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Data hiding, a form of steganography, embeds
data into digital media for the purpose of
identification, annotation, and copyright. Several
constraints affect this process: the quantity of
data to be hidden, the need for invariance of these
data under conditions where a “host” signal is
subject to distortions, e.g., lossy compression,
and the degree to which the data must be immune
to interception, modification, or removal by a third
party. We explore both traditional and novel
techniques for addressing the data-hiding process
and evaluate these techniques in light of three
applications: copyright protection, tamper-
proofing, and augmentation data embedding.

igital representation of media facilitates access
and potentially improves the portability, effi-

ciency, and accuracy of the information presented.
Undesirable effects of facile data access include an
increased opportunity for violation of copyright and
tampering with or modification of content. The moti-
vation for this work includes the provision of protec-
tion of intellectual property rights, an indication of
content manipulation, and a means of annotation.
Data hiding represents a class of processes used to
embed data, such as copyright information, into vari-
ous forms of media such as image, audio, or text with
a minimum amount of perceivable degradation to the
“host” signal; i.e., the embedded data should be invis-
ible and inaudible to a human observer. Note that data
hiding, while similar to compression, is distinct from
encryption. Its goal is not to restrict or regulate access
to the host signal, but rather to ensure that embedded
data remain inviolate and recoverable.

Two important uses of data hiding in digital media are
to provide proof of the copyright, and assurance of
content integrity. Therefore, the data should stay hid-
den in a host signal, even if that signal is subjected to
manipulation as degrading as filtering, resampling,
cropping, or lossy data compression. Other applica-
tions of data hiding, such as the inclusion of augmen-
tation data, need not be invariant to detection or
removal, since these data are there for the benefit of
both the author and the content consumer. Thus, the
techniques used for data hiding vary depending on the
quantity of data being hidden and the required invari-
ance of those data to manipulation. Since no one
method is capable of achieving all these goals, a class
of processes is needed to span the range of possible
applications.

The technical challenges of data hiding are formida-
ble. Any “holes” to fill with data in a host signal,
either statistical or perceptual, are likely targets for
removal by lossy signal compression. The key to suc-
cessful data hiding is the finding of holes that are not
suitable for exploitation by compression algorithms.
A further challenge is to fill these holes with data in a
way that remains invariant to a large class of host sig-
nal transformations.
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Features and applications

Data-hiding techniques should be capable of embed-
ding data in a host signal with the following restric-
tions and features:

1. The host signal should be nonobjectionally
degraded and the embedded data should be mini-
mally perceptible. (The goal is for the data to
remainhidden. As any magician will tell you, it is
possible for something to be hidden while it
remains in plain sight; you merely keep the person
from looking at it. We will use the wordshidden,
inaudible, imperceivable, and invisible to mean
that an observer does not notice the presence of the
data, even if they are perceptible.)

2. The embedded data should be directly encoded
into the media, rather than into a header or wrap-
per, so that the data remain intact across varying
data file formats.

3. The embedded data should be immune to modifi-
cations ranging from intentional and intelligent
attempts at removal to anticipated manipulations,
e.g., channel noise, filtering, resampling, cropping,
encoding, lossy compressing, printing and scan-
ning, digital-to-analog (D/A) conversion, and ana-
log-to-digital (A/D) conversion, etc.

4. Asymmetrical coding of the embedded data is
desirable, since the purpose of data hiding is to
keep the data in the host signal, but not necessarily
to make the data difficult to access.

5. Error correction coding1 should be used to ensure
data integrity. It is inevitable that there will be
some degradation to the embedded data when the
host signal is modified.

6. The embedded data should be self-clocking or
arbitrarily re-entrant. This ensures that the embed-
ded data can be recovered when only fragments of
the host signal are available, e.g., if a sound bite is
extracted from an interview, data embedded in the
audio segment can be recovered. This feature also
facilitates automatic decoding of the hidden data,
since there is no need to refer to the original host
signal.

Applications. Trade-offs exist between the quantity
of embedded data and the degree of immunity to host
signal modification. By constraining the degree of
host signal degradation, a data-hiding method can
operate with either high embedded data rate, or high
resistance to modification, but not both. As one
increases, the other must decrease. While this can be
shown mathematically for some data-hiding systems

such as a spread spectrum, it seems to hold true for all
data-hiding systems. In any system, you can trade
bandwidth for robustness by exploiting redundancy.
The quantity of embedded data and the degree of host
signal modification vary from application to applica-
tion. Consequently, different techniques are employed
for different applications. Several prospective applica-
tions of data hiding are discussed in this section.

An application that requires a minimal amount of
embedded data is the placement of a digital water
mark. The embedded data are used to place an indica-
tion of ownership in the host signal, serving the same
purpose as an author’s signature or a company logo.

Since the information is of a critical nature and the
signal may face intelligent and intentional attempts to
destroy or remove it, the coding techniques used must
be immune to a wide variety of possible modifica-
tions.

A second application for data hiding is tamper-proof-
ing. It is used to indicate that the host signal has been
modified from its authored state. Modification to the
embedded data indicates that the host signal has been
changed in some way.

A third application, feature location, requires more
data to be embedded. In this application, the embed-
ded data are hidden in specific locations within an
image. It enables one to identify individual content
features, e.g., the name of the person on the left versus
the right side of an image. Typically, feature location
data are not subject to intentional removal. However,
it is expected that the host signal might be subjected
to a certain degree of modification, e.g., images are
routinely modified by scaling, cropping, and tone-
scale enhancement. As a result, feature location data-
hiding techniques must be immune to geometrical and
nongeometrical modifications of a host signal.

Trade-offs exist between
the quantity of data and

the immunity to
modification.
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Image and audio captions (or annotations) may
require a large amount of data. Annotations often
travel separately from the host signal, thus requiring
additional channels and storage. Annotations stored in
file headers or resource sections are often lost if the
file format is changed, e.g., the annotations created in
a Tagged Image File Format (TIFF) may not be present
when the image is transformed to a Graphic Inter-
change Format (GIF). These problems are resolved by
embedding annotations directly into the data structure
of a host signal.

Prior work. Adelson2 describes a method of data hid-
ing that exploits the human visual system’s varying
sensitivity to contrast versus spatial frequency. Adel-
son substitutes high-spatial frequency image data for
hidden data in a pyramid-encoded still image. While
he is able to encode a large amount of data efficiently,
there is no provision to make the data immune to
detection or removal by typical manipulations such as
filtering and rescaling. Stego,3 one of several widely
available software packages, simply encodes data in
the least-significant bit of the host signal. This tech-
nique suffers from all of the same problems as Adel-
son’s method but creates an additional problem of
degrading image or audio quality. Bender4 modifies
Adelson’s technique by usingchaos as a means to
encrypt the embedded data, deterring detection, but
providing no improvement to immunity to host signal
manipulation. Lippman5 hides data in the chromi-
nance channel of the National Television Standards
Committee (NTSC) television signal by exploiting the
temporal over-sampling of color in such signals. Typi-
cal of Enhanced Definition Television Systems, this
method encodes a large amount of data, but the data
are lost to most recording, compression, and transcod-
ing processes. Other techniques, such as Hecht’s
Data-Glyph,6 which adds abar code to images, are
engineered in light of a predetermined set of geomet-
ric modifications.7 Spread-spectrum,8-11 a promising
technology for data hiding, is difficult to intercept and
remove but often introduces perceivable distortion
into the host signal.

Problem space. Each application of data hiding
requires a different level of resistance to modification
and a different embedded data rate. These form the
theoretical data-hiding problem space (see Figure 1).
There is an inherent trade-off between bandwidth and
“robustness,” or the degree to which the data are
immune to attack or transformations that occur to the
host signal through normal usage, e.g., compression,
resampling, etc. The more data to be hidden, e.g., a

caption for a photograph, the less secure the encoding.
The less data to be hidden, e.g., a watermark, the more
secure the encoding.

