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Distributions whose inverse forms are explicitly defined, such as Tukey's lambda, may present prob- 
lems in deriving their parameters by more conventional means. Probability weighted moments are 
introduced and shown to be potentially useful in expressing the parameters of these distributions. 

INTRODUCTION 

The generalized form of Tukey's [1960] lambda distribution 
may be expressed as 

x=rn+aF*-C(1-F) • (1) 

where F -= F(x) = P(X <_ x). To approximate the expected 
value of the range for a sample of size n from a normal 
population, Joiner and Rosenblatt [ 1971 ] considered the special 
symmetric case where rn = 0 and a -• = b = c -• = d = 0.135. 
Of a similar mathematical structure is the Thomas' Wakeby 
distribution, 

x=m+a[1- (l-F) '1- c[1- (l-F) -a] (2) 

which Houghton [1977, 1978a, b] introduced to flood fre- 
quency analysis, observing that the distribution can explain 
the condition of separation. (The condition of separation was 
noted by Matalas et al. [ 1975] to be a characteristic of regional 
flood sequences which distinguishes them from simulated se- 
quences derived from distributions commonly used in hydrol- 
ogy.) Landwehr et al. [ 1978] further discussed properties of the 
Wakeby distribution and qualified Houghton's observation by 
noting that if its parameters are positive in sign, then the 
condition of separation can be explained when b > 1, but not 
when0 <b< 1. 

The Wakeby distribution is potentially useful to flood fre- 
quency analysis in particular and to flow frequency analysis in 
general for several reasons. First, it offers a simple explanation 
of the condition of separation. Second, it is characterized by 
five parameters suggesting better capability of fitting data than 
that of distributions characterized by fewer parameters. More- 
over, because the left tail of the distribution is more strongly 
influenced by b and the right tail by d, the distribution can 
accommodate various types of flows ranging from low flows to 
floods. Third, the utility ascribed to the generalized lambda 
distribution by Ramberg [1975] applies equally well to 
Wakeby: in Monte Carlo experiments the distributions may be 
used (1) to approximate other distributions of interest, (2) to 
represent the unknown underlying distribution of data, and (3) 
to facilitate robustness and sensitivity studies. Certain analy- 
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ses, such as those concerned with plotting positions and prop- 
erties of order statistics, can be handled mathematically more 
easily with distributions, like Wakeby, whose inverse forms are 
analytically defined. 

Only the inverse forms x = x(F) of the Wakeby and general- 
ized lambda distributions are analytically defined. Although 
their moments can be expressed as functions of their parame- 
ters, the inverse relations cannot be readily derived, and thus 
moment estimates of their parameter values are not feasible. 
Moreover, maximum likelihood estimates of the parameter 
values are not easily obtained. To realize more fully the poten- 
tial of these and other such distributions, techniques for esti- 
mating the parameter values and an understanding of the 
sampling properties of the estimates are in order. For the 
Wakeby distribution, Houghton [1977] suggested an estimating 
technique, referred to as the incomplete mean algorithm. The 
algorithm involves iterating on assumed values of b and d until 
what is defined as a 'best fit' is achieved. 

In the following paragraphs, probability weighted moments 
are introduced, and their potential usefulness in deriving ex- 
plicit expressions for the parameters of distributions whose 
inverse forms x = x(F) can be explicitly defined is considered. 
The relations between the parameters and the probability 
weighted moments for the generalized lambda, in the case 
where a = c and b = d (symmetric lambda), and the Wakeby 
distributions are presented, as well as for some other distribu- 
tions for which both F = F(x) and x = x(F) are explicitly 
defined. 

PROBABILITY WEIGHTED MOMENTS 

A distribution function F -- F(x) = P(X < x) may be 
characterized by probability weighted moments, which are 
defined as 

1 M,.•.•, --- E[X'F•(1 - F) n] = [x(F)I'F•(1 - F)ndF (3) 

where l, j, and k are real numbers. If j = k = 0 and I is a 
nonnegative integer, then Mr,0,0 represents the conventional 
moment about the origin of order 1. If Mr,0.0 exists and X is a 
continuous function of F, then Mt,•,• exists for all nonnegative 
real numbersj and k. Ifj and k are nonnegative integers, then 
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" •=o j (-lyM•.•,o 

M,j.o = n•__o (•)(- 1)nM,.o.n 
(4) 

where if Mt,o,• exists and X is a continuous function of F, Mr.j,0 
exists. In general, even if Mt,j,• exists, it may be difficult to 
derive its analytical form, particularly if the inverse x = x(F) 
of the distribution F = F(x) cannot be analytically defined. 

