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required by UML 2.0.Highlights include: A new chapter on components and internal structure, including significant new capabilities for
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Preface
The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, constructing,
and documenting the artifacts of a software-intensive system. The UML gives you a standard way to
write a system's blueprints, covering conceptual things such as business processes and system
functions, as well as concrete things such as classes written in a specific programming language,
database schemas, and reusable software components.

This book teaches you how to use the UML effectively.

This book covers UML version 2.0.



Goals

In this book, you will

Learn what the UML is, what it is not, and why the UML is relevant to the process of developing
software-intensive systems.

Master the vocabulary, rules, and idioms of the UML and, in general, learn how to "speak" the
language effectively.

Understand how to apply the UML to solve a number of common modeling problems.

The user guide provides a reference to the use of specific UML features. However, it is not intended to
be a comprehensive reference manual for the UML; that is the focus of another book, The Unified
Modeling Language Reference Manual, Second Edition (Rumbaugh, Jacobson, Booch, Addison-Wesley,
2005).

The user guide describes a development process for use with the UML. However, it is not intended to
provide a complete reference to that process; that is the focus of yet another book, The Unified
Software Development Process (Jacobson, Booch, Rumbaugh, Addison-Wesley, 1999).

Finally, this book provides hints and tips for using the UML to solve a number of common modeling
problems, but it does not teach you how to model. This is similar to a user guide for a programming
language that teaches you how to use the language but does not teach you how to program.



Audience

The UML is applicable to anyone involved in the production, deployment, and maintenance of software.
The user guide is primarily directed to members of the development team who create UML models.
However, it is also suitable to those who read them, working together to understand, build, test, and
release a software-intensive system. Although this encompasses almost every role in a software
development organization, the user guide is especially relevant to analysts and end users (who specify
the required structure and behavior of a system), architects (who design systems that satisfy those
requirements), developers (who turn those architectures into executable code), quality assurance
personnel (who verify and validate the system's structure and behavior), librarians (who create and
catalogue components), and project and program managers (who generally wrestle with chaos,
provide leadership and direction, and orchestrate the resources necessary to deliver a successful
system).

The user guide assumes a basic knowledge of object-oriented concepts. Experience in an object-
oriented programming language or method is helpful but not required.



How to Use This Book

For the developer approaching the UML for the first time, the user guide is best read linearly. You
should pay particular attention to Chapter 2, which presents a conceptual model of the UML. All
chapters are structured so that each builds upon the content of the previous one, thus forming a linear
progression.

For the experienced developer seeking answers to common modeling problems using the UML, this
book can be read in any order. You should pay particular attention to the common modeling problems
presented in each chapter.



Organization and Special Features

The user guide is organized into seven parts:

Part 1 Getting Started

Part 2 Basic Structural Modeling

Part 3 Advanced Structural Modeling

Part 4 Basic Behavioral Modeling

Part 5 Advanced Behavioral Modeling

Part 6 Architectural Modeling

Part 7 Wrapping Up

The user guide contains two appendices: a summary of the UML notation and a summary of the
Rational Unified Process. A glossary of common terms is also provided. An index follows.

Each chapter addresses the use of a specific UML feature, and most are organized into the following
four sections:

Getting Started1.

Terms and Concepts2.

Common Modeling Techniques3.

Hints and Tips4.

The third section introduces and then solves a set of common modeling problems. To make it easy for
you to browse the guide in search of these use cases for the UML, each problem is identified by a
distinct heading, as in the following example.

Modeling Architectural Patterns

Each chapter begins with a summary of the features it covers, as in the following example.

In this chapter

Active objects, processes, and threads

Modeling multiple flows of control

Modeling interprocess communication

Building thread-safe abstractions

Similarly, parenthetical comments and general guidance are set apart as notes, as in the following
example.



Note

Abstract operations map to what C++ calls pure virtual operations; leaf operations in the
UML map to C++ nonvirtual operations.

The UML is semantically rich. Therefore, a presentation about one feature may naturally involve
another. In such cases, cross references are provided in the left margin, as on this page.

Components are discussezd in Chapter 25.

Blue highlights are used in figures to indicate explanations about a model, as opposed to the model
itself, which is always shown in black. Code is distinguished by displaying it in a monospace font, as in
this example.

Acknowledgement

The authors wish to thank Bruce Douglass, Per Krol, and Joaquin Miller for their assistance in
reviewing the manuscript of the second edition.



A Brief History of the UML

The first object-oriented language is generally acknowledged to be Simula-67, developed by Dahl and
Nygaard in Norway in 1967. This language never had a large following, but its concepts were a major
inspiration for later languages. Smalltalk became widely available in the early 1980s, followed by other
object-oriented languages such as Objective C, C++, and Eiffel in the late 1980s. Object-oriented
modeling languages appeared in the 1980s as methodologists, faced with a new genre of object-
oriented programming languages and increasingly complex applications, began to experiment with
alternative approaches to analysis and design. The number of object-oriented methods increased from
fewer than 10 to more than 50 during the period between 1989 and 1994. Many users of these
methods had trouble finding a modeling language that met their needs completely, thus fueling the so-
called method wars. A few methods gained prominence, including Booch's method, Jacobson's OOSE
(Object-Oriented Software Engineering), and Rumbaugh's OMT (Object Modeling Technique). Other
important methods included Fusion, Shlaer-Mellor, and Coad-Yourdon. Each of these was a complete
method, although each was recognized as having strengths and weaknesses. In simple terms, the
Booch method was particularly expressive during the design and construction phases of projects;
OOSE provided excellent support for use cases as a way to drive requirements capture, analysis, and
high-level design; and OMT was most useful for analysis and data-intensive information systems.

A critical mass of ideas started to form by the mid 1990s when Grady Booch (Rational Software
Corporation), James Rumbaugh (General Electric), Ivar Jacobson (Objectory), and others began to
adopt ideas from each other's methods, which collectively were becoming recognized as the leading
object-oriented methods worldwide. As the primary authors of the Booch, OMT, and OOSE methods,
we were motivated to create a unified modeling language for three reasons. First, our methods were
already evolving toward each other independently. It made sense to continue that evolution together
rather than apart, eliminating the potential for any unnecessary and gratuitous differences that would
further confuse users. Second, by unifying our methods, we could bring some stability to the object-
oriented marketplace, allowing projects to settle on one mature modeling language and letting tool
builders focus on delivering more useful features. Third, we expected that our collaboration would yield
improvements for all three earlier methods, helping us to capture lessons learned and to address
problems that none of our methods previously handled well.

As we began our unification, we established three goals for our work:

To model systems, from concept to executable artifact, using object-oriented techniques1.

To address the issues of scale inherent in complex, mission-critical systems2.

To create a modeling language usable by both humans and machines3.

Devising a language for use in object-oriented analysis and design is not unlike designing a
programming language. First, we had to constrain the problem: Should the language encompass
requirements specification? Should the language be sufficient to permit visual programming? Second,
we had to strike a balance between expressiveness and simplicity. Too simple a language would limit
the breadth of problems that could be solved; too complex a language would overwhelm the mortal
developer. In the case of unifying existing methods, we also had to be sensitive to the installed base.
Make too many changes and we would confuse existing users; resist advancing the language and we
would miss the opportunity to engage a much broader set of users and to make the language simpler.
The UML definition strives to make the best trade-offs in each of these areas.

The UML effort started officially in October 1994 when Rumbaugh joined Booch at Rational. Our
project's initial focus was the unification of the Booch and OMT methods. The version 0.8 draft of the
Unified Method (as it was then called) was released in October 1995. Around the same time, Jacobson



joined Rational and the scope of the UML project was expanded to incorporate OOSE. Our efforts
resulted in the release of the UML version 0.9 documents in June 1996. Throughout 1996, we invited
and received feedback from the general software engineering community. During this time, it also
became clear that many software organizations saw the UML as strategic to their business. We
established a UML consortium, with several organizations willing to dedicate resources to work toward
a strong and complete UML definition. Those partners contributing to the UML 1.0 definition included
Digital Equipment Corporation, Hewlett-Packard, I-Logix, Intellicorp, IBM, ICON Computing, MCI
Systemhouse, Microsoft, Oracle, Rational, Texas Instruments, and Unisys. This collaboration resulted
in the UML 1.0, a modeling language that was well-defined, expressive, powerful, and applicable to a
wide spectrum of problem domains. Mary Loomis was instrumental in convincing the Object
Management Group (OMG) to issue a request for proposals (RFP) for a standard modeling language.
UML 1.0 was offered for standardization to the OMG in January 1997 in response to their RFP.

Between January 1997 and July 1997, the original group of partners was expanded to include virtually
all of the other submitters and contributors of the original OMG response, including Andersen
Consulting, Ericsson, ObjecTime Limited, Platinum Technology, PTech, Reich Technologies, Softeam,
Sterling Software, and Taskon. A semantics task force was formed, led by Cris Kobryn of MCI
Systemhouse and administered by Ed Eykholt of Rational, to formalize the UML specification and to
integrate the UML with other standardization efforts. A revised version of the UML (version 1.1) was
offered to the OMG for standardization in July 1997. In September 1997, this version was accepted by
the OMG Analysis and Design Task Force (ADTF) and the OMG Architecture Board and then put up for
vote by the entire OMG membership. UML 1.1 was adopted by the OMG on November 14, 1997.

For several years, UML was maintained by an OMG Revision Task Force, which produced versions 1.3,
1.4, and 1.5. From 2000 to 2003, a new and expanded set of partners produced an updated
specification of UML, version 2.0. This version was reviewed for a year by a Finalization Task Force
(FTF) headed by Bran Selic of IBM, and the official version of UML 2.0 was adopted by the OMG in
early 2005. UML 2.0 is a major revision of UML 1 and includes a large number of additional features.
In addition, many changes were made to previous constructs based on experience with the previous
version. The actual UML specification documents are found on the OMG Website at www.omg.org.

UML is the work of a large number of individuals, and the ideas in it come from a wide range of
previous works. It would be a major historical research project to reconstruct a complete list of
sources, and even more difficult to identify the many predecessors who have influenced UML in
manners large and small. As with all scientific research and engineering practice, UML is a small hill
atop a large mountain of previous experience.



Part 1: Getting Started



Chapter 1. Why We Model
In this chapter

The importance of modeling

Four principles of modeling

The essential blueprints of a software system

Object-oriented modeling

A successful software organization is one that consistently deploys quality software that meets the
needs of its users. An organization that can develop such software in a timely and predictable fashion,
with an efficient and effective use of resources, both human and material, is one that has a
sustainable business.

There's an important implication in this message: The primary product of a development team is not
beautiful documents, world-class meetings, great slogans, or Pulitzer prize-winning lines of source
code. Rather, it is good software that satisfies the evolving needs of its users and the business.
Everything else is secondary.

Unfortunately, many software organizations confuse "secondary" with "irrelevant." To deploy software
that satisfies its intended purpose, you have to meet and engage users in a disciplined fashion, to
expose the real requirements of your system. To develop software of lasting quality, you have to craft
a solid architectural foundation that's resilient to change. To develop software rapidly, efficiently, and
effectively, with a minimum of software scrap and rework, you need to have the right people, the right
tools, and the right focus. To do all this consistently and predictably, with an appreciation for the
lifetime costs of the system, you must have a sound development process that can adapt to the
changing needs of your business and technology.

Modeling is a central part of all the activities that lead up to the deployment of good software. We
build models to communicate the desired structure and behavior of our system. We build models to
visualize and control the system's architecture. We build models to better understand the system we
are building, often exposing opportunities for simplification and reuse. And we build models to manage
risk.



The Importance of Modeling

If you want to build a dog house, you can pretty much start with a pile of lumber, some nails, and a
few basic tools such as a hammer, saw, and tape measure. In a few hours, with little prior planning,
you'll likely end up with a dog house that's reasonably functional, and you can probably do it with no
one else's help. As long as it's big enough and doesn't leak too much, your dog will be happy. If it
doesn't work out, you can always start over, or get a less demanding dog.

If you want to build a house for your family, you can start with a pile of lumber, some nails, and a few
basic tools, but it's going to take you a lot longer, and your family will certainly be more demanding
than the dog. In this case, unless you've already done it a few dozen times before, you'll be better
served by doing some detailed planning before you pound the first nail or lay the foundation. At the
very least, you'll want to make some sketches of how you want the house to look. If you want to build
a quality house that meets the needs of your family and of local building codes, you'll need to draw
some blueprints as well, so that you can think through the intended use of the rooms and the practical
details of lighting, heating, and plumbing. Given these plans, you can start to make reasonable
estimates of the amount of time and materials this job will require. Although it is humanly possible to
build a house yourself, you'll find it is much more efficient to work with others, possibly subcontracting
out many key work products or buying pre-built materials. As long as you stay true to your plans and
stay within the limitations of time and money, your family will most likely be satisfied. If it doesn't
work out, you can't exactly get a new family, so it is best to set expectations early and manage
change carefully.

If you want to build a high-rise office building, it would be infinitely stupid for you to start with a pile of
lumber, some nails, and a few basic tools. Because you are probably using other people's money, they
will insist upon having input into the size, shape, and style of the building. Often, they will change their
minds, even after you've started building. You will want to do extensive planning, because the cost of
failure is high. You will be just a part of a much larger group responsible for developing and deploying
the building, so the team will need all sorts of blueprints and models to communicate with one
another. As long as you get the right people and the right tools and actively manage the process of
transforming an architectural concept into reality, you will likely end up with a building that will satisfy
its tenants. If you want to keep constructing buildings, then you will want to be certain to balance the
desires of your tenants with the realities of building technology, and you will want to treat the rest of
your team professionally, never placing them at any risk or driving them so hard that they burn out.

Curiously, a lot of software development organizations start out wanting to build high rises but
approach the problem as if they were knocking out a dog house.

Sometimes, you get lucky. If you have the right people at the right moment and if all the planets align
properly, then you might, just might, get your team to push out a software product that dazzles its
users. Typically, however, you can't get all the right people (the right ones are often already
overcommitted), it's never the right moment (yesterday would have been better), and the planets
never seem to align (instead, they keep moving out of your control). Given the increasing demand to
develop software quickly, development teams often fall back on the only thing they really know how to
do wellpound out lines of code. Heroic programming efforts are legend in this industry, and it often
seems that working harder is the proper reaction to any crisis in development. However, these are not
necessarily the right lines of code, and some projects are of such a magnitude that even adding more
hours to the workday is not enough to get the job done.

If you really want to build the software equivalent of a house or a high rise, the problem is more than
just a matter of writing lots of softwarein fact, the trick is in creating the right software and in figuring
out how to write less software. This makes quality software development an issue of architecture and
process and tools. Even so, many projects start out looking like dog houses but grow to the magnitude
of a high rise simply because they are a victim of their own success. There comes a time when, if
there was no consideration given to architecture, process, or tools, the dog house, now grown into a



high rise, collapses of its own weight. The collapse of a dog house may annoy your dog; the failure of
a high rise will materially affect its tenants.

Unsuccessful software projects fail in their own unique ways, but all successful projects are alike in
many ways. There are many elements that contribute to a successful software organization; one
common thread is the use of modeling.

Modeling is a proven and well-accepted engineering technique. We build architectural models of
houses and high rises to help their users visualize the final product. We may even build mathematical
models to analyze the effects of winds or earthquakes on our buildings.

Modeling is not just a part of the building industry. It would be inconceivable to deploy a new aircraft
or an automobile without first building models from computer models to physical wind tunnel models
to full-scale prototypes. New electrical devices, from microprocessors to telephone switching systems,
require some degree of modeling in order to better understand the system and to communicate those
ideas to others. In the motion picture industry, storyboarding, which is a form of modeling, is central
to any production. In the fields of sociology, economics, and business management, we build models
so that we can validate our theories or try out new ones with minimal risk and cost.

What, then, is a model? Simply put,

A model is a simplification of reality.

