analysis, The HOUN GROUP speclalist
can be called as soon as a NOUM GROUP has been parsed, to see
whether It makes sense before the parser goes on. |In fact, the
task can be broken up, and a prellminary NOUN GROUP speclallst
can be called In the middle of parsing (for example, after
finding the noun and adjectives, but before looking for
modifying clauses or prepositional phrases) to see whether 1t s
worth continulng, or whether the supposed combinatlion of
adjectives and noun is nonsensical, The grammar Iz In the form
of a program, so it Is just as easy to call a semantic routine
at any time as a syntactlic one. Any semantle program has full
power to use the deductlive system, and can even call the grammar
to do & speclal bit of parsing before golng on with the semantic
analysis. For this reason It Is very hard to classify the
semantic analysis as "top-down" or "bottom=up". In general sach
piece of the structure Is analyzed as [t s parsed, which is a
bottom-up approach., However whenever there is a reasen to delay
a part of the analysis untl]l some of the larger structure has
been analyzed, [t Is just as easy to wrlite the semantic
speclalist programs in this top-down manner. |In our system both

approaches are used.

Section L,1.3 - Page 286

4.2.3 Mords

A semantic system needs to deal with twe dlfferent kinds of
words, Some words are included in the general knowledge of the
English language. Werds 1ike "that" or "than", In "He knew that
they were madder than hornets." would be difflcult to define
except in terms of thelr place In the sentence structure, They
are being used as signals of certaln syntactic structures and
features, and have no meaning except for this signalling (which
Is recognized by the grammar). These are often called "functlion
words" In distinction to the "content words" which make up the
bulk of our vocabulary. This [s net a sharp distinetion, since
many words serve a combination of purposes (for example, numbers
are baslically "function words", but each one has 1ts unlgue
meaning) . We can generally distingulsh between words 1lke
"ehat" and "than" whose meanings are bullt inte the system, and
words 1ike "snake", "under", and "walk", which surely are not.

The definitions of content words should not have to Include
"expert" knowledge about the semantlcs or grammar of the
language. In deflning the word "mlghty", we should not have to
worry about whether It appears in "The sword Is mighty," or
the mightiest warrior", or "a man mightler than a locomotive."
We should be able to say "'"Mighty' means having the property
represented conceptually as #MIGHT.", and let the semantic
system do the rest.

We need a semantic language for expressing definitions In a

Section 4.1.3 - Page 287

way which does not depend on the grammar or the particular
semantic programs, Each of our "specialists" which looks at the
meanings of words should be able to interpret those statements
in the semantic language which might be relevant to |ts job,

Sectlon 4.2 describes simple formats for defining common
verbs, nouns, adjectives, and prepositions, and In fact,
these definitions do not look much 1lke programs at all, Why
then do we call this a "language" Instead of saying that we have
a set of speclal formats for defining words? The dlstinctlan
becomes Impoartant for all of the irregular cases and the
Idiosyncracies that words ecan have. For example, In "The block
Is on the roof of the car.", "the roof of the car" is a NG
referring to a particular object which Is a roaf, But |f We say
"The block Is on the right of the box", we are not referring to
a particular object which is a "right"., The normal NG mechanlsm
for describing objects Is belng used [nstead to describe a
relationship between the block and the box., We eauld FEPFOEFam
our NOUN GROUP semantic specialist to recognize this special
case and treat It differently, but this [s a path leading to a
roadblock. We will not be able to anticipate every case, and as
the program becomes more and more patched, it will become harder
to change and less likely to work.

What we need Is a flexible way of defining words, so that

the word "right" Itself can cause the right things to happen In

semantic Interpretation, without changing the system., This I=

Section L,1,3 - Page 288

achleved by letting the definition of each word be a LISP
program to be run at an approprlate time in the semantic
analysis. For simple cases, there are standard functions with a
special format for usual types of deflinitleons. In the complex
cases there Is a platform from which to operate, doing whatever
calculations and changes of the environment are needed, This
flexibility is Important In many places, For example, the word
"ane" when used as a noun (as In "the green one") has a special
use for referring back to previously mentioned nouns., It could
not be deflned by a simple format, as could "block" or "dog",
since it Invelves complex decisions about what Is really being
referred to, and needs access to the previous discourse, In our
system, its definition as a noun Is compatible with the
definitlens of all other nouns == the semantic speciallsts don't
know anythlng about 1t. When the NG speciallst s ready to use
the definition of the noun, 1t calls It as a program, In the
usual case, thls program sets up a standard data structure, In
the case of "one", It calls a heurlstic program for
understanding back-references, and [ts effect on the meaning
w1l depend on the discourse, Similarly, the verb "he' 1s
called 1lke any other verb by the semantic speclallst, but In
fact Its definltion 1s a complex program describing [ts
different uses.

The use of procedures to represent meanings of words glves

a flexibllity which allows these exceptlional words to be handled

Sectlion L4.1.3 - Page 289

as well as the more ordinary forms. At the same time, It
provides a strict test of representatlons of procedures for

particular words, since the procedures can actually be run In

the system,

Sectlon k,l.6 - Page 290

b.1,4 Ambiguity

A semantlc theory must have some way to account for
multiple meanings of words, phrases, and sentences, We would
1ike to explalin not only how multiple Interpretations can occur,
hut alse how the hearer sorts them out to plck a single meaning.

As a start, we must allow words te have several "senses',
and must be able to have multiple Interpretations of phrases and
sentences to correspond to them. MNext we must reallze that the
syntactic structures can also lead to semantic amblgulities,
Sentences 1ike the famous "Time flles 11ke an arrow." derive
some of thelr ambiguity from their ability to be analyzed
syntactically In more than one way. Flnally, we include some
ambiguities as a result of the semantic analysis, The sentence
" man sitting in this room fired the fatal shot." will be
amblguous even 1f we agree on a single meaning for each word,
and a surface structure for the sentence. |f spoken by Perry
Mason at a dramatic moment in the courtroom, [t means “"a man who
is sitting In this room", but If spoken by the detectives when
they broke into the empty hotel room across the street from the
scene of the crime, it means “who was sitting In this room".
This could be treated as a syntactic ambiguity In the deep
structure, but In our analysis It Is Instead treated as a
semantic ambiguity invelving the time reference.

In describing the grammar It was pointed out that we do not

carry forward simultaneous parsings of a sentence. We try to

section 4,1.4 - Page 291

find the "best" parsing, and try other paths only If we run Into
trouble. |In semantlcs we take the other aproach, |f a word has
two meanings, then two semantlic descriptions are bullt

simul taneously, and used to form two separate phrase
interpretations.

We can Immediately see a problem here. There Is dire
danger of a combinatorial exploslion. |If words A, B, C, and D
each have three meanings, then a sentence containling all af them
may have 3x3x3x3, or 81 Interpretations. The possibilities for
a2 long sentence are astronomical.

Of ecourse a person does not bulld up such a tremendous
list, As he hears a sentence, he "filters out" all but the
most reasonable Interpretations. We know that a "ball" can be
either a spherical toy or a dancing party, and that "green" can
mean elther the coler green, or unripe, or Inexperienced. But
when we see "the green ball", we do not get befuddled with six
interpretations, we know that only one makes sense. The use of
"green" for "unripe" applies only to fruit, the use as
"Inexperienced" applies only to people, and the eolor only to
physical objects. The meaning of "ball" as a party fits none of
these categories, and the meaning as a "spherical tay'" flts only
the last one. We can subdivide the werld Into rough classes
such as "animate", "inanimate", “"physical", "abstract", "event",
"human', etc. and can use thls classiflcation scheme to fllter

out meaningless combinatlions of Interpretations.,

Sectlon k.l.k - Page 292

Some semantic theories ¢Fodor> are based almost completely
on this ldea. We would like to use It for what it Is -- not a
complete representation of meaning, but a rough classiflcatlion
which elimlnates frultless semantic interpretations. Our system
has the ability to use these "semantlec markers" to cut down the
number of semantic Interpretations of any phrase or sentence.

A second method used te reduce the number of different
semantic interpretations Is to do the Iinterpretation
continuously. We do not plle up all possible Iinterpretations
of each piece of the sentence, then try to make loglical sense of
them together at the end. As each phrase Is completed, e 1s
understood. |f we come across a phrase like "the colorful ball"
in context, we do not keep the two different pessible
Interpretations in mind until the utterance [s flnished., We
immedlately look Im our memory to see which interpretation [s
meaningful In the current context of discourse, and use only
that meaning In the larger semantlic analysls of the sentence.
Since our system allows the grammar, semantlcs and deduction to
be easlly Intermixed, 1t Is possible to do this kind of
continuous Interpretation.

Finally we must deal with cases where we cannot eliminate
211 but one meaning as "senseless"., There will be sentences
where more than one meaning makes sense, and there must be some
way to choose the correct one in a glven context. In the

section on context below, we discuss the use of the overall

Sectlen 4.1.4 - Page 293

discourse context In assigining a plausibillity factar to a
particular interpretation. By combining the plausibllities of
the various parts of a sentence, we can derlve an overall factor
te help choose the best,

There will always be cases where no set of heuristics will
be enough. There will be multiple Interpretations whose
plausiblilities will be so close that It would be simply guessing
to choose one. In ocur sample dlialogue, there Is an example with
the word "en". "“The block Is on top of the pyramlid.” eould mean
either "directly on the surface" or "somewhere above", There s
no way for the hearer (or cemputer) to read minds., The obvious
alternative Is to ask the speaker to explaln more clearly what
Is meant. As a flnal resort, the system can ask questiens 1lke
"By the word "en" In the phrase "on top of green blocks" did you
mean 'directly on the surface' or 'somewhere above'?". The
methods used for handling ambigulty are described In more detall

In sectlon L.2.10

Sectlon 4.1.5 - Page 294

4,1,5 Discoursg

At the beginnlng of our discussion of semantlics, we
discussed why a semantlc system should deal with the effect of
Wsetting" on the meaning of a sentence. A semantic theory can
account for three different types of context.

First, there Is the local discourse context, which covers
the discourse Immediately preceding the sentence, and s
important to semantic mechanisms like pronoun reference, |f we
ask the question "Did vou put IL on a green one?" or "Why?" or
"How many of them were there then?", we assume that it will be
possible to fi11 in the missing information from the Immediate
discourse. There are a number of special mechanisms for using
this kind of information, and they form part of a semantic
theory.

Second, there Is an gverall discourse context. A hearer
wlll interpret the sentence "The group dldn't have an ldentity."
differently depending on whether he is discussing mathematics or
soclology. There must be a systematic way to account for thils
effect of general subject matter on understanding. In additfion
to the effects of general subject on choosing between meanings
of a word, there Is an effect of the context of particular
things being discussed. If we are talking about Argentina, and
say "The government is corrupt.,”, then It ls clear that we mean
“the government of Argentina. [|f we say "pick up the

pyramid.", and there are three pyramids on the table, It wlill

section 4,.1.5% = Page 295

not be clear which one Is meant. But If this Immediately
follows the statement "There Is a block and a pyramid In the
box.", then the reference is to the pyramid In the box. This
would have been clear even If there had been several sentences
between these two. Therefore this iz a different problem than
the local discourse of pronoun reference. A semantic theory
must deal with all of these different forms of overall discourse
context,

Finally, there Is a context of knowledge about the world,
and the wavy that knowledge effects our understanding of
language. |f we say "The city councilmen refused the
demonstrators a permit because they feared violence.", the
pronoun "they" will have a different Interpretation than If we
sald "The city councilmen refused the demonstrators a permlt
because they advocated revolution." We understand this because
of our sophlisticated knowledge of councilmen, demonstrators, and
polities -- no set of syntactic or semantic rules could
Interpret this pronoun reference without using knowledge of the
world, Of course a semantic theory does not Include a theory
of political power groups, but It must explaln the wavs In which
this kind of knowledge can interact with linguistic knowledge In
interpreting a sentence.

Knowledge of the world may affect not only such things as
the Interpretation of pronouns, but may alter the parsing of the

syntactliec structures as well, If we see the sentence "He hit

Sectlion k.1.5% - Page 296

the car with a rock." the structure will be parsed differently
from "He hit the car with a dented fender.", since we know that
cars have fenders, but not rocks,

In our system, most of this discourse knowledge Is called
on by the semantic spe:Tallﬁts, and by particular words such as
"one", "it", "then", "there", etc. We have concentrated
particularly on local discourse context, and the ways In which
English carrles Informaticn from one sentence to the next. A
number of speclal pieces of Information are kept, such as the
time, place, and objects mentloned In the previous sentence,
This Information Is referenced by speclal structures and words
1lke pronouns, "then", and "there". The meaning of the entlre
previous sentence can be referred to In order te answer a
guestion 1ike "Why did you do that?" or just "Why?".

There are two faclilities for handling overall discourse
context, The first Is a mechanism for assligning a
"plausablility factor" to an Interpretation of a word., For
example, the definlition of the word "bank" might include the
fact that if we are discussing money, It Is most Tikely to mean
g financlal Institution, while if we are discussing rivers, It
probably means the edge of the land., Our system allows the
definition of a word to Include a program to compute a
"olausabllity factor" (an arbltrary additive constant) for each
interpretation. This computation might Invalve looking at the

rest of the sentence for key words, or might use some more

section 4,1,.5 - Page 287

general idea, 1lke keeping track of the general area of
discussion (perhaps In some sort of netwerk or block structure)
and letting the plausibility of a particular meaning depend on
its "distance" from the current topic. This has not been
implemented since we have Included only @ single toplc of
discourse In the vocabulary. It Is dliscussed further In sectlon
5.2,

The second type of overall dlscourse context Involves the
objects which have been previocusly mentloned. Whenever an
object or one of Its properties [s mentioned, elther by the
human or the computer, a note 1s made of the time. Later, [If we
use a phrase like "the pyramid", and the meaning Is not clear,
the system can look for the one most recently mentioned,

Finally, the knowledge of the world can enter Inte the
semantlc interpretation. We have mentloned that the grammar can
ask the semantic Interpreter "Does this NOUN GROUP make sense?"
before continulng the parsing., The semantles programs can In
turn call on PLANMER to make any deductions needed to declde on
its sensibility. Thus information about the world can gulde the

parsing directly.

Section 4,1,6 - Page 298

L,1.6 Goals of a Semantic Theory

We have set ourselves very broad goals in ocur definition of
semantics, asking for everything which needs to be done, rather
than 1imiting ourselves to those aspects which can be explalned
and characterized In a neat formallism. How does thils compare
with the more limited goals of a semantic theory 1ike that of
Fodor and Katrz <Fodor>, which looks anly at those aspects of
meaning which are Independent of the "setting" of a sentence?

We have seen that thzir theory of "semantic markers" Is in
fact a2 part of the "filtering" needed for "explolting semantic
relations In the sentence to eliminate potential ambigultles"
(<Fodor»p. 4ES5)", and that the "semantic distinguishers" are a
rudimentary form of the logical descriptions which we build up
to describe objects and events, They state that "the
distinction between markers and distinguishers 1s meant to
colncide with the distinction between that part of the meaning
of a lexical item which s systematic for the language and that
part of the meaning of the item which Is net." ({Foder> p. LSE).
We believe that much more of meaning 1s systematic, and that a
semantic theory can be of a much wider scope,.

What about the more restricted goals a semantic theary
might achieve such as "accounting for... the number and content
of the readings of 28 sentence, detecting semantic anomalies, and
deciding upon paraphrase relations between sentences."? In a
more complete semantic theory, these are not primary goals, but
by=products of the analysis, A phrase Is a semantic anomaly If
the system produces no possible Interpretations for 1t. Two
sentences are paraphrases 1If they produce the same

representation In the Internal formallism for meaning, and the
"aumber and content" of the readings of a sentence are the

Section L.1.6 - Page 293

immediate result of [ts semantic analysis. Which of these will
happen depends on the entire range of ways In which language
communicates meaning, not on a restricted subset such as the
logical relations of markers. Once we have a conceptual
representation for meaning, problems such as these are secondary
byproducts of the baslic analyvsls which relates a sentence to the
representation of [ts meaning.

In addition, we can talk about sentences belng anomalles or
paraphrases "In context", a2s well as "wlthout regard teo
context", since we want the theory to Include a systematic
analysls of those features of context which are relevant to

understanding.

Sectlon B,2 - Page 300

k.2 Semantic Structures

The previous sectlion outlined the structure of a semantic
Interpreter, and described the use of semantic "speclallsts" In
analvzing different aspects of lingulistic structure. Each
speclialist Is in the form of a procedure which describes the
particular aspect of semantics which with it Is concerned. We
can look at Its functlion as creating a part of a complete
description of the meaning of the sentence by bullding complex
list structures which we will call "semantic structures" to
describe objects and relationships. Events are a type of
relationship (involving timel), and the class of "“ebject"
includes anythling which could be treated as an object In English
grammar, even If It s as abstract as "truth". There are two
basic types of structures used -- one to describe objects, (an
Object Semantic Structure, or 055) and the other to descrlibe
relationships {(an RS5). In general, noun groups are interpreted
to form object structures, while the other groups and clauses
are Interpreted to form relationship structures, Words already
have a semantic structure of thelr own (their definition) and
are used In building up the structures for the larger units

which contaln them.

Sectlon 4.2.1 - Page 301

4.2,1 QObiect Semantic Structures

Let us first look at the semantlc structures used to
describe cbjects, First, we need the actual PLANMNER statements
which will be used In deduclng things about the objects. An NG

like "a red cube" can be described using the formallsm of

Chapter 3:

(THPROG (X1)
(THGOAL(#1S $7X1 #BLOCK))
(FEQDIM $7X1)
(THGOAL{#COLOR $7X1 #RED}))

Figure 57 == Simple PLANNER Descriptlion

The variable "X1" represents the cbject, and thls
description says that It should be a Bleck, 1t should have equal
dimensions, and it should be red. (See sectlon 3.4 for the
details of representation). A phrase such as "a red cube which
Supports three pyramids but Is not contalned In a box" has a3
more complex description. This would be bullt up from the

descriptions for the varlous objects, and would end up:

(THPROG(X1)
(THGOALC#I1S $7X1 #BLOCK))
(FEQDIM $7X1)
(THGDALC#COLOR $7X1 #RED))
(THEIND 3 $7X2 (X2) (THGOAL(#1S $7X2 #PYRAMID))
(THGOAL{#SUPPORT £7X1 £7X2)))
(THNOT{THPROG(X3)

(THGOAL(#15 $X3 #BOX))
(THGOALC#CONTAIN $7X3 $7X1)1)))

Flgure 58 == PLANNER Descriptlion

We can learn how the semantie speclalists work by watchlng

them build the pleces of this structure. Flrst take the simpler

Section L.,2,1 - Pape 302

NG, "2 red cube". The first NG speclalist doesn't start work
until after the noun has been parsed, The PLAMNER description
is then bullt backwards, starting with the noun, and continuing

in right-to=-left order through the classifiers and adjectives,

The beginning of the NG, with the determiner, number, and
ordinal 1s handled by a part of the NG speciallist described
later. The first NG speclallist Is named SMNGl == all of the
names begin with 54 (for "semantic"), followed by the nﬁME of
the unit they work with, followed by a number Indlcating the
order In which they are called. SMNGL1 sets up an envlronment
{we will describe varlous parts of it as we go), then calls the
definition of the noun. (Remember that definitlons are in the
form of preograms). For simple neuns there Is a standard
function to define them easily, What should the definition
include? First, a way to Indicate the PLAMNNER statements which
are the heart of 1ts meaning. The symbol "+=+" [35 used to
represent the object, so our definition of "cube" contalns the
expresslont

((#15 %%+ #BLOCK)(#ECDIM ##=))

The syntax of PLANNER functlons such as THPROG and THGOAL wil]
be added by the speclallsts, slnce we want to keep the
definition as simple as possible.

There |Is one other part of the definition for a noun == the
semantlic markers, used to filter out meaningless

Interpretations of a phrase. The definition needs to attach

Section 4,2,1 = Page 303

these semantic markers to each 0S5. The BLOCKS world uses the
tree of semantic markers In Flgure 59,

This is the same type of dlagram used for grammars, In
which vertical bars represent choices of mutually exclusive
markers, while horlzontal lines represent legleal dependency.
The symbol "#PHYSOB" means "physical abject", and "#MANIP" means
"manipulable object". The word "cube" refers to an object with
the markers (#THING #PHYSOB #MANIP #BLOCK). Ve shouldn't need
to mentien all of these In the definition, since the presence of
FELOCE Implies the others through the logical structure of the
marker tree.

The definition of the noum "eube" Is then:

(NMEANSC(#BLOCK) ((#1S ##+ $BELOCK)(#EQDIM =2w))))

MMEANS s the name of the function for deallng with nouns,
and It accepts a list of different meanlings fer a word, In this
case, there is only one meaning. The flrst part of the
deflnitlon 1s the marker 1ist, followed by the reduced PLANMER
definition. When NMEANS 1s executed, it puts this infermation
onto the semantic structure which |s being built for the object,
It takes care of findlng out what markers are implied by the
tree, and declding which predicates need te be |n a THROAL
statement (like #15), and which are LISP predicates (11ke
#EQDIM) . We will see later how It also can declde what
recommendation lists to put ento the PLANNER goals, to gulde the

deduction.

section 4.2.1 - Page

304

EMAME
#PLACE #FSHAPE
$PROPERTY =
#51ZE
#LOCATION
#COLOR
E#RGBﬂT
MATE
AN IEHUHAH
#ELUE
#RED
("’istﬁTﬂw
#UHITE
fFGREEN
THING e #5TACK
#PHYSOBE=—
#CONSTRUCT FPILE
#HAMD #FROW
— ¢ TABLE ¥PYRAMID
e
#MANIT P fELOCK
#EQR FRALL
FEVENT
¢RELATION
#TIMELESS
Figure 59 == Semantic Markers for the BLOCKS Vocabulary

Section 4,2,1 - Page 305

SMNG1 then calls the definiticn for the adjectlve "rad",

We would Tike this definition to Include the PLANMER assertion
(#COLOR #»e #RED), and indicate that |t applies only te physlical
objects., We can use the same format used for nouns, deflining
"red" as:

(NMEANS ((#PHYSOB) ((#COLOR s« #RED))))

Notlce that there Is no distinction made betwesn the use of
#PHYSOE here to Imply "applies only to physical objects" and the
use of #BLOCK in the definition of "cube" to say "this s a
block", This Is because of the way the markers are
implemented. The marker list in a deflinitlon is Interpreted to
mean "this definition applies only 1f none of the markers here
are in conflict with any of the markers already established for
the object”, Since the noun Is the first thing Interpreted, Its
markers cannot possibly conflict, and are simply entered as the
initial marker 1ist for the object. The marker programs are
designed so that we do not need to ITimlt ourselves to a single
tree -- we could classify aobjects along several dimensiens, and
Setl up separate marker trees for each. Eor example, we might
classify objects both by thelr physical properties and by thelr
use.

The order of analysis of modiflers Is qulte natural to the
use of "relative" modiflers, It Is Impossible to glve an
absolute definltion for "big" or "little", slnce a "big flea" Is

still not much competitien for a "1lttle elephant". The meaning

Sectlon 4.2.1 - Page 3CE

of the adjective is relative to the noun It modifies, |In fact,
it may also be relative to the adjectives following It as well,
A "big toy elephant" Is on & scale of lts own. Since our system
analyzes the NG from right to left, the meaning of each
adjective 1s added to the description already built up for the
head and modifliers to the right. Since each definition i5 a
program, It can just as well be a program which examines the
description (both the semantic markers and the PLANNER
description), and produces an appropriate meaning relative to
the object belng described. This might be In the form of an
absolute measurement (e.g., a "big elephant” 15 more than 12 feet
tall) or can remain In a relative form by producing a PLAMNER
expression of the form "the number of objects fitting the
description and smaller than the one being described Is more
than the number of sultable objects higger than 1t [s".

In adding the meaning of "red" to the semantlc structure,
the speclalist must make a choice in ordering the PLANHER
expressions. We remember from section 2.3 that the order of
expresslons can be Important, since varlable asslgnments are
done in the order encountered, |f we have the flrst sequence
shown 1n Flgure 60, PLAMNER will look through all of the blocks,
checking until It finds one which is red. However [f we have
the second, it will look through all of the red objects untlil It
finds one whieh is a block. In the robot's tiny werld, this

tsn't of much Importance, but If we had a data base which could

Section 4.2,1 - Page 307

take phrases like "a man in thls room", we would certainly be
better off looking arcund the room flrst to see what was a man,
than looking through all the men In the world to see if one was

in the room,

(THPROG(X)
(THGOAL(#15 $7X #BLOCK))
(THEOAL(#COLOR 47X #REDI))

{THPROG(X)
(THGOAL(#COLOR $TX #RED))
(THGOAL(#15 $%X #BLOCE)))

Figure 60 =-- Ordering Goals

To make this choice we allow each predicate (1ike #|5S or
#COLOR) te have assoclated with It a program which knows how to
evaluate its "priorlity" In any glven environment. The program
might be as simple as a single number, which would mean "this
relation always has this prierity". It might on the other hand
be & complex heuristic program which takes Into account the
current state of the world and the discussion. In our
definitions, we have adopted the simpler alternative, assigning
fixed prioritlies In the range 0 to 1000 arbitrarily., By keeping
track of the priority of the expresslon currently at the top of
the PLANNER description, the function NMEANS can decide whether
to add a new expression above or below .

Let us now look at the actual structure which would be

bullt up by the program:

Section 4.2.1 - Page 308

(¢ ((x1) 200 (THGOAL{#IS £7X1 #BLOCK))
(THGOALC #COLOR $7X1 #RED}) PLANNER
(#EQDIM $7X1)) description
{0 #BLOCK #MANIP #PHYSOB FTHING) markers
(#MAMN P #PHYSOB #THING) 5¥stems
X1l varlable
{HS INDEF MNIL) determiner
NIL) ordinal
Flgure 61 == 055 for "a red cube"

Most of the parts of this structure (called an Dbiect
Semantic Structure or 055) have already been explalned. The
PLANNER description includes a variable list fwe will see its
use later), the pricrity of the flrst sxpression, and a 1lst of
PLANNER expressions describling the object. The "markers"
position lists all of the semantlc markers applicable to the
object. The 0 at the beginning of the 11st is the
"nlausability" of this Interpretation, This factor was
discussed in section &.,1.k, and Is set when we are faced with
more than one possible Interpretation of a word. Each semantic
structure carrlies along with It an accumulated plauvsability
rating. This will remain 0 unless It Is set speclflcally by an
amblgulty.