In the special case where l,j, and k are nonnegative integers, 
Mtj,• is proportional to E[XJ+•,•+•+:], the lth moment about 
the origin of the (/' q- l)th order statistic for a sample of size 
k q- j q- 1. More specifically, 

E[XJ+l.n+•+d = M,.•.n/B{j + 1, k + 1] (5) 

where B[. ,. ] denotes the beta function. Ifj = 0, (k + l)M•.o.n 
represents the lth moment about the origin of the first-order 
statistic for a sample of size k + I and if k = 0, (j + l)M•.j.o 
represents the lth moment about the origin of the (j + l)th 
order statistic for a sample of sizej + 1. 

Note that the expected value of the range of X in a sample of 
s izen = k+ I =j+ 1 is 

E[Xr,,r,- X•,r,] = n(M,,•,-x,o- M•,o,r,-•) (6) 

Among distributions for which only the inverse form x = 
x(F) is explicitly defined are the generalized lambda (equation 
(1)) and Wakeby (equation (2)). There are many distributions 
which may be explicitly defined as both F = F(x) and x = x(F), 
among them being the kappa, recently introduced by Mielke 
[1973] in analyzing precipitation data, and the more familiar 
Weibull, Gumbel, and logistic. In Table I the analytical forms 
of x = x(F) are presented, as well as those of F = F(x), where 
possible, for these specific distributions. For each, the conven- 
tional moments Mt,o,o and the probability weighted moments 
M•,•,0 or M•,0,•, whichever has the simpler analytical structure, 
are given in Table 2. 

From Table 2 it is noted that the relations between the 

probability weighted moments and the distributions' parame- 
ters are of simpler analytical structure than those between the 

conventional moments and the parameters; the simpler struc- 
ture is due in part to x being taken to only the first power. This 
suggests that it might be possible to derive the parameters as 
functions of the probability weighted moments, particularly in 
those cases where the parameters cannot be derived as func- 
tions of the conventional moments. For example, in Table 2, 
except for the Gumbel and logistic distributions, the parame- 
ters cannot be defined explicitly as functions of the conven- 
tional moments. Given the values of the conventional mo- 

ments, iterative techniques may be used to derive one or more, 
as the case may be, of the parameter values, allowing the 
remaining parameter values to be determined directly. On the 
other hand, the relations between the parameters and the 
probability weighted moments can be explicitly defined for 
each of the distributions, with the exception of the kappa and 
generalized lambda. If b = d and a = c, the generalized lambda 
distribution is symmetric, in which case the parameters m, a, 
and b can be explicitly expressed as functions of the probabil- 
ity weighted moments. The specific relations are given below, 
illustrating potential usefulness of probability weighted mo- 
ments. 

PARAMETER EXPRESSIONS 

In this section the following convention is adopted: 

M(•--- M•,0,k (7) 

Table 3 presents expressions for the parameters of the Wei- 
bull, Gumbel, symmetric lambda, and logistic distributions as 
functions of probability weighted moments. The Gumbel and 
logistic parameters may also be given as functions of their 
conventional moments as shown in the table. 

The Wakeby relationships are more complex and are dis- 
played in a separate table. Although Mt,j.• forj • 0 and k • 0 
may be expressed in terms of the parameters, the resulting 
equations would be more complicated. And in the case of the 
Wakeby distribution the resulting equations would involve 
beta functions whereby explicit expressions for the parameters 
cannot be obtained. Thus solutions are given in terms of the 

TABLE 1. Distribution Functions 

Distribution x F Range of x Reference* 

Weibull m+a[-In(l-F)] •/• l-exp [-(x-m)O 1 a 

Gumbel m-aln[-InF] exp{-exp [-(x;rn)l } 

mto •o I 

-into m 2 

Generalized rn + aF* - c(l - F) d not explicitly defined rn + a(0) ø - c• 3 
lambda to rn + a- c(0)d• 

Wakeby rn + a[l - (1 - F) ø] not explicitly defined rn to rn + a[1 - (0) •] 5 
- - - F) - - (0)-lt 

1( ( Kappa m + a[bF*/(1 - F*)] TM x- m b + x - m m to c• 6 
a a 

*Ranges of parameter values can be found in the work of Johnson and Kotz [1970] for l, 2, and 4; Ramberg and Schmeiser [1974] for 3; 
Landwehr et al. [1978] for 5; and Mielke [1973] for 6. 

