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Introduction

The Texas Instruments TI-89 and TI-92 calculators bring the capabilities of a power-
ful software package for symbolic computation (DERIVE) to the world of the hand(s)-held
calculator. Probably the most significant implication of this is that computing power pre-
viously available only on the metaphoric desktop of a computer can now very easily and
inexpensively move to the literal desktop of the classroom.

Now with that bit of profundity out of the way, the TI-89 and TI-92 calculators are
amazingly powerful calculators that are just plain fun to use!

This is a manual written to accompany the fifth edition of Calculus by James Stewart,
one of the most respected and successful calculus texts of recent years—a time during which
the wide availability of powerful computational tools such as the graphing calculator has
had a significant effect upon the way calculus is taught and learned.

The primary goal of this manual is to show you how the TI-89/92 can help you learn
and use calculus. The approach (we hope) is not to use the TI-89/92 as a black box, but
rather as a tool for exploring the way calculus works and the way calculus can be used to
solve problems—without having to rely entirely upon “cooked-up” problems with nice, clean
solutions.

Two secondary goals of this manual are: 1) to present in a very concise manner many of
the central ideas of calculus, and 2) to introduce some of the capabilities of this computer
called the TI-89/92. Programming can play an important role on both of these fronts, and
there are numerous programs here that hopefully illustrate some of the fundamentals of
calculus. Some of the programs are actually quite useful in other ways as well. Rather than
a single chapter devoted to programming, tucked away at the end of the manual, sections
on programming are included in each of the first six chapters. It is not essential that you
understand all the nuances of programming; much will be gained by simply getting the
programs to work and using them.

The TI-89/92 will not “do calculus” for you. It cannot decide the proper approach to
a problem nor can it interpret results for you. In short, you still have to do the thinking,
and you need to know the fundamental concepts of calculus. You must learn calculus from
lectures and your textbook—and most importantly by working problems. That’s where
the TI-89/92 comes in, allowing you to work interesting problems without getting bogged
down on algebraic and computational details that can sometimes distract from the calculus
concepts.

The last chapter of this manual contains twenty-three “projects,” which cover a wide
range of the topics and are arranged roughly in the same order as the corresponding ma-
terial in Stewart’s Calculus . The projects vary considerably in length, level of difficulty,
and the amount of guidance provided. We hope that these projects will be interesting—and
occasionally fun—while reinforcing important calculus concepts.

Until you’ve had a lot of experience using your TI-89/92, you will probably need to
consult your TI-89/92 Guidebook very often. In fact, the first thing you should do is work
very carefully through the first two chapters of the TI-89/92 Guidebook and make at least a
cursory pass through Chapters 3 and 6. Also familiarize yourself with the table of contents
and the information in the appendices. Even after you’ve been using your TI-89/92 for some
time, you will still occasionally need to refer to your TI-89/92 Guidebook.

A few comments about notation and typographic conventions: It will become obvious
right away that words and characters in bold sans-serif type indicate TI-89/92 commands,
functions, variables, keystrokes, modes, etc. Also, we have used the symbols [⇒], [⇑], [⇐],
and [⇓] to indicate pressing the cursor keys/pad in one of the four horizontal and vertical
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directions. Also, brackets ([ ]) typically indicate reference to one of the keys on the TI-89/92

keyboard—for example, [+], [ – ], [×], etc.
It might help you avoid some frustrations early on, if we point out some typical causes

of trouble.
• The letters d and e are the names of the derivative operator d() and the base of the

exponential function eˆ(). These have special locations on the keyboard. The letters d

and e do not give the same thing.
• Be aware of the difference between the subtraction key [ – ] and the minus (i.e., negation)

key [(–)].
• Finally, be aware that strange or unexpected results—and sometimes error messages—

are often caused by a variable having been previously assigned a value. This kind of
problem is easily fixed by clearing the guilty variable(s). (For more on this see page 4.)

Information related to the TI-89/92, including many programs, can be found at the Texas
Instruments website education.ti.com. Other wesites of interest include www.ticalc.org,
www.math.armstrong.edu/ti92/mathsoft.html, and www.tifaq.calc.org.

This manual, including all graphics, was created and typeset by a complete amateur (me)
on an Apple Macintosh computer with the help of the TI-Graph Link software (which you can
download from the aforementioned Texas Instruments web site) and two great shareware
programs, OzTEX by Andrew Trevorrow and GraphicConverter by Thorsten Lemke.

Finally, my thanks go to Jeff Morgan, who threw this project my way, and whose many
helpful suggestions made this manual better than it otherwise would have been.

S.L.H.



1 TI-89/92 Basics

This initial chapter is a brief introduction to many of the capabilities and uses of theTI-89/92

that will be important throughout the remainder of this manual. This is not intended to be
a substitute for the TI-89/92 Guidebook. Always keep your TI-89/92 Guidebook handy for
reference. In particular, you should work carefully through Chapters 1 and 2 and make at
least a cursory pass through Chapters 3–6 of the TI-92 Guidebook or Chapters 3, 5, 6, and
13 of the TI-89 Guidebook before proceeding any further in this manual.

1.1 The Home screen

The Home screen is the starting point for both symbolic and numerical computation on the
TI-89/92. Let’s begin by clearing the Home screen (press F1-8) and working with a simple
example. If we enter an expression such as (1 +

√
3)/2, the TI-89/92 does nothing to it,

because it is already in its simplest exact form. (An expression such as (4+
√

12)/
√

2 would
be simplified. Try it yourself.)

There are three ways to get a numerical value for this expression. The first is via the approx()

function in the Algebra menu (F2-5). (Notice the use of ans(1) (press [2nd]-[(–)]) to avoid re-
entering the expression.)

A numerical value for this expression can also be computed by placing a decimal point after
any of the whole numbers in the expression. Finally, a numerical value can be found by
pressing the � key prior to pressing ENTER. (Notice the green “≈” above the ENTER key to
the right of the QWERTY keyboard.)

The manner in which the TI-89/92 handles such computations can also be controlled by
setting the Exact/Approx MODE. On Page 2 of the MODE dialog box (which appears upon
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pressing the MODE key and then F2) one can set Exact/Approx to 1:AUTO, 2:EXACT, or
3:APPROXIMATE.

The computations above were all done with Exact/Approx set to AUTO. You should exper-
iment with the same computations after setting Exact/Approx first to EXACT and then to
APPROXIMATE. We recommend using AUTO in most circumstances.

The Algebra menu. This menu (F2) allows easy access to the TI-89/92’s functions for
doing symbolic manipulation of algebraic (and trigonometric) expressions and for solving
equations. The screens shown below illustrate the algebra functions factor(), expand(), com-

Denom(), and propFrac().

The left-hand screen that follows illustrates the functions tExpand() and tCollect(), which
manipulate trigonometric expressions. (These are found in the Trig submenu.) The right-
hand screen illustrates the solve(), zeros(), and nSolve() functions for solving equations.

We will have more to say about solve(), zeros(), and nSolve()—and solving equations in
general—in Section 2.3.

Defining functions. There are two ways to define a function on the Home screen. One
is with the Define command. You can type this in or access it in the Other menu (F4-1).
The second way is by using the [STO�] key. Once a function is defined, evaluations can be
performed on the Home screen.

The “With” operator. Use of the “with” operator is essential to taking advantage of
the TI-89/92’s advanced capabilities. The “with” operator is the vertical bar ( | ), accessed
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by pressing [2nd]-K. One use of the “with” operator is to make substitutions in expressions—
including function evaluations.

Warning: Improper use of the “with” operator can throw the TI-89/92 into an infinite
recursive loop. An infinite recursion can occur when a substituted expression involves the
variable that is substituted for—for example, when entering a command such as f(x) | x=x+1.
For more on this issue and the “with” operator in general, see page 55 of theTI-89Guidebook

or page 93 of the TI-92 Guidebook.

Another important use of the “with” operator is to restrict variable values in certain
computations. For example, nSolve() returns a numerical approximation to one solution of
an equation. If there is more than one solution, nSolve() needs help in order to locate them
all. Also, solve() attempts to find all solutions of an equation, while many equations have
more solutions than we are really interested in finding.

Clearing variables. Unexpected or erroneous results sometimes occur when one or more
variables have been assigned values previously. Consider, for example, the following situation.
We define the function f(x) = x2 by entering enter xˆ2 →f(x). We then enter (f(x)+1)ˆ2,
which should result in (x2 + 1)2, but instead the calculator returns a 4! What happened?
We forgot that the variable x had previously been assigned the value 1.

There are two simple ways of clearing variables. First, Clear a–z... (F6)—or NewProb on
the TI-89 and TI-92 Plus—clears all previously defined one-character Roman variables a–z.
Because of the ease with which this can be done, it is a good idea always to use a one-
character variable a–z for naming any “throwaway” variable. Other defined variables can be
cleared by using the DelVar command from the Other menu (F4-4). The second screen below
illustrates the use of DelVar.

Very important: You will find that clearing variables will cure many of the problems you
encounter while using the TI-89/92. Remember this!
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Exercises

Do each of the following with the Exact/Approx MODE set to AUTO. Before beginning, clear
all variables a–z.

1. Enter sin(π/k) for each of k = 2, 3, 4, . . . , 12. Which of these is the TI-89/92 able to
evaluate?

2. Compute ln(e2), ln(2e3), e2 ln(3), and ex ln(2).

3. a) Enter expand(ln(a∗b)) and then expand(ln(a∗b))|a>0 and b>0).

b) Enter ln(aˆx) and then ln(aˆx)|a>0.

4. Expand each of the polynomials:

a) (2x − 1)2(3 − x)3 b) (x − 1.23)(3.73 − x)(x + 7.77)

5. Factor each of the polynomials:

a) 6x3 + 47x2 + 71x − 70 b) 3x3 + 4x2 + 5x − 6

6. Enter:
a) factor(180047); b) factor(1234567); c) factor(1235711);
d) factor(ssn), where ssn is your social security number.

6. a) Define a function cylsurf(r) that gives the surface area of a closed, right circular cylinder
with radius r inches and volume 100 cubic inches. How might the “with” operator be
used in doing this?

b) Which of the radii r = 1, 2, 3, 4 gives the least surface area?

7. The function f(x) = 5 sin(4x) + x has several zeros between x = 0 and x = 2π. Use
solve() and the “with” operator to find them all.

1.2 Graphs and tables

The most straightforward way to define a function for graphing is to use the Y= Editor.
This can be accessed by pressing �Y= or by pressing APPS-2. However, let’s first press the
MODE key to bring up the MODE dialog box. The Graph mode should be set to FUNCTION.
Now we’ll press �Y= to bring up the Y= Editor and define the function f(x) = sin(x) cos(x)
as y1(x). Note that the variable in the function must be x.

We now need to set appropriate window variables for the graph. This is done in the Win-
dow Editor, which we access by pressing �WINDOW. Because of the nature of the particular
function we’re graphing, we’ll set xmin, xmax, ymin and ymax to give us a [0, 2π]× [−1.5, 1.5]
window. The variables xscl and yscl determine the spacing between axis tick-marks. xres

determines the horizontal spacing between the pixels where function evaluations are done.
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With window variables set, we then press �GRAPH to plot the graph.

We can also plot several functions at once.

It is often convenient to define functions on the Home screen for graphing, particularly
if the functions we wish to plot are each one of a family of functions. For example, let’s plot
y = sin(t − kπ/4), for each of k = 0, 1, 2, and 3, on the interval 0 ≤ t ≤ 2π.

Notice that we are able to define a function on the Home screen using any variable name
that we choose. Then we simply use x as the variable when entering the functions in the
Y= Editor. Finally, we’ll press �WINDOW, set the desired window variables, and then press
�GRAPH to plot the graph.

We should mention here that there is a much more convenient way of plotting several
members of such a family of functions. It involves storing parameter values in a list. (The
next section discusses lists in more detail.) The following screens illustrate this, as well as
the use of the Graph command from the Home screen’s Other menu (F4-2).



6 Chapter 1 � TI-89/92 Basics

Zoom Tools. The Zoom menu (F2) is accessible from each of the Y= and WINDOW Editors
as well as from the Graph screen. A variety of Zoom tools are available in this menu—see page
107 of the TI-89 Guidebook or page 59 of the TI-92 Guidebook for a complete description.
Here we will only illustrate the use of the ZoomBox tool.

The graph of the cubic polynomial f(x) = 10x3 − 121x2 + 221x− 110 seems to indicate
that f has just two real zeros. The window shown here is [−2, 11]× [−1200, 500]. Let’s use
the ZoomBox tool to go to a graph that shows the behavior of the function near the first of
the two apparent zeros.

When we use the cursor pad to draw a box around the area of interest and ENTER the second
corner point, a new graph is drawn.

Repeating the process once more finally reveals two zeros of the function that are quite
close together.

Plot Styles. In the Style menu of the Y= Editor, four plot basic styles are available for
graphs: Line, Dot, Square, and Thick. For illustration, let’s plot the same four functions as
above after choosing plot styles Line, Dot, Square, and Thick for y1, y2, and y3, respectively.

Tables. A table of function values is as easy to create as a graph. First enter the functions
in the Y= Editor. Then press �TblSet and enter the starting value tblStart of x and the
stepsize ∆tbl between variable values. With this done, press �TABLE to create the table.
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A shortcut for scrolling down the table is to press [2nd]-[⇓]. This, in effect, is a “page down”
command. Notice too that, from the Table screen, F1-9 brings up a FORMATS dialog that
allows us to set the cell width. Also, the TABLE SETUP dialog box can be accessed directly
from the Table screen by pressing F2.

Exercises

1. Plot y = xn, for n = 1, 2, 3, 4, 5, 8, and 11 in a [−1, 1]× [−1, 1] window.

2. Plot y = sinkπx, for k = 1, 2, 3, and 4 in a [0, 2]× [−1, 1] window.

3. Plot the function y = sin 2πx with Dot Style (F6-2 in the Y= Editor) in the window
[0, 1] × [−1, 1], first with xres = 10 and then with xres = 5, 3, 2, and 1.

4. Plot y = x sin(x/(x2 + .001)) in a [−1, 1] × [−1, 1] window with xres = 1. Using the
ZoomIn tool (F2-2) a number of times, magnify the graph to reveal the behavior of the
function near x = 0. What are the values of the window variables for your final graph?

5. Create a table of values for the function f(x) = (1 + x)1/x, using tblStart = −.02 and
∆tbl = .005. Notice the strange value of 1 shown at x = 0 and the warning message at
the bottom of the screen. Change tblStart to −.001 and ∆tbl to .00025 and recreate the
table. If you had to assign f(0) a value, approximately what should it be (rather than
1)?

6. Plot y =
√

1 − x2 and y = −
√

1 − x2 in each of the windows
[−2, 2]×[−1, 1]; [−2, 2.011]×[−1, 1]; [−1.95, 1.95]×[−1, 1].

Can you think of a good reason for what you’ve observed?

1.3 Lists and matrices

We have already encountered two of the TI-89/92’s data types: expressions and functions.
Two other important data types are lists and matrices.

Lists. A list is literally a list of objects. The objects—called elements—in a list may be
numbers, expressions, functions, or even other lists, and they need not be all of the same
type. A list can be defined on the Home screen by entering the elements of the list separated
by commas and enclosed by braces ({}). Entering listname[ i ] accesses the ith element of a
list.
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A list can be multiplied by an expression. It is also possible to apply various functions to a
list. All such operations are done “component-wise.” Also, two lists with the same number
of element can be added, subtracted, multiplied, or divided.

The length of a list (i.e., the number of elements in it) can be found by entering dim(listname).
Also, the Σ() operator ([2nd]-[4], or F3-4) is handy for summing the elements in a list. This
makes it easy, for example, to compute the average (or mean) of a list of numbers.

In addition to dim(), there are numerous other built-in functions for performing opera-
tions on lists. Among these are augment(), max(), min(), product(), sum(), mean(), median(),

and stdDev(). Also, there are operators for sorting lists—SortA sorts a list in ascending or-
der, and SortD sorts a list in descending order. (All of these are found in either the List or
Statistics submenus of the MATH menu.) For descriptions of these, see Appendix A of the
TI-89/92 Guidebook.

Matrices. A matrix is a rectangular array of elements. Just as braces ({ }) were used as
delimiters for lists, brackets ([ ]) are the delimiters for matrices. When defining a matrix on
the Home screen, elements of each row are separated by commas and rows are separated
from each other either by semicolons or sets of brackets.

The ith row of a matrix is referenced by matrixname[ i ]. The element in the ith row and
jth column is referenced by matrixname[ i, j ]. Also, the TI-89/92 handles many algebraic
operations with matrices automatically.
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The Data/Matrix Editor. TheTI-89/92 provides a handy editor for creating and editing
lists and matrices. To create a list in the Data/Matrix Editor, we first bring up the editor by
pressing the APPS key, and then selecting Data/Matrix Editor and New. . . . In the resulting
dialog box, we’ll choose Type: List and Folder: main and then type in the name of our list.

This takes us to the Data/Matrix Editor, ready to begin entering elements into the list.
This is done by filling in the first column of the grid. (If items are entered into another
column, the list variable is automatically converted to a data variable, which is essentially
a collection of lists. Data variables are useful for doing Statistics.) After we’ve entered the
elements of the list, we can go back to the Home screen and refer to the list we just created.

One advantage of using the Data/Matrix Editor is that it is easy to go back and add elements
or otherwise modify the list. Simply press APPS-6 and select Current.

Let’s now use the Data/Matrix Editor to create a matrix. As before, we’ll press APPS-

6-3 to bring up the NEW dialog box. There we choose Type: Matrix and Folder: main, name
the matrix, and enter the number of rows and number of columns. This takes us to the
Data/Matrix Editor, ready to begin entering elements into the matrix. Notice that the
matrix is initially filled with zeros.

Once we’ve finished entering the elements of the matrix, we return to the Home screen ready
to work with the matrix we’ve created.
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1.4 Split screens

One of the most attractive and useful features of the TI-89/92 is its Split Screen capability.
To set the Split Screen Mode, press MODE and then F2 to get to page 2 of the MODE dialog
box. There we can select either FULL, TOP-BOTTOM, or LEFT-RIGHT as the Split Screen MODE.
After selecting LEFT-RIGHT, let’s then select the Y= Editor as the Split 1 App, Graph as the
Split 2 App, and 1:1 as the Split Screen Ratio.

This takes us to a split screen with the Y= Editor active. We can then enter functions and
plot them by pressing �GRAPH.

Pressing [2nd]-APPS makes the inactive split screen active. The active split screen can be
switched to a different screen or application in the same way as in Full Screen mode. For
instance, here we might want to change window variables for the graph. So we just press
�WINDOW, enter the new window variables, and then press �GRAPH to replot the graph.

An interesting kind of Split Screen for examining function behavior is one that shows both
a table of values and a graph. Let’s look closely at the function f(x) = sin(x) ln(x) on the
interval 0 ≤ x ≤ 1. We’ll first change the window variables for the graph. Then we press
�GRAPH to replot the graph, [2nd]-APPS to switch to the other split screen application, and
then �Table to create the table.

You should experiment with TOP-BOTTOM Split Screen MODE and with different Split

Screen Ratios.
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Throughout the rest of this manual, we will use Split Screens at will, often simply to
convey more information in less space on the page.

1.5 Shortcuts and special characters

We have already been using a number of the TI-89/92’s shortcuts. For example, each of
�HOME, �Y=, �WINDOW, �GRAPH, �TblSet, and �TABLE is a shortcut to accessing an item
in the APPS menu. The following is a list of several other helpful shortcuts and tips.

On the Home screen:
• ans( i ) references the “answer” from the ith most recent entry in the Home screen history

area. Pressing ANS ([2nd]-[(–)]) puts ans(1) on the entry line. Notice also that pressing any
of [+], [−], [×], [÷], [ ˆ ], [x–1], or [STO�] with a blank entry line automatically inserts
ans(1).

• entry(i) references the ith most recent entry in the history area. Pressing ENTRY ([2nd]-

ENTER) puts the last entry on the entry line.

• F1-8 clears the history area of the Home screen (or the contents of the Y= Editor).

• Press [2nd]-[⇒] or [2nd]-[⇐] to move to the end or beginning of an entry on the entry line.

• Press � ENTER to force numerical evaluation of an entry. This is equivalent to the approx()

function (F2-5).

• Multiple entries, separated by colons, can be entered simultaneously.

• Copy and Paste commands in the Tools menu (F1-5,6) often help you avoid a lot of typing.
Shortcuts for these commands are � C and �V, respectively.

• Press [ ↑ ]-[⇒] or [ ↑ ]-[⇐] to highlight characters for copying and pasting. ([ ↑ ] is the
“shift” key.)

• After using [⇑] and [⇓] (up and down on the cursor pad) to highlight an entry or an
answer in the history area, you can press ENTER to place it on the entry line.

On the Graph screen:
• The ON key stops a plot, and the ENTER key pauses a plot.

• Moving the cursor about the screen with the cursor pad (in tracing or zooming) is much
faster while holding down the [2nd] key.

• � F brings up the Graph Formats dialog box.

Special Characters. Pressing CHAR ([2nd]-[+]) reveals a large collection of symbols and
characters that are not seen on the standard keyboard.

Greek letters are especially useful since many Greek letters are commonly used in mathe-
matics. Many of these letters can be accessed on the TI-92 QWERTY keyboard by pressing
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an appropriate prefix key combination first. The prefix for all Greek letters is [2nd]-G. After
pressing [2nd]-G, simply press the Roman “equivalent” of the desired letter. For example,
[2nd]-G-G produces γ (gamma), and [2nd]-G-A produces α (alpha). The analogous prefix key
combination for the TI-89 is [2nd]-[ ( ].

A collection of “International” characters, many of which are accented members of the
standard Roman alphabet, provides an extra source of single-character variables on the
TI-92. Prefixes for these accented letters are as follows.

[2nd]-A produces the grave accent for à, è, ı̀, ò, ù;

[2nd]-C produces the cedilla accent for ç;

[2nd]-E produces the acute accent for á, é, ı́, ó, ú, ý;

[2nd]-N produces the tilde accent for ñ, õ;

[2nd]-O produces the caret, or circumflex, accent for â, ê, ı̂, ô, û;

[2nd]-U produces the umlaut accent for ä, ë, ı̈, ö, ü, ÿ.

1.6 The Program Editor

This section is an introduction to creating and running a program on the TI-89/92.
However, if you’ve never had any programming experience, you should read Chapter 17 in
your TI-89/92 Guidebook before going any further here.

The first thing we should do, before entering any programs, is to create a new folder to
hold them. To do this, press VAR-LINK ([2nd][–]). In the resulting VAR-LINK dialog box, press
F1 and select Create Folder. Then enter myprogs (or whatever you like) as the name of the
new folder and exit VAR-LINK.

The VAR-LINK dialog box is where most memory management takes place. There we can
see a listing of all defined variables (including functions and programs). We can also delete
and rename variables, move a variable to a different folder, and send and receive files to and
from another TI-89/92 or a computer.

Now, before getting to a somewhat more useful program, let’s first create a very simple
program that does nothing more than draw random circles on the screen. To enter a new
program, first press the APPS key and then select Program Editor and New. . . . In the
subsequent dialog box select Type: Program, Folder: myprogs, and enter the name of the
program, circles, in the box beside Variable:.
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This takes us to the Program Editor, ready to begin entering the program.

Enter the program as listed below. The argument ncircs is the number of circles to be drawn
by the program.

: circles(ncircs) c© programname(arguments)

: Prgm c© beginning of program block

: Local i, xi, yi, ri, w, ht c© declares local variables

: ClrGraph: ClrDraw: FnOff: PlotsOff c© prepares Graph screen

: xmax–xmin →w: ymax–ymin →ht c© computes screen width and height

: For i, 1, ncircs c© beginning of For. . . EndFor loop

: xmin+rand()∗w →xi c© computes random x coordinate

: ymin+rand()∗ht →yi c© computes random y coordinate

: rand()∗min(w,ht)/3 →ri c© computes random radius

: Circle xi, yi, ri c© draws circle with center (xi,yi) and radius ri

: EndFor c© end of For. . . EndFor loop

: EndPrgm c© end of program block

Once you’ve entered the program, press �HOME or QUIT to return to the Home screen.
The program is run by entering myprogs\circles(ncircs) from the Home screen. Entering
myprogs\circles(30) will produce (something like) the following picture in a [−20, 20] ×
[−10, 10] window.

This program has a few features that will be common in the remainder of the programs
in this manual:

• declaration of Local variables;
• the commands ClrGraph: ClrDraw: FnOff: PlotsOff to prepare the Graph screen for

graphics commands;
• a For . . . EndFor loop.

Read the descriptions of each of these in Appendix A of your TI-89/92 Guidebook. Also
read the descriptions there for the statements Prgm, rand(), min(), and Circle.

In Exercise 1 at the end of this section, you will be asked to make a few straightforward
modifications to this program.

Now that we’ve had a touch of experience programming the TI-89/92, let’s create a
program that will connect an ordered collection of points with line segments. The program
might be used, for example, to draw a triangle or a quadrilateral. The collection of points
will be stored as an n by 2 matrix, where n is the number of points. Each row of the matrix
will contain the coordinates of a point.
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As before, to enter a new program first press the APPS key and then select Program Editor

and New. . . . In the subsequent dialog box, select Type: Program, Folder: myprogs, and enter
the name of the program—which here will be polyline—in the box beside Variable:. This
takes us to the program editor, ready to begin entering the program.

Carefully enter the program, which is listed with comments below.

: polyline(data) c© programname(arguments)

: Prgm c© beginning of program block

: Local i,n,a,b,c,d c© declares local variables

: ClrGraph:ClrDraw:FnOff :PlotsOff c© prepares Graph screen

: rowDim(data) →n c© finds number of rows in the data matrix

: For i,1,n–1 c© beginning of For loop

: data[i,1] →a c© extracts x coordinate of initial point

: data[i,2] →b c© extracts y coordinate of initial point

: data[i+1,1] →c c© extracts x coordinate of terminal point

: data[i+1,2] →d c© extracts y coordinate of terminal point

: Line a,b,c,d c© draws the segment

: EndFor c© end of For loop

: EndPrgm c© end of program block

Before running the program, we need to enter coordinates into a matrix. Suppose we
want to draw a diamond with vertices (2, 1), (3, 3), (2, 5), and (1, 3). To set up the matrix,
enter

[2,1; 3,3; 2,5; 1,3; 2,1] →a .
Note that the first point is also entered as the last point. (Why?) Now we’re ready to

draw the picture.

The polyline program can be used to plot a piecewise-linear function. This is very useful
for plotting a linear interpolation of a function whose values are known only at discrete
points, as shown below, where we use the Data/Matrix Editor to set up the matrix.
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Exercises

1. a) Modify the circles() program so that the circles all have the same radius, min(w,ht)/5.
Test by entering myprogs\circles(30).
b) Modify circles() so that the circles are centered at (0, 0) (with the same random radii
as in the original program). Test as in part a.
c) Modify circles() so that the circles are centered at (0, 0) and have radii given by
(i/ncircs)∗min(w,ht). Test as in part a.

2. Use polyline() to draw each of the following figures:
a) The triangle with vertices (0, 1), (4, 2), and (3, 3).
b) The regular pentagon with vertices

(
cos(2kπ/5), sin(2kπ/5)

)
for k = 0, 1, . . . , 5.

3. A factory discharges effluent into a river. The rate of effluent discharge (in cubic meters
per minute) is recorded hourly over a 24-hour period. The measurements are shown in
the following table.

Use polyline() to plot the effluent discharge versus time.

4. Read the descriptions in Appendix A of your TI-89/92 Guidebook for Circle, ClrGraph,

ClrDraw, DelVar, FnOff, For, Line, Local, min(), PlotsOff, Prgm, rowDim, colDim, rand(),
and the “copyright” symbol c©.



2 Functions and Equations

This chapter introduces a number of techniques for defining and plotting graphs of functions
and solving equations on the TI-89/92. There is a great deal of interesting related material
in Chapters 6, 7, and 12 of the TI-89 Guidebook and Chapters 3, 11, and 15 of the TI-92

Guidebook.

2.1 Functions

Functions may be defined on the TI-89/92 either in the Y= Editor or on the Home screen. A
function of a variable x is defined on the Home screen either by storing (STO �) an expression
in fnctname(x) or by entering Define fnctname(x) = expression. By defining a function on
the Home screen, we can name the function as we like (using up to eight characters). If we
define a function on the Home screen, we can graph that function by specifying it in the
Y= Editor and then pressing �GRAPH. (Some adjustment of the window variables is usually
necessary to get a nice plot.)

If we define a function in the Y= Editor, we can not only plot the graph readily but also
perform evaluations on the Home screen. (Any function defined in the Y= Editor must be
defined in terms of the variable x.)

Piecewise-defined functions. Piecewise-defined functions are easy to define by means
of the logical when() statement. The structure of when() is:

when(condition, trueResult, falseResult).

• Example 1. The function

f(x) =
{

x, if x < 1
−x, if x ≥ 1

can be defined by means of when(x<1, x, –x), which returns x if x<1 and returns –x if x≥1.
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Nested when() statements can be used to define piecewise-defined functions with more
than two “pieces.”

• Example 2. The function

f(x) =

{
x, if x < 0
0, if 0 ≤ x < 1
1, if x ≥ 1

can be defined by means of when(x<0, x, when(x<1, 0, 1)).

Another way of defining certain piecewise-defined functions is by means of the floor() (or
greatest integer) function:

floor(x) = n, where n ≤ x < n + 1 and n is an integer.

Notice the way that the TI-89/92 draws vertical (or near-vertical) segments wherever
these piecewise-defined functions undergo abrupt changes in value. Strictly speaking, such
vertical segments can never be part of the graph of a function, but they are an unavoidable
consequence of the way in which graphs are drawn on a (rather course) grid of “pixels.”
However, once you get use to seeing these vertical segments, they simply become indications
of “jumps” in the graph. In order to make them as vertical as possible, thereby avoiding as
much chance for misinterpretation as possible, you should always set the window variable
xres to 1 when plotting such a function.

Later, in the context of approximating the area under the graph of a function, we will be
interested in plotting a “piecewise constant,” or “step-function” approximation to a given
curve. This can be done quite easily with the floor() function.

• Example 3. Consider the function f(x) = sin πx for 0 ≤ x ≤ 1. To obtain a step-function
approximation of f with n “steps,” plot the function f

(
floor(nx)/n

)
. With n = 10 and

n = 20 steps, we see the following.
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Notice that the “steps” all lie to the right of the curve. To have steps that lie to the left of
the curve, plot instead f

(
(floor(nx)+1)/n

)
. The graph of f

(
(floor(nx)+.5)/n

)
will intersect

the curve at the midpoint of each step.

Inverse functions. With the DrawInv command, we can plot the graph of an inverse
function.

• Example 4. Let’s plot f(x) = x3 along with f−1(x) = 3
√

x. Enter y1(x)= x3 in the Y=

Editor and then DrawInv y1(x) on the Home screen.