The "systems" position 1s a 11st of all of the nodes In
the set of marker trees (remember that there can be more than
one) which have already had a branch selected. It ls used In

locking for marker conflicts. The yariable™ is the variable

Section 4.2.1 - Page 309

name chosen to represent thils abject. The system generates [t

from the set X1, X2, X3..., providing a new one for each new

structure. The only two poslitions left are the determiner and

the ordinal., These are explalned In section 4.2,k

Section k,2.2 - Page 310

L,2.2 Relative Clauses

Let us now take a slightly more complicated NG, "a red cube
which supports a pyramid," and follow the parsing and semantlc
analvysis. First, the HG parsing program finds the determiner
("a"), adjective ("red"), and noun ("eube"). At this polint
SMNGL is called and creates the structure described In the
previous section. MNotlce that the NG is not finlshed when SMNGI
e called == It has only reached a point where we can do a flrst
analysis., At this point, the MG might be rejected without
further parsing if the combination of noun, classiflers, and
adjectives Is contradictery to the system of semantlic markers.

Next the NG program looks for a gualifier, and calls the
CLAUSE part of the grammar by {PARSE CLAUSE RS0). The feature
RS0 (rank shifted gualifier) informs the CLAUSE program that It
should look for a RELWD 1ike "which"., It does, and then looks
for a Y6, succeeding with "supports"., The YG program calls [ts
own semantic speciallist to analyze the time reference of the
clause, but we will ignore this for now, Mext, since "support”
is transitive, the CLAUSE looks for an object, and calls the NG
program. This operates [n the same way as before, producling a
semantlc structure te describe "a pyramid". The definitlion of
"oyramid" is:

(HMEANS((#PYRAMID) ((&5 =ww FPYRAMIDI D D)

se the resulting structure 1s:

Sectlon 4.2.2 - Page 311

K { ((X2) 200 (THGOAL(#I5 $7X2 #PYRAMID)))
(0 #PYRAMID #MANIP #PHYSOB #THING)
(¥MANIP #PHYSOB #THING))

X2

(NS INDEF MIL)

MIL)

Figure 62 -- 055 far "a pyramld"

At this point the first CLAUSE speciallst is called to
analyze the clause "which supports a pyramid". We want to
define verbs in a simple way, as we do nouns and adjectives,
saying something 1lke "If the subject and object are both
physical objects, then "support" means the relatlon #SUPPORT
between them In that order", This is written formally using the
function CMEANS, as:

{¢MEAHStEE{#PH?EﬂBI!{E*FH?SDB}]}E#SUFFDHT #1 #2)NIL))

A1l of the extra parentheses are there to leave room for
fancier options which will be described later. The Important
parts are the semantlic marker 11sts for the abjects
participating in the relationship, and the actual PLANNER
expression naming It. The symbals "#1" and Mggn {and "#3" |F
necessary) are used to Indicate the objects, and the normal
order is 1. semantic subject (SMSUB) 2. semant]c flrst object
(SMOB1) 3. semantic second object (SMOR2). MNotlee that we
have prefixed the word "semantie" tn each of these., In fact,
they may very well not be the actual syntact|c subject and
objects of the clause. In this example, the SMSUB s the NG "a

red cube" teo which the clause Is being related, SMCLY1 knows

Sectlon L.2.2 - Page 312

this since the parser has noted the feature SUBJREL. Before
calling the definition of the verb, sMCL1 has found the 055
describing "a red cube" and set it as the value of the varlable
SMSUB. Similarly it has taken the 0SS for "a pyramid" and put
it in SMOBl, since It Is the object of the clause. The
definition of the verb “support" Is now called, and CMEANS uses
the information in the definition te bulld up a Relation
Semantic Structure (RS5), First it checks to make sure that
both objects are compatible with their respective marker lists.
The marker 1ists are In the same order as the symbols #1, #2,
and #3. In this case, both the subject and object must be
physical objects.

Mext SMCL1 substitutes the chjects Inte the relatlon. If
it inserted the actual semantic structures, the result would be
hard to read and time-consuming te print. [Instead, the MG
specialists assign a name to each 055, from the set MNG1l, NGZ,
NG3,... We therefore get (#SUPPORT NGl NGZ) as the description
of the relationship. The final semantlic structure for the
clause (after a second speciallist, SMCL2 has had a chance to
look for modlfiers and rearrange the structure [nto a convenlent

form) (st

Sectlon L.2,2 - Page 313

(NGl (#SUPPORT NG1 NG?2) HIL) {(0}))
rel relation MegE markers
Figure 63 -- Relation Semantic Structure 1

The pesition marked "rel" holds the name of the MG
description te which this clause serves as a modifler. We will
see later that it can be used In a more general way as well,

The "relation" Is the materlal for PLANMER ta use, and "neg"
marks whether the clause Is negatlive or not.

The last element Is a set of semantlc markers and a
priority, just as we had with object descriptions,

Relationships have the full capabllity to use semantic markers
Just as objects do, and at an early stage of bullding a relation
structure, It contalns a PLANMNER description, markers, and
systems In the identical form to those for object structures
(this is to share some of the programs, such as those which
check for conflicts between markers). We can classify different
types of events and relationships (fer example those which are
changeable, those which involve physical motion, etc.) and use
the markers te help fllter out Interpretations of clause
modifiers. For example, the modifylng PREPG "without the
shopping 11st" In "He left the house wlthout the shopping 11st"™
has a different Interpretation from "without a hammer" In "He
built the house without a hammer." If we had a classiflcation of

activities which Included those Invalving motlon and those using

Section L.2.2 - Page 31k

tools, we could choose the correct Interpretation, A system can
be constructed which operates much 1ike Fillmare's case system,
assigning classes of verbs aceording te the type of modiflication
they take, and using this to find the correct relatlon between &
verb and Its modifying phrase. This will be discussed more In
the section on types of PREPG.

In our limited world, we have not set up a marker tree for
relationships and events, so we have not included any markers In
the definition of "support”. The marker 1ist in the RSS
therefore contains only the plausibility, 0. The "HIL" Tn the
definlitlon indicates that there are no markers, and would be
replaced by a 1lst of markers 1f they were used,

The clause is now finished, and the speclalist on relative
clauses (SHRSO) Is called. lts task Is to take the information
contained in the PLAMMER deseriptions of the objects involved in
the relation, along with the relation ftself, and to put it all
anto the PLAMNER description of the ahject to which the clause
is being related. The way in which this Is done depends on the
exact form of the different objects (particularly on thelr
determiners), In this case, It Is relatively easy, and the

description of "a red cube which supports a pyramid" becomes:

Section 4,2,2 - Page 315

€« ((X1 X2) 200 (THGOAL{(#15 $7X1 #BLOCK))
(THGOAL(#COLOR $7?X1 #RED))
(PEQDIM $7X1)
(THGOALC#1S $7X2 #PYRAMID))
{THGOAL(#SUPPORT £7X1 $7X2)))

(0 #BLOCK #MANIP #PHYSOR #THING)
(#MANIP #PHYSOB #THING))

X1

(NS INDEF MIL)

MIL)

Figure 64 == 0S5 for "a block which supports a pyramld"

The only thing which has changed 1s the PLANMER
description, which now holds all of the necessary Information.
I'ts variable 1list contains both X1 and X2, and these variable
names have been substltuted for the symbols MG1 and NG2 In the
relatlion, which has been combined with the separate PLANMER
descriptions for the objects. Sectlen 4.2.4 describes how a

relative clause works with other types of NG descriptions,

Section b,.2.3 = Page 331G

4,2,3 Preposition Groups

comparing the phrase "a red cube which supports a pyramid"
with the phrase "a red cube under a pyramid, we see that
relative clauses and qualifying prepositional phrases are very
similar in structure and meaning. In fact, thelr semantic
analysis Is almost ldentical. The definition of a preposition
1ike "under" uses the same function as the definition of a verb
like "support", saying "If the semantiec subject and cbject are
both physical objects, then the chject Is #ABOVE the subject”
(Remember that in our BLOCKS world we chose to represent all
vertical space relatlons using the concept FABOVE). This can be
formalized as:

(CMEANSC(((#PHYSOR) Y ((#PHYSOR))) (#ABOVE #1 #1IMIL)

Again, the symbols #1 and #2 refer to the semantie subject
and semantic first object, but in the case of a preposition
group used as a qualifier, the SMSUB Is the MG of which the
PREPG |5 a part, while the SMOELl Is the cbject of the PREPG (the
PREPOBJ)Y. As with clauses, the situation may be more complex.
For example, In a sentence like "Who was the antelope | saw you
with last night?", the SMOBJ of the PREP "with" Is the question
alement "whe" In the MAJOR CLAUSE, However, the PREPG
spaclalist (SMPREP) takes care of all thlis, and In defining a
prepasition, we can deal directly with the SMSUE and the SMOBL.
Notice that If we had been deflining "above'" instead of "under",

everything would have been the same except that the relatlon

Sectlon 4,2.3 - Page 317

would have been (#ABOVE #1 #2) Instead of (#ABOVE #2 #1), I¥f
the PREPG 1s an adjunct to a CLAUSE, the SMSUBJ is the RSS
defining the CLAUSE. The definltion of a prepoasitioen can then

use the semantic markers which are Included In an RSS,.

Section L.2.4 - Page 318

4,24 JTwpes of Object Descriptions

In the examples so far, all of the objects described have
been singular and INDEFInite, 1lke "a red cube", and the
semantic system has been able to assign them a PLANNER warfable
and use it in bullding their properties Into the description.
Let us consider another simple case, & DEFinite object, as in"a
red cube which supports the pyramid".

The analysis begins exactly as [t did for the earllier case,
building a deseription of "red cube", then one of "oyramid."
The "pyramid" description differs from 055 2 In having DEF In
place of INDEF In lts determiner. This Is noted at the very
beginning of the analysis, but has no effect untll the entire NG
(including any qualifiers) has been parsed. At that time, the
second NG specialist SMNG2Z checks for a definite NG and tries to
determine what 1t refers to before going on {we have pointed out
in various places how this Is used to guide the parsing). It
takes the PLANMER deseription which has been bullt up, and hands
It to PLANNER In a THFIND ALL expression. The result 1s a 1ist
of all objects fltting the descriptlon. Presumably 1f the
speaker used "the", he must be referring to a particular object
he expects the listener to be aware of. |f more than one object
flts the description, there are varlious discourse heurlstlcs
used to find the reference, (see Sectlon 4.3.3) and If nothling
succeeds, a failure message is produced and the parser has to

back up and try somethlng else to parse the HG.

Section 4.2.4 - Page 319

I¥f SMNG2 Is able to find the object being referred to, It
puts It Into the description (on the property list). When SMRSQ
relates the descriptions to bulld the meaning of "a red cube
which supports the pyramid" |t takes advantage of this., The
object found will have a proper name 11ke tB5., Instead of

bullding the PLANNER description of 0S5 3, It bullds:

({X1) 200 (THGOAL(#15 $7X1 #BLOCK))
{#EQDIM $7X1)
(THGOAL(#SUPPORT $7X1 :B5)))

Figure 65 -- PLANNER Descriptien 1
"a red cube which supports the pyramid"

The cbject itself Is used In the relation rather than deallng
with Its description.

What 1f we had asked about "a red cube which supports three
pyramids"? In that case the PLAMNER description would Include
an expression using the functien THFIND with a numerical
parameter, as shown In Flgure 6E. |If we had sald "a red cube
which supports at mest two pyramids", a fancler THFIND parameter
would have been used, as shown, Here, the parameter means "be
satisfled If you don"t find any, but If you find 3, Immediately
cause a fallure." In additlion to numbers, the SMNGL and RSQ
programs can work together to relate descriptlons of quantifled
objects. "A red cube which supports sgpme pyramld" 1s handled
just 1lke the original Indefinite case. "A red cube which
Supports no pyramid" and "2 red cube which supports every
pyramid" are handled using the other PLANMER primitives, A

universal quantifler is translated as “"there Is no pyramid which

Sectlon 4.2.4 - Page 320

(THGOAL(#15 $7%2 #PYRAMID))
(THGOAL(#SUPPORT $?X1 $¥X2))

ehich supports a pyramid"

(THGOAL(#SUPPORT $7X1 :B3))

"uhich supports the pyramid"

(THEIND 3 $7X2 (%2) (THGDAL(#15 57X2 #PYRAMID))
(THGOAL(#SUPPORT $7X1 $7X2)))

"which supports three pyramids"
{THEIND (0 3 MIL) $7%X2 (%2) (THGOAL(#15 £%¥X2 FPYRAMID))
{ THGDAL{#SUPPORT §7X1 €762))
Ywhich supports at most twe pyramids"
{THHOT
{(THPROG (X2) (THGOALC#IS $7X2 EPYRAMID))
(THGOAL(#SUPPORT $7X1 $TX2)))))
“"uhich supports no pyramids"
(THMOT
(THPROG (X2) (THGOAL(#1S $7X2 #PYRAMID))
({THNOT
(THGOAL(#SUPPORT £7X1 £7X23))))

"whilch supports every pyramid"

Figure 6 == Quantlifiers

Sectlon L.2.4 - Page 321

the red cube does not support". For the robot, "every" means
"every one | know about". This Is not a requlrement of PLANNER,
or even of the way we have set up our semantic programs. |t was
done as a convenience, and will be changed when the system [s
expanded to discuss universal statements as well as the speciflc
commands and guestions It now handles,

We similarly handle the whole range of quantiflers and
types of numbers, using the logical primitives and THF I ND
parameters of PLANNER. The work is actually done [n two places,
SMNG1 takes the words and syntactic features, and generates the
“"determiner" which was ene of the Ingredlients of our semantlc
Structure for objects, The determiner contains three parts.
First, the number Is elther NS {singular, but not with the
specific number “one"), MPL (plural with no specifle number),
N5-PL (ambiguous between the two, as In "the flsh"), or a
construction containing an actual arithmetic number. This can
elther be the number alone, or a eomblination with "M, Wl oar
"exactly". Thus the two NGs "at most two days" and "fewer than
three days" produce the ldentical determiner, contalning "(<
3. The second element of the determiner ls elther DEF,
INDEF, ALL, MO, or MNDET (noc determiner at all == as in "We 1lke
sheep.") The third Is saved for the question types HOWMANY and
WHICH, so It Is NIL In a NG which |= net a QUEST or RBFEL.

Section 4.2.4 - Page 322

Mumber

NS an apple

KPL some thoughts

7 spven S1Sters

(> 2) at least three ways
(< 5 fewer than five people
({EXACTLY 2) exactly two mlnutes
Determiner

DEF the 1aw

IMDEF a riot

ALL every chilld

N nothing

NOET good intentions

Question Marker

HOWMANY how many years
WHICH which road
Filgure §7 == Examples of Determiner Elements

Other speciallsts such as SMRS0 and the answering routines
use this information te produce PLANMNER expressions l1ike the
ones described above, In addition, there are special programs
for cases llke the OF NG, as in "all of your dreams”. In this
case, the PREPOBJ following "of" s evaluated as a NG flrst.
Therefore In "three of the bloeks", we analyze "the blocks"
first, and since it Is definite, PLAMMER Is called to find out
what It refers to. |t returns a list of "the blocks", (e.z.
(:Bl :B4 :BE :B7)). The OF speclalist uses the PLANNER function
THAMONG {which chooses its varlable bindings from "among" a

given 11st) to produce an expression 1ike:

(THEIND 5 $7X1 (X1) (THAMOMNG X1 (QUOTEC:Bl :Bb tBE iBT})))

section 4,2,k = Page 323

Urdinals are treated speclally, along with SUPerlative

ADdectives. |If we have a NG 1lke "the biggest block which
supports a pyramid", it Is lmpossible for SMNGL to add the
meaning of "biggest" to the description in the same way as It
would add an expression for "big". The block Is "bDlgeest" with
respect to a group of objects, and that group s rot fully
defined unti! the entire MG has been parsed, Including the
qualiflers. SMNGl therefore does a partial analysis of the
meaning, looking up the name of the measure that particular
adjective refers to, then hangs the result in the last niche of
the 055 described In section 4.2.1 After all has been parsed,
SMHNG2 finds Tt there and ereates a full Ingleal description, In
the case of "the biggest block which supports a pyramid", we

would get the PLAMNNER description:

CCXL X2 X3 XL) 200

(THGOAL(#1S $7X1 #BLOCK))

(THGOALC#IS $£7X2 #PYRAMID))

{THGOAL(#SUPPORT $7X1 $£7X2))

(THHOT

(THAND(THGDAL(#15 $7X3 #RLOCK))

(THGDALU#1S $7X4 #PYRAMID))
(THGOAL(#SUPPORT $97X3 $734))
(THGOAL(#MORE #SIZE $7X3 $?X1)1)))

Flgure B8 == PLANMNER Description 2
“the bigeest block which supports a pvramld"

A similar type of deseription Ils generated for aother

Superlatives and ordinals.

Sectlon 4.2.5 - Page 32&

4,2,5 The Meaping of Questions

Sg far, we have discussed the semantics of objects and the
relationships which are used to describe them In preposition
groups and relative clauses. MNow we will deal with the overall
meaning of a sentence as an utterance == as a statement, a
questlon, or a command, The sentence Is analyzed Into a
relationship semantic structure, and the system must act on It
by responding, taking an actlion, or storing some knowledge.

First let us look at gquestions. In describling the grammar
of clauses (see sectlon 2.3.3) we pointed out the similarities
between gquestions and relative clauses, which share a large part
of the system network and the parslng program. They also have
mueh 1n common on a semantic level. We can look at most
guestions as being a relative clause to some focus element In
the sentence.

In the class of WH guestieons, this resemblance is easy to
sea. Flrst we can take a2 NGO guestlen, whose question element
is a MG. The questlion "Which red cube supports a pyramid?" 1s
very closely related to the NG "a red cube which supports a
pyramld. The system can answer such a question by relating the
clause to the object, and bullding a description of "a red cube
which supports a pyramid,”™ It then takes thls entlre FLANNER
deseription and puts It Into a THFIND ALL statement, which 1s
evaluated in PLANNER. The result Is a 11st of objects fitting

the description, and Is In fact the answer to our questlon. 0OFf

sectlon 4.2.5 - Page 325§

course PLANNER might find several objects or no objects meeting
the description. In this case we need answers 1lke "none of
them" or "two of them". Section 4.b deseribes how responses to
questions such as these are generated, depending on the relation
between the specific question and the data found., |f the
question is “how many" Instead of "which", the system goes
through the ldentical precess, but answers by countlng rather
than naming the cbjects found.

No matter what type of NGO we have (there Is a tremendous
variety -- see section 2,3,3) the same method works, Ve treat
the MAJOR clause as a relative clause to the MG which Is the
question element, and which we call the focus. This Integrates
the relatlenship intended by the clause Into the description of
that object. PLANNER then finds all objects satisfylng the
expanded description, and the results are used to generate an
answer,

Next, we have the QADJ questiens, like "when", "“why", and
"how", In these cases the focus |s on an event rather thanm on
one element of the relatfon. |f we ask "Why did you plek up a
block?", we are referring to an event which was stored In the
system's memory as (#PICKUP E23 :B5) where :B5 Is the name of
the object plcked up, and E23 Is the arbltrary name which was
assigned to the event (see Sectlon 3.4 for a description of the

way such information s stored.) We can ask |n PLAMMER:

Sectlon 4,2.5 - Page 326

{THFEIND ALL $7EVENT ($T7EVENT §7X)

(THGOALC#PICKUP S$TEVENT $7X))

(THGOAL(#1S $7X #BLOCK)))
In other words, "Find all of the events In which you picked up a
block." This Is clearly the first thing which must be done
before we can answer "why"., Once it has been done, answering s
easy, since PLANNER will return as the value of THFIND a 1ist of
names of such events., On the property list of an event we find
the name of the event for which It was called as a subgoal (the
"reason™). We need only to describe this In English. Similarly
if the question is "when", the property list of the event glves
its starting and ending times. |f the question is "how' Tt
takes a little more work, since the subgoal tree ls stored with
only upward links., But by looklng on the EVEMTLIST, the system
can generate a list of all those goals which had as their reason
the one mentloned In the sentence.

This concept of a relation as a sort of object called an
Mayent" 1s useful In other parts of the semantics as well -- for
instance in dealing with embedded clauses as in "the block which
| told you to pick up". This is described In section 4.2.12.

Uhere!" 1g sometimes handled differently, as [t may be
either a constituent of a clause, such as a location object
(LOBJ) (1n "Where dld you put 1t?") or an ADJUNCT (as In "Where
did you meet him?"). The flrst case s handled just 1lke the NG
case, making the clause a relative, as 1f it were "the place

where you put 1t", then asking In PLANNER:

section 6.2.5 - Page 327

(THEIND ALL $?PLACE (PLACE EVENT)
(THGDAL (#PUT $PEVENT :0BJ $7PLACE)}))

The ADJUMNCT case lnvolves thinking about a speeclal #LOCATIOM
assertion, as In:

(THFIND ALL $?PLACE (PLACE EVENT)

(THGDAL(#MEET $2EVENT :YOU :HIM))
(THGOAL(#LOCATION $PEVENT $?PLACE)))

In this example, we have moved away from the BLOCKS world since
It does not yet contaln any actions in Its vocabulary which
occur at a specific place without that place belng mentioned In
the event, such as ¥PUT. However the semantic system Is
perfectly capable of handling such cases,

so far, we have seen that we can answer WH- auestions by
pretending they are a relacive to some object, event, or place,
and by adding the relationship to the descriptien of this focus,
It Is an Interesting fact about English that even In a YES=NO
question, where there s no question element there is usually a
focus. Consider a simple question 1lke "Noes the box contaln a
block?" Someone might answer "Yes, a red one.", as [f the
question had been "Which block dees the hox contaln?" MNotice
that "Yes, the box." would not have been an appropriate answer.
Something about "the box" makes It obvious that [t Is not the
focus. It Is not Its place as subject or object, since "ls a
block In the box?" reverses these roles, but demands the same
answer. Clearly It Is the fact that "a block” Is an INDEFinite
NG,

The fact that a speaker says "a block” Instead of "the

sectlon 4.2.5 = Page 318

block" indlicates that he is not sure of a speciflec object
referred to by the description. Even If he does not Inguire
about it speciflfcally, the listener knows that the Informatlen
will be new, and possibly of Interest since he mentioned the
ohject. In answering "Does the box contain a block?", our
system does the same thing It would do with "How many blocks
does the box contaln?". |1t adds the relation “eontalined by the
box" to the description of "a block", and finds all of the
objects meeting this deseription. Of course the verbal answer

is different for the two types of guestion. In one case, "Yag!

L1 n

|s suffliclent, while in the other "one” Is. But the loglical
deduction needed to derive 1t Is identical. In fact, our system
uses this extra Information by replying, "Yeg, two of them: a
red one and a green one." This may sometimes be verbose, but In
fact gives a natural sound to the guestion-answering. It takes
on the "intelligent" character of telling the guestioner
information he would be Interested in knowing, even when he
doesn't ask for It explicitly.

In YES=HNO guestions, it Is not always easy to determine the
focus. Only an INDEF NG which Is not embedded In another NG can
be the feocus, but there may be several of them In a2 sentence.
Sometimes there 1s no way to choose, but that Is rare, In
asking a guestlion, people are usually focuslng thelr attention

an a particular object or event, There are a number of devices

for indicating the focus. For example a quantifier, 11ke "any"

Section 4.2,5 - Page 329

or @ TPRON like "something" emphasizes the NG more than a simple
determiner like "a"., In both "Does anything green support a
block?", and "Does & block support anything green?", the phrase
"anything green" Is the focus. When none of these cues are
present, the syntactic functlion of the NG makes a difference.

If we ask "Is there a block on a table", then "bleck" Is the
focus, since It Is the subject while "table" Is Inside a PREPG.
Our system contains a heurlstic program which takes Into account
the kind of determiners, number features (sirgular Is more
I1lkely than plural), syntactle position, and other such factors
in choosing a focus, If It Is in fact very diffifeult to choose
in a given case, It is likely that the speaker will be satisflied
with any ehoice.

For sentences In the past tense, which contalm no focus NG,
we can agaln have an event as a focus. |If we ask, "Did Jesse
James rob the stagecoach?", a possible answer, Interpreting the
event as the focus, Is "Yes, three times: vesterday, last week,
and a year ago." This Is closely parallel to answerling guestlons
in which the focus Is an object.

There are some questions which have no focus, such as
present-tense clauses with only definlite noun groups. These,
however, are even easier to answer, since they can be expresssed
in the form of a simple set of assertlons with no varlables,

The NG analysis finds the actual objects referred to by a

definite NG, and these are used In place of the varfable In

Sectlon 4.2.5 - Page 330

relationships. We can therefore answer "yes™ or "noe'" by making
a goal of the relatlonship and letting PLAMNER evaluate It. The
guestion "Does the red cube support the box?" would generate the
simple PLANNER expression

(THGOAL (#SUPPORT :B3 :BOX))
if :B% Is the Internal name for the red cube. PLAMMNER would

return @ non=NIL value only If the answer were "yas',

sectlon 4,.2.6 - Page 331

L.2,6 Interpreting Imperatives

The system can accept commands In the farm of IMPERATIVE
sentences. These are handled somewhat differently from
guestions. |If they contain enly defin]te objects, they can be
treated in the way mentioned above for questlons with no focus,
The command "Plck up the red bal1.", is translated into the
relationship (#PICKUP :B7) which can be evaluated directly by
putting It in a THGOAL statement which will carry out the
actlaon:

(THGOAL (#PICKUP :B7)({THUSE TC=PICKUP))

However, iIf we say "Plck up a2 red ball.", the situation Is
different. We could first use THFIND te find a rad ball, then
put this object In a simple goal statment as we did wlth "the
red ballv, This, however, might be a bad ldea, In choosing a
red ball arbitrarily, we may choose one which Is out of reach or
which Is supporting a tower. The robet might fall or be forced
to do a lot of work which It could have avolided with a little
thought.

We want to send the theorem which works on the goal a
description rather than an object name, and let the theorem
choose the specific ohject to he used, according to the eriteria
which best sult it, This Is the method we have adopted.
Remember that each 055 has a name 1ike "NGL5", Before a clause
is related to its ocbjects, these are the symbols used In the

relationship,

Section 4.2.6 - Page 332

When we analyze "Plck up a red ball", it will actually
produce (#PICKUP NG45), where NGUL5 names an D53 describing "a
red ball." We use this directly as a geal statement, calling a
special theorem which knows how to use these descriptions. The
theorem calls a theorem named TC-FINDCHOOSE, which uses the
description of the object, along with a set of "deslrable
properties" associated with objects used for trylng to achleve
the goal. #PICKUP may specify that 1t would prefer plcking up
samething which doesn't support anything, or which s near the
hand's current lecation. Each theorem can ask for whatever It
wants., 0Of course, It may be impossible to find an object which
£its all of the requirements, and the theorem has to be
cat]sfied with what it can get. TC=FINDCHOOSE tries to meet the
full speclifications first, but if it can't find an object lor
enough objects In the case of plural), It gradeally removes the
restrictions. It must always keep the full reguirements of the
description Input In English In order to carry out the specified
command. The robat simply tries to be clever about choosling
those objects which fit the cemmand but are also the easlest for

it to use.

sectlon 4,2.7 = Page 333

S4.2.7 Accepting Declarative Information

In addition to questions and commands, the system can

accept declarative sentences. We have Intentionally not
emphasized them, as there are theoretical problems and dangers
in deslgning a program to accept Information In this way. |In
Chapter 3, we discussed the complex world=-model a person has and
explalined why we felt that Intelligence needed a hlghly
Structured and coordinated body of knowledge rather than a set
ef separate uniform facts or axioms., It is comparatively easy
to get a program to add new Infermation of the second tvpe, but
very difficult to get It to add the first, since this involves
understanding the relatlionship between the new Information and

whatever 1s already there.