A model provides the blueprints of a system. Models may encompass detailed plans, as well as more
general plans that give a 30,000-foot view of the system under consideration. A good model includes
those elements that have broad effect and omits those minor elements that are not relevant to the
given level of abstraction. Every system may be described from different aspects using different
models, and each model is therefore a semantically closed abstraction of the system. A model may be
structural, emphasizing the organization of the system, or it may be behavioral, emphasizing the
dynamics of the system.

Why do we model? There is one fundamental reason.

We build models so that we can better understand the system we are developing.

Through modeling, we achieve four aims.

How UML addresses these four things is discussed in Chapter 2.

Models help us to visualize a system as it is or as we want it to be.1.

Models permit us to specify the structure or behavior of a system.2.

Models give us a template that guides us in constructing a system.3.

Models document the decisions we have made.4.

Modeling is not just for big systems. Even the software equivalent of a dog house can benefit from
some modeling. However, it's definitely true that the larger and more complex the system, the more
important modeling becomes, for one very simple reason:

We build models of complex systems because we cannot comprehend such a system in its
entirety.

There are limits to the human ability to understand complexity. Through modeling, we narrow the
problem we are studying by focusing on only one aspect at a time. This is essentially the approach of



"divide-and-conquer" that Edsger Dijkstra spoke of years ago: Attack a hard problem by dividing it
into a series of smaller problems that you can solve. Furthermore, through modeling, we amplify the
human intellect. A model properly chosen can enable the modeler to work at higher levels of
abstraction.

Saying that one ought to model does not necessarily make it so. In fact, a number of studies suggest
that most software organizations do little if any formal modeling. Plot the use of modeling against the
complexity of a project and you'll find that the simpler the project, the less likely it is that formal
modeling will be used.

The operative word here is "formal." In reality, in even the simplest project, developers do some
amount of modeling, albeit very informally. A developer might sketch out an idea on a blackboard or a
scrap of paper to visualize a part of a system, or the team might use CRC cards to work through a
scenario or the design of a mechanism. There's nothing wrong with any of these models. If it works,
by all means use it. However, these informal models are often ad hoc and do not provide a common
language that can easily be shared with others. Just as there exists a common language of blueprints
for the construction industry, a common language for electrical engineering, and a common language
for mathematical modeling, so too can a development organization benefit by using a common
language for software modeling.

Every project can benefit from some modeling. Even in the realm of disposable software, where it's
sometimes more effective to throw away inadequate software because of the productivity offered by
visual programming languages, modeling can help the development team better visualize the plan of
their system and allow them to develop more rapidly by helping them build the right thing. The more
complex your project, the more likely it is that you will fail or that you will build the wrong thing if you
do no modeling at all. All interesting and useful systems have a natural tendency to become more
complex over time. So, although you might think you don't need to model today, as your system
evolves you will regret that decision, after it is too late.



Principles of Modeling

The use of modeling has a rich history in all the engineering disciplines. That experience suggests four
basic principles of modeling. First,

The choice of what models to create has a profound influence on how a problem is attacked and
how a solution is shaped.

In other words, choose your models well. The right models will brilliantly illuminate the most wicked
development problems, offering insight that you simply could not gain otherwise; the wrong models
will mislead you, causing you to focus on irrelevant issues.

Setting aside software for a moment, suppose you are trying to tackle a problem in quantum physics.
Certain problems, such as the interaction of photons in space-time, are full of wonderfully hairy
mathematics. Choose a different model and suddenly this inherent complexity becomes doable, if not
exactly easy. In this field, this is precisely the value of Feynmann diagrams, which provide a graphical
rendering of a very complex problem. Similarly, in a totally different domain, suppose you are
constructing a new building and you are concerned about how it might behave in high winds. If you
build a physical model and then subject it to wind tunnel tests, you might learn some interesting
things, although materials in the small don't flex exactly as they do in the large. Hence, if you build a
mathematical model and then subject it to simulations, you will learn some different things, and you
will also probably be able to play with more new scenarios than if you were using a physical model. By
rigorously and continuously testing your models, you'll end up with a far higher level of confidence that
the system you have modeled will behave as you expect it to in the real world.

In software, the models you choose can greatly affect your world view. If you build a system through
the eyes of a database developer, you will likely focus on entity-relationship models that push
behavior into triggers and stored procedures. If you build a system through the eyes of a structured
analyst, you will likely end up with models that are algorithmic-centric, with data flowing from process
to process. If you build a system through the eyes of an object-oriented developer, you'll end up with
a system whose architecture is centered around a sea of classes and the patterns of interaction that
direct how those classes work together. Executable models can greatly help testing. Any of these
approaches might be right for a given application and development culture, although experience
suggests that the object-oriented view is superior in crafting resilient architectures, even for systems
that might have a large database or computational element. That fact notwithstanding, the point is
that each world view leads to a different kind of system, with different costs and benefits.

Second,

Every model may be expressed at different levels of precision.

If you are building a high rise, sometimes you need a 30,000-foot viewfor instance, to help your
investors visualize its look and feel. Other times, you need to get down to the level of the studsfor
instance, when there's a tricky pipe run or an unusual structural element.

The same is true with software models. Sometimes a quick and simple executable model of the user
interface is exactly what you need; at other times you have to get down and dirty with the bits, such
as when you are specifying cross-system interfaces or wrestling with networking bottlenecks. In any
case, the best kinds of models are those that let you choose your degree of detail, depending on who
is doing the viewing and why they need to view it. An analyst or an end user will want to focus on
issues of what; a developer will want to focus on issues of how. Both of these stakeholders will want to
visualize a system at different levels of detail at different times.

Third,



The best models are connected to reality.

A physical model of a building that doesn't respond in the same way as do real materials has only
limited value; a mathematical model of an aircraft that assumes only ideal conditions and perfect
manufacturing can mask some potentially fatal characteristics of the real aircraft. It's best to have
models that have a clear connection to reality, and where that connection is weak, to know exactly
how those models are divorced from the real world. All models simplify reality; the trick is to be sure
that your simplifications don't mask any important details.

In software, the Achilles heel of structured analysis techniques is the fact that there is a basic
disconnect between its analysis model and the system's design model. Failing to bridge this chasm
causes the system as conceived and the system as built to diverge over time. In object-oriented
systems, it is possible to connect all the nearly independent views of a system into one semantic
whole.

Fourth,

No single model or view is sufficient. Every nontrivial system is best approached through a small
set of nearly independent models with multiple viewpoints.

If you are constructing a building, there is no single set of blueprints that reveal all its details. At the
very least, you'll need floor plans, elevations, electrical plans, heating plans, and plumbing plans. And
within any kind of model, you need multiple views to capture the breadth of the system, such as
blueprints of different floors.

The operative phrase here is "nearly independent." In this context, it means having models that can
be built and studied separately but that are still interrelated. As in the case of a building, you can
study electrical plans in isolation, but you can also see how they map to the floor plan and perhaps
even their interaction with the routing of pipes in the plumbing plan.

The same is true of object-oriented software systems. To understand the architecture of such a
system, you need several complementary and interlocking views: a use case view (exposing the
requirements of the system), a design view (capturing the vocabulary of the problem space and the
solution space), an interaction view (showing the interactions among the parts of the system and
between the system and the environment), an implementation view (addressing the physical
realization of the system), and a deployment view (focusing on system engineering issues). Each of
these views may have structural, as well as behavioral, aspects. Together, these views represent the
blueprints of software.

The five views of an architecture are discussed in Chapter 2.

Depending on the nature of the system, some views may be more important than others. For
example, in data-intensive systems, views addressing static design will dominate. In GUI-intensive
systems, static and dynamic use case views are quite important. In hard real time systems, dynamic
process views tend to be more important. Finally, in distributed systems, such as one finds in Web-
intensive applications, implementation and deployment models are the most important.



Object-Oriented Modeling

Civil engineers build many kinds of models. Most commonly, there are structural models that help
people visualize and specify parts of systems and the way those parts relate to one another.
Depending on the most important business or engineering concerns, engineers might also build
dynamic modelsfor instance, to help them to study the behavior of a structure in the presence of an
earthquake. Each kind of model is organized differently, and each has its own focus. In software, there
are several ways to approach a model. The two most common ways are from an algorithmic
perspective and from an object-oriented perspective.

The traditional view of software development takes an algorithmic perspective. In this approach, the
main building block of all software is the procedure or function. This view leads developers to focus on
issues of control and the decomposition of larger algorithms into smaller ones. There's nothing
inherently evil about such a point of view except that it tends to yield brittle systems. As requirements
change (and they will) and the system grows (and it will), systems built with an algorithmic focus turn
out to be very hard to maintain.

The contemporary view of software development takes an object-oriented perspective. In this
approach, the main building block of all software systems is the object or class. Simply put, an object
is a thing, generally drawn from the vocabulary of the problem space or the solution space. A class is a
description of a set of objects that are similar enough (from the modeler's viewpoint) to share a
specification. Every object has identity (you can name it or otherwise distinguish it from other
objects), state (there's generally some data associated with it), and behavior (you can do things to
the object, and it can do things to other objects as well).

For example, consider a simple three-tier architecture for a billing system, involving a user interface,
business services, and a database. In the user interface, you will find concrete objects, such as
buttons, menus, and dialog boxes. In the database, you will find concrete objects, such as tables
representing entities from the problem domain, including customers, products, and orders. In the
middle layer, you will find objects such as transactions and business rules, as well as higher-level
views of problem entities, such as customers, products, and orders.

The object-oriented approach to software development is decidedly a part of the mainstream simply
because it has proven to be of value in building systems in all sorts of problem domains and
encompassing all degrees of size and complexity. Furthermore, most contemporary languages,
operating systems, and tools are object-oriented in some fashion, giving greater cause to view the
world in terms of objects. Object-oriented development provides the conceptual foundation for
assembling systems out of components using technology such as J2EE or .NET.

A number of consequences flow from the choice of viewing the world in an object-oriented fashion:
What is the structure of a good object-oriented architecture? What artifacts should the project create?
Who should create them? How should they be measured?

These questions are discussed in Chapter 2.

Visualizing, specifying, constructing, and documenting object-oriented systems is exactly the purpose
of the Unified Modeling Language.



Chapter 2. Introducing the UML
In this chapter

Overview of the UML

Three steps to understanding the UML

Software architecture

The software development process

The Unified Modeling Language (UML) is a standard language for writing software blueprints. The UML
may be used to visualize, specify, construct, and document the artifacts of a software-intensive
system.

The UML is appropriate for modeling systems ranging from enterprise information systems to
distributed Web-based applications and even to hard real time embedded systems. It is a very
expressive language, addressing all the views needed to develop and then deploy such systems. Even
though it is expressive, the UML is not difficult to understand and to use. Learning to apply the UML
effectively starts with forming a conceptual model of the language, which requires learning three
major elements: the UML's basic building blocks, the rules that dictate how these building blocks may
be put together, and some common mechanisms that apply throughout the language.

The UML is only a language, so it is just one part of a software development method. The UML is
process independent, although optimally it should be used in a process that is use case driven,
architecture-centric, iterative, and incremental.



An Overview of the UML

The UML is a language for

Visualizing

Specifying

Constructing

Documenting

the artifacts of a software-intensive system.

The UML Is a Language

A language provides a vocabulary and the rules for combining words in that vocabulary for the
purpose of communication. A modeling language is a language whose vocabulary and rules focus on
the conceptual and physical representation of a system. A modeling language such as the UML is thus
a standard language for software blueprints.

Modeling yields an understanding of a system. No one model is ever sufficient. Rather, you often need
multiple models that are connected to one another to understand anything but the most trivial
system. For software-intensive systems, this requires a language that addresses the different views of
a system's architecture as it evolves throughout the software development life cycle.

The basic principles of modeling are discussed in Chapter 1.

The vocabulary and rules of a language such as the UML tell you how to create and read well-formed
models, but they don't tell you what models you should create and when you should create them.
That's the role of the software development process. A well-defined process will guide you in deciding
what artifacts to produce, what activities and what workers to use to create them and manage them,
and how to use those artifacts to measure and control the project as a whole.

The UML Is a Language for Visualizing

For many programmers, the distance between thinking of an implementation and then pounding it out
in code is close to zero. You think it, you code it. In fact, some things are best cast directly in code.
Text is a wonderfully minimal and direct way to write expressions and algorithms.

In such cases, the programmer is still doing some modeling, albeit entirely mentally. He or she may
even sketch out a few ideas on a white board or on a napkin. However, there are several problems
with this. First, communicating those conceptual models to others is error-prone unless everyone
involved speaks the same language. Typically, projects and organizations develop their own language,
and it is difficult to understand what's going on if you are an outsider or new to the group. Second,
there are some things about a software system you can't understand unless you build models that



transcend the textual programming language. For example, the meaning of a class hierarchy can be
inferred, but not directly grasped, by staring at the code for all the classes in the hierarchy. Similarly,
the physical distribution and possible migration of the objects in a Web-based system can be inferred,
but not directly grasped, by studying the system's code. Third, if the developer who cut the code
never wrote down the models that are in his or her head, that information would be lost forever or, at
best, only partially recreatable from the implementation once that developer moved on.

Writing models in the UML addresses the third issue: An explicit model facilitates communication.

Some things are best modeled textually; others are best modeled graphically. Indeed, in all interesting
systems, there are structures that transcend what can be represented in a programming language.
The UML is such a graphical language. This addresses the second problem described earlier.

The UML is more than just a bunch of graphical symbols. Rather, behind each symbol in the UML
notation is a well-defined semantics. In this manner, one developer can write a model in the UML, and
another developer, or even another tool, can interpret that model unambiguously. This addresses the
first issue described earlier.

The complete semantics of the UML are discussed in The Unified Modeling
Language Reference Manual.

The UML Is a Language for Specifying

In this context, specifying means building models that are precise, unambiguous, and complete. In
particular, the UML addresses the specification of all the important analysis, design, and
implementation decisions that must be made in developing and deploying a software-intensive system.

The UML Is a Language for Constructing

The UML is not a visual programming language, but its models can be directly connected to a variety
of programming languages. This means that it is possible to map from a model in the UML to a
programming language such as Java, C++, or Visual Basic, or even to tables in a relational database
or the persistent store of an object-oriented database. Things that are best expressed graphically are
done so graphically in the UML, whereas things that are best expressed textually are done so in the
programming language.

This mapping permits forward engineeringthe generation of code from a UML model into a
programming language. The reverse is also possible: You can reconstruct a model from an
implementation back into the UML. Reverse engineering is not magic. Unless you encode that
information in the implementation, information is lost when moving forward from models to code.
Reverse engineering thus requires tool support with human intervention. Combining these two paths
of forward code generation and reverse engineering yields round-trip engineering, meaning the ability
to work in either a graphical or a textual view, while tools keep the two views consistent.

Modeling the structure of a system is discussed in Parts 2 and 3.

In addition to this direct mapping, the UML is sufficiently expressive and unambiguous to permit the
direct execution of models, the simulation of systems, and the instrumentation of running systems.



Modeling the behavior of a system is discussed in Parts 4 and 5.

The UML Is a Language for Documenting

A healthy software organization produces all sorts of artifacts in addition to raw executable code.
These artifacts include (but are not limited to)

Requirements

Architecture

Design

Source code

Project plans

Tests

Prototypes

Releases

Depending on the development culture, some of these artifacts are treated more or less formally than
others. Such artifacts are not only the deliverables of a project, they are also critical in controlling,
measuring, and communicating about a system during its development and after its deployment.

The UML addresses the documentation of a system's architecture and all of its details. The UML also
provides a language for expressing requirements and for tests. Finally, the UML provides a language
for modeling the activities of project planning and release management.

Where Can the UML Be Used?

The UML is intended primarily for software-intensive systems. It has been used effectively for such
domains as

Enterprise information systems

Banking and financial services

Telecommunications

Transportation

Defense/aerospace

Retail

Medical electronics

Scientific

Distributed Web-based services



The UML is not limited to modeling software. In fact, it is expressive enough to model nonsoftware
systems, such as workflow in the legal system, the structure and behavior of a patient healthcare
system, software engineering in aircraft combat systems, and the design of hardware.