Data hiding in still images

Data hiding in still images presents a variety of chal-
lenges that arise due to the way the human visual sys-
tem (HVS) works and the typical modifications that
images undergo. Additionally, still images provide a
relatively small host signal in which to hide data. A
fairly typical 8-bit picture of 200× 200 pixels pro-
vides approximately 40 kilobytes (kB) of data space
in which to work. This is equivalent to only around 5
seconds of telephone-quality audio or less than a sin-
gle frame ofNTSC television. Also, it is reasonable to
expect that still images will be subject to operations
ranging from simple affine transforms to nonlinear
transforms such as cropping, blurring, filtering, and
lossy compression. Practical data-hiding techniques
need to be resistant to as many of these transforma-
tions as possible.

Despite these challenges, still images are likely candi-
dates for data hiding. There are many attributes of the
HVS that are potential candidates for exploitation in a
data-hiding system, including our varying sensitivity
to contrast as a function of spatial frequency and the
masking effect of edges (both in luminance and

Figure 1 Conceptual data-hiding problem space
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chrominance). TheHVS has low sensitivity to small
changes in luminance, being able to perceive changes
of no less than one part in 30 for random patterns.
However, in uniform regions of an image, theHVS
is more sensitive to the change of the luminance,
approximately one part in 240. A typicalCRT (cathode
ray tube) display or printer has a limited dynamic
range. In an image representation of one part in 256,
e.g., 8-bit gray levels, there is potentially room to hide
data as pseudorandom changes to picture brightness.
Another HVS “hole” is our relative insensitivity to
very low spatial frequencies such as continuous
changes in brightness across an image, i.e., vignett-
ing. An additional advantage of working with still
images is that they are noncausal. Data-hiding tech-
niques can have access to any pixel or block of pixels
at random.

Using these observations, we have developed a variety
of techniques for placing data in still images. Some
techniques are more suited to dealing with small
amounts of data, while others to large amounts. Some
techniques are highly resistant to geometric modifica-
tions, while others are more resistant to nongeometric
modifications, e.g., filtering. We present methods that
explore both of these areas, as well as their combina-
tion.

Low bit-rate data hiding

With low bit-rate encoding, we expect a high level of
robustness in return for low bandwidth. The emphasis
is on resistance to attempts of data removal by a third
party. Both a statistical and a perceptual technique are
discussed in the next sections on Patchwork, texture,
and applications.

Patchwork: A statistical approach

The statistical approach, which we refer to asPatch-
work, is based on a pseudorandom, statistical process.
Patchwork invisibly embeds in a host image a specific
statistic, one that has a Gaussian distribution. Figure 2
shows a single iteration in the Patchwork method.
Two patches are chosen pseudorandomly, the first A,
the second B. The image data in patch A are lightened
while the data in patch B are darkened (exaggerated
for purposes of this illustration). This unique statistic
indicates the presence or absence of a signature.
Patchwork is independent of the contents of the host
image. It shows reasonably high resistance to most
nongeometric image modifications.

For the following analysis, we make the following
simplifying assumptions (these assumptions are not
limiting, as is shown later): We are operating in a 256
level, linearly quantized system starting at 0; all
brightness levels are equally likely; all samples are
independent of all other samples.

The Patchwork algorithm proceeds as follows: take
any two points,A and B, chosen at random in an
image. Leta equal the brightness at pointA andb the
brightness at pointB. Now, let

(1)

Theexpected value ofS is 0, i.e., the average value of
S after repeating this procedure a large number of
times isexpected to be 0.

S a b–=

Figure 2 A single iteration in the Patchwork method
(photograph courtesy of Webb Chapel)
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Although theexpected value is 0, this does not tell us
much about whatS will be for a specific case. This is
because the variance is quite high for this procedure.
The variance ofS, σs is a measure of how tightly sam-
ples ofS will cluster around the expected value of 0.
To compute this, we make the following observation:
SinceS= a − b anda andb are assumed independent,

 can be computed as follows (this, and all other
probability equations are from Drake12):

(2)

where  for a uniformS is:

(3)

Now,  sincea andb are samples from the
same set, taken with replacement. Thus:

(4)

which yields a standard deviationσS ≈ 104. This
means that more than half the time,S will be greater
than 43 or less than− 43. Assuming a Gaussian clus-
tering, a single iteration does not tell us much. How-
ever, this is not the case if we perform the procedure
many times.

Let us repeat this proceduren times, lettingai andbi

be the valuesa andb take on during theith iteration,
Si. Now letSn be defined as:

(5)

Theexpectedvalue ofSn is:

(6)

This makes intuitive sense, since the number of times
ai is greater thanbi should be offset by the number of
times the reverse is true. Now the variance is:

(7)

And the standard deviation is:

(8)

Now, we can computeS10000 for a picture, and if it var-
ies by more than a few standard deviations, we can be
fairly certain that this did not happen by chance. In
fact, since as we will show laterS′n for largen has a
Gaussian distribution, a deviation of even a fewσS′s
indicates to a high degree of certainty the presence of
encoding (see Table 1).

The Patchwork method artificially modifiesS for a
given picture, such thatS′n is many deviations away
from expected. To encode a picture, we:

1. Use a specific key for a known pseudorandom
number generator to choose (ai, bi). This is impor-
tant, because the encoder needs to visit the same
points during decoding.

2. Raise the brightness in the patchai by an amountδ,
typically in the range of 1 to 5 parts in 256.

3. Lower the brightness inbi by this same amountδ
(the amounts do not have to be the same, as long as
they are in opposite directions).

4. Repeat this forn steps (n typically ~10 000).

Now, when decoded,S′n will be:

(9)

or:

(10)

So each step of the way we accumulate an expectation
of 2 × δ. Thus aftern repetitions, we expectS′n to be:

σS
2

σS
2 σa

2 σb
2+=

σa
2

σa
2 5418≈

σa
2 σb

2=

σS
2 2 σ× a

2 2
255 0–( )2

12
------------------------× 10836≈ ≈=

Sn Si
i 1=

n

∑ ai bi–
i 1=

n

∑= =

Sn n S× n 0× 0= = =

σSn

2 n σS
2×=

σSn
n σ× n 104×≈=

Sn
′ ai δ+( ) bi δ–( )–

i 1=

n

∑=

Sn
′ 2δn ai bi–( )

i 1=

n

∑+=

Table 1 Degree of certainty of encoding given deviation
from that expected in a Gaussian distribution
(δ = 2)

Standard
Deviations

Away

Certainty n

0
1
2
3

50.00%
84.13%
97.87%
99.87%

0
679

2713
6104
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(11)

As n or δ increases, the distribution ofS′n shifts over
to the right (Figure 3 and Table 1). In Figure 3, asδ or
n increases, the distribution ofS′n shifts further to the
right. If we shift it far enough, any point that is likely
to fall into one distribution is highly unlikely to be
near the center of the other distribution.

While this basic method works well by itself, we have
made a number of modifications to improve perfor-
mance including:

1. Treatingpatches of several points rather than sin-
gle points. This has the effect of shifting the noise
introduced by Patchwork into the lower spatial fre-
quencies, where it is less likely to be removed by
lossy compression and typical Finite Impulse
Response (FIR) filters.

2. Making Patchwork more robust by using a combi-
nation with either affine coding (described later) or
some heuristic based upon feature recognition
(e.g., alignment using the interocular line of a
face). Patchwork decoding is sensitive to affine
transformations of the host image. If the points in
the picture visited during encoding are offset by
translation, rotation, or scaling before decoding,
the code is lost.