Therefore, although we have Included declarative sentences
in our dialog (and they are fully handled In the Erammar), we
believe that before trying to “rell" many things to a program,
we need to have a better ldea of how knowledge should be
structured, and the program should approach new Information as a
problem solving activity rather thap & clerical one,

When a human sees a new sentence, he does not simply store
it away, but he relates It to what he already knows, perhaps
changing his “"programs", or lgnoring the content of the sentence
and Interpreting something about the person who sald le., A
language understander needs to have an Interpreter which looks
at each new sentence and decides how to use |t. This may
include checking It far consistency with what It already knows,

creating new data or types of data In its storage, modifying

theorems, and many other pessibilltlies, This Is discussed

caction 4.2.7 - Page 334

further In Sectlon 5.1

In our system we have four different ways In whieh
information can be accepted In a declarative sentence. The
first Is a simple word definition facillty. |[f we say "y "marb'
is a red black which 1s behind a box.", the system recognlzes
that we are deflning a new word, It currently recognizes this
by the quete marks, but it could just as pas|ly declare all
unfamiliar words as possible new words. We have not done this
as 1t would eliminate the feature that the system Immediately
recognlzes typing errors without walting to begin parsing the
sentence.

In this kind of definition, the complement of the sentence
is a noun group, which has an 055, Ve save this 055 and
generate a new dictionary entry for the word, deflned
syntactically as a noun, and with 1ts samantic definltion belng
the program "set the object description to thlis one we saved
sarller." Remember that all definitlons are programs, so this
one fite in with no problem, When It Is called on to build part
of the description, it simply Inserts the description used to
deflne it. |f we talk about "two bhig marbs", the system will
bulld a description exactly 1ike the one for "two blg red blocks
which are behlind & box.,"

The secand kind of information the system accepts is simple
assertions Invelving a predicate for which it does not have

complete knowledge., As we mentioned In Sectlon 3.4, the system

sectlon 4.2.7 - Page 335

has complete data about the physieal characteristics of the
objects In the scene. We have selected #LIKE as an arhitrary
relation about which the system knows nothing except what It Is
told in the dialog. If we say "1 1lke you." this produces the
assertion (#LIKE :FRIEND :SHRDLU) (the name of the robot is
:SHROLU) which 1s simply added to the data base., The svystem
also plays a trick with the adiective "nice". Instead of having
some concept of #NICE, it assumes that the use of "nice" In
describing something 1s really saylng more about the speaker
than the object, so the definition of "nice" is

(HMEANS((#THING) ((#LIKE :FRIEND wqt}}j}

In other words, the person who uses the word "nice” 1ikes the
object he was referring to,

| f we use an object which isn't definite, as In "I llke red
blocks.", the system uses the object description to generate a
simple PLANMER conseguent theorem. |t creates a theorem of the
form:

(THCONSE (¥1)

(¥LIKE :FRIEND $7X1)
(THGOAL (#1015 $7X1 #BLOCK))
(THGOAL (#COLOR £7X1 #RED)))

This theorem says "Whenever you want to prove that the user
ITkes somethlng, vou can do it by proving that It Is a block and
it is red." This Is added to the theorem data base, and can be
used to answer guestlons or earry out deductions Invelving
objects described as "nice". The system doss not separate types

of non-definite objects and assumes unlversal quant!flecation,

sectlon &,2.7 - Page 336

The results would have been the same if the sentence used "any
red block", "every red bBlock", "all red blocks", or (wrongly) "a
red block." A more complete treatment [s one of the possible
extenslons of the system.
it does notice the form "no red blocks" and uses this for
the fourth kind of information. It sets up an almost identlcal
thearem, but with a "kicker" at the end. |f we say "l 1lke no
red blocks.", It sets up the theorem:
(THCONSE (X1)
(#LIKE :FRIEND $7X1)

(THGOAL (#15 $741 #BLOCK))

(THGOAL (#COLOR $7X1 #RED) D)

{THFAIL THGOAL))

¥When the system Is trying to prove that we 1ike somethling.

this theorem is called just 1ike the one above. But this time,
after it finds out that the object is a red block, It does not
succeed. Instead, It uses the PLANMER function THFAIL Tn a
powerful way. Instead of just causing that theorem to fall, It
causes the entire gozl to fail, regardless of what oather
theaorems there are, We can also accept a sentence 1ike this

with a positive NG but a negative clause, as In "I dan't 1Tke

the red block™ or "1 don't 1lke any red blocks.,"

Section 4,2.8 - Page 337

L.2,8 Time

One of the mest complex parts of English semantics is the
way of establishing temporal relatlenships, |t was pointed out
earlier that one of the primary differences between the clause
and other units such as the NG or PREPG Is the speclal set of
mechanisms within the clause far handlling time. In this sectlon
we wWill describe hew those mechanisms operate both within the
clause and at other levels of syntax.

In our formallism for describing relations and events (see
section 3,1) there Is provislon for including a time reference
in a relation. The sentence "Harriet saw the fllm last week, "
might be represented as

(#SEE :HARRIET :FILM :TIME23)
where :TIME23 Is an arbitrary name for a structure describing
the time reference "last week"., The semantlc programs for
dealing with time can be described In three parts =- the form of
structures used to represent time, the way those structures are
created, and the way they are used In understanding and
deduction,

A, Time Semantic Structures

For the purposes of our BLOCKS world, we have treated only
a simple part of the overall range of time references |n
English. In particular we have dealt only with references to
actual events which have happened In the past or are occurring

In the present, without dealing with the many varletles of

Section 4.2.8 - Page 338

future events, possible events, conditlional events, etc. With
this simplification the system can use a simple linear time
scale (1ike a clock), relating all events to specific numerical
times. This does not mean that a single event must occur at a
single time == it may continue for a perled of time during which
other events are occurrlng.

English makes a clear distinction between events which are
thought of as occurring at 2 sarticular time, and those which
are pictured as coentlnuing over an interval., This contrast is
expressed both In the choice of verbs and In the shape of the VG
containing the verh,

Verbs 1ike "1ike", and "know", are inherently progressive.

They express a relatfonship which contlinues over a perlod of
vime. Verbs 1ike "hit", and "write" are not progressive, but
indicate the completion of an action as a whole, 0Of course,
thiec action also Involves a process, and there 1s a way to
express this aspect by using a tense PRESEMNT IM... The sentence
M| broke it." is not progressive, glving the feelling of a single
momentary act. "l was breakling it." emphasizes the process of
breaking, to which other events can be related,

In the present tense, the distinction Is clear. The
present of a progressive verb has the expected meaning, as in "l
know wour name.” With a non-progressive verb, there iz a special
meaning of habitual or repeated action, as in "| break bottles."

In order te produce the meaning usually consldered "present",

Section 4,2,.8 = Pape 33g

the verb group must be PRESENT IM PRESENT, as in "I am breaking
bottles,"

Ambiguities can arise from verbs which are both progressive
and non-progressive, The gquestion "Did the red block touch the
Ereen one while you were bullding the stack?" has Ewo
interpretations. One means "Was it In contact during that
time?", while the other asks "0ld it make contact durlng that
time?" If the verb were replaced by "support™, enly the analog
of the first meaning would be valid, while "hit" would Involve
the second. The representation far time references must take
this progressivity into account In trving to Interpret tlime
modifliers,

The representation used for time has four elements: the
tense, an indlicator for progressive, a starting time 1imit, and
and ending time limit. FEither or both aof the limits may be
ommitted. Some examples of sentences and thefr corresponding

structures are shown In Flgure 69,

A supports B (PRES) T tMOW :NOW
A supported B befare tlme 23 (PAST) T HIL 23

A hit B before time 23 (PAST) NIL MIL 23
You bullt 1t after time 24 (PAST) NIL 25 HNIL

You were bullding it after time 24 (PASTY T 26 NIL

Figure 69 == Time Semantie Structures

The difference between the last two examples In Flgure &9

can be wvisuallzed by drawing a time 1lne:

Sectlon b.2.8 - Page 3LO

Mon=Progresslve
You bullt It after time Ik
— |——
time begin
24 bullding

Progressive

You were bullding 1t after time 24

4 filnish
time bullding
2L
Figure 70 == Progressive and nen-Progressive Times

A non-progressive action must begln after the start time,
and end before the end time. A progressive one begins before
the start time and ends after the end time. The T55 for "you
hit 1t durlng event 23" (assuming event 23 began at time 3 and
ended at 7) would be

{(PAST) MIL 3 7
i.e. the hit began after event 23 started and ended before It
ended. The sentence "you were hitting 1t during event 23" would
be:

(PAST) T T 3
|.e. the hitting began before event 23 was over, but ended after
It had begun. This covers all ways of having the two events
overiazp. The deflinitions of the relating words 1ike "during"
and "before" do not have explicit mention of this distinction,
but the semantlc analyslis programs take into account whether the

verb and VG are progressive in settling up the T35,

Sectlon L.2,8 = Page 341

B. Setting up Time Structures

Time Semantic Structures are assoclated with clauses, and a
new one ls generated each time a clause |s parsed, Ilts elements
are determined by different aspects of the clause structure --
the tense depends on the form of the VG, the progressivity
depends on both the tense and the speciflc verb, and the 1imlits
are set by modiflers such as bound clauses, adverbs, and time
NGs as well as by the tense,

Ne analysls s done untll after the V& s parsed and the
tense established. Some types of secondary clauses such as |MG,
SUBING, TO, and SUBTO do not Indlcate a tense. There Is a
potential ambigulty In determining the time reference, "The man
sitting on the table baked the bread," might Tndicate that the
man was sitting on the table when he baked It, or that he Is
sitting on the table now.

Unless there Is a specific reference (]lke "the man sitting
on the table yesterday..,") the system should take beth
possibilities Into account and resolve them as It would an
amblguity caused by multiple senses of words, The current
system does not do this, but uses a simplIfying heuristie, |f
the secondary clause Invelves PAST, and Iz embedded In a PAST
MAJOR CLAUSE, the two times are assumed the same unless
speciflically mentioned. |If the secondary clause has no tense,
it Is assumed PRESENT. If 1t Is PAST, but Imbedded In a PRESENT

MAJOR CLAUSE, the system checks the time reference of the

cectlon 4.2.8 = Page 342

nrevious sentence, |f this Is PAST, the new one s assumed to
he the same (including whatever modifiers, limits, etc.
appllied), If not It sets up a general time structure for PAST,
with no beginning 1Imit, anc an end 1imit of :$HOW, A PRESENT
tense 155 is represented by the sinzle atom :NOW, which is
treated specially by the programs, and Is often deleted from
relations which interrogate the current state of the data base
{see below). It can be applied only to progressive verbs and
tenses (no provislon exists for understanding habltual actien).

Modals are treated 1ike present tense as far as
establishing time references, A more complete system would
account for future, different types of modals, more complex
tenses, and would Involve keuristics for finding the referents
aof multiple tenses like "He will have been ecing to g0
immediately for a month by Tuesday."

The start and end 1imits are set by modifiers. Adverbs
1ike "yesterday" and TIME NG's like "the week he arrived" set
hoth 1imits. This can also be done by bound clauses 1ike "while
you were bullding the ctack" or PREPGs 11ke "during the flood".
Ather clauses, prepasitions, and groups set anly the start l1imit
(11ke "after you hit 1t", "after the war") whlle others (1ike
pefore" and "until") set the end 1imit. In the current system
the event being referred to In the modifler Is assumed to be
known a2long with its exact time (1t must be In the past.) The

exact beginning and ending time are used In setting the 1imits,

Section 4.2.8 - Page 343

The question "Did you pick 1t up while vou were bullding
the stack?" is answered by first finding the event of bullding
the stack (using a T55 for PAST tense with no other 1imits),
then usling the beglnning and ending of that event as limits for
the TS5 In the relation #PICKUP,

There are dlscourse phenomena which Invelve time reference,
First, there are specific back-references with words like "then"
and phrases like "at that time". The system keeps track of the
major time reference of the previous sentence, and substltutes
it In the current sentence whenever such phrases are used. This
time Is alsc carried forward implicitly., Conslder "Did you plek
up a red block while you were bullding the tower?" "Ng." "Did
you plck up @ green one? In this seguence, the second guestlon
involves a specific time interval although 1t Is not mentioned
again. Whenever there are twe successlive PAST sentences and the
second does not have any explicit time reference, the previous
TS5 is used. Long dialogs can appear in which the same time
interval Is used throughout, but Is mentloned only In the first
sentence.

C. Use of TSS

S0 far, all of our discusslon has Involved the clause with
Its verb group and time modiflers., But In making use of time
information we must handle other units as well. The sentence
"The man sitting on the table baked the bread." has two

meanings, but the point would have been Identlical for "The man

Section 4.2.8 - Page 3Lk

on the table baked the bread," The qualifying prepositional
phrase "on the table' does not refer to time, but can be
interoreted either as meaning "on the table now" or "en the
table then". Adjectives can be affected similarly. Consider
the sentences:
a. Many rich men made their fortunes during the depression.
b, Many rich men lost thelr fortunes during the depression.
c. Many rlch men worked in restaurants during the depresslon.

The first clearly means "'men who are now rich", the second
"men who were rich", and the third might have elther
interpretation. The adjective "rich" invelves an Implicit time
reference, as does any adjective which describes a state which
can be true of an object at one time, but false at another.
Nouns can also lnvolve states which are changeable, and the
problem would be ldentical If "eleh men" were replaced by
"millionalres".

In a traditional transformaticnal approach, this would be
used to show that even a simple phrase such as "a rich man" or
"milllonalres" |s generated by a serfies of transformations. The
possibility of two meanings is accounted for by two different
deep structures, Involving sentences carresponding to "The men
were rich." and "The men are rich." This leads to a syntactic
theaory in which the simplest sentence may Invalve dozens of such
transformations, to account for each noun, adjectlve,

presposition, etc, The parser must be abkle to handle all of

section L.,2,8 = Page 345

these details using syntactic Iinformation.

In our approach, these can be seen as semantic amblguitles
which arise within a single syntactic structure. Part of the
semantic definltion of the word "millicnalre” (ar "student",
"bachelor", etc.) Involves a reference to time, Withln the
language for writing semantic definitions, there Is a special
symbol =TIME., Whenever the program for the meaning of a woerd In
the dictionary Is called, the semantic system will have
determined the appropriate Time Semantlc Structure (or
structures) and have assigned a value to this symbol
accordingly. |If the time reference ls amblguous, the definitlion
will be called once for each possibility. The noun millional re"
might be deflined:

(NMEANS ((#PERSON) ((#15 ww+ #PERSON)
(#POSSESS wwe $1,000,000 *«TIME})))

Notice that not every relation Invelves time, Belng a
#PERSON 1s assumed to be a permanent characterlstic. If the
time Is PRESENT (indicated by the TSS tNOW), the system deletes
the time reference, so PLANMNER will recelve the expression
(THGOAL (#POSSESS $7X1 $1,000,000)), where $£7X1 Is the varlable
asslgned to the object being described. If the sentence were
“"During the war, many milllonalres worked In restaurants.", the
time reference of the sentence would be a structure 1ike (
(PAST) NIL 1941 1945), and the PLANNER expresslon for
"millionaire" would include:

(#POSSESS $7X1 $1,000,000 ((PAST) NIL 1941 1945))

Section 4,2.8 - Page 346

4 different theorem would be used for thlis case, since It cannot
look directly into the data base to see what the person has, but
must look into its past "records" te reconstruct the
information. In our programs, a record Is kept of when and
where objects have been moved, so theorems can determine the
location of any object at any time in the past,.

Since adjectives can be defined with NMEANS, they are
treated ldentically. PREPositions and verbs are usually defined
with CMEANS, which has the same conventions. The symbol *TIME
can appear In the PLANNER description In the definltion, and Is
deleted if the applicable time 1s :NOW, and replaced with the
TSS ptherwise. The time applicable to anything but a clause |s
that of the clause closest above It In the parsing tree. This
ie only an approximation, and dees not take Inte account
amblguities such as [llustrated In sentence c. above, In fact,
3 PREP or NG can have Its own time reference, as In "a former
millionalre", "many future students', "my roommate lasf year",
Mehe man on the table yesterday". Thls Is one of many places
where the current semantic system needs to me extended by making
the analysis more general. |t seems that this could be done

within the framework of the current system.

Section §,2,9 - Page 347

4.2,9 Semantics of Conjunction

The semantle system does not handle conjunction as
generally as does the parser. A few cases have been dealt with
in a simplified way == noun groups, adjectives, RS0 clauses, and
MAJOR clauses which are not questlons. The distinction between
"and" and "but" ls lgnored.

With MAJOR clauses, the conjunctlon must be "and", and the
components are processed as If they were completely separate
sentences, except that the response ("OK." for IMPERatives, and
"I UNDERSTAND." for DECLARatives) ls supressed for all but the
last. The system will not accept sentences joined with "ar",
or "nor", and will misunderstand compounds which cannot be
separated into Individual actions (e.g. "Bulld a stack and use
three cubes In it,")

Houn groups can be connected with "and" wherever they
appear, and with "or" If they are part of an argument to a
command (1ike "Plek up a cube or a pyramid."). An 05§ is bullt
with the semantic markers of the firsg constitutent NG, the
conjunction itself, and a 1ist of the 055 for the components,
If all of the components are DEEinite and the conjunctlion is
"and", the conjoined NG Is definite, and lts REFERent 1s the
unien of the referents.

The use of the conjolned 055 depends on Its place In the
sentence. |If It Is the object or subject of a verb or

prepesition, the definitien of that verb or preposlition can

Section 4.2.9 - Page 3L

check explicitly for conjoined structures and treat them
specially. For example, "touch" can be defined so that the
sentence "A and B are touching." will be represented as { THGOAL
(#TOUCH :A :E)). |If there Is no special check, the system
assumes that the desired object is the list of referents., "A
and B support C." would produce (THGOAL (#SUPPORT (:A tB) :C)).
If the first element of the PLANMER expression {usually the name
of a predicate) has a property MULTIFLE on fts property 1Ist,
the system modifies this to create the expresslion:

{THAND(THGOAL (#5UPPORT :A :C))
(THGOAL(#SUPPORT :B :ClJ)

|f the conjeined NG Is one of the arguments to a command,
the theorem TC-CHOOSE wlll choose the specific referents. I £
the conjunction Is "and", Tt will combine the referents for each
of the components in a single list. If it Is o', Tt will
first choose according to the first constltuent, then If a
fallure backs up to the choice, It will try the second, third,
etc. It does not look at the various cholces In advance to
decide which Is most appropriate for the task belng done,

The other units which can be combined with and" and "or"
are the adjective and RS5Q clause. The semantic structure for
the conjolned unit Is & 1ist whose first element is the
conjunction, and the rest are the Individual Interpretations for
the constltuents, In using these te modify an 055, the system
combines all of the descriptions with THOR or Implicit THAND.

For example, "a block which Is In the box and Is red" becomes:

section 5.2.9 - Page 349

(THGOALC(#I15 %7X #ELOCK))

(THGOALC#IN $7X :BOX))

(THGOAL(#COLOR £9X FRED))
while "a red gr green block" hecomes:

(THGOAL(#I1S £7X FRLOCK))

(THOR(THGOAL{#COLOR $£7X #RED))

(THGOAL{#COLOR $7X #GREEN)))
This could easily be extended to other modifiers such as
preposition groups., Many other types of conjunction could be
handled witheut major changes to the system, usually by adding
two bits of program. One would create a conjoined semantlc
Structure approprlate to the unit, and the other would recognize
It and take the appropriate action far |ts use,
Whenever the constituents of a conjolned structure are

amblguous, the resultant structure simply multiplies the

ambigulty, taking all possible comblnatiens of Interpretations.

Section 4,2,10 - Page 350

L,2,10 More on Ambigulty

Section 4.1 described how the number of interpretations of
an ambiguous sentence can be reduced through the use of semantic
markers, and selection restrictions associated with verbhs,
adjectives, and prepositions. This section will describe the
mechanlsm for producing multiple interpretations, assigning
plavsibilities te them, and resolving the amblguities through
discourse heuristies and Interaction with the user.

tny word of the classes ADV, ADJ, KOUH, PREP, PROM, PROPM,
VB, CLASF, or PRT can introduce an ambigulity inte the semantlc
Interpretation. The remaining classes (such as NUMber and
DETerminer) have very limited definitions, and are handled
differently.

In general, a word (s expected to produce a llist of
semantic structures, based on its definition, and the other
lists of semantic structures to which it Is related. HNOUM,
PRON, and PROPN set up lists of Object Semantlec Structures. ADJ,
ADV, and CLASF take one of these llsts, and produce a new list
adding the modification (and possibily eliminating anomolous
combinations). The VB, PREP, and PRT (In conjunctlien with VB)
set up llsts of Relation Semantic Structures, and other classes
can modify these lists.

Any of these definitlons can Involve special programs for
producing the 1ist of structures. For example the EMIT program

i used for analyzing pronouns 1ike "they" and "It". It

section 4,.2.10 - Page 351

contains a complex set of heuristliecs and syntact|e criterla to
find the possible referents of a pronoun and set up an
interpretation for each one. Far simpler words, the functlons
NMEANS and CMEANS have ways to deal with multiple senses of a
word.,

First, they both take as an argument not a single
definition, but a 1lst of definitions, each with Its own
semantlic markers, PLANNER expressions, etc, Second, each of
them has mechanisms for leopling through each of the relevant
"Tnput" 1ists, to produce multiple Interpretations, |f the
subject and object of a clause each have two Interpretations,
and the verb has three senses, all twelve combinations will be
tried, and the resulting 1ist of Interpretations for the clause
will contain as many of them as pass through the semantic marker
“"filters". This Is all done by the function CMEANS without
mention in the definitlions, Third, the definition functions
have optlonal ways to establish a "plausiblility" rating and
paraphrase for each meaning.

In the dictlonary, the word "on" has a semantfe definlition
which uses the functlon #ON, which contalns:

(CMEANS ((((#PHYSOB)) ((#PHYSOB))) (#ON #1 #2 =T|ME)
igét (ANWHERE ON TOP OF)))
(COC#PHYSOB)) ((#PHYSOE))) t;??FFﬂRT #2 41 *TIME)

(D (DIRECTLY ON THE SURFACE)))
(CCOFPLACE)) C((#PHYSOB))) (#0ON #1 #2) NIL))

Sectlon 4.2.10 - Page 3512

This contalins three different senses. The third definitlion
will never confliet with the first two, since It ITnsists that
the subject be a place rather than a physical object. The flirst
two, however can be appllied to the same ohjects, and therefore
can be involved In an amblgulity. Each of them Is given an
additienal argument, to help resolve ambigulitles. This argument
appears after the standard cemantic filters, PLANMER relation,
and semantic markers for the relation. It Is composed of two
elements == a LISP form to be evaluated for a Mplausibility",
and a paraphrase of the meaning. In this example, the
plausibilities are simply numbers. They could just as easily be
a form 1ike (PLAUSCHECK), which would call & speclal program
(deflned by the user) which could do arbitrary calculations in
order to decide on a plausiblility. This might invelve PLANNER
deductions, checks on the exact syntax of the sentence, or other
schemes such as looking through a network or other model in
order to declde which meaning fits best with the the other words
in the sentence and the subject being discussed.

As a semantlc structure Is bullt, 1t takes on the sum of
the plausibilities of Its compenents, as Its own plausibillty.
Mo “"pruning" Is done to ellminate abvious low plausiblilities,
although this would be a simple additlion te the program. All
interpretations are carried along untll the sentence Is totally
parsed.

1f the sentence |s a command, the system tries to carry out

Sectlon 4,2,10 - Page 353

the most plausible Iinterpretation. |f that fails, It tries the
next, and so on unti] one succeeds or a total fallure causes the
system to respond "I CAN'T", (uestions are handled more
complately, The system orders the Interpretatlons by
plausibility and finds the answer for the most plausible, It
then tries agaln to answer It, using enly Information mentioned
In the previcus sentence and its answer, |f It succeeds in
finding the same answer, 1t deducts 500 from the plausiblility,
since it Is unusual to ask a questlon to which the answer was
just given, elther explicitly or implicitly. If the Information
in the previous sentence Is not sufflicient to answer it, the
system then tries to answer using only Information which has
been mentioned previously In the discourse, If this succeeds It
deducts 200. If the plausibility Is higher than that of the
next interpretation by & large enough margin (a factor set hy
the user and called TIMID) It gives the answer as found, |f
not, It saves the answer and repeats the process for the next
Interpretation, After all interpretations have been processed,
the answers are checked to see |f they are ldentlcal. In this
case it doesn't matter which Interpretation is Intended, and the
system simply glves the answer. Flnally, If there are differing
answers, the user must be asked what he meant. Assoclated with
each Interpretation is a list of those places where It differed
from others, This 1s produced automatically by each program

which accepts multiple definitlons (such as NMEANS anmd CMEANS),

Spction L,2.10 = Page 354

Each difference Is marked by two atoms == one whose properties
indicate the place In the sentence where the amblgulty was
produced, and the other indicating the meaning selected., In
sorting out the ambigulties, the system looks for two such
structures with the same first atom but different second ones,.
The first can be used to declide what phrase Is questlionable,
while the second atoms carry the paraphrases. Speclal care 15
raken to make sure that the same sentence Interpretation does
not involve two different Interpretations of a single element
(1Tke "1t").

Faced with an unresalvable ambigulty, the system looks
through the 11st of Interpretations for a conflict, then
generates a response like:

|'M NOT SURE WHAT YOU MEAN BY "OM TOP OF" 1M THE PHRASE "N
TOP OF GREEN CUBES ".

00 YOU MEAN:
1 - DIRECTLY OM THE SURFACE
2 - ANWHERE OM TOP OF 7
The response (a typed number) Indlcates which 1s meant, and
all interpretations which Invelve the other meanlings (there can
be more than 2 assoclated with a single amblgulty) are
elIminated. | f there are still conflicting interpretations,
another amblgulty Is selected and the process Is repeated untl]
all those which have not been ellminated give the same answer,
and 1t can be used as a response.
For interpreting statements, much more subtlety 1s needed.

Iln general the cholece between Interpretations depends on how

Section 4,2,10 - Page 355

"reasonable" an Interpretation Is. If we see "The book fell off
the table because It was slanted.", we avold belleving that "it"
refers to the book, or that It was "slanted" by the author's
bias. It would not be reasonable for elther of these to be the
reason for falling of f of 2 table.

