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Abstract

Actor-oriented Metaprogramming
by

Stephen Andrew Neuendorffer

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Edward Lee, Chair

Robust design of concurrent systems is important in many areas of engineering, from em-
bedded systems to scientific computing. Designing such systems using dataflow-oriented
models can expose large amounts of concurrency to system implementation. Utilizing this
concurrency effectively enables distributed execution and increased throughput, or reduced
power usage at the same throughput. Code generation can then be used to automatically
transform the design into an implementation, allowing design refactoring at the dataflow
level and reduced design time over hand implementation.

This thesis focuses particularly on the benefits and disadvantages that arise when con-
structing models from generic, parameterized, dataflow-oriented components called actors.
A designer can easily reuse actors in different models with different parameter values, data
types, and interaction semantics. Additionally, during execution of a model actors can be
reconfigured by changing their connections or assigning new parameter values. This form
of reconfiguration can conveniently represent adaptive systems, systems with multiple op-
erating modes, systems without fixed structure, and systems that control other systems.
Ptolemy Il is a Java-based design environment that supports the construction and execution
of hierarchical, reconfigurable models using actors.

Unfortunately, allowing unconstrained reconfiguration of actors can sometimes cause
problems. If a model is reconfigured, it may no longer accurately represent the system
being modeled. Reconfiguration may prevent the application of static scheduling analysis

to improve execution performance. In systems with data type parameters, reconfiguration



may prevent static analysis of data types, eliminating an important form of error detection.
In such cases, it is therefore useful to limit which parameters or structures in a model can
be reconfigured, or when during execution reconfiguration can occur.

This thesis describes a reconfiguration analysis that determines when reconfiguration
occurs in a hierarchical model. Given appropriate formulated constraints, the analysis can
alert a designer to potential design problems. The analysis is based on a mathematical
framework for approximately describing periodic points in the behavior of a model. This
framework has a lattice structure that reflects the hierarchical structure of actors in a model.
Because of the lattice structure of the framework, this analysis can be performed efficiently.
Models of two different systems are presented where this analysis helps verify that recon- .
figuration does not violate the assumptions of the model.

Run-time reconfiguration of actors not only presents difficuities for a system modeler,
but can also impede efficient system implementation. In order to support run-time re-
configuration of actors in Java, Ptolemy II introduces extra levels of indirection into many
operations. The overhead from this indirection is incurred in all models, even if a particular
model does not use reconfiguration.

In order to remove the indirection overhead, we have developed a system called Coper-
nicus which transforms a Ptolemy II model into self-contained Java code. In performing
this transformation the Java code for each actor is specialized to its usage in a particular
model. As a result, indirection overhead only remains in the generated code if it is required
by reconfiguration in the model. The specialization is guided by various types of static
analysis, including data type analysis and analysis of reconfiguration. In certain cases, the
generated code runs 100 times faster and with almost no memory allocation, compared to
the same model running in a Ptolemy II simulation. For small examples, performance close

to handwritten Java code has been achieved.

Professor Edward Lee ]
Dissertation Committee Chair
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Chapter 1
Introduction

For inexperienced software engineers, writing correct programs can be a challenge.
Often, simply writing syntactically valid programs that can be compiled is difficult, dis-
regarding functional correctness, testing, or usability. However as software engineers be-
come more experienced, addressing these issues becomes second nature and other aspects
of engineering craft become more important. These engineering considerations, such as
robustness, ease of maintenance, and reusability, arise in the search for better, more well-
structured programs.

Although designing well-structured programs takes quite a bit of experience, recog-
nizing such programs is relatively easy. A program that performs one task is good, but a
program that performs a variety of similar tasks is generally better. A part of a program that
can be extracted and reused is generally more useful than a part that cannot be extracted.
A program structured according to well-described concepts or metaphors is more easily
understood than one which lacks structure. A program that orthogonalizes unrelated con-
cepts from one another is more easily modified than one with highly dependent concepts.
A program with concepts that are highly localized in the program is generally less fragile
than one where concepts appear in many places.

Unfortunately, although many software engineering advances help programmers to con-
struct well-structured programs, these improvements often come with cost. For instance,
common object-oriented design patterns deal well with concept localization and orthogo-

nalization but add indirection overhead. Recursive algorithm implementations can be more
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concise than iterative implementations at the expense of stack usage and procedural over-
head. Binary component frameworks often incur large communication overhead across
component boundaries.

In contrast, highly optimized software is often highly obfuscated and more difficult
to modify directly. Control structures are simplified by code duplication and explicit case
expansion, requiring later changes to be made consistently in multiple places. Assumptions
are made about the organization of data that must be guaranteed by code elsewhere in
the program. The intent of a designer is also often obscured through the replacement of

meaningful identifiers and expressions to save space.