A Conceptual Model of the UML

To understand the UML, you need to form a conceptual model of the language, and this requires
learning three major elements: the UML's basic building blocks, the rules that dictate how those
building blocks may be put together, and some common mechanisms that apply throughout the UML.
Once you have grasped these ideas, you will be able to read UML models and create some basic ones.
As you gain more experience in applying the UML, you can build on this conceptual model, using more
advanced features of the language.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:

Things1.

Relationships2.

Diagrams3.

Things are the abstractions that are first-class citizens in a model; relationships tie these things
together; diagrams group interesting collections of things.

Things in the UML

There are four kinds of things in the UML:

Structural things1.

Behavioral things2.

Grouping things3.

Annotational things4.

These things are the basic object-oriented building blocks of the UML. You use them to write well-
formed models.

Structural Things

Structural things are the nouns of UML models. These are the mostly static parts of a model,
representing elements that are either conceptual or physical. Collectively, the structural things are
called classifiers.



Classes are discussed in Chapters 4 and 9.

A class is a description of a set of objects that share the same attributes, operations, relationships,
and semantics. A class implements one or more interfaces. Graphically, a class is rendered as a
rectangle, usually including its name, attributes, and operations, as in Figure 2-1.

Figure 2-1. Classes

An interface is a collection of operations that specify a service of a class or component. An interface
therefore describes the externally visible behavior of that element. An interface might represent the
complete behavior of a class or component or only a part of that behavior. An interface defines a set
of operation specifications (that is, their signatures) but never a set of operation implementations. The
declaration of an interface looks like a class with the keyword «interface» above the name; attributes
are not relevant, except sometimes to show constants. An interface rarely stands alone, however. An
interface provided by a class to the outside world is shown as a small circle attached to the class box
by a line. An interface required by a class from some other class is shown as a small semicircle
attached to the class box by a line, as in Figure 2-2.

Figure 2-2. Interfaces



Interfaces are discussed in Chapter 11.

A collaboration defines an interaction and is a society of roles and other elements that work together
to provide some cooperative behavior that's bigger than the sum of all the elements. Collaborations
have structural, as well as behavioral, dimensions. A given class or object might participate in several
collaborations. These collaborations therefore represent the implementation of patterns that make up
a system. Graphically, a collaboration is rendered as an ellipse with dashed lines, sometimes including
only its name, as in Figure 2-3.

Figure 2-3. Collaborations

Collaborations are discussed in Chapter 28.

A use case is a description of sequences of actions that a system performs that yield observable
results of value to a particular actor. A use case is used to structure the behavioral things in a model.
A use case is realized by a collaboration. Graphically, a use case is rendered as an ellipse with solid
lines, usually including only its name, as in Figure 2-4.

Figure 2-4. Use Cases

Use cases are discussed in Chapter 17.

The remaining three thingsactive classes, components, and nodesare all class-like, meaning they also
describe sets of entities that share the same attributes, operations, relationships, and semantics.



However, these three are different enough and are necessary for modeling certain aspects of an
object-oriented system, so they warrant special treatment.

An active class is a class whose objects own one or more processes or threads and therefore can
initiate control activity. An active class is just like a class except that its objects represent elements
whose behavior is concurrent with other elements. Graphically, an active class is rendered as a class
with double lines on the left and right; it usually includes its name, attributes, and operations, as in
Figure 2-5.

Figure 2-5. Active Classes

Active classes are discussed in Chapter 23.

A component is a modular part of the system design that hides its implementation behind a set of
external interfaces. Within a system, components sharing the same interfaces can be substituted while
preserving the same logical behavior. The implementation of a component can be expressed by wiring
together parts and connectors; the parts can include smaller components. Graphically, a component is
rendered like a class with a special icon in the upper right corner, as in Figure 2-6.

Figure 2-6. Components

Components and internal structure are discussed in Chapter 15.

The remaining two elementsartifacts and nodesare also different. They represent physical things,
whereas the previous five things represent conceptual or logical things.



Artifacts are discussed in Chapter 26.

An artifact is a physical and replaceable part of a system that contains physical information ("bits"). In
a system, you'll encounter different kinds of deployment artifacts, such as source code files,
executables, and scripts. An artifact typically represents the physical packaging of source or run-time
information. Graphically, an artifact is rendered as a rectangle with the keyword «artifact» above the
name, as in Figure 2-7.

Figure 2-7. Artifacts

A node is a physical element that exists at run time and represents a computational resource,
generally having at least some memory and, often, processing capability. A set of components may
reside on a node and may also migrate from node to node. Graphically, a node is rendered as a cube,
usually including only its name, as in Figure 2-8.

Figure 2-8. Nodes

Nodes are discussed in Chapter 27.

These elementsclasses, interfaces, collaborations, use cases, active classes, components, artifacts,
and nodesare the basic structural things that you may include in a UML model. There are also
variations on these, such as actors, signals, and utilities (kinds of classes); processes and threads
(kinds of active classes); and applications, documents, files, libraries, pages, and tables (kinds of
artifacts).

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a model, representing
behavior over time and space. In all, there are three primary kinds of behavioral things.



Use cases, which are used to structure the behavioral things in a model, are
discussed in Chapter 17; interactions are discussed in Chapter 16.

First, an interaction is a behavior that comprises a set of messages exchanged among a set of objects
or roles within a particular context to accomplish a specific purpose. The behavior of a society of
objects or of an individual operation may be specified with an interaction. An interaction involves a
number of other elements, including messages, actions, and connectors (the connection between
objects). Graphically, a message is rendered as a directed line, almost always including the name of its
operation, as in Figure 2-9.

Figure 2-9. Messages

Second, a state machine is a behavior that specifies the sequences of states an object or an
interaction goes through during its lifetime in response to events, together with its responses to those
events. The behavior of an individual class or a collaboration of classes may be specified with a state
machine. A state machine involves a number of other elements, including states, transitions (the flow
from state to state), events (things that trigger a transition), and activities (the response to a
transition). Graphically, a state is rendered as a rounded rectangle, usually including its name and its
substates, if any, as in Figure 2-10.

Figure 2-10. States

State machines are discussed in Chapter 22.

Third, an activity is a behavior that specifies the sequence of steps a computational process performs.
In an interaction, the focus is on the set of objects that interact. In a state machine, the focus is on
the life cycle of one object at a time. In an activity, the focus is on the flows among steps without
regard to which object performs each step. A step of an activity is called an action. Graphically, an
action is rendered as a rounded rectangle with a name indicating its purpose. States and actions are
distinguished by their different contexts.



Figure 2-11. Actions

These three elementsinteractions, state machines, and activitiesare the basic behavioral things that
you may include in a UML model. Semantically, these elements are usually connected to various
structural elements, primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes into which a model
can be decomposed. There is one primary kind of grouping thing, namely, packages.

A package is a general-purpose mechanism for organizing the design itself, as opposed to classes,
which organize implementation constructs. Structural things, behavioral things, and even other
grouping things may be placed in a package. Unlike components (which exist at run time), a package
is purely conceptual (meaning that it exists only at development time). Graphically, a package is
rendered as a tabbed folder, usually including only its name and, sometimes, its contents, as in Figure
2-12.

Figure 2-12. Packages

Packages are discussed in Chapter 12.

Packages are the basic grouping things with which you may organize a UML model. There are also
variations, such as frameworks, models, and subsystems (kinds of packages).

Annotational Things

Annotational things are the explanatory parts of UML models. These are the comments you may apply
to describe, illuminate, and remark about any element in a model. There is one primary kind of
annotational thing, called a note. A note is simply a symbol for rendering constraints and comments
attached to an element or a collection of elements. Graphically, a note is rendered as a rectangle with
a dog-eared corner, together with a textual or graphical comment, as in Figure 2-13.



Figure 2-13. Notes

Notes are discussed in Chapter 6.

This element is the one basic annotational thing you may include in a UML model. You'll typically use
notes to adorn your diagrams with constraints or comments that are best expressed in informal or
formal text. There are also variations on this element, such as requirements (which specify some
desired behavior from the perspective of outside the model).

Relationships in the UML

There are four kinds of relationships in the UML:

Dependency1.

Association2.

Generalization3.

Realization4.

These relationships are the basic relational building blocks of the UML. You use them to write well-
formed models.

First, a dependency is a semantic relationship between two model elements in which a change to one
element (the independent one) may affect the semantics of the other element (the dependent one).
Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally including a
label, as in Figure 2-14.

Figure 2-14. Dependencies

Dependencies are discussed in Chapters 5 and 10.



Second, an association is a structural relationship among classes that describes a set of links, a link
being a connection among objects that are instances of the classes. Aggregation is a special kind of
association, representing a structural relationship between a whole and its parts. Graphically, an
association is rendered as a solid line, possibly directed, occasionally including a label, and often
containing other adornments, such as multiplicity and end names, as in Figure 2-15.

Figure 2-15. Associations

Associations are discussed in Chapters 5 and 10.

Third, a generalization is a specialization/generalization relationship in which the specialized element
(the child) builds on the specification of the generalized element (the parent). The child shares the
structure and the behavior of the parent. Graphically, a generalization relationship is rendered as a
solid line with a hollow arrowhead pointing to the parent, as in Figure 2-16.

Figure 2-16. Generalizations

Generalizations are discussed in Chapters 5 and 10.

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier specifies a
contract that another classifier guarantees to carry out. You'll encounter realization relationships in
two places: between interfaces and the classes or components that realize them, and between use
cases and the collaborations that realize them. Graphically, a realization relationship is rendered as a
cross between a generalization and a dependency relationship, as in Figure 2-17.

Figure 2-17. Realizations

Realizations are discussed in Chapter 10.



These four elements are the basic relational things you may include in a UML model. There are also
variations on these four, such as refinement, trace, include, and extend.

Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a connected
graph of vertices (things) and paths (relationships). You draw diagrams to visualize a system from
different perspectives, so a diagram is a projection into a system. For all but the most trivial systems,
a diagram represents an elided view of the elements that make up a system. The same element may
appear in all diagrams, only a few diagrams (the most common case), or in no diagrams at all (a very
rare case). In theory, a diagram may contain any combination of things and relationships. In practice,
however, a small number of common combinations arise, which are consistent with the five most
useful views that comprise the architecture of a software-intensive system. For this reason, the UML
includes thirteen kinds of diagrams:

Class diagram1.

Object diagram2.

Component diagram3.

Composite structure diagram4.

Use case diagram5.

Sequence diagram6.

Communication diagram7.

State diagram8.

Activity diagram9.

Deployment diagram10.

Package diagram11.

Timing diagram12.

Interaction overview diagram13.

The five views of an architecture are discussed later in this chapter.

A class diagram shows a set of classes, interfaces, and collaborations and their relationships. These
diagrams are the most common diagram found in modeling object-oriented systems. Class diagrams
address the static design view of a system. Class diagrams that include active classes address the
static process view of a system. Component diagrams are variants of class diagrams.



Class diagrams are discussed in Chapter 8.

An object diagram shows a set of objects and their relationships. Object diagrams represent static
snapshots of instances of the things found in class diagrams. These diagrams address the static design
view or static process view of a system as do class diagrams, but from the perspective of real or
prototypical cases.

Object diagrams are discussed in Chapter 14.

A component diagram is shows an encapsulated class and its interfaces, ports, and internal structure
consisting of nested components and connectors. Component diagrams address the static design
implementation view of a system. They are important for building large systems from smaller parts.
(UML distinguishes a composite structure diagram, applicable to any class, from a component
diagram, but we combine the discussion because the distinction between a component and a
structured class is unnecessarily subtle.)

Component diagrams and internal structure are discussed in Chapter 15.

A use case diagram shows a set of use cases and actors (a special kind of class) and their
relationships. Use case diagrams address the static use case view of a system. These diagrams are
especially important in organizing and modeling the behaviors of a system.

Use case diagrams are discussed in Chapter 18.

Both sequence diagrams and communication diagrams are kinds of interaction diagrams. An
interaction diagram shows an interaction, consisting of a set of objects or roles, including the
messages that may be dispatched among them. Interaction diagrams address the dynamic view of a
system. A sequence diagram is an interaction diagram that emphasizes the time-ordering of
messages; a communication diagram is an interaction diagram that emphasizes the structural
organization of the objects or roles that send and receive messages. Sequence diagrams and
communication diagrams represent similar basic concepts, but each diagram emphasizes a different
view of the concepts. Sequence diagrams emphasize temporal ordering, and communication diagrams
emphasize the data structure through which messages flow. A timing diagram (not covered in this
book) shows the actual times at which messages are exchanged.

Interaction diagrams are discussed in Chapter 19.



A state diagram shows a state machine, consisting of states, transitions, events, and activities. A state
diagrams shows the dynamic view of an object. They are especially important in modeling the
behavior of an interface, class, or collaboration and emphasize the event-ordered behavior of an
object, which is especially useful in modeling reactive systems

State diagrams are discussed in Chapter 25.

An activity diagram shows the structure of a process or other computation as the flow of control and
data from step to step within the computation. Activity diagrams address the dynamic view of a
system. They are especially important in modeling the function of a system and emphasize the flow of
control among objects.

Activity diagrams are discussed in Chapter 20.

A deployment diagram shows the configuration of run-time processing nodes and the components that
live on them. Deployment diagrams address the static deployment view of an architecture. A node
typically hosts one or more artifacts.

Deployment diagrams are discussed in Chapter 31.

An artifact diagram shows the physical constituents of a system on the computer. Artifacts include
files, databases, and similar physical collections of bits. Artifacts are often used in conjunction with
deployment diagrams. Artifacts also show the classes and components that they implement. (UML
treats artifact diagrams as a variety of deployment diagram, but we discuss them separately.)

Artifact diagrams are discussed in Chapter 30.

A package diagram shows the decomposition of the model itself into organization units and their
dependencies.

Package diagrams are discussed in Chapter 12.

A timing diagram is an interaction diagram that shows actual times across different objects or roles, as
opposed to just relative sequences of messages. An interaction overview diagram is a hybrid of an



activity diagram and a sequence diagram. These diagrams have specialized uses and so are not
discussed in this book. See the UML Reference Manual for more details.

This is not a closed list of diagrams. Tools may use the UML to provide other kinds of diagrams,
although these are the most common ones that you will encounter in practice.

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any language, the
UML has a number of rules that specify what a well-formed model should look like. A well-formed
model is one that is semantically self-consistent and in harmony with all its related models.

The UML has syntactic and semantic rules for

 Names What you can call things, relationships, and diagrams

 Scope The context that gives specific meaning to a name

 Visibility How those names can be seen and used by others

 Integrity How things properly and consistently relate to one
another

 Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve and may be viewed
by many stakeholders in different ways and at different times. For this reason, it is common for the
development team to not only build models that are well-formed, but also to build models that are

 Elided Certain elements are hidden to simplify the view

 Incomplete Certain elements may be missing

Inconsistent

The integrity of the model is not guaranteed

These less-than-well-formed models are unavoidable as the details of a system unfold and churn
during the software development life cycle. The rules of the UML encourage youbut do not force youto
address the most important analysis, design, and implementation questions that push such models to
become well-formed over time.

Common Mechanisms in the UML

A building is made simpler and more harmonious by the conformance to a pattern of common
features. A house may be built in the Victorian or French country style largely by using certain
architectural patterns that define those styles. The same is true of the UML. It is made simpler by the
presence of four common mechanisms that apply consistently throughout the language.

Specifications1.

Adornments2.

3.

4.



1.

2.

Common divisions3.

Extensibility mechanisms4.