•The value of this term is either 0 or •o, depending upon whether the parameter in the exponent is positive or negative (0 ø -- 1). 
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TABLE 2. Moment Expressions 
Distribution Conventional Moments Mt.o.o (integer I > 0) Probability Weighted Moments M•,•,n (real j, k _> 0) 

Weibull 

Gumbel 

Generalized 
lambda 

•. (sl •t-'a'F[(b + s)/b] * •-0 

dt[eømF(1 - 

ß •-o (s/)m'-'{•.o (: •'-t(-c)tB[l+b(s-t)'l+dt]lõ 

m aF(1 + l/b) 
M•.o.•= 1 +k + (1 +k)•+vø 

_ m a{ln (1 +j) + •}•, M:,•,o- • + 1 +j 
m c 

M:,o,• = 1 + k + aB[l + b' l + k]- l + k + d 

Logistic 

Wakeby 

Kappa 

d:[eSmp(1 - aO)P(1 + aO)]/dO' l o.o 

ß [b(s- t) -dt + 1]-'/ 
•(;)m'-'a'b-:+'/øCB[(s+c)/bc, l-s/bc] •=O 

m a2l M,.o.•- l+k l+k 7 II 
rn a - c a 

Ma,o,•= 1 +• + l+k 1 +k+b 
c 

l+k-d 

_ m ab- '+'/øcB[( M:,•.o- • + I + j + 1/c)/b, I - 1/bc] 
* F [- ] denotes the gamma function. 
9Here, d • [.]/dO•[s_o denotes the/th derivative of[ ] evaluated at 0 = 0. 
:l:Here, e is Euler's number equal to 0.5772 .... 
õB[.,.] denotes the beta function. 
I[ Integer k. Summation is 0 when k = 0. 

Neither the parameters of the generalized lambda distribu- 
tion nor those of the kappa distribution easily lend themselves 
to expression as functions of either conventional or probability 
weighted moments. 

Weibull Parameters 

The parameters of the Weibull distribution can be expressed 
explicitly as functions of probability weighted moments. Two 
distinct cases mus.t be considered: first, when m, the lower 
bound on the range of x, is known and without loss of general- 
ity can be taken to be zero and, second, when m is unknown 
and must be estimated. As was noted previously, it is not 
possible to express Weibull parameters explicitly as functions 
of the conventional moments. 

Gumbel Parameters 

For the Gumbel distribution it is easier to obtain probability 
weighted moments of the form Mx,j,0 rather than M(k). How- 
ever, as can be seen from (4), 

M•,•,0 = M(0)- M(• (8) 

and for consistency the parameters in Table 3 are expressed as 
functions of M•k•. 

It is noted that the parameters of the Gumbel distributions 
can be expressed in terms of both conventional and probability 
weighted moments. Thus alternative estimators for the param- 
eters derived from finite length samples may be obtained by 
using probability weighted moments as well as the methods of 
conventional moments and maximum likelihood. 

Symmetric Lambda Parameters 

Tukey [1962] defined the symmetric lambda distribution as 
an implicit function of X: 

x = F x - (1 - F) x (9) 

A more general but still symmetric form for this distribution is 

x = m + a[F ø-(l-F) ø] (lO) 

Equation (l) gives the most general and not necessarily sym- 
metric form of the distribution as stated by Joiner and Rosen- 
blatt [ 1971 ]. 

Explicit expressions for the parameters as functions of at- 
tributes of the distribution are not readily obtained by using 
either the maximum likelihood or the method of moments 
technique. However, it is possible to express the parameters of 
the general symmetric form ((10) or (l) with c = a and d = b) 
explicitly as functions of the probability weighted moments. 