1.1 Metaprogramming and Generative Programming

One way of approaching making a better tradeoff between organization and optimiza-
tion is by Metaprogramming or Generative Programming [21], i.e., using one program (a
metaprogram) to describe another. Interpreting a metaprogram, either through execution or
through compilation, generates the desired program. This extra step, allows the metapro-
gram to be nicely organized, even when the generated program is not. The process of
metaprogramming is illustrated in Figure 1.1.

Metaprogramming is often performed using pre-processor macros, allowing a program-
mer to automatically generate code that would be awkward or redundant to write by hand.
The template mechanism in C++ is a structured, turing-comp]ete language that is evaluated
at compile time. Although awkward, the template mechanism has been used effectively to
generate efficient software frameworks [21, 35]. In C++, new language features intended
to directly support metaprogramming have been developed [101]. By expressing compile-
time operations in a C++-like syntax and allowing richer design patterns, new language
features have the potential to make metaprogramming more accessible to C++ program-
mers. In some cases, metaprogramming has also been found applicable to dynamic run-
time code generation [19, 50].

Metaprogramming is commonly used to perform manual program specializatz:on to im-
prove execution performance. In cases where a C++ compiler might otherwise not perform

certain analysis or optimizations, such as loop unrolling or propagation of constant argu-
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Program
N . Specialized i
Meta-Compiler | —» — Compiler
Program
Vel
Meta-Program l

Run-time
—>» | Executable
Inputs —_—

— Run-time
—» Outputs

Figure 1.1: A diagram illustrating metaprogramming. The input to the meta-
compiler consists of a program and a metaprogram, which are explicitly
distinguished. Executing the metaprogram on the program results in a new

program, which is then compiled and executed.

ments into a function body, these optimizations can be manually specified using a meta-
program. Specific optimizations that would be impractical to build into a compiler, either
because they are not correct in all cases or because they are complex and rarely applicablé,
can be applied prdgrammatically. Fundamentally any optimization that can be performed
using compile-time information can be written using a metaprogram. This technique has
been particularly used to build highly optimized C++ libraries for numerical computation
[97].

Metaprogramming mechanisms have also been built into hardware description lan-
guages used to specify ASIC circuits or FPGA configurations. The generate statement in
Verilog-2001 allows for automatic generation of circuit structures. The structure of these
circuits must be statically elaborated early in the process of circuit synthesis. Recent work
on Bluespec [40, 5, 82] is partially concerned with providing improved semantics for circuit
synthesis in the presence of automatically generated circuit structures.

The above metaprogramming approaches do not tend to enforce patterns or structure
in metaprograms, leaving designers responsible for building good metaprograms. Aspect-
oriented programming provides a structured form of metaprogramming targeted at a spe-
cific architectural problem [55, 54]. In particular, aspect-oriented programming attempts to
elegantly represent and encapsulate of functionality in a program which is normally distrib-
uted throughout the program. Such cross-cutting functionality is represented by an aspect.

Aspects are incorporated into the primary functionality of a program by the aspect weaver
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N Partial Speciatized

Compiler
Evaluator Program
Compile-time e g
Inputs l
Run-time ——> — Run-time
Inputs Executable 2 Outputs

Figure 1.2: A diagram illustrating partial evaluation. The input to the partial
evaluator is a program and a partial set of inputs. The resulting specialized

program can be compiled and executed on the remaining inputs.

that outputs code which can be compiled normally.

Because of the sej)aration between design time when compilation is performed and .
metaprograms are executed and execution time when normal system processing occurs,
languages that support metaprogramming are also called two-stage languages or two-level
languages. One disadvantage this separation is that a programmer must explicitly distin-
guish which parts of an algorithm are executed at a particular stage of execution. In other
words, a program must express an algorithm differently in order to take advantage of the
beneifts of metaprogramming.

One way of eliminating this separation is to focus on automatic specializationAof a
generic program to a particular set of inputs. This technique is called partial evaluation
[57]. In languages with the ability to manipulate programs as well as data, such as func-
tional languages, partial evaluation is a natural way of generating more efficient programs.
The partial evaluation process is illustrated in Figure 1.2.