Part of the Interpreter which looks at declarative
statements must be able to evaluate how "surprising” an
interpretation Is, and to choose the one which fits best Into
the normal expectatians, including the hearer's knowledge ahout
the world., This is not easy to formallze, and was not attempted
in this project. It could be extended to lower Jevels te check
Sub-units for reasonableness as they are formed, to avold
carrying multiple Interpretations through the analysis of the
entire sentence. |t seems clear that people do this, and a
truly Intelligent lenguage-understanding program must deo so as

well.

ceaction 4,2.11 = Page 356

5,2,11 To Be and To Have

The verbs "be" and "have" are two of the most common words
in English, and have a complex variety of uses. They appear In
the system In two ways. Flrst, In the grammar they are treated
specially since they can occur as auxliliary verbs, as In "l
would have heen goling'". In this use, they do not add any
semantic information except for helping to determine features of
the VG, such as Its tense, Thelr other use Is as maln verbs In
clauses 1ike "Do you have a match?" and "He |s wrong." As a main
verb, "be" Is handled specially in the grammar since It can
enter into constructions such as 'there Is" which do not appear
with any other verb, However, the semantic analyzer does not
know anything special about "be" and "have'., Thelr meaning s
included in thelr definitlons, which are called as programs just
like any other verb definitions.
A, Be

The uze of "be" depends on the specific constellation of
objects and complements in the clause, The definition 1s a
program containing about 40 lines of LISP, which handles those
meanings relevant to the BLOCKS werld {(for example, [t cannot
deal with a "role-playing" meaning, 1ike " auyrence 01lvier was
Hamlet.'")

centences with the feature THERE, Invelving a construction
1ike "there 15" are represented by the FLANNER expression

(FEXISTS #1 =TIME). This attaches the correct time, and mleght

Section L.2.11 = Page 357

be important for objects which can be created and destroyed, as
In "Was there a stack...?",

The other meanings of "be" involve INTensive clauses which
contain an object and a complement. One deflnition checks for
COMPOQ guestions 1ike "What color is the block?", to generate a
PLANNER expression (#COLOR :ELOCK $2X1), If the complement s a
definite NG, as In "Is the green block Lthe biggest object?" or
"What 1s the blgsest object?", the referent will have already
been determined, and Is inserted In a PLANNER expression
(THAMONG =ww (QUOTE(:0BJ))), where :0BJ is the referent. This
can function In twe ways. |If the subject Is also definite, as
in the first example, the *** will be replaced by Its referent,
and the statement will succeed only If the two are Identical.

If the subject Is Indefinite, the THAMONG statement will cause
it to be assigned to the same referent as the complement.

If the complement is a PREPG ar a complex ADJG, 1lke
"bigger than 2 breadbox", "be" is only serving as a place-holder
which can accept a time reference. The semantic interpreter In
dealing with a phrase 1ike "on the table" in "= the hlock on
the table?" has already set up a relation of the form (#0N
:BELOCK :TABLE) which includes the appropriate time reference.

In this case, the "be" program simply takes the RSS produced for

the complement, and uses It as the semantic Interpretation of

the clause.

The other possibillities for the complement are an

section 4.2,11 - Page 358

Indefinite NG, a simple ADJG {e.g. 3 single adjectivel, or a new
word., In the case of a NG, the complement NG contalns
additional information te be ascribed to the subject, as in "a
large object which is a red blogk". The PLANMER description of
the complement is stripped from Its 0S5, and appended to the
PLANMER descriptien of the subject. |If the subject is definite,
as In "ls the bigsgest thing a red block?", the referent Is
known, and can be plugged into the PLANNER description of the
complement to see |f the description applies. This 1s done
using a pseudo-concept called #HASPROP which triggers the
mechanisms In the semantic Interpreter.

If the complement §s & simple ADJG, the ADJG semantic
speclalist creates lts 035 by taking the 055 for the subject,
stripping away the PLAKNER description, and using the rest as a
skeleton on which to place the PLANNER expression produced by
the adjective. Once this is done, it can be treated exactly
llke an Indefinite NG.

Einally, If the subject or complement is a new word (as in
“a frob is a big red cube."” or "A blg red cube Is a frob.") a
new definltion Is created usling the function #DEFINE. The
definition must be in the form of an Iindefinite NG, and the new
word 1s asssumed to be a noun. The semantic definition created
for the noun contalins the 055 which was created for the defining
NG, and sets this 055 up as the meaning of the noun when [t Is

used.

Sectlion 4,2.11 - Page 350

E. Have

The definition of "have" is also used teo handle the
possessive. For the limited subject matter (and for much of
English) this Is a good approximation. There are cases where |t
does not apply -- "the painting which John has" is not
necessarily the same as "John's painting." The preposition "nf"
also makes use of the same definitlion, A more complete
treatment would distinguish between the three, and this would
involve only simple changes to the semantle programs,

The interesting thing about "have" fs that it Is net used
to indicate a few different relationships, but is a place-marker
used to create relationships dependent on the semantlic types of
the objects Involved. "Sam has a mother." can be represented
(#MOTHER-OF X SAM), "Sam has a friend." s (#FRIEND X S5AM), "Sam
has a car." Is (#OWN SAM CAR), "Sam has support.'" 1s (#SUPPORT X
SAM), "Sam has a hand." is (#PAET SAM HAND), ete. The
definltion of "have" {(or the possessive, or "of") does not
include within Itself all of these dlfferent relatlons, A few
interpretations (11ke have-as=-part, ownlng, or having In
Physical possession) can be reasonably considered distinct
meanings of "have", and are Included In lts definition, The
others, such as "mother" and "support" really are determined by
the subject and object, Some s5¥stems use this fact te find the
meaning of special phrases like “"cllent's lawyer" without daing

syntactlic analyslis (see sectlion 2.5). Our svstem uses a

Sectlon 4.2.11 = Page 3EOD

dlfferent method, allowing a word to be defined as a #ROLE,
"mother" might be defined as:
(MMEANS ((#PERSON #ROLE)
(({#PERSON ##w)
(#MOTHER=-OF #== 7)
(#ROLE((#PERSON)) (#MOTHER-OF #1 #2)))

There are two new things In this deflnitlen. First, the
semantic marker #ROLE is added to Indicate the type of
definitien. Second, & role definition Is Included. It contalns
a semantic filter for objects which can be used In the relatlon
{in this case those which could have a mother), and a PLAMNMER
statement Indicating the relation (In the same syntax used by
CMEANS). |f the word "mother" Is used In a phrase 1like "Caral's
mother” or "Carcl has a mother" or "the mother of tarcl", the
system will insert the right 055 to produce the PLANNER
description (#MOTHER-OF $?X1 CAROL) If "mother" appears In any
other form, the 055 will contain (#MOTHER-OF 3$7X1 ?7) which will
be satisfied In a PLANMER goal if X1 Is the mother of anyone at
all.

Through the #ROLE mechanism, arbitrary relatlonships can be
expressed with "have" {(or Yeof", or sossessives) without bloating
its definition. There could be more than cne #ROLE asslgned to
a word as well. For example "palnting" would Involve different
roles for "Rembrandt's painting" "George washington's painting

by Stuart", "the Modern Museum's palnting.", ete.

section 4.2,12 - Page 3561

4.2,17 Additional Semantic Information

A. Using Clauses as Objects

In order to Interpret a sentence like "Find a block which
Is taller than the one | told you to pleck up." the system must
use a clause ("you to plck up") as the object of a verb

("tel1"), It generates a pseudo=-object of the type #EVENT, and

creates an 055 for that object. In the example menticned, the
clause "you to pick up" would have produced the RSS:
((NG1 (#PICKUP NG1 ((PAST) NIL MIL NIL)) MIL) (o))
rel PLANNER expression neg markers
Flgure 71 == RSS for "you to plck up"

NGl is an 035 describling the object "the one", which the
system has set up as the ohbject of the clause, and has
interpreted as "bloek". The program SMCLY takes this structure

and produces a corresponding 055:

C 0 (CEVX1) 0 (THGOAL (#PICKUP $PEVX1 $7X1 ((PAST) NIL NIL NIL))
(THUSE TCTE-PICKUP)}))
(0 #EVENT #THING)
(#THING))
EVX1
{1 INDEF HIL)
NIL)

Flgure 72 == 055 for "you to plck up"

A varlable was generated for the event, of the form EVXn,
and a new PLANNER expression for the event was generated,
Including the event name as the second element. The reason for
putting It second Is technical, and should be changed someday

for programmer convenlence and consistency with the scheme

Section b.2.12 - Page 362

described In Section 2.1, In the expression, the name of the
055 1s replaced with Its assoclated variable {in this case $7X1)
cimce the new structure will be used as part of the description
of that object. The recommendation 1lst includes the theorem
which 1s designed te deal with expressions invalving time and
event-names, and s put In by the system. In working with the
rest of the sentence, this resultant 0535 can be used just 1ike
any other 055, as an object of a verb, preposition, etc,

When PLAMMER evaluates the expression, [t may have the
event already stored away, or it may have to deduce that it
happened by looking at other events, This s handled by the
theorem TCTE-PICKUP, and the name of the resultant event Is the
value which Is assigned to the varfable EVX1.

8. Types of Modification

There are a varlety of ways in which a modifier can af fect
the meaning of the phrase or clause [t modifies. Slnce the
definition is a program, the user has great freedom to use
different types of modification. A time modifier 1lke "now" or
"ihen" will modify the Time Semantic Structure associated with
the clause, an adverb 1lke aulekly" may set up a new relation
such as (#SPEED $7EV1 #FAST) using the name of the event, while
athers may make changes directly to the relation beling
constructed. The semantic structures previeusly bullt can be
analyzed and modified by an arbltrary function which sulfts the

meaning of the modifier. One special facility exists for maklng

Section 4.2.12 - Page 363

substitutions within an expressien., |If the PLAMNER expression
of a CMEANS or NMEANS definition is of the form (#SUBST al aZ? bl
b2...), the effect will be to modify the exlsting semantic
Structure by substituting the atom a2 for al, b2 for bl, etc.

No new expresslion [s added to the PLANMER description. The word
"move" might be deflined using:

{EHEAHEEEI{!ANIHATEJ]EEFMANIPJJ} (#PUT #2 LOC =TIME) (#MOVE) D)
This Indicates that meving is done by an animate object to a
manipulable object, and involves putting It at the place "LODC",
The atom LOC would be glven a 0S5 indicating an unknown place,
The resulting RSS has the semantic marker #MOVE, The sentence
"Move & block." would create a goal (#PUT NG1 LOC), where NG1 Is
a description of "a block". The theorem for #PUT could then
choose a block and place. If the sentence |s "Move a block Inte
the box.", the flnal result should be (#PUTIN NGI iBOX). The
modifylng phrase makes a major change In the Internal
representation of the meaning.

This change can be done by defining "inte" to Include among
its meanings:

(CMEANS((((#MOVE)) ((#BOX))) (#SUBST #PUTIN #MOVE #2 LOC) NIL))
If & PREPG with the preposition "inta" modlfles a8 clause with
the semantic marker #MOVE, and the object of the preposlition has
the marker #BOX, then the definitlien applles. The RS5 for the
clause Is changed by substituting #PUTIN far *MOVE, and the

object of the prepesition far #L0OC. The special symbols #1, L

Sectlon 4.2.12 - Page 36L

#5, www, and *TIME are treated as they would bhe In a normal
CMEANS or MMEAMS definitlion, belng replaced by the appropriate
object.
c. Using Evaluation 1n CMEANS and NMEANS

Al though every definition has the power to use programs,
definitions using the standard forms CMEAMS and NMMEANS are
forced into a rather rigld syntax which does not have a
procedural character. To aveid this, there Is an extra level of
evaluation., I1f the PLANMER portion of a definition Is of the
form (#EVAL s) where s is any LISP atom or c=gxpression, the
form will be EVALled before the description Is used In the
definition, and 1ts value used Instead, This value will undergo
the usual substitutions for #1, #2, =TIME, etc. This feature s
of particular use In capturing the cemantic repularities of the
language by using auxilliary functions In defining words. For
example, color adjectives 1lke "red" and "blue" share most of
their characterlistics. They apply to physical ohjects, Involve
a relatlon with #COLOR, etc. Rather than defline them
separately, we would 1lke a single function #COLOR which needs
only to have the exact color specifled. The dictlionary
definitlion of blue would then be (#COLOR #BLUEY. The function
#COLOR can be defined In LISP:

(DEFUN #COLOR FEXPR (A)
({HMEAMNS((#PHYSOB) (#EVAL (LISTC(LIST (QUOTE #COLOR)

(QUOTE www)
(CAR A))IDDD)

Section 4.2,12 - Page 35!

When (#COLOR #BLUE) is evaluated, the #EVAL will produce
the form ((#COLOR =ww #BLUE)), whieh will then be used by NMEANS
in the usual way.

As another example, the word "grasp" can be used to mean
#GRASPING (an object belng held) or #GRASP (the actlon of
closing the fingers around It). The difference depends on
whether the VG is progressive or net, The function
(PROGRESSIVE) finds out whether the clause is progressive, by
locking at the verb and the tense., The definition of "grasp"
can be:

(CMEANSCCC(#ANIMATE)) C (#MANIP)))
(#EVAL (COND ((PROGRESSIVE) (QUOTE(#GRASPING #2 *TIME)))
(T (QUOTE (¥#GRASP #2 »TIME))))) NIL))
D. Some Interesting Problems

There are many areas In which the semantiec analysis needs
to be refined and expanded. The system does not pretend teo
contaln a complete analysls of English, but Is rather an
IMlustration of how many aspects of semantics could be handled.
This section describes a few places where modificatlon might
begin.

1. Definite Determiners

In our system, a definite noun phrase Is Interpreted as
referring to @ unlque object or set of objects known to the
hearer. |In more general language use, definlteness s often
used to convey new Information. The phrase "my brother who

lives In Chicage" can be sald to someone who ls not aware | have

cectlon 4.2.12 - Page 3IGE

a brother, and the effect Is teo inform him that indeed | do, and
te tell him where this brother lives. Other nouns can describe
"functions", so that "the title of his new book", or “my
address", are allowable even If the hearer has not heard the
title or address, slnce he knows that every book has a unigue
title, and every person an address, Superiative phrases 1lke
Mehe tallest elephant In Indiana" alse refer to & unigue object,
even though the hearer may not have seen or heard of this object
before.

Cases such as these can lead te problems of referential
opacity. |If your name Is "geaymour', and | say "Excuse me, | 've
never heard your name.", It does not Imply that | have never
heard the name Seymour. The sentence "l want to own the fastest
car In the world." does not have the same meaning [f we replace
the NG with its current referent == | don't want whichever car
it 1s that happens to be fastest right now.

These and other such problems need to be handled In the
programs for Interpreting a definite NG, using syntactic,
semantle, and world knowledge.

Z. Verb Tenses

The current system Implements only a few of the possihie
tenses == PRESENT, PAST, PRESENT IN PRESENT, PRESENT IN PAST,
PAST IN PAST, and an elementary form of the MODAL “ean,

Section 4.2.8 described some of the problems whlich can be

involved In time reference, and a deaper anlaysis Is needed to

section L.2.12 - Page 367

account for Interactions between the order of phrases and the
possibilities for time reference, The madals, conditionals,
subjunctives, etc, need teo he handled. This may demand a
version of PLANNER which can temporarily move Inte a
hypothetical warld, ar which has more power te analyze |t5 gun
theorems to answer questions involving modals like "can" and
"must",
3. Conjunction

Only the most elementary prablems |n conjunction have heen
dealt with In the current system. Many conjolned structures do
not yet have semantic analvzer programs, and no subtlety Is used
Iin deciding en the meaning of werds Tike "and", "And" can he
used to indicate temporal sequence ("We went to the el recus and
came home.") causality ("We saw him and understood,"), as 2 type
of conditional ("Do that again and 1'1] clobber woul"), In
specification of how te do something ("Be a friend and help
me."), ete. Understanding these uses will he related to the
discourse problem of the ordering of sentences, For example,
"The light Is on. He's there." Indlcates a chaln of reasoning.

In addition, no attempt has been made to dlisamblguate
nested structures llke "4 and B or C", or "the old men and
women," Syntactic criteria are not sufficlent for these
distinctions, and a powerful semantic program will have to he

used to ask "which Interpretation makes more sense In this

casg",

Section 4.2.12 - Page 368

4, MNon-syntactic Relations

There are socme places In English where the relation between
a set of words Is not indicated by syntactic elues, but Is
largely based on semantics. one example Is chain of elassiflers
before a noun. In Ystrict gun law", the law Is strict, but in
Wetalen gun law", the gun is stolen, It Is possible to combine
long strings 1ike "a hellcal aluminum soup pot cover adjustment
screw clearance sale', In which a large amount of semantic
information must be comblned with the ordering to find the
correct Interpretation. The current system handles classiflers
by assuming that they all separately medify the head. This
needs to be changed, to use both the semantle markers, and

complex deductlons to fFind the real relatlonships.

Section 4.3 = Pape 359

4.3 The Semantics of Discourse

In section 4.1, we discussed the different tvpes of context
which can affect the way a sentence [s interpreted. In this
section we will describe the speclfle mechanisms used by our
program to Include context in [ts Interpretation of language.

e have concentrated on the "local discourse context", and the
ways [In which parts of the meaning of a sentence can be referred
te by elements of the next sentence. For example, pronouns |[ke
"it" and "they" can refer to ohjects which have heen previously
mentioned or to an entire event, as In "Why did you da e,
The words "then" and "there" refer back to a previous time and
place, and words 1ike "that" can be used to mean "the one most
recently mentioned", as In "Explain that sentence.”

In addition to referring back to a particular object, we
can refer back to a description In order te aveld repeating It,
We can say: "Is there a small grey elephant from Zanzlibar next
to a big gne?". Sometlmes Instead of using "one" to avoid
repetition, we simply oemit part of a phrase or sentence, We can
reply to "Would you 1ike a corned-heef sandwlich?" with "Bring me
two." or we can respond to almost anything with "Why?" In these
examples, the second senternce lneludes by Implication a part of
the first,

These are not really discourse features, since they can
appear just as well In a single sentence, In fact, there are

=ome sentences which would be almost impossible to express

Spction 4.3 - Page 370

without using one of these mechanisms, such as: "Find a block
which is blgger than anything which supports 1t." These
mechanlsms can be used to refer back to anything mentioned
previously, whether In an earlier sentence of the speaker, one
of the replies te him, or something occurring earlier In the

same utterance.

Sectlon &,3,1 - Page 371

4.3.1 Pronouns

First we will look at the use of prencuns to refer back to
objects. Since our robot does not know any people other than
the one conversing with it, It has no trouble with the pronouns
"vou" and "I" which always refer to the two objects :SHRDLU and
tFRIEND. A more general program would keep track of who was
talking to the computer In order to find the referent of "I",

When the NG program In the grammar finds a NG consisting of
a4 pronoun, it calls the program which [s the deflnition of that
prenoun, The definitions of "it" and "they" use a special
heuristic program called sMIT, which looks Into the discourse
for all of the different things they might refer to, and asslgns
a plausibility value to each Interpretation, If more than one
Is possible, they are carried along simultaneocusly through the
rest of the sentence, and the ambiguity mechanism deeldes at the
end which is better, Including the last-rescrt effart of
printing ocut a message asking for clariflicatlion, |f SMIT finds
two different Interpretations, and one |s chosen because of a
higher plausibility, the system types out a8 message to Inform us
of the assumption made In choosing one interpretation, as In
Sentence 3 of Sectlon 1.3:

BY "IT", | ASSUME YOU MEAN THE BLOCK

WHICH IS5 TALLER THAN THE ONE | AM
HOLDING.

if a response from the user = needed, the regquest Is tvped

in the same format as the message used for other amblgulties, as

Sectlon 4.3.1 - Page 3712

in sentence 24 of Section 1.53. In the case of sentence 3, It

would be:

1'"M HOT SURE WHAT YOU MEAN BY T N
THE PHRASE "PUT IT INTD THE gox"

Do You MEAN:
1 = THE BLOCKE WHICH IS TALLER THAM THE
OME | AM HOLDING
7 = THE ONE | AM HOLDING 7

A simple transformation s used to ewliteh "you' with "M,
and make the coerresponding verb changes, and the words are
borrowed directly from the Input sentences.

In our discussion of pronouns, we will use "it" as typlcal.
In most cases, "they" (or "them") Is treated identlically except
checkling for agreement with plural rather than singular. The
pronouns "he' and Meha! never occur In our limited subject
matter, but they would be treated exactly 11ke "1t", except that
they would make an extra check to see that their referent Is In
fFact anlmate and of the right gender,

The first thing checked by SMIT Is whether "it" has already
appeared in the same sentence. We very rarely use the same
pronoun to refer to two different objects in the same sentence,
<o It |s generally safe to adopt the same Interpretation we did
the first time. |f there were several possible Interpretations,
the system is careful not to match up one interpretation from
one occurrence of "it" with a different one from another
occurrence in bullding an overall interpretation of the

sentence.

Section &.3.1 - Page 373

Similarly, If "it" was used In the previous sentence, It is
likely that if used again It wil] refer to the same thing., In
elther of these cases, SMIT simply adepts the previous
Interpretation,

Next, a pronoun may be Inside a complex svyntactle
construction such as "a block which Is bigmger than anything
which supports Jt." English uses the reflexive pronouns, 1ike
"Itself" to refer back te an object In the same sentence,
However, if In going from the pronoun to the referent an the
parsing tree, It is necessary to pass through anather NG node,
an ordinary pronoun like "it" Is used, since "itse]f" would
refer to the intermediate NG, MNotice that |f we replaced "je"
by "itself" In our sentence, It would ne longer refer to the
block, but to "anything",

SMIT looks for this case and other related ones., When such
a situation exists, the program must work differently,
Ordinarily, when we refer to "[t" we have already finished
finding the referent of the MG belng referred back to, and "[t"
can adopt this referent. In this case, we have a clrcle, where
"it" 1s part of the definitionof the chject it Is referring to,
The part of the program which does variable binding In relating
objects and clauses Is able to recognize this, and treat |t
correctly by using the same varlable for "a block" and “iev,

The pronoun may alse refer to an obiect In an embedded

clause appearing eariler In the same clause, as in "Before vou

Section b.3,1 - Page 37k

pick up the red cube, clear IL off."” SMIT looks through the
sentence for objects in such acceptable places to which "it¢"
might refer. If it doesn't find them there, It begins to look
at the previous sentence. The pronoun may refer to any object
in the sentence, and the meaning will aften determine which It
is {as In our example about the demonstrators In the Prefacel.
We therefore cannot eliminate any of the possibilities an
syntactic grounds, but can only give them different ratings of
"olausibility". For example, In Section 5.2.5 we discussed the
importance of a "focus" element In a clause. "it" ts more llkely
to refer to the previous focus than to other elements of the
clause. Similarly, the subject is a more 11kely candidate than
an ohject, and both are more l1ikely than a MG appearing embeddead
in a PREPG or a secondary clause.

The system keeps a list of all of the objects referred to
in the previous sentence, as well as the entire parsing tree.
By using PROGRAMMAR'S functions for exploring a parsing tree,
SMIT Is able to find the syntactic positon of all the possible
references and to assign each a slaustbillity, using a fairly
arbitrary but hopefully useful set of values (for example we add
700 for the focus element beyond what it would normally have for
its position @s subject ar object). [In arder to keep the list
af the objects in the last sentence, OUT semantic system has to
do a certain amount of extra work. [If we ask the guestion: '"Is

any bleck supported by three pyramids?", the PLANNER expression

section 4.3.1 - Page 375

produced [s:
(THFIND ALL $7X1 (%1}
(THGOALC#I1S £7X1 #BLOCK))
(THFIND 3 g7X2 (X2)
(THGOAL(#1S £?X2 fPYRAMID))
(THGOAL(#SUPPORT £7H2 £7X1)0))

Unce this 1s evaluated, It returns a list of all the blocks
satisfying the deseription, but no record of what pyramids
supported them. |f the next sentence asked "Are they tall?®", we
would have no objects for "they" to refer to. Speclal
Instructions are inserted Into our FLANNER descriptions which
cause 1lsts like this to be saved., The actual PLAMMER
expression produced would he:

(THPUTPROP (NUOTE X1)
(THFIMD ALL $7%1 (x1)
{THGOAL(#15 $7X1 #BLOCK))
(THPUTPROP (AUOTE X2}
(THFIND 3 £%X2 (X2)
(THEOALC#IS £7X72 ¥PYRAMID))
(THGOAL(#SUPPORT %7X7 nPX1Y))
(OQUATE BIND)}))
(OQUOTE BIND))
This only occurs when the system is handling discourse,

Finally, "it" can be used In a phrase llke "Do el to
refer to the entlre main event of the last sentence. This
LASTEVENT Is saved, and SMIT can use It to replace the entire
meaning of “do 1t" with the gescription generated earlier far
the event.

When "that" 1s used In a phrase 1ike "da that", It Is
handled In a similar way, but with an Interesting dl fference.

If we have the sequence "Why did you plek up the ball?" "Te

section 4.3.1 - Page 376

build a stack." "How did you do [t?", the phrase "do it" refers
to "Plck up a ball"™, But if we had asked Y"How did you do
that?", it would refer to bullding a stack. The heuristic Is
that "that" refers to the event most recently mentioned by
anyone, while "it" refers to the event most recently mentloned
by the speaker.

In additlon te remembering the particlpants and maln event
of the previous sentence, the system also remembers those In Tts
own responses so that it can use them when they are called for
by pronouns. It also remembers the last time reference,
(LASTIME) so the word "then" can refer back to the time of the
previous sentence.

special uses of "it" (as In "It Is ralning.") are not
handled, but could easlily be added as further possibilities to

the SMIT program.

Sectlon 4,.3.2 - Page 377

4.3.2 Substitutes and Incompletes

The next group of things the system needs to interpret
involves the use of substitute nouns 1ike “"one", and Incomplete
noun groups 1Tke "Buy me two." Here we cannot look back for a
particular object, but must lock for a description, SMIT looks
through a 11st of particular objects for Its meaning. SMONE
(the program used for "one") looks back Into the Input sentence
Instead, to recover the English description. "One" can be used
to stand for part or all of that description.

As with "it", "one" can refer back to something In a
previous sentence, the prevlous reply, or earlfer In the same
sentence. Here though, there are no restrictions about where
In the parsing tree the description can 1le, "One" depends more
on surface characteristics than on structural differences, For
example, it cannot refer back to a NG whieh s a PrONoOUn 6Fr uUsSes
a TPRON 11ke "anything". Our program for "one" Is not as
complex as the one for "it", It Is primarily based on the
heuristic of "contrast". People often use "one" to contrast two
characteristics of baslcally similar objects, for example “the
blg red block and the 1ittle gne." The program must understand
these contrasts to Interpret the description properly. We
realize that "the 1itle one" means "the 1lttle red block", not
"the 11ttle big red block" or "the 11ttle block". In erder to
do thls, our system has as part of lts semantlic knowledge a 1ist

of contrasting adjectives., This Information Is used not only to

Saction 4.3.2 - Page 378

decide how much of the description Is to be borrowed by "one",
but also to decide which description in a sentence "one" 1s
referring to. |f we say "The green block supports the big
pyramid but not the little ene." It Is falrly clear that "one"
refers to "pyramid"., But If we say "The big block supports the
green pyramid but not the 11ttle one.", then "one" might refer
to "block™. The only difference Is the change of adjectives ==
"hig" and "1ittle" contrast, but "green" and "11ttle" do net.
Our program loocks for such contrasts, and If It finds one, It
assumes the most recent contrasting deseription Is the referent.
If there 1s no contrast between the phrase being analyzed and
any NG In the same sentence, previous answer, oF previous
sentence, 1t then looks for the most recent NG whlch contalns a
noun.