Given the expression for M•n• from Table 2, it can be shown 
for integer k > 2 that 

Jn [I'(b+k+ l)_k!(b+ 1)1 I'(b+3) 1 R - r(b + l) r(b + 3 + k)• (ll) 
where 

and 

Jn = M(n) - M(k+x)- M(o)/(k + l)(k + 2) (12) 

R = M(x) - M(o•/2 (13) 

In particular, given the expression in (11) for k = 2, the 
parameters of the generalized symmetric lambda distribution 
can be expressed as functions of probability weighted mo- 
ments, as shown in Table 3. 

It is noted that two values for the parameter b are obtained; 
additional criteria would need to be applied to determine 
which value is appropriate for the particular distribution func- 
tion. 

Logistic Parameters 

The logistic distribution is a special case of the symmetric 
lambda distribution, occurring in the limit as a -, oo and b -, 0 
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TABLE 3. Parameter Expressions 

Distribution Parameter Using Probability Weighted Moments Using Conventional Moments Mr.0.0 

Weibull m = 0 0 

M•o•/rtln[M•o•/M•,•]/ln (2)}* 

b In (2)/In [M(o)/2M(•)] 

m#0 4{Mr:•Mro•- [Mr•]a}/{4Mr8• + Mro•- 4Mr•} 

{M,o,-m}/FIln("Mlø'-'2Ml")/ (2) 1 \M•- 2M•8• In 

ln(2)/ln ( MIø'-ZMI•' ) \2(M•- 2M•a•) 

cannot be expressed explicitly 

Gumbel m M(o)- ea'[' 

[Mr0•- 2Mr•]/ln (2) 

M,.0.0- ea 

{6[M:.o.o - (Mx.o.o):]} 

Symmetric m M•0> 
lambda 

a -R(b + l)(b + 2)/b 

[R- 7J: + (Ja:- 10JAR + 

R M•x•- M•o•/2 

Ml,0,0 

cannot be expressed explicitly 

cannot be expressed explicitly 

Logistic m M•0• 

a M•0•- 2M•x• 

M1,0,0 

13[M,.o.o- ( Mx.o.o ) '] } x/'/ •r 

*F [. ] denotes the gamma function. 
$e is Euler's number, equal to 0.5772 .... 

if and only if ab approaches a constant. As is shown in Table 3, 
the parameters of the logistic distribution may be expressed as 
functions of both conventional and probability weighted mo- 
ments. Again, these two sets of expressions form the basis for 
constructing alternative parameter estimators from finite 
length records. 

Wakeby Parameters 

The parameters of the Wakeby distribution are not readily 
obtained in terms of the conventional moments. The ex- 

pressions for probability weighted moments are more complex 
than those for the parameters of the previously discussed 
distributions. Several additional definitions are adopted in this 
section. Define 

{k}--(k + l)(k + I + b)(k + 1-d)M,k, (14) 

so that 

{k} = m(k + I + b)(k + l - d) + ab(k + l-d) 

+ cd(k + I + b) (15) 

Also, define 

k•-- k + i (16) 

Then, for the real k _> 0, it can be shown that if m = 0, then 

-If,} + 2If,}- 1•o} = o (17) 

but regardless of the value of m, 

{k,} - 3lk:} + 3tk,}- Iko} = 0 (18) 

Equations (17) and (18) hold for any arbitrary k > 0. Thus d 
can be expressed as a function of b, and b can be derived 
explicitly as a function of the probability weighted moments 
M•KO and Mao, where I > K > 0 and i = 0, 1, 2, 3. When the 
parameter m is not zero, it can be expressed as a function of 
only the forementioned probability weighted moments plus b 
and d. Finally, a and c can be obtained in terms of b, d, m, 
M•K•, and Mal. These relationships are shown in Table 4. 

For example, let K = 0 and I = 1. Table 5 contains the 
equations for this specific solution of Wakeby parameters in 
terms of the probability weighted moments. Note that because 
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TABLE 4. Explicit Solution of Wakeby Parameters 

Parameter Expression 

(N.G- N,c.) + [(N,c.- N.c,) • - 4(N,G- N•G)(N•c.- N.c•)] '/• 
2(At, c,- N,C,) 

(N• + bN:)/(N: + bN•) 