Recently, there has been significant interest in applying partial evaluation techniques
to complete object-oriented languages [20, 89, 90, 91]. These techniques rely on sophisti-
cated inter-procedural binding-time analysis to infer which functions in a program should
be partially evaluated. Variables with static binding time can be computed by the partial
evaluator and used to specialize a program. Variables with dynamic binding time remain in
a partially evaluated program and are computed at run-time. Although effectively making
use of these techniques generally requires some manual annotation of binding times in a

program, partial evaluation generally requires less explicit specification by a programmer
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than other metaprogramming techniques.

1.2 Component Based Design

Another approach to better program organization is component based design [93].
Component based design focuses on component specifications with well-defined exter-
nal interfaces. The external interface exposes all of the points of interaction with other
components and complex behaviors can be constructed by composing components using
their external interfaces. One benefit of component based design is improved design reuse,
where components are reused from one design to the next or purchased as intellectual prop-
erty from component providers [75]. Design reuse can reduce time spent in the design cycle
when applied effectively [76].

One disadvantage of many component models is the overhead of run-time component
interfaces. Component middleware that provides rich interactions between components,
such as the Common Object Request Broker Architecture (CORBA) or the Message Pass-
ing Interface (MPI), can have significant overhead for fine-grained components. Although
simpler component frameworks may have less overhead, simpler frameworks are often
more constraining and difficult to leverage effectively. To make matters worse, migrating
from one component framework to another, if the initial choice turns out to be unsatisfac-
tory, often involves significant reimplementation.

Recently, cofnpile time analysis and transformation of cdmponent frameworks in order
to optimize execution has been applied to object-oriented component frameworks, particu-
larly in embedded systems [1, 59, 77, 96, 102]. These systems use design time information
to specialize a composition of components in a particular model. These systems are capable
of breaking component interfaces apart in order to integrate components more efficiently
and perform this composition in a safe manner, a process that can be generically called
invasive software composition [4]. These systems preserve components as a design-time

abstraction, while eliminating component interfaces at execution time.
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1.3 System-level Design

Addressing the tradeoff between between organization and optimization is also impor-
tant at a system-level of design. At the system level, understanding design structure be-
comes more critical since resource constraints and architectural tradeoffs can greatly affect
the behavior of a system. Without a system-level viewpoint, these properties must be de-
rived from low-level design, which can limit the effectiveness of systefn-level refactoring.

Concurrency plays an important role in system-level design. The concurrency between
software running on different processors, or different threads on a single processor, is usu-
ally hidden in most programming languages. Unfortunately, current design practice tends
to architect concurrent behavior through low-level mechanisms, such as monitors and criti-
cal sections. Given the flexibility and potential pitfalls in these mechanisms, a higher-level
approach to managing concurrency is preferable.

Part of the system-level approach of this thesis is to consider the design of hardware,
e.g., digital circuits and FPGA configurations, and software, e.g., microprocessor programs.
Traditionally, hardware design has focused on concurrent, cycle-accurate, register-transfer
level design, while software design has focused on sequential, behavior-accurate, function-
level design. However, increasingly, this separation is fading. In hardware, there is a need
to increase the speed of the design process as systems become larger. Although some
design will inevitably performed at a cycle-accurate level, higher-level design techniques
are still in great demand. In software, untimed and sequential programming abstractions
are becoming less attractive, particularly in embedded systems which are intrinsically timed
and distributed.

Recently, there has been a trend towards embedding system-level constructs into exist-
ing programming languages, as in Scenic [71] and SystemC. The resulting library is often
called a domain-specific embedded language, or DSEL [42]. While this approach adds no
fundamentally new semantics, DSELs can be significantly easier to build (since they can .
rather easily evolve) and for users to learn. Instead of learning new syntax and seman-
tics, designers instead learn libraries and techniques for using these libraries to represent
behavior. |

One disadvantage of embedded languages is increased execution overhead, since li-
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braries often add indirection. For domain specific languages embedded into functional
languages, such as Haskell, this indirection can be removed through partial evaluation
[42]. The resulting specialized program has the design time benefits of domain-specific

constructs combined with execution efficiency of a low-level implementation.

1.4 Actor-oriented Metaprogramming

Actor-oriented design is an approach to system-level design using concurrent dataflow-
oriented components called actors. Actors specify behavior abstractly without relying on
low-level implementation constructs such as function calls, threads, or distributed comput-
ing infrastructure. Typically actor-oriented models are designed to reflect the static struc-
ture of a concurrent system. In this thesis, actor-oriented models are viewed as descriptions
of concurrent software architectures, i.e., structured metaprograms. The behavior of the
model can be simulated without compile-time interpretation of the metaprogram or spe-
cialized and executed in a more efficient manner [81]. Specialization is largely based on
model analysis in the style of partial evaluation tools, rather.than through explicit metapro-
gramming.