Specifications

The UML is more than just a graphical language. Rather, behind every part of its graphical notation
there is a specification that provides a textual statement of the syntax and semantics of that building
block. For example, behind a class icon is a specification that provides the full set of attributes,
operations (including their full signatures), and behaviors that the class embodies; visually, that class
icon might only show a small part of this specification. Furthermore, there might be another view of
that class that presents a completely different set of parts yet is still consistent with the class's
underlying specification. You use the UML's graphical notation to visualize a system; you use the UML's
specification to state the system's details. Given this split, it's possible to build up a model
incrementally by drawing diagrams and then adding semantics to the model's specifications, or directly
by creating a specification, perhaps by reverse engineering an existing system, and then creating
diagrams that are projections into those specifications.

The UML's specifications provide a semantic backplane that contains all the parts of all the models of a
system, each part related to one another in a consistent fashion. The UML's diagrams are thus simply
visual projections into that backplane, each diagram revealing a specific interesting aspect of the
system.

Adornments

Most elements in the UML have a unique and direct graphical notation that provides a visual
representation of the most important aspects of the element. For example, the notation for a class is
intentionally designed to be easy to draw, because classes are the most common element found in
modeling object-oriented systems. The class notation also exposes the most important aspects of a
class, namely its name, attributes, and operations.

Notes and other adornments are discussed in Chapter 6.

A class's specification may include other details, such as whether it is abstract or the visibility of its
attributes and operations. Many of these details can be rendered as graphical or textual adornments to
the class's basic rectangular notation. For example, Figure 2-18 shows a class, adorned to indicate
that it is an abstract class with two public, one protected, and one private operation.

Figure 2-18. Adornments



Every element in the UML's notation starts with a basic symbol, to which can be added a variety of
adornments specific to that symbol.

Common Divisions

In modeling object-oriented systems, the world often gets divided in several ways.

First, there is the division of class and object. A class is an abstraction; an object is one concrete
manifestation of that abstraction. In the UML, you can model classes as well as objects, as shown in
Figure 2-19. Graphically, the UML distinguishes an object by using the same symbol as its class and
then simply underlying the object's name.

Figure 2-19. Classes and Objects

Objects are discussed in Chapter 13.

In this figure, there is one class, named Customer, together with three objects: Jan (which is marked
explicitly as being a Customer object), :Customer (an anonymous Customer object), and Elyse (which in
its specification is marked as being a kind of Customer object, although it's not shown explicitly here).

Almost every building block in the UML has this same kind of class/object dichotomy. For example, you
can have use cases and use case executions, components and component instances, nodes and node
instances, and so on.

Second, there is the separation of interface and implementation. An interface declares a contract, and
an implementation represents one concrete realization of that contract, responsible for faithfully
carrying out the interface's complete semantics. In the UML, you can model both interfaces and their
implementations, as shown in Figure 2-20.

Figure 2-20. Interfaces and Implementations



Interfaces are discussed in Chapter 11.

In this figure, there is one component named SpellingWizard.dll that provides (implements) two
interfaces, IUnknown and ISpelling. It also requires an interface, IDictionary, that must be provided
by another component.

Almost every building block in the UML has this same kind of interface/implementation dichotomy. For
example, you can have use cases and the collaborations that realize them, as well as operations and
the methods that implement them.

Third, there is the separation of type and role. The type declares the class of an entity, such as an
object, an attribute, or a parameter. A role describes the meaning of an entity within its context, such
as a class, component, or collaboration. Any entity that forms part of the structure of another entity,
such as an attribute, has both characteristics: It derives some of its meaning from its inherent type
and some of its meaning from its role within its context (Figure 2-21).

Figure 2-21. Part with role and type

Extensibility Mechanisms

The UML provides a standard language for writing software blueprints, but it is not possible for one
closed language to ever be sufficient to express all possible nuances of all models across all domains
across all time. For this reason, the UML is opened-ended, making it possible for you to extend the
language in controlled ways. The UML's extensibility mechanisms include

Stereotypes

Tagged values

Constraints

The UML's extensibility mechanisms are discussed in Chapter 6.



A stereotype extends the vocabulary of the UML, allowing you to create new kinds of building blocks
that are derived from existing ones but that are specific to your problem. For example, if you are
working in a programming language, such as Java or C++, you will often want to model exceptions. In
these languages, exceptions are just classes, although they are treated in very special ways. Typically,
you only want to allow them to be thrown and caught, nothing else. You can make exceptions first-
class citizens in your modelsmeaning that they are treated like basic building blocksby marking them
with an appropriate stereotype, as for the class Overflow in Figure 2-19.

A tagged value extends the properties of a UML stereotype, allowing you to create new information in
the stereotype's specification. For example, if you are working on a shrink-wrapped product that
undergoes many releases over time, you often want to track the version and author of certain critical
abstractions. Version and author are not primitive UML concepts. They can be added to any building
block, such as a class, by introducing new tagged values to that building block. In Figure 2-19, for
example, the class EventQueue is extended by marking its version and author explicitly.

A constraint extends the semantics of a UML building block, allowing you to add new rules or modify
existing ones. For example, you might want to constrain the EventQueue class so that all additions are
done in order. As Figure 2-22 shows, you can add a constraint that explicitly marks these for the
operation add.

Figure 2-22. Extensibility Mechanisms

Collectively, these three extensibility mechanisms allow you to shape and grow the UML to your
project's needs. These mechanisms also let the UML adapt to new software technology, such as the
likely emergence of more powerful distributed programming languages. You can add new building
blocks, modify the specification of existing ones, and even change their semantics. Naturally, it's
important that you do so in controlled ways so that through these extensions, you remain true to the
UML's purposethe communication of information.



Architecture

Visualizing, specifying, constructing, and documenting a software-intensive system demands that the
system be viewed from a number of perspectives. Different stakeholdersend users, analysts,
developers, system integrators, testers, technical writers, and project managerseach bring different
agendas to a project, and each looks at that system in different ways at different times over the
project's life. A system's architecture is perhaps the most important artifact that can be used to
manage these different viewpoints and thus control the iterative and incremental development of a
system throughout its life cycle.

The need for viewing complex systems from different perspectives is discussed
in Chapter 1.

Architecture is the set of significant decisions about

The organization of a software system

The selection of the structural elements and their interfaces by which the system is composed

Their behavior, as specified in the collaborations among those elements

The composition of these structural and behavioral elements into progressively larger
subsystems

The architectural style that guides this organization: the static and dynamic elements and their
interfaces, their collaborations, and their composition

Software architecture is not only concerned with structure and behavior but also with usage,
functionality, performance, resilience, reuse, comprehensibility, economic and technology constraints
and trade-offs, and aesthetic concerns.

As Figure 2-23 illustrates, the architecture of a software-intensive system can best be described by
five interlocking views. Each view is a projection into the organization and structure of the system,
focused on a particular aspect of that system.

Figure 2-23. Modeling a System's Architecture

[View full size image]



Modeling the architecture of a system is discussed in Chapter 32.

The use case view of a system encompasses the use cases that describe the behavior of the system as
seen by its end users, analysts, and testers. This view doesn't really specify the organization of a
software system. Rather, it exists to specify the forces that shape the system's architecture. With the
UML, the static aspects of this view are captured in use case diagrams; the dynamic aspects of this
view are captured in interaction diagrams, state diagrams, and activity diagrams.

The design view of a system encompasses the classes, interfaces, and collaborations that form the
vocabulary of the problem and its solution. This view primarily supports the functional requirements of
the system, meaning the services that the system should provide to its end users. With the UML, the
static aspects of this view are captured in class diagrams and object diagrams; the dynamic aspects of
this view are captured in interaction diagrams, state diagrams, and activity diagrams. The internal
structure diagram of a class is particularly useful.

The interaction view of a system shows the flow of control among its various parts, including possible
concurrency and synchronization mechanisms. This view primarily addresses the performance,
scalability, and throughput of the system. With the UML, the static and dynamic aspects of this view
are captured in the same kinds of diagrams as for the design view, but with a focus on the active
classes that control the system and the messages that flow between them.

The implementation view of a system encompasses the artifacts that are used to assemble and
release the physical system. This view primarily addresses the configuration management of the
system's releases, made up of somewhat independent files that can be assembled in various ways to
produce a running system. It is also concerned with the mapping from logical classes and components
to physical artifacts. With the UML, the static aspects of this view are captured in artifact diagrams;
the dynamic aspects of this view are captured in interaction diagrams, state diagrams, and activity
diagrams.

The deployment view of a system encompasses the nodes that form the system's hardware topology
on which the system executes. This view primarily addresses the distribution, delivery, and installation
of the parts that make up the physical system. With the UML, the static aspects of this view are
captured in deployment diagrams; the dynamic aspects of this view are captured in interaction
diagrams, state diagrams, and activity diagrams.

Each of these five views can stand alone so that different stakeholders can focus on the issues of the
system's architecture that most concern them. These five views also interact with one another: Nodes
in the deployment view hold components in the implementation view that, in turn, represent the
physical realization of classes, interfaces, collaborations, and active classes from the design and
process views. The UML permits you to express each of these five views.





Software Development Life Cycle

The UML is largely process-independent, meaning that it is not tied to any particular software
development life cycle. However, to get the most benefit from the UML, you should consider a process
that is

Use case driven

Architecture-centric

Iterative and incremental

The Rational Unified Process is summarized in Appendix B; a more complete
treatment of this process is discussed in The Unified Software Development
Process and The Rational Unified Process.

Use case driven means that use cases are used as a primary artifact for establishing the desired
behavior of the system, for verifying and validating the system's architecture, for testing, and for
communicating among the stakeholders of the project.

Architecture-centric means that a system's architecture is used as a primary artifact for
conceptualizing, constructing, managing, and evolving the system under development.

An iterative process is one that involves managing a stream of executable releases. An incremental
process is one that involves the continuous integration of the system's architecture to produce these
releases, with each new release embodying incremental improvements over the other. Together, an
iterative and incremental process is risk-driven, meaning that each new release is focused on
attacking and reducing the most significant risks to the success of the project.

This use case driven, architecture-centric, and iterative/incremental process can be broken into
phases. A phase is the span of time between two major milestones of the process, when a well-defined
set of objectives are met, artifacts are completed, and decisions are made whether to move into the
next phase. As Figure 2-24 shows, there are four phases in the software development life cycle:
inception, elaboration, construction, and transition. In the diagram, workflows are plotted against
these phases, showing their varying degrees of focus over time.

Figure 2-24. Software Development Life Cycle



Inception is the first phase of the process, when the seed idea for the development is brought up to
the point of beingat least internallysufficiently well-founded to warrant entering into the elaboration
phase.

Elaboration is the second phase of the process, when the product requirements and architecture are
defined. In this phase, the requirements are articulated, prioritized, and baselined. A system's
requirements may range from general vision statements to precise evaluation criteria, each specifying
particular functional or nonfunctional behavior and each providing a basis for testing.

Construction is the third phase of the process, when the software is brought from an executable
architectural baseline to being ready to be transitioned to the user community. Here also, the system's
requirements and especially its evaluation criteria are constantly reexamined against the business
needs of the project, and resources are allocated as appropriate to actively attack risks to the project.

Transition is the fourth phase of the process, when the software is delivered to the user community.
Rarely does the software development process end here, for even during this phase, the system is
continuously improved, bugs are eradicated, and features that didn't make an earlier release are
added.

One element that distinguishes this process and that cuts across all four phases is an iteration. An
iteration is a distinct set of work tasks, with a baselined plan and evaluation criteria that results in an
executable system that can be run, tested, and evaluated. The executable system need not be
released externally. Because the iteration yields an executable product, progress can be judged and
risks can be reevaluated after each iteration. This means that the software development life cycle can
be characterized as involving a continuous stream of executable releases of the system's architecture
with a midcourse correction after each iteration to mitigate potential risk. It is this emphasis on
architecture as an important artifact that drives the UML to focus on modeling the different views of a
system's architecture.



Chapter 3. Hello, World!
In this chapter

Classes and artifacts

Static models and dynamic models

Connections among models

Extending the UML

Brian Kernighan and Dennis Ritchie, the authors of the C programming language, point out that "the
only way to learn a new programming language is by writing programs in it." The same is true of the
UML. The only way to learn the UML is by writing models in it.

The first program many developers write when approaching a new programming language is a simple
one, involving little more than printing the string "Hello, World!" This is a reasonable starting point,
because mastering this trivial application provides some instant gratification. It also covers all the
infrastructure needed to get something running.

This is where we begin with the UML. Modeling "Hello, World!" is about the simplest use of the UML
you'll ever find. However, this application is deceptively easy because underneath it all there are some
interesting mechanisms that make it work. These mechanisms can easily be modeled with the UML,
providing a richer view of this simple application.



Key Abstractions

In Java, the applet for printing "Hello, World!" in a Web browser is quite simple:

import java.awt.Graphics;
class HelloWorld extends java.applet.Applet {
 public void paint (Graphics g) {
  g.drawString("Hello, World!", 10, 10);
 }
}

The first line of code:

import java.awt.Graphics;

makes the class Graphics directly available to the code that follows. The java.awt prefix specifies the
Java package in which the class Graphics lives.

The second line of code:

class HelloWorld extends java.applet.Applet {

introduces a new class named HelloWorld and specifies that it is a kind of class just like Applet, which
lives in the package java.applet.

The next three lines of code:

public void paint (Graphics g) {
 g.drawString("Hello, World!", 10, 10);
}

declare an operation named paint, whose implementation invokes another operation, named
drawString, responsible for printing the string "Hello, World!" at the given coordinates. In the usual
object-oriented fashion, drawString is an operation on a parameter named g, whose type is the class
Graphics.

Modeling this application in the UML is straightforward. As Figure 3-1 shows, you can represent the
class HelloWorld graphically as a rectangular icon. Its paint operation is shown here as well, with all
its formal parameters elided and its implementation specified in the attached note.

Figure 3-1. Key Abstractions for HelloWorld



Classes are discussed in Chapters 4 and 9.

Note

The UML is not a visual programming language, although, as the figure shows, the UML does
allowbut does not requirea tight coupling to a variety of programming languages, such as
Java. The UML is designed to allow models to be transformed into code and to allow code to
be reengineered back into models. Some things are best written in the syntax of a textual
programming language (for example, mathematical expressions), whereas other things are
best visualized graphically in the UML (for example, hierarchies of classes).

This class diagram captures the basics of the "Hello, World!" application, but it leaves out a number of
things. As the preceding code specifies, two other classesApplet and Graphicsare involved in this
application and each is used in a different way. The class Applet is used as the parent of HelloWorld,
and the class Graphics is used in the signature and implementation of one of its operations, paint. You
can represent these classes and their different relationships to the class HelloWorld in a class diagram,
as shown in Figure 3-2.

Figure 3-2. Immediate Neighbors Surrounding HelloWorld

The Applet and Graphics classes are represented graphically as rectangular icons. No operations are
shown for either of them, so their icons are elided. The directed line with the hollow arrowhead from
HelloWorld to Applet represents generalization, which in this case means that HelloWorld is a child of
Applet. The dashed directed line from HelloWorld to Graphics represents a dependency relationship,
which means that HelloWorld uses Graphics.



Relationships are discussed in Chapters 5 and 10.

This is not the end of the framework upon which HelloWorld is built. If you study the Java libraries for
Applet and Graphics, you will discover that both of these classes are part of a larger hierarchy.
Tracing just the classes that Applet extends and implements, you can generate another class diagram,
shown in Figure 3-3.

Figure 3-3. HelloWorld Inheritance Hierarchy

Note

This figure is a good example of a diagram generated by reverse engineering an existing
system. Reverse engineering is the creation of a model from code.

This figure makes it clear that HelloWorld is just a leaf in a larger hierarchy of classes. HelloWorld is a
child of Applet; Applet is a child of Panel; Panel is a child of Container; Container is a child of
Component; and Component is a child of Object, which is the parent class of every class in Java. This
model thus matches the Java libraryeach child extends some parent.

The relationship between ImageObserver and Component is a bit different, and the class diagram reflects
this difference. In the Java library, ImageObserver is an interface, which, among other things, means
that it has no implementation and instead requires that other classes implement it. You can show that
class Component implements interface ImageObserver by the solid line from the rectangle (Component) to
a provided interface circle (ImageObserver).