[tK+3}-IK+2}-IK+I}+IK}]/4 

(K + I + b)(K + 2 + b) IK+ 1} tK} 
b(b + d) + ' - 2+b) (K+ I +b) -m 

(K + l - d)(K + 2- d) [_ tK + I } {K} d(b + d) (K + 2 - d) + (K + l-d) + m 

C•_• A(/, I) for I > K 

Vm: A(j. k) (k + 4•FM,,+,,- 3(k + 3•FM,,+:, + 3(k + 2)JM(,+a,- (k + I•FM• 

m = 0: A(I', k) -(k + 3)JM(,+:• + 2(k + 2)JM(,+• - (k + 1)JM• 

Ik} (k + 1)(k + 1 + b)(k + 1 -d)M,,, 

K,I Specific but arbitrarily chosen values of k such that 0 < K < I 

TABLE 5. Specific Solution of Wakeby Parameters 

Parameter Expression 

2(NaC, - 

d (N• + bN:)/(N: + 

m -• 0 [13}- 12}- II} + 10}]/4 

(b + l)(b +,2) [•2ll} 10} a b(b + d) + b I + b m 

(l-d)(2-d) [-{1} 10} +m 1 c d(b + d) 2 +'d + i'-'d 
I fro = 0 

-(3)•M,,, + (2)•+JMa,- M,o, 

-(4)•M(,, + 2(3)•M,:,- (2)•M(•, 

Vm 

(n/M,,,- (3)•+.tM,,, + 3(2)•M,•,- M,o, 

C4-j (5)/M,,,- 3(4yM,,, + (3)•+JM,:,- (2).tM,•, 

{k} (k + l)(k + I + bXk + 1 - d)M(,• k = 0. 1.2. 3. 4 
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M•0• = E[X], when K is chosen equal to 0, the mean is assumed 
to exist and it is required that b > - 1 and d < 1 [see Landwehr 
et al., 1978]. 

From Tables 4 and 5 it appears that there are two possible 
solutions for the value of b, depending upon whether the 
positive or negative value of the square root is used in the 
computation. This would indicate that the method does not 
yield a unique solution. However, there is a symmetry in the 
Wakeby definition: if the signs of a, b, c, and d are reversed, the 
definitional form is still maintained. This is reflected by the 
two possible solutions for b. Denote the value of b computed 
by using the positive square root as b(+) and that computed 
by using the negative square root as b(- ). It can be shown that 
the corresponding values for d are -b(-) and -b(+), respec- 
tively. Similarly, c(+) = -a(- ) and c(- ) = -a(+ ). Thus the 
solution yielded is indeed unique, and with no loss of general- 
ity the value ofb can be chosen as the larger orb(+ ) and b(- ). 

SUMMARY 

Distributions that can be expressed in inverse form, particu- 
larly those that can only be so expressed, may present prob- 
lems in deriving explicit expressions for their parameters as 
functions of conventional moments. Of the latter type are 
Thomas' Wakeby and the generalized form of Tukey's 
lambda. The kappa and the more familiar Weibull, Gumbel, 
and logistic distributions can also be written in inverse form. 

Such distributions may be characterized by probability 
weighted moments defined as E[X•F•(1 - F)•], where the ran- 
dom variable X is distributed as F = F(x) = P(X < x) and 
where l, j, and k are real numbers. Ifj and k are nonnegative 
integers, then the probability weighted moment of order (l, j, 
k) is proportional to the/th moment about the origin of the 
(j + 1)th order statistic for a sample of size n - k + j + 1. 

For the specific distributions noted above, the relations 
between the probability weighted moments and the parameters 
are of a simpler analytical structure than those between the 
conventional moments and the parameters. The simpler ana- 
lytical structure suggests that it may be possible to derive the 
relations between the parameters and the probability weighted 
moments even though it may not be possible to derive the 
relations between the parameters and the conventional mo- 
ments. This is exemplified by the Wakeby, symmetric lambda, 
and Weibull distributions. For the Gumbel and logistic distri- 
butions their parameters may be explicitly expressed as func- 
tions of both probability weighted moments and conventional 
moments. In the case of the kappa distributions, neither type 
of moments appears to lend itself to functional expression of 
the parameters. 

The fact that the parameters of the Wakeby and symmetric 
lambda distributions can be expressed as functions of proba- 
bility weighted moments but not as functions of conventional 
moments illustrates the potential usefulness of probability 
weighted moments. Moreover, for distributions whose param- 
eters can be expressed as functions of both kinds of moments, 
probability weighted moments provide a basis for an alterna- 
tive method for parameter estimation to the methods of con- 
ventional moments and maximum likelihood. 
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