It 1 Interesting to note that SMONE causes the system to
parse some of Its own output, In order to use the fragment of a
NG it finds, SMONE must know which elements |t can use {such as
noun, adjective, and classifler) and which 1t dees not (such as
number and determiner). For the noun groups In previous [Inputs,
the parsing Is avallable, but for the reply, only the actual
words are avallable and It Is necessary to construct a simple
parsing before understanding the meanfing of “"one". It does not
call the entire system recursively to do thls, but uses a
simplifled version.

An Incomplete WG, contalning enly a number or quantifier Is

Sectlon &.,3,2 - Page 379

used in much the same way as "one". In fact, If we look at the
series "Buy me three." "Buy me two." "Buy me cne.", we see
they are nearly ldentlcal. We can take the view that an
incomplete NG actually has an Implied substitute noun of "one".
This [s the way our program handles Incomplete noun groups,
Currently the set of contrasts Is stored separately as
special properties In the dlictlionary entries of the adjectlives
involved, It would be better to comblne this with the semantic
marker system, or the actual system of PLANNER programs and

concepts.,

Sectlion 4.3.3 - Page 380

4,3,3 Overall Discourse Confext

We have discussed several ways of using overall dlscourse
context In understanding. We have so far gxperimented with enly
one of these =-- keeplng track of what has been mentioned earllier
in the dlscourse. This Is not the same as looking back In the
previous sentence for pronoun references, as It may involve
objects several sentences back or ecccurring in separate
sentences., If there are many blecks are on the table, we can
have a conversation: "What 1s In the box?" "A block and a
pyramid." "what Ts behind 1t2?" "A red block and another box."
"What colar 1s the box?" "Green." "Pick up the two blocks."

The phrase "the two blocks" [s te be interpreted as a
particular pair of blocks, but there may be others in the scene,
and nowhere in the dialog were two blocks mentioned together.
The system needs a way to keep track of when things were
mentloned, In order to Interpret "the" as "the most recently
ment ioned"” In cases 1lke this,

To do so, we use PLANMER'S facllity for giving properties
to assertions. When we mention a "green block", the semantlc
system builds a PLANNER description which Tncludes the
expresslions:

(THGOALC#1S $7X1 #BLOCK)) (THGOAL(#COLOR $7X1 #GREEN))
After the sentence containing this phrase has been Interpreted,
the system goes back to the FLANNER descriptions and marks all

of the assertions which were used, by putting the current

sentence number on their property l1sts., This Is alsoc done for

Section L.3.3 - Page 3581

the assertions used in generating the descriptions of objects In
the answer.

When the semantlc programs flnd a definlte NG 11ke "the two
red blocks", the second NG speclallst (SMNG2) uses PLAMMER to
make a 1lst of all of the objects which flt the description. |If
there are the right number for the WG, these are listed as the
"reference” of the NG, and the Interpretation of that MG I's
finished. |If there are fewer than called for by the determiners
and numbers, SMNG2 makes a note of the Engllish phrase which was
used to bulld the description, and returns a message to the
parser that something has gone wrong.

If the parser manages to parse the sentence differently,
all is well, |If not, the system assumes that the NG
Interpretation was the reason for the fallure, and the system
uses the stored phrase to print out a message "I don't
understand what you mean by,,."

However, If there are too many objects which mateh the
description, SMNGZ tries te find cut which were mentioned most
recently. It does this by using PLANMER to recheck the
description for the Items It found, but this time using only
those assertions mentlened In this or the previous sentence,
This s easlly done by using PLANNER's ablllity to put a "f]]ter"
on the assertions to be retrleved from the data base, allowing
only those which are accepted by a LISP predicate (which In this

case looks for a sentence number In the appropriate range on the

Sectlon L.3.3 - Page 382

property 1ist of the assertlon. See <Sussmany for detalls.) If
it finds the right mnumber, these must be the reference of the
NG. If It finds too few, It can relterate the procedure, but
using all of the assertleons menticned In the last two sentences.
This backward progress continues untll at some polnt elther It
finds the right number or the number found jumps from below the
right number to above it. |In thls case a message of fallure Is
returned to the parser as before, but a marker 1s set so that In
case the sentence cannot be understood, the message returned I's
"] don't know which... you mean", as In sentence 2 of Sectlon
1,35:
| DOM'T UMDERSTAND WHICH PYRAMID YOU MEAN.

0f course, a more sophisticated program (s necded for
determining the referents of definite NGs. If the conversation
Is about @ book, the NG "the title" Is clearly acceptable and
must refer to the title of that book, even though no title was
previously mentlioned. If there Is a compllicated NG Tike "the
blggest cat in the world" or “the thing | want to do most", the
program must deduce from the form of the NG that there 1s only
one such object, even though It has not been previously
mentioned, and that It s belng deflned by this description.
There it a large area for expansion In dealing with these and
similar problems.

It seems 1l1kely that these and other similar aspects of

language can be handled systematically, using the formallsm of

Sectlon 4.3.3 - Page 383

procedures within a system 1lke the one described In this paper,
The semantic and deductive systems provide a framework within
which we can formzlize and combine a varlety of aspects of
meaning and knowledge te deal with the real problems of

semantlcs.

Section 4.k - Page 385

k.4 Generation of Responses

In this section we will describe how our language=
understanding system generates [ts Ilnguistlic responses. This
aspect was not emphasized as much in the research as the problem
of understanding language, and we have not developed a general
theory of discourse generation. The programs produce behavior
which seems reascnable for carrying on a dlaleg about the robot
world. In particular we dealt with four different aspects of
discourse production == patterned responses, appropriate answers
to questions, generating descriptions of objects and events, and
the production of fluent discourse.

h,4,1 Patterned Responses

The easlest way to get language behavior from a computer
program [s to Include a saet of flxed responses whiech are
appropriate for the sjtuations It will encounter. These
responses can be made as complex and varled as we want, since
they are created by the programmer, and the program only repeatls
them. Many language systems make heavy Use of these flixed
responses to achleve "good sounding" output.

In general, these responses are not flexible encugh for a
true language system, but there are places where they are
appropriate == for example, when the program wants to
acknowledge that something has happened, or that It has reached
a certainpoint in Its analysis, Our system uses several types

of patterned response, First there Is a set of simple responses

Sectlon 4.4,1 = Page 385

for specific situations., The system responds "OK." when a
command is carried out, "| UNDERSTAND." when a declarative
sentence s analyzed, "I DON'T UNDERSTAND." when a sentence
cannot be analyzed, and "1 CAN'T." when a command cannot be
executed,

A slightly more complex type af response Involves "fi11ing
In the blank" with a phrase borrowed from the Input. The
simplest example In our system |s "SORRY, | DON'T KNOW THE WORD
"...", PLEASE TYPE TWO SPACES." The offending word Is taken as
It was Input and Inserted In the blank. The "two spaces" are to
clear the Input buffer of characters typed after the message was
sent. Two slightly more complex types of response lnvolve
manipulating the determiners aof the phrase which was input. If
the user types something llke "the three Ereen pyramids", and
the system cannot flgure out what he Is referring to, It types
"I DON'T KNOW WHICH THREE GREEN PYRAMIDS YoOU MEAN." It has
simply replaced "the" with "which" before filllng the blank,
The "I assume" mechanlsm doss the opposlte, replacing an
Indefinite determiner with "the". |f we talk about “some green
pyramid" or "a green pyramid", then later refer to that pyramld
as "It", the system can notify us of Its Interpretation of "it¢"
by saylng "BY "IT' | ASSUME YOU MEAN THE GREEN PYRAMID." Here
the system has removed the Indefinite determlner or quantifier
("a" or "some") and replaced It with "the". It uses knowledge

about varlous kinds of determiners to £f111 In the pattern

Sectlon b.4.1 - Page 386

reasonably In a number of cases {for example, possessives are
1eft alone, since they are already definite). It can also
handle the use of "they" to refer to several objects.
our most complex "blank=f111ing" response is the one which

handles ambigulty. |t uses parts of the input sentence and
pleces of the definltlons of words stored in the dictionary. In
the response to sentence 24 of the sample dialog (sectlion 1.3):

24, how many things are on top of green

cubes?
the system typed:
I'M NOT SURE WHAT YOU MEAN BY "ON TOP
OF "IN THE PHRASE "ON TOP OF GREEN
CUBES " .
DO YOU MEAM:
1 - DIRECTLY OM THE SURFACE
2 = ANWHERE OH TOP OF 7
The two phrases "on top of" and "on top of green cubes"

were taken directly from the input, and the paraphrases
Mdirectly on the surface" and "anywhere on top of" were part of
the dictlonary definitlon provided for "on". One of the answer
routines looks at the list of places where the Interpretations
differ, and generates thls regquest faor clarification. The
response must eliminate at least one possibllity, and the
proegram contlinues generating questlons 1ike this one untll only
one Interpretatlon remalns., 1f the amblgulty Is caused by
multiple Interpretations for a pronoun, the English text of the
phrases orlglnally used to refer to the objects are used In the

response cholces.

Section 4.4,2 - Page 387

b.4.2 Answering Questlons

In order to carry on a discourse, we need to know what types
of responses people expect to different tvpes of questiens, In
Sectfon 2,3.3 we classifled various types of questions
syntactically, and we can use thls classiflcation to select
approprlate answers. The system answers whenever possible with
a complete phrase, providing as much Information as possible,
No attempt s made to produce full sentences, slnce In fact
people rarely answer questlions with sentences. The natural
response to "Which block Is In the box?" 1s "the red block", or
"the red one", certainly not "The red block Is In the box." We
have tried to analyze what sort of phrases provide the most
informative and natural responses,

The flrst case Is the WH- question, and within that class,
the NGQ(see sectlion 2.3.2), involving 2 question NOUN GROUP,
such as "whiech block", "who", "how many pyramids", or "what",
We can divide these Into three classes -- "how many", "“"wague",
and "specific". |If asked "What Is In the box?", we can answer
"a blue block and a pyramid" without belng more specifie at
dentifying them, |f Instead we are asked "Which block Is In
the box?" we must use a more speclfic description 1ike "the
large blue cube which supports a pyramid." The program must
generate English descriptions of particular objects, and It must
be able to generate both definite and Indefinite descriptions.

This part of the program will be described In the next sectlon.

Section 4.4,2 = Page 388

The use of (ts results is stralghtforward for NGO questions. If
the NG is "what", we generate indefinlte descriptions of the
object or objects, [If 1t [s ehich,..", we generate a definite
description. "Who" Is never a problem, since the system enly
knows of two people, "you", and "I". There are also default
rasponses, so that a questlion 1lke "Which block supports the
table?" can be answered "NONE OF THEM."

HOWMANY questions are answered with the number of
approprlate objects, followed by "nF THEM" to make the dlscourse
smoother. For example, the response Lo dialog sentence 6, "How
many blocks are not In the bex?", Is WEQUR OF THEM."

The next type of gquestion Is the QADJ, such as "why",
Mehen”, "how", or "where'. The only three which have been
implemented so far are "why" Myhen", and "how!", but the others
can be done In an analogous fashien. A "why" question s
answered usling the system's memery of the subgoals It used In
achleving Its goals in manipulating toy objects. | f we can
decide what event Is beling referred to In the question, we can
cee what goal called It as a subgoal, and answer by describing
the higher goal In English, |If the event was itself a top level
goal, It must have been requested as a command, and the response
is "BECAUSE YOU ASKED ME TO.".

We need a program whlch creates an English description of
an event from |ts PLANMNER description 1lke (#PUTON :B3 :TABLE).

It must generate phrases which refer to the objects Involved,

Sectlon 4.4.2 - Page 380

and combline them into a clause of the proper type with the
proper tense. Thils program is also described In the next
sectlion.

We can use the same event-describer to answer "how"
guestions by describing all of the events which were subgoals
used In achlieving the event mentioned. We say "BY...", then
list each event In an "ing" form, as In: "BY PICKING UP A RED
BLOCK AND PUTTING IT IN THE BOX."™ If the event was ltself a
lowest-level geal, the system has no way of analyzing lts own
programs for achieving that goal, and answers "| CAN'T AMALYZE
HOW" .,

"When" questions are answered similarly =- a time Is named
by describing the top-level goal which was being carrled out at
the time, saying "WHILE | WAS..." and using the "Ing" form to
describe the event. This Is Inapprepriate If the guestion
refers directly to the top-level goal (We can't answer "When did
you bulld the stack?" with "WHILE | WAS BUILDING THE STACK.™),
and In that case we say "BEFORE..." and name the top-level goal
Immedlately following in time., I1f the goal mentloned was just
done, the system replies "JUST NOW.". In additlon to the normal
responses, the system has a set of fixed responses such as
"NEVER", and "| CAN'T EXPLAIN A NON-EXISTEMT EVENT." to answer
gquestions which demand them,

Finally we come to YES-NO guestions which, paradoxically,

are the most complicated. It seems that a one word answer s

Section 4.k.2 - Page 390

called for, but this Is often Impossibhle and rarely the best way
to respond. |f we ask "Does the bleck support three pyramids®",
and In fact 1t supports four, what s the correct answer? The
system could ask for clarification of the Implicit amblgulty
between "at least three" and "exactly three", then answer "yesg"
or "no"., But it Is more efficient and helpful to answer "FOUR
OF THEM", leaving the speaker to Interpret his own guestion.

|f there were only two pyramlds, the system could respond "NOY,
but 1t would be more Informative to say "NO, ONLY TWO OF THEM",
In any of these cases, we might be even more complete, and say
something 1ike "FOUR OF THEM: A BLUE 0OME, TWO RED OMES, AND A
LARGE GREEN ONE."

Thaere are three parts we can Include In the answer == Hyag"
or "no", a number, and a descriptlon of the objects. Remember
that whenever possible a YES-NO guestion Is treated llke a MG
question by loeking for a focus element {an Indefinlte NG in the
question). A question 1ike "Does the pyramid support a block?"
is treated loglcally 1lke the guestion "Which block does the
ovramld support?" , or "How many blocks does the pyramid
support?" A1l three send a THFIND ALL request to PLANNER, asking
far all of the sbjects fitting the descriptlon:

(THPROG (X)
({THGOAL (#15 $7X #BLOCK))
(THGOAL (#SUPPORT :B5 $£7X)))
where :B5 ls the system's Internal name for the pyramid beling

referred to by "the pyramid" (this would be determined In

Sectlon L. 4.2 - Page 391

separate calls to PLANNER). In the case of the HOWMANY questlen
we answer with the number of objects found. For the "which"
question, we name the objects, In the case of 2 YES-NO
question, we answer with all three kinds of informatlien, saying
"YES, TWO OF THEM: A LARGE RED ONE AND THE GREEN ONE,"

The first element Is "YES" If the answer |s clearly yes
{(for example 1f the number s matched exactly, or the number [n
the original questlion was Indefinite as In this example), "HO"
If it Is clearly no (for example If there are fewer than
requested, none at all, or the request was of a farm
"exactly..." "at least,.." "more than..." etc. and was not met),
and Is omitted [If there Is a question about its Interpretation
(as described above).

The second element, the number, Is omitted |f the number
found matches the request (For example, "Are there three
blocks?" Is not answered redundantly, "YES, THREE OF THEM: A
GREEN ONE AND TWO LARGE RED OMES."). The phrase "0OF THEM™
following the number Is changed to "THINGS" If the focus
contalns a TPRON 11ke "anything", or "something". If the number
found Is less than that in the focus, It Is preceded by
"ONLY...", so the answer comes out "MO, ONLY TWO OF THEM:..."™)

At the end of a response, we put the description of the
objects found, unless the request used a speclal number format

L]

such as "exactly,,.", "at least..." etc. In which case the

system assumes the number Is more Important than the speclifle

Section 4.5.2 - Page 392

objects. We use the object=naming program [n lts Indeflinite
mode . If the focus orlginally appeared as the chject of a
preposition, we repeat that preposition before the description
to elarify the answer. Thus, "Is the pyramid on a block?" Is
answered "YES, ON A LARGE GREEN ONE." The unknown agent of a
passive 1lke "ls It supported?" Is Implicitly the object of
My so the answer Is "YES, BY THE TABLE." 1If a YES=-NO
gquestion contalns no possible focus since all of Its NGs are
DEFinite, as in "Does the table support the box?", the system

answers simply "YES" or "NOY.

Ssectlon 4.4.3 - Page 393

44,5 Mamipg Objects and Events

The previous section covers all af the different types of
questions the system can handle, and the types of phrases It
uses In response. We have not yet explained how It names an
object or deseribes an event, This Is done with a set of
PLANNER and LISP functlons which examine the data base and flnd
relevant Information about objects. These programs take
advantage of the fact that the subject matter is 1imited, |In
general, the way an object Is named [= highly dependent on what
the person belng spoken to Is Interested In and what he already
knows, This has not been dealt with yet. Certaln features of
objects, such as thelr coler and slze, are assumed to be the
best way to describe them In all contexts.

First we need to know how the object [s baslically
classifled. In the ELOCKS world, the concept #15 represents
this, as In (#15 :HAND #HAND), (#15 :B1 #BLOCK), and (#15 #BLUE
#COLOR). The namlng program for objects first checks for the
unique objects In Its world, "|", "you", "the table", "the box",
and "the hand". |If the object Is one of these, these names are
used. HNext It checks to see if It Is a color or shape, In which
case the English name 1s simply the concept name without the
"#1', The question "What shape Is the pyramid?" 1s answered
"POINTED."™ since It has the shape #POINTED. |If the the object
I's not one of these and Is not a #BLOCK, #BALL, or a #PYRAMID

the program glves up. If It Is one of those three, the correct

Saction 4.4.3 - Page 39L

noun s used (Including a special check of dimensicons to see If
5 FRLOCK Is a "cube"), and a description Is bullt of Its color
and size. At each stage of bullding, the description Is checked
to see |f 1t refers unlfquely to the object belng described. If
so, the determiner "the" Is put on, and the description used
without further addition. |f there 1s only one ball In the
scene, 1t will always be referred to as “the ball".

1f the deseriptlion Includes color and size, but stil1l flts
more than the deslired gbject, the outcome depends on whether a
speciflc description or an nonspecific one is called for. |If It
Is nonspeclfic, the program puts the indefinite pronoun "a" or
Man" on the beginning and produces somethling 1lke " LARGE GREEN
CUBE". |If 1t is specific, more Informatleon Is needed, [f the
object supports anything, the program adds the phrase "WHICH
SUPPORTS..." then Includes the English descriptions (Indefinite)
af all the objects It supports. |f the object supports nothing,
the program adds "WHICH IS T0 THE RIGHT OF..." and names all of
the objects to the left of the desired one. This still may not
characterize the object unlquely In some situatlons, but the
system assumes that It does. |f at any polnt In the dialog, an
object 1s glven a proper name, It is referred to using only the
noun and the phrase "NAMED,..", as In "THE BLOCK NAMED
SUPERBLOCK."

Naming events Is relatively stralghtforward. With each

event type (such as #PUTOH or FSTACKEUP) we assoclate a small

Sectlon L. L4.3 - Page 395

program which generates an English name for the event and
combines It properly with the names of the objects Involved.
For example, the definition for #PUTON Is:

(APPEND (VBFIX (QUOTE PUT)) OBJ1 (QUOTE (ON)) OBJZ)
VBFIX [s a program which puts the verb into the right form for
the kind of clause needed to answer the questien. (for example,
=ing for answering "how", or Infinltive for answering "why").
It takes Into account the changes In spelling Involved In adding
endings, O0BJl and 0BJ2 are bound by the system to the English
names of the objects Involved In the event, uslng the object-
naming program described above. APPEND Is the L|SP functlon
which puts together the four Ingredients end to end. We
therefore get descriptions 1l1ke "BY PUTTING A LARGE RED CUBE ON
THE TABLE". There Is a special check for the order of particles
and objects, so that we output “TO PICK UP THE SMALL BLUE
PYRAMID.", but, "TO PICK IT UP" rather than, "TO PICK UP IT".

Sectlon b.k.4 - Page 396

4,4,4 Geperating Discourse

The previous sections described a generating capabllity
which can produce reascnable English answers Lo different types
of gquestions, but used by themselves, the features described
would produce awkward and stilted responses which would at times
be incemprehensible. Even though we have mentloned some
discourse-11ke patterns (11ke "...0F THEM" following 2 number),
we have not vet discussed the real problems of discourse., The
system uses three different discourse devlices In producing Its
answers. These are much more limited than the range of
discourse features It can understand, but they are sufficlent to
produce fluent dialog.

The first problem Involves 1ists of cbjects. OQur Initial
way of naming more than one object Is to simply string the
descriptions together with commas and "AND". We might end up
with an answer 1lke "YES, FOUR OF THEM: A LARGE BLUE BLOCK, A
SMALL RED CUBE, A SMALL RED CUBE, AND A SMALL RED CUBE." Teo
avold this redundancy, the object-namer locks for ldentical
descriptions and combines them with the appropriate number to
get "A LARGE BLUE BLOCK AND THREE SMALL RED CUBES." (Mote that
it also must change the noun to plural).

The next problem is the use of substitute nouns. We would
like to respond to "Is there a red cube which supports a
pyramid?" by "YES, A LARGE ONE." Instead of "YES, A LARGE RED

CUBE." By comparing the English descriptlions of the objects with

section 4.4.4 - Page 387

the wording of the focus In the input sentence, we can omit
those nouns and adjectives they share and replace them by "ONE™.
The third problem is more serlous, as lgnoring It can lead
to incomprehensible responses., Conslider the answer to question
32 in the dialog ("Mow did vou do 1t3"). If we did not use the
pronoun "It" or the determiner "“that", the response would be:
~BY PUTTING A LARGE RED BLOCK OM THE TABLE, THEMN LETTING GO
OF A LARGE RED BLOCK, THEM PUTTING A LARGE GREEM CUBE ON A
LARGE RED BLOCK, THEN LETTING GO OF A LARGE GREEMN CURE,
THEN PUTTING THE RED CUBE ON A LARGE GREEN CUBE, THEMW
LETTING GO OF THE RED CUBE,
How many different blocks and cubes are Involved? In describing
events, we must have some way to Indicate that we are referring
to the same object more than once. We can do this using "1e"
and "that", and at the same time can use these words to Improve
the smoothness of the discourse In other ways, The system has
heuristics which lead It to use "It" to refer to an object In an
event it Is describlng whenever: 1, the same object was called
"1t" In the question. 2. the object was called "jt" in the
questlon preceding the current one, and "1t" was not used In the
current one, 3. the object has already been named [n the
current answer, and was the first ebject In the answer &. no
objects have yet been named In the current answer, and the
object was the only one named In the previous answer.
Te refer to an object already named In the current answer,
other than the first, the program applies the determiner "that"

to the appropriate noun, te get a phrase 1lke "BY PUTTING A

Sectlon L.4.5 - Page 398

GREEN BLOCK OM A RED CUBE THEN PUTTING THAT CUBE I8 THE BOX."

Sectlon &4.4,5 - Page 399

4.4,5 Future Development

The generation of language ls a complex subject, wide open
to future development., Our current system Is just a beginning,
and has some major deficlenclies. First, we would 1ike to
describe an object by using facts which are relevant te the
context. In our simple world, we have declared by flat that
color, size, and support relationshlips are the Important facts
about an object. We could just have well have used locatlion to
get answers like "the block nearest to the back of the table",
With a2 wider range of subjects, we would need much me Fe
sophisticated heuristics for deciding what features of an object
will serve best to ldentify It to the hearer,

Second, we do not have a way to turm an arbltrary PLANNER
expression Into English. We can handle only specific objects
and slmple events. There are a number of applicatlions for a
more powerful English generator. For example, In case of
amblgulty, we shouldn't have to Include speclal paraphrases in
the definition. The system should he able to look at the two
PLANNER descriptlions and describe the difference directly in
English,

The system should be able to tell us more about [tself and
how [t does things. If we ask a8 question like "How de you bulld
stacks?", 1t should be able to look at lts ewn programs and
convert them to an English description 1ike "Flrst | find a

space, then | choose blocks, then | put one of the blocks on

Section 4.4.5 - Page 40O

that space, then..." PLAMMER's structure of goals and subgoals
is ldeal as a subject for this kind of descriptlon, and a great
deal could be done along this 1ine, In a more speculative veln,
the development of discourse generators which could convert an
Internal loglcal format inteo natural language might lead to
computer essay writers, or translators which could understand

the materlal they were working with,

section 4.5.1 - Page 401

k.5 Comparison with Other Semantic Systems
3.3.1 Introductiop

This sectlon compares our semantic system with two other
models for the semantlcs of natural language. Each has seryved
as the basis fer computer programs which “"understand" language,
and we wlll consider the usefulness of the models for this
purpose as well as thelir value as thecret]ecal models of a
natural process.

The three models can be labelled "eategorization",
"associatlon", and "procedure". These do not represent a cross
section of semantic theories, but represent one particular type
of theory. They assume that It is meaningful to postulate a
conceputal organlizatlion of human knowledge, related by semant]es
to the lingulstic forms used in expressing thoughts, This sets
them off from traditional approaches which avolded postulating
mentalistic structures and dealt Instead with extra-mental
representations such as logleal truth condltions or stimulus=
response relationships.

These three models are oriented towards viewing language as
a2 human activity rather than an abstract calculus of symbols,
They study the process In terms of human models, and take Into
account the production and Intepretation of language, One
possible reason why the current syntactic theories have been
weak In developing semantlic theorles |s thelr Insistence an a

"neutral™ characterizatlion of the competence of a language user,

Smction 4.5.1 - Page LOZ

without regard to the process carried out In an Intellligent
speaker or hearer. Since semantlcs Involves the Interaction
between the structures of the language and the knowledge and
intelligence of the language user, it cannot be understood

without trying to deal with this Intelllgence directly.

Sectlon 4,5,.2 = Page 403

4.5.2 Categorization

The Categorization model of semantles was developed in Its
best known form by Katz and Fodor <Katz», and has been a part of
many computer systems for understanding natural language.

The basic principle Is a structure of categories, called
"semantic markers", dividing the conceputal world much as the
Dewey decimal elassification subdivides the books In a 1ibrary.
The usual sense of the word "bachelor" has the semantic markers
"male", "human", “anlmate", "physical object", etc. and the
Final distinguishing characteristic ("never having been
married") Is Tts "semantic distinguisher®,

In choosing between different senses of a word In a
particular sentence, these markers are combined according to
"projection rules"., For example, the word "colorful® would be
Interpreted in one sense in "ecolorful cube", another In
"colorful party", while the rules would Indlcate that "a
colorful ball" has two possible readlngs.