Interfaces are discussed in Chapter 11.

As these figures show, HelloWorld collaborates directly with only two classes (Applet and Graphics),
and these two classes are but a small part of the larger library of predefined Java classes. To manage
this large collection, Java organizes its interfaces and classes in a number of different packages. The
root package in the Java environment is named, not surprisingly, java. Nested inside this package are
several other packages, which contain other packages, interfaces, and classes. Object lives in the
package lang, so its full path name is java.lang.Object. Similarly, Panel, Container, and Component
live in awt; the class Applet lives in the package applet. The interface ImageObserver lives in the
package image, which in turn lives in the package awt, so its full path name is the rather lengthy string
java.awt.image.ImageObserver.

You can visualize this packaging in a class diagram, shown in Figure 3-4. As this figure shows,
packages are represented in the UML as a tabbed folders. Packages may be nested, and the dashed
directed lines represent dependencies among these packages. For example, HelloWorld depends on
the package java.applet, and java.applet depends on the package java.awt.

Figure 3-4. HelloWorld Packaging

Packages are discussed in Chapter 12.



Mechanisms

The hardest part of mastering a library as rich as Java's is learning how its parts work together. For
example, how does HelloWorld's paint operation get invoked? What operations must you use if you
want to change the behavior of this applet, such as making it print the string in a different color? To
answer these and other questions, you must have a conceptual model of the way these classes work
together dynamically.

Patterns and frameworks are discussed in Chapter 29.

Studying the Java library reveals that HelloWorld's paint operation is inherited from Component. This
still begs the question of how this operation is invoked. The answer is that paint is called as part of
running the thread that encloses the applet, as Figure 3-5 illustrates.

Figure 3-5. Painting Mechanism

Processes and threads are discussed in Chapter 23.

This figure shows the collaboration of several objects, including one instance of the class HelloWorld.
The other objects are a part of the Java environment, so, for the most part, they live in the
background of the applets you create. This shows a collaboration among objects that can be applied
many times. Each column shows a role in the collaboration, that is, a part that can be played by a
different object in each execution. In the UML, roles are represented just like classes, except they
have both role names and types. The middle two roles in this diagram are anonymous, because their
types are enough to identify them within the collaboration (but the colon and the absence of an
underline mark them as roles). The initial THRead is called root, and the HelloWorld role has the name



target known by the ComponentPeer role.

Instances are discussed in Chapter 13.

You can model the ordering of events using a sequence diagram, as in Figure 3-5. Here, the sequence
begins by running the Thread object, which in turn calls the Toolkit's run operation. The Toolkit
object then calls one of its own operations (callbackLoop), which then calls the ComponentPeer's
handleExpose operation. The ComponentPeer object then calls its target's paint operation. The
ComponentPeer object assumes that its target is a Component, but in this case the target is actually a
child of Component (namely, HelloWorld), so HelloWorld's paint operation is dispatched
polymorphically.

Sequence diagrams are discussed in Chapter 19.



Artifacts

"Hello, World!" is implemented as an applet, so it never stands alone but instead is typically a part of
some Web page. The applet starts when its enclosing page is opened, triggered by some browser
mechanism that runs the applet's THRead object. However, it's not the HelloWorld class that's directly
a part of the Web page. Rather, it's a binary form of the class, created by a Java compiler that
transforms the source code representing that class into an artifact that can be executed. This suggests
a very different perspective of the system. Whereas all the earlier diagrams represented a logical view
of the applet, what's going on here is a view of the applet's physical artifacts.

You can model this physical view using an artifact diagram, as in Figure 3-6.

Figure 3-6. HelloWorld Artifacts

Artifacts are discussed in Chapter 26.

The logical class HelloWorld is shown at the top as a class rectangle. Each of the other icons in this
figure represents a UML artifact in the implementation view of the system. An artifact is a physical
representation, such as a file. The artifact called hello.java represents the source code for the logical
class HelloWorld, so it is a file that may be manipulated by development environments and
configuration management tools. This source code can be transformed into the binary applet
hello.class by a Java compiler, making it suitable for execution by a computer's Java virtual
machine. Both the source code and the binary applet manifestphysically implementthe logical class.



This is shown by the dashed arrows with the keyword «manifest».

The icon for an artifact is a rectangle with the keyword «artifact» above the name. The binary applet
HelloWorld.class is a variation of this basic symbol, with its lines made thicker, indicating that it is an
executable artifact (just like an active class). The icon for the hello.java artifact has been replaced
with a user-defined icon, representing a text file. The icon for the Web page hello.html has been
similarly tailored by extending the UML's notation. As the figure indicates, this Web page has another
artifact, hello.jpg, which is represented by a user-defined artifact icon, in this case providing a
thumbnail sketch of the graphics image. Because these latter three artifacts use user-defined
graphical symbols, their names are placed outside the icon. The dependencies among the artifacts are
shown by dashed arrows.

The UML's extensibility mechanisms are discussed in Chapter 6.

Note

The relationships among the class (HelloWorld), its source code (hello.java), and its object
code (HelloWorld.class) are rarely modeled explicitly, although it is sometimes useful to do
so to visualize the physical configuration of a system. On the other hand, it is common to
visualize the organization of a Web-based system such as this by using artifact diagrams to
model its pages and other executable artifacts.



Part 2: Basic Structural Modeling



Chapter 4. Classes
In this chapter

Classes, attributes, operations, and responsibilities

Modeling the vocabulary of a system

Modeling the distribution of responsibilities in a system

Modeling nonsoftware things

Modeling primitive types

Making quality abstractions

Classes are the most important building block of any object-oriented system. A class is a description of
a set of objects that share the same attributes, operations, relationships, and semantics. A class
implements one or more interfaces.

You use classes to capture the vocabulary of the system you are developing. These classes may
include abstractions that are part of the problem domain, as well as classes that make up an
implementation. You can use classes to represent software things, hardware things, and even things
that are purely conceptual.

Advanced features of classes are discussed in Chapter 9.

Well-structured classes have crisp boundaries and form a part of a balanced distribution of
responsibilities across the system.



Getting Started

Modeling a system involves identifying the things that are important to your particular view. These
things form the vocabulary of the system you are modeling. For example, if you are building a house,
things like walls, doors, windows, cabinets, and lights are some of the things that will be important to
you as a home owner. Each of these things can be distinguished from the other.

Each of them also has a set of properties. Walls have a height and a width and are solid. Doors also
have a height and a width and are solid as well, but have the additional behavior that allows them to
open in one direction. Windows are similar to doors in that both are openings that pass through walls,
but windows and doors have slightly different properties. Windows are usually (but not always)
designed so that you can look out of them instead of pass through them.

Individual walls, doors, and windows rarely exist in isolation, so you must also consider how specific
instances of these things fit together. The things you identify and the relationships you choose to
establish among them will be affected by how you expect to use the various rooms of your home, how
you expect traffic to flow from room to room, and the general style and feel you want this
arrangement to create.

Users will be concerned about different things. For example, the plumbers who help build your house
will be interested in things like drains, traps, and vents. You, as a home owner, won't necessarily care
about these things except insofar as they interact with the things in your view, such as where a drain
might be placed in a floor or where a vent might intersect with the roof line.

In the UML, all of these things are modeled as classes. A class is an abstraction of the things that are a
part of your vocabulary. A class is not an individual object, but rather represents a whole set of
objects. Thus, you may conceptually think of "wall" as a class of objects with certain common
properties, such as height, length, thickness, load-bearing or not, and so on. You may also think of
individual instances of wall, such as "the wall in the southwest corner of my study."

Objects are discussed in Chapter 13.

In software, many programming languages directly support the concept of a class. That's excellent,
because it means that the abstractions you create can often be mapped directly to a programming
language, even if these are abstractions of nonsoftware things, such as "customer," "trade," or
"conversation."

The UML provides a graphical representation of class, as well, as Figure 4-1 shows. This notation
permits you to visualize an abstraction apart from any specific programming language and in a way
that lets you emphasize the most important parts of an abstraction: its name, attributes, and
operations.

Figure 4-1. Classes





Terms and Concepts

A class is a description of a set of objects that share the same attributes, operations, relationships,
and semantics. Graphically, a class is rendered as a rectangle.

Names

Every class must have a name that distinguishes it from other classes. A name is a textual string. That
name alone is known as a simple name; a qualified name is the class name prefixed by the name of
the package in which that class lives. A class may be drawn showing only its name, as Figure 4-2
shows.

Figure 4-2. Simple and Qualified Names

A class name must be unique within its enclosing package, as discussed in
Chapter 12.

Note

A class name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the double colon, which is used to separate a
class name and the name of its enclosing package) and may continue over several lines. In
practice, class names are short nouns or noun phrases drawn from the vocabulary of the
system you are modeling. Typically, you capitalize the first letter of every word in a class
name, as in Customer or TemperatureSensor.

Attributes

An attribute is a named property of a class that describes a range of values that instances of the
property may hold. A class may have any number of attributes or no attributes at all. An attribute



represents some property of the thing you are modeling that is shared by all objects of that class. For
example, every wall has a height, width, and thickness; you might model your customers in such a
way that each has a name, address, phone number, and date of birth. An attribute is therefore an
abstraction of the kind of data or state an object of the class might encompass. At a given moment,
an object of a class will have specific values for every one of its class's attributes. Graphically,
attributes are listed in a compartment just below the class name. Attributes may be drawn showing
only their names, as shown in Figure 4-3.

Figure 4-3. Attributes

Attributes are related to the semantics of aggregation, as discussed in Chapter
10.

Note

An attribute name may be text, just like a class name. In practice, an attribute name is a
short noun or noun phrase that represents some property of its enclosing class. Typically,
you capitalize the first letter of every word in an attribute name except the first letter, as in
name or loadBearing.

You can further specify an attribute by stating its class and possibly a default initial value, as shown
Figure 4-4.

Figure 4-4. Attributes and Their Class



You can specify other features of an attribute, such as marking it read-only or
shared by all objects of the class, as discussed in Chapter 9.

Operations

An operation is the implementation of a service that can be requested from any object of the class to
affect behavior. In other words, an operation is an abstraction of something you can do to an object
that is shared by all objects of that class. A class may have any number of operations or no operations
at all. For example, in a windowing library such as the one found in Java's awt package, all objects of
the class Rectangle can be moved, resized, or queried for their properties. Often (but not always),
invoking an operation on an object changes the object's data or state. Graphically, operations are
listed in a compartment just below the class attributes. Operations may be drawn showing only their
names, as in Figure 4-5.

Figure 4-5. Operations

You can further specify the implementation of an operation by using a note, as
described in Chapter 6, or by using an activity diagram, as discussed in Chapter
20.

Note

An operation name may be text, just like a class name. In practice, an operation name is a
short verb or verb phrase that represents some behavior of its enclosing class. Typically, you
capitalize the first letter of every word in an operation name except the first letter, as in move
or isEmpty.

You can specify an operation by stating its signature, which includes the name, type, and default value
of all parameters and (in the case of functions) a return type, as shown in Figure 4-6.

Figure 4-6. Operations and Their Signatures



You can specify other features of an operation, such as marking it polymorphic
or constant, or specifying its visibility, as discussed in Chapter 9.

Organizing Attributes and Operations

When drawing a class, you don't have to show every attribute and every operation at once. In fact, in
most cases, you can't (there are too many of them to put in one figure) and you probably shouldn't
(only a subset of these attributes and operations are likely to be relevant to a specific view). For these
reasons, you can elide a class, meaning that you can choose to show only some or none of a class's
attributes and operations. You can indicate that there are more attributes or properties than shown by
ending each list with an ellipsis ("..."). You can also suppress the compartment entirely, in which case
you can't tell if there are any attributes or operations or how many there are.

To better organize long lists of attributes and operations, you can also prefix each group with a
descriptive category by using stereotypes, as shown in Figure 4-7.

Figure 4-7. Stereotypes for Class Features

Stereotypes are discussed in Chapter 6.



Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you are making a
statement that all objects of that class have the same kind of state and the same kind of behavior. At
a more abstract level, these corresponding attributes and operations are just the features by which
the class's responsibilities are carried out. A Wall class is responsible for knowing about height, width,
and thickness; a FraudAgent class, as you might find in a credit card application, is responsible for
processing orders and determining if they are legitimate, suspect, or fraudulent; a TemperatureSensor
class is responsible for measuring temperature and raising an alarm if the temperature reaches a
certain point.

Responsibilities are an example of a defined stereotype, as discussed in Chapter
6.

When you model classes, a good starting point is to specify the responsibilities of the things in your
vocabulary. Techniques like CRC cards and use case-based analysis are especially helpful here. A class
may have any number of responsibilities, although, in practice, every well-structured class has at least
one responsibility and at most just a handful. As you refine your models, you will translate these
responsibilities into a set of attributes and operations that best fulfill the class's responsibilities.

Modeling the semantics of a class is discussed in Chapter 9.

Graphically, responsibilities can be drawn in a separate compartment at the bottom of the class icon,
as shown in Figure 4-8.

Figure 4-8. Responsibilities

You can also draw the responsibilities of a class in a note, as discussed in
Chapter 6.



Note

Responsibilities are just free-form text. In practice, a single responsibility is written as a
phrase, a sentence, or (at most) a short paragraph.

Other Characteristics

Attributes, operations, and responsibilities are the most common features you'll need when you create
abstractions. In fact, for most models you build, the basic form of these three features will be all you
need to convey the most important semantics of your classes. Sometimes, however, you'll need to
visualize or specify other characteristics, such as the visibility of individual attributes and operations;
language-specific features of an operation, such as whether it is polymorphic or constant; or even the
exceptions that objects of the class might produce or handle. These and many other features can be
expressed in the UML, but they are treated as advanced concepts.

Advanced class concepts are discussed in Chapter 9.

When you build models, you will soon discover that almost every abstraction you create is some kind
of class. Sometimes you will want to separate the implementation of a class from its specification, and
this can be expressed in the UML by using interfaces.

Interfaces are discussed in Chapter 11.

When you start designing the implementation of a class, you need to model its internal structure as a
set of connected parts. You can expand a top-level class through several layers of internal structure to
get the eventual design.

Internal structure is discussed in Chapter 15.

When you start building more complex models, you will also find yourself encountering the same kinds
of entities over and over again, such as classes that represent concurrent processes and threads, or
classifiers that represent physical things, such as applets, Java Beans, files, Web pages, and hardware.
Because these kinds of entities are so common and because they represent important architectural
abstractions, the UML provides active classes (representing processes and threads) and classifiers,
such as artifacts (representing physical software components) and nodes (representing hardware
devices).



Active classes, components, and nodes are discussed in Chapters 23, 25, and
27, and artifacts are discussed in Chapter 26.

Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on groups of
classes that interact with one another. In the UML, these societies of classes form collaborations and
are usually visualized in class diagrams.

Class diagrams are discussed in Chapter 8.



Common Modeling Techniques

Modeling the Vocabulary of a System

You'll use classes most commonly to model abstractions that are drawn from the problem you are
trying to solve or from the technology you are using to implement a solution to that problem. Each of
these abstractions is a part of the vocabulary of your system, meaning that, together, they represent
the things that are important to users and to implementers.

For users, most abstractions are not that hard to identify because, typically, they are drawn from the
things that users already use to describe their system. Techniques such as CRC cards and use case-
based analysis are excellent ways to help users find these abstractions. For implementers, these
abstractions are typically just the things in the technology that are parts of the solution.

Use cases are discussed in Chapter 17.

To model the vocabulary of a system,

Identify those things that users or implementers use to describe the problem or solution. Use
CRC cards and use case-based analysis to help find these abstractions.

For each abstraction, identify a set of responsibilities. Make sure that each class is crisply defined
and that there is a good balance of responsibilities among all your classes.

Provide the attributes and operations that are needed to carry out these responsibilities for each
class.