DrawInv is especially useful for plotting equations in which x is a function of y.

• Example 5. Suppose we are interested in the region in the plane that is bounded by the
graphs of y = x − 1 and x = y2 − 1. We can get the graph of x = y2 − 1 by entering and
unchecking y2(x)= x2– 1 in the Y= Editor (F-4) and then entering DrawInv y2(x) on the
Home screen.

Note that DrawInv may also be accessed from the Draw menu (F6) of the Graph screen.
Doing so automatically takes you to the Home screen.

Exercises

1. Graph the functions sinπx, sin 2πx, and sin 3πx simultaneously over the interval [−2, 2].

2. Graph the functions sin
(
2π

(
x − k

4

))
, k = 0, 1, 2, 3, simultaneously over the interval [0, 1].

3. Graph the functions x3 − kx, k = 0, 1, 2, 3, simultaneously over the interval [−2, 2].

4. Graph the function

f(x) =
{
−x, if x < 0
x2 − 1, if x ≥ 0
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5. Graph the function

f(x) =
{

1, if x < π/2
sin x, if x ≥ π/2

6. Graph the function f(x) = (x − floor(x))2 on the interval [−2, 2].

7. Graph the function f(x) = (−1)floor(x) on the interval [−4, 4].

8. Graph the function f(x) = x(−1)floor(x) on the interval [−4, 4].

9. Graph the function f(x) = x/floor(x) on the interval [−10, 10].

10. a) Let g(x) = x2. Graph the function f(x) = g(floor(nx)/n), together with g, on the
interval [0, 1] for each of n = 2, 4, and 8.

b) Repeat part a with f(x) = g(floor(nx + 1)/n).

c) Repeat part a with f(x) = g(floor(nx + .5)/n).

11. Repeat Exercise 10 with g(x) = cosπx.

12. Graph the equations y = x2 − 1 and x = y2 − 1 simultaneously. How many distinct
regions in the plane are bounded by these two graphs?

13. Graph the equations y = sinx and x = sin y simultaneously in the window [−2π, 2π] ×
[−2π, 2π]. Repeat with y = cosx and x = cos y.

14. Graph the equations y = tanx and x = tan y simultaneously in the window [−π, π] ×
[−π, π]. Repeat with y = cotx and x = cot y.

2.2 Parametric curves

Often it is convenient to express the x- and y-coordinates of points on a curve in terms of
a third variable (or parameter) t. This means that x and y are given in terms of t by a pair
of parametric equations

x = f(t), y = g(t).

This is particularly useful when we want to think of each point on the curve as the position
of a moving particle at time t. The TI-89/92 has a PARAMETRIC Graph mode for defining
and plotting parametric curves.

• Example 1. Suppose that x and y are given by

x = cos t, y = sin 2t.

First we’ll press MODE and switch the Graph mode to PARAMETRIC. Then in the Y= Editor
we define xt1= cos t and yt1= sin 2t prior to setting appropriate window variables.
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Now we’re ready to graph the curve. It is particularly interesting to watch the curve being
drawn if either Path Style is selected in the Y= Editor (F6-6) or Leading Cursor is set to ON

in Graph Format (F1-9). Each of these does essentially the same thing. Also, note that the
speed at which the curve is plotted can be adjusted by changing the value of the window
variable tstep.

Projectile paths. Parametric equations for the path of a projectile with initial position
(0, 0) are

x = (v0 cos θ0) t, y = −16 t2 + (v0 sin θ0) t,

where v0 is the velocity of the projectile at time t = 0 and θ0 is the angle between the
trajectory and a horizontal line at time t = 0. (These equations arise only if we ignore air
resistance.)

• Example 2. Let’s plot the trajectory of the projectile if v0 = 100 feet per second and
θ0 = π/4.

If air resistance is taken into account, it is possible to derive the following parametric
equations for the path of the projectile:

x =
v0 cos θ0

k

(
1 − e−kt

)
, y =

1
k

[
(v0 sin θ0 + 32/k)

(
1 − e−kt

)
− 32t

]
where k is a “drag coefficient” divided by the mass of the projectile.

• Example 3. Let’s plot the trajectory of the projectile if v0 = 100 feet per second, θ0 = π/4,
and k = .1, while simultaneously plotting the trajectory that results from ignoring air
resistance. Note that we enter the functions in terms of the parameter k and then specify
the value of k on the Home screen. Also, setting Graph Order to SIMUL in Graph Format

(F1-9) causes the graphs to be plotted simultaneously rather than sequentially, which makes
for a fun plot to watch.
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Exercises

In Exercises 1–5, plot the curve given by the parametric equations on the specified interval.
Adjust window variables to get a nice graph. In particular, adjust the value of tstep to affect
the speed at which the curve is plotted.

1. x = cos t, y = sin t for 0 ≤ t ≤ 2π

2. x = cos t, y = sin 3t for 0 ≤ t ≤ 2π

3. x = sin 2t, y = cos 5t for 0 ≤ t ≤ 2π

4. x = et−2, y = e2t−4 for 0 ≤ t ≤ 4

5. x = cos(et−2), y = sin(et−2) for 0 ≤ t ≤ 4

6. Simultaneously plot the paths of a projectile, ignoring air resistance, for initial velocity
v0 = 100 feet per second with θ0 = 30◦, 40◦, 45◦, 50◦, and 60◦.

7. For a projectile propelled initially from ground level, the y coordinate of the projectile’s
position represents height above the ground. At some positive time t the projectile’s
height becomes zero, indicating that the projectile has hit the ground (after which the
parametric equations of the path are no longer in effect). Using the parametric equations
that account for air resistance, and using v0 = 100 feet per second and θ0 = π/4,
graphically estimate the distance from (0, 0) to where the projectile hits the ground, for
each of the drag coefficient values k = 0.10 and 0.11.

8. A cannonball is fired from the edge of a cliff with initial velocity 100 feet per second.
Using the parametric equations that account for air resistance and a drag coefficient of
k = .1, graphically and experimentally estimate the angle θ0 at which the cannonball
should be fired in order to hit a target that is on the ground 100 feet below and 200 feet
from the base of the cliff.

2.3 Solving equations

The TI-89/92 has three built-in functions for solving equations: solve(),

zeros(), and nSolve(). Each can be accessed in the Algebra menu (F3) of the Home screen.
The first of these, solve(), attempts to find exact solutions. If the Exact/Approx MODE is set
to AUTO, then solve() switches to a numerical scheme for approximating solutions, if exact
solutions can’t be found.

• Example 1. Suppose we want to find the zeros of the function f(x) = 9x4−6x3−15x+10.
A quick plot of the function reveals that f has exactly two real zeros. The solve() function
is able to find the exact value of each of them.
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However if we change the function slightly to, say, f(x) = 9x4−6x3−15x+11, then Solve()

can find no exact solutions and so returns approximate solutions.

The zeros() function does nothing more than execute solve() and return the results in a
list [TI-89/92 Guidebook, Appendix A]. Items in the list are easily extracted and saved. For
example, entering ans(1)[2]→root2 stores the second element of the last result in the variable
root2. Note that the first argument in zeros() is not an equation, but rather an expression.

• Example 2. Let’s apply zeros() to the functions in Example 1. Note that the same
solutions are found, but they are returned in the form of a list.

In situations where exact solutions are not expected—or not desired—quicker results
can typically be obtained by using nSolve() instead of solve(). Notice that nSolve() returns
only one solution at a time. By restricting nSolve()’s search to a certain range of the variable
where a desired solution is known to live, we can force nSolve() to return the desired solution.
Restriction of the search range also causes nSolve() to do its work faster, in general.

• Example 3. Let’s apply nSolve() to locate the zeros of the functions in Example 1,
restricting the search as necessary to find all the zeros.

There are also situations in which one would like to find solutions of an equation on
some specified interval. A typical example involves solving a trigonometric equation that
has infinitely many solutions.

• Example 4. Suppose we wish to find all solutions of the equation

2 sinx cos2 x = 2 sin 2x + 1

in the interval [0, 2π]. Graphing each side of the equation reveals that there are four solutions
in this interval, which zeros() is able to locate numerically. Notice that the first argument
in zeros() is the expression y1(x)–y2(x), not the equation y1(x)=y2(x).
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Systems of equations. A system of two (possibly nonlinear) equations in two unknowns
can sometimes be solved by using solve() in conjunction with the “with” operator (displayed
as |). This substitution technique is fairly effective for solving systems that allow us to seek
out one solution at a time.

• Example 5. Suppose we want to solve simultaneously the pair of equations

x2 + y = 1

x2 + y2 = 4

Graphing the two equations reveals symmetry that allows us to simply focus our attention
on the solution pair in which x > 0. So first we’ll solve the first equation for y in terms of x
and then solve the second equation for x, using the “with” operator to substitute the first
result into the second and restrict x to be positive.

Finally, we substitute the value of x we’ve found into the formula for y from the previous
step.

This substitution technique works very well on pairs of linear equations. This is outlined
nicely in your Guidebook.

The simult() function provides a simple way of solving systems of linear equations.
The system should first be written in matrix form

Ax = b,

where A is the matrix of coefficients, x is the column vector of unknowns, and b is the
column vector of right-side constants. Such a system is solved by entering simult(A,b).

• Example 6. Let’s solve the system

2x − 3y + z = 5
2x + y − 2z = 1

3x − 7y + 3z = 2
.
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First we’ll define A and b. Note that arrays are delimited by square brackets and that rows
of the matrix and elements of the column vector are separated by semicolons. (We could
also use the Data/Matrix Editor to enter the matrix.)

Now we need only enter simult(A,b) to obtain the solution. (Notice that the upper-case “A” is
automatically converted to a lower-case “a.”) Also, we can check the answer by multiplying
the result by A.

Exercises

In Exercises 1–5, graph the given function to determine the approximate location of each of
its zeros; then find all the zeros of the function.

1. f(x) = x3 − x2 − 2x + 1

2. f(x) = 2x5 − 5x3 + 2x2 + 3x − 3

3. f(x) = x2e−x/2 − 1

4. f(x) = 9 cosx − x

5. f(x) = tan−1 x − x2

In Exercises 6–8, graph both sides of the given equations to determine the approximate
location of each of its solutions on the specified interval; then find all the solutions on that
interval.

6. sin x cos 2x = cosx sin 3x, and 0 ≤ x ≤ 2π

7. sin x2 = sin2 x, and 0 ≤ x ≤ π

8. tan x = x, and 0 ≤ x ≤ 3π

9. Use the substitution method to solve the system 2x + 3y = 1, x2 + y2 = 1.

In Exercises 10–12, use simult() to solve the given system of linear equations.

10. 3x − 2y = 5, 7x + 3y = 2

11. 3x − 2y + z = 5, 7x + 3y − 2z = 2, x + y + z = 0

12. 3x − 2y + z − 2w = 5, 7x + 3y − 2z + w = 2, x + y + z + w = 0
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13. A closed cylindrical can has a volume of 100 cubic inches and a surface area of 100 square
inches. Find the radius and the height of the can.

14. Two spheres have a combined volume of 148 cubic inches and a combined surface area
of 160 square inches. Find the radii of the two spheres.

15. An open-topped aquarium holds 40 cubic feet of water and is made of 60 square feet of
glass. The length of the aquarium’s base is twice its width. Find the dimensions of the
aquarium.

16. Find the equation of the parabola that passes through the points (−1, 1), (1, 2), and
(2, 3).

17. Find the cubic polynomial f(x) such that f(1) = f(2) = f(3) = 1 and f(4) = 7.

2.4 Exploring graphs

Once we plot a graph, or collection of graphs, a great deal of detailed information can be
obtained easily without leaving the Graph screen. The Math menu on the Graph screen has
several commands that are useful for exploring graphs. For example, suppose that we wish
to study the function f(x) = sin x cos 3x on the interval 0 ≤ x ≤ π. First we enter the
function in the Y= Editor and define appropriate window variables. Then we plot the graph
and select the Math menu (F5).

The first item in the Math menu is Value (F5-1). This command lets us compute function
values and view the corresponding point on the graph. Value prompts us to enter an x. After
doing so, we press ENTER and see the value of y and the point on the graph.

The next item in the Math menu is Zero (F5-2), which will find the zeros of the function.
Selecting Zero brings a prompt to enter a lower bound for the zero we want to find. After
entering that, we’re prompted for an upper bound. When lower and upper bounds have
been entered, a zero between them is found.
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The next two items in the Math menu are Minimum (F5-3) and Maximum (F5-4). These
are similar to Zero in that we are prompted to enter both lower and upper bounds for the
point we’re looking for. Entering lower and upper bounds of 0 and 2, respectively, lets us
find the bottom of the first valley on the curve and the top of the first peak.

Now let’s plot two graphs at once. Say we’re interested in the region in the plane that is
bounded by the graphs of y = (x + 1)2(x − 1)2 and y = 2x. First we’ll plot the two graphs
together.

Then we’ll find the points of intersection of the two graphs. For this we can use the Inter-

section command from the Math menu (F5-5).

Finally, we’ll use the Shade command (F5-C) to shade the region.

Other items in the Graph screen’s Math menu will be discussed in subsequent chapters.

Exercises

In Exercises 1–4, graph the function on the indicated interval. Then find all zeros, locally
minimum values, and locally maximum values.

1. f(x) = x3 − 3x2 + x + 2 on [−1, 3]

2. f(x) = sin x2 − sin2 x on [0, 3]
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3. f(x) = e−x cos(πx) on [−.5, 2.5]

4. f(x) = x6 − 2x3 on [−1, 1.5]

In Exercises 5–8, graph both equations, showing the region bounded by the two graphs.
Find the points of intersection, and then shade the region bounded by the two graphs.

5. y = x3 − 3x2 + x + 2 and y = x + 2

6. y = sin x and y = x2

7. y = (x + 1)2(x − 1)2 and y = 2 − (x + 1)2(x − 1)2

8. y = e−x and y = x(2 − x)

2.5 Programming notes

In this section, we will illustrate a few programming ideas by creating a function, sgnchng(),
that will search for a sign change in a given function. Such a function can be used to find
an interval that contains a zero of the given function. Once such an interval is known, the
endpoints can be used to help the nSolve() function find the zero much more efficiently. The
arguments of our function sgnchng() will be as in

sgnchng(f , xvar, bnds, step).

The first and second arguments, f and xvar, will be expressions representing the given
function and its independent variable, respectively. The third argument, bnds, will be a
list containing the left and right endpoints of the interval in which we’re searching for a
sign change. The last argument, step, will be the distance between test-values of xvar. The
function will return either a list containing the test-values of xvar just before and just after
(or at) the found sign change or else a message that no sign change was found.

Press APPS and select Program Editor and New. . . . In the NEW dialog box select Type:

Function and Folder: myprogs, and enter Variable: sgnchng.

In the Program editor, carefully enter the following function.

: sgnchng(f,xvar,bnds,step)

: Func: Local i,n,xi,yi,ynxt,end

: bnds[1] →xi: bnds[2] →end

: f | xvar=xi →yi

: f | xvar=xi+step →ynxt

: If sign(yi)�=sign(ynxt)

: Return {xi,xi+step}
: While sign(yi)=sign(ynxt) and xi<end

: xi+step →xi: ynxt →yi

: f | xvar=xi →ynxt

: EndWhile

: If xi≥end and sign(yi)=sign(ynxt) Then

: Return “no sign change found”
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: Else

: Return {xi–step,xi}
: EndIf

: EndFunc

(Find �= and ≤ by pressing MATH and selecting Test.) Let’s try out this program on the
following problem.

• Example 1. The graphs of y = x3 and y = ex/10 intersect twice. For each of the points
of intersection, find a pair of consecutive integers that bounds the x-coordinate. Then use
nSolve() to find each of the zeros.

Notice that we simply want to “bracket” the zeros of the function

f(x) = x3 − ex/10

with a pair of consecutive integers. So let’s first try to bracket the lesser of the two zeros,
and then the greater.

So we find that one of the two zeros of f is in the interval (1, 2], and the other is in (150, 151].
Now that we have crude bounds on each of the zeros of f , we’ll use nSolve() to locate them
more precisely. To do this, we use the “with” operator to restrict nSolve()’s search to the
desired interval.

Theoretical stuff. In the last two examples we estimated a zero of a function by finding
an interval at whose endpoints the values of the function had opposite signs. What is it
that guarantees that such an interval must contain a zero of the function? It turns out that
the answer is the continuity of the function. This is a special case of an important theorem
known as the Intermediate Value Theorem. For more on this, see Chapter 2 of Stewart’s
Calculus .

Exercises

1. Use sgnchng() to bracket between consecutive integers the two zeros of f(x) = ln x −
.005x−4 to three decimal places. Then use nSolve() and the “with” operator to find each
of these zeros of f .

2. Use sgnchng() to bracket between consecutive integers the one and only real zero of
f(x) = x3 − 231x− 83. Then use nSolve() and the “with” operator to find it.
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3. Suppose that the height above the ground of a projectile after t seconds is described by

y = 320
[
13

(
1 − e−t/5

)
− t

]
.

a) Use sgnchng() to find an interval [t1, t1 + 1] that contains the time t at which the
projectile hits the ground.

b) Use sgnchng() to find an interval [t2, t2 + .1] that contains the time t at which the
projectile hits the ground.

c) Use sgnchng() to find an interval [t3, t3 + .01] that contains the time t at which the
projectile hits the ground.

4. Read the descriptions of sign(), If, Return, and While in Appendix A of your TI-89/92

Guidebook.



3 Limits and the Derivative

The graphical, algebraic, and numerical capabilities of the TI-89/92 allow us to explore the
basic concepts behind limits and derivatives. This chapter describes these capabilities and
concepts and parallels much of the material in Chapter 2 of Stewart’s Calculus .

3.1 Limits

The notion of limit is the basis of all of calculus. From one practical point of view, we can
think of a limit as a means of describing a function’s behavior at a point where the function
cannot be evaluated.

• Example 1. The function

f(x) =
sinx

x
is undefined at x = 0, but defined at all other x. The question arises, then, as to how the
function behaves for x nearby, but not equal to, 0. More precisely, what do the values of the
function do as x approaches 0? Let’s investigate this by making a table of values and then
by plotting the graph.

So we see that even though f(0) is undefined, values of x near 0 produce values of f(x) near
1. Moreover, it appears that the closer x is to 0, the closer f(x) is to 1. We describe this
by saying that 1 is the limit of f(x) as x approaches 0 and express it mathematically by
writing

lim
x→0

sin x

x
= 1.

We can also use the TI-89/92’s limit() function to calculate this limit.

• Example 2. Consider the function

f(x) =
(x3 − 1)4/3

x − 1
.

This function is undefined at x = 1 but defined elsewhere. Let’s investigate the behavior of
this function near x = 1.
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Thus we see that

lim
x→1

f(x) = 0.

Moreover, the graph indicates that x must be extremely close to 1 in order for f(x) to be
at all close to 0.

It is important to note here that we have have not proved that either of our stated limits
in the previous examples is correct. Nor have we even given a meaningful definition of we
mean by the limit of a function f as x approaches a number a—we have merely relied on
an intuitive notion. Chapter 2 of Stewart’s Calculus gives a informal definition (as well as
similar definitions for one-sided limits) and a precise technical definition.

One-sided limits. It is not uncommon for a limit to fail to exist. Sometimes when a limit
does not exist, one-sided (i.e., left- or right-sided) limits do exist. The TI-89/92’s limit()

function finds left- or right-sided limits, when −1 or 1, respectively, is inserted as a fourth
argument.

• Example 3. Consider the function

f(x) =
2x + |x|

|x| cosx,

which is undefined at x = 0. To compute the left-sided limit as x approaches zero, we’ll
enter

limit((2x+abs(x))/abs(x)∗cos(x),x,-1) .

For the right-sided limit we’ll enter the same except with 1 as the last argument.

This function has what is sometimes called a “jump discontinuity” at x = 0 by virtue of the
fact that both one-sided limits exist and have different values.

Infinite limits. Sometimes one-sided limits fail to exist because the function in question
has a vertical asymptote. In such cases, one-sided limits can be assigned a value of either ∞
or −∞ to described the manner in which the graph of the function approaches the vertical
asymptote.

• Example 4. Each of the functions

f(x) =
1

x − 1
and g(x) =

1
(x − 1)2

,

has a vertical asymptote at x = 1. One-sided limits decribe the behavior of each function
at the vertical asymptote.
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Limits at ±∞. Just as infinite limits occur at vertical asymptotes of a function, limits at
±∞ determine any horizontal asymptote that a function might have. The limit of f(x) as
x → ∞ is a number to which f(x) approaches as x increases without bound. The limit of
f(x) as x → −∞ is a number to which f(x) approaches as x decreases without bound.

• Example 5. The function f(x) = tan−1 x has distinct limits at ±∞.

• Example 6. The function f(x) = e−x/10 cosx2 has a limit at ∞ but no limit at −∞.

• Example 7. The rational function f(x) = 2x2+5x−1
x2+1 has the same limit at both ±∞.

Limits of expressions with symbolic parameters. As we will see in the next
section, limits such as

lim
h→0

√
4 + h − 2

h

are very important in calculus. This particular limit is easily found to be 1
4 . Notice, however,

that this limit is just the value at x = 4 of the function f defined by

f(x) = lim
h→0

√
x + h −

√
x

h
.

Let’s see what happens if we try to evaluate f symbolically at x. First we define the quotient(√
x + h −

√
x
)
/h as a function q(h) and then find the limit of q(h) as h → 0.
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Note that once the limit is computed in terms of x, we can evaluate f(x) from the resulting
algebraic expression.

Exercises

In Exercises 1–10, estimate the requested limit by using Trace (F3) on the graph. Then use
the TI-89/92’s limit() function to find the limit.

1. lim
x→1

x3 + 2x − 3
x − 1

6. lim
x→0−

| sin x|
x

2. lim
x→1

√
2x3 − x2 − 4x + 3

x − 1
7. lim

x→0+

|x| − x2

x

3. lim
x→0

x sin(1/x) 8. lim
x→1−

x3 + 2x − 4
x − 1

4. lim
x→0

sin(e2x − 1)
x

9. lim
x→0+

x3 + 2x − 3
x

5. lim
x→0

sin 5x

x2
10. lim

x→∞

√
3x2 + 1
2x − 5

In Exercises 11–13, plot the given function; then find both the left- and right-sided limits at
each specified point. The TI-89/92 definition for the function is given to you in Exercise 11.

11. f(x) =




−x − 2, if x < −1
−1, if −1 ≤ x ≤ 0
sin 2πx, if 0 < x < 1
x, if 1 ≤ x

at x = −1, 0, 1;

= when(x<-1, -x–2, when(x<=0, -1, when(x<1, sin(2πx), x)))

12. f(x) =

{ 2, if x < 0
1, if 0 ≤ x < 2
3, if 2 ≤ x

13. f(x) =

{ 1, if x < −1
|x|, if −1 ≤ x ≤ 1
1, if 1 < x

at x = 0, 2 at x = −1, 1

14. Find lim
h→0

(x + h)ex+h − xex

h
.

15. Find lim
x→1

(ax − 1)2 − (a − 1)2

x − 1
.
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3.2 The Derivative

The fundamental geometric problem with which we are concerned is that of finding the slope
of the graph of a function f at a given point (a, f(a)) on that graph. This slope is defined
as the slope of the tangent line to the graph at the given point.

As illustrated above, tangent lines can be plotted from the Home screen with the LineTan

command. The Math menu on the graph screen also has a Tangent command (F5-A). After
selecting Tangent from the Math menu, you can either type in the desired x-coordinate or
use the cursor pad to trace along the curve to the desired point.

Pressing ReGraph (F4) will erase the tangent line(s) you’ve drawn.
Slopes of lines are easy to compute by means of the slope formula

m =
y2 − y1

x2 − x1
,

provided we know two points on the line. The difficulty that arises in finding the slope of
the tangent line to a graph is that only one point on it is known, namely (a, f(a)). So we
take an approach that is the essence of calculus: We approximate the quantity and take the
limit as we refine our approximations.

The slope of the tangent line at (a, f(a)) can be approximated by the slope of the secant
line through (a, f(a)) and a nearby point (a + h, f(a + h)) on the graph, where h is some
small number. The slope of such a secant line may be viewed as a function of h and is easily
calculated as

mPQh
=

f(a + h) − f(a)
h

.

The equation of the secant line is then

y = f(a) + mPQh
(x − a).

• Example 1a. Let’s graph f(x) = x(2 − x) along with the secant line through (.5, f(.5))
and (1, f(1)). We’ll first define functions m(h) and secline(x) by entering

(f(a+h)–f(a))/h →m(h)

and then

f(a) + m(h)∗(x–a) →secline(x) .

Then we’ll enter x∗(2–x) →f(x), .5 →a and .5 →h. Finally after entering y1=f(x) and
y2=secline(x) in the Y= Editor, we plot the graph.
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The slope of the tangent line at (a, f(a)) is given by

mtan = lim
h→0

mPQh
= lim

h→0

f(a + h) − f(a)
h

.

We can illustrate this limit process by graphing secant lines for a few decreasing values of
h.

• Example 1b. Again we’ll illustrate with f(x) = x(2−x) and a = .5, plotting secant lines
corresponding to h = .5, .25, and .05.

This development motivates the definition of a function f ′, the derivative of f . The
definition is

f ′(x) = lim
h→0

f(x + h) − f(x)
h

for all x at which the defining limit exists. Note that values of f ′ give tangent line slopes on
the graph of y = f(x); that is,

f ′(a) = mtan at (a, f(a)).

• Example 2. Let f(x) = x3 − x. Then

f ′(x) = lim
h→0

(
(x + h)3 − (x + h)

)
− (x3 − x)

h
.

One quirk of the TI-89/92 is that if we define f(x), then entering f(x +h) prompts an error
message. However, we can circumvent this problem if we define f in terms of a different
symbol, say t.

We have found that f ′(x) = 3x2 − 1 is the derivative of f(x) = x3 −x. Now the slope of the
tangent line to the graph of f at (1, 0), for example, is f ′(1) = 2, and so the equation of the
tangent line there is y = 2(x − 1).
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Numerical approximations of derivative values are often useful. A reasonably good ap-
proximation to f ′(a) can typically be obtained by computing mPQh

=
(
f(a + h) − f(a)

)
/h

for some small value of h, say, h = .001. However, a better approximation is obtained from
the central difference formula

f(a + h) − f(a − h)
2h

with no additional computational effort. This is in fact what is done by the nDeriv() function,
found in the Calc menu (F3-A from the Home screen). The default value of h used by nDeriv()

is .001. (h may also be specified as a third argument.)

Also note that nDeriv() returns the “numerical derivative” in the form of an expression.
It is also interesting to plot the result of nDeriv() together with the original function to

which it was applied.

• Example 3. Let’s plot the graph of y = sin x together with its numerical derivative. (Does
the graph of the numerical derivative look like a familiar function?)

Remember, though, that nDeriv() produces only an approximation to the derivative. The
derivative is the limit of such approximations as h → 0. Typically, such a limit is quite easy
for the TI-89/92 to compute.

• Example 4. Find the derivative of f(x) = x3 − x2 − 3x + 5 by computing the limit of its
numerical derivative as h → 0. Plot the graphs of f and f ′.
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Derivative values (i.e., tangent line slopes) can also be found on the Graph screen by
selecting Derivatives from the Math menu (F5-6). After selecting Derivatives from the Math

menu, you can either type in the desired x-coordinate or use the cursor pad to trace along
the curve to the desired point.

Exercises

1. Plot the function f(x) = x2 − 1 in the window [−2, 2] × [−2, 3]. Then plot its tangent
lines at x = −1, 0, and 1.

2. Plot the function f(x) = sinx in the window [−1, 7] × [−1.5, 1.5]. Then plot its tangent
lines at x = 0, π

2 , π, 3π
2 , and 2π.

3. Plot the function f(x) = sin
(

π
2 x

)
in the window [0, 4]× [−1.5, 1.5] along with secant lines

through (1, 1) and each of the points (8/3, −1/2), (2, 0), (5/3, 1/2), and (4/3,
√

3/2).

In Exercises 4–7, compute for the given function f its difference quotient

mPQh
=

f(x + h) − f(x)
h

.

Then compute the limit of mPQh
as h → 0 to obtain the derivative of f .

4. f(x) = 3x2 − x + 2

5. f(x) = e−x

6. f(x) = 1/x

7. f(x) = sin2 x

In Exercises 8–10, for the given function f compare the values of:
a) the difference quotient

mPQ.1 =
f(a + .1) − f(a)

.1
at the prescribed point x = a

b) nDeriv(f(x),x,.1) at x = a

c) f ′(a) = limit(nDeriv(f(x),x,h)|x=a, h, 0)

8. f(x) = 3x2 − x + 2, a = 1

9. f(x) = ex, a = 1

10. f(x) = sin x, a = π/3

11. Plot the graph of f(x) = x3/3 along with the graph of nDeriv(f(x),x).

12. Plot the graph of f(x) = x3 − x2 − x along with the graph of nDeriv(f(x), x). Use Trace

to estimate the values of x where nDeriv(f(x), x) = 0. What is happening with the graph
of f at these values of x?
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13. For each of the following functions, plot the function along with
nDeriv(f(x),x) on the indicated interval. Then, from what you observe in the graph, hazard
a guess as to exactly what f ′(x) is.
a) f(x) = sinx, 0 ≤ x ≤ 2π

b) f(x) = sin 2x, 0 ≤ x ≤ 2π

c) f(x) = cosx, 0 ≤ x ≤ 2π

d) f(x) = e−x, −2 ≤ x ≤ 2

14. Find the value of x in the interval [0, 2] where the tangent line to the graph of f(x) =
x3 − x2 − x is parallel to the secant line through (0, 0) and (2, 2). Plot the graph of f
and both lines in the window [0, 2] × [−2, 2].

3.3 Higher-order derivatives

The TI-89/92 has a built-in operator for symbolic computation of derivatives. It is the d()

operator located both in the Calc menu (F3-1) and on the keyboard as [2nd]-[8]. Note that
this is not the same as the letter “d.” The syntax for using d() to compute the first derivative
of an expression f with respect to the variable var is

d(f, var).
The d() operator is very convenient for computing messy derivatives. To illustrate, let’s use
d() to compute the derivatives of

f(x) =
x2

√
x3 − 2

x2 − 3
and f(x) =

sin(3x)
x2 + 1

.

Notice the alternative “Leibniz” notation d
dx [f(x)] for f ′(x).

The d() operator is especially handy for computing higher order derivatives. The second
derivative of a function f is, by definition, the derivative of f ′ and is denoted by f ′′. The
third derivative of a function f is, by definition, the derivative of f ′′ and is denoted by f ′′′,
and so on. In Leibniz notation, higher order derivatives are denoted by

d2

dx2

[
f(x)

]
= f ′′(x),

d3

dx3

[
f(x)

]
= f ′′′(x), and so on.