Further Information can be gleaned from the logical
relations between the markers such as the fact that "male
uncle" Is redundant, while "female uncle" Is anomalous.,

Fodor and Katz did not attempt to explaln the process of
producing and understanding language In terms of these markers,
preferring to see them as abstract neutral relationships
underlying the speaker's competence. They did not deal in any

systematic way with those aspects of meaning which cannot be

Section 4.5.2 - Page LOB

dealt with through this type of categorization.

Mevertheless, categorization has been used In many computer
programs for understanding natural language, to help choose the
right meaning for potentially amblguous words. Schank {Schank
1969, 1970> has extended the application of this theory, using
spmantic relatlonships to parse sentences conceputally.
fresociated with each sense of a word Is @ conceptuallzation,
specifying the semantlc relationships of that word with other
words In the same structure. For example, one meaning of the
word "hit" would be an actlon of physical striking, whose
subject 1s a "person”, whose object ie a "physlcal object", and
which has a possible instrument of the category "weapon'. The
sentence "1 hit the boy with a stick.”" would be parsed by
notlclng words In categories which eould f111 the roles, and by
setting up an appreopriate structure. It could also account for
the Interpretation In which "hit" Involves striking with a fist,
and "with" represents possessionof a "physical ohject" by a

" (see

"person", but this would be found only on "prompting
£{Schank 1970», p. 26).

The underlying belief is that humans make much use of this
sart of categorization In understanding sentences, rather than
dolng a complete syntactlic parsing. The sentence:

"The window the ball the boy threw hit broke,"

is understood more easlly than:

"The man the woman the glrl knew 1iked died."

Sectlon b.5.2 - Page 405

Fodor and Garrett <Fodor 1967 studled sentences llke these, and
Found that they are more easily understood when the categories
assoclated with the verbs can Indlicate the conceptual structure.
For sentence fragments and ungrammatical utterances, this

ablility seems vital,

Section 4.5.3 - Page LOE

b,5,3 Assoclation

The second model has Its reots more In psychology, and the
srasence of "assocliations" between words In a person's mind, It
postulates a sprawling collection of words and concepts,
connected to each other by simple links. |If "eoose" s
connected to "quill" and "quil" to "pen" and "pen" to "ink",
there Is 2 path of length three from Mpanse'" to "Ink". These
links would be present In Information such as "a guill Is a
goose feather', "Pens can be made of quills", etc. The
justification for this model 1s that the course of a path
describes the relationship between the two nodes, and that Its
length Is a measure of thelr relatedness, The use of
association as a medel for computer language understanding has
been most Influenced by the work of Quillian cOullllan 1964,
1969>. Information 1s coded Into the network of concepts usling
several types of 1inks (for example, the class=-subclass
relationship used In the categorization model}. |In
understanding a sentence, a search [s Inttlated through the
network from each of the content words of the sentence, to find
the shortest paths 1inking them, The system uses the
‘nformation along that path to decide what the sentence is
about.

It 1s important to understand why | call this the
Wazsaclation” model Instead of the "network" model., The word
Mretwork" has been used to refer to every concelvable variety of
data structure. The semantic markers In the categorizatlon

model form a network , Schank <Schank 169> refers to the
output of his parser as a "language-free conceptual network",

Section 4,5.3 - Page L4O7

recent parsers <Woods 1970> are called "augmented transitlon
networks", while our parser uses systemic grammar with "system
networks". Each of these "newtorks! represents a completely
different sturcture and use of data, sayling that a structure Is
a "network" Is not muech more Informative than saylng that it [s
represented by bits In a computer memory. What must be stated
is the way the netwerk Is used,

A central committment of the assoclatlon model Is that
There is a significance te tracing along the links from node to
node fgnoring thelr content. Once a path Is found, all sorts of
logical operations may be used to determine Its slgnlflcance and
make use of Its Information, but In the propagatlion, a minimum
of calculation is done at each node.

It Is diffieult to formallze a "minimum" of calculation,
but It Is important te have some understanding of its
Implications. Any computat!en whatever, can be expressed as a
network by drawing a flow chart, with the blocks of computation
as nedes, and the transfers of control as Ilnks., The
computation then traces a path through the net. It might seem
that there s something Inherently different between a program
fellowing a single path through a flowchart, and a signal
propagating In all directions through a net. Heowever the
difference disappears If we allow some sort of parallel
processing (for example the pseudo-simultaneous evaluation of
several paths, as found In many simulation languages, and some
theorem-provers such as new verslons of PLANNER CHewlitt 19703).

This is not the place to debate the merits of parallel ws,

serfal processing., The Important thing Is to reallze that once

Sectlion 4.5.3 - Page LOE

networks carry out computations at each node, they move away
from the association model, towards a model of semantics as a
program.

Some types of natural language understanding do appear to
invalve simple associatlons. On hearing the words "fortune" and
"almond", a person will (1f he has eaten in Chinese restaurants)
think of the word "cookie". It is hard to describe loglical
connections which lead to such a quick reaction, and much more
appealing to picture a short association path between "eookie"
and each of the original words. The model can also be used to
explaln the cholce of a single meaning for a potentially
ambliguous word In a sentence. |f a word Is connected by a 1ink
to esach of the concepts 1t might describe, the shortest path to
the other words In the sentence should be through the relevant

meaning.

Section L,5.L - Page 409

L.5.4 Procedure

We can call the model of semantlcs used In our system the
"procedure model". The primary organlzation of knowledge Is In
a deductlve program with the power to combine information about
the parsing of the sentence, the dictlonary meanings of lts
words, and non=lingulstic facts about the subject belng
discussed. Any relevant bit of knowledge canm [tsel# be In the
form of a program or procedure to be activated at an appropriate
time In the process of understanding. The program operates on a
sentence to produce a representation of |ts meaning Tn some
internal language, in our case PLANNER. This language allows the
expression of a wide varlety of the aspects of language --
loglcal connectives and quantiflers, time references (provided
by verb tenses and modiflers), different sorts of object-
modifler relatonships, types of objeet reference (e.g. the
difference between "the dog" and "a dog"), etc.

In analyzing a sentence, the program can use Informatlon
about previous sentences In the discourse and about the subject
belng discussed. This allows It to deal with features of
language such as pronoun reference, substlitute nouns, the effect
of discourse on specifie referents, and the disambiguation of
meaning through knowledge of nen=linguistic facts (1ike Bar-
Hillel's classic example of the "box In the pen" <Bar=H11le13),

Other programs, such as <Woods 1969> also use the procedure

model, These programs use a complete syntactic parsing of the

Section 4.5.4 - Page L1D

input to provide a framework from which the program can declde
what aspects of meaning to deduce. The majority of the
language-comprehending programs have used the procedure model In
a simplified form, performing only a few elementary types of
deduction In analysls, and having an internal language tallored

to a speciflc application,

Sectlon 4.5,5 - Page 411

4,5.5 Evaluating the Models

There Is no single set of criterla to Judge the success of
@ model of semantics or a computer program for "comprehendlng
language". Success ls relative to the goals of the model, and
the aspects it wishes to describe. Four criterla seem to be of
importance both In eomputer language comprehension and In
developing a theory of semantics. These are: ability te
combine syntax and meaning ; effliciency; abllity to explain
human performance: and the abllity te understand language In
context, These will be discussed separately,

A. Integrating Syntax

There are many facets to the meanling of an utterance in a
natural language, and no model sheds egual 11ght an all of them,
In fact, twe of the three models are 1imlted to one part of the
meanlng =- the basic semantic relatlonships between the words
used In the sentence.

The Fodor-Katz version of the categorization model does not
attempt to deal with the part of meaning expressed by the
semantic distingulshers, analyzling only those aspects which can
be modelled by the markers. It does not work with other aspects
of meaning such as tense, mood, and reference to ohjects,
Schank's version attempts to model the way people understand a
sentence, describlng an actual parsing process., However the
conceptual parsing does not actually flnd the "meaning". One

argument for the model s human abllity to understand utterances

Section 4.5.5 - Page L1212

in & forelgn language wlithout a detalled knowledge of the
grammar. Only the meanings of words are needed to find the
language-free conceptual connections (see ¢Schank 1870, p.4).
This seems a2 good parallel to the type af understanding done by
the categorization model. Anyone who has tried to get aleng In
an unfamiliar forelgn language will be famillar with the
following experience, A friend says something which contalns
the foreign language eguivalents of the words "11ke", "see", and
weilm". The forelgn visitor knows the words and thelr "word-
concept couplings", but is totally at a loss In trylng to
respond, since the sentence may have been any one of a vast set,
Including:

"] 1ike seelng films." '"Have you seen any films you 11ked?" "I
see you like films." "Would you like to see a Fiimt" "1 saw a
E1lm | liked." "Did you like seelng the flIm?" etc.

Without the additienal meaning provided by syntax, It s
impossible to understand the content of the sentence. |f the
visltor responds "We are talking about a person who sees a fllm
and 11kes the £i1m", his foreign friend can rightfully reply
"oh, you didn't understand.," This problem applies equally to the
association model, Finding the Iintersectlion of slignals from the
nodes "see, "Fiim", and "1ike" might produce the right
conceptual relatlonships, but nene of the additional
information. Nelther of these two models has been the basls for
an actual guestlion-answering system, slnee they do not deal with

the ways In which syntax conveys meaning, and therefore lgnore

section k.5.5 = Page L13

those aspects of semantics In which syntax plays a large role,
The procedure model pays more attention to a complete
understanding of a sentence, trylng to Interweave syntax,
semantics, and deduction In order to actually answer a question,
use a piece of new Information, or follow a command .

8. Efficliency

It would seem reascnable to lesk for capabllities of the
other two models not possible for the procedure model., In one
sense, this guest Is a joke. Slnce a procedure system has
information In the form of programs, those programs can [nclude
simulations of any other model. The slgnificant question Is not
what Is possible theoretically, but what |s reasonable to do.

A program could play a simple game llke NIM by using
standard strategles of minimax and look-ahead., |If it could win,
It would provide a successful model of MIM plaving. However It
makes no use of the simple winning strategy, and therefore Is a
bad mode! for the specific game. Similarly, the procedure model
approaches semantics In a general way, saylng that every part of
semantlcs Involves powers of deduction and the ablility to
combine Information of a variety of types., If In fact, major
parts of language comprehension can be explalned by more
elementary approaches, the general procedure model s not a good
description for those areas,

The Issue at stake Is more than computer efficlency. Since

we are modelling a natural process, the criterion of "Occam's

section 4.5.5 - Page 4lbk

razor" applies just as In any other sclence. The most
catisefactory explanation is the least complex one which can
account for the facts.

The area of computational complexlty 1s barely charted, and
it 1s nearly Impossible to determine that some computation Is
inherently "more complex" or "more diffleult" than another. |t
ls especially dangerous to characterlze high-level processes
like deduction, since a computation which takes Impessibly long
using one scheme may be trivial for another. However, there is
an intuitive sense in which efficiency can he judged. A
procedure system could handle the fortune -- almond" example by
systematically looking through the things it knows about
fortunes and almonds, and using some sort of analogy preogram to
test for relationships. Thils seems clearly more complex than
the presence of a simple assoclation 1ink. Those who advocate
the assoclatlional model feel that there will be many such cases
in which the deductive process needed to find the path would be
impossibly torturous and lengthy.

There Is also a complexity of syntactic parsing. The
semantic connections might glive clues to the underlying
structure which would change the parsing task Into simply
checking the plausibility of the relations, and cleaning up the
detalls, This Is the approach taken by both Schank and
Quitllan, The example Invelving the boy, ball, and window

involves a complex syntactlec structure which could not be

Section 4.,5,5 - Page 415

handled by most of the parserz which have been written for
computers, vet a simple set of semantic criterla seem to analyze
it directly without any complex syntax rules.

C. Modelling Human Behavior

It Is difflcult te find psycholaglical experiments whieh
could declde between ane model and another, since the underlying
conceptual structure s too complex to Isclate a "single
interaction". However, some examples seem to suggest the
validity of varleus models, |n speech communication, people
understand sentence fragments, scattered words, and blurred
phrases which require fl1ling In much of the meaning. In a
model requiring a eomplete parsing, this would add a great deal
of complexity, since the parser would have to know about the
different types of fragments as well as the grammatical
sentences. A semantic relation model Suggests that the syntax
Is only used at the end of the process, to check on the
conceptual message. |f the syntax Is lacking, the final check
Is gone, but the basle meaning Is stil] discoverable,

Special types of language use, 1lke poetry, puns, and jokes
seem to involve simple assoclational links., Often the punch
line of the joke comes from recognlizing the Inappropriateness of
the 1ink which was made, whlle the poem conveys meaning by

showing that a 1lnk 1s not as Irrelevant as It outwardly seems,

but hints at deeper connections.

cection 4.5.5 = Page L1G

0. Context

one ef the most important facts about language
comprehension s that sentences de not appear In loglcal
teolation, but are always part of a context, both of other
utterances and of the situation in which they are uttered, Some
semantlcists try to avoid this prablem, saying It goes beyond
the proper realm of semantlcs. Katz and Fodor bellieve that
" . .a semantlc theory cannot be expected to account for the way
setting determines how an utterance Is understood.”" (<Katzk p.
LEE) However, if semantics Is to be a study of the way language
and meaning are actually related, we cannot lzgnore the facts.

One of the main strengths of the procedure model Is Its
ability to include all sorts of knowledge In making deductions
at any stage of semantic analysis. The program can call on the
contextual knowledge just as easlly as the dictionary
definitions or syntax, Within the framework of the basle
procedure model, there can he a detalled model of these parts of
the context which are needed for understanding (for example a
memary of the objects which have been mentleoned, so Pronouns can
refer back to them). The examples below show some of the
problems Invelved in other models when context enters Into
understanding.

&chank uses the sentence "1 hit the man with a stick." to
illustrate conceputal parsing. (¢Schank 1970» p. 26) Since

"hit" takes an Instrumental of the type “weapon", the conceptual

Sectlion 4,5,5 - Page 417

parser flrst assumes that the phrase "with a stick" has this
meaning. Let us look at two possible contexts for the
sentence:

1. Three men attacked me. 1| hit the man with a stlck,

2. A man attacked me. | hit the man with a stick.

The phrase "with a stick" s Interpreted differently In the
two cases, but this cannot be becayse of differing conceptual
relations, The relevant Informatlon is that a phrase 1lke "the
man" will only be used when It is clear which particular man Is
meant, while "the man with a stick" wil] be used only In tryling
to distinguish one particular man froem others.

Another example used (<Schank 19703 p. 11) 1s the
disambiguation of the word "f1y" dependling on whether its
subject 1s a "pllot" or not, I|f you know that Ed's father |s a
pilot, the sentence "Ed's father flew te Chicago." should be
Interpreted In the sense of "operating a plane", But there are
no categorization clues in the words "Ed" or "father", for the
conceptual parser,

It seems that within the assoclation medel there should be
some way to make use of this Information., |f there were a node
linked te "Ed", "father, and "pllot", then the netwark search
Invelving "Ed", "father", and "F1y" would go through Tt, and the
relations could be determined from the path. This approach Is
deceptive, as adding thls type of knowledge creates a world of

false short paths. This s a problem Inherent to the approach.

Sectlion 4.5.5 - Page L1B

The earller example of enpse" "quill" "een" "ink" could be
extended one place further from Wink" to "spot". 1t s
extremely unlikely that a sentence containing "spot" and "eoose!
would actually involve this connectlion. Yet [t might he a much
shorter path than the one actually representing the connection
In "l spotted a goose." As the amount aof knowledge grows, there
will be a rapidly expanding number of false paths, made up of
links which are individually very close, but which bear no
logical relation to each other. Since the associatlon network
does not check the logical relatlons of the 1inks until after
the path 1s found, there Is no immediate way to sort these out.

By Including specific knowledge, this problem is
exacerbated, since each node will have a large number of 1inks,
of widely differing loglical types.

There are varlous ways to sneak deduction Into the
assoclation model, and for each simple example, It [s possible
to design a trick which cuts aut the trrelevant 1inks
{ouillian's distinction between property and superset 1inks
£Quillian 1969%> is an example). As the amount of Information in
the net increases, [t needs more ad=-hoc deductive schemes, and
in order te handle language generally, the assoclation net will
become a full-fledged parallel processor using procedures to
find semantic relations.

In additicn to swampling the system with Implausible 11nks,

the association model can produce very plausible lncorrect

Sectlon 4,5,5 = Page 419

1inks. I'f the sentence:

"He hated the landlord so much he decided to move Into the
house on Harvard St
were glven to a system like TLC, it would be hard to restraln It
from saying "We are talking about a landlord who owns a house,
The house 1s located on Harvard St...." The path from "landlord"
te "house" will be as strong as the path from "awyer" to
"elient" in the standard assoclational example, But In this
case, deductlion is needed to reallze that the assoclatlon Is
wrong, A persen would move out of the house of a landlord he
hated, not into It,

These examples polnt out a serlous defect of non-deductive
models, Earler sections discussed the existence of areas of
language comprehension which could not be handled without syntax
and deduction. These examples Indicate that deduction 1s
necessary even for the tasks for which the other models are
designed -- finding the semantle and conceptual relatlons

between the words In the sentence,

Section L.5.6 - Page 420

4,5,6 Concluslons

Although the procedure model seems to account for much more
of language behavior than elther of the others, there are some
parts of language understanding where they are especially
applicable. There 1s no one aspect of understanding which can
succeed without deduction, but the simpler models can be of help
in making appropriate deductions fn many Sentences.

In teying to understand language at a deep level, a system
cannot hope te simply throw together the advantages of these
different models, but needs a way to integrate them usefully.
This Is the primary advantage of the procedure point of view,
it is flexible enough to make use of the other models In a
systematic way In an integrated system, |f semantic criteria
can simplify parsing, a partial semantic analysls can be
included In the procedure before syntactlc analysis. This eould
invalve category matching, or even a controlied search through
some sort of asseciatlion net. These might be used as well In
choosing between meanings af a word, or In finding Information
applicable to a deduction about the subject matter in generating
a response,

The degree to which these speclal sub-models could be used
would depend on the particular application and the subject belng
discussed.

A program toe read poetry OF retrleve documents on the hasls

of vague descriptions of subject matter may need a strong

Sectlon 4.5.6 = Page L21

assoclatlen component. One written to answer questiocns about
alrline schedules, or understand guestions and commands to a
robot will be more procedurally orliented. In general, a use
invelving detalled knowledge of any speclfic subject can rely on
deduction, while an application needing superficlal knowledge of
a wide range of subjects can beneflt from association, and will
be correspondingly weak In Its abllity te glve speclfilc
responses.

Specifle models such as asseciation and categorlization are
subparts of a model of language understanding, while the
procedure model Is fundamentally an appreach te Integrating all
of the different sub-models [nto a total semantic theory. It
represents a point of view that no part of the process can be
Isolated from the basie computational power or "intelllgence" of
the language-understander (whether human or computer).
Understanding of language, as well as other types of human
behavior, depends on this abllity te see the operatlon of

Intelllgence at every level of processing,

Sectlon 5.1 - Page W22

Chapter 5. Conclusions

5.1 Teaching, Telling and Learning

One of the most Important regulrements of a natural
language understanding system is generallty. It should not be
based sn speclal tricks or shortcuts which 1imlt it to one
particular subject or a small subset of grammar, but should be
expandable to really handle the full diversity of language. In
gach of the three preceding chapters we have polinted ocut that
many approaches to language understanding are quite 1imited, and
have tried to iTl1lustrate the progression within each sub-area

towards more general approaches.

sectlon 5.1.1 - Page 423

2.1.1 Tvpes of Knowledge
In evaluating the flexibility of a system, we must cons|der
the four different levels of knowledge [t contalns.

First, there Is the "hard core" which cannot really be
changed without remaking the entire system. This Is its "Innate
capacity" -- the embodiment of its theory of language. At this
level we must deal with such questlions as whether we should use
a top-down transformational parser, a semantile net, or some
other approach to the basle analysis of a sentence, or whether
we should have special tables of Informatlon or 3 general
notation (such as the predicate calculus) far representing
information,

The second level of knowledge Is the complex knowledge
about the language and the subject belng discussed., This would
Include such things as the grammar of a language, or the
conceptual categorfes Into which the speaker divides his model
of the world. If we think about the human speaker, this [s a
type of knowledge which Is obviously not Innate (since the
grammar would be different for English and Chlinese and the set
of concepts used would differ for talking about toy blocks and
talking about love storles). However It Is not something which
he learns by being told, or which he changes very easlly. Over
a perlod of years, he bullds up a store of very complex,
interrelated knowledge, which serves as a framework for more

specific Information.

cectlon 5.1.1 = Page L24

The third level Is our storehouse of knowledge about the
datalls of our language and our world. [t Includes the meanings
of words, and most of what we called "complex knowledge" In
sectlon 3.1.3. This weuld include such things as "A house buflt
on sand cannot stand,", "If you want to plck up a block, flrst
clear off Its top.", or "Sunspots cause strange weather.". In
human terms, this Is the knowledge we are continually learning
all of our lives, and forms the bulk of what we are taught In
school.

Finally, the fourth level Is the set of specific facts
which are relevant to a discussion. This Includes facts such as
WElight 342 leaves Boston at noon.", "The red block 1s 3 Inches
tall.", or "A banana Is hanglng above the chalr.". This Is the
paciest type to learn, since it does not demand forming any new
Interrelatlionships. It 1s more 1lke puting a new entry Into a
table or a new simple assertion Into a data base. There I5 no
csharp distlnctlion between levels three and four, but withln any
given system there will usually be two different ways of
handling information correspondling te thls distinction Let us
look at the three areas of syntax, Inference, and semantics, and
see how these different levels of knowledge relate to language

understanding programs and the way they can learn.

Sectlon 5.1.2 - Page 425

2.1.2 Syntax

In syntax It Is clear that at the top level of knowledge
there will be a basic approach to grammar, whether It be
transformations, pattern matching, or flinite state networks. In
addition, there must be some sort of bullt In system ta carry
out the parsing.

Some programs (such as the early translation pregrams) had
the grammar bullt In as an Integral part of the system., In
order to add new syntactle infermation 1t was necessary to dl g
Inte the deepest Innards of the system and to understand |ts
details, It was recognlzed qulte early that thls approach made
them Inflexlible and extremely difflcult to change, The majority
of language systems have Instead adopted the use of a “"syntax-
directed" parser, A grammar Is described by a serles of rules
which are applied by a unlform parsing procedure, |In handling
simple subsets of English, this turns grammar Into a third-lavel
type of knowledge. We can add pew single rules (for example,
adding the fact that verbs can have a modifying adverb) In a way
similar to adding words to a vocabulary == wlthout worrylng
about the iInteraction between rules, This simpllicity Is
deceptive, since It depends on the simplicity of context-free
grammars for small subsets of natural language. Once we try to
account for the complexitles of an entlre language with
something 1lke a systemlic or transformatlional Erammar, we must

agaln pay attentlon to the complex Interrelationshlps between

section 5.1.2 - Page LG

the rules, and the grammar becomes a tangled web inte which any
new additlon must be carefully fitted., For examples of the
complexity of current transformational grammars for Engllish, see
f¥1imay. More recent programs which use transformational
grammars {Woods 1870>, <Bobrow 1970 <Thorne 1968, 1969
recognlze the fact that syntax s not really that simple, and
adopt a more Interrelated representation such as networks.

In our system we have used programs 10 Eexpress the grammar,
as explained in chapter 2, This Is not a return to the eriginal
flrst-level representation, since the grammar programs are
completely separate from the system ltself. One of the
arguments for using syntax=-directed parsers was that the grammar
rules could be expressed In a uniform way which did not depend
an the detalls of the parsing program. Therefore changes could
be made more easlily and the grammar was expandable. By
designing a2 speclial language for writing grammars, We can use a
representation which [s just as general as syntax-rule tables,
but which allows greater flexibility in deslgning a grammar, and
relating 1t to semantles.

How dlfficult is It te change our grammar? For small
changes (like allowing noun groups to contaln only a number, as
in "Are there any books? | want three.") only one or two
additional lines of program would be needed, For a more
cubstantial change (11ke adding a new type of modifying clause)

we might need as many as a dozen emall additlons te the grammar

section 5.1.2 - Page 427

in different places which would be affected. The flrst change
could be done with Tittle difficulty by anvone with an
understanding of PROGRAMMAR and sectlon 2.3. The second would
take a deeper understanding of how the grammar s wrlitten, but
would sti1l Tnvelve only 2 small amount of programmling, and of
course would not involve changing the basic system at all., The
Erammar was wrltten to be falrly complete and with expanslon In
mind., It seems flexible enough that we will be able ta include
as much of the the complexity of English as we want,

What is important In terms of learning Is that this Is
level-twoe knowledge == [t |5 the type of knowledge which I1s
learned once In a lifetime by a person (or computer program),
and should not need any major changes after chlldhood,
Therefore although It must be changeable, we do not need to
worry about "quick" learning techniques. If any learning Is
studled at this level, we must deal In a sophisticated way with
the methods used to learn large amounts of complex Interrelated
material. Those computer programs which have "learned" syntax
(<McConlogue? <Slklossy>) have done so by taking such an
oversimplified view of syntax that the results hardly have
slgnificance for natural language.

At level three of our knowledge of syntax, we have our
knowledge of particular words, thelr grammatical categories and
pecullarities. We need to ask, How easy Is It to add new words?

How much do we have to know about the grammar to Increase the

Section 5.1.2 = Page LIE

vocabulary? In most systems there are a few words (such as
"he', "there', or "than"} which have complex and unigue
grammatical behavler. These are bullt Into the grammar
initially at level two. The rest of the vocabulary, 1lke nouns
and verbs, can be specified In a simple format., Our system Is
no exception. To add the words "cat', "purple", and "walk" to
the system, we would only need to know the right abbreviatlons
(from section 2.3) to enter in LISP:

(DEFLIST WORD (CAT (NOUN NS}) (PURPLECADJ)) (WALK(VE INF ITRNS)))

This says that "cat" Is a singular (NS) HOUN, "ourple" Is
an ADJective, and "walk" is the INFinlitive form of an
InTRaNSTtive VerB.