Figure 4-9 shows a set of classes drawn from a retail system, including Customer, Order, and Product.
This figure includes a few other related abstractions drawn from the vocabulary of the problem, such
as Shipment (used to track orders), Invoice (used to bill orders), and Warehouse (where products are
located prior to shipment). There is also one solution-related abstraction, TRansaction, which applies
to orders and shipments.

Figure 4-9. Modeling the Vocabulary of a System



As your models get larger, many of the classes you find will tend to cluster together in groups that are
conceptually and semantically related. In the UML, you can use packages to model these clusters of
classes.

Packages are discussed in Chapter 12

Your models will rarely be completely static. Instead, most abstractions in your system's vocabulary
will interact with one another in dynamic ways. In the UML, there are a number of ways to model this
dynamic behavior.

Modeling behavior is discussed in Parts 4 and Part 5.

Modeling the Distribution of Responsibilities in a System

Once you start modeling more than just a handful of classes, you will want to be sure that your
abstractions provide a balanced set of responsibilities. What this means is that you don't want any one
class to be too big or too small. Each class should do one thing well. If you abstract classes that are
too big, you'll find that your models are hard to change and are not very reusable. If you abstract
classes that are too small, you'll end up with many more abstractions than you can reasonably
manage or understand. You can use the UML to help you visualize and specify this balance of
responsibilities.

To model the distribution of responsibilities in a system,

Identify a set of classes that work together closely to carry out some behavior.



Identify a set of responsibilities for each of these classes.

Look at this set of classes as a whole, split classes that have too many responsibilities into
smaller abstractions, collapse tiny classes that have trivial responsibilities into larger ones, and
reallocate responsibilities so that each abstraction reasonably stands on its own.

Consider the ways in which those classes collaborate with one another, and redistribute their
responsibilities accordingly so that no class within a collaboration does too much or too little.

Collaborations are discussed in Chapter 28.

For example, Figure 4-10 shows a set of classes drawn from Smalltalk, showing the distribution of
responsibilities among Model, View, and Controller classes. Notice how all these classes work together
such that no one class does too much or too little.

Figure 4-10. Modeling the Distribution of Responsibilities in a System

This set of classes forms a pattern, as discussed in Chapter 29.

Modeling Nonsoftware Things

Sometimes, the things you model may never have an analog in software. For example, the people who
send invoices and the robots that automatically package orders for shipping from a warehouse might
be a part of the workflow you model in a retail system. Your application might not have any software
that represents them (unlike customers in the example above, since your system will probably want to
maintain information about them).



To model nonsoftware things,

Model the thing you are abstracting as a class.

If you want to distinguish these things from the UML's defined building blocks, create a new
building block by using stereotypes to specify these new semantics and to give a distinctive visual
cue.

Stereotypes are discussed in Chapter 6.

If the thing you are modeling is some kind of hardware that itself contains software, consider
modeling it as a kind of node as well, so that you can further expand on its structure.

Nodes are discussed in Chapter 27.

Note

The UML is mainly intended for modeling software-intensive systems, although, in
conjunction with textual hardware modeling languages, such as VHDL, the UML can be quite
expressive for modeling hardware systems. The OMG has also produced a UML extension
called SysML intended for systems modeling.

As Figure 4-11 shows, it's perfectly normal to abstract humans (like AccountsReceivableAgent) and
hardware (like Robot) as classes, because each represents a set of objects with a common structure
and a common behavior.

Figure 4-11. Modeling Nonsoftware Things

External things are often modeled as actors, as discussed in Chapter 17.



Modeling Primitive Types

At the other extreme, the things you model may be drawn directly from the programming language
you are using to implement a solution. Typically, these abstractions involve primitive types, such as
integers, characters, strings, and even enumeration types, that you might create yourself.

Types are discussed in Chapter 11.

To model primitive types,

Model the thing you are abstracting as a class or an enumeration, which is rendered using class
notation with the appropriate stereotype.

If you need to specify the range of values associated with this type, use constraints.

Constraints are described in Chapter 6.

As Figure 4-12 shows, these things can be modeled in the UML as types or enumerations, which are
rendered just like classes but are explicitly marked via stereotypes. Primitive types such as integers
(represented by the class Int) are modeled as types, and you can explicitly indicate the range of
values these things can take on by using a constraint; the semantics of primitive types must be
defined externally to UML. Enumeration types, such as Boolean and Status, can be modeled as
enumerations, with their individual literals listed within the attribute compartment (note that they are
not attributes). Enumeration types may also define operations.

Figure 4-12. Modeling Primitive Types



Types are discussed in Chapter 11.

Note

Some languages, such as C and C++, let you set an integer value for an enumeration literal.
You can model this in the UML by attaching a note to an enumeration literal as
implementation guidance. Integer values are not needed for logical modeling.



Hints and Tips

When you model classes in the UML, remember that every class should map to some tangible or
conceptual abstraction in the domain of the end user or the implementer. A well-structured class

Provides a crisp abstraction of something drawn from the vocabulary of the problem domain or
the solution domain.

Embodies a small, well-defined set of responsibilities and carries them all out very well.

Provides a clear separation of the abstraction's specification and its implementation.

Is understandable and simple, yet extensible and adaptable.

When you draw a class in the UML,

Show only those properties of the class that are important to understanding the abstraction in its
context.

Organize long lists of attributes and operations by grouping them according to their category.

Show related classes in the same class diagrams.



Chapter 5. Relationships
In this chapter

Dependency, generalization, and association relationships

Modeling simple dependencies

Modeling single inheritance

Modeling structural relationships

Creating webs of relationships

When you build abstractions, you'll discover that very few of your classes stand alone. Instead, most
of them collaborate with others in a number of ways. Therefore, when you model a system, not only
must you identify the things that form the vocabulary of your system, you must also model how these
things stand in relation to one another.

In object-oriented modeling, there are three kinds of relationships that are especially important:
dependencies, which represent using relationships among classes (including refinement, trace, and
bind relationships); generalizations, which link generalized classes to their specializations; and
associations, which represent structural relationships among objects. Each of these relationships
provides a different way of combining your abstractions.

Advanced features of relationships are discussed in Chapter 10.

Building webs of relationships is not unlike creating a balanced distribution of responsibilities among
your classes. Over-engineer, and you'll end up with a tangled mess of relationships that make your
model incomprehensible; under-engineer, and you'll have missed a lot of the richness of your system
embodied in the way things collaborate.



Getting Started

If you are building a house, things like walls, doors, windows, cabinets, and lights will form part of
your vocabulary. None of these things stands alone, however. Walls connect to other walls. Doors and
windows are placed in walls to form openings for people and for light. Cabinets and lights are
physically attached to walls and ceilings. You group walls, doors, windows, cabinets, and lights
together to form higher-level things, such as rooms.

Not only will you find structural relationships among these things, you'll find other kinds of
relationships as well. For example, your house certainly has windows, but there are probably many
kinds of windows. You might have large bay windows that don't open, as well as small kitchen
windows that do. Some of your windows might open up and down; others, like patio windows, will
slide left and right. Some windows have a single pane of glass; others have double. No matter their
differences, there is some essential "window-ness" about each of them: Each is an opening in a wall,
and each is designed to let in light, air, and sometimes, people.

In the UML, the ways that things can connect to one another, either logically or physically, are
modeled as relationships. In object-oriented modeling, there are three kinds of relationships that are
most important: dependencies, generalizations, and associations.

Dependencies are using relationships. For example, pipes depend on the water heater to heat the
water they carry.

1.

Associations are structural relationships among instances. For example, rooms consist of walls
and other things; walls themselves may have embedded doors and windows; pipes may pass
through walls.

2.

Generalizations connect generalized classes to more-specialized ones in what is known as
subclass/superclass or child/parent relationships. For example, a picture window is a kind of
window with very large, fixed panes; a patio window is a kind of window with panes that open
side to side.

3.

These three kinds of relationships cover most of the important ways in which things collaborate with
one another. Not surprisingly, they also map well to the ways that are provided by most object-
oriented programming languages to connect objects.

Other kinds of relationships, such as realization and refinement, are discussed
in Chapter 10.

The UML provides a graphical representation for each of these kinds of relationships, as Figure 5-1
shows. This notation permits you to visualize relationships apart from any specific programming
language, and in a way that lets you emphasize the most important parts of a relationship: its name,
the things it connects, and its properties.

Figure 5-1. Relationships





Terms and Concepts

A relationship is a connection among things. In object-oriented modeling, the three most important
relationships are dependencies, generalizations, and associations. Graphically, a relationship is
rendered as a path, with different kinds of lines used to distinguish the kinds of relationships.

Dependencies

A dependency is a relationship that states that one thing (for example, class Window) uses the
information and services of another thing (for example, class Event), but not necessarily the reverse.
Graphically, a dependency is rendered as a dashed directed line, directed to the thing being depended
on. Choose dependencies when you want to show one thing using another.

Most often, you will use dependencies between classes to show that one class uses operations from
another class or it uses variables or arguments typed by the other class; see Figure 5-2. This is very
much a using relationshipif the used class changes, the operation of the other class may be affected as
well, because the used class may now present a different interface or behavior. In the UML you can
also create dependencies among many other things, especially notes and packages.

Figure 5-2. Dependencies

Notes are discussed in Chapter 6; packages are discussed in Chapter 12.

Note

A dependency can have a name, although names are rarely needed unless you have a model
with many dependencies and you need to refer to or distinguish among dependencies. More
commonly, you'll use stereotypes to distinguish different flavors of dependencies.



Different kinds of dependencies are discussed in Chapter 10; stereotypes are
discussed in Chapter 6.

Generalizations

A generalization is a relationship between a general kind of thing (called the superclass or parent) and
a more specific kind of thing (called the subclass or child). Generalization is sometimes called an "is-a-
kind-of" relationship: one thing (like the class BayWindow) is-a-kind-of a more general thing (for
example, the class Window). An objects of the child class may be used for a variable or parameter
typed by the parent, but not the reverse. In other words, generalization means that the child is
substitutable for a declaration of the parent. A child inherits the properties of its parents, especially
their attributes and operations. Oftenbut not alwaysthe child has attributes and operations in addition
to those found in its parents. An implementation of an operation in a child overrides an
implementation of the same operation of the parent; this is known as polymorphism. To be the same,
two operations must have the same signature (same name and parameters). Graphically,
generalization is rendered as a solid directed line with a large unfilled triangular arrowhead, pointing to
the parent, as shown in Figure 5-3. Use generalizations when you want to show parent/child
relationships.

Figure 5-3. Generalization

A class may have zero, one, or more parents. A class that has no parents and one or more children is
called a root class or a base class. A class that has no children is called a leaf class. A class that has
exactly one parent is said to use single inheritance; a class with more than one parent is said to use
multiple inheritance.

Most often, you will use generalizations among classes and interfaces to show inheritance
relationships. In the UML, you can also create generalizations among other kinds of classifiers, such as



nodes.

Packages are discussed in Chapter 12.

Note

A generalization with a name indicates a decomposition of the subclasses of a superclass on
a particular aspect, called a generalization set. Multiple generalization sets are orthogonal;
the superclass is intended to be specialized using multiple inheritance to select one subclass
from each generalization set. This is an advanced topic that we do not cover in this book.

Associations

An association is a structural relationship that specifies that objects of one thing are connected to
objects of another. Given an association connecting two classes, you can relate objects of one class to
objects of the other class. It's quite legal to have both ends of an association circle back to the same
class. This means that, given an object of the class, you can link to other objects of the same class. An
association that connects exactly two classes is called a binary association. Although it's not as
common, you can have associations that connect more than two classes; these are called n-ary
associations. Graphically, an association is rendered as a solid line connecting the same or different
classes. Use associations when you want to show structural relationships.

Associations and dependencies (but not generalization relationships) may be
reflective, as discussed in Chapter 10.

Beyond this basic form, there are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the relationship. So
that there is no ambiguity about its meaning, you can give a direction to the name by providing a
direction triangle that points in the direction you intend to read the name, as shown in Figure 5-4.

Figure 5-4. Association Names



Don't confuse name direction with association navigation, as discussed in
Chapter 10.

Note

Although an association may have a name, you typically don't need to include one if you
explicitly provide end names for the association. If you have more than one association
connecting the same classes, it is necessary to use either association names or association
end names to distinguish them. If an association has more than one end on the same class,
it is necessary to use association end names to distinguish the ends. If there is only one
association between a pair of classes, some modelers omit the names, but it is better to
provide them to make the purpose of the association clear.

Role

When a class participates in an association, it has a specific role that it plays in that relationship; a role
is just the face the class at the far end of the association presents to the class at the near end of the
association. You can explicitly name the role a class plays in an association. The role played by an end
of an association is called an end name (in UML1, it was called a role name). In Figure 5-5, the class
Person playing the role of employee is associated with the class Company playing the role of employer.

Figure 5-5. Association End Names (Role Names)

Roles are related to the semantics of interfaces, as discussed in Chapter 11.



Note

The same class can play the same or different roles in other associations.

Note

An attribute may be regarded as a one-way association owned by a class. The attribute
name corresponds to the end name on the association end away from the class.

Multiplicity

An association represents a structural relationship among objects. In many modeling situations, it's
important for you to state how many objects may be connected across an instance of an association.
This "how many" is called the multiplicity of an association's role. It represents a range of integers
specifying the possible size of the set of related objects. It is written as an expression with a minimum
and maximum value, which may be the same; two dots are used to separate the minimum and
maximum values. When you state a multiplicity at the far end of an association, you are specifying
that, for each object of the class at the near end, how many objects at the near end may exist. The
number of objects must be in the given range. You can show a multiplicity of exactly one (1), zero or
one (0..1), many (0..*), or one or more (1..*). You can give an integer range (such as 2..5). You
can even state an exact number (for example, 3, which is equivalent to 3..3).

An instance of an association is called a link, as discussed in Chapter 16.

For example, in Figure 5-6, each company object has as employee one or more person objects
(multiplicity 1..*); each person object has as employer zero or more company objects (multiplicity *,
which is equivalent to 0..*).

Figure 5-6. Multiplicity

Aggregation



A plain association between two classes represents a structural relationship between peers, meaning
that both classes are conceptually at the same level, no one more important than the other.
Sometimes you will want to model a "whole/part" relationship, in which one class represents a larger
thing (the "whole"), which consists of smaller things (the "parts"). This kind of relationship is called
aggregation, which represents a "has-a" relationship, meaning that an object of the whole has objects
of the part. Aggregation is really just a special kind of association and is specified by adorning a plain
association with an unfilled diamond at the whole end, as shown in Figure 5-7.

Figure 5-7. Aggregation

Aggregation has a number of important variations, as discussed in Chapter 10.

Note

The meaning of this simple form of aggregation is entirely conceptual. The open diamond
distinguishes the "whole" from the "part," no more, no less. This means that simple
aggregation does not change the meaning of navigation across the association between the
whole and its parts, nor does it link the lifetimes of the whole and its parts. See the section
on composition in Chapter 10 for a tighter form of aggregation.

Other Features

Plain, unadorned dependencies, generalizations, and associations with names, multiplicities, and roles
are the most common features you'll need when creating abstractions. In fact, for most of the models
you build, the basic form of these three relationships will be all you need to convey the most important
semantics of your relationships. Sometimes, however, you'll need to visualize or specify other
features, such as composite aggregation, navigation, discriminants, association classes, and special
kinds of dependencies and generalizations. These and many other features can be expressed in the
UML, but they are treated as advanced concepts.

Advanced relationship concepts are discussed in Chapter 10.



Dependencies, generalizations, and associations are all static things defined at the level of classes. In
the UML, these relationships are usually visualized in class diagrams.

Class diagrams are discussed in Chapter 8.

When you start modeling at the object level, and especially when you start working with dynamic
collaborations of these objects, you'll encounter links, which are instances of associations representing
connections among objects across which messages may be sent.

Links are discussed in Chapter 16.