3. Taking advantage of the fact that Patchwork is
fairly resistant to cropping. By disregarding points
outside of the known picture area, Patchwork
degrades in accuracy approximately as the log of
the picture size. Patchwork is also resistant to
gamma and tone scale correction since values of
comparable luminance move roughly the same
way under such modifications.

Patch shape. The shape of the patches deserves some
comment. Figure 4 shows three possible one-dimen-
sional patch shapes, and next to them a very approxi-
mate spectrum of what a line with these patches
dropped onto it pseudorandomly would look like. In
Figure 4A, the patch is very small, with sharp edges.
This results in the majority of the energy of the patch
being concentrated in the high frequency portion of
the image spectrum. This makes the distortion hard to
see, but also makes it a likely candidate for removal
by lossy compressors. If one goes to the other
extreme, as in Figure 4B, the majority of the informa-
tion is contained in the low-frequency spectrum. The

2δn
σSn

′

--------- 0.028δ n≈Figure 3 As δ or n increases, the distribution of S´n
shifts further to the right.

0 4 TO 8 STANDARD DEVIATIONS

Figure 4 The contour of a patch largely determines
which frequencies will be modified by the
application of Patchwork.
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Figure 5 Patch placement affects patch visibility.
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last choice, Figure 4C shows a wide, sharp-edged
patch, which tends to distribute the energy around the
entire frequency spectrum.

The optimal choice of patch shape is dependent upon
the expected image modifications. IfJPEG (Joint Pho-
tographic Experts Group) encoding is likely, then a
patch that places its energy in the low frequencies is
preferable. If contrast enhancement is to be done,
placing energy in higher frequencies would be better.
If the potential image modifications are unknown,
then spreading the patch energy across the spectrum
would make sense.

The arrangement of patches has an impact on patch
visibility. For illustration, three possibilities are con-
sidered (Figure 5). The simplest method is shown in
Figure 5A, a simple rectilinear lattice. While simple,
this arrangement is often a poor choice if a highn is to
be used. As the grid is filled in, continuous edges of
gradient are formed. TheHVS is very sensitive to such
edges. A second choice, Figure 5B breaks this sym-
metry by using hexagons for the patch shape. A pre-
ferred solution, shown in Figure 5C, is a completely
random placement of patches. An intelligent selection
of patch shape in both the horizontal and vertical
dimensions will enhance the effectiveness of patch-
work for a given picture.

Uniformity. A simplifying assumption of a uniform
luminance histogram was made above, but this is not
a requirement of Patchwork. The only assumption
Patchwork makes is that theexpected value ofSi = ai −
bi is zero.

It can be shown that this condition is always met
through the following argument:

1. Letar be the time reversed series ofa.
2. Ar = A* by definition (A* is the complex conjugate

of A).
3. F(a∗ar) = AA* (F is the Fourier transform).
4. AA* is everywhere real by definition of the com-

plex conjugate.
5. F–1(AA*) is even by definition.
6. Even sequences are symmetric around zero by def-

inition.

An image histogram (Figure 6, top) is a somewhat
random distribution. The result of taking the complex
conjugate (Figure 6, bottom) is symmetric around
zero.

Figure 6 A histogram of Figure 2 and its autocorrelation

Figure 7 A histogram of the variance of the luminance
of 365 Associated Press photos from
March 1996
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Variance. When searching through a large number of
images with data embedded using the Patchwork
method, such as when a robot is looking for copyright
violations on the Internet World Wide Web (WWW),
the use of a generic estimation of variance is desir-
able. This avoids the necessity of calculating the vari-
ance of every image. Suspect images can then be
examined thoroughly.

When, in the analysis above, the number of points
needed in Equation 3 was computed, the variance of
the luminance was assumed to be 5418. This assump-
tion turns out to be higher than the average observed
values (see Figure 7). The question is, then, what
value should be used.

An examination of the variance of 365 Associated
Press photos from March 1996 yielded an average
value of 3877.4 and a distribution that can be seen in
Figure 7. While some pictures do have variances as
high as two-thirds of the maximum, most are clus-
tered around the lower variance values. Thus, 5418,
the estimate derived from the uniformity assumption,
is a conservative but reasonable value to use for a
generic picture.

A minimum value is that for a solid color picture (Fig-
ure 8A). This has a variance of 0, a standard deviation
of 0, and thus works very well for Patchwork, since
any modification is evident. The other extreme is that
of a two-color, black and white picture. For these, the
variance is:

(12)

These two values, 0 and 16256, define the extremes of
the variance to consider when calculating the likeli-
hood that a picture is encoded. What is the correct
assumption to use for a given picture? The actual vari-
ance of the picture being examined is a sensible
choice, since in most cases Patchwork will increase
the variance only slightly. (This depends on the size
and depth of the patch, the number of patches, and the
histogram of the original image.) However, if a large
number of pictures are to examined, a generic value is
a practical choice.

Summary. There are several limitations inherent to
the Patchwork technique. The first is the extremely
low embedded data rate it yields, usually a one-bit
signature per image. This limits its usefulness to low
bit-rate applications such as the digital watermark.
Second, it is necessary toregister where the pixels in
the image lie. While a number of methods have been
investigated, it is still somewhat difficult to decode the
image in the presence of severe affine transforma-
tions. These disadvantages aside, without the key for
the pseudorandom number generator, it is extremely
difficult to remove the Patchwork coding without
degrading the picture beyond recognition.

The Patchwork method is subject to cryptographic
attack if it is used to encode a large number of identi-
cally sized images using the same key. If the images
are averaged together, thepatches will show up as
lighter or darker than average regions. This weakness
is a common one in cryptography, and points to the
truism that for a static key, as the amount of traffic
increases, it becomes easier to “crack” the encryption.
One solution is to use multiple pseudorandom pat-
terns for the patches. Even the use of just two keys,
while increasing decoding time, will make Patchwork
much more robust to attack. Another solution is to use
the same pattern, but to reverse the polarity of the
patches. Both solutions deter cryptographic attack by
averaging.

Texture Block Coding: A visual approach

A second method for low bit-rate data hiding in
images isTexture Block Coding. This method hides
data within the continuous random texture patterns of
a picture. The Texture Block Coding technique is

0 127–( )2

2
------------------------ 255 127.5–( )2

2
-----------------------------------+ 16256≈Figure 8 Histograms of pictures with minimum (A) and

maximum (B) variance
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implemented by copying a region from a random tex-
ture pattern found in a picture to an area that has simi-
lar texture. This results in a pair of identically textured
regions in the image (see Figure 9).

These regions can be detected as follows:

1. Autocorrelate the image with itself. This will pro-
duce peaks at every point in the autocorrelation
where identical regions of the image overlap. If
large enough areas of an image are copied, this
will produce an additional large autocorrelation
peak at the correct alignment for decoding.

2. Shift the image as indicated by the peaks in Step 1.
Now subtract the image from its shifted copy, pad-
ding the edges with zeros as needed.

3. Square the result and threshold it to recover only
those values quite close to zero. The copied region
will be visible as these values.

Since the two regions are identical, they are modified
in the same way if the picture is uniformly trans-
formed. By making the regions reasonably large, the
inner part of the block changes identically under most
nongeometric transformations. In our experiments,
coded 16× 16 pixel blocks can be decoded when the
picture is subjected to a combination of filtering, com-
pression, and rotation.

Texture Block Coding is not without its disadvan-
tages. Currently it requires a human operator to
choose the source and destination regions, and to eval-
uate the visual impact of the modifications on the
image. It should be possible to automate this process
by allowing a computer to identify possible texture
regions in the image to copy from and paste to. How-
ever, this technique will not work on images that lack
moderately large areas of continuous texture from
which to draw.