Can we glve this information In English? It would be
stralghtforward to add the right terms to the vocabulary and set
up simple PLANNER theorems which would allow us to say "'cat' Is
2 noun." or "'Walk' iIs an Intransitive vert." It would be an
interesting project to see how far this could be extended., Some
programs have avolded giving dictlonary entries to these "open
class" words (1ike verbs, nouns, and adjectives) and let the
parser determine thelr part of speech from context, <Thorne
1969% This appreach ls not generally meaningful for a complete
language understanding system, since we need a dlctlonary of
meanings. It could be used when adding new words to the
system, and could be done SO trivially In our Input programs, by

assigning all unknown words to have all possible "open class"

Sectlon 5.1,2 - Page L29

grammatlical features, then letting the parser choose the correct

ones for the context,

Section 5.1.3 - Page 430

5.1,5 loference

In the domaln of inference, there has been tremendous
variation in how different systems treat knowledge. In the
esarly programs, all of the complex information was at level one
(bullt into the system), while the specific facts were at level
four. As we have discussed, this made 1t very hard to modify or
expand the complex Information held by the system. In the
thearem provers, all of the complex information was treated at
the fourth level =- as a set of individual formulas which were
treated as Isolated facts. At level one, they have a uniform
proof procedure as the heart of the system, ¥e have discussed
how this lack of Information at other levels {informatlion about
the Interrelationships between different theorems) severely
limits this approach. |In our system, only simple assertions
(such as "Noah is the father of Jafeth.", or "Parent-of Is the
converse of Child-of.") are dealt with at the lowest level, The
rest of the knowledge Is In the form of PLANMER theorems which
have the abillty to Include Informatlion about thelr connections
te other thecrems. Some of these, such as the examples In
section 3.1.3 about canaries and thesls evaluation, are at the
third level, since they are not Interwoven Into complex
relationships with other parts of the knowledge. Other
theorems, such as the BLOCKS programs {sectlon 3.4) for keeping
track of a table full of objects, are at level two.

Agaln we can ask, how easy Is It to add or change

Sectlon 5.1.3 - Page L3]

informatien at each of the levels., At the twe ends, the answer
is clear. At the top we have PLANNER and our commlttment to ts
kind of theorem-proving procedures, Any change In this is a
major overhaul., At the bottom level, we have simple facts 1Tke
"The red pyramid Is supported by the green cube.," These are the
facts which the system plays with whenever it Is conversling,
They can be changed by simply tellling Information {elther In
English or PLANNER), and are changed automatically when things
happen In the world (for example If we move the red pyramid) .
The middle levels form the much more Interesting problem.

At the second level we have our basic conceptual model of
the werld., This includes our cholee of categories for chjects,
ways of representing actiens, time, place, ete. One of the
beneflits of PLANNER (and of LISP, in which It Is embedded) |e
that we have a varlety of useful faclllities te represent our
world efflciently., Sectien 3.k described the BLOCKS world, and
it should be similarly easy to define new worlds of discourse
for the system (see below for examples),

The third level presents the most Interesting problems far
adding new Information te the system. It is simple te do se In
FLANNER by adding new theorems, but we would like to do It In
English as well. Of the previous systems, the only ones which
could accept eomplex Informatien In English were the theorem
provers which dealt with It at the fourth level (as a set of

unrelated formulas), |In our sample dialog, we have some

Section 5.1.3 - Page L32

examples of telling the system simple and slightly complex
information in English. Saying "] 1ike blocks which are not
red, but | don't 1ike anything which supports 2 pyramid,"
created two theorems. The first says, "|f you want to prove |
like something, prove that 1t [s a block and that it Is not
red." This Is no different from a formula for any theorem
prover, since It is not related to the system In any complex
way. The second theorem says, Mif you are trylng to prove that
| 1ike semething, and you can prove that It supports a pyramid,
then give up.”" This Interacts wlth the other goals and theorems,
but in & very specialized way.

Much smarter programs could be bullt te aceept complex
informatlon and use [t to actually modify the PLANMER theorems
already in the data base. For example, we mlght have a theorem
to plek up a block, but it falls whenever the block has
something on top of it. Ve would 1lke te say In Engllish, "When
you want to plck up a block, Flrst take everything off of it
and have the system add thls information to the theorem In the
form of an addltlional goal ctatement at the beglnning. In order
to do this, the system must have not only a model of the world
it talks about, but also a model of l1ts own behavlor, so that ft
can treat |ts own programs as data to be manipulated and
modl fled. This 1= one of the most faselnating directions In
which the system could be expanded.

Another 1s the possiblility of letting the system learn from

Section 5.1.3 = Page 433

experience. This Is a complex problem and can be dealt with at
many levels. At a simplistic level, we can have Tt "earn"
specific facts., For example, we have a theorem which proves
that a block has Its top clear (by proving it supports nothing).
As the last llne of this, we have the PLANNER statement
(THASSERT (#CLEARTOP $7X)), which says that we should add te the
data base the assertion that this block Is clear, 1f we then
need the fact again, we don't need tog repeat the deductlen. In
4 sense the system has "learned" this fact, since It has been
added to the data base without belng mentloned In the dialog.
But TIn ancther sense, It hasn't learned any new Information,
since nothing can be deduced with this fact that couldn't have
been done before using the theorem that already exlsted, A more
Interesting type of learning would be shown by changlng the
PLANMER theorems for accomplishing a goal, depending on what had
been achieved In the past. For example, we might have a goal
statement with the recommendaticon (THTEE THTRUE) meaning try
anything you can. |If the goal is achleved using some particular
theorem, we might have the system change the recommendation to
suggest trying that theorem flrst, At a more advanced stage, we
would have a heurlstic program which tried to figure out why a
particular chain of deduction worked or dldn't work In a
particular case. It would then modify the recommendations te
choose the best theorems In whatever envlrenments came up In the

future. It might alse recognlze the need for new theorems In

section 5.1.3 - Page 434

some cases, and actually build them. This Is perhaps closest to
human learning. It does not Invelve juggling parameters or
adding new isclated bits of Infarmation. Instead it Involves
figuring out "How are my [deas wrong {ar right)?" and “"How can |
change or generallze them?" It invelves a kind of "debugging" of
ideas, and is a key reason for representing knowledge as

procedures.,

sectlon 5.1.4 = Page 435

2al.b Semantics

Since semantics Is the Jeast understood part of language
understanding, 1t is difficult to find a clear body of "level
one" knowledge on which to base a system. Our system has 3
basic approach to semantics, explained In chapter L, but most of
the semantic work Is done at level two =- the Iinterrelated group
of LISP programs for handling particular semant]e jobs, At this
level we have two separate areas of knowledge. The first is
knowledge about the language, and the way [t |s structured to
convey meaning, This Includes knowledge such as "|n a passive
sentence, the syntactiec subject Is the semantic object.", "a
definite noun group refers to a particular object In the world
madel." or "' |t' is more Ilkely to refer to the subject of the
Previous sentence than the object." This Is closely tled to the
grammar, and Is about as hard te modify as the grammar programs
themselves., The other type of level two knowledge Is the
network of "semantic features" described [n section 4.2, This
Is peculiar to the domaln beling discussed, and becomes more
complex as the range of discussion increases, As we polnted
out, this Is currently separate from the network of "concepts"
used for inference by PLANNER, but the twe could be comb | ned,
As with Tevel two knowledge In other areas, this |s not
something to be quickly learned and changed. Our knowledge of
how language conveys meaning grows aleng with our knowledge of

its syntactie structure, and Is just as seldom modl flied.

Section 5.1.4 - Page 436

At the third level we have the bulk of semantlic information
—- the meanings of Individual words. This Is the part which
must be easy to change and expand., As In most language
understanding systems, this knowledge Is In the form of sgparate
dictionary entries, so that new wards can be added without
changing others. The definitlion of each word ls a program In
the "semantlc language" described in spctlion .2, and we galn
great flexibillty from this program form, The wrlter of
cemantic definitions does not have to be concerned with the
exact form of the grammar, and If he wants to enter simple
words, he can use a standard functlon to describe them very
simply. Most words can be added by using the functlons CMEANS
and MMEAMNS, or by using the particular simple semantic form
appropriate to the type af word (for example, we would deflne
Wehirteen" by ((NUM 13))). |If we come across a type of semantic
problem or relationship we hadn't antlicipated, or which Involves
relating things In an unusual way, we can write a LISP function
as the definltion of the word to perform the requl red
operations.

We have trled to deslgn our system so that It would be
flexlble and could be easily adapted to handle other flelds of
knowledge and to have & large vocabulary. It would be nice to
enter new definitlons in English instead of having to use the
special semantics language. In our sample dialog, the sentence

np Meppeple" Is a stack which contalns two green cubes and a

Sectlon 5.1,4 = Page B37

pyramid.” produced a new definitlon for @ noun. This 1= only
possible when we can express the definitlion of the new ward In
terms of the old words and concepts. It (s a bit deceptive for
a language understanding system to allow new words to be added
so simply, If we wanted to define the word "face", so that we
could talk about the faces of blocks, the system would be
lacking the basle concepts and relationships necessary to use
the new word, This kind of knowledge 1s at the secend level,
and we cannot expect to add |t through a simple deflnition,
There must be 2 powerful heurlstie program which recognizes the
need for a new concept and which relates this concept to the
entire model of the world, In this example, It would have to
realize that a face is a part of an object, but is not an object
itself, This might have varied consequences throughout the
model, wherever relatlons such as "part" are involved,

Thus although our system can accept deflnlitions of some
words, it is a worthwhile but untried research project to deslgn
programs which will really be able to learn new words In an
interesting way. We belleve that this will be much easler
within the envlronment of a problem solving language 1lke
PLANNER, and that such programs could well be added to our

System.,

Sectlion 5.2 - Page 438

5.2 Directions for Future Research

In the preface we talked about using computers In a new wWay.
We speculated about the day when we will just tell our computer
what we want done, and Tt will understand, This paper has
described a small step In that directlion. Where 1s such
research leading? What approaches should we take In the future?

We can see three basic directions in which we could extend
our system. Flrst, at present it knows only about a tiny
simplified subject. Second, most of what 1t knows has to be
orogrammed, rather than told or taught., Finally, we can't talk
to It at all! We have to type our <ide of the conversation and
read the computer's,

The problem of widening the scope of knowledge Involves
much more than bullding blgger memorles or more efflicient lookup
methods., |f we want the computer o have a large body of
knowledge, the information must be highly structured, The
critical lssue Is to understand the kinds of organization
needed. One of the reasons that our system 1s able to handle
many aspects of language which were not possible In earllier
systems (s that it has a deep understanding of the subject It Is
discussing. There is a whole bady of theorems and concepts
assopclated with the words In the vacabulary, and by maklng use
of this knowledge In [ts questlion-answering and action, its
language behavior Is more 1ike ours. In going to larger areas

of discourse we cannot give up this insistence that the computer

Sectlon 5.2 - Page L339

must know what It Is talking about.

We need a way to Integrate large amounts of heterogeneous
knowledge into a2 single system which can make use of It. At the
same time, we cannot let the system become overburdenad and
inefficient by Inslsting on a stifling general ity and
uniformity. We want the advantages of speclallzed types of
knowledge and structure that can come from limiting the subject
to a small area, but at the same time we must have the
flexibility that allows knowledge of different types to
interact. PLANNER-1ike languages may be a beginning toward
these new kinds of organization.

There are many different approaches which can be taken
towards higher organization of knoewledge. We may want to think
In terms of a "block-structure" of contexts, each of which
carries Its own speclal veocabulary and Information. We may
think of a network, In which we can conslider the "distancs"
between two concepts or words, It might be possible to deal
with a set of speclallzed "subroutlines" for dealing with
different kinds of situations. Even for something as seemingly
simple as childrens' stories, there are tremendous complexities
and a well-structured approach Is necessary.

In section &.1.4 we discussed some of the ways our system
could take advantage of this large-scale structure of knowledge,
The subject matter would influence the cholce of relevant

definitlions of words and appropriate thecrems to be used Tn

Section 5.2 - Page LALOD

deduction. This has been explored very little, and there are
many possibilitles for further research.

The problem of learning Is of great Interest not only to
those werking on practical computer systems, but also to
psychologists Interested in understanding how learning takes
place in other intelligent systems, such as people. We need to
understand how the amount of knowledge we already have affects
the amount and the way we can learn. Working on a natural
language program offers several advantages for studying problems
of knowledge and learning. Language represents a body of highly
complex knowledge, which ltself can provide a rich fleld for
learning tasks with a wide range of difficulties. Also,
language Is a major vehicle through which people learn ahout the
world, In studying the way that a computer could accept new
information In natural language, we are studylng a key area In
learnlng. We need to understand the ways In which learning
depends on the organization of our knowledge. We need to
explore In what ways knowing about lts own mentality could allow
a computer to really learn, This Is perhaps the most
interesting possibility for research, and we have discussed It
at length In Section 5.1.

We have discussed the diffliculties involved In accegting NEY
declarative knowledge In any but a superficlal way. One of the
problems most closely assoclated with this s the use of world-

knowledge 1n understanding declarative sentences. Compare the

Section 5.2 - Page W41

sentences:
| put the heavy book on the table and It broke,
| put the butterfly wing on the table and It broke,

The understanding of the referent of the pronoun "it" must
depend on the 1lkellhood of the different objects breaking or
causing breakage. This could be handled by having the
declarative sentence "Interpreter” try sut both interpretations
and see which leads te more "reasonable" conclusions.

Out system can currently do this only 1f the knowledge of
the werld needed is a specific simple fact ("there Is ne block
In the bex.") or a categorical fact ("table can't plck up
blocks.") A more complex system |s needed to accept general
declarative statements and explore thelr consequences, |t must
seek the Interpretation which is nelther trivial nor
incongruous, but which provides new Information as the speaker
must have Intended It te. Contextual factors play the major
role. The expectations might be completely reversed 1f the
sentence were preceded by "The strangest thing just happened|"

Finally we have the problem of speech communication with
computers, Again the Issue Is not one of moare efflclient
hardware, but one of knowledge. Spoken language calls on the
listener to fill In a great deal from his ewn knowledge and
understanding. Words, phrases and whole ldeas are conveyed by
fragments and mumbles which often serve as little more than a

clue as to what they intend. The need for a truly vertical

Sectlon 5.2 - Page LA42

system |s much greater for speech than for written language.
The analysis at even the lowest level depends on whether the
result "makes sense." People can communicate under conditions
where 1t Is nearly Impossible to plick out Indiwlidual words or
sounds without reference to meaning.

In our system we tried to Integrate the syntactic, semantlc
and deductlive programs in a flexible way, We allow meaning to
gulde the direction of the parsing. Our semantlc Interpretation
ls guided by loglcal deduction and & rudimentary model of what
the speaker knows. For spoken language this must be expanded,
Perhaps we might leck for fragments of sentences and use thelr
meaning to help plece together the rest. 0Or possibly we could
create a unifled system In which the deductlve pertion could
loeak at the context and propose what [t thought the speaker
mlght be saying, on the basis of meaning, and the audible clues
in the utterance. It might be possible to have a more multli=
dimensional analysis In which prosedlic features such as voice
intonation could be used to recognlze Important features of the
utterance. This is not at all saying that we should throw
syntax overboard In favor of some sort of vague relatlonal
structure, Often the most Important clues about what Is being
csald are the syntactic clues. What Is neseded Is a grammar
which can look for and analyze the different types of important
patterns rather than getting tremendously Involved with finding

the exact detalls of structure In a flzed order, Systemic

Section 5.2 - Page 443

grammar Is a step in this directien, and the use of programs for
grammars glves the kind of flexibillity which would be needed for
doing this kind of analysis. It Is not clear whether our system
in Tts present form could be adapted to handle spoken language,
but Tts general structure and the baslec principles of lts
operation might well be used,

The challenge of programming 2 computer to use language s
really the challenge of produclng Intelligence. Thought and
language are so closely Interwoven that the future of our
research In natural language and computers will be nelther a
study of linguistic principles, nor a study of "artlifictal™

intelligence, but rather an Inquliry fntoe the nature of

intelligence ltself,

Appendix A = Page LLbL

Appendlix A - Index of tyntactic Features

Underlines indicate primary deseription of feature.

-0B 148 FINITE 137

-0B2 148 FUTURE 133, 134

ACTV 116, 119, 137, 138 IMPER 137

ADJ 120, 121, 132, 139 IMPERATIVE 104, 105, 106
ADJG 121, 131-132, 139 INCOM 123, 125, 1u2

ADJQ 105, 107 |NDEE 123, 124, 125, 142
ADJREL 105 ING 105, 109-113, 137, 138, 1L3
ADJUNCT 105, 109, 128-131 INGOB2 148

ADV 139-1L1 INGO 105

ADVADV 1L1 INGREL 105

ADVMEASD 105, 107 INT 116, 118, 148
ADVMEASREL 105 iIT 116, 119

AGENT 116, 119, 128, 129 ITRNS 116, 117, 1LE

AND 150, 151 ITRNSL 116, 118, 143

AS 131 ITSUBJ 105, 113, 119

AUX 148 LIST 150

BE 116, 137 LISTA 150

BINDER 1Ll LOBJ 105, 117, 128, 129
BOTH 150 LORJG 105

EOUND 105, 109 LOBJREL 105

BUTNOT 150 MAJOR 105, 106, 107
CLASF 120, 121, 124, 141 MASS 12, 143

CLAUSE 104-119, 121, 1k3, 148 MEASQ 105, 108

CLAUSEADV 141 MEASREL 105, 111

COMP 117-11%, 123, 126-128, 131 MODAL 133, 134, 148
COMPAR 121, 131, 132, 139 NDET 123, 124

COMPOMEMT 151 MEED2Z 145

COMPOUND 149-152 WEG 123, 125, 137, 138, 1u2
coMPg 105, 108 MFS 123, 127, 145
COMPREL 105, 111, 113 NG 120-127, 128-129, 132
DANGLING 105-107, 111, 113, 129 NGQ 107

DECLARATIVE 105, 106 NOBJ 123

DEF 123, 124, 12 MOMUM 142, 13

DEFPOSS 123, 127 NOR 150

DEM 123, 124, 142, 145 MOUN 120, 143

DET 120, 122-124, 141-143 NPL 123, 127, 142-145
pOwWNQ 105, 109 NS 123, 127, 142-145
DOWNREL 105, 111 NUM 120, 1kb

DPRT 116, 118 NUMD 123, 1ulb

EN 105, 110, 137, 138, 148 NUMDALONE 14k

NUMD AN
NUMDAS
NUMDAT
NUMDET
08J 105,
0BJ1 105, 112,
0BJ1Q 105, 108
OBJIREL 105, 111
OBJIUPREL 113

0BJZ 105, 112, 123
0BJ2Q 105, 108
OBJ2REL 105, 111

OBy 105

OBJREL 105

OF 123, 125, 128, 129
OFD 142

OF D= INCOM
OFOBJ 123,
OR 150
ORD 120, 122, 1uk

PAST 133, 134, 148

PASY 116, 119, 135, 137, 138
POSES 123, 125, 126
POSS 123, 126, 1.3,
POSSDEF 145
PREP 128, Llhk,
PREPZ 145
PREPADY 141
PREPG 121, 128-130

PREPOBJ 105, 112, 123, 126, 128
PREPQ 105, 106, 107
PREPREL 105, 110, 111,
PRESENT 133, 13k

PRON 145

PRONG 123, 124, 126, 127
PRONREL 145

PROPN 124, 145

PROPNG 123, 124

PRT 116, 118, 119, 145

Q 120, 128, 129, 131

144
14h
144
125
126, 145

123

142

126

145
15

113, 129

Appendix A - Page 445

OADJ
nAUX
QDET
QNTFR 123, 124, 125, 142
QUEST 123, 125, 128-132, 1%
QUESTION 105-107, 146, 146
RELADJ 111, 113
RELDEL 105, 111
RELPREPG 128, 129
REPOR 148

REPORT 105, 112,
RSNG
RS0

146
162

148

105, 109,
SEC 105, 106
SHORT 105, 107, 129
SHORTREL 111, 113
SUBING 105, 112, 148
SUBJ 105, 112, 117,
SUBJFORE 151

SUBJQ 105, 107
SUBJREL 105, 111
SURJT 116, 123
SURJTR 105, 108
SUBJTREL 105, 111,
SUBQ 105

SUBREL 105

SUBTO 105, 112, 148
SUBTOE 1u§

SUP 121, 14k

THAN 131

THAT 105, 112

THERE 108, 116

TIMI 143

TIME 123, 143

TIMED 105, 108
TIMEREL 105, 111

TO 105, 109-113, 137, 138, 148
TODEL 137, 138

TPRON 124, 132, 1LE

TPRONG 123, 124

121

123, 1128,

113

105, 109-113, 119, 128, 148

1.5

Appendix A - Page LLE

TRANS 116, 117, 1k8
TRANSZ 116, 117, 1hE
TRANSZTOO 105
TRANSZTOREL 105
TRAMSL 116, 117, 148
TRANSTOZO 108
TRANSTOZREL 111
UPQUEST 128, 129
UPREL 105, 113%, 128, 129
VIPS 148

VB 146, 1LE

VBAD 1kl

VEFORK 151

YFS 1G&E

VG 133-138, 148

VERT 1Lka

WH=- 105, 106, 107
WHRS 105, 110, 113
WORD 139-148

Yes-No 105, 106

Appendix B = Page 447

Appendix B = Sample Parsings

HOW MANY EGGS WOULD YOU HAVE BEEN GOING TO USE IN THE CAKE IF
YOU HADN'T LEARNED YOuR MOTHER'S RECIPE WAS WROHG?

(C(HOW MANY EGGS WOULD You HAVE BEEMN GOING TO USE IN TME
CAKE |F YOU HADN'T LEARMED YOUR MOTHER'S RECIPE WAS
WROMG)
(CLAUSE MAJOR QUEST NGOUES POLRZ ACTV OBJ10 TRANS)
({{HOW MANY EgGGS)
(NG QUEST HOWMAMY NDEF NPL DET)
(CHOW (ODET)) (MANY (QDET)) (EGGS (NOUN NPL))))
(WOULD (VB AUX MODAL QAUX))
({YOU) (NG SUBJ DEF NS NFL) ((YOU (PRON NPL NS SUBJ OBJII))
({HAVE BEEN GOING TO USE) (Vg MODAL NAGR (FUT PAST MODAL))
({WOULD (VB AUX MODAL QAalUxX)
(HAVE (HAVE VB AUX INE TRANS))
(BEEN (AUX VB BE EN))
(GOING (VE ITRNS ING))
(TC (TD))
(USE (VB INF TRANS MVE))))
(CIN THE CAKE) (PREPG)
((IN (PLACE PREP PLACE))
({THE CAKE)
(NG OBJ DET NS DEE)
((THE (DET NPL NS DEF)) (CAKE (HOUN NS)))D))
(IF YOU HADN'T LEARNED YOUR MOTHER'S RECIPE WAS WROMG)
(CLAUSE BOUND DECLAR ACTV TRANS)
(CIF (BINDER))
((YOoU) (NG SUBJ DEF NS NPL) ((YOU (PRON MPL NS SUBJ 0BJ})))
((HADN'T LEARNED)
(VG VPL V3PS5 MNEG (PAST PAST))
CCHADN'T (HAVE WB AUX TRANS PAST VPL VIPS VFS NEG))
(LEARMED (VB TRANS REPOB PAST EN MVB)J))
((YOUR MOTHER'S RECIPE WAS WROMNG)
(CLAUSE RSNG REPORT OBJ OBJ1 DECLAR BE INT)
(C{YOUR MOTHER'S RECIPE)
(NG SUBJ NS DEF DET POSES)
(({YOUR MOTHER'S)
(NG SUBJ NS DEF DET POSES POSS)
(C{YOUR) (NG SUBJ PDSS)
((YOUR (PRON NPL NS SUBJ 0BJ POSS))))
(MOTHER'S (NMOUN NS POSS))))
CRECIPE (NOUN NS))))
(CWAS) (VG V3PS VFS (PAST))
((WAS (AUX VB BE V3PS VEFS PAST MV B
{{WRONG) (ADJG Q cOMP) COWRONG (ADJ)DID))

(

Y33
133))

hppendlix B = Page LLE

PICK UP ANYTHING GREEN, AT LEAST THREE OF THE ELOCKS, AND
EITHER A BOX OR A SPHERE WHICH IS BIGGER THAN ANY BRICK OM THE

TABLE.