The syntax for using d() to compute the nth derivative of an expression f with respect to
the variable var is

d(f, var, n).

The following shows d() used to find d2

dx2 [x3] and the first four derivatives of x cosx.
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The second derivative and concavity. The first and second derivatives of a function
f have simple interpretations in terms of the graph of f . The sign of f ′(x) determines
where the function f is increasing or decreasing. The sign of f ′′(x) determines where the
graph of f is concave up or concave down. This is illustrated as follows with the function
f(x) = x4 − 2x2. First we’ll graph f together with f ′.

Notice that f ′(x) > 0 wherever f(x) is increasing, f ′(x) < 0 wherever f(x) is decreasing,
and f ′(x) = 0 where each local maximum or minimum value of f occurs. These facts are
not at all surprising in light of the fact that f ′ gives the slope of the graph of f . Now let’s
look at the graph of f together with the graph of f ′′.

Notice that f ′′(x) > 0 wherever the graph of f is concave up, f ′′(x) < 0 wherever the
graph of f is concave down. The reason for this is that the concavity of the graph of f is
determined by whether the slope f ′(x) is increasing or decreasing. (See Exercise 7.)

It is also easy to perform such investigations using only the Y= Editor (although the
plotting of derivatives can be considerably slower). Let’s look, for example, at f(x) = x5 −
2x3. We’ll enter this function as y1, d(y1(x),x) as y2, and then d(y1(x),x,2) as y3. (Note that
in the second picture only y1 and y3 are plotted, since y2 is “unchecked” (F4).)

The graph of f(x) = x2/5(2 − x)1/3 has a cusp at (0, 0) and a vertical tangent at (2, 0).
Such features are related to the fact that the graph of f ′ has vertical asymptote at x = 0
and x = 2.
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An inflection occurs on the graph of a function wherever the graph undergoes a change
in concavity from concave upward to concave downward or vice-versa. A point where an
inflection occurs (i.e., an inflection point) can be located with the Inflection command in
the Graph screen Math menu (F5-8). Let’s look at the example of f(x) = sinx cos 3x on
the interval 0 ≤ x ≤ π. We’ll plot the function and then select Inflection by pressing F5-8.
(We are prompted for lower and upper bounds on the x-coordinate of the desired inflection
point.)

(This graph obviously also has a third point of inflection at (π/2, 0).

For more details and examples concerning the effect of derivatives on the shape of the
graph of a function, see Sections 4.3–4.6 in Stewart’s Calculus .

Exercises

1. Plot the function f(x) = x(1 + x6)−1/2 along with its first and second derivatives in
a [−2, 2] × [−4, 4] window using each of the following methods. Notice and explain the
difference in speed.

a) In the Y= Editor, define y1=x/
√

(1+xˆ6), y2=d(y1(x),x), and
y3=d(y2(x),x). Set window variables and press �GRAPH.

b) In the Y= Editor, define y1=x/
√

(1+xˆ6), y2=dy1(x), and y3=dy2(x). From the Home
screen, enter d(y1(x),x), followed by ans(1) →dy1(x), and enter d(dy1(x),x), followed
by ans(1) →dy2(x). Set window variables and press �GRAPH.

For the functions in Exercises 2–6, first plot the function together with its derivative and
note the correspondence between the sign of the derivative and the increasing/decreasing
nature of f(x). Then plot the function together with its second derivative and note the
correspondence between the sign of the second derivative and the concavity of the graph of
f .

2. f(x) =
1

x2 + 1
3. f(x) = tan−1 x 4. f(x) =

x

x2 + 1

5. f(x) =
√

x − x 6. f(x) = (x + 1)2/3x3/5

7. For each of the following functions, graph the function in the window [−2, 2] × [−2, 2].
Then use either the LineTan command from the Home screen or the Tangent item from the
Graph screen Math menu (F5-A) to graph the tangent lines at x = −1, 0, and −1. Does
the slope of the tangent line increase or decrease? State whether the graph is increasing
and concave up, decreasing and concave up, increasing and concave down, or decreasing
and concave down.

a) f(x) = e−2x/3 − 2 b) f(x) = e2x/3 − 2

c) f(x) = 2 − e2x/3 d) f(x) = 2 − e−2x/3
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For the functions in 8 and 9, graph the function along with its second derivative. Use
Inflection from the Graph screen Math menu to locate the inflection points on the graph of
f . Then use Zero from the Graph screen Math menu to locate the zeros of f ′′.

8. f(x) = x5 − 2x3 9. f(x) = x5/3(2 − x)2

For the functions in 10–13, compute f (n)(0) for n = 1, 2, 3, 4, 5. (f (n)(0) denotes the nth

derivative of f .) By observing a pattern in these numbers, express f (n)(0) in terms of n.

10. f(x) = xe−x 11. f(x) = x cos x

12. f(x) =
1

1 + x
13. f(x) =

√
x + 1

3.4 Programming notes

Secant and tangent lines. The first program that we’ll present here, secgrph(), will
graph a given function together with secant lines through pairs of points in a specified list.
The arguments of secgrph() are as in

secgrph(f, xvar, xpairs),
where f is an expression in the variable xvar, and xpairs is a list containing pairs of values
of xvar.

: secgrph(f, xvar, xpairs)

: Prgm: Local i, n, m, dy, a, b

: ClrGraph: ClrDraw: FnOff: PlotsOff

: string(f | xvar=xx) →ff : Graph expr(ff), xx

: dim(xpairs)[1] →n

: For i, 1, n

: xpairs[i,1] →a: xpairs[i,2] →b

: (f | xvar=b)–(f | xvar=a) →dy

: dy/(b–a) →m

: DrawSlp a, f | xvar=a, m

: EndFor

: DelVar ff

: EndPrgm

The following shows several secant lines drawn by secgrph on the graph of y = x2 in a
[−2, 2]× [−1, 4] window.

Next we see several secant lines drawn on the graph of y = x3 − 2x in a [−2, 2]× [−2, 2]
window. All of these secant lines pass through (0, 0).
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Our second program, tangrph(), is one that will graph a given function together with
tangent lines at values of the independent variable in a specified list. The arguments of
tangrph() are as in

tangrph(f, xvar, xlist),

where f is an expression in the variable xvar , and xlist is a list containing values of xvar.

: tangrph(f, xvar, xlist)

: Prgm: Local n, i

: ClrGraph: ClrDraw: FnOff: PlotsOff

: string(f | xvar=xx) →ff

: Graph expr(ff), xx

: dim(xlist) →n

: For i, 1, n

: LineTan expr(ff) | xx=x, xlist[i]

: EndFor

: DelVar ff

: EndPrgm

The following shows a few tangent lines drawn by tangrph() on the graph of y = x2 in a
[−2, 2]× [−1, 4] window.

Higher-order derivatives. The following function, derlist(), computes a list of the first
n derivatives of a given expression. The arguments of derlist() are as in

derlist(f, xvar, n),

where f is an expression in the variable xvar , and n is the desired number of derivatives.

: derlist(f, xvar, n)

: Func: Local i, thelist, fi, nxt

: {f} →thelist

: f →fi

: For i, 1, n

: d(fi,xvar) →nxt

: augment(thelist, {nxt}) →thelist

: nxt →fi

: EndFor

: Return thelist

: EndFunc
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Note that the list returned by derlist() has n+1 elements, the first of which is the expression
f . The nth derivative itself is the (n + 1)st member of the list:

derlist(f, xvar, n)[n+1].

The following examples illustrate uses of derlist().

• Example 1. Plot f(x) = x sin x together with its first, second, and third derivatives.

We’ll use derlist() to compute the derivatives and store the resulting list as fncts. Once
this is done, it is easy to enter the expressions in the Y= Editor and then plot the graphs.
The plot shown here is in a [−2π, 2π]× [−10, 10] window.

• Example 2. Evaluate f(x) = sin(x) cos(x) and each of its first ten derivatives at x = 0.
Try to observe a pattern in the these values.

We’ll first use derlist() to compute the derivatives and then use the “with” operator to
evaluate the derivatives at x = 0.

So, assuming that the apparent pattern continues, all even-order derivative are zero at x = 0,
and odd-order derivatives are powers of 2 with alternating sign; that is,

f (k)(0) =
{

0, if k is even;
(−2)k−1, if k is odd.

Exercises

1. Use secgrph() to plot, in a [0, 5]× [0, 8] window, the graph of

f(x) = x(5 − x)

and secant lines through pairs of points consisting of (1, f(1)) and each of

(3, f(3)), (2.5, f(2.5)), (2, f(2)), (1.5, f(1.5)), and (1.1, f(1.1)).

Do this by entering

myprogs\secgrph(x∗(5–x),x,{{1,3},{1,2.5},{1,2}, {1,1.5},{1,1.1}})

2. Use secgrph() to plot, in a [0, 2] × [0, 2] window, the graph of y =
√

x and secant lines
through pairs of points consisting of (0, 0) and each of (1, 1), (.5,

√
.5), (.25, .5), (.1,

√
.1),

and (.01, .1). What is happening to the slopes of these secant lines as the second point
becomes closer to (0, 0)?
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3. Use secgrph() to plot, in a [0, π/2] × [0, 1.5] window, the graph of y = sin x and the
secant line through (π/4,

√
2/2) and (.71, sin(.71)). Then use tangrph() to plot, in the

same window, the graph of y = sin x and the tangent line at (π/4,
√

2/2). Is there any
discernible difference between the two pictures?

4. Use derlist() to find the third derivative of f(x) = sin x2.

5. Use derlist() to find the first ten derivatives of f(x) = sin2 x. Then evaluate the list at
x = 0. What pattern is apparent in the numbers?

6. Use derlist() to find the first ten derivatives of f(x) = (1 − x)−1. Then evaluate the list
at x = 0. What pattern is apparent in the numbers?

7. Read the descriptions of Graph, DrawSlp, LineTan, and augment in Appendix A of your
TI-89/92 Guidebook.



4 Applications of the Derivative

In this chapter we will explore some of the many applications of the derivative, with the
help of the TI-89/92 and in conjunction with much of the material in Chapters 3 and 4 of
Stewart’s Calculus . We have seen that the derivative of f is a function whose value at x = a
gives the slope of the graph of f at the point (a, f(a)). This geometric idea has numerous
variations and lends itself to many applications.

4.1 Velocity, acceleration, and rectilinear motion

Let t be a variable representing time elapsed since some reference time t = 0, and imagine a
particle moving along a straight-line path in some way. Our interest here is in the function
s(t) that gives the position at time t of the moving particle.

Average velocity over a time interval a ≤ t ≤ b is defined to be the change in position
divided by the change in time:

υav =
s(b) − s(a)

b − a
.

Notice that υav is simply the slope of the secant line through (a, s(a)) and (b, s(b)).

• Example 1. Consider a particle moving along a straight line with position

s(t) = (t − 2)3 + t + 8 for 0 ≤ t ≤ 4.

Let’s plot secant lines for the time intervals 0 ≤ t ≤ 1 and 0 ≤ t ≤ 4. The slopes of these
secant lines are the average velocities of the particle over the respective time intervals.

Instantaneous velocity (or simply velocity) at a time t is defined to be the limit of the
average velocities over intervals [t, t+h] as h → 0. Thus velocity is the derivative of position:

υ(t) = s′(t) = lim
h→0

s(t + h) − s(t)
h

.

We also say that velocity is the (instantaneous) rate of change in position.

• Example 2. Let’s plot s(t) = (t − 2)3 + t + 8 along with v(t) = s′(t). We’ll do this by
entering y1= (x-2)ˆ3 + x + 8 and y2=d(y1(x)) in the Y= Editor.
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Notice that in this example, s′(t) is always positive, which reflects the fact that the position
of the particle is strictly increasing; i.e., the particle is always moving forward.

Just as velocity is the rate of change in position, acceleration is the rate of change in
velocity. Thus acceleration is the second derivative of position:

a(t) = υ′(t) = s′′(t).

• Example 3. Again consider the position function s(t) = (t − 2)3 + t + 8, 0 ≤ t ≤ 4. In
the Y= Editor, we’ll add y3=d(y1(x),x,2) (or y3=d(y2(x),x)) to the list of functions to plot.

Notice that velocity is decreasing wherever acceleration is negative, and velocity is increasing
wherever acceleration is positive.

Simulating motion. There is an interesting way of simulating simple rectilinear motion
such as this on the TI-89/92. It involves creating a parametric plot. By graphing xt1= s(t)
and yt1=1, we cause a horizontal line to be drawn in such a way that the position of the
end of the line is at x1(t). By graphing xt1=1 and yt1= s(t), we cause a vertical line to be
drawn in such a way that the position of the end of the line is at y1(t). Also, setting either
Leading Cursor to ON in Graph Formats (F1-9) or setting the Graph Style to Path (press F6-6

in the Y= Editor) provides an image of the moving object itself.

A summary of this procedure for simulating motion is as follows:

1) While in FUNCTION Graph MODE, define the position function as y1(x) in the Y=

Editor. Plot the position, velocity, and/or acceleration if desired.

2) Change the Graph MODE to PARAMETRIC.

3) Set Leading Cursor to ON in Graph Formats (F1-9), or Graph Style to Path in the Y=

Editor.

4) For a horizontal path, set xt1=y1(t) and yt1=1 in the Y= Editor. For a vertical path,
set xt1=1 and yt1=y1(t).

5) Press �WINDOW and enter appropriate window variables.
For a horizontal path,

• set ymin=0 and ymax=2;
• adjust xmin and xmax so that the path stays in the window;

For a vertical path,
• set xmin=0 and xmax=2;
• adjust ymin and ymax so that the path stays in the window;
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Set tstep=.05. (Later adjust tstep to speed or slow the motion.)
6) Press �GRAPH.

• Example 4. Let’s first try this out on the last example where s(t) = (t − 2)3 + t + 8,
which we already have entered as y1.

• Example 5. Another nice example is provided by the position function

s(t) = sinπt.

First we’ll plot the position and the velocity over the interval 0 ≤ t ≤ 4.

Then we’ll switch the Graph MODE to PARAMETRIC, set appropriate window variables, and
simulate the motion in the Graph screen.

This is an example of simple harmonic motion.

Note that even though we have so far chosen to illustrate this procedure “horizontally,”
many interesting examples of rectilinear motion involve vertical motion, where s(t) (or y(t))
represents height. Such examples are best simulated vertically. See Exercises 4–6.

Exercises

For each position function, plot the position, velocity and acceleration on the indicated
interval. Then simulate the motion (horizontally) in the manner described above. (Remark:
Plots of velocity and acceleration are done more quickly if the derivatives are computed on
the home screen and then stored as functions.)

1. s(t) =
t − 3

(t − 3)4 + 1
, 0 ≤ t ≤ 6

2. s(t) = e−t/2 sin πt, 0 ≤ t ≤ 6
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3. s(t) = sin(πt) cos(5πt), 0 ≤ t ≤ 2

Provided we ignore air resistance, the height (in feet) of a free-falling object, under the
influence of gravity, is described approximately by

h(t) = −16t2 + υ0t + h0,

where υ0 is the velocity at time t = 0 (or initial velocity), and h0 is the height at time
t = 0 (or initial height). For each of the following combinations of initial velocity and initial
height,

a) plot the height and velocity for 0 ≤ t ≤ T , where T is the positive time at which the
height becomes 0;

b) find the maximum height that the object attains;
c) simulate the motion vertically in the manner described above.

4. υ0 = 100 ft/sec, h0 = 0

5. υ0 = 64 ft/sec, h0 = 25 feet

6. υ0 = 0 ft/sec, h0 = 100 feet

4.2 Implicit differentiation and related rates

Suppose that we are interested in studying the graph of an equation such as

x3 − 2x + y2 = 1,

which perhaps defines neither variable as a function of the other. For this particular example,
it is not difficult to piece together the graph by plotting each of

y = ±
√

1 + 2x − x3.

In general, however, it may not be possible to solve for either variable explicitly. But finding
either of the derivatives dy

dx or dx
dy is typically not difficult. We can find either of these

derivatives, directly from the equation, by implicit differentiation. The process is this for
finding dy

dx :

1) Find the derivative of each side of the equation with respect to x.

2) Solve the resulting equation for dy
dx in terms of x and y.

In our current example, step 1 results in the equation

3x2 − 2 + 2y
dy

dx
= 0,

which is easily solved for dy
dx , producing

dy

dx
=

2 − 3x2

2y
.
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Note that we can now easily see, for example, that dy
dx = 0 at each point on the graph where

x = ±
√

2/3, and that dy
dx is undefined at each point on the graph where y = 0 (resulting,

for this example, in vertical tangent lines).

Now let’s walk through this procedure on the TI-89/92. First we’ll enter the equation
and store it in the variable “eqn.” Notice that we define the equation in terms of y(x) rather
than y. Then the d() operator does the implicit differentiation for us.

Now, before we can solve for dy
dx , we have to substitute some symbol for it using the “with”

operator ( | ). Then we can use the solve() command to solve for that symbol.

Related rates. When two or more quantities that are themselves functions of time are
related through some equation, a relationship among the rates of change in those quantities
can be obtained by implicit differentiation with respect to t.

• Example 1. A particle is moving along the curve

x3 + x − y3 − y = 8

in such a way that the x-coordinate of the particle’s posi-
tion is changing at a constant rate dx

dt = 1. How fast is the
y-coordinate of the particle’s position changing when the
particle is at the point (2, 1)?

-2 -1 1 2 3 4

-3

-2

-1

1

2

3

To solve this problem, we first enter the equation of the path, using x(t) and y(t) to indicate
that x and y are to be treated as functions of t. Then we’ll differentiate implicitly with
respect to t, substituting the symbol “ry” for dy

dt .

Next we solve for ry, substituting the rate dx
dt = 1. The final step then is to substitute in the

coordinates x(t) = 2 and y(t) = 1.
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Thus our final answer is that dy
dt = 13

4 when the particle’s position is (2, 1).

Formulas from geometry (as well as physics, chemistry, and many other areas) often
describe the relationship between two or more quantities that may be changing with time.

• Example 2. One tenth of one cubic inch of oil is dropped gently onto the surface of a pan
of water, quickly spreading out in all directions and taking on an approximately cylindrical
shape. The radius of the oil is observed to be increasing at a rate of 1/2 inch per second at
the instant when the radius is 5 inches. Find the rate of change in the thickness of the oil
at that instant.

The relationship between radius r and thickness y is given by the formula for the volume of
a cylinder:

π r(t)2y(t) = 1.

So we’ll first enter this equation and differentiate with respect to t. Because of the volume
formula, we will then substitute 1/(π r(t)2) for y(t).

Now, finally, we’ll solve for ry = dy
dt , and then substitute in r(t) = 5 and dr

dt = 1/2 to produce
the final result.

Thus the thickness is decreasing at 1/(125π) ≈ .0025 inches per second at the instant when
r = 5.

Exercises

1. For each of the following equations, find the slope of the tangent line to the graph at the
indicated point.
a) x y2 − y x3 = 2 at (0, 2)
b) 2 sin

(
πy cos(πx)

)
+ 3xy = 2 at (1/3, 1)

c) x sin πy − y cosπx = 0 at (1/4, 1/4)
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2. A particle is moving along the parabola y = x2 in such a way that the x-coordinate of
the particle’s position changes at a constant rate dx

dt = 2. Find the rate of change in the
y-coordinate of the particle’s position at the instant when the position of the particle is:
a) (−1, 1) b) (0, 0) c) (1, 1) d) (2, 4)

3. A particle is moving along the top half of the circle x2 + y2 = 1 in such a way that the
x-coordinate of the particle’s position changes at a constant rate dx

dt = 1. Find the rate
of change in the y-coordinate of the particle’s position at the instant when the position
of the particle is:
a) (−

√
2/2,

√
2/2) b) (0, 1) c) (

√
3/2, 1/2)

4. For each of the following equations, differentiate implicitly and then solve for the indi-
cated rate. The symbol “k” is always a constant.

a) V (t) = 4π
3 r(t)3,

dr

dt

b) A(t) = 2πr(t)
(
r(t) + h(t)

)
,

dr

dt

c) V (t) = π
3 r(t)2h(t),

dh

dt

d)
sin θ(t)
sinφ(t)

= k,
dθ

dt

e) p(t)V (t) = k T (t),
dp

dt

4.3 Linear and quadratic approximation
Note: This section is closely related to the Laboratory Project: Taylor Polynomials that
follows Section 3.10 in Stewart’s Calculus .

Consider the following problem.

Given a differentiable function f and a number a in its domain, find the linear function
λa that best approximates f near a in the sense that

λa(a) = f(a) and λ′
a(a) = f ′(a).

In other words, we’re looking for the linear function whose graph passes through (a, f(a))
with the same slope as the tangent line to the graph of f there. Since λa is linear, we can
assume that λa(x) = mx + b, and so our requirements on λa become

ma + b = f(a) and m = f ′(a).

Now we solve for m and a to get m = f ′(a) and b = f(a) − af ′(a). This gives us, after a
little rearranging, the linearization of f at x = a:

λa(x) = f(a) + f ′(a)(x − a).

Of course, this is nothing more than the function whose graph is the tangent line to the
graph of f at (a, f(a)).

• Example 1. Let’s find the linearization of f(x) = x3 at x = 3/4.
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To get an idea of the range of values of x for which λ3/4(x) gives a good approximation to
f(x), let’s plot both graphs on the interval [.5, 1] and make a table of values for x near 3/4.

So we see that λ3/4(x) gives at least one-place accuracy, roughly, when
|x − 3/4| ≤ 0.125 and at least two-place accuracy when |x − 3/4| ≤ 0.05. It should not
be difficult to convince yourself that how well λa(x) approximates f(x) near x = a depends
very much upon the shape of the graph of f near (a, f(a)).

Quadratic approximation. Our approach here will parallel our approach to the linear
approximation. Consider the following problem.

Given a differentiable function f and a number a in its domain, find the quadratic
function qa that best approximates f near a in the sense that

qa(a) = f(a), q′a(a) = f ′(a) and q′′a (a) = f ′′(a).

To make the derivation proceed more smoothly, we’ll look for qa(x) in the form qa(x) =
c0 + c1(x − a) + c2(x − a)2. Because of this, we have

qa(a) = c0, q′a(a) = c1, and q′′a(a) = 2c2.

As a result, the coefficients we want are c0 = f(a), c1 = f ′(a), and c2 = f ′′(a)/2, and so we
arrive at

qa(x) = f(a) + f ′(a)(x − a) +
1
2
f ′(a)(x − a)2.

Notice that because of the form in which we chose to write this, the first two terms are
precisely the linear approximation λa(x).

• Example 2. Let’s find the quadratic approximation of f(x) = cosx at a = 0.

Now we’ll graph this quadratic approximation together with cosx. Then we’ll zoom in a bit
closer and look at the graphs on the interval [−1.5, 1.5] along with the linear approximation
(F5-A) at the same point for comparison.
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So we see that the quadratic approximation does a reasonably good job of approximating
cosx over a fairly wide range of values of x and is far superior to the linear approximation.

Exercises

1. a) Find the linear approximation to f(x) = 3
√

x at x = 8. Then use it to approximate
3
√

9. Compare the approximation with the correct value.

b) Find the quadratic approximation to f(x) = 3
√

x at x = 8. Then use it to approximate
3
√

9. Compare the approximation with the correct value.

For each function in Exercises 2–5, graph the function along with both its linear and
quadratic approximations at the specified point.

2. f(x) = e−x at x = 0

3. f(x) =
1

1 − x
at x = 0

4. f(x) = cosx at x = π/6

5. f(x) = 1
3x3 at x = 1

6. Find the equation of the parabola that best approximates the circle x2 + y2 = R2 at the
point (0,−R).

7. Use the quadratic approximation to cosx at x = 0 to derive an approximate formula for
the solution of cosx = k x. (Hint : The quadratic formula is your friend. . .

� ) For what
values of k does the formula give a reasonably accurate result? Base your answer on the
graphs of y = cosx and y = k x.

8. By analogy with the derivation of the quadratic approximation, derive the cubic approx-
imation to a function f about x = a. Then find the cubic approximation to f(x) = sin x
at x = 0.

4.4 Newton’s Method

This section is about solving equations, or equivalently, finding zeros of functions. Any
equation in one variable can be written in the form

f(x) = 0.

For example, the equation x2 = 5 is equivalent to f(x) = 0 where f(x) = x2 − 5.
It it not at all uncommon to encounter an equation whose solution(s) simply cannot be

expressed in any exact form and so must be approximated numerically. A simple example
of such an equation is

x2 = cosπx.

To view this as a problem of finding the zeros of a function, let f(x) = x2 − cosπx. From
the graph of this function, we see that there are two solutions, each of which is the negative
of the other. So let’s concentrate on finding the positive solution, which clearly lies in the
interval [0, 1].
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The idea behind Newton’s Method is that an approximation x0 to the solution of f(x) = 0
can be improved by solving the linearized problem

f(x0) + f ′(x0)(x − x0) = 0

for a new approximation x1. This amounts to finding the point x1 where the tangent line
to the graph of f at (x0, f(x0)) crosses the x-axis.

So suppose in our current example that we take x0 = .25 as a first approximation to
the solution of x2 − cosπx = 0. Let’s graph the tangent line at (.25, f(.25)). Note that the
x-intercept of this tangent line, which is approximately .49, is much closer to the solution
than was x0. If we were to repeat this process, using the tangent line at (.49, f(.49)), we
would get still closer to the solution in a rather dramatic fashion.

Newton’s Method is an iterative procedure that (sometimes) generates successively im-
proved approximations to a solution of f(x) = 0. From a current approximation xk we solve
the linearized problem

f(xk) + f ′(xk)(x − xk) = 0

to obtain a new approximation xk+1. So the formula for xk+1 is

xk+1 = xk − f(xk)
f ′(xk)

.

An easy way to carry out this iterative calculation is to define a function newt(x), based
the right side of this formula. Then once f(x) is defined, we can successive apply newt(),
after beginning with some initial approximation x0, by repeatedly entering newt(ans(1)).

(For the display above, we have changed the setting of the Display Digits MODE to FLOAT

12.) Notice how rapidly the successive approximations converge to the exact value of the
solution. Notice in particular that after only three steps the approximation was already
correct to six decimal places, and the fourth step then resulted in 12-place accuracy!



4.5 Optimization 55

We should point out that the TI-89/92’s nSolve() function uses (a modified) Newton’s
Method combined with a search strategy for finding a suitable initial approximation.

Exercises

In Exercises 1–5, plot the given function and determine crude initial approximations to each
of the zeros of the function. Then apply Newton’s Method to find each zero, accurate to at
least eight decimal places.

1. f(x) = x3 − x2 − 2x + 1 4. f(x) = 2.95 cosx − x

2. f(x) = 2x5 − 5x3 + 2x2 + 3x − 1 5. f(x) = tan−1 x − x2

3. f(x) = x2e−x/2 − 1

Exercises 6 and 7 demonstrate how Newton’s Method may perform poorly or fail to find a
solution at all in certain circumstances.

6. The only positive zero of f(x) = x3 − 3x2 + 4 is x = 2. Try to find this by Newton’s
Method, starting with an initial approximation x0 = 2.1. Then graph the function. To
what property of the function might we attribute the behavior of Newton’s Method on
this problem?

7. The function f(x) = tanx− x has a zero in the interval 29 ≤ x ≤ 30. Try to find it with
Newton’s Method, beginning with an initial approximation of:
a) x0 = 29.75 b) x0 = 29.85 c) x0 = 29.80

4.5 Optimization

One of the most important applications of calculus is optimization. Optimization is about
finding maximum and minimum values (i.e., maxima and minima) of functions. Maxima
and minima collectively are referred to as extreme values, or extrema. In this section we will
look at some general issues related to finding extrema of functions. The next section will be
devoted to applied problems.

Local extrema. A function can have numerous local maxima and local minima. For
example, consider the function

f(x) = x5 − 4x4 − x3 + 16x2 − 12x.

The graph of this function indicates two local minima and two local maxima. The values of
x where these extrema occur can be located by finding the critical points of the function,
which, in this case, are just the zeros of the derivative,

f ′(x) = 5x4 − 16x3 − 3x2 + 32x − 12.
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So let’s plot f and f ′ together and then find the zeros of f ′ and the value of f at each of
those zeros. We’ll find the zeros of f ′ by using the Zero command from the Graph screen
Math menu (F5-2) and the values of f at those points by using either the Minimum (F5-3)
or Maximum (F5-4) command from the same menu. Each of these commands requires us to
choose between the two functions (with [⇑] or [⇓]) and to input lower and upper bounds on
the value of x we’re interested in.

For the remainder of this investigation, we’ll concentrate on the portion of the graphs where
x ≥ 0.

It is left to you to complete this investigation by finding the two remaining extrema.

We must be careful at this point to emphasize the fact that although local extrema often
occur at critical points where f ′(x) = 0, such a critical point may just as well produce no
local extremum at all. A nearly trivial example is f(x) = x3. The derivative, f ′(x) = 3x2,
is zero at x = 0; yet neither a local maximum nor local minimum occurs there.

Other kinds of critical points. In addition to the zeros of f ′, values of x (in the domain
of f) where f ′(x) does not exist are also critical points of f . A nice example is provided by

f(x) = (|x| − 2)1/3
.

The derivative of this function is undefined at x = 0,±2 and nowhere zero. (The function
sign(x) seen below is the derivative of |x|; it is −1 when x < 0, 1 when x > 0, and undefined
at x = 0.)

At x = ±2 the derivative does not exist because the tangent line to the graph is vertical;
at x = 0 the derivative does not exist because the slope changes instantaneously from −1
to 1, causing a corner-point in the graph. Notice that the function has a local (and global)
minimum at x = 0, while neither x = −2 nor x = 2 produce any kind of extremum. If we ask
the TI-89/92 to locate the minimum (F5-3), it takes several seconds to do the computation,
because it cannot find the critical point by solving f ′(x) = 0 and so must resort to a more
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basic and time-consuming search for the minimum. Notice also that graphing the derivative
reveals vertical asymptotes at x = ±2 and a discontinuity at x = 0.

Absolute extrema on closed intervals. One of the most important theorems in
calculus states that any continuous function on a closed, bounded interval attains both an
absolute minimum and an absolute maximum value on that interval. Moreover, each of these
absolute extrema either is a local extremum in the interior of the interval or else occurs at
one of the endpoints of the interval. For a simple example, consider

f(x) = x3 − x on the closed interval [−1, 3/2].

Let’s graph the function on this interval and then use the Minimum and Maximum commands
from the Math menu (F5-3 and F5-4) to find the extreme values, each time entering −1 and
1.5 as the lower bound and upper bound, respectively.

Thus, the minimum value occurs at a critical point in the interior of the interval, while the
maximum occurs at an endpoint.

Exercises

For the functions in Exercises 1–4,
a) find all critical points of the function;
b) find each local extremum and the value of x at which it occurs.