Figure 9 Texture Block Coding example (photograph courtesy of Webb Chapel)
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Future research in this area includes the possibility of
cutting and pasting blocks from only part of the image
frequency spectrum (this would allow less noticeable
blocks to be moved around, and a final encoding that
is considerably more robust to various image com-
pression algorithms) along with automatic texture
region selection and analysis of perceivability of the
final result.

High bit-rate coding

High bit-rate methods can be designed to have mini-
mal impact upon the perception of the host signal, but
they do not tend to be immune to image modifica-
tions. In return, there is an expectation that a relatively
large amount of data are able to be encoded. The most
common form of high bit-rate encoding is the replace-
ment of the least significant luminance bit of image
data with the embedded data. Other techniques
include the introduction of high-frequency, low-
amplitude noise and the use of direct sequence spread
spectrum coding. All high bit-rate methods can be
made more robust through the use of error-correction
coding, at the expense of data rate. High bit-rate codes
are only appropriate where it is reasonable to expect
that a great deal of control will be maintained over the
images.

Individually, none of the known techniques for data
hiding are resistant to all possible transforms or com-
binations of transforms. In combination, often one

technique can supplement another. Supplementary
techniques are particularly important for recovery
from geometric modifications such as affine transfor-
mations, and maintaining synchronization for spread-
spectrum encoding.

Affine coding. Some of the data-hiding techniques,
such as Patchwork, are vulnerable to affine trans-
forms. It makes sense to develop methods that can be
used to facilitate the recovery of embedded data after
affine application.Affine coding is one such method:
A predefined reference pattern is embedded into a
host image using any of the high bit-rate coding tech-
niques. Estimation of geometric transformation of the
image is achieved by comparing the original shape,
size, and orientation of the reference pattern to that
found in the transformed image. Since affine trans-
forms are linear, the inverse transform can be applied
to recover the original image. Once this is done, the
image is ready for further extraction of embedded
data.

Applications

Placing data in images is useful in a variety of appli-
cations. We highlight below four applications that dif-
fer in the quantity of data to be embedded and the type
of transforms to which the data are likely to be sub-
jected.

Digital watermark.  The objective of a digital water-
mark is to place an indelible mark on an image. Usu-
ally, this means encoding only a handful of bits,
sometimes as few as one. This “signature” could be
used as a means of tracing the distribution of images
for an on-line news service and for photographers
who are selling their work for digital publication. One
could build a digital camera that places a watermark
on every photograph it takes. Theoretically, this
would allow photographers to employ a “web-search-
ing agent” to locate sites where their photographs
appear.

It can be expected that if information about legal own-
ership is to be included in an image, it is likely that
someone might want to remove it. A requirement of a
digital watermark is that it must be difficult to remove.
Both the Patchwork and Texture Block Coding tech-
niques show promise as digital watermarks. Patch-
work, being the more secure of the two, answers the
question “Is this my picture?” Texture Block Coding,
which can be made readily accessible to the public,
answers the question “Whose picture is this?”

Figure 10 Characterizing the difference between
tamper-proofing and other data-hiding
techniques
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Tamper-proofing. The objective of tamper-proofing
is to answer the question, “Has this image been modi-
fied?” Tamper-proofing techniques are related, but
distinct from the other data-hiding technologies. What
differentiates them is the degree to which information
is secured from the host signal. In Figure 10, the dif-
ference between tamper-proofing and other data-hid-
ing techniques is characterized. Figure 10A illustrates
that data hiding requires a deepinformation well that
is resilient to large displacements. Figure 10B illus-
trates that tamper-proofing requires a shallow well
that is only resilient to small displacements, but is
triggered by large displacements. Most data-hiding
techniques attempt to secure data in the face of all
modifications. Tamper-proofing techniques must be
resilient to small modifications (e.g., cropping, tone-
scale or gamma correction for images or balance or
equalization for sounds) but not to large modifications
(e.g., removing or inserting people from an image or
taking words out of context in an audio recording).

There are several ways to implement tamper-proofing.
The easiest way is to encode a check-sum of the
image within the image. However, this method is trig-
gered by small changes in the image. This suggests an
approach involving a pattern overlaid on the image.
The key to a successful overlay is to find a pattern
resilient to simple modifications such as filtering and
gamma correction, yet is not easily removed. The
search for such patterns and other methods of detect-
ing tampering remains an active area of research.

Feature tagging. Another application of data hiding
is tagging the location of features within an image.
Using data hiding it is possible for an editor (or
machine) to encode descriptive information, such as
the location and identification of features of interest,
directly into specific regions of an image. This
enables retrieval of the descriptive information wher-
ever the image goes. Since the embedded information
is spatially located in the image, it is not removed
unless the feature of interest is removed. It also trans-
lates, scales, and rotates exactly as the feature of inter-
est does.

This application does not have the same requirements
for robustness as the digital watermark. It can be
assumed that, since feature location is providing a ser-
vice, it is unlikely someone will maliciously try to
remove the encoded information.

Embedded captions. Typical news photograph cap-
tions contain one kB of data. Thus embedded captions

is a relatively high bit-rate application for data hiding.
As with feature tagging, caption data are usually not
subject to malicious removal.

While captions are useful by themselves, they become
even more useful when combined with feature loca-
tion. It is then possible for portions of the caption to
directly reference items in the picture. Captions can
become self-editing once this is done. If an item refer-
enced in the caption is cropped out of the picture, then
the reference to that item in the caption can be
removed automatically.

Data hiding in audio

Data hiding in audio signals is especially challenging,
because the human auditory system (HAS) operates
over a wide dynamic range. TheHAS perceives over a
range of power greater than one billion to one and a
range of frequencies greater than one thousand to one.
Sensitivity to additive random noise is also acute. The
perturbations in a sound file can be detected as low as
one part in ten million (80 dB below ambient level).
However, there are some “holes” available. While the
HAS has a large dynamic range, it has a fairly small
differential range. As a result, loud sounds tend to
mask out quiet sounds. Additionally, theHAS is
unable to perceive absolute phase, only relative phase.
Finally, there are some environmental distortions so
common as to be ignored by the listener in most
cases.

We exploit many of these traits in the methods we dis-
cuss next, while being careful to bear in mind the
extreme sensitivities of theHAS.

Audio environments

When developing a data-hiding method for audio, one
of the first considerations is the likely environments
the sound signal will travel between encoding and
decoding. There are two main areas of modification
which we will consider. First, the storage environ-
ment, or digital representation of the signal that will
be used, and second the transmission pathway the sig-
nal might travel.

Digital representation. There are two critical param-
eters to most digital audio representations: sample
quantization method and temporal sampling rate.

The most popular format for representing samples of
high-quality digital audio is a 16-bit linear quantiza-
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tion, e.g., Windows Audio-Visual (WAV) and Audio
Interchange File Format (AIFF). Another popular for-
mat for lower quality audio is the logarithmically
scaled 8-bitµ-law. These quantization methods intro-
duce some signal distortion, somewhat more evident
in the case of 8-bitµ-law.

Popular temporal sampling rates for audio include
8 kHz (kilohertz), 9.6 kHz, 10 kHz, 12 kHz, 16 kHz,
22.05 kHz, and 44.1 kHz. Sampling rate impacts data
hiding in that it puts an upper bound on the usable
portion of the frequency spectrum (if a signal is sam-
pled at ~8 kHz, you cannot introduce modifications
that have frequency components above ~4 kHz). For
most data-hiding techniques we have developed,
usable data space increases at least linearly with
increased sampling rate.

A last representation to consider is that produced by
lossy, perceptual compression algorithms, such as the
International Standards Organization Motion Pictures
Expert Group—Audio (ISO MPEG-AUDIO) perceptual

encoding standard. These representations drastically
change the statistics of the signal; they preserve only
the characteristics that a listener perceives (i.e., it will
sound similar to the original, even if the signal is com-
pletely different in aleast squares sense).