Drawing Styles

Relationships are shown in diagrams by lines from one icon to another. The lines have various
adornments, such as arrowheads or diamonds, to distinguish different kinds of relationships. Typically,
modelers choose one of two styles for drawing lines:

Oblique lines at any angle. Use one line segment unless multiple segments are needed to avoid
other icons.

Rectilinear lines drawn parallel to the sides of the page. Unless a lines connects two icons that
align, the line must be drawn as a series of line segments connected by right angles.This is the
style mostly used in this book.

With care, most line crossings can be avoided. If a line crossing is necessary and there is ambiguity
about how the paths are connected, a small arc can be used to indicate a line crossing.

Figure 5-8. Line Crossing Symbol



Common Modeling Techniques

Modeling Simple Dependencies

A common kind of dependency relationship is the connection between a class that uses another class
as a parameter to an operation.

To model this using relationship,

Create a dependency pointing from the class with the operation to the class used as a parameter
in the operation.

For example, Figure 5-9 shows a set of classes drawn from a system that manages the assignment of
students and instructors to courses in a university. This figure shows a dependency from
CourseSchedule to Course, because Course is used in both the add and remove operations of
CourseSchedule.

Figure 5-9. Dependency Relationships

If you provide the full signature of the operation as in this figure, you don't normally need to show the
dependency as well, because the use of the class is already explicit in the signature. However, you'll
want to show this dependency sometimes, especially if you've elided operation signatures or if your
model shows other relationships to the used class.

This figure shows one other dependency, this one not involving classes in operations but rather
modeling a common C++ idiom. The dependency from Iterator shows that the Iterator uses the
CourseSchedule; the CourseSchedule knows nothing about the Iterator. The dependency is marked
with the stereotype «permit», which is similar to the friend statement in C++.

Other relationship stereotypes are discussed in Chapter 10.



Modeling Single Inheritance

In modeling the vocabulary of your system, you will often run across classes that are structurally or
behaviorally similar to others. You could model each of these as distinct and unrelated abstractions. A
better way would be to extract any common structural and behavioral features and place them in
more-general classes from which the specialized ones inherit.

To model inheritance relationships,

Given a set of classes, look for responsibilities, attributes, and operations that are common to
two or more classes.

Elevate these common responsibilities, attributes, and operations to a more general class. If
necessary, create a new class to which you can assign these elements (but be careful about
introducing too many levels).

Specify that the more-specific classes inherit from the more-general class by placing a
generalization relationship that is drawn from each specialized class to its more-general parent.

For example, Figure 5-10 shows a set of classes drawn from a trading application. You will find a
generalization relationship from four classesCashAccount, Stock, Bond, and Propertyto the more-
general class named Security. Security is the parent, and CashAccount, Stock, Bond, and Property are
all children. Each of these specialized classes is a kind of Security. You'll notice that Security includes
two operations: presentValue and history. Because Security is their parent, CashAccount, Stock,
Bond, and Property all inherit these two operations, and for that matter, any other attributes and
operations of Security that may be elided in this figure.

Figure 5-10. Inheritance Relationships

You may notice that the names Security and presentValue are written a bit differently than others.
There's a reason for this. When you build hierarchies as in Figure 5-10, you often encounter nonleaf
classes that are incomplete or are simply ones for which you don't want there to be any objects. Such
classes are called abstract. You can specify a class as abstract in the UML by writing its name in italics,
such as for the class Security. This convention applies to operations such presentValue and means
that the given operation provides a signature but is otherwise incomplete, so it must be implemented
by some method at a lower level of abstraction. In fact, as the figure shows, all four of the immediate
children of Security are concrete (meaning that they are nonabstract) and must each provide a
concrete implementation of the operation presentValue.



Abstract classes and operations are discussed in Chapter 9.

Your generalization/specialization hierarchies don't have to be limited to only two levels. In fact, as
Figure 5-10 shows, it is common to have more than two layers of inheritance. SmallCapStock and
LargeCapStock are both children of Stock, which, in turn, is a child of Security. Security is therefore a
root class because it has no parents. SmallCapStock and LargeCapStock are both leaf classes because
they have no children. Stock has a parent as well as children, so it is neither a root nor a leaf class.

Although it is not shown here, you can also create classes that have more than one parent. This is
called multiple inheritance and means that the given class has all the attributes, operations, and
associations of all its parents.

Multiple inheritance is discussed in Chapter 10.

Of course, there can be no cycles in an inheritance lattice; a given class cannot be its own ancestor.

Modeling Structural Relationships

When you model with dependencies or generalization relationships, you may be modeling classes that
represent different levels of importance or different levels of abstraction. Given a dependency between
two classes, one class depends on another but the other class has no knowledge of the one. Given a
generalization relationship between two classes, the child inherits from its parent but the parent has
no specific knowledge of its children. In short, dependency and generalization relationships are
asymmetric.

When you model with association relationships, you are modeling classes that are peers of one
another. Given an association between two classes, both rely on the other in some way, and you can
often navigate in either direction. Whereas dependency is a using relationship and generalization is an
is-a-kind-of relationship, an association specifies a structural path across which objects of the classes
interact.

Associations are, by default, bidirectional; you can limit their direction, as
discussed in Chapter 10.

To model structural relationships,

For each pair of classes, if you need to navigate from objects of one to objects of another,
specify an association between the two. This is a data-driven view of associations.

For each pair of classes, if objects of one class need to interact with objects of the other class
other than as local variables in a procedure or parameters to an operation, specify an association
between the two. This is more of a behavior-driven view of associations.

For each of these associations, specify a multiplicity (especially when the multiplicity is not *,



which is the default), as well as role names (especially if they help to explain the model).

If one of the classes in an association is structurally or organizationally a whole compared with
the classes at the other end that look like parts, mark this as an aggregation by adorning the
association at the end near the whole with a diamond.

How do you know when objects of a given class must interact with objects of another class? The
answer is that CRC cards and use case analysis help tremendously by forcing you to consider
structural and behavioral scenarios. Where you find that two or more classes interact using data
relationships, specify an association.

Use cases are discussed in Chapter 17.

Figure 5-11 shows a set of classes drawn from an information system for a school. Starting at the
bottom left of this diagram, you will find the classes named Student, Course, and Instructor. There's
an association between Student and Course, specifying that students attend courses. Furthermore,
every student may attend any number of courses and every course may have any number of
students. Similarly, you'll find an association between Course and Instructor, specifying that
instructors teach courses. For every course there is at least one instructor and every instructor may
teach zero or more courses. Each course belongs to exactly one department.

Figure 5-11. Structural Relationships

The relationships between School and the classes Student and Department are a bit different. Here
you'll see aggregation relationships. A school has zero or more students, each student may be a
registered member of one or more schools, a school has one or more departments, and each
department belongs to exactly one school. You could leave off the aggregation adornments and use
plain associations, but by specifying that School is a whole and that Student and Department are some
of its parts, you make clear which one is organizationally superior to the other. Thus, schools are
somewhat defined by the students and departments they have. Similarly, students and departments
don't really stand alone outside the school to which they belong. Rather, they get some of their
identity from their school.



The aggregation relationship between School and Department is composite

aggregation, as discussed in Chapter 10. Composition is a tight form of
aggregation implying ownership.

You'll also see that there are two associations between Department and Instructor. One of these
associations specifies that every instructor is assigned to one or more departments and that each
department has one or more instructors. This is modeled as an aggregation because organizationally,
departments are at a higher level in the school's structure than are instructors. The other association
specifies that for every department, there is exactly one instructor who is the department chair. The
way this model is specified, an instructor can be the chair of no more than one department, and some
instructors are not chairs of any department.

Note

Your school might not have departments. You might have chairs who are not instructors, or
you might even have students who are also instructors. That doesn't mean that the model
here is wrong, it's just different. You cannot model in isolation, and every model like this
depends on how you intend to use these models.



Hints and Tips

When you model relationships in the UML,

Use dependencies only when the relationship you are modeling is not structural.

Use generalization only when you have an "is-a-kind-of" relationship; multiple inheritance can
often be replaced with aggregation.

Beware of introducing cyclical generalization relationships.

Keep your generalization relationships generally balanced; inheritance lattices should not be too
deep (more than five levels or so should be questioned) nor too wide (instead, look for the
possibility of intermediate abstract classes).

Use associations primarily where there are structural relationships among objects. Do not use
them to show transient relationships such as parameters or local variables of procedures.

When you draw a relationship in the UML,

Use either rectilinear or oblique lines consistently. Rectilinear lines give a visual cue that
emphasizes the connections among related things all pointing to one common thing. Oblique lines
are often more space-efficient in complex diagrams. Using both kinds of lines in one diagram is
useful for drawing attention to different groups of relationships.

Avoid lines that cross unless absolutely necessary.

Show only those relationships that are necessary to understand a particular grouping of things.
Superfluous relationships (especially redundant associations) should be avoided.



Chapter 6. Common Mechanisms
In this chapter

Notes

Stereotypes, tagged values, and constraints

Modeling comments

Modeling new building blocks

Modeling new properties

Modeling new semantics

Extending the UML

The UML is made simpler by the presence of four common mechanisms that apply throughout the
language: specifications, adornments, common divisions, and extensibility mechanisms. This chapter
explains the use of two of these common mechanisms: adornments and extensibility mechanisms.

These common mechanisms are discussed in Chapter 2.

Notes are the most important kind of adornment that stands alone. A note is a graphical symbol for
rendering constraints or comments attached to an element or a collection of elements. You use notes
to attach information to a model, such as requirements, observations, reviews, and explanations.

The UML's extensibility mechanisms permit you to extend the language in controlled ways. These
mechanisms include stereotypes, tagged values, and constraints. A stereotype extends the vocabulary
of the UML, allowing you to create new kinds of building blocks that are derived from existing ones but
that are specific to your problem. A tagged value extends the properties of a UML stereotype, allowing
you to create new information in that element's specification. A constraint extends the semantics of a
UML building block, allowing you to add new rules or modify existing ones. You use these mechanisms
to tailor the UML to the specific needs of your domain and your development culture.



Getting Started

Sometimes you just have to color outside the lines. For example, at a job site, an architect might
scribble a few notes on the building's blueprints to communicate a subtle detail to the construction
workers. In a recording studio, a composer might invent a new musical notation to represent some
unusual effect she wants from a guitarist. In both cases, there already exist well-defined languagesthe
language of structural blueprints and the language of musical notationbut sometimes you have to
bend or extend those languages in controlled ways to communicate your intent.

Modeling is all about communication. The UML already gives you all the tools you need to visualize,
specify, construct, and document the artifacts of a wide range of software-intensive systems.
However, you might find circumstances in which you'll want to bend or extend the UML. This happens
to human languages all the time (that's why new dictionaries get published every year), because no
static language can ever be sufficient to cover everything you'll want to communicate for all time.
When using a modeling language such as the UML, remember that you are doing so to communicate,
and that means you'll want to stick to the core language unless there's compelling reason to deviate.
When you find yourself needing to color outside the lines, you should do so only in controlled ways.
Otherwise, you will make it impossible for anyone to understand what you've done.

Notes are the mechanism provided by the UML to let you capture arbitrary comments and constraints
to help illuminate the models you've created. Notes may represent artifacts that play an important
role in the software development life cycle, such as requirements, or they may simply represent free-
form observations, reviews, or explanations.

The UML provides a graphical representation for comments and constraints, called a note, as Figure 6-
1 shows. This notation permits you to visualize a comment directly. In conjunction with the proper
tools, notes also give you a placeholder to link to or embed other documents.

Figure 6-1. Notes

Stereotypes, tagged values, and constraints are the mechanisms provided by the UML to let you add
new building blocks, create new properties, and specify new semantics. For example, if you are
modeling a network, you might want to have symbols for routers and hubs; you can use stereotyped
nodes to make these things appear as primitive building blocks. Similarly, if you are part of your
project's release team, responsible for assembling, testing, and then deploying releases, you might
want to keep track of the version number and test results for each major subsystem. You can use
tagged values to add this information to your models. Finally, if you are modeling hard real time
systems, you might want to adorn your models with information about time budgets and deadlines;
you can use constraints to capture timing requirements.

The UML provides a textual representation for stereotypes, tagged values, and constraints, as Figure
6-2 shows. Stereotypes also let you introduce new graphical symbols so that you can provide visual
cues to your models that speak the language of your domain and your development culture.



Figure 6-2. Stereotypes, Tagged Values, and Constraints



Terms and Concepts

A note is a graphical symbol for rendering constraints or comments attached to an element or a
collection of elements. Graphically, a note is rendered as a rectangle with a dog-eared corner,
together with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing you to create new kinds of building
blocks similar to existing ones but specific to your problem. Graphically, a stereotype is rendered as a
name enclosed by guillemets (French quotation marks of the form « »), placed above the name of
another element.

Optionally the stereotyped element may be rendered by using a new icon associated with that
stereotype.

A tagged value is a property of a stereotype, allowing you to create new information in an element
bearing that stereotype. Graphically, a tagged value is rendered as a string of the form name = value
within a note attached to the object.

A constraint is a textual specification of the semantics of a UML element, allowing you to add new rules
or to modify existing ones. Graphically, a constraint is rendered as a string enclosed by brackets and
placed near the associated element or connected to that element or elements by dependency
relationships. As an alternative, you can render a constraint in a note.

Notes

A note that renders a comment has no semantic impact, meaning that its contents do not alter the
meaning of the model to which it is attached. This is why notes are used to specify things like
requirements, observations, reviews, and explanations, in addition to rendering constraints.

A note may contain any combination of text or graphics. If your implementation allows it, you can put
a live URL inside a note, or even link to or embed another document. In this way, you can use the UML
to organize all the artifacts you might generate or use during development, as Figure 6-3 illustrates.

Figure 6-3. Notes



Notes may be attached to more than one element by using dependencies, as
discussed in Chapter 5.

Other Adornments

Adornments are textual or graphical items that are added to an element's basic notation and are used
to visualize details from the element's specification. For example, the basic notation for an association
is a line, but this may be adorned with such details as the role and multiplicity of each end. In using
the UML, the general rule to follow is this: Start with the basic notation for each element and then add
other adornments only as they are necessary to convey specific information that is important to your
model.

The basic notation for an association, along with some of its adornments, are
discussed in Chapters 5 and 10.

Most adornments are rendered by placing text near the element of interest or by adding a graphic
symbol to the basic notation. However, sometimes you'll want to adorn an element with more detail
than can be accommodated by simple text or graphics. In the case of such things as classes,
components, and nodes, you can add an extra compartment below the usual compartments to provide
this information, as Figure 6-4 shows.

Figure 6-4. Extra Compartments

Note

Unless it's obvious by its content, it's good practice to name any extra compartment



explicitly so that there is no confusion about its meaning. It's also good practice to use extra
compartments sparingly, because if overused, they make diagrams cluttered.

Stereotypes

The UML provides a language for structural things, behavioral things, grouping things, and notational
things. These four basic kinds of things address the overwhelming majority of the systems you'll need
to model. However, sometimes you'll want to introduce new things that speak the vocabulary of your
domain and look like primitive building blocks.

These four basic elements of the UML are discussed in Chapter 2.

A stereotype is not the same as a parent class in a parent/child generalization relationship. Rather,
you can think of a stereotype as a metatype (a type that defines other types), because each one
creates the equivalent of a new class in the UML's metamodel. For example, if you are modeling a
business process, you'll want to introduce things like workers, documents, and policies. Similarly, if
you are following a development process, such as the Rational Unified Process, you'll want to model
using boundary, control, and entity classes. This is where the real value of stereotypes comes in.
When you stereotype an element such as a node or a class, you are in effect extending the UML by
creating a new building block just like an existing one but with its own special modeling properties
(each stereotype may provide its own set of tagged values), semantics (each stereotype may provide
its own constraints), and notation (each stereotype may provide its own icon).

The Rational Unified Process is summarized in Appendix B.