1. f(x) = x5 − x3

2. f(x) = x1/3(x − 1)

3. f(x) = x3e−x2

4. f(x) = |x3 − x2|

In Exercises 5–8, find the (absolute) maximum and minimum values of the function on the
specified closed interval.

5. f(x) = lnx on [1, 3]

6. f(x) = |3x3 − 2x2| on [0, 1]

7. f(x) = x(x − 1)(x − 2) on [0, 2]

8. f(x) = e−x sin 3x on [0, 5]
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4.6 Applied optimization problems

Optimization is such an important topic because of its applications. Many applications come
from business and manufacturing.

• Example 1. An aquarium is to be constructed to hold 20 cubic feet of water. The two
ends of the aquarium are to be square, and the aquarium has no top. The glass used for the
four sides costs $.50 per square foot, while cheaper glass used for the bottom costs $.35 per
square foot. Glue and rubber caulking to fasten and seal the joints between pieces of glass
costs $.10 per foot. Finally, framing around the bottom and top perimeters costs $.05 per
foot. Find the dimensions of the aquarium that minimize the total material cost.

Let x and y be the dimensions indicated in the figure. We will first express the total material
cost in terms of x and y. The cost of the glass for the sides and bottom will be .50(2x2 +
2xy) + .35xy. The cost of the glue and caulking for the joints will be .10(6x+ 2y). The cost
of the framing will be .05

(
2(2x + 2y)

)
. Putting all this together gives us the total cost:

C = .50(2x2 + 2xy) + .35xy + .10(6x + 2y) + .05(2(2x + 2y))

= x2 + 1.35xy + .8x + .4y.

Now, because the volume is to be 20 cubic feet, we have x2y = 20, and so

y = 20/x2.

Substitution of this into the cost function gives the cost as a function of x alone:

C(x) = x2 + 1.35x
(
20/x2

)
+ .8x + .4

(
20/x2

)

=
x4 + .8x3 + 27x + 8

x2
.

Let’s now plot the derivative of the cost and find the critical point that minimizes the cost.
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So we conclude finally that the cost is minimized if the base of the aquarium is x = 2.434
feet by y = 20/2.4342 = 3.376 feet.

We conclude this section with a classical geometric problem that is posed in such a
way that we cannot use a completely graphical approach, as was possible in the previous
example. The problem is stated as follows.

• Example 2. Find the dimensions of the smallest right circular cone that can contain a
sphere of radius ρ.

The objective here is to minimize the cone’s volume:

V =
π

3
r2h,

where r and h are the radius and height of the cone, respectively. However, we must first
express this volume in terms of one variable. Examining the cross-section in the figure, we
can use the principle of similar triangles to obtain a relationship between r and h, namely,

h − ρ

ρ
=

√
h2 + r2

r
,

which, after we square both sides, becomes

(h − ρ)2

ρ2
=

h2 + r2

r2
.

The plan now is to solve this equation for r2 and substitute the resulting expression into
the volume formula to obtain the volume as a function of h.

The result is

V (h) =
πh2ρ2

3(h − 2ρ)
.

Note that this form of V (h) makes clear algebraically the fact that the only interesting
values of h for this problem are h > 2ρ. (This is also obvious from the geometry of the
problem.) Now to find the value of h that minimizes V (h), we compute the derivative of V
and find its zeros.
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Thus the only critical point of interest is h = 4ρ. Moreover, closer inspection of V ′(h)
reveals that V ′(h) < 0 when 2ρ < h < 4ρ and V ′(h) > 0 when h > 4ρ. Therefore, V (h) has
a minimum value at h = 4ρ. The corresponding value of r is

√
2 ρ.

To graphically visualize what we’ve done, let’s plot V (h) and V ′(h) with ρ = 1. The
minimum cone volume will occur when h = 4.

Exercises

1. Rework the aquarium problem ignoring all but the cost of the glass.

2. Rework the aquarium problem given that framing around the bottom and top perimeters
costs $.50 per foot.

3. Find the dimensions of the largest right circular cone that can be contained in a sphere
of radius ρ.

4. Find the dimensions of the largest right circular cylinder that can be contained in a
sphere of radius ρ.

5. Find the area of the largest rectangle (with sides parallel to the coordinate axes) that
can be contained in the region in the plane bounded by the graphs of y = 0, y = x2, and
x = 1.

6. Find the area of the largest triangle (with two sides parallel to the coordinate axes) that
can be contained in the region in the plane bounded by the graphs of y = 0, y = x2, and
x = 1.

7. Find the point on the graph of y = 1/x2, x > 0, that is closest to the origin.

8. Find the minimum surface area of a closed cylindrical can with a volume of 30 cubic
inches.

9. Find the maximum volume of a closed cylindrical can with a surface area of 100 square
inches.

4.7 Programming notes

No one’s life can be complete without writing a program that implements Newton’s Method.
The following is such a program for the TI-89/92.
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: newt(f, xvar, x0, tol)

: Prgm: Local df, xi, xnew, err, dgts: ClrIO:

: getMode(”display digits”) →dgts

: setMode(“display digits”,“fix 12”)

: d(f,xvar) →df : x0 →xnew: 2*tol →err

: Disp “{ xi f(xi) }”
: While err>tol

: xnew →xi

: Disp {xi, f | xvar=xi}
: xvar–f/df | xvar=xi →xnew

: If xnew 	=0 Then : abs((xi–xnew)/xnew) →err

: Else : abs((xi–xnew)/tol) →err

: EndIf

: EndWhile

: Disp {xnew, f | xvar=xnew}
: setMode(“display digits”,dgts)

: EndPrgm

This program takes arguments f, xvar, x0 and tol, in which f is an expression in the variable
xvar, x0 is an initial guess at the solution of f = 0, and tol is the desired “tolerance” for the
resulting approximation. (The program stops when an estimate of the relative error becomes
less than tol.) The program is also designed to display, in tabular form, each iterate together
with the corresponding value of the function f .

• Example 1. Use Newton’s Method to find the positive solution of

x2 = cosx

with a relative error of no more than 10−8. Use an initial guess of x0 = 1, and display each
iterate and the corresponding function value.

It is important to note that this program does its computations symbolically or in exact
rational arithmetic unless either x0 is an “approximate” real number or the Exact/Approx

MODE is set to APPROXIMATE. The simplest way to ensure that the program uses approximate
real arithmetic is to enter x0 with a decimal point (as in Example 1 above).

• Example 2. Use Newton’s Method to approximate 3
√

2, with a relative error of no more
than 10−8. Use exact rational arithmetic with initial guess x0 = 5/4, and display each iterate
and the corresponding function value.
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Exercises

1. Compute π by applying newt() to the function f(x) = tan(.25x) − 1 with initial guess
x0 = 3 and tolerance tol = 10−8.

2. Compute
√

3 by applying newt() to the function f(x) = x2 − 3 with initial guess x0 = 2
and tolerance tol = 10−8. Do this once using exact rational arithmetic and then again
using approximate real arithmetic.

3. Graph the function f(x) = sin(x2) − sin2 x on the interval 0 ≤ x ≤ π, and use Trace to
find rough initial guesses for each of the zeros of f in this interval. Then use newt() to
find each of the zeros.

4. The equation 3 + lnx =
√

x has two solutions. Use the sgnchng() function from Section
2.5 to bracket the least of the solutions between multiples of .01 and the greater of the
solutions between consecutive integers. Then use newt(), with appropriate initial guesses,
to find the two solutions.

5. The reciprocal of π can be computed by applying Newton’s Method to the function
f(x) = 1/x−π. Experimentally find estimates for the endpoints of the interval containing
precisely those initial guesses x0 for which the Newton iteration converges. Explain your
findings with the help of a graph of the function. Can you find both endpoints exactly?

6. Programming challenge. Create a program, grphnewt(f, xvar, x0, tol), that will graph-
ically depict Newton’s Method and report the solution as in the following picture.



5 Integration

The fundamental theme underlying all of calculus is calculation of the limit of successively
improved approximations. This idea, applied to the problem of finding the slope of a curve,
leads to the definition of the derivative. The same idea, when applied to the problem of
finding the area under a curve, leads to the definition of the definite integral. In this chapter,
we will use theTI-89/92 to explore many of the basic concepts surrounding integration, which
are more thoroughly developed in Section 4.10 and Chapter 5 of Stewart’s Calculus .

5.1 Antiderivatives

Given a function f(x), any function F (x) such that F ′(x) = f(x) is called an antiderivative of
f . If F (x) is an antiderivative of f , then so is F (x)+C for any constant C, since the derivative
of any constant function is zero. In fact, given any antiderivative F (x), every antiderivative
must have the form F (x) + C for some constant C. The family of all antiderivatives of f is
called the indefinite integral of f , denoted by∫

f(x)dx.

So given any antiderivative F (x) of f , we can describe the indefinite integral by writing∫
f(x)dx = F (x) + C.

For example, since we know that the derivative of x3 is 3x2 and that the derivative of sinx
is cosx, we have ∫

3x2dx = x3 + C and
∫

cosxdx = sin x + C.

The TI-89/92 has the ability to antidifferentiate many types of functions. This is done
with the

∫
() operator ([2nd]-7), also found in the Home screen Calc menu (F3-2). To compute

the indefinite integral of a function f(x), we would enter
∫

(f(x),x,c), as seen in the following
examples.

If the third argument is omitted, the
∫

() operator returns a representative antiderivative
with C = 0, which suffices in many situations that call for antidifferentiation.

By definition, the derivative of any antiderivative of f is f . This can be illustrated by
applying the derivative operator d() to the result of the

∫
() operator.
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Also, any function f is an antiderivative of its derivative; that is,∫
f ′(x)dx = f(x) + C.

This can be illustrated by applying the
∫

() operator to the result of the derivative operator
d().

Not every function can be antidifferentiated in this way. For example, let’s try to find
antiderivatives for sinx2 and (1 + x3)−1/2.

The difficulty here is not that these functions do not have antiderivatives, but that their
antiderivatives cannot be expressed in terms of other elementary functions. Soon we will
discuss a way of expressing antiderivatives of such functions.

Exercises

In Exercises 1–5, find the indefinite integral by hand, using basic antidifferentiation rules
from Section 4.10 in Stewart’s Calculus . Then check your work by having the TI-89/92 do
the computation.

1.
∫ (

x3 − 6x + 3
)
dx

2.
∫

5
√

xdx

3.
∫

dx

7x2

4.
∫

(cos x − sinx) dx

5.
∫

(x + ex) dx

In Exercises 6–10, use the TI-89/92 to compute the indefinite integral. Then check the result
by computing its derivative.

6.
∫

x
√

x + 1 dx

7.
∫

x + 3
x + 1

dx
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8.
∫

dx

9 + 4x2

9.
∫

e−x cos 2xdx

10.
∫

sin3 xdx

In Exercises 11 and 12, find and graph the function f that satisfies the given conditions.

11. f ′(x) = x2 − 4x, f(1) = 2

12. f ′(x) = x e−x, f(0) = 3

5.2 Limits of sums and the area under a curve

In this section we will apply the basic idea of calculus—calculation of the limit of succes-
sively improved approximations—to the problem of finding the area under the graph of a
nonnegative function. So consider the problem of finding the area of the region in the plane
bounded by the graph of y = x2, the x-axis, and the line x = 1. Let’s first get a picture of
this region by graphing y = x2 and then shading the region under the graph between x = 0
and x = 1.

One approach to approximating this area is to approximate the region with a collection
of adjacent, non-overlapping rectangles, each of which has its height given by some value of
the function f(x) = x2.

If we decide to approximate the region with rectangles whose top-left corners touch the
curve, then the resulting area approximation amounts to finding the area of a region such as
the one shaded below, which shows ten such rectangles, each with width ∆x = 0.1. (Notice
the use of the floor() function to graph the “step function” in the picture. See Section 2.1
for more on this.)

The heights of these rectangles are, respectively,

02, .12, .22, .32, .42, . . . , .92,

or,
(
(i − 1) · 0.1

)2 for i = 1, 2, . . . , 10. Thus the areas of the rectangles are, respectively,(
(i − 1) · 0.1

)2(0.1) for i = 1, 2, . . . , 10, and so the sum of their areas is
10∑

i=1

(
(i − 1) · 0.1

)2(0.1) = 0.285.
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Such an approximation to the area is called a left-endpoint approximation. For this particular
function, a left-endpoint approximation provides an approximation by inscribed rectangles,
which is guaranteed to give an under-estimate of the true area under the curve.

Choosing to have the top-right corner of each rectangle touch the curve results in a
right-endpoint approximation. The heights of these rectangles are, respectively,

.12, .22, .32, .42, . . . , 12,

or,
(
i·0.1

)2 for i = 1, 2, . . . , 10. Thus the areas of the rectangles are, respectively,
(
i·0.1

)2(0.1)
for i = 1, 2, . . . , 10, and so the sum of their areas is

10∑
i=1

(
i · 0.1

)2(0.1) = 0.385.

For this particular function, a right-endpoint approximation provides an approximation by
circumscribed rectangles, which is guaranteed to give an over-estimate of the true area under
the curve.

An approximation using ten rectangles that is better than either of those above can be
had by letting the midpoint of the top of each rectangle touch the curve. The areas of these
rectangles are, respectively,

(
(i − .5) · 0.1

)2(0.1) for i = 1, 2, . . . , 10, and so the sum of their
areas is

10∑
i=1

(
(i − .5) · 0.1

)2
(0.1) = 0.3325.

Such an approximation to the area is called a midpoint approximation.

It should be quite obvious that each of the above approximations can be improved by
simply using more rectangles. In fact, the exact area can be obtained by taking the limit
of any of these types of approximations as the number of rectangles approaches infinity. So
let’s compute, for simplicity, the right-endpoint approximation with n rectangles, where n
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may be any positive integer. By analogy with what we saw above, this area is
n∑

i=1

(
i/n

)2(1/n).

Let’s now compute a “closed form” of this sum in terms of n, then several values of the sum
for increasing values of n, and finally the limit as n → ∞.

So we have determined that the exact value of the area under the curve is 1
3 .

In general, the area under the graph of a continuous, nonnegative function f(x) between
x = a and x = b can be found by computing

lim
n→∞

n∑
i=1

f(a + i∆x)∆x,

where ∆x = (b − a)/n.

For instance, the area under the graph of f(x) = sin x between x = 0 and x = π is

lim
n→∞

n∑
i=1

sin
(

iπ

n

)
π

n
.

A closed form of this sum is not possible; nevertheless, we can estimate the limit numerically.

The computations shown suggest that the area under the curve equals 2.

Exercises

In Exercises 1–3, graph the function and shade the area under the curve. Then, using ten
rectangles, compute right-endpoint, left-endpoint, and midpoint approximations to the area
under the curve.

1. f(x) =
√

x, 0 ≤ x ≤ 1

2. f(x) = ex, −1 ≤ x ≤ 1

3. f(x) = sin2 x , 0 ≤ x ≤ π

In Exercises 4 and 5, graph the function and compute a closed form for the sum
n∑

i=1

f(a + i∆x)∆x,
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where ∆x = (b − a)/n. Then compute the limit as n → ∞ to obtain the exact area under
the curve.

4. f(x) = 1 − x2, −1 ≤ x ≤ 1

5. f(x) = x2(2 − x)2, 0 ≤ x ≤ 2

In Exercises 6 and 7, graph the function and compute the sum
n∑

i=1

f(a + i∆x)∆x,

where ∆x = (b − a)/n, for n = 10, 50, and 100. Then make an estimate of the exact area
under the curve and comment on its accuracy.

6. f(x) = 1/x, 1 ≤ x ≤ 2

7. f(x) = sin(x2/π), 0 ≤ x ≤ π

8. Jump ahead to Section 5.6, “Programming notes.” Enter the program “leftbox()” given
there and do Exercises 1–3 in that section.

5.3 The Definite Integral and the
Fundamental Theorem of Calculus

Given a continuous function f , defined on an interval [a, b], and the n + 1 equally spaced
points

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn = b,

where ∆x = (b − a)/n, we define the definite integral of f from a to b by∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x,

where, for each i, x∗
i is any point chosen from the interval [xi−1, xi]. This is well-defined

because it turns out that the defining limit has the same value regardless of how the x∗
i ’s

are chosen. Thus the definite integral can be computed as the limit of right-endpoint, left-
endpoint, or midpoint approximations.

The definite integral
∫ b

a f(x)dx can be interpreted in terms of area. There are essentially
three cases to consider. These are described in the following three examples.

• Example 1. If f(x) ≥ 0 on [a, b], then the definite integral gives the area under the graph
of f between a and b. Consider ∫ 1

0

(2 − x2)dx :
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• Example 2. If f(x) ≤ 0 on [a, b], then the definite integral gives the negative of the area
“above” the graph of f between a and b. Consider∫ 1

0

(x3 − 1)dx :

• Example 3. If f(x) changes sign on [a, b], then the definite integral gives the “net area”
under the graph of f between a and b. By “net area” we mean the area above the x-axis
minus the area below. Consider ∫ 2

0

(x2 − 1)dx :

The Fundamental Theorem of Calculus. If F ′(x) = f(x) for all x in the interval
[a, b], then ∫ b

a

f(x) dx = F (x)
∣∣∣b
a

= F (b) − F (a).

This very powerful theorem allows us to calculate definite integrals very easily—when an
antiderivative is available—without using the basic limit-definition of the definite integral.

• Example 4. In Section 2 of this chapter we conjectured, based on numerical evidence,
that

∫ π

0
sin xdx = 2. An antiderivative of sinx is − cosx; so according to the Fundamental

Theorem of Calculus,∫ π

0

sin xdx = − cosx
∣∣∣π
0

= (− cosπ) − (− cos 0) = 2.

Thus our conjecture was correct.

• Example 5. Let’s use the Fundamental Theorem of Calculus to compute∫ 2

0

x3e−x2
dx.

We will use the
∫

() operator to find an antiderivative of x3e−x2
.
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So we see that the value of the definite integral, and therefore the shaded area under the
curve, is exactly (1 − 5e−4)/2, which is approximately 0.454211.

The TI-89/92’s
∫

() operator can also be used to compute definite integrals directly. The
limits of integration are simply entered as third and fourth arguments:

∫
(f(x),x,a,b). When

the Exact/Approx MODE is set to AUTO,
∫

() returns an exact form (using an antiderivative and
the Fundamental Theorem of Calculus) whenever possible and a numerical approximation
when no antiderivative can be found.

Another equally important part of the Fundamental Theorem of Calculus (indeed the
first part— see Chapter 5 of Stewart’s Calculus) states that any continuous function f on
an interval [a, b] has an antiderivative on that interval, given by

F (x) =
∫ x

a

f(t) dt.

This is especially important when f does not have an antiderivative that can be expressed
in terms of elementary functions.

• Example 6. The function f(x) = sin x2 has an antiderivative, namely,

F (x) =
∫ x

0

sin t2 dt.

We can define this function on the TI-89/92, compute values, find its derivative, and even
graph it.

Warning: It takes quite some time for theTI-89/92 to plot this graph. This is not surprising,
since each evaluation of the function is done by a computationally intensive approximation
procedure. It does speed things up a bit, however, if the window variable xres is increased
to at least 4 or 5.

The function F (x) =
∫ x

0
sin t2 dt in Example 6 is related to (in particular a multiple of)

the Fresnel function, or Fresnel Sine Integral.
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Finally, let’s look at a very nice item in the Math menu of the Graph screen. There
you’ll find

∫
f(x)dx (F5-7), a command that prompts you for lower and upper bounds and

then computes the definite integral of the graphed function between those bounds—and
simultaneously shades the region between the graph and the x-axis! The screens below show
this done for the function f(x) = sin(x2), plotted on the interval 0 ≤ x ≤ 4, and integrated
from x = 0 to x = 3.

Exercises

In Exercises 1–5, evaluate
∫ b

a f(x)dx by first finding an antiderivative F (x) and then evalu-

ating F (x)
∣∣b
a
. Check your answer by entering

∫
(f(x),x,a,b).

1.
∫ 1

0

dx

x + 1
2.

∫ 1

−1

dx

1 + x2
3.

∫ 3

0

x e−x dx

4.
∫ 1

−1

x cosπxdx 5.
∫ 1

−1

x sin πxdx

In Exercises 6–10, compute the definite integral. Graph the function on the relevant interval
and then interpret the value of the integral as an area, the negative of an area, or a “net”
area.

6.
∫ 1

0

20x3(x − 1) dx 7.
∫ 2π

0

sinxdx 8.
∫ 2π

0

sin2 xdx

9.
∫ 1

−1

x sin πxdx 10.
∫ 1

−1

x2 sin πxdx

For the functions in Exercises 11 and 12,
a) evaluate f(x) for x = −2, −1, 0, 1, and 2;
b) compute f ′(x);
c) graph f(x) together with f ′(x) for 0 ≤ x ≤ 2. (Set the window variable xres to 5.

Even with xres = 5, the plot will take a while.)

11. f(x) =
∫ x

0

e−t2dt 12. f(x) =
∫ x

0

| sin(3πt)| dt

5.4 Approximate integration

Approximation procedures for definite integrals are of primary importance for at least two
reasons. First, as we saw in the preceding section, many functions do not have antideriva-
tives that can be expressed in terms of other elementary functions. Also, many important
integration problems arise in which the only thing known about the function to be integrated
is a set of values at discrete points.
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The Trapezoidal Rule. This procedure is motivated by the idea of using adjacent, non-
overlapping, trapezoids (rather than rectangles) to approximate the area under a curve. The
base of each trapezoid is on the x-axis, the sides are vertical, and each of the top corners
touch the graph of the function. Such a trapezoid has an area of

(
f(xi−1)+f(xi)

)
∆x
2 , where

xi−1 and xi are the endpoints of the base and ∆x = xi − xi−1 is the width of the base.
Summing the areas of n trapezoids produces the Trapezoidal Rule:∫ b

a

f(x) dx ≈ ∆x

2

(
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

)
,

where ∆x = (b − a)/n and xi = a + i ∆x.
Let’s enter this formula as a function trap(n):

(b–a)/(2n)∗(f(a)+2
∑

(f(a+i∗(b–a)/n), i, 1, n–1)+f(b)) →trap(n)

Then we’ll define f(x), a, and b. Here we use as an example the function f(x) = e−x3
on

the interval [0, 2].

Now we can compute and compare trapezoidal rule approximations for increasing numbers
of trapezoids. The shaded region in the graph indicates the area that is computed when
n = 4.

These computations suggest that the value of the integral, to three decimal places, is 0.893.
Enter

∫
(f(x),x,a,b) yourself and see how the trapezoidal approximations compare.

Simpson’s Rule. The geometric idea behind Simpson’s Rule is to approximate the graph
of f with a collection of connected parabolas, each of which is determined by three points on
the curve. Then the integral of f is approximated by the integral of the resulting piecewise-
quadratic approximation to f . All of this results in the formula∫ b

a

f(x) dx ≈ h

3
(
f(a) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 2f(xn−2) + 4f(xn−1) + f(b)
)
,

where h = (b − a)/n and xi = a + i h. Note that n must an even number. Also note
that the alternating coefficients 4, 2, 4, 2, . . . can be described by the formula 3 + (−1)i−1,
i = 1, 2, 3, . . . . Let’s use this in entering the Simpson’s rule formula as a function simp(n):

3+(-1)ˆ(i–1) →c(i)

(b–a)/(3n)∗(f(a)+
∑

(c(i)∗f(a+i∗(b–a)/n), i, 1, n–1)+f(b)) →simp(n)

Then we’ll apply Simpson’s Rule to the integral
∫ 2

0 e−x3
dx.
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Approximate integration is essential when function values are known only at discrete
points. Suppose for example that we wish to determine the area of an irregularly shaped plot
of land. The plot is bounded on two opposite sides by straight, parallel roads. It is bounded
on the other two sides by meandering rivers. Eleven equally spaced width measurements,
parallel to the two roads, are made by surveyors and shown in the figure below. From this
data, we wish to approximate the area of the plot of land.

The area is the integral of the width function from 0 to 655. The first step toward
approximating this integral is to enter the width data as a list. To do this, press the APPS

key; then select the Data/Matrix Editor and New. . . (6-3). In the resulting dialog box, specify
Type: List and Variable: y.

Then we enter the eleven width measurements into the first column and return to the Home
screen to modify the formula for Simpson’s Rule to handle list data. Note that since the list
index begins at 1, the function values are y1,y2, . . .,yn+1 rather than f(x0), f(x1), f(x2), . . . ,
f(xn). So we’ll redefine simp(n) by entering

(b–a)/(3n)∗(y[1] +
∑

(c(i)∗y[i+1], i, 1, n–1) + y[n+1]) →simp(n)

Now, with these chores done, we are ready to calculate the Simpson’s Rule approximation
to the area.
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Thus the area of the plot of land is approximately 172,000 square feet.

For details on the derivation of the Trapezoidal Rule and Simpson’s Rule, see Chapter 8
of Stewart’s Calculus . Of particular importance are the error bounds discussed there.

Exercises

1. Approximate
∫ 1

−1

√
1 + x3 dx using the Trapezoidal Rule with n = 4, n = 8, n = 16, and

n = 32. Compare each result to the value reported by the
∫

() operator. To how many
decimal places are each of the approximations accurate?

2. Rework Exercise 1 using Simpson’s Rule.

3. Another method for approximating integrals is the Midpoint Rule:∫ b

a

f(x)dx ≈ h

n∑
i=1

f
(
(xi−1 + xi)/2

)
where h = (b − a)/n and xk = a + k h. Rework Exercise 1 using the Midpoint Rule and
compare the accuracy of the results to those obtained with the Trapezoidal Rule.

4. Let Mn, Tn, and Sn denote approximations to
∫ b

a f(x)dx, using n subintervals, obtained
from the Midpoint, Trapezoidal, and Simpson’s Rules, respectively. It can be shown that

S2n =
1
3
Tn +

2
3
Mn.

Verify this with the results of Exercises 1, 2, and 3.

5. A factory discharges effluent into a river. The rate of effluent discharge (in cubic meters
per minute) is recorded hourly over a 24-hour period. The measurements are shown in
the following table.

The total effluent discharge over the 24-hour period is the integral of the rate of discharge.
(See the “Total Change Theorem” in Chapter 5 of Stewart’s Calculus .) Convert each of
the rate measurements to cubic meters per hour and use Simpson’s rule to approximate
the factory’s total effluent discharge over this 24-hour period.

6. Apply Simpson’s Rule with n = 4, n = 8, and n = 16 to each of the integrals:∫ 1

0

x2dx

∫ 1

0

x3dx

∫ 1

0

x4dx

Compare each approximation with the exact value of the integral. What do you observe?
Is it surprising? Why?
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5.5 Improper integrals

The definition of the definite integral
∫ b

a
f(x)dx assumes two crucial things: 1) that the

interval [a, b] is bounded (i.e., a and b are each finite); and 2) that the integrand f is
continuous on [a, b]. (Actually, this second assumption can be relaxed considerably, but it is
essential that f be defined and bounded on [a, b].) An improper integral involves either an
interval that is not bounded (Type 1) or an integrand that has a vertical asymptote at one
of the endpoints of the interval (Type 2). In all cases, an improper integral is, by definition,
a limit of definite integrals.

As described in Stewart’s Calculus , an improper integral of Type 1 (where the interval
of integration is of the form [a,∞)) is defined as∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx.

A Type 1 improper integral of the form
∫ b

−∞ f(x) dx is defined similarly.
An improper integral of Type 2, where f is continuous on (a, b] but has a vertical asymp-

tote at x = a, is defined as ∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx.

An improper integral of Type 2, where f is continuous on [a, b) but has a vertical asymptote
at x = b, is defined as ∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx.

An improper integral of any type is said to be convergent if the defining limit exists and
divergent if the defining limit does not exist.

The TI-89/92’s
∫

() operator handles improper integrals automatically. But in order to
get a good understanding of how improper integrals are defined, we should compute a few
from scratch (more or less).

• Example 1. A typical improper integral of Type 1 is
∫ ∞
1 x−3/2dx. By definition,∫ ∞

1

dx

x3/2
= lim

t→∞

∫ t

1

dx

x3/2
.

So first we’ll compute
∫ t

1 x−3/2dx in terms of t and then take the limit as t → ∞. The result
is shown below along with a picture of the area under the graph of y = x−3/2 to the right
of x = 1.

• Example 2. A typical improper integral of Type 2 is
∫ 2

0
1/

√
ex − 1 dx. Note that the

integrand has a vertical asymptote at x = 0. We’ll compute
∫ 2

t
1/

√
ex − 1 dx in terms of t

and then take the limit as t → 0+.
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• Example 3. Another improper integral of Type 2 is
∫ π/2

0
tan xdx. Note that the integrand

has a vertical asymptote at x = π/2. We’ll compute
∫ t

0
tan xdx in terms of t and then take

the limit as t → (π/2)−.

So it turns out that this improper integral is divergent.

As we mentioned earlier, the TI-89/92’s
∫

() operator handles improper integrals auto-
matically. Let’s recompute the improper integral in each of the preceding examples.

Exercises

For the improper integrals in Exercises 1–6, find the value or determine divergence by using
the appropriate limit definition. Also graph the integrand and shade the relevant region.

1.
∫ 2

0

dx

4 − x2
2.

∫ 2

0

dx

x3 + 3x2

3.
∫ ∞

0

e−3xdx 4.
∫ ∞

2

dx

x3 − 1

5.
∫ ∞

1

dx√
x e

√
x

6.
∫ 1

0

dx√
x e

√
x

7. Considering the answers to Exercises 5 and 6, what should be the value of
∫ ∞

0

dx√
x e

√
x

?

8. Numerical approximation of an improper integral is a difficult problem because of the
fact that either the function or the interval is unbounded. In situations where an approx-
imation to an improper integral is needed, it is often better to compute a few definite
integrals and estimate the limit than to try to compute the improper integral to high
accuracy all at once.
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a) Estimate the value of
∫ ∞

0

√
x dx

ex + 1
by computing

∫ b

0

√
xdx

ex + 1
for b = 10, 20, and 50 with

the
∫

() operator. Then use
∫

() to evaluate the improper integral. What happens?

b) Estimate the value of
∫ 1

0

dx

e
3√x − 1

by computing
∫ 1

a

dx

e
3√x − 1

for a = .1, .001, and

.00001 with the
∫

() operator. Then use
∫

() to evaluate the improper integral. What
happens?

9. A function f defined on (−∞,∞) is a probability density function if:

(i) f(x) ≥ 0 for all x in (−∞,∞), and (ii)
∫ ∞

−∞
f(x)dx = 1.

Find the number k (at least approximately) so that each of the following is a probability
density function on (−∞,∞). Then graph f .

a) f(x) =
k

1 + x2
b) f(x) =

k

(1 + x2/2)3/2

c) f(x) = ke−x2/2 d) f(x) =
{

kx2e−x/2, if x ≥ 0
0, if x < 0

5.6 Programming notes

This section is devoted to the creation of three programs named leftbox(), rightbox(), and
midbox(). These will graphically depict left-endpoint, right-endpoint, and midpoint approx-
imations, respectively, to the integral of a function. They will also compute and display the
resulting approximation.