Transmission environment. There are many differ-
ent transmission environments that a signal might
experience on its way from encoder to decoder. We
consider four general classes for illustrative purposes
(see Figure 11). The first is the digital end-to-end
environment (Figure 11A). This is the environment of
a sound file that is copied from machine to machine,
but never modified in any way. As a result, the sam-
pling is exactly the same at the encoder and decoder.
This class puts the least constraints on data-hiding
methods.

The next consideration is when a signal is resampled
to a higher or lower sampling rate, but remains digital
throughout (Figure 11B). This transform preserves the
absolute magnitude and phase of most of the signal,
but changes the temporal characteristics of the signal.

The third case is when a signal is “played” into an
analog state, transmitted on a reasonably clean analog
line and resampled (Figure 11C). Absolute signal
magnitude, sample quantization, and temporal sam-
pling rate are not preserved. In general, phase will be
preserved.

The last case is when the signal is “played into the
air” and “resampled with a microphone” (Figure
11D). The signal will be subjected to possibly
unknown nonlinear modifications resulting in phase
changes, amplitude changes, drift of different fre-
quency components, echoes, etc.

Signal representation and transmission pathway must
be considered when choosing a data-hiding method.
Data rate is very dependent on the sampling rate and
the type of sound being encoded. A typical value is
16 bps, but the number can range from 2 bps to
128 bps.

Low-bit coding

Low-bit coding is the simplest way to embed data into
other data structures. By replacing the least significant
bit of each sampling point by a coded binary string,
we can encode a large amount of data in an audio sig-
nal. Ideally, the channel capacity is 1 kb per second
(kbps) per 1 kilohertz (kHz), e.g., in a noiseless chan-

Figure 11 Transmission environments
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nel, the bit rate will be 8 kbps in an 8 kHz sampled
sequence and 44 kbps in a 44 kHz sampled sequence.
In return for this large channel capacity, audible noise
is introduced. The impact of this noise is a direct
function of the content of the host signal, e.g., crowd
noise during a live sports event would mask low-bit
encoding noise that would be audible in a string quar-
tet performance. Adaptive data attenuation has been
used to compensate this variation.

The major disadvantage of this method is its poor
immunity to manipulation. Encoded information can
be destroyed by channel noise, resampling, etc.,
unless it is encoded using redundancy techniques. In
order to be robust, these techniques reduce the data
rate, often by one to two orders of magnitude. In prac-
tice, this method is useful only in closed, digital-to-
digital environments.

Phase coding

The phase coding method works by substituting the
phase of an initial audio segment with a reference
phase that represents the data. The phase of subse-
quent segments is adjusted in order to preserve the
relative phase between segments.

Phase coding, when it can be used, is one of the most
effective coding methods in terms of the signal-to-
perceived noise ratio. When the phase relation
between each frequency component is dramatically
changed, a noticeable phase dispersion will occur.
However, as long as the modification of the phase is
sufficiently small (sufficiently small depends on the
observer; professionals in broadcast radio can detect
modifications that are imperceivable to an average
observer), aninaudible coding can be achieved.

Procedure. The procedure for phase coding is as fol-
lows:

1. Break the sound sequences[i], (0 ≤ i ≤ I − 1), into a
series ofN short segments,sn[i] where (0≤ n ≤ N −
1) (Figure 12A, 12B).

2. Apply a K-points discrete Fourier transform
(DFT)13 to n-th segment,sn[i], where (K = I/N), and
create a matrix of the phase,φn(ωk), and magni-
tude,An(ωk) for (0 ≤ k ≤ K − 1) (Figure 12C).

3. Store the phase difference between each adjacent
segment for (0≤ n ≤ N − 1) (Figure 12D):

(13)∆φn 1+ ωk( ) φn 1+ ωk( ) φn ωk( )–=

Figure 12 Phase coding schematic
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4. A binary set of data is represented as aφdata = π/2
or − π/2 representing 0 or 1 (Figure 12E):

(14)

5. Re-create phase matrixes forn > 0 by using the
phase difference (Figure 12F):

(15)

6. Use the modified phase matrixφ′n(ωk) and the orig-
inal magnitude matrixAn(ωk) to reconstruct the
sound signal by applying the inverseDFT (Figure
12G, 12H).

For the decoding process, the synchronization of the
sequence is done before the decoding. The length of
the segment, theDFT points, and the data interval must
be known at the receiver. The value of the underlying
phase of the first segment is detected as a 0 or 1,
which represents the coded binary string.

Sinceφ′0(ωk) is modified, the absolute phases of the
following segments are modified respectively. How-
ever, the relative phase difference of each adjacent
frame is preserved. It is this relative difference in
phase that the ear is most sensitive to.

Evaluation. Phase dispersion is a distortion caused by
a break in the relationship of the phases between each
of the frequency components. Minimizing phase dis-

persion constrains the data rate of phase coding. One
cause of phase dispersion is the substitution of phase
φ′0(ωk) with the binary code. The magnitude of the
phase modifier needs to be close to the original value
in order to minimize distortion. The difference
between phase modifier states should be maximized
in order to minimize the susceptibility of the encoding
to noise. In our modified phase representation, a 0-bit
is − π/2 and a 1-bit is +π/2.

Another source of distortion is the rate of change of
the phase modifier. If distortion is applied to every bin
of theDFT it is likely to break the phase relationship of
the adjacent frequency components, resulting in a beat
pattern. By changing the phase more slowly and tran-
sitioning between phase changes, the audible distor-
tion is greatly reduced. In Figure 13, a sharp versus
smooth transition is illustrated. In Figure 13A, the
edges of the phase transitions are sharp, causing
noticeable distortion. In Figure 13B, they are smooth,
reducing this. Note that in each case, the data points
appear in the same place. This smooth variation has
the disadvantage of causing a reduction in bandwidth,
as space has to be left between each data point to
allow for smooth transition.

Results. In our experiments, the phase coding channel
capacity typically varied from 8 bps to 32 bps,
depending on the sound context. A channel capacity
of ~8 bps can be achieved by allocating 128 frequency
slots per bit under conditions of little background
noise. Capacities of 16 bps to 32 bps can be achieved
by allocating 32 to 64 frequency slots per slot when
there is a noisy background.

Spread spectrum

In a normal communication channel, it is often desir-
able to concentrate the information in as narrow a
region of the frequency spectrum as possible in order
to conserve available bandwidth and to reduce power.
The basic spread spectrum technique, on the other
hand, is designed to encode a stream of information
by spreading the encoded data across as much of the
frequency spectrum as possible. This allows the signal
reception, even if there is interference on some fre-
quencies.

While there are many variations on spread spectrum
communication, we concentrated on Direct Sequence
Spread Spectrum encoding (DSSS). TheDSSS method
spreads the signal by multiplying it by achip, a maxi-
mal length pseudorandom sequence modulated at a

φ0′ φdata′=

φ1′ ωk( ) φ0′ ωk( ) ∆φ1 ωk( )+=( )
…

φn′ ωk( ) φn 1–′ ωk( ) ∆φn ωk( )+=( )
…

φN′ ωk( ) φN 1–
′ ωk( ) ∆φN ωk( )+=( )

Figure 13 Sharp verses smooth transition
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known rate. Since the host signals are in discrete-time
format, we can use the sampling rate as thechip rate
for coding. The result is that the most difficult prob-
lem in DSSS receiving, that of establishing the correct
start and end of the chip quanta for phase locking pur-
poses, is taken care of by the discrete nature of the
signal. Consequently, a much higher chip rate, and
therefore a higher associated data rate, is possible.
Without this, a variety of signal locking algorithms
may be used, but these are computationally expensive.