This thesis provides two main contributions. Firstly, it will present a formal model
for analyzing reconfiguration and parameter dependencies in actor-oriented models. This
model is a central part of the compile-time analysis that guides specialization of actors to
particular parameter values. The model also provides a decidable algorithm for validating
constraints on reconfiguration in a model which often arise from other forms of specializa-
tion, such as dataflow scheduling analysis. For this reason, analysis of reconfiguration is
described as a behavioral type theory of reconfiguration.

The second contribution is a system for generating optimized software implementations
of actor-oriented models through automatic specialization of actor oriented models. This
system is constructed within Ptolemy II [44], an object-oriented software framework where
components are highly generic and reusable. In Ptolemy II, generic aspects of components
are implemented using run-time mechanisms, such as interfaces and indirection. Based
on compile-time analysis of the model, actor-oriented components can be specialized to

particular uses, reducing the need for costly run-time indirection. The resulting system can
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be considered in many ways: as a code generator for a concurrent prograhming language,
as a tuned partial evaluation system, or as a component optimization system.

In contrast with other actor-oriented systems, such as Ptolemy *Classic’ [14, 85] or
commmercial tools such as Simulink from The Mathworks, the system described here al-
lows models to be reconfigured in various ways during execution. This reconfiguration
may include modification of types and the structure of the system in addition to the modi-
fication of parameter values. Furthermore, the generation of an optimized implementation
incorporates code that is used for simulation as a specification of behavior. In contrast,
other systems generally use separate specifications for simulation models of actors and for
generating specialized code. As a result, ensuring consistency of these separate specifica-.
tions becomes a significant problem. This thesis follows an approach based on systematic
optimization of a single behavioral specification. This approach can also be combined
with more explicit specifications of generated code for components that are not sufficiently

optimized, but we anticipate that the majority of a system can be generated automatically.



Chapter 2
Actor-oriented Design

Actor-oriented modeling and design [63, 65, 67] is a methodology for system-level
design that has evolved over many years of research. Carl Hewitt and others developed
basic techniques for constructing systems based on asynchronous message passing, in-
stead of applicative evaluation, as in the lambda calculus [38, 39]. Gul Agha developed
a formal theory for describing concurrent systems that combined Hewitt’s message pass-
ing with local state update [2, 3]. More recent work [29] focuses on the use of patterns
of message passing between components, called models of computation, with interesting
modeling properties. This thesis focuses particularly on dataffow models of computation
derived from the work of Gilles Kahn [47, 48] and Jack Dennis [24].

The actor-oriented models described in this thesis differ from the actor models of Hewitt
and Agha in several ways. In particular, Hewitt and Agha focus on dynamically instanti-
ated actors and acquaintance relationships for message passing between actors. In contrast,
this thesis emphasizes models with static structure and shared life cycle, while still allow-
ing dynamic instantiation. Secondly, Hewitt and Agha view actors as a universal concept;
everything in the system is an actor that responds to messages. This thesis will tend to
distinguish data tokens, which encapsulate data and do not interact with one another, from
actors which exchange and process data. This distinction allows the optimization of ex-
ecution performance with respect to the static structure of a model without considering

dynamic data.
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Figure 2.1: An example of the interface of a simple actor in Ptolemy II.

Parameters and internal state are not shown.
2.1 Actor-oriented Models

In actor-oriented design, actors are the primary units of functionality. Actors have a
well defined interface, which abstracts internal state and execution of an actor and restricts
how an actor interacts with its environment. Externally, this interface includes ports that
represent points of communication for an actor and parameters which are used to configure
the behavior of an actor. Actors will be shown graphically in the Ptolemy II [44] style, as
in Figure 2.1.

Actors are composed with other actors to form composite actors or models. Connec-
tions between actor ports represent communication channels that pass data tokens from one
port to another. The semantics of composition, including the communication style, is de-
termined by a model of computation. When necessary, the model of computation will be
shown explicitly as an independent director object in model. Models often export an ex-
ternal actor interface, enabling them to be further composed with other models. A simple
actor-oriented model is shown in Figure 2.2.

A central concept in actor-oriented design is that internal behavior and state of an-actor
are hidden behing the actor interface and not visible externally. This property of strong
encapsulation separates the behavior of a component from the interaction of that compo-
nent with other components. System architects can design at a high level of abstraction and
consider the behavioral properties of different models of computation independently from
the behavioral properties of components. Furthermore, different models of computation
can be used at different levels of hierarchy, enabling hierarchically heterogeneous design

[29]. By emphasizing strong encapsulation, actor-oriented design addresses the separation























































































































































































































































































































































