The first of these programs, leftbox(), takes arguments as in
leftbox(f, xvar, a, b, n),

and produces the left-endpoint approximation to
∫ b

a
f with respect to the variable xvar using

n rectangles. The code is as follows.

: leftbox(f, xvar, a, b, n)

: Prgm:Local i, j, h, xi, yi, s

: ClrGraph: ClrDraw: PlotsOff :FnOff

: string(f | xvar=xx) →ff

: Graph expr(ff), xx

: (b–a)/n →h

: 0. →s

: For i, 1, n

: a+(i–1)∗h →xi

: f | xvar=xi →yi

: s+yi∗h →s

: Line xi+h, 0, xi+h, yi

: Line xi, yi, xi+h, yi

: Line xi, 0, xi, yi

: EndFor

: PxlText string(s), 95, 0

: DelVar ff

: EndPrgm

With this program residing in your myprogs folder, entering
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myprogs\leftbox(sin(x),x,0,π,20)

produces (in a [0, π] × [−.5, 1.5] window) the screen

thus giving the approximation
∫ π

0 sin xdx ≈ 1.996.

Exercises

1. After entering the leftbox() program into your myprogs folder, use it to compute left-
endpoint approximations to the integral∫ 3

1

1
x

dx

with n = 5, 15, 30, and 60 rectangles.

2. Modify the leftbox() program to produce a program rightbox() that graphically depicts
and computes a right-endpoint approximation to an integral. Then use it to compute
right-endpoint approximations analogous to the left-endpoint approximations in Exercise
1.

3. Modify the leftbox() program to produce a program midbox() that graphically depicts and
computes a midpoint approximation to the integral. Then use it to compute midpoint
approximations analogous to the left-endpoint approximations in Exercise 1.

4. Programming challenge. Modify the leftbox() program to produce a program trapez()

that graphically depicts and computes a trapezoidal approximation to an integral. Use
it to compute trapezoidal approximations analogous to the left-endpoint approximations
in Exercise 1.

5. Programming challenge. Create a function,
simpson(ylist, h),

that returns the Simpson’s rule approximation to the integral of a function with values
at equally spaced points specified in ylist.



6 Applications of the Integral

Applications of integration abound in mathematics, science, engineering, economics, and
numerous other fields. To supplement Chapters 6 and 9 of Stewart’s Calculus , we will look
at a few standard geometric problems that we hope illustrate some of underlying philosophy
behind these diverse applications.

6.1 Area

The problem of finding the area under the graph of a function was our original motivation
in defining the definite integral. A rather straightforward extension of this idea allows us to
calculate the area of a region bounded by two graphs. The principle involved is that area is
the integral of the length of a typical cross-section taken perpendicular to a coordinate axis.

• Example 1. Find the area of the region bounded by the graphs of

f(x) = 12x(1 − x) + sin(5πx) and g(x) =
1
2

sin(7πx).

The first step is to plot the graphs to get a picture of the region and find the points
of intersection of the two graphs. The points of intersection can be found from the Graph
screen with the Intersection command (F5-5). Then we’ll shade the region bounded by the
graphs (F5-C).

Vertical cross-sections have length given by

f(x) − g(x) = 12x(1 − x) + sin(5πx) − 1
2

sin(7πx)

for 0 ≤ x ≤ 1. Thus the area of the region is
∫ 1

0

(
f(x) − g(x)

)
dx.

So the exact value of the area is 9/(35π) + 2 square units.

Our second example is one in which it is more convenient to integrate with respect to y
than with respect to x.

• Example 2. Find the area of the region bounded by the graphs of xy = 4 and x =
y(5 − y)/2.
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Let’s first graph each equation to get a picture of the region. We’ll first enter y = 4/x in
the Y= Editor and then use the DrawInv command from the Home screen to plot the inverse
relation of y = x(5 − x)/2.

Because of the particular geometry of this region, it is simpler to describe horizontal cross-
sections than it is to describe vertical cross-sections. Horizontal cross-sections have length
y(5−y)/2−4/y. To determine the limits of integration, we need to find the positive solutions
of the equation y(5 − y)/2 = 4/y.

So the area of the region is given by the integral∫ 4.6262

1.51514

(
y(5 − y)/2 − 4/y

)
dy.

Computation of this integral shows that the area is 3.49595 square units.

Exercises

In Exercises 1–6, find the area of the planar region bounded by the graphs of the given
equations.

1. y = x3 and y = 2x2

2. y = x(2 − x), y = 1 − x2, and y = −(x − 1)(x − 2)

3. y = x/2 + sin x and y = 3x0.3

4. y = 3 sinx2 and y = x2

5. xy = 1 and x2 + y = 3

6. x = y2 and y = x(x − 4)/5

7. Find the area of the region inside the circle (x − 1)2 + y2 = 4 and outside the circle
x2 + y2 = 4.
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8. Find, in terms of a and m, the area bounded by the parabola y = ax2 and the line
y = mx.

9. Find, in terms of R and b, the area of the region inside the circle x2 +y2 = R2 and above
the line y = b, where 0 ≤ b ≤ R.

10. Use Simpson’s rule to approximate the area of the region in the figure. The distance
between measurements is 49 feet.

6.2 Volume

In this section we will look at two examples of volume calculations for solids of revolution.
The first of these examples illustrates the technique of integrating cross-sectional area to
compute volume.

• Example 1. The inside of a vase, ten inches tall, can be described as the “solid” obtained
by revolving the region under the graph of

y = 2 sin2

(
9π

200
(2x + 5)

)
+ 1, 0 ≤ x ≤ 10,

about the x-axis. Find the volume of water that the vase will hold.

The picture on the right above shows the central cross-section of the vase, parallel to the
x-axis. A typical cross-section perpendicular to the x-axis will be a disk with radius r = y
and therefore area given by

A(x) = πy2 = 4π

(
sin2

(
9π

200
(2x + 5)

)
+ 1

)2

.

The volume inside the vase can be found by integrating this cross-sectional area from x = 0
to x = 10. Since the radius is already entered as y1(x), we need only enter

∫
(y1(x),x,0,10) to

obtain the volume. Seeing that the exact value of this integral is very complex and of little
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practical use, we’ll re-do the calculation with the numerical integration operator, nInt(). (We
could have just as well �-entered ans(1) after computing the exact value.)

Thus the volume of the vase is approximately 148.57 cubic inches.

The second of our examples illustrates the cylindrical shells technique for computing
volume.

• Example 2. Let A denote the region in the first quadrant bounded by the graphs of
y = 2 sin 2x and y = x2. Find the volume of the solid generated by revolving A about the
y-axis.

The first step is to get a picture of the region A and find the point of intersection of
the two graphs (F5-5). Then by plotting the reflection of A about the y-axis, we can see
the central vertical cross-section of the solid. (The ellipses have been added with a graphics
editor to suggest a 3-dimensional view of the solid.)

Notice that vertical cross-sections of A are far simpler to describe than horizontal cross-
sections. So the simplest approach to calculating the volume in this example is to sum—by
integration—volumes of cylindrical shells obtained by revolving vertical “slices” of the region
A—each with thickness dx—about the y-axis. The volume dV of a typical cylindrical shell
is

dV = 2πx(2 sin 2x − x2)dx.

Since 0 ≤ x ≤ 1.18315 in the region A, the volume is

V =
∫ 1.18315

0

2πx(2 sin 2x − x2)dx.

So the volume of the solid is 4.43025 cubic units.

Exercises
In Exercises 1–4, find the volume of the solid generated by revolving about the x-axis the
region bounded by the given graphs.
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1. y = x3 and y = 2x2

2. y = x(2 − x), y = 1 − x2, and y = −(x − 1)(x − 2)

3. y = x/2 + sin x, x = 2π, and y = 0

4. xy = 1 and x2 + y = 3

In Exercises 5–8, find the volume of the solid generated by revolving about the y-axis the
region bounded by the given graphs.

5. y = x3 and y = 2x2

6. y = x(2 − x), y = 1 − x2, and y = −(x − 1)(x − 2)

7. x = y2 and y = x(x − 4)/5

8. xy = 1 and x2 + y = 3

9. Find, in terms of R and h, the volume of the solid generated by revolving the region
inside the circle x2 + y2 = R2, to the right of the y-axis and below the line y = h − R,
where 0 ≤ h ≤ 2R.

10. Find the volume of the torus generated by revolving each of the following disks about
the y-axis.

a) (x − 1)2 + y2 ≤ 1

b) (x − 3)2 + y2 ≤ 4

b) (x − R)2 + y2 ≤ r2 where 0 < r ≤ R

6.3 Arc length and surface area

Arc length. The length of a curve described by y = f(x), a ≤ x ≤ b, is given by the
integral

� =
∫ b

a

√
1 + (f ′(x))2 dx.

The capabilities of the TI-89/92 are especially useful for this type of problem, since an-
tiderivatives for the integrands in integrals such as this are typically very difficult—if not
impossible—to find (in terms of elementary functions) even when the function f is quite
simple.

• Example 1. Find the length of the curve y = x3, 0 ≤ x ≤ 1.

The derivative here is f ′(x) = 3x2, and so the arc length is given by the integral∫ 1

0

√
1 + 9x4 dx.
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• Example 2. Find the length of the curve y = sinx, 0 ≤ x ≤ π.

The derivative here is f ′(x) = cosx, and so the arc length is given by the integral∫ π

0

√
1 + cos2 xdx.

Surface area. The areas of the surfaces generated by revolving a curve y = f(x), a ≤
x ≤ b, about the x- and y-axes, respectively, are∫ b

a

2πf(x)
√

1 + (f ′(x))2 dx and
∫ b

a

2πx

√
1 + (f ′(x))2 dx.

Likewise, the surface areas generated by revolving a curve x = f(y), c ≤ y ≤ d, about the
x-axis and y-axis, respectively, are∫ d

c

2πy

√
1 + (f ′(y))2 dy and

∫ d

c

2πf(y)
√

1 + (f ′(y))2 dy.

• Example 3. Find the surface area generated by revolving the curve y = sinx, 0 ≤ x ≤ π,
about the y-axis.

• Example 4. Find the surface area generated by revolving the curve y = sinx, 0 ≤ x ≤ π,
about the x-axis.
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Exercises

In Exercises 1–4, find:
a) the length of the given arc;
b) the area of the surface generated by revolving the arc about the x-axis;
c) the area of the surface generated by revolving the arc about the y-axis.

1. y = 1/x, 1 ≤ x ≤ 2 2. y = (ex + e−x)/2, 0 ≤ x ≤ 1

3. y = tan x, 0 ≤ x ≤ π/3 4. y =
√

x, 0 ≤ x ≤ 1

5. Find, in terms of R and h, the area of the surface generated by revolving about the
y-axis the portion of the circle x2 + y2 = R2, to the right of the y-axis and below the
line y = h − R, where 0 ≤ h ≤ 2R.

6. Using Simpson’s rule and the following table of values, approximate:
a) the length of the arc y = f(x), 0 ≤ x ≤ 5;
b) the area of the surface generated by revolving the arc about the x-axis;
c) the area of the surface generated by revolving the arc about the y-axis.

6.4 Moments and centers of mass

Note: For a detailed development of the formulas below, see Chapter 9 in Stewart’s Calculus .

Consider a region R in the plane, with area A, bounded by y = f(x), y = g(x), x = a,
and x = b, where f(x) > g(x) for a ≤ x ≤ b. If a flat plate with uniform thickness and
constant mass density occupies R, then the plate’s center of gravity, or the centroid of R,
is the point

(x̄, ȳ) =
(

My

A
,

Mx

A

)

where Mx and My are its moments about the x- and y-axes given by

Mx =
1
2

∫ b

a

((
f(x)

)2 −
(
g(x)

)2
)

dx,

My =
∫ b

a

x
(
f(x) − g(x)

)
dx.

• Example 1. Find the centroid of the region in the first quadrant bounded by y = ex−1

and y = x2.

The region is shown in the screen on the left below. It is easy to observe that the point
of intersection of the two graphs is (1, 1). The area calculation is shown on the right.
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Next we’ll calculate the moments My and Mx.

Finally, we complete the calculation of (x̄, ȳ) and show its approximate location.

• Example 2. A boomerang with uniform thickness and constant mass has the shape of
the region bounded by the graphs of y = sinx and y = 9

10 sin4 x between x = 0 and x = π.
Find its center of mass.

The region is shown in the first screen below. It is obvious that x̄ = π/2 because of
symmetry. So we need to find ȳ. The screen on the right shows the area calculation.

Now we need to compute Mx. This calculation is shown on the left below. On the right we
see the (approximate) location of the centroid.

Exercises

In Exercises 1–5, find the centroid of the region bounded by the graphs of the given equations.
Use symmetry whenever possible. Plot and shade each region.

1. y = x2, y = 4

2. y = x2, y = x

3. y = ex−1, y = x2
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4. y = cosx, y = 0, x = ±π/2

5. y = sin x, y = cosx, x = 0, x = π/4

In Exercises 6–10, find the centroid of the described region. Use symmetry whenever possible.

6. The quarter of the unit disk x2 + y2 ≤ 1 in the first quadrant

7. The top half of the unit disk x2 + y2 ≤ 1

8. The triangle in the first quadrant under the line x + y = 1

9. The square −1 ≤ x ≤ 1, 0 ≤ y ≤ 2, surmounted by a half-disk

10. The portion of the unit disk above the line y = 1/2

11. Consider the region in Example 1 to be a flat plate with uniform thickness and constant
mass density. Imagine also that the x-axis is a flat surface upon which the plate is
balanced on its edge. Clearly the plate must be supported in some way in order to be
positioned as it is, and if the plate were no longer supported, it would roll along its
bottom edge toward the right and come to rest in some “equilibrium position.” The
question is this: In what position will the plate come to rest if it is no longer supported?
In particular, what will be the new coordinates of its center of mass?

6.5 Programming notes

The first exercise below has you modify the midbox() program from Section 5.6 so that it
will illustrate midpoint approximations to the area between two curves.

In Exercise 2 you are asked to create two functions for computing the area of a surface
of revolution. Note that the TI-89/92 already has two built-in functions for computing arc
length. These are arcLen(), found in the Home screen’s Calc menu, and Arc, found in the
Graph screen’s Math menu.

Exercise 3 asks you to create a function that will return the centroid of a region bounded
by two graphs.

Exercises

1. Modify the program midbox() created in Exercise 3 of Section 5.6 so that it takes two
functions, f and g, as arguments:

midbox(f, g, xvar, a, b, n),

and graphically depicts and computes a midpoint approximation to the area between
the graphs of f and g over the interval a ≤ x ≤ b using n rectangles, assuming that
f(x) ≥ g(x) on the interval. Test the program on the example

f(x) = sin x, g(x) = sin2 x, 0 ≤ x ≤ π/2.

(Note that midbox() should behave exactly as before if the second argument g is zero.)

2. Create a function, surfAx(f, xvar, a, b), that returns the area of the surface generated by
revolving the graph of

y = f(xvar), a ≤ xvar ≤ b,

about the xvar-axis. Test your function on the problem in Example 4 of Section 6.3.
Also create an analogous function, surfAy(f, xvar, a, b), that computes the area of the
surface generated by revolving the same graph about the y-axis. Test this function on
the problem in Example 3 of Section 6.3.
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3. Create a function, centroid(f, ,g, xvar, a, b), that returns the centroid of the region
bounded by y = f(xvar) and y = g(xvar) between xvar = a and xvar = b. Test the
function on Examples 1 and 2 of Section 6.4. Then use it to rework Exercises 1–5 in
Section 6.4.



7 Differential Equations

As described in Chapter 10 of Stewart’s Calculus , many real-world phenomena can be de-
scribed in terms of relationships between quantities and their rates of change, and such
relationships give rise to differential equations. In this section we will explore some of the
ways that the TI-89/92 can be used to study differential equations.

7.1 Equations and solutions

The differential equations we will consider here can be written in the form
dy

dt
= f(t, y),

where t is the independent variable, y is the dependent variable, and f is a given continuous
function of two variables. Such an equation is called a first-order differential equation. An
equation such as this is said to be a first-order linear differential equation if it can be written
in the form

dy

dt
+ p(t)y = q(t),

where p and q are given, possibly nonlinear, functions of one variable. A function y(t) is a
solution of dy

dt = f(t, y) on an interval I if dy
dt = f(t, y(t)) holds for all t in I.

• Example 1. Verify that y = (1 − t2)−1 is a solution of dy
dt = 2t y2 on any interval that

does not contain t = ±1. Also plot the solution.

The most efficient way to verify a solution of this equation is to compute dy
dt − 2t y2,

hopefully obtaining 0. So we’ll use the d() operator and enter
d(y(t),t)–2∗t∗y(t)ˆ2 ,

after which we’ll enter the function in the Y= Editor and plot the graph in a [−3, 3]× [−2, 3]
window.

From the calculation and the graph, it is easy to see that the solution is undefined at t = ±1,
but that the differential equation is satisfied at all other values of t.

• Example 2. Verify that y = (t2 + 1)−2 + t2 + 1 is a solution of the linear differential
equation dy

dt + 4t
t2+1y = 6t on any interval. Also plot the solution.
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It is clear in this case that y(t) satisfies the differential equation for all t and thus is a
solution on any interval.

Differential equations typically have many solutions. First-order equations typically have
a one-parameter family of solutions. This one-parameter family is called the general solution
of the differential equation. In each of the following examples, the constant C represents the
parameter.

• Example 3. Verify that y = (C − t2)−1 is a solution of dy
dt = 2t y2 on any interval on

which C − t2 �= 0. Plot solutions corresponding to C = −1,−.5, 0, 1, 2, 4.

The verification is done exactly as in Example 1.

Notice that we defined the solution as a function of both t and C in order to simplify the
task of entering the functions in the Y= Editor.

• Example 4. Verify that y = t2 + 1 + C/(t2 + 1)2 is a solution of

dy

dt
+

4t

t2 + 1
y = 6t

on any interval. Plot solutions corresponding to C = −1, 0, 1, 2, 3, 4.

Initial value problems. A first-order initial value problem consists of a first-order dif-
ferential equation and an initial value:

dy

dt
= f(t, y), y(t0) = y0.

Note that the initial value simply requires that the graph of the solution pass through the
point (t0, y0).

• Example 5. Verify that y = 4/(1 − 4t2) is a solution of

dy

dt
= 2t y2, y(0) = 4

on the interval −.5 < t < .5. Also plot the solution.

Here we’ll do essentially the same thing as in Example 1 to verify that y satisfies the
differential equation (for all t �= ±.5). Then we’ll do a simple evaluation to check the initial
condition.
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Note that even though y satisfies the differential equation at all t �= ±.5, it cannot be a
solution of the differential equation on an interval that contains t = ±.5. Therefore, since
the initial value is given at t = 0, y cannot satisfy the initial value problem on any interval
larger than −.5 < t < .5.

• Example 6. Verify that y = t2 + 1 + 8/(t2 + 1)2 is a solution of

dy

dt
+

4t

t2 + 1
y = 6t, y(1) = 4

on any interval. Also plot the solution.

Finding a solution of an initial value problem is a matter of selecting the one member
of the general solution family that satisfies the given initial condition. Such a solution can
often be obtained by substituting the given initial values of t and y into the expression for
the general solution and then solving for the parameter C. The next example illustrates
this.

• Example 7. Check that y = 10/(1 + Ce−t/2) satisfies dy
dt = .05y(10− y) for any constant

C. Then find and plot the solution of the initial value problem

dy

dt
= .05y(10− y), y(0) = 2.

Exercises

In each of Exercises 1–5, check that the family of functions described in the first column
satisfies the differential equation in the second column. Then plot the solution for each value
of C in the third column on the interval given in the fourth column. Suggestions: Set Graph

Order to SIMUL (F1-9). For the plots in Exercise 4, use ymin = −75 and ymax = 100.
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1. y = Ce−3t dy

dt
+ 3y = 0 C = ±1, ±2 [−.25, 1]

2. y =
2

1 + Ce−2t

dy

dt
− 2y = −y2 C = −9,−.5, 0, 3 [0, 2]

3. y =
(1 + 3t)4/3 + C

3
√

1 + 3t

dy

dt
+

y

1 + 3t
= 4 C = 0, 25, 50 [0, 10]

4. y = t2(C + ln t)
dy

dt
− 2y/t = t C = 1, −2, −3 [0, 25]

5. y = sin−1 (Ce−t)
dy

dt
+ tan y = 0 C = ±1, ± 1

2 [−1, 2]

In Exercises 6–10, use the general solution from the corresponding Exercise 1–5 to solve the
given initial value problem. Plot the solution.

6.
dy

dt
+ 3y = 0, y(0) = 5 9.

dy

dt
− 2y = −y2, y(0) = 5

7.
dy

dt
+

y

1 + 3t
= 4, y(21) = 0 10.

dy

dt
− 2y/t = t, y(1) = −1/2

8.
dy

dt
+ tan y = 0, y(0) = π/6

7.2 Direction fields

If the graph of a solution of the differential equation

y′(t) = f(t, y)

passes through a point (t1, y1), then the slope of the graph at that point is m = f(t1, y1).
Thus, we can think of the function f as specifying a slope field, or direction field, in the
ty-plane. This direction field can be visualized as an array of arrows at points (t, y), where
each arrow has slope given by f(t, y). The two screens below show the direction field given
by f(t, y) = t − y and then the direction field together with a few solution curves.

Creating direction field plots with the TI-92 requires a little programming. The TI-89 and
TI-92 Plus have built-in capability for plotting direction fields, but for extra versatility—and
for the experience of doing the programming yourself—this independent program will still
be useful.

We will create a program called slopefld(). To create the program, first press the APPS

key and select Program Editor and New. . . as usual. Then specify Type: Program, Folder:

main, and Variable: slopefld. This takes us to the Program Editor, ready to begin entering
the following program.

: slopefld(f, xvar, yvar, varrows)

: Prgm: Local i, j, hh, kk, xi, yj, dx, fij, mscr, len

: ClrGraph: ClrDraw: PlotsOff
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: (xmax–xmin)/varrows/2 → hh

: (ymax–ymin)/varrows → kk

: kk/(2∗hh) → mscr

: For i, 1, 2∗varrows

: xmin+(i–0.5)∗hh→ xi

: For j, 1, varrows

: ymin+(j–0.5)∗kk → yj

: (f | xvar=xi and yvar=yj) → fij

: eˆ(-abs(fij)/mscr) → wt

: .8∗wt∗hh+(1–wt)∗kk →len

: .33∗len/
√

(1+fijˆ2) →dx

: Line xi–dx, yj–fij∗dx, xi+dx, yj+fij∗dx

: EndFor

: EndFor

: EndPrgm

Once this program is entered, return to the Home screen. To use the program, enter
slopefld(f(t,y), t, y, 8). This will plot the direction field for dy

dt = f(t, y) with 8 arrows in the
vertical direction and 16 in the horizontal. (Change the 8 if you want more or fewer arrows.)
Here’s what you should see in a [−3, 3] × [−3.5, 3.5] window with f(t, y) = −t y.

The general solution of this equation is y = Ce−t2/2. (Verify it.) So let’s plot a few solutions
on top of the direction field. (See the note below.) For each of the curves, we’ve set Style to
Thick by pressing F6-4 in the Y= Editor for each of the functions.

Note: slopefld() automatically clears all previous graphs and turns off (unchecks) all
functions in the Y= Editor before plotting the direction field. So if you define solutions in
the Y= Editor before plotting the direction field, you must reactivate them (press F4 in the
Y= Editor) in order to include them in the plot.

Exercises

For each of Exercises 1–5 in Section 7.1, replot all of the requested curves (with Thick Style)
on top of the direction field for the differential equation.
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7.3 Euler’s method

There are many techniques for finding exact solutions of differential equations. Different
types of equations require different techniques, two of which we will see in the next section.
But situations in which exact solutions are either extremely difficult—or impossible—to find
are quite common. So numerical methods for obtaining approximate solutions are extremely
useful.

Typically, a numerical method for approximating the solution of
dy

dt
= f(t, y), y(t0) = y0

consists of a recurrence formula for computing an approximation at some time t+h from an
approximation at time t. This allows the computation of approximations y1, y2, y3, . . . to
values of the solution at a sequence of times t1, t2, t3, . . . , where tk = t0 + k h.

The simplest such method is known as Euler’s method:
For n = 1, 2, 3, . . ., compute

yn = yn−1 + h f(tn−1, yn−1), where tn = t0 + n h.

The parameter h is called the stepsize. It is typically some small, positive number such as
0.05. Roughly speaking, the smaller the stepsize h is, the better the approximation will be.
However, smaller values of h require more steps to reach any given value of t.

Euler’s method is very simple to implement on theTI-89/92. First we set the Graph MODE

to SEQUENCE. Then in the Y= Editor, we’ll define sequences u1(n) and u2(n) to represent
tn and yn, respectively.

Now we need to press F7 and specify the type of axes. We’ll set Axes: CUSTOM, X-Axis: u1

and Y-axis: u2. To complete the set-up, highlight u2 and select the Dot Style (F6-2) for the
graph.

With this set-up in place, we’re ready to compute some approximate solutions.

• Example 1. Plot an approximate solution to

dy

dt
= sin(t y), y(0) = 2,

on the interval 0 ≤ t ≤ 5, using Euler’s method with stepsize h = 0.1.

We need only enter a definition for the function f(t,y), the values of t0 and y0, and
appropriate window variables. Note that with h = 0.1, we need to compute 50 steps in order
to reach t = 5. Once all this is done, just press �GRAPH.
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The purpose of selecting Dot Style (F6-2) for the graph was simply to emphasize that
Euler’s method really just computes approximations to values of the solution at discrete
points. Changing that setting to Line or Thick Style causes a continuous graph to be drawn
through the computed points.

• Example 2. Plot an approximate solution to

dy

dt
= cos y − sin t, y(0) = 1,

on the interval 0 ≤ t ≤ 10, along with the direction field for the differential equation. Use
Euler’s method with stepsize h = 0.1.

Note that (because of the Custom Axes setting) the approximate solution curve is auto-
matically plotted each time a slopefld command is entered.

Exercises

1. Using the set-up outlined above, the viewing window [0, 3] × [0, 3], and Line Style for
graphs, plot the following Euler’s method approximations to the solution of

dy

dt
= t2 − 2y, y(0) = 2, for 0 ≤ t ≤ 3.

a) 3 steps with stepsize h = 1
b) 6 steps with stepsize h = .5
c) 12 steps with stepsize h = .25
d) 30 steps with stepsize h = .1
e) 60 steps with stepsize h = .05

In Exercises 2–5, use Euler’s method with the suggested stepsize to plot an approximate
solution on the indicated interval. If you have a TI-89 or TI-92 Plus, also plot the solution
with your calculator’s built-in capability and compare.

2.
dy

dt
= (e2−y − 1)y, y(0) = .1; h = .1, 0 ≤ t ≤ 2

3.
dy

dt
= sin(t2 + y), y(0) = 0; h = .05, 0 ≤ t ≤ 5

4.
dy

dt
= sin(t2), y(0) = 0; h = .05, 0 ≤ t ≤ 5
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5.
dy

dt
= .5y(3 − 2 sin 2πt − y), y(0) = 1; h = .05, 0 ≤ t ≤ 5

7.4 Exact solutions

There are several types of differential equations for which there are standard methods for
finding exact solutions. In this section we will look at methods for solving separable equations
and first-order linear equations.

Separable equations. A first-order differential equation that can be written in the form

f(y)dy = g(t)dt

is said to be separable. With variables separated in this way, the differentials on each side
of the equation may be antidifferentiated independently:∫

f(y)dy =
∫

g(t)dt

In some cases, the resulting equation can be solved algebraically for y in terms of t.

• Example 1. Find the general solution of
dy

dt
= y4/3 sin t.

The separated form of this equation is

y−4/3dy = sin t dt.

We’ll apply the
∫

() operator to each side of this equation, asking for the indefinite integral
(involving a constant C) only on the right-hand side. The solve() function (F2-1) then finds
y explicitly in terms of t.

• Example 2. Find and graph the solution of the initial value problem

dy

dt
= −t y2, y(0) = 3.

The separated form of this equation is

y−2dy = −t dt.

First let’s apply the
∫

() operator to each side of this equation just as in the previous example.
Then we’ll solve for the constant of integration C, using the “with” operator to substitute
the initial values of t and y.
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Then we substitute the value of C into the equation, solve for y in terms of t, and plot the
solution.

Integration between limits. A useful technique for solving initial value problems is
definite—rather than indefinite—integration, i.e., integration between limits. Given a sepa-
rable differential equation together with an initial value,

f(y)dy = g(t)dt, y(t0) = y0,

we can find the solution by introducing dummy variables of integration and then integrating
the left side of the equation from y0 to y and the right side from t0 to t:∫ y

y0

f(u)du =
∫ t

t0

g(s)ds.

• Example 3. Find the solution of the initial value problem

dy

dt
= − cos(t)

√
y, y(0) = 1.

First we separate variables and rewrite the problem as∫ y

1

du√
u

= −
∫ t

0

cos(s)ds.

Then we let the TI-89/92 do the rest of the work by entering∫
(1/

√
(u),u,0,y)=

∫
(-cos(s),s,0,t)

and then using solve() to solve for y.

(Note that the second condition, sin t − 2 ≤ 0, reported by the calculator is superfluous in
this problem because it’s true for all t. Can you think of the reason why such a condition is
reported?)

First-order linear equations. Recall that first-order linear equations are of the form

dy

dt
+ p(t)y = q(t).

The key to solving such an equation is to multiply through by an appropriate integrating
factor. The purpose of the integrating factor is to make the left side of the equation rec-
ognizable as the derivative of a product. The integrating factor that serves this purpose
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is

e
∫

p,

where
∫

p means any antiderivative of p(t). Multiplying each side of the equation by e
∫

p

gives

e
∫

p · dy

dt
+ p(t)e

∫
p · y = e

∫
pq(t),

which can be rewritten as
d

dt

(
e
∫

py
)

= e
∫

pq(t).

With this done, we can now find y by antidifferentiating each side of the equation and then
multiplying through by e−

∫
p.

• Example 4. Find the general solution of

dy

dt
+ y = sin t.

Here we have p(t) = 1 and q(t) = sin t. The integrating factor is

e
∫

1 = et.

Multiplying through the equation by et and recognizing the left side as the derivative of a
product gives us

d

dt

(
ety

)
= et sin t,

which implies that

ety =
∫

et sin t dt.

We’ll let the TI-89/92 take it from here.

Thus the general solution is y = (sin t − cos t)/2 + C e−t.

An integration-between-limits technique can be used to solve initial value problems that
involve first-order linear equations. Suppose we have an initial value problem

dy

dt
+ p(t)y = q(t), y(t0) = y0.

The integrating factor technique described above gives

d

dt

(
e
∫

py
)

= e
∫

pq(t).