Procedure. In DSSS, a key is needed to encode the
information and the same key is needed to decode it.
The key is pseudorandom noise that ideally has flat
frequency response over the frequency range, i.e.,
white noise. The key is applied to the coded informa-
tion to modulate the sequence into a spread spectrum
sequence.

The DSSSmethod is as follows:8,9 The code is multi-
plied by the carrier wave and the pseudorandom noise
sequence, which has a wide frequency spectrum. As a
consequence, the spectrum of the data is spread over
the available band. Then, the spread data sequence is
attenuated and added to the original file as additive
random noise (see Figure 14).DSSS employs bi-phase
shift keying since the phase of the signal alternates
each time the modulated code alternates (see Figure
15). For decoding, phase valuesφ0 and φ0 + π are
interpreted as a “0” or a “1,” which is a coded binary
string.

In the decoding stage, the following is assumed:

1. The pseudorandom key is maximal (it has as many
combinations as possible and does not repeat for as
long as possible). Consequently it has a relatively
flat frequency spectrum.

2. The key stream for the encoding is known by the
receiver. Signal synchronization is done, and the
start/stop point of the spread data are known.

3. The following parameters are known by the
receiver: chip rate, data rate, and carrier frequency.

Results. Unlike phase coding,DSSS introduces addi-
tive random noise to the sound. To keep the noise
level low and inaudible, the spread code is attenuated
(without adaptation) to roughly 0.5 percent of the
dynamic range of the host sound file. The combina-
tion of simple repetition technique and error correc-
tion coding ensure the integrity of the code. A short
segment of the binary code string is concatenated and
added to the host signal so that transient noise can be

reduced by averaging over the segment in the decod-
ing stage. The resulting data rate of theDSSS experi-
ments is 4 bps.

Echo data hiding

Echo data hiding embeds data into a host audio signal
by introducing anecho. The data are hidden by vary-
ing three parameters of the echo: initial amplitude,
decay rate, and offset (see Figure 16). As the offset (or

Figure 14 Spread spectrum encoding

Figure 15 Synthesized spread spectrum information
encoded by the direct sequence method
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delay) between the original and the echo decreases,
the two signals blend. At a certain point, the human
ear cannot distinguish between the two signals. The
echo is perceived as added resonance. (This point is
hard to determine exactly. It depends on the quality of
the original recording, the type of sound being ech-
oed, and the listener. In general, we find that this
fusion occurs around 1/1000 of a second for most
sounds and most listeners.)

The coder uses two delay times, one to represent a
binary one (offset) and another to represent a binary
zero (offset + delta). Both delay times are below the
threshold at which the human ear can resolve the
echo. In addition to decreasing the delay time, we can
also ensure that the information is not perceivable by
setting the initial amplitude and the decay rate below
the audible threshold of the human ear.

Encoding. The encoding process can be represented
as a system that has one of two possible system func-
tions. In the time domain, the system functions are
discrete time exponentials (see Figure 17) differing
only in the delay between impulses.

For simplicity, we chose an example with only two
impulses (one to copy the original signal and one to
create an echo). Increasing the number of impulses is
what increases the number of echoes.

We let the kernel shown in Figure 18A represent the
system function for encoding a binary one and we use
the system function defined in Figure 18B to encode a
zero. Processing a signal through either Figures 18A
or 18B will result in an encoded signal (see Figure
19).

The delay (δb) between the original signal and the
echo is dependent on which kernel or system function
we use in Figure 19. The “one” kernel (Figure 18A) is
created with a delay of (δ1) seconds while the “zero”
kernel (Figure 18B) has a (δ0) second delay.

In order to encode more than one bit, the original sig-
nal is divided into smaller portions. Each individual
portion can then be echoed with the desired bit by
considering each as an independent signal. The final
encoded signal (containing several bits) is the recom-
bination of all independently encoded signal portions.

In Figure 20, the example signal has been divided into
seven equal portions labeled a, b, c, d, e, f, and g. We
want portions a, c, d, and g to contain a one. There-

Figure 17 Discrete time exponential

Figure 18 Echo kernels
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fore, we use the “one” kernel (Figure 18A) as the sys-
tem function for each of these portions. Each portion
is individually convolved with the system function.
The zeros encoded into sections b, e, and f are
encoded in a similar manner using the “zero” kernel
(Figure 18B). Once each section has been individually
convolved with the appropriate system function, the
results are recombined. To achieve a less noticeable
mix, we create a “one” echo signal by echoing the
original signal using the “one” kernel. The “zero” ker-
nel is used to create the “zero” echo signal. The
resulting signals are shown in Figure 21.

The “one” echo signal and the “zero” echo signal con-
tain only ones and zeros, respectively. In order to
combine the two signals, two mixer signals (see Fig-
ure 22) are created. The mixer signals are either one
or zero depending on the bit we would like to hide in
that portion of the original signal.

The “one” mixer signal is multiplied by the “one”
echo signal while the “zero” mixer signal is multi-
plied by “zero” echo signal. In other words, the echo
signals are scaled by either 1 or 0 throughout the sig-
nal depending on what bit any particular portion is
supposed to contain. Then the two results are added.
Note that the “zero” mixer signal is the complement
of the “one” mixer signal and that the transitions
within each signal are ramps. The sum of the two
mixer signals is always one. This gives us a smooth
transition between portions encoded with different
bits and prevents abrupt changes in the resonance of
the final (mixed) signal.

A block diagram representing the entire encoding pro-
cess is illustrated in Figure 23.

Decoding. Information is embedded into a signal by
echoing the original signal with one of two delay ker-
nels. A binary one is represented by an echo kernel
with a (δ1) second delay. A binary zero is represented
by a (δ0) second delay. Extraction of the embedded
information involves the detection of spacing between
the echoes. In order to do this, we examine the magni-
tude (at two locations) of the autocorrelation of the
encoded signal’s cepstrum:14

(16)

The following procedure is an example of the decod-
ing process. We begin with a sample signal that is a
series of impulses such that the impulses are separated
by a set interval and have exponentially decaying

F 1– lncomplex F x( )( )2( )

Figure 19 Echoing example

Figure 20 Divide the original signal into smaller
portions to encode information

Figure 21 The first step in encoding process is to
create a “one” and a “zero” echo signal
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amplitudes. The signal is zero elsewhere (see Figure
24).

The next step is to find the cepstrum14 of the echoed
version. The result of taking the cepstrum makes the
spacing between the echo and the original signal a lit-
tle clearer.

Unfortunately, the result of the cepstrum also dupli-
cates the echo every (δ) seconds. In Figure 25, this is
illustrated by the impulse train in the output. Further-
more, the magnitude of the impulses representing the
echoes are small relative to the original signal. As
such, they are difficult to detect. The solution to this
problem is to take the autocorrelation of the cepstrum.

We echo the signal once with delay (δ) using the ker-
nel depicted in Figure 26. The result is illustrated in
Figure 27.

Only the first impulse is significantly amplified as it is
reinforced by subsequent impulses. Therefore, we get
a spike in the position of the first impulse. Like the
first impulse, the spike is either (δ1) or (δ0) seconds
after the original signal. The remainder of the
impulses approach zero. Conveniently, random noise
suffers the same fate as all the impulses after the first.

The rule for deciding on a one or a zero is based on
the time delay between the original signal and the
delay (δ) before the spike in the autocorrelation.

Figure 23 Encoding process

Figure 24 Example signal: x [n] = anu [n]; (0 < a < 1)
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Recall that a one was encoded by placing an echo (δ1)
seconds after the original and a zero was placed (δ0)
seconds after the original. When decoding, we assign
a one if the magnitude of the autocorrelation function
is greater at (δ1) seconds than it is at (δ0) seconds. A
zero is assigned if the reverse is true. This is the same
as deciding which kernel we used utilizing the fact
that the “one” and “zero” kernel differ only in the
delay before the echo (Figure 18).