(((PICK UP ANYTHING GREEN /, AT LEAST THREE OF THE BLOCKS /. AND
EITHER A BOX OR A SPHERE WHICH IS BIGGER THAN ANY ERICK OM

THE TABLE)
(CLAUSE MAJOR IMPER ACTV TRANS)
(((pIck) (ve IMPER) ((PICK (VPRT VB INF TRANS MVB)J}))

(UP (PRTJ)
((AMYTHING GREEM /, AT LEAST THREE OF THE BLOCKS /, AKD

EITHER A BOX OR A SPHERE WHICH 15 BIGGER THAM ANY
BRICK OM THE TABLE)
(NG OBJ OBJ1 EITHER COMPOUND LIST NS)
(CLANYTHING GREEM) (NG 0BJ 0BJ1 TPRON)
(CANYTHING (N3 TPRON)) (GREEN (ADJ))))
({AT LEAST THREE OF THE BLOCKS)
(NG DBJ OBJ1 COMPOMENT MNUMD MUM NPL DET OF)

((AT (ATI)
(LEAST (NUMD MUMDAT))
{THREE (HUMJ)
((OF THE BLOCKS)
{PREPG OF)
((0OF (PREP)})
{{THE BLOCKS)

(MG OBJ DET WPL DEF)
({THE (DET NPL NS DEF)) (BLOCKS (MOUN NPLJ)J)IDD)

((A BOX OR A SPHERE WHICH 15 BIGGER THAN AMY BRICE ON THE
TABLE)
(NG 0BJ OBJ1 COMPONENT OR COMPOUND BOTH HS)
({({A BOX) (NG OBJ 0BJ1 COMPOMENT DET NS |IMDEF)
((A (DET NS INDEF)) (BOX (HOUN HESRRD]
((A SPHERE WHICH 15 BIGGER THAN AMY BRICK ON THE TABLE)
(NG OBJ OBJ1 COMPONENT DET NS INDEF)

({A (DET NS INDEF))
(SPHERE (MOUM HS))
((WHICH 15 BIGGER THAN ANY BRICK oM THE TABLE)
(CLAUSE RSO SUBREL BE INT)
(C{WHICH) (NG RELWD DEF MPL) ({(WHICH (NPLI}))
(C1s) (ve V3PS (PRES))
({15 (AUX VB BE V3P3 PRES MVE)DD)
((BIGGER THAM ANY BRICK ON THE TABLE)
(ADJG O COMP COMPAR THAM)
((BIGGER (ADJ COMPAR))
{THAN (THAM))
{(ANY BERICK OM THE TABLE)
(NG SUBJ COMPAR DET NS QNTFR)
{(ANY (DET W5 MNPL QMTFR))
(BRICK (MOUN NS))
{(OM THE TABLE)

Appendix B - Page LL9

(PREPG 0q)
((ON (PREP PLACE))
{{THE TABLE)
(NG DBJ DET MS DEF)
({THE (DET MPL NS DEF))
(TABLE (NOUN NS))IIDIIDDN0010001M)

sppendix € = Page 450

appendix C - Sample BELOCKS Theoarems

(DEFTHEOQREM TA=CONTAIN
(THAMTE (X ¥ Z)

(#AT £7X 1)

{THGOAL (#MANIP $7X))

(THGOAL (#SUPPORT $7Y $7X))

(THOR (THAND (THGOAL (#1S5 §$°%Y #B0OX))
(THVSETO $_7 $7Y))

(THGOAL (#CONTAIN $7Z $7Y)))
(THASSERT (#CONTAIN $?Z $7X))))

(DEFTHEQREM TC-MAKESPACE
(THCONSE (SURF SIZE OBJ SPACE X {WHY C(EV)) EV)
(#FINDSPACE $?SURF $?51ZE $70BJ & 7S PACE)
(THNOT (THGOAL (#15 $TSURF #BOX)))
(MEMORY)
TAG
{THAND (THGOAL (#SUPPORT $7SURF §_ X))
(THGOAL (#GET=RID-0F 37X}
{THUSE TC-GET-RID=0F}J)
(THOR (THGOAL (#FINDSPACE $2SURF
£75112E
£70BJ
£?SPACE)
{THUSE TC-FINDSPACE))
{THGO TAG))
(MEMOREND (#MAKESPACE $7EV £25URFII))

(DEFTHEOREM TC-MORE
{ THCONSE (MEASURE X ¥)
{ #MORE $7TMEASURE $7X $7Y)
{THVSETO $_MEASURE
(GET $?MEASURE (QUOTE MEASFMI))
(GREATERP ($?MEASURE $7X)
($TMEASURE $7Y))))

{(DEFTHEQREM TC-OHN
{THCONSE (X Y Z)
(#ON $7X $7Y)
(THOR (THGOAL (#SUPPORT $7Y §7X))
(THAND (THASVAL $7X)
(THGOAL (#SUPPORT §_I $7X))
(THGOAL (#ON $7Z §7Y)
(THUSE TC=0N})))))

Appendix © = Page 451

(DEFTHEDREM TC=PICKUP
(THCONSE (X (WHY (EV)) EV)
(#PICKUP £7X)
(MEMORY)
(THGOAL (#GRASP $7X) (THUSE TC-GRASP))
(THGOAL (#RAISEHAND)
{THNODR)
{THUSE TC-RAISEHAND))
(MEMOREND (#PICKUP ¢7EV %))

(DEFTHEDOREM TCT=-PICKLP
(THCONSE (X EV TIME)
{FPICKUP $7X $7TIME)
(THOR (THAND (THGOAL (FPICKUPSTEV $7X))
(TIMECHK $7?EV £7TIME))
(THGOAL (#PICKUP $2EV $7X $7TIME)
(THUSE TCTE-PICKUP)))))

(DEFTHEQOREM TCTE-PICKUP
(THCOMSE (X EV EVENT TIME)
(FPICKUP $7EV $7X £2TIME)
(THOR (THAND (THCODAL (#P|CKUP £7FY $7X))
(TIMECHK $?EV $7TIME)))
(THSUCCEED))
{THAMONG $7EVENT EVENTLIST)
(MEMQ (GET $?EVENT (QUOTE TYPE))
(QUOTE (#PUTON #GET-RID=0F)))
(TIMECHK $?EVENT $£7?TIME)
(THOR (THGOAL (#PUTOM $7EVENT g7y 7))
[THGOAL (#GET-RID=OF S$PEVENT $£7X)))
(THVSETO $_EV (MAKESYM (QUOTE E)))
(AND (PUTPROP $7EYV
(PUTPROP $7EV
(GET $7EVENT (QUOTE END))
(QUOTE START))
{(QUOTE END))
(PUTPROP $?EV (QUOTE #PICKUP) (QUOTE TYPE))
(PUTFROP $?EV $7EVENT (QUOTE WHY 3)
(SETQ EVENTLIST (CONS ¢7FV EVENTLIST))
(THASSERT (#PICKUP $7EV £7%))))

(DEFTHEOREM TE-CONTAIN (THERASING (X Y)
(¥AT 72X 73
(THGOAL (#COMTAIN £Y $7X))
(THERASE (#CONTAIN 7Y £7%3)))

Appendix D - Page 452

Appendix D = Sample PROGRAMMAR Program
Excerpt from Houn Group Parser

DET1
(coMp ({150 H NS) (FQ NSY) (T (FO NPL)J)
(OR NN (AND (FO NUMBER) (GO IMCOM) D)
MUMBER
(FO DET)
{(NQ OF) OF ADJ)
QNUM
({150 H NONUM) OF NIL)
{(AND (PARSE NUM) (FQ NUMI) NIL OFJ
({coND (C(EQ (SM H) 1) (AND (COo MS) (RO MPLID)
((co NPLY (RO NS)))
ML
{HUMD)
INCOM)
((En (CADDR (ME H)) (0 NOY) ADJ NIL)
OF
({AMD (NQ OF) (PARSE PREPG OFY) SMOF MIL)
((EQ (CADDR (NB H)) (0O MONMEYY 1BCOM ADJI
SMOF
{FQ OF)
{(OR SMM (SMNGOF) (HOT (POPY}) RETSH INCOM)
ADJ
{ (PARSE ADJ) ADJ CLASF MIL)
EPR
((OR (150 H SUP) (IS0 H COMPAR)Y) NIL REDUC)
(FQO ADJ)
(AMD (E0 (CADDAR M) (0 OF))
(PARSE PREPG OF)
{OR SMH (SMNGOF) (AMD (ERT NOUN SMNMGOF3) (GO FAIL)D)
(FQ OF)
(GO RETSM))
(GO INCOM)
CLASF
({oR (PARSE VB ING (CLASF)) (PARSE VB EN (CLASF)) (PARSE CLASF))
CLASF
NIL
REDUC)
NOUN
((PARSE NOUM) MIL RED2)
(CAND (CQ TIME) (WOT (150 H TIM1))) RED1 MIL)
(SETO T1 FE)
(cOND ((AND (150 H MASS) (OR (co PART) (HOT (CO DETY)))
(FO MASS)))
(coMD ((MOT (150 H NPL)) (RO NPL PART)))
(COND ((NOT (150 H N5)) (RO H5)))
(coND (AMD (NOT {po DETYY (NOT (co NUMDY}) (e H)
(TRNSF MPL MASS)))

Appendix D = Page 453

((MEET FE (0 (NS NPL PART MASS))) NIL REDO)
SMNG
(COR (NOT (CQ OFDBJ)) (CQ DET)) MIL FAIL)
(DR SMN (SMNGLl) (AND (ERT NOUN SMNGLl) (GO FAIL)))
(CNOT (150 H POSS)) NIL POSS RETSM)
((AND (NEXTW TO)
(MEET FE (Q (COMP SUBJY))
(PARSE CLAUSE RSN TO)

(OR SMN (SMRSQ (SM H) sM) (GO POPRET)))
RETSM

MNIL)
(CAND (OR (NEXTW AS) (NQ COMPAR))
LPARSE ADJG THANNEED)

{OR SMN
(AND (MULL M)
(CO SUBJ)
C15g (+ © PV)Y AUX)
(15SQ PT BE)

(GO POPRET))
(SMPREP (QUOTE ADJ))
(GO POPRET)))
RETSM
NIL)

appendix E = Page &34

Appendix E - Sample Dictionary Entries

Syvntactic pefinitions

{daefllist word
{LITTLE (ADJ))
(LONG (ADJ))
(MAKE (VB INF TRANS))
(MOVE (VB IMF TRANS))
{HAME (NOUM HS VB INF TRANS))
(MARROW (ADJD)
(MICE(ADJ))
(OBJECT (HOUN HSJ))
(OFF (PRT))
{oUT (PAT))
(PIck (VPRT VB INF TRAMNS))
(PUT (INF PAST VB TRANSL VPRT))
(POINTED (ADJY)
(PYRAMID (KOUN NS))
(RED (ADJ))
(RELEASE (VB TRANS INF))
(RIGHT (NOUM N3J)
(ROUNMD (ADJY D))

(DEFLIST WORD1
(BEGAN (BEGIM (PAST) (IHF)Y D))
(GAVE (GIVE (PAST) (INF}J)
{SAW (SEE (PAST) CINF}))
(TOLD (TELL (PAST) CINFI3))

Appendix E - Pape 455

semantic Definitions

(DEFLIST SMNTC

(A ((DET TI))
(ABOVE ((PREP ((T (#LOrC FABOVE TIX))))
(AFTER ((BIMDER (END MNIL))))
(ALL ({DET (cCOND ((Cca OF) (0 ALL))

((MEET (0 (NUM DEF)) FE) (0 DEF))

C00 NDET)I))))
(BALL ((NOUN (HNMEANS ((#MANIP #ROUND)

CCFIS wwe FRALLIIIIIDD
(BEIG ((MEASURE ((#SI1ZE (#PHYSOR) T)))
(ADJ (MMEANS ((#PHYSOR #BIC)
((#MORE #S|ZE ##++= (200 200

20003220 0m)
(BLACK ({ADJ C(#COLOR #BLACE))))
(BLOCK ((MOUN (MNMEANS ((#MANIP #RECTANGULAR)
((FIS »=w FELOCK))IIIDY)
(BLUE ((ADJ (#COLOR #BLUE))))
(BY C((PREP ({T (CMEANS ((((#PHYSOB)) ((#PHYSOR)))
(#NEXTO #1 #2 =TIME)
MILIYINID)
{COLOR ((HOUN (NMEANS ((#COLOR) ((#]5 wwe FCOLORIIIIIM
(CONTAIN ((VEB ((TRANS (CMEANS ((((#B0X)) {(#PHYSORB)))
(#CONTAIN #1 #2 «TIME)
NIL)
((({#FCONSTRUCT))
C(ETHING)))
(#PART #2 #1 *TIME)
NILI)DD)
(CUBE ((MNOUM (NMEANS ((#MAN|P #RECTANGULAR)
((#I5 wwwe FBLOCK)
(FEQDIM =w%))))3))
(EVERYTHING ((TPRON (QUOTE ALL))))
{(FEWER ((NUMD (LIST (0 <) NUM)3))
(FOUR CCNUM 4)))
(FRIEND ((NOUN (NMEANS ((#PERSON)
((#15 =wx FPERSONIIIIID)
(GRAB ((VE (({TRAMS (#GRASPI}IIIDD
(GRASP {((VBE ((TRANS (¥GRASP))IINY)
(1 ({PRON (SETQ 5M (0 (FRIEND)})))))
CIT ((PRON (SMIT (0 ITI YY)
(NICE (CADJ (MNMEANS ((#THING)
((FLIKE tFRIEND ##%))3)3))
(NOW (CADV (OR (EQ (CADR (ASSO (QUOTE TIME) FE})
(QUOTE :MNOW))
(ERT NOW DEFINITION)})))

Appendix E - Page L35GB

(THE (C(DET T)))
(THEY ((PRON (SMIT (Q THEY}))))
(THICKE ((ADJ (MMEANS ((#PHYSOB) ((#MORE #THICKNESS
L2 B
(0 200 0))))))
(MEASURE ((#THICKNESS {#PHYSOB)Y T)X)))
{THIN ({ADJ (MMEANS ((#PHYSOR) ((#MORE #THICEMNESS
(0 200 0)
wex) 1))
(MEASURE ((#THICEMNESS (#PHYSOB)Y NIL)JIIDD
(THING C((MOUN (NMEANS ((#THING #VAGUE #PHYSOR)
Cl#ls =we 23333330
{WHO ((PROMREL (SETQ SM (QUOTE (ANIMATE)}D)))
(PROM (SETO SM (QUOTE (AMIMATE)}))))
(WHY ((qADJ (FQ WHY 333))

Appendix F - Page 457

Appendix F - PLANNER Data for Dlalog In Section 1.3

(#15 :B1 #BLOCK)

(#15 :B2 #PYRAMID)
(#15 B3 #BLOCK)

(#1S5 :B4 #PYRAMID)
(15 :B5 #PYRAMID)
(#15 :BE #BLOCK)

(#15 :B7 #BLOCEK)

(#15 :B1D #BLOCEK)

(#15 #RED #COLOR)

(#15 #BLUE #COLOR)
(#1535 #GREEN #COLOR)
(#15 #WHITE #COLCR)
(#15 #BLACK #cOLOR)}
(#15 FRECTANGULAR #S5HAPE)
(#15 #ROUND #SHAPE)
(#15 #POINTED #SHAPE)
(#15 :SHRDLU #ROBOT)
(#15 :FRIEND #PERSOM)
(#15 :HAND #HAND)

(#AT :B1 (100 100 0))
(AT :B2 (100 100 100))
(#AT B3 (400 0 0))
(#AT :BL (S5LO BLO 1))
(#AT :B5 (500 100 200))
(#AT :B6 (0 300 0))
(#AT :B7 (0 240 300))
(#AT :BE10 (300 640 0))
(#SUPPORT :B1 :B2)
(#SUPPORT :B3 :B5)
(#SUPPORT :B6 :B7)
(#CLEARTOP :B2)
(#CLEARTOP :Bu)

(#MANIP :BE)

(#MANIP :BT7)

(#MANIP :B10)
(#SUPPORT :TABLE :R1)
(#SUPPORT :TABLE :B3)
(#SUPPORT :BOX :BL)
(#SUPPORT :TABLE :B10)
(#SUPPORT :TABLE :RE)
(#SUPPORT :TABLE :BOX)
(#AT :BOX (600 GOO 0))
(#15 :BOX #BOX)

(#15 :TABLE #TABLE)

(#CONTAIN

:BOX :B4)

(#SHAPE :Bl #RECTANGULAR)
(#SHAPE :B3 #RECTANGULAR)
(#SHAPE :B2 #POINTED)
(#SHAPE :B& #POINTED)
(#5HAPE :E5 #POINTED)

{#SHAPE :BE #RECTANGULAR)
(¥SHAPE :87 #RECTANGULAR)
(¥SHAPE :B10 #RECTANGULAR)
(#COLOR :B1 #RED)

(#¥COLOR :B2 #GREEN)
(#COLOR :E3 #GREEN)
(#COLOR :BY4 #BLUE)
(#COLOR :RS #RED)
(#COLOR :BE #RED)
(#COLOR :B7 #CREEN)

(#COLOR :B

10 #BLUE)

(#COLOR :BOX #WHITE)
(#FCOLOR :TABLE #BLACK)

(#CALL :SHRDLU SHRDLU)

(#CLEARTOP
(#CLEARTOP
(#CLEARTOP

:B5)
tB7)
tB10)

(#CALL :FR

IEND YOU)

(#MANIP :B1)
(#MANIP :B2)
(#MANIP :B3)
(#MANIP :B4)
(#MANIP :B5)

Some of the data is entered Inftlally,

The rest can he

deduced and asserted by simple antecedent theorems,

Bibllography - Page 458

BIBELIOGRAPHY

1. <Bar-Hl1lel 1964 Bar-Hl1lel, Jehoshua, LANGUAGE AND
INFORMATION, Addison Wesley, 189BL.

3. ¢Black 1964> Black, F., "A Deductive Question Answering
System,”" in Minsky (ed.) SEMANTIC INFORMATION PROCESS ING,
pp. 354-L0O2Z.

3 ¢Bobrow 1964» Bobrow, Danlel G., "Matural Language Input for
a Computer Problem Solving System," In Minsky (ed.),
SEMANTIC INFORMATIONM PROCESSING, pp. 135=-215.

4. ¢Bobrow 1967» Bobrow, Daniel, "Syntactlc Theory In Computer
Implementations,” 1n Borke (ed.), AUTOMATED LANGUAGE
PROCESSING, pp. 217-231.

5, ¢Bobrow 1969» Bobrow, Danliel, and J.B. Fraser, "An Augmented
State Transition Metwork Analysls Procedure," Proc. of
IJCAl, 18369, pp. EL7=-56E.

E. ¢Borke 197> Borko, Harold (ed.), AUTOMATED LANGUAGE
PROCESS ING, John Wiley and Sons, New York, 1967,

7. <Charniak 1969» Charniak, Eugene, "Computer Solution of
caleulus Word Problems," Proc. of 1JCAl, 1863, pp. 303~
316,

8, ¢Chemsky 1857 Chomsky, Hoam, SYNTACTIC STRUCTURES, Mouton
and Coa., The Hague, 1957,

9. ¢Chomsky 1965> Chomsky, Moam, ASPECTS OF THE THEGQRY OF
SYNTAX, M.1.T. Press, Cambridge, Mass., 1965,

10. <Coles 1967> Coles, L. Stephen, "Syntax Directed
Interpretation of Natural Language," Doctoral Dissertatlon,
Carnegle Mellen University, 19E67.

11. <Coles 1968 Coles, L. Stephen, "An On-Line Ouestlion-
Answering System with Natural Language and Pictorial
Input," Prec. Matlonal ACM Conference, 1863, pp. 157-167.

12, <Cralg 1966> Crafg, J.A., 5.C. Berezner, H.C. Carney, and
C.R. Longyear, "DEACON: Direct English Access and
coOMtrol," Proc. FJCC 196E, pp. I65=-380,

13. <Darlington 1964> Darlington, J., "Translating Ordinary
Language Inte Symbolie Logle," Memo MAC=-M=1L49 Project MAC,
M.1.T., 1964,

14,

15,

1g,

17,

18,

13,

20.

21.

22,

23.

2L,

25.

26,

Bibllography = Page 459

{Earley 1966> Earley, J.C., “"Generating a Recognizer for a
BNF Grammar," Comp Center Paper, Carnegzie Mellon Univ.,
1966,

tFelgenbaum 1963> Felgenbaum, Edward A., and J. Feldman,
COMPUTERS AMD THOUGHT, McGraw=H111, New York, 1963,

<Fodor 1964> Feodor, J.A., and J.J. Katz, (ed,) THE
STRUCTURE OF LANGUAGE, Prentice Hall, Englewood Cl1ffs,
M.d., 1964,

<Fodor 1967> Fodor, J.A., and R. Garrett, "Some Syntactic
Determinants of Sentential Complexlty," PERCEPTION AND
PSYCHOPHYSICS, 1967, Vol. 2(7).

<Garvin 1965> Garvin, P.L., et, al., "A Syntactle Analyzer
Study =-- Final Report," Bunker-Rame Corp., Fome Alr
Development Center, RﬁDE—TT-EE—SU?, Dec., 19RE,

“Green 1969a> Green, Cordell, "Application of Theorem
Proving to Problem Selving," Proe, of IJCAI, 1969, pp. 219-
2440,

<Green 1269b> Green, Cordell, and B. Raphael, "The Use of
Theorem=-FProving Techniques In Question-Answerlng Systems,"
Proc, of ACM Natienal Conference, 1968, pp. 169-181.

‘Green, P. 1951> Green, P.F., A.K, Wolf, C. Chomsky, and K,
Laugherty, "BASEBALL: An Automatic Ouestlon Answerer," In
Feigenbaum and Feldman (ed.) COMPUTERS AND THOUGHT, pp.
£07=2168,

<Halliday 1261> Halliday, M.ALK., "Categories of the Theory
of Grammar," WORD 17, 1961,

{Halllday 1966a> Halliday, M.AK., "Some Notes on 'Deep’
Grammar," JOURMAL OF LINGUISTICS 2, 196F.

“Halllday 19GEb> Halllday, MoAE., "The English Verkal
Group: A Speclimen of a Manual of Analysis" Nuffleld

Frogramme in Linguistlics and English Teaching, Work Paper
Vi, 1%&6.

“Halllday 1967> Hallliday, M.A.K., "Notes an Transitivity
and Theme In English," JOURNAL OF LINGUISTICS 3, 19G7,

‘Halllday 1970> Hallliday, M.ALK., "Functional Diversity In
Language as Seen From a Conslideration of Modality and Mood
In English," FOUNDATIONS OF LANGUAGE & (1970), pp. 522-361,

27.

28,

9.

30.

3l.

32.

3.

4.

35.

36.

37.

38.

39.

k0.

Bibliography - Page LED

¢Hewitt 1969> Hewltt, Carl, "p| ANNER: A Language for
Proving Theorems in Robots," Proc. of IJCAl, 1968, pp. 295~
301.

¢Hewitt 1970> Hewltt, Carl, PLANNER, MAC-M=386, Project
MAC, M.|.T. October, 1968, revised August, 1970,

¢Huddleston 19653 Huddlsteon, R.D., "Rank and Depth,"
LANGUAGE &1, 1965,

¢Hudson 1967>» Hudson, R.A., "reanstltuency In a Systemic
Description of the English Clause," LINGUA 17, 19&7,

f¥atz 1964L> EKatz, J.Jd., and J.A, Fodor, "The Structure of a
Samantlc Theory," In Fedor and Katz fed.), THE STRUCTURE OF
LAMGUAGE, pp. 4L79=-518.

<kellogeg 1968> Kellogg, C.. Y Matural Language Compller
for On-1ine Data Management," Proc. of FJCC, 198E, pp. 473~
592,

¢klima 1964> Klima, Edward S., "Megation In English," In
Fodor and Katz (ed.), THE STRUCTURE OF LAMGUAGE, pp. 24LE-
3123,

¢Kune 1965> Kuno, 5. "The Predictive Analyzer and a Path
Eliminatlon Technique," CACM 8:7 (July 1965}, pp. L53-4B2,

¢Lindsay 1964 Lindsay, Robert, "Inferential Memory as the
Basis of Machines Which Understand MWatural Language," In
Felgenbaum and Feldman (ed.) COMPUTERS AMD THOUGHT, pp.
217-236.

¢MeConlogue 1965 McConlogue, K.L., and R, Simmons,
Manalyzing English Syntax with a Pattern-Learning Parser,”
CACM 83111 (Movember 1965), pp. BE7-B398.

¢Michle 1968 Michie, D. (ed.), MACHINE INTELLIGENCE 3.,
American Elsevier Press, MNew York, 19%6E.

eMiTler 1851 MIVller, George, LANGUAGE AND COMMUMICATION,

¢Minsky 1065> Minsky, Marvin, "Matter, Mind, and Models,"
In Minsky (ed.) SEMANTIC INEORMATION PROCESSING, pp. 4Z5=
432,

¢Minsky 1968> Minsky, Marvin, {ed.) SEMANTIC INFORMATION
PROCESSING, M,1.T. Press, Cambridge, Mass., 1968,

L

k2.

L3,

G4,

LS.

4o,

L7.

Lg.

kg,

50.

51.

52.

53.

Biblicgraphy - Page LE1

Minsky 1870> Minsky, Marvin, “Form and Content in Computer
Sclence," JACM, Jan., 1970.

CMNAS 1966> MNatlonal Adademy of Sclences, LANGUAGE AND
MACHIMES: COMPUTERS |IM TRANSLATION AMD LINGUISTICS,
Natienal Academy of Sciences, Washlngton D,C., 19G6,

<Petrick 1365> Petrick, 5., "a Recognltion Procedure far
Transformational Grammars," Doctoral Dissertation, M.I1.T.,
1965,

{Quillian 1966> Qulillian, M., Ross, "Semantie Memory," In
Minsky (ed.} SEMANTIC | NFORMAT | ON PROCESSING, pp. 216-270.

“Quillfan 1969> Quilllan, M. Ross, "The Teachable Language
Comprehender," CACM 12:8 (August 1968), pp. 459-475,

¢Raphael 1964> Raphael, Bertram, "SIR: A Computer Program
for Semantic Information Retrieval," in Minsky (ed.)
SEMAMTIC INFORMATION FROCESS IMG, pp. 33-134,

¢Robinson 19653 Roblinsen, J.A., "A Machine=Oriented Logic
Based on the Resolutlien Principle," JACM, 12:4 {(Dctober
1955]J DD! 5$E-5q1h

{Shapiro 1969> Shaplro, Stuart C,, and G.H, Woodmansee, "a
Net Structure Based Relational Question Answerer:
Description and Examples," Proc, of lJCAl, 18f9, pp, 375-
346,

(Siklossy 1968> Sliklossy, L., "Natural Language Learning by
Computer," Doctoral Dissertat]on, Carnegle Mellon Unlw,,
1968.

<Simmons 1966> SImmens, R.F., J.F Burger, and R.E, Long,
"An Approach Toward Answerlng English OQuestlicons from Text,"
Proc, of FJCC 1966, pp. 357-363,

¢Simmons 196E> Simmons, R.F., J.F. Burger, and R. Schwarcz,
"A Computational Mode]l of Verbal Understanding," Proc, of
FJCC, 1968, pp. LEl=-L5E,

‘Slagle 1965 Slagle, James R,, "Experlments with a
Deductive Question-Answerling Program," CACM, 8:12 (December
1965), pp. 792-70%8,

fSussman 1970> sussman, Gerald, T. Winograd, and E.
Charnlak, "Micro=Planner Reference Manual," Al Memo 203,
Project MAC, M,I.T., July, 1970,

ok,

55.

56.

57,

58.

29.

60.

El.

62.

63.

Bh.

65.

BE.

gibliography = Page LE6Z

¢Tharp 1969» Tharp, Alan L., and G.E, Krulee, "Usling
Relational Operators to Structure Long=Term Memory," Proc.
of AJCAIl, 1969, pp. ETO=58G.

¢Thompson 1966 Thompson, F.B., MEngllsh for the Computer,'
Proc. of FJCC, 1966, pp. 349=33E.

¢Thorne 19683 Thorne, J., P. Bratley, and H. Dewar, "The
Syntactic Analysis of English by Machine," In Michle, D.
fed.) MACHIKE INTELLIGENCE 3., pp. 281-309.,

<{Thorne 1969 Thorne, J., "A Pregram for the Syntactle
Analysls of Engllish Sentences," CACM 12:8 (August 1969),
P‘P- LI-TE'-lIth

¢Welzenbaum 1966> Welzenbaum, J., "ELIZA™ CACM 8:1 {January
lgEE}f ﬂ"F'. E‘E_uﬁ'l-

¢Welzenbaum 1067 Welzenbaum, J., "roptextual Understanding
by Computers,' CACM 10:8 (August 1967), pp. LT4-LEO,

¢White 1970 White, Jon L., "Interim LISP Progress Report,”
Al Meme 190, Preject MAC, M.1.T., March, 1970,

fWinograd 1968> Wlnecgrad, Terry, "Linguistics and the
fomputer Analysis of Tonal Harmony," JOURMAL OF MUSIC
THEORY 12:1, 1968, pp. 2-49,

{Winograd 196%» Winograd, Terry, “in Interpretive Theory of
Language", unpublished term paper, M.1.T., 1968,

¢Woods 1967> Woods, Willlam A,, "Semantics for a Question-
Answerlng System,'" Report Mo. W3F=-19, Alken Computation
Laboratory, Harvard Univ., Sept.,1967.

‘vands 1968 Woods, W. "Procedural Semantics for a
Questlon-Answer Machine," Proc. FJCC, 1968, pp. L5T7-471.

¢Woods 1968> Woods, Willlam A., "Augmented Transition
Networks for Natural Language Analysis," Report No, C5-1,
ATken Computation Laboratory, Harvard Univ., bec., 1969.

¢Twlcky 1965 Zwicky, A.M., J. Friedman, B.C. Hall, and
D.E. Walker, "The MITRE Syntactic Analysls Procedure for
Transformatlenal Grammars," Proc. of FJCC, 1965, pp. 317-
326,