To simplify notation, let φ(t) = e
∫

p. Then after multiplying through by dt, we have

d (φ(t)y(t)) = φ(t)q(t)dt.
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Now we replace t with a different dummy variable and then integrate each side of this
equation from t0 to t to produce

φ(t)y(t) − φ(t0)y0 =
∫ t

t0

φ(s)q(s)ds.

Thus we arrive at the solution

y(t) = φ(t)−1

(
φ(t0)y0 +

∫ t

t0

φ(s)q(s)ds

)
.

• Example 5. Find, for t < 5, the solution of

dy

dt
+

3y

5 − t
= t, y(0) = y0.

Plot the graph of the solution for 0 ≤ t ≤ 5 if y0 = 10.

First we compute the integrating factor φ(t) for t < 5. Then we’ll enter the formula
derived above as

φ(t)−1(φ(0)∗y0 +
∫
(φ(s)∗s,s,0,t)) .

(Recall that the letter “φ” (phi) can be typed by pressing [2nd]-G-F on the TI-92, or [2nd]-[ ( ]-F

on the TI-89.)

So, the solution is the cubic polynomial

y =
y0(5 − t)

250

((
2y0 + 25

y0

)
t2 − 20t + 50

)
.

Now let’s use the “with” operator to substitute the initial value y0 = 10 into the previous
ans()wer and then plot the graph.

• Example 6. The velocity of a free-falling object, under the influence of constant gravita-
tional force and air resistance, can be modeled by

dv

dt
+

k

m
v = −g, v(0) = v0.

We assume that k, m, and g are constants. Find the solution in terms of k, m, g, and v0.
Then plot the solution for k = m = 1, g = 32, and v0 = 0.

The integrating factor here is

φ(t) = e
∫

k/m = ekt/m.
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So let’s enter this and then the formula for the solution. Then we’ll substitute the given
values for k, m, g, and v0.

Only plotting the graph remains to be done.

Note that because air resistance is included in the model, the velocity has a limit as t → ∞.
This limit is called the terminal velocity.

Exercises

In Exercises 1–6, find the general solution of the differential equation.

1.
dy

dt
= −√

y 4.
dy

dt
= y(ln y)2

2.
dy

dt
+ y cos t = cos t 5.

dy

dt
− y = sin t

3.
dy

dt
+

cos t

2 + sin t
y = sin t 6.

dy

dt
= (1 + y)2(1 − t2)

7.–12. For each of the equations in Exercises 1–6, use the integration between limits technique
(as in Examples 3 and 5) to find the solution satisfying the initial condition y(0) = y0.
For the equation in Exercise 4, assume that y0 > 0.

13. Store the velocity function derived in Example 6 in terms of k, m, g, and v0 as v(t). Then
compute the height function

y(t) = y0 +
∫ t

0

v(s)ds.

7.5 Systems of differential equations

We consider here initial value problems involving pairs of coupled, autonomous, first-order
differential equations. These are of the form

dx

dt
= f(x, y), x(0) = x0;

dy

dt
= g(x, y), y(0) = y0.
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(The differential equations are called autonomous because f and g do not depend upon t.)
Think of the solution of such a problem as a pair of parametric equations

x = x(t), y = y(t),

whose graph is (naturally) a parametric curve.

• Example 1. Show that x = 2 sin t + cos t and y = sin t satisfy the system

dx

dt
= 2x − 5y, x(0) = 1;

dy

dt
= x − 2y, y(0) = 0,

and plot the parametric curve (using Graph Style: Path).

Direction fields. Let x(t) and y(t) satisfy the general autonomous system above. Because
of the chain rule, the slope at any point on the parametric curve described by x = x(t) and
y = y(t) is given by

dy

dx
=

dy/dt

dx/dt
=

g(x, y)
f(x, y)

.

Therefore it makes sense to define the direction field of such a system to be the direction
field for the single equation

dy

dx
= ϕ(x, y) where ϕ(x, y) = g(x, y)/f(x, y).

As a result, we can plot the direction field with our slopefld() program from Section
7.2.

• Example 2. In a [−3, 3]× [−2, 2] window, plot the direction field for the system

dx

dt
= −x − y,

dy

dt
= 2x − y.

Determine from the direction field the behavior of solutions of the system.

It is apparent from the direction field that graphs of solutions of the system spiral either
in toward or out from the origin. Because of the differential equation satisfied by x, it
is evident that dx

dt < 0 for all (x, y) in the first quadrant. Therefore, solution curves are
oriented right-to-left in the first quadrant. Consequently, all solution curves spiral in toward
the origin.
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• Example 3. In a [−3, 3]× [−2, 2] window, plot the direction field for the system

dx

dt
= x + y,

dy

dt
= x − y.

Determine from the direction field the behavior of solutions of the system.

It is apparent from the direction field that graphs of solutions of the system have a hyper-
bolic character—approaching the origin but eventually veering away from it. Because of the
differential equation satisfied by x, it is evident that dx

dt > 0 for all (x, y) in the first quadrant
and dx

dt < 0 for all (x, y) in the third quadrant. Therefore, graphs of solutions are oriented
left-to-right in the first quadrant and right-to-left in the third quadrant. Similarly, the dif-
ferential equation satisfied by y indicates that graphs of solutions are oriented downward in
the second quadrant and upward in the fourth quadrant.

Numerical approximation. The solution of a system
dx

dt
= f(x, y), x(0) = x0,

dy

dt
= g(x, y), y(0) = y0,

can be approximated by Euler’s method, which in this case takes the form:
For n = 1, 2, 3, . . ., compute

xn = xn−1 + h f(xn−1, yn−1),
yn = yn−1 + h g(xn−1, yn−1).

This is simple to implement on the TI-89/92. Let’s use as an example the system
dx

dt
= −x − y,

dy

dt
= 2x − y,

from Example 2, with initial values x(0) = −2 and y(0) = 2.
First press MODE and set the Graph mode to SEQUENCE. Then in the Y= Editor, enter

the formulas as shown. (You will need to go to the Home screen to issue DelVar h,x0,y0 if
those variables currently have values.) Also, press F7 and set Axes: CUSTOM, X Axis: u1, and
Y Axis: u2.

After setting up the formulas in the Y= Editor, go to the Home screen and define f(x,y),

g(x,y), x0, y0, and h. We’ll use h=.05, for starters. Finally we need to set window variables.
Let’s do 100 steps of the method (which will take us to t = 5, since h = .05) and plot the
graph in a [−3, 3]× [−2, 2] window. Once these are set, press �GRAPH.
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So we see a solution curve that is consistent with the direction field we saw in Example
2. In fact, we can use the slopefld() program to plot the direction field together with the
approximate solution curve.

• Example 4. Plot the direction field for the system

dx

dt
= x + y,

dy

dt
= x − y,

together with an approximate solution with x(0) = −0.8 and y(0) = 2, in a [−3, 3]× [−2, 2]
window. Use h = .05 and set nmax= 100. Then repeat for initial values x(0) = −0.85 and
y(0) = 2.

Improved Euler. Euler’s method is a useful and simple method; yet unless we use a very
small stepsize, it lacks the accuracy needed to produce approximate solutions that reflect
the true behavior of many interesting systems. We need a method that is more accurate at
moderately small stepsizes. Such a method is the so-called Improved Euler’s method (a.k.a.
Heun’s method).

Consider a single differential equation

dy

dt
= f(y).
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If we integrate both sides of this equation from t = tn−1 to t = tn = tn−1 + h, we arrive at

y(tn) − y(tn−1) =
∫ tn

tn−1

f(y(t))dt.

Using a simple left-endpoint approximation to the integral (using only one subinterval) and
isolating y(tn), we get

y(tn) ≈ y(tn−1) + h f(y(tn−1)),

which leads to Euler’s method. If we use a trapezoidal approximation instead, we get

y(tn) ≈ y(tn−1) + .5h
(
f
(
y(tn−1)

)
+ f

(
y(tn)

))
.

The difficulty now is that the right side of this depends on y(tn), the very quantity we wish
to approximate. So we use ordinary Euler’s method to estimate it. This gives approximation

y(tn) ≈ y(tn−1) + .5h
[
f
(
y(tn−1)

)
+ f

(
y(tn−1) + h f

(
y(tn−1)

))]
,

in which the right side depends only on y(tn−1). This approximation leads to “Improved
Euler:”

yn = yn−1 + .5h
(
f(yn−1) + f

(
yn−1 + h f(yn−1)

))
.

For a system
dx

dt
= f(x, y), x(0) = x0,

dy

dt
= g(x, y), y(0) = y0,

Improved Euler takes the form

xn = xn−1 + .5h
(
fn−1 + f

(
xn−1 + h fn−1, yn−1 + h gn−1

))
,

yn = yn−1 + .5h
(
gn−1 + g

(
xn−1 + h fn−1, yn−1 + h gn−1

))
,

where fn−1 and gn−1 are short for f(xn−1, yn−1) and g(xn−1, yn−1), respectively.

Now , let’s implement Improved Euler on theTI-89/92. First we need to clear the variables
f, g, and h. Then, to represent the terms added to xn−1 and yn−1 on the right side of each of
the equations for xn and yn, we’ll define functions imeuf() and imeug() in terms of h, f(x,y),
and g(x,y):

h∗(f(x,y) + f(x+h∗f(x,y), y+h∗g(x,y)))/2 →imeuf(x,y)

h∗(g(x,y) + g(x+h∗f(x,y), y+h∗g(x,y)))/2 →imeug(x,y)

Once these are defined, it’s an easy job to set up the sequences in the Y= Editor as seen
in the screen on the right below. (And as long as imeuf() and imeug() aren’t deleted, you’ll
never have to enter them again!)
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Let’s try this out on the simple system
dx

dt
= y,

dy

dt
= −x,

with initial values x(0) = 1 and y(0) = 0. We only need to define the functions f(x,y) and
g(x,y), the initial values x0 and y0, and the stepsize h before setting window variables and
plotting the graph.

The solution of this initial value problem problem is x = sin t, y = cos t. So the exact solution
curve would be a (clockwise) parameterization of the unit circle. It is a testament to the
accuracy of Improved Euler that the approximate solution curve traced (approximately)
back to its starting point at (1, 0). (In fact, it would have done a reasonably good—and
faster—job with h = .1 rather than .05.)

The accuracy of Improved Euler (or better) is especially needed when dealing with non-
linear problems such as in the following example.

• Example 5. Plot the direction field for the “predator-prey” system

dx

dt
= x(10 − y),

dy

dt
= y(x − 10),

together with an approximate solution with x(0) = y(0) = 5, in a [0, 25] × [0, 25] window.
Use h = .01 and set nmax= 70.

Exercises

1. Verify that x = sin 2t + cos 2t and y = sin 2t − 3 cos 2t satisfy
dx

dt
= x + 5y,

dy

dt
= −x − y.

Plot this solution for 0 ≤ t ≤ π, along with the direction field for the system.

2. Verify that x = −et sin 2t and y = et cos 2t satisfy
dx

dt
= x − 2y,

dy

dt
= 2x + y.

Plot this solution for 0 ≤ t ≤ π, along with the direction field for the system.

3. Use Euler’s method with stepsize h = .05 to plot an approximate solution of the system
dx

dt
= y,

dy

dt
= −x − y3
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with initial values x(0) = 0 and y(0) = 2. Use a [−2, 2] × [−2, 2] window and set
nmax=250. Using slopefld(), plot the direction field also.

4. a) Use Euler’s method with stepsize h = .1 to plot an approximate solution of the system

dx

dt
= −y,

dy

dt
= x

with initial values x(0) = 1 and y(0) = 1. Use a [−2, 2]×[−2, 2] window and set nmax=63.
b) Repeat with h = .05 and nmax=126.
c) Repeat with h = .025 and nmax=252.
d) Repeat using Improved Euler with h = .1 and nmax=32.
e) Verify that the exact solution of the initial value problem is

x = cos t − sin t, y = cos t + sin t

and therefore that x2 + y2 = 2 for all points (x, y) on the solution curve.

5. Rework Example 5 using ordinary Euler’s method. (But don’t plot the direction field.)
Try h = .01 with nmax=70 and then h = .001 with nmax=700. What do you observe?



8 Parametric and Polar Curves

Parametric curves, polar coordinates, and polar curves and areas are discussed in Chapter
11 of Stewart’s Calculus . Here we will first explore the TI-89/92’s capability for plotting
parametric curves and then look at some interesting polar curves.

8.1 Parametric curves

• Example 1. A cycloid is a curve traced out by a fixed point on a circle as it rolls along
a straight line. Plot the cycloid given by

x = t − sin t, y = 1 − cos t.

Plotting such a parametric curve requires setting the Graph MODE to PARAMETRIC. The
screen shown on the right below shows the rolling circle and the parameter t, which is the
angle of rotation of the circle.

The circle was drawn using tools from the “pencil” menu (F7).

• Example 2. Lissajous figures are parametric curves of the form

x = a cos t, y = b sinnt,

where n > 1. Take a = b = 1 and plot the Lissajous figure with n = 5.

Arc length. The length of a parametric curve

x = f(t), y = g(t), a ≤ t ≤ b,

is given by

L =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt,

provided that the curve is traced out exactly once as t increases from a to b. (Otherwise, L
may still be interpreted as total distance travelled between time t = a and time t = b by a
particle whose position at time t is given by (f(t), g(t)).)

• Example 3. Find the length of one arch of the cycloid in example 1.
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The required derivatives are easily seen to be
dx

dt
= 1 − cos t and

dy

dt
= sin t,

so we simply enter the arc length formula containing these expressions,
integrating from t = 0 to t = 2π.

• Example 4. Find the length of the Lissajous figure in example 2.

The required derivatives are easily seen to be
dx

dt
= − sin t and

dy

dt
= 5 cos 5t,

so we simply enter the arc length formula containing these expressions.

Note that in this calculation, we have taken advantage of symmetry by integrating from 0
to π/2 and multiplying the result by 4. Generally speaking, the numerical approximation of
definite integrals is less time-consuming over a shorter interval. Try for yourself doing the
same calculation without using symmetry; i.e., by integrating from 0 to 2π.

Exercises

1. Plot and find the length of the curve

x = cos t, y = sin t2, 0 ≤ t ≤
√

3π.

2. Plot and find the length of the curve

x = 2 cos t, y = sin 2t.

3. A baseball player hits a long home-run in which the ball’s path in flight is given by

x = 522
(
1 − e−t/3

)
, y = 588

(
1 − e−t/3

)
− 96t + 3.

Find the time t at which the ball hits the ground, and find the distance that the ball
travels in flight. Then compute the average speed of the ball during its flight.

4. The planet Fyodor has a circular orbit about its sun, and Fyodor’s moon Theo has
circular orbit about Fyodor in the same plane. Theo revolves about Fyodor ten times
per Fyodoran “year,” and the distance from Theo to Fyodor is one-seventh the distance
from Fyodor to its sun. Determine appropriate parametric curves and simulate the motion
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of this system. Assume that the sun is located at the origin and use the Animate Path
Style. (Note: Physics is totally ignored by this problem!)

8.2 Polar curves

A polar curve is the graph of an equation r = f(θ) where r and θ are standard polar
coordinates defined by

x = r cos θ, y = r sin θ.

• Example 1. Plot the graph of r = ln(θ + 1), 0 ≤ θ ≤ 5π.

To graph such a curve with the TI-89/92, we first set the Graph MODE to POLAR. Then
we enter the function in the Y= Editor and set appropriate values for window variables.

With that done, we’re ready to press �GRAPH to see the plot.

• Example 2. Plot the “five-leaved rose,” r = sin 5θ.

Note that the five-leaved rose was completely drawn with 0 ≤ θ ≤ π. Because sin 5(θ +π) =
− sin 5θ, the curve would be trace out twice with 0 ≤ θ ≤ 2π.

• Example 3. Plot the graph of r = sin(9θ/4), 0 ≤ θ ≤ 8π.
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Areas. The area of a region bounded by the graph of r = f(θ) and the rays θ = a and
θ = b is given by ∫ b

a

1
2
f(θ)2dθ,

assuming that f is continuous and nonnegative and that 0 ≤ b − a ≤ 2π.

• Example 4. Find the area enclosed by one loop of the three-leaved rose

r = sin 3θ.

Since one loop of the figure is drawn as θ rotates from θ = 0 to θ = π/3, the area of the
enclosed region is ∫ π/3

0

1
2

sin2 3θ dθ =
π

12
.

The area of a region bounded by two polar curves of r = f(θ) and r = g(θ) and the rays
θ = a and θ = b is given by ∫ b

a

1
2

(
f(θ)2 − g(θ)2

)
dθ,

assuming that f and g are continuous and nonnegative, 0 ≤ b− a ≤ 2π, and f(θ) ≥ g(θ) for
a ≤ θ ≤ b.

• Example 5. Find the area of the region that lies inside the circle r = 3 sin θ and outside
the circle r = 2.

The region is shown in the graph below, in which 0 ≤ θ ≤ π. (Suggestion: Set Graph

Order to SIMUL (F1-9) to observe the curves as they intersect.) The curves intersect when
3 sin θ = 2. This gives two solutions in the interval 0 ≤ θ ≤ π, namely θ = sin−1(2/3) and
θ = π − sin−1(2/3).

Arc Length. The length of a polar curve r = f(θ), where a ≤ θ ≤ b, is

L =
∫ b

a

√
f(θ)2 + f ′(θ)2 dθ.

• Example 6. Find the length of the four-leaved rose r = cos 2θ.

Using symmetry, we know that one-eighth of the length is traced out as θ rotates from
θ = 0 to θ = π/4. So let’s integrate over 0 ≤ θ ≤ π/4 and multiply the result by eight.
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Our final example for this section involves an improper integral.

• Example 7. Find the length of the spiral r = e−θ/5, 0 ≤ θ < ∞.

Exercises

1. Find the area of each region inside a loop formed by the graph of r = θ(2 − θ)(3 − θ).

2. Find the area inside one loop of the five-leaved rose r = sin 5θ.

3. Find the area inside the cardioid r = 1 − cos θ.

4. Find the area inside the inner loop of the limaçon r = 1 + 2 cos θ.

5. Find the area of the region inside the circle r = 3 cos θ and outside the circle r = 2 sin θ.

6. Plot and find the length of the polar curve r = sin θ cos 2θ.

7. Find the circumference of the limaçon r = 3 + 2 cos θ.



9 Sequences and Series

The TI-89/92 has graphical, algebraic, and numerical capabilities that lend themselves to
the study of sequences and series. This chapter is an introduction to these capabilities and
a supplement to Chapter 12 of Stewart’s Calculus .

9.1 Sequences
This section is devoted to the ways in which the TI-89/92 enables us to study sequences.
First we’ll look at the TI-89/92’s ability to generate sequences and find limits symbolically.

• Example 1. Consider the sequence defined by

an =
2n2

3n2 − n + 1
, n = 1, 2, 3, . . . .

The seq() command, which is found under List in the MATH menu ([2nd][5]), can be used to
display a number of terms of the sequence. Exact values are displayed if EXACT is selected
as the Exact/Approx MODE.

The limit() command, found in the Calc menu (F3 from the Home screen), computes the
limit of the sequence.

This also works with sequences whose terms involve symbolic parameters, as seen in the
following screens.

Plotting sequences. Sequences can be plotted easily on the TI-89/92.

• Example 2. Suppose that we wish to study the sequence defined by

an =
3n + 7(−1)n

4n + 5
, n = 1, 2, 3, . . . .

The first step in plotting the sequence is to press the MODE key and select SEQUENCE as the
Graph mode.
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Then press �Y= to bring up the Y= Editor. There, enter the formula for an as u1. Also from
the Y= Editor, press F7 and specify n as the variable for the X Axis and u1 as the variable
for the Y Axis.

In order to get an idea what window bounds are appropriate, we can examine the terms in
the sequence as a list. So press �TblSet and set each of the parameters tblStart and ∆tbl

equal to 1, and then press �TABLE.

From the values in the table, it looks as if −.5 to 1.25 would be good choices for ymin and
ymax. So press �WINDOW and enter window parameter values as shown below. Here we are
plotting the first forty terms in the sequence. Then press �GRAPH. Notice that we have used
Trace (F3) to display the value of the 36th term.

To better see the long-term behavior of the terms in the sequence, we can replot the sequence
after setting nmax and xmax to 100.
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Finally, let’s look at a plot of the first 200 terms. But first we’ll change the plot Style to Dot.

All of this provides numerical and graphical evidence that the limit of the sequence is
3/4. To prove that this is indeed the case, first observe that

3n − 7
4n + 5

≤ 3n + 7(−1)n

4n + 5
≤ 3n + 7

4n + 5

for all n ≥ 1. Now the squeeze theorem tells us that

lim
n→∞

3n + 7(−1)n

4n + 5
=

3
4
,

because

lim
n→∞

3n − 7
4n + 5

= lim
n→∞

3n + 7
4n + 5

=
3
4

by application of l’Hôpital’s Rule to the functions f(x) = (3x − 7)/(4x + 5) and g(x) =
(3x + 7)/(4x + 5).

Recursive sequences. Often the nth term of a sequence depends not upon n, but upon
previous terms in the sequence. Such a sequence is called a recursive sequence.

• Example 3. The sequence {an}∞n=1 defined by

a1 = .5
an = 2 sinan−1, n = 2, 3, 4, . . .

is a recursive sequence. In the Y= Editor, we enter an as u1(n) and then press �TABLE to
view the first few terms.

In fact, scrolling down the table a bit suggests that the sequence is converging to a limit that
is approximately 1.8955. The generation of sequences such as this, in which an = g(an−1),
with some given continuous function g and some given value of a1, is often called functional
iteration, or fixed-point iteration. There is a special graphical device, called a web plot, for
visualizing such a sequence. To set up a web plot on the TI-89/92, press F7 from the Y=

Editor, and choose Axes = WEB and, for now, Build Web = AUTO.
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Now we set appropriate window variables and plot the graph.

Note that the curve in the picture is the graph of y = 2 sinx and the line is y = x. To get a
better feeling for what this web plot is about, let’s change
to Build Web = TRACE in the Axes menu (F7) of the Y= Editor. Then pressing �GRAPH

only shows the graphs of y = 2 sinx and y = x.

Now select Trace (F3) and press [⇒] once and then again.

The first of these shows the computation of a2 = .958851 from a1 = .5, and the second
shows the location of a2 on the x-axis. Now press [⇒] twice more to find a3 on both axes.

Continuing in this way, you will begin to see the “web” approach the point of intersection of
the two graphs. It is also interesting to zoom in a bit to observe the behavior of the sequence
once terms begin to get fairly close to the limit.
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Our investigations so far indicate that

lim
n→∞

an ≈ 1.8955.

Let x∗ denote the exact value of this limit. Since

lim
n→∞

an = lim
n→∞

an−1 = x∗

and an = 2 sinan−1 for all n, it must be true that

x∗ = 2 sinx∗;

that is, the limit x∗ is a solution of the equation x = g(x), where g(x) = 2 sinx—that is, a
fixed point of the function g. (Note that the points of our web plot converged to the point
of intersection of the two graphs.) Let’s check this by solving x = 2 sinx with nSolve().

This is an example of a very important use of sequences. Exact solutions of many equa-
tions, such as x = 2 sinx, simply cannot be found. Thus we resort to some approximation
procedure which amounts to generating a sequence that converges (we hope) to a solution.
Provided that the sequence does converge, by computing enough terms in the sequence we
can approximate the exact solution to any desired accuracy.

Newton’s Method revisited. Recall that Newton’s Method for approximating a solu-
tion of f(x) = 0 is described by

xn = xn−1 −
f(xn−1)
f ′(xn−1)

, n = 1, 2, 3, . . . ,

where x0 is some chosen initial approximation to the solution. This procedure generates a
recursive sequence, since xn = g(xn−1) for n ≥ 1, where

g(x) = x − f(x)/f ′(x).

Note that if xn → x∗ as n → ∞ and if f ′(x∗) �= 0, then

x∗ = x∗ − f(x∗)
f ′(x∗)

,

which implies that f(x∗) = 0.

• Example 4. Consider the problem of approximating the solution of

x3 + x − 1 = 0.
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Examination of the graph of the function f(x) = x3 + x + 1 shows that there is exactly one
solution and that this solution is between .5 and 1. So we’ll take x0 = 1 and use Newton’s
method, which here takes the form

xn = xn−1 −
x3

n−1 + xn−1 − 1
3x2

n−1 + 1
, n = 1, 2, 3, . . . .

With Graph MODE = FUNCTION, enter f(x) as y1 and f ′(x) as y2. Then switch to Graph

MODE = SEQUENCE, and enter the Newton iteration formula as u1.

Press �TABLE to see the very rapid convergence of the sequence to a limit x∗ ≈ .68233.
Indeed, notice that we have at least five decimal places of accuracy after only four iterations.
�GRAPH shows the following picture on the left with window bounds of 0 to 2 on each axis
and the picture on the right with window bounds of .5 to 1 on each axis.

The curve in each of the pictures above is the graph of

g(x) = x − f(x)
f ′(x)

.

Notice that the extremely rapid convergence of the sequence is due to the fact that the
graph of g has a horizontal tangent at the point of intersection. One of the exercises that
follow will ask you to verify that this is a general property of Newton’s Method.

Exercises

For Exercises 1–5, plot each sequence and try to determine whether the sequence has a limit
as n → ∞ and, if so, estimate the value of the limit or make a conjecture about its exact
value. Then have your TI-89/92 compute the limit with its limit() command.

1. an =
2 + (−1)nn2

n2 − 3n + 4
2. an =

ln(n)
n1/3

3. an =
n!

200n

4. an =
2n3 − 6n2 + 15
n4 + 18n3 − 6

5. an = (cos2 3n)1/n

In Exercises 6–10, make a web plot of each recursive sequence and try to determine whether
the sequence has a limit as n → ∞ and, if so, estimate the value of the limit or make a
conjecture about its exact value. When possible, compute the exact value of the limit. In
all cases, describe as well as you can the long-term behavior of the sequence.

6. an = 1 + an−1/3, a1 = 0
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7. an = 1 + an−1/3, a1 = 3

8. an = 2an−1 − 3, a1 = 2.99

9. an = e−an−1 , a1 = 1

10. an = an−1(3 − an−1), a1 = 1.5

In Exercises 11–15, use Newton’s Method to approximate the smallest positive solution of
the given equation to at least six decimal places.

11. sin2 x − cos(x2) = 0

12. x − cosx = 0

13. x = e−x

14. tan x = x

15. x5 − x4 = 1

16. Let g(x) = x − f(x)/f ′(x), where f is a given twice-differentiable function.

a) Show that g′(x) = f(x)f ′′(x)/f ′(x)2.

b) Conclude that if f(x∗) = 0 and f ′(x∗) �= 0 (i.e., x∗ is a simple root of f), then
g′(x∗) = 0.

c) Describe the effect of g′(x∗) = 0 on the web plot of the Newton’s Method iteration.

9.2 Series

For any sequence {an}∞n=1, there is an associated sequence of partial sums {sn}∞n=1 defined
by

sn =
n∑

k=1

ak.

• Example 1. If an = 1/n3, then

s1 = 1,

s2 = 1 +
1
8

=
9
8
,

s3 = 1 +
1
8

+
1
27

=
251
216

,

s4 = 1 +
1
8

+
1
27

+
1
64

=
2035
1728

, . . .

Notice that the terms of any such sequence of partial sums will satisfy

s1 = a1,

sn = sn−1 + an, n = 2, 3, 4, . . . .

This allows very efficient calculation of the partial sums.
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• Example 2. Consider again the sequence an = 1/n3. To investigate the behavior of the
partial sums, let’s enter an as u1 and sn as u2 in the Y= Editor and construct a table of
values.

Values further down the table suggest that the partial sums are converging to a limit approx-
imately equal to 1.2. To estimate this (supposed) limit more accurately, it is more efficient
to plot the sequence of partial sums and use either Trace (F3) or the Value function from
the Math menu (F5-1).

An alternative approach is to use the
∑

() operator from the Calc menu on the Home screen.
(Be sure to switch Exact/Approx MODE to APPROXIMATE.)

The numbers we are seeing suggest that this sequence of partial sums is a convergent se-
quence with a limit approximately equal to 1.202. However, this is an area where one must
be very careful about such claims.

Given a sequence {an}∞n=1, the limit of the associated partial sums is called an (infinite)
series and is denoted by

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak.

For example, our preceding investigation suggests that
∞∑

k=1

1
k3

≈ 1.202.

The TI-89/92 can compute the exact value of certain series. This is done, again, with the∑
() operator. As we see below,

∑∞
k=1

1
k3 is not a series that the TI-89/92 can compute.

However,
∑∞

k=1
1
k2 is. (Switch Exact/Approx MODE back to EXACT.)
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Among the series that the TI-89/92 can compute exactly are geometric series.

Convergence. It is often difficult to determine whether a sequence converges by numerical
and graphical means. For example, it would be very difficult by graphical or numerical
investigations to determine whether either the harmonic series

∞∑
n=1

1
n

,

or the p-series (with p = 1.01)
∞∑

n=1

1
n1.01

,

is convergent. (The harmonic series is known to diverge, while p-series with p > 1 are
known to converge.) For this reason, we need analytical tests to determine whether a series
converges. Moreover, when dealing with a convergent series, it is very important to have an
estimate of the error when estimating the series with a partial sum.

There are five primary tests for convergence. These are the integral test, the comparison
test, the limit-comparison test, the ratio test, and the root test. Because it also provides a
useful error estimate, we will illustrate only the . . .

Integral test: Let an = f(n), where f is a positive, continuous, and decreasing function
on the interval [1,∞). Then

∞∑
k=1

ak converges if and only if

∫ ∞

1

f(x)dx converges.

Moreover, we have the error estimate∫ ∞

n+1

f(x)dx ≤
∞∑

k=n+1

ak ≤
∫ ∞

n

f(x)dx

for the partial sum sn.

• Example 3. Consider the series
∞∑

k=1

1
n ln n

.
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According to the integral test, this series converges if and only if the improper integral∫ ∞

1

dx

x ln x

converges. The
∫

() operator from the Calc menu lets us evaluate this integral easily. We
see that an antiderivative of (x ln x)−1 is ln(lnx), which clearly approaches ∞ as x → ∞.
Further verification is provided by the computation of the improper integral.

So we see that the series in question diverges.

• Example 4. Consider the series
∞∑

k=1

n

2n
.

According to the integral test, the convergence or divergence of the series is determined by
that of the improper integral ∫ ∞

1

x

2x
dx.

Thus we see that the series converges. Now suppose we wish to estimate the value of this
series to within 0.001. How many terms must we sum in order to obtain that accuracy?
According to the error estimate provided by the integral test, we need to find n such that∫ ∞

n

x

2x
dx ≤ .001.