Results. Using the methods described, it is indeed
possible to encode and decode information in the
form of binary digits into a media stream with mini-
mal alteration to the original signal at approximately
16 bps (see Figure 28). By minimal alteration, we
mean that the output of the encoding process is
changed in such a way so that the average human can-
not hear any significant difference between the altered
and the original signal. There is little, if any, degrada-
tion of the original signal. Instead, the addition of res-
onance simply gives the signal a slightly richer sound.
While the addition of resonance may be problematic
in some music applications, studio engineers may be
able to fine-tune the echo hiding parameters during
the mastering process, enabling its use.

Supplemental techniques

Three supplemental techniques are discussed next.

Adaptive data attenuation. The optimum attenua-
tion factor varies as the noise level of the host sound
changes. By adapting the attenuation to the short-term
changes of the sound or noise level, we can keep the
coded noise extremely low during the silent segments
and increase the coded noise during the noisy seg-
ments. In our experiments, the quantized magnitude
envelope of the host sound wave is used as a reference
value for the adaptive attenuation; and the maximum
noise level is set to 2 percent of the dynamic range of
the host signal.

Redundancy and error correction coding. In order
to compensate for errors due to channel noise and host
signal modification, it is useful to apply error-correc-
tion coding (ECC)1 to the data to be embedded. While
there exist some efficient methods ofECC, its applica-
tion always results in a trade-off between robustness
and data rate.

Sound context analysis. The detectability of white
noise inserted into a host audio signal is linearly
dependent upon the original noise level of the host

signal. To maximize the quantity of embedded data,
while ensuring the data are unnoticed, it is useful to
express the noise level quantitatively. The noise level
is characterized by computing the magnitude of
change in adjacent samples of the host signal:

(17)σlocal
2 1
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N
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where N is the number of sample points in the
sequence andSmax is the maximum magnitude in the
sequence. We use this measure to categorize host
audio signals by noise level (see Table 2).

Data hiding in text

Soft-copy text is in many ways the most difficult place
to hide data. (Hard-copy text can be treated as a
highly structured image and is readily amenable to a
variety of techniques such as slight variations in letter
forms, kerning, baseline, etc.) This is due largely to
the relative lack of redundant information in a text file
as compared with a picture or a sound bite. While it is
often possible to make imperceptible modifications to

a picture, even an extra letter or period in text may be
noticed by a casual reader. Data hiding in text is an
exercise in the discovery of modifications that are not
noticed by readers. We considered three major meth-
ods of encoding data: open space methods that encode
through manipulation of white space (unused space
on the printed page), syntactic methods that utilize
punctuation, and semantic methods that encode using
manipulation of the words themselves.

Open space methods.There are two reasons why the
manipulation of white space in particular yields useful
results. First, changing the number of trailing spaces
has little chance of changing the meaning of a phrase
or sentence. Second, a casual reader is unlikely to take

Figure 28 Result of autocepstrum and autocorrelation for (A) “zero” and (B) “one” bits
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notice of slight modifications to white space. We
describe three methods of using white space to encode
data. The methods exploit inter-sentence spacing,
end-of-line spaces, and inter-word spacing in justified
text.

The first method encodes a binary message into a text
by placing either one or two spaces after each termi-
nating character, e.g., a period for English prose, a
semicolon for C-code, etc. A single space encodes a
“0,” while two spaces encode a “1.” This method has a
number of inherent problems. It is inefficient, requir-
ing a great deal of text to encode a very few bits. (One
bit per sentence equates to a data rate of approxi-
mately one bit per 160 bytes assuming sentences are
on average two 80-character lines of text.) Its ability
to encode depends on the structure of the text. (Some
text, such as free-verse poetry, lacks consistent or
well-defined termination characters.) Many word pro-
cessors automatically set the number of spaces after
periods to one or two characters. Finally, inconsistent
use of white space is not transparent.

A second method of exploiting white space to encode
data is to insert spaces at the end of lines. The data are
encoded allowing for a predetermined number of
spaces at the end of each line (see Figure 29). Two
spaces encode one bit per line, four encode two, eight
encode three, etc., dramatically increasing the amount
of information we can encode over the previous
method. In Figure 29, the text has been selectively
justified, and has then had spaces added to the end of
lines to encode more data. Rules have been added to
reveal the white space at the end of lines. Additional
advantages of this method are that it can be done with
any text, and it will go unnoticed by readers, since this
additional white space is peripheral to the text. As
with the previous method, some programs, e.g.,
“sendmail,” may inadvertently remove the extra space
characters. A problem unique to this method is that
the hidden data cannot be retrieved from hard copy.

A third method of using white space to encode data
involves right-justification of text. Data are encoded
by controlling where the extra spaces are placed. One
space between words is interpreted as a “0.” Two
spaces are interpreted as a “1.” This method results in
several bits encoded on each line (see Figure 30).
Because of constraints upon justification, not every
inter-word space can be used as data. In order to
determine which of the inter-word spaces represent
hidden data bits and which are part of the original
text, we have employed a Manchester-like encoding
method. Manchester encoding groups bits in sets of
two, interpreting “01” as a “1” and “10” as a “0.” The
bit strings “00” and “11” are null. For example, the
encoded message “1000101101” is reduced to “001,”
while “110011” is a null string.

Open space methods are useful as long as the text
remains in anASCII (American Standard Character
Interchange) format. As mentioned above, some data
may be lost when the text is printed. Printed docu-
ments present opportunities for data hiding far beyond
the capability of anASCII text file. Data hiding in hard
copy is accomplished by making slight variations in
word and letter spacing, changes to the baseline posi-
tion of letters or punctuation, changes to the letter
forms themselves, etc. Also, image data-hiding tech-
niques such as those used by Patchwork can be modi-
fied to work with printed text.

Syntactic methods.That white space is considered
arbitrary is both its strength and its weakness where
data hiding is concerned. While the reader may not
notice its manipulation, a word processor may inad-
vertently change the number of spaces, destroying the
hidden data. Robustness, in light of document refor-
matting, is one reason to look for other methods of
data hiding in text. In addition, the use of syntactic
and semantic methods generally does not interfere
with the open space methods. These methods can be
applied in parallel.

Figure 29 Example of data hidden using white space

T h e q u i c k b r o w n f o x
j u m p s o v e r t h e l a z y
d o g .

T h e q u i c k b r o w n f o x
j u m p s o v e r t h e l a z y
d o g .

NORMAL TEXT WHITE SPACE ENCODED TEXT

T h e q u i c k b r o w n f o x
j u m p s o v e r t h e l a z y
d o g .

T h e q u i c k b r o w n f o x
j u m p s o v e r t h e l a z y
d o g .
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There are many circumstances where punctuation is
ambiguous or when mispunctuation has low impact
on the meaning of the text. For example, the phrases
“bread, butter, and milk” and “bread, butter and milk”
are both considered correct usage of commas in a list.
We can exploit the fact that the choice of form is arbi-
trary. Alternation between forms can represent binary
data, e.g., anytime the first phrase structure (charac-
terized by a comma appearing before the “and”)
occurs, a “1” is inferred, and anytime the second
phrase structure is found, a “0” is inferred. Other
examples include the controlled use of contractions
and abbreviations. While written English affords
numerous cases for the application of syntactic data
hiding, these situations occur infrequently in typical
prose. The expected data rate of these methods is on
the order of only several bits per kilobyte of text.

Although many of the rules of punctuation are ambig-
uous or redundant, inconsistent use of punctuation is
noticeable to even casual readers. Finally, there are
cases where changing the punctuation will impact the
clarity, or even meaning, of the text considerably. This
method should be used with caution.