So first we compute
∫ ∞

n
x
2x dx in terms of n; then we set this equal to .001 and try to solve

for n using nSolve from the Algebra menu. Note that nSolve is not successful until we restrict
its search to n > 1, when it returns n = 14.4883.
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So n = 15 terms will provide the accuracy we desire. Computation of that partial sum
suggests that the exact value of the series may be 2. In fact, the TI-89/92 can compute the
exact value of this sum, which is indeed equal to 2.

Power series. A power series, about the number a, is a function f defined, for some given
sequence of coefficients {cn}∞n=0, by

f(x) =
∞∑

n=0

cn(x − a)n

The domain Df of such a function is the set of all x for which the series converges. There
are three possibilities for the domain Df . Either:

(i) Df = {a},
(ii) Df = (−∞, ∞), or
(iii) Df is a bounded interval centered at a.

In cases (ii) and (iii), the domain is called the interval of convergence. In case (iii) it may
be an open interval, a closed interval, or it may contain one of its two endpoints. Half the
length of this interval is called the radius of convergence of the power series. In case (i),
we say that the radius of convergence is zero; while in case (ii), we say that the radius of
convergence is ∞.

• Example 5. Consider the power series

f(x) =
∞∑

n=1

xn

n
.

The ratio test shows that the series converges (absolutely) for −1 < x < 1. The series
diverges when x < −1 or x ≥ 1 and is a convergent alternating series when x = −1.
By graphing several of the polynomials obtained by truncating the series, it is possible to
visualize the convergence of the power series as a sequence of functions. Let’s first graph the
first through the fourth partial sums of the series; i.e., the first through the fourth degree
approximations to the series, on the interval [−2, 2].

What should be noticed here is that the graphs are very close to each other near x = 0.
Now let’s graph the the fifth, tenth, and 20th degree approximations to the series on the
interval [−1.5, 1.5].
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Finally, we’ll graph the 200th partial sum on the interval [−1.25, 1.25]. (Warning : It takes
the TI-89/92 several minutes to do this.)

Notice that the derivative of function f(x) in this example is

f ′(x) =
∞∑

n=1

xn−1

=
∞∑

n=0

xn =
1

1 − x
for − 1 < x < 1 .

Also, f(0) = 0. Therefore we can conclude that f has the “closed form”

f(x) = − ln(1 − x) for − 1 < x < 1 ;

that is,

− ln(1 − x) =
∞∑

n=1

xn

n
for − 1 < x < 1 .

Let’s look at the graph of this function, together with, say, the seventh partial sum of the
power series for comparison.

Note that the graph of − ln(1 − x) is the one with the vertical asymptote at x = 1.

• Example 6. Consider the power series

f(x) =
∞∑

n=0

(−1)nx2n.

The ratio test reveals that the series converges (absolutely) for |x| < 1 and diverges for
|x| > 1. It also clearly diverges if x = ±1. So let’s first plot the second through the fifth
partial sums on the interval [−1.5, 1.5].
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From what we know about the geometric series, it is not difficult to see the closed form
∞∑

n=0

(−1)nx2n =
1

1 + x2
for − 1 < x < 1.

So let’s plot the eleventh partial sum together with y = (1 + x2)−1, again on the interval
[−1.5, 1.5].

This graph does a very good job of illustrating the convergence of partial sums of a power
series. In this case, the function represented by the power series is defined and bounded for
all x, but the power series converges to it only on the power series’s interval of convergence.

Exercises

For each series in 1–5, plot the sequence of partial sums and estimate the value of the series.

1.
∞∑

n=1

1
n2

2.
∞∑

n=1

n2

2n
3.

∞∑
n=1

1
nn

4.
∞∑

n=0

1
n!

5.
∞∑

n=0

(−1)n

(2n)!

(π

3

)2n

For each series in 6–8, use the integral test error estimate to determine how many terms,
when summed, will estimate the series to within 0.0001.

6.
∞∑

n=1

ln n

n2
7.

∞∑
n=1

1
n(n + 1)

8.
∞∑

n=1

ln(1 + n2)
n2

For each power series in 9 and 10,

a) find the interval of convergence with the ratio test;

b) plot the first five and the tenth partial sums of the series on an appropriate interval;

c) find the closed form of the series and plot the graph on its interval of convergence.

9. f(x) =
∞∑

n=1

(−1)(n+1)x2n

n
10. f(x) =

∞∑
n=0

(−1)nx2n+1

2n + 1
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9.3 Taylor polynomials

The nth degree Taylor polynomial about a point x = a for a function f that is n times
differentiable in an open interval containing a is given by

Tn(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k,

where f (k) denotes the kth derivative of f . If f has derivatives of all orders in an open
interval containing x = a, then its Taylor polynomials are partial sums of the power series

f(x) =
∞∑

k=0

ck(x − a)k

where the coefficients ck are given by ck = f (k)(a)/k!. We call this series the Taylor series
for f about x = a.

The TI-89/92 has a built-in function for computing Taylor polynomials. It is the function
taylor(), in the Calc menu.

• Example 1. Consider the function

f(x) =
x2 − 1
x3 + 1

.

We’ll find the third degree Taylor polynomial T3(x) about x = 0. In order to graph T3(x)
along with f(x), we assign the result of taylor() to the variable p3(x).

Finally, let’s graph f(x) along with T5(x) and T10(x). (Note that T10(x) is actually a poly-
nomial of degree nine.)

The remainder term. Taylor polynomials provide an effective way of approximating a
function locally about a given point x = a. According to Taylor’s Theorem, the remainder
Rn(x) in the approximation of f(x) by Tn(x) is given by the formula

f(x) − Tn(x) = Rn(x) =
f (n+1)(ξx)
(n + 1)!

(x − a)n+1,

where ξx is some number between x and a, provided that f is (n + 1)-times differentiable
on some interval containing a and x.
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• Example 2. Suppose that we approximate sin(.3) by computing the value of the cubic
Taylor polynomial about x = 0 at .3:

sin(.3) ≈ .3 − (.3)3

6
= 0.2955.

Let’s use the remainder term to estimate the error in the approximation. Since the fourth
derivative of sinx is sinx, and since sin x ≥ 0 for 0 ≤ x ≤ .3, we have

|R3(.3)| =
sin(ξ.3)

4!
(.3 − 0)4,

for some number ξ.3 between 0 and .3. Using the very rough estimate sin(ξ.3) ≤ 1, we arrive
at

|R3(.3)| ≤ 1
4!

(.3)4 = .0003375.

This estimate can be sharpened somewhat by using the fact that sin(ξ.3) ≤ .3. (Why is this
true?) This gives the estimate

|R3(.3)| ≤ .3
4!

(.3)4 = .00010125.

A still sharper error estimate can be found by realizing that the fourth degree Taylor poly-
nomial for sinx about x = 0 is the same as the cubic Taylor polynomial about x = 0.
Therefore we can estimate the error with

|R4(.3)| =
cos(ξ.3)

5!
(.3 − 0)5 ≤ (.3)5

5!
= .00002025.

Finally, there is one more (simpler) method of estimating the error that is available to us.
The full series for sin(.3) is an alternating series. Therefore, the error can be estimated by
the absolute value of the next nonzero term, which here is (.3)5/5!, the very same estimate
that we obtained for |R4(.3)|. The calculations on the left below indicate that this error
estimate is quite sharp indeed. The plot on the right below shows the graphs of sinx and
x − x3/6 on the interval 0 ≤ x ≤ π.

Because of the form of the remainder term, if we want to approximate f(x) over an
interval [a − r, a + r], we have the error estimate

|Rn(x)| ≤ Mrn+1

(n + 1)!
for |x − a| ≤ r,

where

M = max
[a−r, a+r]

∣∣∣f (n+1)(x)
∣∣∣ .

• Example 3. Suppose we wish to find a polynomial approximation to f(x) = cosx uni-
formly on the interval [−π, π] with an error of not more than 0.01. Since f and all of its
derivatives have values between −1 and 1, we can take M = 1. So, for any x in [−π, π], we
have

|Rn(x)| ≤ πn+1

(n + 1)!
,
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and therefore we want to find the least value of n such that
πn+1

(n + 1)!
≤ 0.01.

By tabulating the sequence πn+1/(n + 1)!, we see that the desired value is n = 10.

Now we plot cosx together with p10(x) on the interval [−7, 7]. Notice the closeness of
the two graphs between −π and π.

Exercises

1. Find the fifth and tenth degree Taylor polynomials for f(x) = cosx about x = π
2 . Then

plot them both along with cosx on the interval [−4, 7].

2. Find the fifth and tenth degree Taylor polynomials for f(x) = cos(1 − ex) about x = 0
and plot them along with cos(1 − ex) on the interval [−2, 3].

3. Find the fifth and tenth degree Taylor polynomials for f(x) = (1 + x2)−1 about x = 0
and plot them along with (1 + x2)−1 on the interval [−2, 2].

4. Find a polynomial approximation to f(x) = ex on the interval [−2, 2] with an error of
not more than 0.01. Then plot both the polynomial approximation and ex on the interval
[−4, 4].

5. Find a polynomial approximation to f(x) = lnx on the interval [1/2, 3/2] with an error
of not more than 0.001. Then plot both the polynomial approximation and lnx on the
interval [0.01, 4].

6. Find the third, fourth, and fifth degree Taylor polynomials for f(x) = x3 + x2 + x + 1
about x = 0 and also about x = 1. What do you observe?

7. Use the cubic Taylor polynomial for esinx to approximate esin 0.25. Use the bound on the
remainder term to estimate the error in the approximation.

8. Use the fourth degree Taylor polynomial for
√

1 + x4 about x = 0 to approximate the
integral

∫ 1

0

√
1 + x4 dx. Estimate the error in the approximation.
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9. Use the fourth degree Taylor polynomial for cosx about x = 0 to find an approximate
formula for the positive solution of cosx = x2 + k, in terms of k, for k < 1. For what
values of k does this give a reasonably accurate solution? Hint : The quadratic formula
is your friend. . .

�

10. What other important theorem does Taylor’s Theorem become in the case n = 0? What
does Taylor’s Theorem tell us about the linear approximation to a twice differentiable
function about x = a, i.e., in the case n = 1?



10. Projects

10.1 Two Limits

Objectives: The purpose of this project is to illustrate the notion of limit in two simple
situations.

Background: You need only be familiar with the basic capabilities of the TI-89/92 that
are described in Chapters 1 and 2 of this manual.

I. Suppose that a certain plant is one meter tall, and its height increases continuously at a
rate of 100% per year. How tall will the plant be one year later?

1. Suppose that instead of growing continuously the plant has monthly instantaneous
growth spurts, in each of which its height increases by 100

12 %. Compute the plant’s height
after twelve such monthly growth spurts.

2. Suppose that instead of growing continuously the plant has daily instantaneous growth
spurts, in each of which its height increases by 100

365%. Compute the plant’s height after
365 such daily growth spurts.

3. Suppose that instead of growing continuously the plant has n instantaneous growth
spurts during the year, in each of which its height increases by 100

n %. Express the year-
end height of the plant as a function h(n).

4. Plot the graph of h(n) in a [1, 500] × [2, 3] window. Use Value from the Graph screen’s
Math menu to find the values h(12) and h(365) that you computed in #1 and #2.
Describe the behavior of the graph and estimate the number that h(n) approaches as n
gets larger and larger. Now give an (approximate) answer to the original question.

II. Suppose that your friend asks for a loan of $2500 and offers to pay you back according
to the following schedule. He will pay you $100 tomorrow, and on each day thereafter he
will pay you 95% of the previous day’s payment for the rest of your life (or until the daily
payment amount is less than one penny.) Should you agree to the deal?

1. The amount of the loan that has been paid back after n days is

A(n) = 100 + 100(.95) + 100(.95)2 + 100(.95)3 + · · · + 100(.95)n−1.

So in the Y= Editor, define
y1 =sum(seq(100∗.95ˆk,k,0,x–1)

Then plot the graph of y1 in a [0, 30] × [0, 2500] window, with xres=4 to speed up the
plot. How much of the loan has been paid back after 30 days?

2. The method used in #1 to compute A(n) is very inefficient. Show that

A(n) − .95A(n) = 100 − 100(.95)n = 100(1− .95n)

and consequently that

A(n) =
100 (1 − .95n)

.05
= 2000(1− .95n).

Redefine y1 using this simpler formula. Then plot the graph in a [0, 365] × [0, 2500]
window. What can you conclude about when the loan will be paid off?

3. After how many days will the daily payment become less than a penny? How much
money you would get back if you did agree to the deal?
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10.2 Computing π as an Area

Objectives: This project illustrates the notion of limit in the context of computing the
area inside a circle by the “method of exhaustion.”

Background: Basic trigonometry. You should also be reasonably familiar with the capa-
bilities of the TI-89/92 that are described in Chapters 1 and 2 of this manual.

In this project, we will explore a method for computing a that was known to the ancient
Greeks. It is sometimes called the “method of exhaustion.” (But with the TI-89/92’s help,
hopefully we won’t become exhausted. . .

� ) The method embodies the essence of calculus:
successively improved approximations.

Let us suppose that we define π to be area inside a circle of radius 1. Then by approx-
imating the area inside the circle, we approximate π. The way that we’ll approximate this
area is to compute the area of a regular polygon whose vertices lie on the circle.

1. Before we proceed with the computations, let’s first create some pictures to illustrate
what we’re doing. Enter the following program, which draws a regular polygon with n
sides and partitions the polygon into n identical triangles.

: polygon(n)

: Prgm: Local a,b

: ClrDraw:ClrGraph:FnOff:PlotsOff

: ZoomSqr

: For i, 1, n

: 2.π∗(i–1)/n →a

: 2.π∗i/n →b

: Line cos(a),sin(a),cos(b),sin(b)

: Line 0,0,cos(b),sin(b)

: EndFor

: EndPrgm

After entering the program, set window variables to see a [−2, 2]×[−1, 1] window. Execute
the program from the Home screen with n = 3 by entering polygon(3). Repeat with n = 4,
5, . . . , 10 and then with n = 16, 24, and 36.

2. a) Now we need a formula for the area of each n-gon. Using basic trigonometry, and
noting that each triangle can be divided up into two congruent right triangles, show that
each of the n triangles within the n-gon has area

sin
180◦

n
cos

180◦

n
,

and consequently the area within the n-gon is

A(n) = n sin
180◦

n
cos

180◦

n
,

(Note: We are using degree measure for angles because radian measure requires us to
know π.)

b) Graph the function A(n) in a [3, 100]× [0, 4] window. Find the least number of sides
the polygon must have in order that its area, rounded to three significant figures, is 3.14.
(Make sure that your calculator is in degree mode.)

c) Find the least number of sides the polygon must have in order that its area, rounded
to five significant figures, is 3.1416.
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10.3 Lines of Sight

Objectives: The purpose of this project is to reinforce the concept of the tangent line and
the slope of a curve. You will use the TI-89/92’s ability to draw tangent lines to a curve in
order to approximate a “line of sight” and then use Calculus to solve the problem precisely.

Background: Before doing this project, you should be familiar with the basic definition
of the tangent line to a curve and its slope. You should also have become familiar with the
capabilities of the TI-89/92 that are described in Chapters 1–3 of this manual.

The problem: Ant Man is standing 100 feet away from a tall building and 12 feet away
from a greenhouse with semicircular cross-section of radius 12 feet, as shown in the figure.
Ant Man’s eyes are 5.6 feet above the ground. How high above the ground is the lowest
point he can see on the side of the building, and how high above the ground is the highest
point he can see on the roof of the greenhouse?

The following steps will lead to the solution of the problem.

1. In the Y= Editor, define y1 =
√

144 − (x − 24)2 and press F1-9 to bring up the GRAPH

FORMATS dialog box. There, set Grid to ON. Then set window variables to get a [0, 105]×
[0, 50] window with xscl = 5, yscl = 5, and xres = 1. Press �GRAPH to create the plot. Now
use Shade from the Math menu on the Graph screen (F5-C) to shade the semicircular
region under the graph. (The lower and upper bounds on the region are x = 12 and
x = 36.) Finally, press F7 in the Graph screen, select Vertical, and draw the vertical line
that is as close to x = 100 as possible.

2. Still on the Graph screen, select Circle from the “pencil” menu (F7-4) and draw a very
small (semi)circle at the left edge of the screen at the point E = (0, 5.6), where Ant
Man’s eyes are located. Then select Tangent from the Math menu (F5-A), and move the
cursor to a point on the greenhouse roof where you think the tangent line might pass
through E. Take note of the coordinates of that point, and press enter to see the resulting
tangent line.

3. Repeat the second part of step 2 a few times until you have found a point on the
greenhouse roof where the tangent line comes as close as possible to hitting E. Note the
x- and y-coordinates of the point on the greenhouse roof each time. What is the equation
of the best tangent line you could find this way?

4. Compute the y-coordinate when x = 100 on the graph of your final tangent line from
step 3. Round to the nearest foot.

5. Let P denote the point on the greenhouse roof where Ant Man’s line of sight is tangent
to it. Let a denote the exact x-coordinate of P . Using the slope formula, find the slope
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of the line passing through E and P , in terms of a. On the Home screen, store this as a
function s(a).

6. Find the slope of the greenhouse roof (i.e., the derivative of y1(x)) at the point where
x = a, and store this as m(a).

7. Solve the equation m(a)=s(a) for a. Do this using nSolve() “with” the condition a>12

and a<24. Then compute the slope m(a) and write the equation of Ant Man’s line of
sight.

8. Compute and give the answers to the questions in the statement of the original problem.

10.4 Graphs and Derivatives

Objectives: The purpose of this lab is to reinforce the geometric interpretations of the
first and second derivatives of a function f in terms of the graph of f .

Background: Before doing this project, you should be familiar with the definitions of the
first and second derivatives of a function f and their relationship to geometric properties of
the graph of f . You should also have become familiar with the capabilities of the TI-89/92

that are described in Chapters 1–3 of this manual.

1. Graph the function f(x) = x4 − 6x3 + 8x2 in a [−2, 5]× [−15, 20] window. Then, using
Trace to find rough estimates for the endpoints (rounded to the nearest tenth), state the
intervals on which:

a) f(x) is positive; b) f(x) is negative;

c) f(x) is increasing; d) f(x) is decreasing;

e) the graph is concave up; f) the graph is concave down.

2. Add the graph of the derivative f ′(x) = 4x3 − 18x2 + 16x to the plot from #1. Then,
using the same endpoint values as in #1, state the intervals on which

a) f ′(x) is positive; b) f ′(x) is negative;

c) f ′(x) is increasing; d) f ′(x) is decreasing.

3. Add the graph of the second derivative f ′′(x) = 12x2 − 36x + 16 to the plot from #2.
Then, using the same endpoint values as in #1, state the intervals on which

a) f ′′(x) is positive; b) f ′′(x) is negative.

In 4–6, give interval endpoints rounded to the nearest thousandth.

4. Rework #1, using

a,b) Zero from the Math menu (F5-2) to find endpoints of the intervals for parts a and b;

c,d) Minimum or Maximum from the Math menu (F5-3,4) to find endpoints of the intervals
for parts c and d;

e,f) Inflection from the Math menu (F5-8) to find endpoints of the intervals for parts e and
f.

5. Rework #2, using
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a,b) Zero from the Math menu (F5-2) to find endpoints of the intervals for parts a and b;

c,d) Minimum or Maximum from the Math menu (F5-3,4) to find endpoints of the intervals
for parts c and d;

6. Rework #3, using

a,b) Zero from the Math menu (F5-2) to find endpoints of the intervals for parts a and b.

10.5 Designing an Oil Drum

Objectives: The purpose of this project is to guide the student through a series of realistic
applied optimization problems.

Background: Before doing this project, you should be familiar with the concepts related
to optimization problems. You should also have read Chapters 1–4 of this manual.

General scenario: You work for a company that manufactures large steel cylindrical
drums that can be used to transport various petroleum products. Your assignment is to
determine the dimensions (radius and height) of a drum that is to have a volume of 1 cubic
meter while minimizing the cost the drum.

The cost of the steel used in making the drum is $3 per square meter. The top and
bottom of the drum are cut from squares, and all unused material from these squares is
considered waste. The remainder of the drum is formed from a rectangular sheet of steel,
assuming no waste.

Problem I. Ignoring all costs other than material cost, find the dimensions of the drum
that will minimize the cost.

1. Using the fact that the drum’s volume is to be 1 cubic meter, express the height h of the
drum in terms of its radius r. Store the resulting expression as ht(r).

2. Express the material cost first in terms of both r and h and then as a function of r alone.
Store the resulting expression as cost1(r).

3. Graph cost1(r) in a [0, 2]× [0, 70] window. Then use Minimum from the Math menu (F5-3)
to find the value of r that minimizes cost. Round the result to the nearest hundredth.

4. What dimensions of the drum minimize the material cost?

Problem II. The drum has seams around the perimeter of its top and bottom, as well as
a vertical seam where edges of the rectangular sheet are joined to form the lateral surface.
In addition to the material cost, the cost of welding the seams is $1 per meter. Find the
dimensions of the drum that will minimize the cost of production.

5. Add the seam-welding cost, in terms of r alone, to cost1(r) Store the resulting expression
as cost2(r).

6. Graph cost2(r) in a [0, 2]× [0, 70] window. Then use Minimum from the Math menu (F5-3)
to find the value of r that minimizes cost. Round the result to the nearest hundredth.

7. What radius and height of the drum minimize the material cost plus the cost of welding
the seams?

Problem III. The cost of shipping each drum from your plant in Birmingham to an oil
company in New Orleans depends upon both the surface area of the drum (which determines
weight) and the sum of the drum’s diameter and height (which affects how many drums can
be transported on one vehicle). This cost is estimated to be $2 per square meter of surface
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area plus $1 per meter of diameter plus height. Find the dimensions of the drum that will
minimize the total cost of production and transportation.

8. Add the transportation cost, in terms of r alone, to cost2(r) Store the resulting expression
as cost3(r).

9. Graph cost3(r) in a [0, 2]× [0, 70] window. Then use Minimum from the Math menu (F5-3)
to find the value of r that minimizes cost. Round the result to the nearest hundredth.

10. What radius and height of the drum minimize the total cost of production and trans-
portation?

10.6 Newton’s Method and a 1D Fractal

Objectives: The goal of this project is to illustrate some of the issues related to the
convergence of Newton’s Method and to reinforce the geometric interpretation of Newton’s
Method.

Background: Before doing this lab, you should be familiar with Newton’s Method. You
should also have entered and used the program newt() from Section 4.7.

Materials: You’ll need three different colored pencils, pens, or markers.

Overview: The simple cubic polynomial

f(x) = x3 − x

has three distinct real zeros: 0 and ±1. Our goal here is to get a visual picture of which
initial guesses x0 cause Newton’s Method to converge to each of these three zeros of f .

1. In the Y= Editor enter the function given above as y1. Then graph the function, first in
a [−3, 3]× [−10, 10] window and then in a [−1.5, 1.5]× [−2, 2] window.

2. For future reference, use Minimum and Maximum from the Graph screen Math menu to
find the values of x at the local minimum and the local maximum that appear in the
graph. Then use the derivative to find the exact values of these critical points.

3. The following function, newtfn(), returns the (approximate) number to which Newton’s
Method converges, given an initial guess x0. In fact, we want to plot its graph as a
function of x0. Enter newtfn() in your myprogs folder.

: newtfn(f, xvar, x0, tol)

: Func

: Local df, xnew, xi, err

: d(f,xvar) →df: x0 →xnew: 2∗tol →err

: While err>tol

: xnew →xi

: xvar–f/df | xvar=xi →xnew

: If xnew �=0 Then: abs((xi–xnew)/xnew) →err

: Else: abs((xi–xnew)/tol →err

: EndIf

: EndWhile

: Return xnew

: EndFunc

To be sure that newtfn() works properly, enter
myprogs\newtfn(xˆ3–x, x, x0, 10ˆ(-5))
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for each of x0 = ±1.5,±.5,±.25. Are the results sensible?

4. In the Y= Editor, define

y1 = xˆ3–x ,
y2 = myprogs\newtfn(tˆ3–t, t, x, 10ˆ(-2)) .

Then plot both graphs in a [−1.5, 1.5] × [−2, 2] window with xres=2. In light of the
symmetry in the plot, replot in a [0, 1.5]× [−2, 2] window, this time with xres=1.

5. Based on the plot observed in #4, sketch the graph of y = x3 − x for −1.5 ≤ x ≤ 1.5,
and then color-code the x-axis in some manner according to the behavior of Newton’s
Method on this problem. For example, you might let blue indicate convergence to −1,
red convergence to 0, and green convergence to 1.

6. There is an interval of the form (a,∞) that contains 1 and has the property that the
Newton iterates converge to 1 whenever the initial guess x0 is in that interval. The value
of a is geometrically obvious. What is it? Notice that by symmetry the interval (−∞,−a)
contains −1 and has the property that the Newton iterates converge to −1 whenever the
initial guess x0 is in that interval.

7. Let a have its value from #6. There is an interval of the form (a−h, a) with the property
that the Newton iterates converge to −1 whenever the initial guess x0 is in that interval.
If a− h were used as x0, what would be the resulting value of x1? Use this to write and
solve an equation for h. What then are the endpoints of the interval (a − h, a)? Notice
that there is an analogous interval (−a, −a + h) containing initial guesses for which the
Newton iterates converge to 1.

8. There is an interval of the form (−r, r) with the property that the Newton iterates
converge to 0 whenever the initial guess x0 is in that interval. If −r were used as the
initial guess x0, what would be the resulting value of x1? Use this to write and solve an
equation for r. What then are the endpoints of the interval?

9. Graphically investigate the behavior of Newton’s Method for initial
guesses in the interval (r, a − h). Once you’re convinced you understand what’s hap-
pening, redraw your color-coded x-axis and graph on a large sheet of paper. Also write
a short paragraph describing what you have observed.

10.7 Optimal Location for a Water Treatment Plant

Background: Distance formula; the derivative; optimization problems.

Overview: Three towns—Appalachee, Hull, and Eastville—agree to share the cost of con-
structing a new water treatment plant that will supply all three towns with water. The plant
will be located on a nearby river. The main concern in deciding where to locate the plant
is the total cost of installing the supply pipelines to all three towns and building an access
road from the plant to a nearby interstate highway. The map below shows the center of each
town, the river, and the interstate highway. The grid lines on the map are 1 mile apart.



136 Chapter 10 � Projects

The cost of the pipeline to Eastville will be $15,000 per mile. The cost of installing
pipelines to each of Appalachee and Hull will be $40,000 per mile, since they must go
through heavily wooded areas. The cost of building the road will be $180,000 per mile.
Assume that the supply pipelines extend to the centers of the three towns and ignore the
width of the river.

Assignment: Find the point on the river where the new water treatment plant should be
located in order to minimize the total cost of installing the supply pipelines and building
the road.

10.8 The Vertical Path of a Rocket

Background: Antidifferentiation; rectilinear motion.

The Situation: A small rocket has a mass of 100 kg, including 30 kg of fuel. Its engine
burns fuel at a constant rate of 1 kg/sec and produces a constant thrust of 980 Newtons
until the fuel is exhausted. The engine is ignited at time t = 0, propelling the rocket upward
on a vertical path.

1. Express the mass m of the rocket, including fuel, as a function of t, for t ≥ 0. After how
many seconds does the rocket run out of fuel?

2. Let y(t) denote the height in meters of the rocket at time t seconds. If we ignore air
resistance, Newton’s second law gives the equation

d

dt

(
m(t)

dy

dt

)
= −9.8m(t) + 980,

up until the instant when the rocket runs out of fuel. Find the height function y(t) that
is in effect up until the instant when the rocket runs out of fuel. What are the velocity
and the height of the rocket at the instant when the rocket runs out of fuel?

3. After the rocket runs out of fuel, the problem becomes a simple one concerning the height
of a projectile for which the only acceleration comes from gravity, and the initial height
and velocity are known. Extend the height function y(t) from #2 so that it is valid from
time t = 0 until the rocket falls to the ground. Simulate the path with your TI-89/92.

4. Find the maximum height attained by the rocket.
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10.9 Otto the Daredevil

Background: Antidifferentiation; rectilinear motion.

The Situation: Otto is an unusual daredevil. He jumps off of tall buildings with a small
jet-pack strapped to his back. The jet-pack carries a small amount fuel—just enough to
last for 10 seconds. The acceleration it provides is 14.4 m/sec2. Moreover, the jet-pack can
be switched on and then off only once. Thus, on each jump, Otto’s goal is to program the
jetpack to switch on and then off at precisely the right moments so that he lands with zero
velocity. (Throughout this project, ignore air resistance and assume that g = 9.8 m/sec2.)

1. If Otto jumps off a 100 meter building, after how many seconds should he turn on his
jet-pack? How many seconds after that does he land?

2. Repeat #1 for a 200 meter building.
3. How tall is the tallest building from which Otto should jump if he insists upon landing

with zero velocity?
4. How tall is the tallest building from which Otto should jump if he doesn’t mind landing

with a velocity of −10 m/sec?

10.10 The Skimpy Donut

Background: Volume of a solid of revolution; area of a surface of revolution; optimization.
Review Sections 4.6, 6.2, and 6.3 in this manual.

Overview: The GetFat Donut Company makes donuts with a layer of chocolate icing. The
company wants to cut costs by using as little chocolate icing as possible without changing
the thickness of the icing or the weight (i.e., volume) of the donut. The problem, then, is to
determine the dimensions of the donut that will minimize its surface area.

Assume that the donut has the idealized shape of a torus—obtained by revolving a circle
about its central axis—as shown below.

Such a torus can be obtained by revolving the circle (x− a)2 + y2 = b2 about the y-axis,
where b is the radius of the revolved circle, and a is the distance from the center axis to the
center of the revolved circle. Previously, the donuts have been in the shape of such a torus
with a = 1 inch and b = 1/2 inch.

1. Use the cylindrical shells technique to find the volume of the torus in terms of a and
b. (Note that because of symmetry, it suffices to double the volume of the top half.)
Now compute the volume V0 that the donuts have had with dimensions a = 1 inch and
b = 1/2 inch.

2. Find the surface area of the torus in terms of a and b. (Note that because of symmetry,
it suffices to double the surface area of the top half.) As a check, the surface area should
be 2π2 when a = 1 and b = 1/2.

3. With the volume fixed at its previous value V0, determine the range of allowable values
for each of a and b. (One important condition comes from the geometry of the torus.)
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4. With the volume fixed at its previous value V0, find the dimensions a and b that will
minimize the donut’s surface area.

5. Is there a maximum surface area for a fixed volume?

10.11 The Brightest Phase of Venus

Background: Trigonometry; optimization; area.

Overview: The brightness of Venus, as seen from Earth, is proportional to its visible
area and inversely proportional to the square of the distance from Venus to Earth. In the
figure below, note that as the angle φ increases from 0 to π, the visible area increases, thus
increasing Venus’s brightness. But the distance d from Earth to Venus also increases, which
tends to decrease the brightness of Venus. Venus will appear brightest from Earth for some
value of φ between 0 and π.