Syntactic methods include changing the diction and
structure of text without significantly altering mean-

ing or tone. For example, the sentence “Before the
night is over, I will have finished” could be stated “I
will have finished before the night is over.” These
methods are more transparent than the punctuation
methods, but the opportunity to exploit them is lim-
ited.

Semantic methods.A final category of data hiding in
text involves changing the words themselves. Seman-
tic methods are similar to the syntactic method.
Rather than encoding binary data by exploiting ambi-
guity of form, these methods assign two synonyms
primary or secondary value. For example, the word
“big” could be considered primary and “large” sec-
ondary. Whether a word has primary or secondary
value bears no relevance to how often it will be used,
but, when decoding, primary words will be read as
ones, secondary words as zeros (see Table 3).

Word webssuch as WordNet can be used to automati-
cally generate synonym tables. Where there are many
synonyms, more than one bit can be encoded per sub-
stitution. (The choice between “propensity,” “predi-
lection,” “penchant,” and “proclivity” represents two
bits of data.) Problems occur when the nuances of
meaning interfere with the desire to encode data. For
example, there is a problem with choice of the syn-
onym pair “cool” and “chilly.” Calling someone
“cool” has very different connotations than calling
them “chilly.” The sentence “The students in line for
registration are spaced-out” is also ambiguous.

Applications

Data hidden in text has a variety of applications,
including copyright verification, authentication, and
annotation. Making copyright information inseparable

Figure 30 Data hidden through justification (text from A Connecticut Yankee in King Arthur’s Court  by Mark Twain)

01→0

10→1

This distressed  the  monks and terrified  them. They were
not  used to  hearing these awful beings called names, and
they did  not know  what  might be the  consequence. There
was a  dead  silence now;  superstitious  bodings  were in
every mind. The magician began to  pull his wits together,
and when he presently smiled an easy, nonchalant smile, it
spread  a mighty relief  around; for it indicated that his
mood was not destructive.

Table 3 Synonymous pairs

≈
≈
≈
≈
≈

large
little
cool
clever
stretched

big
small
chilly

smart
spaced
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from the text is one way for publishers to protect their
products in an era of increasing electronic distribu-
tion. Annotation can be used for tamper protection.
For example, if a cryptographic hash of the paper is
encoded into the paper, it is a simple matter to deter-
mine whether or not the file has been changed. Verifi-
cation is among the tasks that could easily be
performed by a server which, in this case, would
return the judgment “authentic” or “unauthentic” as
appropriate.

Other uses of data hiding in text involve embedding
instructions for an autonomous program in a text. For
example, a mail server can be programmed to check
for hidden messages when transmitting an electronic
message. The message is rejected or approved
depending on whether or not any hidden data are
found. In this way a company running its own mail
server can keep confidential documents from being
inadvertently exported.

Conclusion

In this paper, several techniques are discussed as pos-
sible methods for embedding data in host text, image,
and audio signals. While we have had some degree of
success, all of the proposed methods have limitations.
The goal of achieving protection of large amounts of
embedded data against intentional attempts at removal
may be unobtainable.

Automatic detection of geometric and nongeometric
modifications applied to the host signal after data hid-
ing is a key data-hiding technology. The optimum
trade-offs between bit rate, robustness, and perceiv-
ability need to be defined experimentally. The interac-
tion between various data-hiding technologies needs
to be better understood.

While compression of image and audio content con-
tinues to reduce the necessary bandwidth associated
with image and audio content, the need for a better
contextual description of that content is increasing.
Despite its current shortcomings, data-hiding technol-
ogy is important as a carrier of these descriptions.

Acknowledgments

This work was supported in part by the News in the
Future research consortium at theMIT Media Labora-
tory and International Business Machines Corpora-
tion.

Cited references

1. P. Sweene,Error Control Coding (An Introduction), Prentice-
Hall International Ltd., Englewood Cliffs, NJ (1991).

2. E. Adelson,Digital Signal Encoding and Decoding Apparatus,
U.S. Patent No. 4,939,515 (1990).

3. R. Machado, “Stego,” http://www.nitv.net/~mech/Romana/
stego.html (1994).

4. W. Bender, “Data Hiding,” News in the Future, MIT Media
Laboratory, unpublished lecture notes (1994).

5. A. Lippman, Receiver-Compatible Enhanced EDTV System,
U.S. Patent No. 5,010,405 (1991).

6. D. L. Hecht, “Embedded Data Glyph Technology for Hardcopy
Digital Documents,”SPIE2171(1995).

7. K. Matsui and K. Tanaka, “Video-Steganography: How to
Secretly Embed a Signature in a Picture,”IMA Intellectual
Property Project Proceedings (1994).

8. R. C. Dixon,Spread Spectrum Systems, John Wiley & Sons,
Inc., New York (1976).

9. S. K. Marvin,Spread Spectrum Handbook, McGraw-Hill, Inc.,
New York (1985).

10. Digimarc Corporation,Identification/Authentication Coding
Method and Apparatus,U.S. Patent (1995).

11. I. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure Spread
Spectrum Watermarking for Multimedia,”NECI Technical
Report 95-10, NEC Research Institute, Princeton, NJ (1995).

12. A. V. Drake,Fundamentals of Applied Probability, McGraw-
Hill, Inc., New York (1967).

13. L. R. Rabiner and R. W. Schaffer,Digital Processing of Speech
Signal, Prentice-Hall, Inc., Englewood Cliffs, NJ (1975).

14. A. V. Oppenheim and R. W. Shaffer,Discrete-Time Signal Pro-
cessing, Prentice-Hall, Inc., Englewood Cliffs, NJ (1989).

Accepted for publication February 29, 1996.

Walter Bender MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: walter@
media.mit.edu). Mr. Bender is a principal research scientist at the
MIT Media Laboratory and principal investigator of the labora-
tory’s News in the Future consortium. He received the B.A. degree
from Harvard University in 1977 and joined the Architecture
Machine Group at MIT in 1978. He received the M.S. degree from
MIT in 1980. Mr. Bender is a founding member of the Media Labo-
ratory.

Daniel Gruhl MIT Media Laboratory, 20 Ames Street, Cambridge,
Massachusetts 02139-4307 (electronic mail: druid@mit.edu). Mr.
Gruhl is a doctoral student in the department of electrical engineer-
ing and computer science at MIT, where he earned an S.B. in 1994
and an MEng in 1995. He is an AT&T fellow and research assistant
at the Media Lab, where his research interests include information
hiding in images, sound, and text, as well as user modeling for elec-
tronic information systems.

Norishige Morimoto IBM Tokyo Research Laboratory, 1623-14
Shimo-Tsuruma, Yamato-shi, Kanagawa-ken, 242 Japan (electronic
mail: noly@trl.ibm.co.jp). Mr. Morimoto is currently a researcher
at the Tokyo Research Laboratory (TRL) of IBM Japan. He joined
IBM in 1987 and was transfered to the TRL in 1995 after getting
his master’s degree from MIT. His area of interest is rights manage-
ment of digital contents and network applications for industry solu-
tions. Mr. Morimoto received his B.S. degree in electrical
engineering from Keio University, and his M.S. degree in electrical
engineering and computer science from the Massachusetts Institute
of Technology.



BENDER ET AL.  IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996336

Anthony Lu MIT Media Laboratory, 20 Ames Street, Cambridge,
Massachusetts 02139-4307 (electronic mail: tonyl@media.mit.
edu). Mr. Lu is an undergraduate student in electrical engineering at
MIT, concentrating in communications and signal processing. He
will be a candidate for the master of engineering degree in 1997.

Reprint Order No. G321-5608.