Assignment: Find the brightest phase of Venus—i.e., the angle φ for which Venus appears
brightest from Earth—by following the steps outlined below. Carefully write up your solu-
tion, as usual, using complete sentences and graphs as needed. Use the TI-89/92 wherever
appropriate.

1. From basic geometry, show that B = π − (φ + A) and C = (φ + A) − π/2.

2. Let a be the radius of Venus. Show that the visible portion of Venus lies between the
curves x = −

√
a2 − y2 and x =

√
a2 − y2 sin C. Then show that the visible area of

Venus is
πa2

2
(1 + sin C).

3. Let β represent the brightness of Venus as viewed from Earth. As described in the
overview above, β is proportional to the quantity

visible area
d2

.

Use this, together with the results of #1 and #2, to obtain a formula for β in terms of
the angles φ and A and the distance d. Then use the Law of Cosines and the Law of
Sines from Trigonometry to show that

d2 = r2 + R2 − 2rR cosφ,

sin A =
r

d
sin φ,

where r is the distance from the Sun to Venus, and R is the distance from the Sun to
Earth.
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4. Use the equations in #3 with the values R = 93, r = 67, and a = 0.004 (each in millions
of miles) to express β in terms of the angle φ. Then find the value of φ between 0 and π
that maximizes β.

10.12 Designing a Light Bulb

Background: Slope, continuity, and differentiability; optimization; the definite integral;
solving systems of linear equations with simult(); using when() to define a piecewise-defined
function.

Problem I. The glass portion of a light bulb is to be in the form of a surface of revolution
obtained by revolving the curve shown in the figure about the x-axis. The radius of the
bulb’s base is 1/2 inch, and the radius of its spherical portion is 1.25 inches.

The curve is the graph of the piecewise-defined function:

f(x) =
{

ax3 + bx2 + cx + d, when 0 ≤ x ≤ 1.25;√
1.252 − (x − 2)2, when 1.25 ≤ x ≤ 3.25.

Find the coefficients a, b, c, and d. Then plot the graph of f in a [0, 3.25]× [0, 1.5] window.

Hint: At each of x = 0 and x = 1.25, there are two conditions given by 1) the point on the
curve and 2) the slope of the curve.

Problem II. This problem concerns the placement of the filament in the bulb. The filament
will be located at a point P on the central axis of the bulb, r inches from the base, such
that the distance from the point P to the entire inner surface of the bulb, as measured by

φ(r) =
∫ 3.25

0

√
(r − x)2 + f(x)2 dx,

is minimized. Find r.

Hint: Being very patient, graph φ(r) on the interval 0 ≤ r ≤ 3.25 after experimentally
determining appropriate values of ymax and ymin. (Set xres to 10 to speed up the process;
then go have lunch.) Two decimal places of accuracy for r is plenty.

Problem III. Show that the distance from a point P = (r, 0) to the semicircle y =√
R2 − x2, as measured by

φ(r) =
∫ R

−R

√
(r − x)2 + (R2 − x2) dx,

is minimized by r = 0 (i.e., when P is the center of the circle).
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10.13 Approximate Antidifferentiation
with the Trapezoidal Rule

Background: Antidifferentiation; the Fundamental Theorem of Calculus; approximate
integration; the Trapezoidal Rule. Review Sections 5.1 and 5.4 in this manual.

Overview: The Fundamental Theorem of Calculus tells us that every continuous function
f on an interval [a, b] has an antiderivative F (x), namely

F (x) =
∫ x

a

f(t)dt.

In many cases, such as when f(x) = cosx, x3, ex, x sin x2, and so on, F (x) can be express
in terms of other elementary functions. However, for many (in fact, most) functions, there
is no simpler way of expressing an antiderivative. Our goal here is to use the trapezoidal
rule to develop an efficient method of approximating F (x).

Note that if we have a value for F (x), then we can express F (x + ∆x) as

F (x + ∆x) =
∫ x

a

f(t)dt +
∫ x+∆x

x

f(t)dt

= F (x) +
∫ x+∆x

x

f(t)dt.

A two-point Trapezoidal Rule approximation to this last integral gives us

F (x + ∆x) ≈ F (x) +
∆x

2
(f(x) + f(x + ∆x)) .

Now, using this approximation, we can approximate values of F quite efficiently at a sequence
of points x1, x2, x3, . . ., where xn = a + n∆x, by using the recurrence formula

Fn = Fn−1 +
∆x

2
(f(xn−1) + f(xn)) ,

where Fi represents an approximation to F (xi).

TI-92 Set-up: Follow the steps below to set up your TI-89/92 to plot approximate an-
tiderivatives.

1. Press MODE and set the Graph mode to SEQUENCE.

2. Go to the Y= Editor and set
u1=u1(n–1)+dx, ui1=a, u2=u2(n–1)+step(u1(n–1)), and ui2=0.

Highlight u2 and select Line as the graph Style (F6-1). Finally, press F7 and set Axes:

CUSTOM, X Axis: u1, and Y Axis: u2. (Note that u1 represents the variable x and u2

represents F (x).)
3. From the Home screen, enter

Define step(x)=(f(x)+f(x+dx))∗dx/2 .
4. Still in the Home screen, store a value in dx (typically .1 or .05), store a value in a, and

define the function f(x). Press �WINDOW and set appropriate window variables. Then
press �GRAPH to plot the graph.

Assignment: First follow the set-up steps above. Test the set-up with f(x) = cosx, a = 0,
and dx= .1. You should see a good approximation to the graph of sinx. Appropriate window
variables for this test-case include nmin= 0, nmax= 63, xmin= 0, xmax= 2π, ymin= −1,
ymax= 1.

For each of the following, first plot the given antiderivative on the specified interval.
Then switch the Graph MODE to FUNCTION and plot the integrand on the same interval. For
each pair of graphs, describe in some detail the two expected relationships:
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a)
∫ x

a

f(t)dt gives the “net” area between the graph of f and the

x-axis between a and x;

b) f(x) is the derivative of
∫ x

a

f(t)dt.

1)
∫ x

0

sin(t2)dt, for 0 ≤ x ≤ 5 2)
∫ x

1

sin(t2)dt, for 1 ≤ x ≤ 5

3)
∫ x

0

dt√
1 + t4

, for 0 ≤ x ≤ 10 4)
∫ x

0

e−t2dt, for 0 ≤ x ≤ 3

5)
∫ x

0

esin tdt, for 0 ≤ x ≤ 4π 6)
∫ x

0

sin(t cos t)dt, for 0 ≤ x ≤ 2π

7)
∫ x

0

sin(t + cos t)dt, for 0 ≤ x ≤ 4π

Bonus: Modify the procedure described above so that it uses a three-point Simpson’s Rule
approximation rather than a two-point Trapezoidal approximation. Rework #1 and #6
above to test your modification.

10.14 Percentiles of the Normal Distribution

Background: The definite integral; approximate integration; improper integrals; Newton’s
Method.

Overview: The function

g(x) =
e−x2/2

√
2π

is extremely important in Probability. Its graph is the standard normal (or bell) curve. If
x represents an observable, random quantity (a random variable) that is “normally dis-
tributed” with mean value zero and standard deviation 1, then the area under the graph
of g between x = a and x = b is the probability that a random observation of x will fall
between a and b. If we define the notation P (a ≤ x ≤ b) to represent this probability, then
we can write

P (a ≤ x ≤ b) =
∫ b

a

g(x)dx.

Also,

P (x ≤ b) =
∫ b

−∞
g(x)dx and P (a ≤ x) =

∫ ∞

a

g(x)dx.

Our goal here is to construct a short table of standard percentiles of the normal distribution—
that is, a table of values of b corresponding to

P (x ≤ b) = .01, .05, .10, .25, .333, .50, .667, .75, .90, .95, .99.

Assignment: Carry out the following steps to determine the desired percentiles.

1. Plot g in a [−3.5, 3.5]× [0, .5] window with xres=1. Use the
∫

f(x)dx command in the Math

menu to compute

a)
∫ 1

−1

g(x)dx, b)
∫ 2

−2

g(x)dx, and c)
∫ 3

−3

g(x)dx.
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2. Go to the Home screen and compute
∫ 10

−10
g(x)dx with the

∫
() operator to confirm that∫ ∞

−∞ g(x)dx = 1. Now, knowing that g(x) is an even function, the value of
∫ 0

−∞ g(x)dx

should be 1/2. To confirm this expectation, compute
∫ 0

−10 g(x)dx.

3. Let’s try first to find the 75th percentile; that is, the value of b such that∫ b

−∞
g(x)dx = .75.

Since
∫ 0

−∞ g(x)dx = .5, we can avoid the improper integral by instead finding b such that
∫ b

0

g(x)dx = .25.

a) By trial and error, find a three decimal-place approximation to b.
b) Think of the current problem as that of finding a zero of the function f(b) =∫ b

0
g(x)dx − .25. Using your approximation from part “a” as an initial guess, per-

form one step of Newton’s Method to refine the approximation. Report the result
rounded to five decimal places. (Hint: f ′(b) = g(b) by the Fundamental Theorem of
Calculus.)

4. Repeat the process in #3 to find values of b corresponding to∫ b

−∞
g(x)dx = .667, .90, .95, and .99.

5. Using symmetry and the percentiles already found, find the values of b for which∫ b

−∞
g(x)dx = .01, .05, .10, .25, and .333.

10.15 Equilibria and Centers of Gravity

Background: Using the definite integral to compute arc length and centers of gravity;
tangent and normal lines to a curve.

Problem I: Think of the x-axis as the surface of the floor, so that y is the vertical distance
above the floor. A metal plate, with uniform thickness and mass density, occupies the region
bounded by the parabola y = x2/4 and the line y = 4 when balanced on its vertex. By
symmetry, the center of gravity of the plate is at a point (0, ȳ) on the y-axis. Find ȳ.

Problem II: When the plate is balanced on its vertex at the origin, it is in an unstable
position, because if the plate is disturbed ever so slightly, it will roll to one side and come
to rest at a new equilibrium position. Suppose that the plate tips over to the right. Describe
the new equilibrium position; in particular, find the new point where the plate touches the
floor and the new coordinates of its center of gravity. Why is this position stable, while the
original position was not?
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Problem III: Suppose that the plate occupies the region bounded by the parabola y = x2/4
and the line y = 9/4 when balanced on its vertex. Show that there is no other equilibrium
position for this plate. Conclude that this position must be stable. (Why?)

Problem IV: Suppose that the plate occupies the region bounded by the parabola y =
x2/4 and the line y = b (b > 0) when balanced on its vertex. Find the greatest value of b
for which being balanced on its vertex is the plate’s only equilibrium position.

Problem V: Give simple geometric arguments for: a) why a semicircular plate has only
one equilibrium position, and b) why every position of a circular plate is an equilibrium
position.

10.16 Draining Tanks

Background: Volume; separable differential equations. Review Sections 6.2 and 7.4 in
this manual.

Overview, part I: Consider a tank whose horizontal cross-sectional area is described by
A(y), where y is the vertical distance to the bottom of the tank. For example, a tank in
the shape of a right circular cylinder would have A(y) = πr2 = constant, and a tank in the
shape of a cone (with vertex pointing down) would have A(y) = π[tan(φ/2)y]2, where φ is
the interior angle of the central vertical cross-section at the vertex.

Toricelli’s Law states that the rate at which a fluid drains through a hole in the bottom
of the tank is proportional to the square root of the depth of the fluid; that is,

dV

dt
= −k

√
y.

The constant k depends upon both the viscosity of the fluid and the size of the hole in the
bottom of the tank. Since V (y) =

∫ y

0 A(u)du, this becomes

A(y)
dy

dt
= −k

√
y,

of which the separated form is

A(y)
√

y
dy = −k dt.

1. A tank has the shape of a right circular cylinder (upright, i.e., flat side down) with radius
R = 1 foot and height H = 3 feet. The tank is initially full of water and begins to drain
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through a hole in the bottom at time t = 0. Assuming that k = 0.5, find the depth y(t)
of water in the tank for t ≥ 0. How much time does it take for the tank to empty?

2. A tank has the shape of a cone (with vertex pointing down), where the interior angle
of the central vertical cross-section at the vertex is φ = π/3. The tank is initially filled
with oil to a depth of 3 feet and begins to drain through a hole in the bottom at time
t = 0. Assuming that k = .1, find the depth y(t) of oil in the tank for t ≥ 0. How much
time does it take for the tank to empty?

3. A tank with height 4 feet has the shape of the solid obtained by revolving the graph of
y = x2 about the y-axis. It is initially full of water and begins to drain through a hole
at its vertex at time t = 0. Find, in terms of k, the depth y(t) of water in the tank for
t ≥ 0. How much time (in terms of k also) does it take for the tank to empty?

Overview, part II: If the initial depth of the fluid in the tank is y0, then the time T that
it takes for the tank to empty satisfies∫ 0

y0

A(y)
√

y
dy = −k

∫ T

0

dt,

from which follows the formula

T =
1
k

∫ y0

0

A(y)
√

y
dy.

4. Consider a tank in the shape of a right circular cylinder with height H and radius R.
Find the time required for the tank, initially full, to completely drain through a hole at
the bottom, if:

a) the tank is upright (i.e., flat side down);

b) the tank is lying on its side.

5. For the tank in #4 suppose that H = 2R, so that the initial depth is the same for each
of the two positions. In which of the two positions will the tank drain faster?

10.17 Parachuting

Background: First-order differential equations. Review Sections 10.1 and 10.3 in Stewart’s
Calculus .

Overview: A sky-diver, weighing 70 kg, jumps from an airplane at an altitude of 700
meters and falls for T1 seconds before pulling the rip cord of his parachute. A landing is said
to be “gentle” if the velocity on impact is no more than the impact velocity of an object
dropped from a height of 6 meters.

The distance that the sky-diver falls during t seconds can be found from Newton’s Sec-
ond Law, F = ma. During the free-fall portion of the jump, we will assume that there is
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essentially no air resistance—so F = −mg, where g ≈ 9.8 meters/sec2 and m= 70 kg. After
the parachute opens, a significant “drag” term due to the air resistance of the parachute
affects the force F , causing the force to become

F = −mg − kv,

where v is the velocity and k is a positive drag coefficient. Assume that k = 110 kg/sec.

Assignment: Find the range of times T1 at which the rip cord can be pulled that result
in a gentle landing.

Hints: First find the range of impact velocities that result in a gentle landing. Next, find
the velocity after T1 seconds of free-fall. Use this velocity as the initial velocity for the
initial value problem that governs the fall while the parachute is open. The resulting impact
velocity can then be found as a function of T1.

10.18 Spruce Budworms

Background: First-order differential equations. Review Sections 7.1–7.3 in this manual.
This project assumes that you have entered and tested the program slopefld from Section
7.2 of this manual.

Overview: Spruce budworms are a serious problem in Canadian forests. Budworm “out-
breaks” can occur in which balsam fir trees are quickly defoliated by hordes of ravenous
budworms. A model of a budworm population leads to the differential equation

dy

dt
= y f(y) with f(y) = k

(
1 − y

10

)
− y

1 + y2
,

where y represents some fixed fraction of the number of budworms congregated in a certain
area, and k is a positive parameter associated with birth and death rates. An “outbreak-
threshold” value of y is a positive number y∗ such that:

y(t) is decreasing for t > 0 if y(0) ≈ y∗ and y(0) < y∗;

y(t) is increasing for t > 0 if y(0) ≈ y∗ and y(0) > y∗.

The roots of f , which depend upon the value of k and correspond to positive equilibrium
solutions, determine the outbreak threshold, should one exist.

1. Graph y f(y) (i.e., y1= x∗f(x)) in a [0, 10] × [−.75, .75] window for a few values of k
between 0.1 and 1. What are the possibilities for the number of positive roots?

2. For each of k = .3, .45, and .6, plot the direction field in a [0, 20] × [0, 10] window and
use Euler’s Method to plot approximate solution curves with initial values y(0) = 1, 3,
and 10. What happens to each of the solutions as t → ∞?

3. For which of k = .3, .45, and .6 is an outbreak possible? What is the outbreak-threshold
value of y in each case?

4. In order to find the values of k for which f has a “double root,” solve simultaneously the
equations f(y) = 0 and f ′(y) = 0 for k and y. Then, using these values of k, repeat #2.

5. State precisely the values of k for which a budworm outbreak is possible.
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10.19 The Flight of a Baseball I

Background: Parametric equations; velocity and acceleration; antidifferentiation; opti-
mization.

Overview: When a baseball player hits a fly-ball, many very complex physical phenomena
affect its path—such as forces resulting from the spin of the ball, wind currents, and air
resistance. However, we can learn a lot from considering a couple of idealized models of the
path of the ball. The first of these ignores all forces other than gravitational force.

Suppose that, at the instant when the ball is hit, it has an initial speed υ0, the tangent
line to its path forms an angle φ with the ground, and its height above the ground is y0. Let
x = x(t) and y = y(t) be the parametric equations of the path, and assume that x(0) = 0
and y(0) = y0. The only force on the ball is the downward vertical force of gravity. So we
can write accelerations in each direction as

d2x

dt2
= 0 and

d2y

dt2
= −g.

The initial velocities in the two directions are x′(0) = υ0 cosφ and y′(0) = υ0 sin φ. So
integration of the accelerations results in

dx

dt
= υ0 cosφ and

dy

dt
= −gt + υ0 sin φ.

One more integration finds

x = υ0t cosφ and y = −g t2

2
+ υ0t sinφ + y0.

For the remainder of this project, assume that length units are feet, so that g ≈ 32 feet/sec2.

Assignment:

1. Taking g = 32 feet/sec2, go to the the Y= Editor and enter the parametric equations as
xt1 and yt1 in terms of υ0, φ, and y0. Set the Graph Style to Path. Then on the Home
screen define φ = π/6, υ0 = 100 feet/sec, y0 = 3 feet. Set tmin = xmin = ymin = 0 in
the Window Editor. Start with tmax= 2 and a [0, 100]× [0, 50] window, and adjust tmax,
xmax, and ymax as necessary to plot the entire path and answer the following questions:

a) Approximately how many seconds does the ball remain aloft?

b) Approximately how far from home plate does the ball hit the ground?

2. What shape does the path appear to have? Solve the x-equation for t and substitute the
result into the equation for y. Does this confirm your guess about the shape of the path?

3. Use the result of #2 to compute the distance xfin from home plate to where the ball hits
the ground—in terms of υ0, φ, and y0. Treating υ0 and y0 as constants, find the angle φ
that maximizes xfin. (As a check, you probably could have guessed the correct answer.)

4. Suppose that the home run fence is 20 feet high and 350 feet from home plate. Find the
minimum initial velocity with which the ball must be hit in order to clear the fence. Use
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y0 = 3 feet. Approximate the answer graphically (i.e., experimentally), and then find it
by solving an equation.

5. Suppose that a player is not capable of hitting the ball with an initial velocity greater
than 125 feet per second. Assuming that he does hit the ball with that initial velocity,
what is the smallest angle φ that will carry the ball over a 10 foot fence that is 400
feet from home plate? Again, use y0 = 3 feet. Approximate the answer graphically (i.e.,
experimentally), and then find it by solving an equation.

Related activities: The next project, Flight of a Baseball II. Also the Applied Projects
Which is Faster, Going Up or Coming Down? and Calculus and Baseball in Chapter 7 of
Stewart’s Calculus .

10.20 The Flight of a Baseball II

Background: Parametric equations; velocity and acceleration; antidifferentiation; opti-
mization. You should have already done the previous project, The Flight of a Baseball
I.

Overview: A much more realistic picture of the path of a baseball comes from including
air resistance in the model. A simple way of doing this is to assume that air resistance is a
force that acts in the direction opposite that of the path and is proportional to the speed
of the ball. The acceleration equations then become

d2x

dt2
= −k

dx

dt
and

d2y

dt2
= −g − k

dy

dt
,

where k is a “drag coefficient” divided by the mass of the ball. Solution of these equations
results in

x =
υ0 cosφ

k

(
1 − e−kt

)
, y = y0 +

1
k

[
(υ0 sinφ + 32/k)

(
1 − e−kt

)
− 32t

]
.

Assignment:
1. After entering DelVar v0, φ, y0, k from the Home screen, go to the the Y= Editor and

enter these parametric equations as xt2 and yt2 in terms of υ0, φ, y0, and k—keeping
the functions xt1 and yt1 from the previous project, The Flight of a Baseball I. Set
the Graph Style to Path. Then on the Home screen define φ = π/6, υ0 = 100 feet/sec,
y0 = 3 feet, and k = 0.005 sec−1. Plot both paths (with and without air resistance). Are
the two paths significantly different? Repeat with k = 0.01, 0.05, 0.1, and 0.5.

2. In the Y= Editor, uncheck xt1 and yt1 so that only the path with air resistance accounted
for is plotted. Let υ0 = 100 feet/sec, y0 = 3 feet, and k = 0.1 sec−1. Graphically (i.e.,
experimentally) find an estimate for the value of φ that maximizes the distance from
home plate to where the ball hits the ground. Two-decimal-place accuracy is sufficient.
Repeat with k = 0.2. Is the result different?

3. Suppose that the home run fence is 20 feet high and 350 feet from home plate. Find the
minimum initial velocity with which the ball must be hit in order to clear the fence. Use
k = 0.1 and y0 = 3 feet. Approximate the answer graphically (i.e., experimentally). Be
careful here—the angle φ must be taken into account. Suggestion: First fix φ at the
value found in #2 and estimate the necessary initial velocity. Then increase and decrease
φ by a small amount, say 0.02 (about 1◦), and decrease your estimate of υ0 if necessary.
Repeat until you have υ0 to two-decimal-place accuracy. Compare the result to your
answer to problem 4 in The Flight of a Baseball I.
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4. Suppose that a player is capable of hitting the ball with an initial velocity no greater than
125 feet per second. Assuming that he does hit the ball with that initial velocity, what
is the smallest angle φ that will carry the ball over a 10 foot fence that is 400 feet from
home plate? Again, use y0 = 3 feet and k = 0.1. Approximate the answer graphically
(i.e., experimentally). Compare the result to your answer to problem 5 in The Flight
of a Baseball I.

5. Air density (which depends upon altitude above sea level) affects the value of k signifi-
cantly. In particular, the value of k in Denver may be about 10% smaller than the value
of k in Miami. Suppose that k = 0.09 in Denver and k = 0.10 in Miami. If a ball is hit
with y0 = 3, υ0 = 135, and φ = π/6, how much farther from home plate would it land
in Denver than in Miami? (Estimate to the nearest foot.)

6. If you have studied Sections 7.2 and 7.3 in Stewart’s Calculus , derive the given
parametric equations for the path from the acceleration equations.

Related activities: The Applied Projects Which is Faster, Going Up or Coming Down?
and Calculus and Baseball in Chapter 7 of Stewart’s Calculus .

10.21 Cannonball Wars

Objectives: The purpose of this project is to use the TI-89/92 to investigate an interesting
question concerning paths of projectiles.

Background: Before doing this project, review Sections 2.2 and 8.1 in this manual.

The Situation: One cannon is perched atop a cliff, 50 meters above the ground below.
Another cannon is on the ground, 100 meters from the base of the cliff. (See the figure
below.) The inclination of each cannon differs from the line of sight between them by the
same angle α (as shown in the figure). Each cannon fires a cannonball at exactly the same
instant at exactly the same initial velocity v0 m/sec.

Let φ = tan−1(1/2). Ignoring air resistance, the paths of the cannonballs are described,
respectively, by two pairs of parametric equations,

x1 = v0t cos(φ − α), y1 = −4.9 t2 − v0t sin(φ − α) + 50;

x2 = 100 − v0t cos(φ + α), y2 = −4.9 t2 + v0t sin(φ + α).

The Question: Do the cannonballs collide?

1. After setting Graph MODE to PARAMETRIC, go to the Y= Editor and enter the parametric
equations in terms of v0 and α. Use the approximation 0.464 (radians) for φ. For each
of y1t and y2t set the Style to Path (F6-6). Also press F1 and set Graph Order to SIMUL.
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2. Go to the Window Editor and set tmin=0, tmax=5, tstep=.1. Also set window variables
to show a [0, 150]× [0, 100] window.

3. From the Home screen, enter 20 → v0 : .25 → α. Then press �GRAPH to view the paths.
What happens? Do the cannonballs collide?

4. Keeping v0 = 20, replot the paths with α = 0.5, 0.75, and 1. Do the cannonballs collide
each time? What can be said about when they don’t?

5. Change the value of v0 to 40, and plot the paths for α = −0.3, 0.25, 0.75, and 1.25. Do
the cannonballs collide each time? What can be said about when they don’t?

In what follows, assume that −π/2 < α − φ < π/2 so that the cannon on the cliff fires its
cannonball “forward.” Also assume that 0 < α + φ < π so that the cannon on the ground
fires its cannonball into the air.

6. Supposing temporarily that the paths of the cannonballs are never interrupted by any
obstacle (such as the ground), show that there is a positive time t∗ at which the two
cannonballs are located at the same point; that is, a time at which x1 = x2 and y1 = y2.
(You may need to look up some trigonometric identities for this—or perhaps tExpand()

and/or tCollect() will help.) Suggestion: Try first doing the special case where α = 0.

7. For what values of v0 and α does the collision occur before the cannonballs hit the
ground? Give your answer as a shaded region in the v0α-plane.

10.22 Taylor Polynomials and Differential Equations

Background: Taylor Series; basic differential equations. This project assumes that you
have entered and tested the program derlist() from Section 3.4 of this manual.

Overview: Consider a first-order initial value problem

dy

dt
= f(t, y), y(0) = y0.

The initial condition obviously provides the value of the solution at t = 0. Notice also that
the differential equation provides the value of dy

dt at t = 0, namely

y′(0) = f(0, y0).

Moreover, differentiation of each side of the differential equation with respect to t produces
an expression for y′′(t), which can then be evaluated at t = 0, using known values of y(0)
and y′(0). In principle, if this process is continued, we can determine the values at t = 0
of as many derivatives as we like and thereby obtain any Taylor polynomial of the solution
about t = 0.

Problem I: Consider the initial value problem
dy

dt
= t2 − y3, y(0) = 1.

1. Create a list containing y(t) and its first through fifth derivatives by entering
augment({y(t)}, myprogs\derlist(tˆ2–y(t)ˆ3,t,4))

2. Enter the following to eventually obtain a list of values at t = 0 of y(t) and its first
through fifth derivatives:

ans(1) | d(d(d(d(y(t),t),t),t),t)=d4

ans(1) | d(d(d(y(t),t),t),t)=d3
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ans(1) | d(d(y(t),t),t)=d2

ans(1) | d(y(t),t)=d1 and y(t)=d0

ans(1) | t=0 and d0=1

ans(1) | d1=ans(1)[2]

ans(1) | d2=ans(1)[3]

ans(1) | d3=ans(1)[4]

ans(1) | d4=ans(1)[5]

3. The last calculation should have resulted in a list of numbers. Each of those numbers
divided by the appropriate factorial is a coefficient of the fifth degree Taylor polynomial.
Enter the following to obtain the first through fifth Taylor polynomials.

ans(1)/{1, 1, 2, 6, 24, 120} →coeffs∑
(coeffs[n+1]∗xˆn, n, 0, 1) →p1(x)∑
(coeffs[n+1]∗xˆn, n, 0, 2) →p2(x)∑
(coeffs[n+1]∗xˆn, n, 0, 3) →p3(x)∑
(coeffs[n+1]∗xˆn, n, 0, 4) →p4(x)∑
(coeffs[n+1]∗xˆn, n, 0, 5) →p5(x)

4. Enter these Taylor polynomials as y1, . . . , y5 in the Y= Editor and then plot all five
graphs in a [−1.5, 1.5] × [−1, 2] window. Do this once with Graph Order set to SEQ and
then again with Graph Order set to SIMUL. Then to see the situation more clearly, uncheck
(F4) all but y4 and y5; then replot.

Problem II: Using the same process as in problem I, plot the fourth and fifth Taylor
polynomials of the solution of

dy

dt
= cos(t y), y(0) = 0.

Problem III: Using a similar process to that in problem I, plot the fourth and fifth Taylor
polynomials of the solution of the second order problem

d2y

dt2
= −t y, y(0) = 1, y′(0) = 0.

10.23 Build Your Own Cosine

Objectives: The purpose of this project is to show how a Taylor polynomial can be used
to construct a periodic function such as cosine.

Background: Taylor polynomials and Taylor’s Theorem.

The Situation: Suppose that you have a simple calculator whose only functions are
the basic arithmetic functions: addition, subtraction, multiplication, and division. However
the calculator does allow you to program your own functions, using the basic arithmetic
functions as well as basic programming constructs such as if-statements and functions such
as int and absolute value. Your assignment here is to create a cosine function for your
calculator. The function must compute cosx to within 5 × 107 for any x (thus giving six
decimal-place accuracy).

Since the graph of cosx is periodic with period 2π, we first need to obtain an approxima-
tion on the interval [0, 2π]. Also, because of symmetries in the graph of cosx on [0, 2π], we
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need only be concerned initially with obtaining an approximation on the interval [0, π/2]. So
it is sensible to consider Taylor polynomials about x = π/4, the midpoint of that interval.
1. Show that the eighth-degree Taylor polynomial T8(x) for cosx about π/4 is the Taylor

polynomial of least degree that will provide the accuracy we want on [0, π/2].

2. Enter cosx as y1 and T8(x) as y2. Then plot both graphs first in a [0, π/2] × [−.5, 1.5]
window and then in a [−2π, 2π]× [−2, 2] window.

3. Now that we have a good approximation to cosx for 0 ≤ x ≤ π/2, let’s extend that
approximation to the interval 0 ≤ x ≤ π by means of the identity cosx = − cos(π − x).
Enter the following to obtain a good approximation to cosx for 0 ≤ x ≤ π.

y3 = when(x< π/2, y2(x), –y2(π–x))

Plot this function and cosx in a [0, π]×[−1.5, 1.5] window and then in a [−2π, 3π]×[−2, 2]
window.

4. Now that we have a good approximation to cosx for 0 ≤ x ≤ π, let’s extend that
approximation to the interval 0 ≤ x ≤ 2π by means of the identity cosx = cos(2π − x).
Enter the following to obtain a good approximation to cosx for 0 ≤ x ≤ 2π.

y4 = when(x< π, y3(x), y3(2π–x))

Plot this function and cosx in a [0, 2π] × [−1.5, 1.5] window and then in a [−2π, 4π] ×
[−2, 2] window.

5. Now that we have a good approximation to cosx for 0 ≤ x ≤ 2π, all we need to do is
compose it with a function that will “shift” any x to its corresponding value in [0, 2π].
In the language of trigonometry, we simply need to find a coterminal angle between 0
and 2π for x radians. This is done by subtracting from x the greatest integer multiple of
2π that is less than or equal to x. This is accomplished by means of the floor function.
Enter

y5 = y4(x–2π∗floor(x/(2π)))

and plot the result along with cosx in a [−12, 12]× [−1.5, 1.5] window.