In its simplest form, a stereotype is rendered as a name enclosed by guillemets (for example, «name»)
and placed above the name of another element. As a visual cue, you may define an icon for the
stereotype and render that icon to the right of the name (if you are using the basic notation for the
element) or use that icon as the basic symbol for the stereotyped item. All three of these approaches
are illustrated in Figure 6-5.

Figure 6-5. Stereotypes



Note

When you define an icon for a stereotype, consider using color as an accent to provide a
subtle visual cue (but use color sparingly). The UML lets you use any shape for such icons,
and if your implementation permits it, these icons might appear as primitive tools so that
users who create UML diagrams will have a palette of things that look basic to them and
speak the vocabulary of their domain.

Tagged Values

Every thing in the UML has its own set of properties: classes have names, attributes, and operations;
associations have names and two or more ends, each with its own properties; and so on. With
stereotypes, you can add new things to the UML; with tagged values, you can add new properties to a
stereotype.

You define tags that apply to individual stereotypes so that everything with that stereotype has that
tagged value. A tagged value is not the same as a class attribute. Rather, you can think of a tagged
value as metadata because its value applies to the element specification, not to its instances. For
example, as Figure 6-6 shows, you can specify the required capacity of a server class or require that
only one kind of server be used in a given system.

Figure 6-6. Stereotype and Tag Definitions



Attributes are discussed in Chapters 4 and 9.

Tagged values are placed in a note attached to the affected element, as shown in Figure 6-7. Each
tagged value comprises a string that includes a name (the tag), a separator (the symbol =), and a
value (of the tag).

Figure 6-7. Tagged Values

Note

One of the most common uses of tagged values is to specify properties that are relevant to
code generation or configuration management. For example, you can use tagged values to
specify the programming language to which you map a particular class. Similarly, you can
use tagged values to specify the author and version of a component.

Constraints



Everything in the UML has its own semantics. Generalization (usually, if you know what's good for
you) implies the Liskov substitution principle, and multiple associations connected to one class denote
distinct relationships. With constraints, you can add new semantics or extend existing rules. A
constraint specifies conditions that a run-time configuration must satisfy to conform to the model. For
example, as Figure 6-8 shows, you might want to specify that, across a given association,
communication is secure; a configuration that violates this constraint is inconsistent with the model.
Similarly, you might want to specify that among a set of associations connected to a given class, a
particular instance may have links of only one association in the set.

Figure 6-8. Constraint

Time and space constraints, commonly used when modeling real time systems,
are discussed in Chapter 24.

Note

Constraints may be written as free-form text. If you want to specify your semantics more
precisely, you can use the UML's Object Constraint Language (OCL), described further in The
Unified Modeling Language Reference Manual.

Constraints may be attached to more than one element by using dependencies,
as discussed in Chapter 5.

A constraint is rendered as a string enclosed by brackets and placed near the associated element. This
notation is also used as an adornment to the basic notation of an element to visualize parts of an



element's specification that have no graphical cue. For example, some properties of associations
(order and changeability) are rendered using constraint notation.

Standard Elements

The UML defines a number of standard stereotypes for classifiers, components, relationships, and
other modeling elements. There is one standard stereotype, mainly of interest to tool builders, that
lets you model stereotypes themselves.

Classifiers are discussed in Chapter 9.

• stereotype Specifies that the classifier is a stereotype that may be
applied to other elements

You'll use this stereotype when you want to explicitly model the stereotypes you've defined for your
project.

Profiles

Often it is useful to define a version of UML tailored to a particular purpose or domain area. For
example, if you want to use a UML model for code generation in a particular language, it is helpful to
define stereotypes that can be applied to elements to give hints to the code generator (like an Ada
pragma). The stereotypes you define would be different for Java and C++, however. As another
example, you might want to use UML for modeling databases. Some of the UML capabilities, such as
dynamic modeling, are less important, but you want to add concepts such as candidate keys and
indexes. You can tailor UML using profiles.

A profile is a UML model with a set of predefined stereotypes, tagged values, constraints, and base
classes. It also selects a subset of the UML element kinds for use so that a modeler is not confused by
element kinds that are not needed for the particular application area. A profile defines, in effect, a
specialized version of UML for a particular area. Because it is built on ordinary UML elements, it does
not represent a new language, and it can be supported by ordinary UML tools.

Most modelers will not construct their own profiles. Most profiles will be constructed by tool builders,
framework builders, and similar designers of generic capabilities. Many modelers will use profiles,
however. It is the same as traditional subroutine libraries-a few experts built them but many
programmers used them. We expect profiles to be constructed for programming languages and
databases, for different implementation platforms, for different modeling tools, and for various
business domain application areas.



Common Modeling Techniques

Modeling Comments

The most common purpose for which you'll use notes is to write down free-form observations,
reviews, or explanations. By putting these comments directly in your models, your models can become
a common repository for all the disparate artifacts you'll create during development. You can even use
notes to visualize requirements and show how they tie explicitly to the parts of your model.

To model a comment,

Put your comment as text in a note and place it adjacent to the element to which it refers. You
can show a more explicit relationship by connecting a note to its elements using a dependency
relationship.

Remember that you can hide or make visible the elements of your model as you see fit. This
means that you don't have to make your comments visible everywhere the elements to which it
is attached are visible. Rather, expose your comments in your diagrams only insofar as you need
to communicate that information in that context.

If your comment is lengthy or involves something richer than plain text, consider putting your
comment in an external document and linking or embedding that document in a note attached to
your model.

As your model evolves, keep those comments that record significant decisions that cannot be
inferred from the model itself, andunless they are of historic interestdiscard the others.

For example, Figure 6-9 shows a model that's a work in progress of a class hierarchy, showing some
requirements that shape the model, as well as some notes from a design review.

Figure 6-9. Modeling Comments



Simple generalization is discussed in Chapter 5; advanced forms of
generalization are discussed in Chapter 10.

In this example, most of the comments are simple text (such as the note to Mary), but one of them
(the note at the bottom of the diagram) provides a hyperlink to another document.

Modeling New Properties

The basic properties of the UML's building blocksattributes and operations for classes, the contents of
packages, and so onare generic enough to address most of the things you'll want to model. However,
if you want to extend the properties of these basic building blocks, you need to define stereotypes and
tagged values.

To model new properties,

First, make sure there's not already a way to express what you want by using basic UML.

If you re convinced there's no other way to express these semantics, define a stereotype and
add the new properties to the stereotype. The rules of generalization applytagged values defined
for one kind of stereotype apply to its children.

For example, suppose you want to tie the models you create to your project's configuration
management system. Among other things, this means keeping track of the version number, current
check in/check out status, and perhaps even the creation and modification dates of each subsystem.
Because this is process-specific information, it is not a basic part of the UML, although you can add
this information as tagged values. Furthermore, this information is not just a class attribute either. A
subsystem's version number is part of its metadata, not part of the model.

Subsystems are discussed in Chapter 32.

Figure 6-10 shows three subsystems, each of which has been extended with the «versioned»
stereotype to include its version number and status.

Figure 6-10. Modeling New Properties



Note

The values of tags such as version and status are things that can be set by tools. Rather
than setting these values in your model by hand, you can use a development environment
that integrates your configuration management tools with your modeling tools to maintain
these values for you.

Modeling New Semantics

When you create a model using the UML, you work within the rules the UML lays down. That's a good
thing, because it means that you can communicate your intent without ambiguity to anyone else who
knows how to read the UML. However, if you find yourself needing to express new semantics about
which the UML is silent or that you need to modify the UML's rules, then you need to write a
constraint.

To model new semantics,

First, make sure there's not already a way to express what you want by using basic UML.

If you re convinced there's no other way to express these semantics, write your new semantics
in a constraint placed near the element to which it refers. You can show a more explicit
relationship by connecting a constraint to its elements using a dependency relationship.

If you need to specify your semantics more precisely and formally, write your new semantics
using OCL.

For example, Figure 6-11 models a small part of a corporate human resources system.

Figure 6-11. Modeling New Semantics



This diagram shows that each Person may be a member of zero or more Teams and that each Team
must have at least one Person as a member. This diagram goes on to indicate that each Team must
have exactly one Person as a captain and every Person may be the captain of zero or more Teams. All
of these semantics can be expressed using simple UML. However, to assert that a captain must also
be a member of the same team is something that cuts across multiple associations and cannot be
expressed using simple UML. To state this invariant, you have to write a constraint that shows the
manager as a subset of the members of the Team, connecting the two associations with a constraint.
There is also a constraint that the captain must be a member for at least 1 year.



Hints and Tips

When you adorn a model with notes,

Use notes only for those requirements, observations, reviews, and explanations that you can't
express simply or meaningfully using existing features of the UML.

Use notes as a kind of electronic sticky note, to keep track of your work in progress.

When you draw notes,

Don't clutter your models with large blocks of comments. Rather, if you really need a long
comment, use notes as a placeholder to link to or embed a document that contains the full
comment.

When you extend a model with stereotypes, tagged values, or constraints,

Standardize on a small set of stereotypes, tagged values, and constraints to use on your project,
and avoid letting individual developers create lots of new extensions.

Chose short, meaningful names for your stereotypes and tagged values.

Where precision can be relaxed, use free-form text for specifying constraints. If you need more
rigor, use the OCL to write constraint expressions.

When you draw a stereotype, tagged value, or constraint,

Use graphical stereotypes sparingly. You can totally change the basic notation of the UML with
stereotypes, but in so doing you'll make it impossible for anyone else to understand your models.

Consider using simple color or shading for graphical stereotypes, as well as more complicated
icons. Simple notations are generally the best, and even the most subtle visual cues can go a
long way in communicating meaning.



Chapter 7. Diagrams
In this chapter

Diagrams, views, and models

Modeling different views of a system

Modeling different levels of abstraction

Modeling complex views

Organizing diagrams and other artifacts

When you model something, you create a simplification of reality so that you can better understand
the system you are developing. Using the UML, you build your models from basic building blocks, such
as classes, interfaces, collaborations, components, nodes, dependencies, generalizations, and
associations.

Modeling is discussed in Chapter 1.

Diagrams are the means by which you view these building blocks. A diagram is a graphical
presentation of a set of elements, most often rendered as a connected graph of vertices (things) and
arcs (relationships). You use diagrams to visualize your system from different perspectives. Because
no complex system can be understood in its entirety from only one perspective, the UML defines a
number of diagrams so that you can focus on different aspects of your system independently.

Good diagrams make the system you are developing understandable and approachable. Choosing the
right set of diagrams to model your system forces you to ask the right questions about your system
and helps to illuminate the implications of your decisions.



Getting Started

When you work with an architect to design a house, you start with three things: a list of wants (such
as "I want a house with three bedrooms" and "I want to pay no more than x"), a few simple sketches
or pictures from other houses representing some of its key features (such as a picture of an entry with
a circular staircase), and some general idea of style (such as "We'd like a French country look with
hints of California coastal"). The job of the architect is to take these incomplete, ever-changing, and
possibly contradictory requirements and turn them into a design.

To do that, the architect will probably start with a blueprint of a basic floor plan. This artifact provides
a vehicle for you and your architect to visualize the final house, to specify details, and to document
decisions. At each review, you'll want to make some changes, such as moving walls about, rearranging
rooms, and placing windows and doors. Early on, these blueprints change often. As the design
matures and you become satisfied that you have a design that best fits all the constraints of form,
function, time, and money, these blueprints will stabilize to the point at which they can be used for
constructing your house. Even while your house is being built, you'll probably change some of these
diagrams and create some new ones as well.

Along the way, you'll want to see views of the house other than just the floor plan. For example, you'll
want to see elevations showing the house from different sides. As you start specifying details so that
the job can be meaningfully costed, your architect will need to create electrical plans, plans for heating
and ventilation, and plans for water and sewer connections. If your design requires some unusual
feature (such as a long, unsupported span over the basement) or you have a feature that's important
to you (such as the placement of a fireplace so that you can install a home theater), you and your
architect will want to create some sketches that highlight those details.

The practice of creating diagrams to visualize systems from different perspectives is not limited to the
construction industry. You'll find this in every engineering discipline involving the creation of complex
systems, from civil engineering to aeronautical engineering, ship building, manufacturing, and
software.

In the context of software, there are five complementary views that are most important in visualizing,
specifying, constructing, and documenting a software architecture: the use case view, the design view,
the interaction view, the implementation view, and the deployment view. Each of these views involves
structural modeling (modeling static things) as well as behavioral modeling (modeling dynamic things).
Together, these different views capture the most important decisions about the system. Individually,
each of these views lets you focus attention on one perspective of the system so that you can reason
about your decisions with clarity.

The five views of an architecture are discussed in Chapter 2.

When you view a software system from any perspective using the UML, you use diagrams to organize
the elements of interest. The UML defines different kinds of diagrams, which you can mix and match to
assemble each view. For example, the static aspects of a system's implementation view might be
visualized using class diagrams; the dynamic aspects of the same implementation view might be
visualized using interaction diagrams.



Modeling the architecture of a system is discussed in Chapter 32.

Of course, you are not limited to the predefined diagram types. In the UML, diagram types are defined
because they represent the most common packaging of viewed elements. To fit the needs of your
project or organization, you can create your own kinds of diagrams to view UML elements in different
ways.

You'll use the UML's diagrams in two basic ways: to specify models from which you'll construct an
executable system (forward engineering) and to reconstruct models from parts of an executable
system (reverse engineering). Either way, just like a building architect, you'll tend to create your
diagrams incrementally (crafting them one piece at a time) and iteratively (repeating the process of
"design a little, build a little").

This incremental and iterative process is summarized in Appendix B.



Terms and Concepts

A system is a collection of subsystems organized to accomplish a purpose and described by a set of
models, possibly from different viewpoints. A subsystem is a grouping of elements, some of which
constitute a specification of the behavior offered by the other contained elements. A model is a
semantically closed abstraction of a system, meaning that it represents a complete and self-consistent
simplification of reality, created in order to better understand the system. In the context of
architecture, a view is a projection into the organization and structure of a system's model, focused on
one aspect of that system. A diagram is the graphical presentation of a set of elements, most often
rendered as a connected graph of vertices (things) and arcs (relationships).

Systems, models, and views are discussed in Chapter 32.

To put it another way, a system represents the thing you are developing, viewed from different
perspectives by different models, with those views presented in the form of diagrams.

A diagram is just a graphical projection into the elements that make up a system. For example, you
might have several hundred classes in the design of a corporate human resources system. You could
never visualize the structure or behavior of that system by staring at one large diagram containing all
these classes and all their relationships. Instead, you'd want to create several diagrams, each focused
on one view. For example, you might find one class diagram that includes classes, such as Person,
Department, and Office, assembled to construct a database schema. You might find some of these
same classes, along with other classes, in another diagram that presents an API that's used by client
applications. You'd likely see some of these same classes mentioned in an interaction diagram,
specifying the semantics of a transaction that reassigns a Person to a new Department.

As this example shows, the same thing in a system (such as the class Person) may appear multiple
times in the same diagram or even in different diagrams. In each case, it's the same thing. Each
diagram provides a view into the elements that make up the system.

In modeling real systems, no matter what the problem domain, you'll find yourself creating the same
kinds of diagrams, because they represent common views into common models. Typically, you'll view
the static parts of a system using one of the following diagrams.

Class diagram1.

Component diagram2.

Composite structure diagram3.

Object diagram4.

Deployment diagram5.

Artifact diagram6.

You'll often use five additional diagrams to view the dynamic parts of a system.

1.

2.



Use case diagram1.

Sequence diagram2.

Communication diagram3.

State diagram4.

Activity diagram5.

Every diagram you create will most likely be one of these nine or occasionally of another kind, defined
for your project or organization. Every diagram must have a name that's unique in its context so that
you can refer to a specific diagram and distinguish one from another. For anything but the most trivial
system, you'll want to organize your diagrams into packages.

Packages are discussed in Chapter 12.

You can project any combination of elements in the UML in the same diagram. For example, you might
show both classes and objects in the same diagram (a common thing to do), or you might even show
both classes and components in the same diagram (legal, but less common). Although there's nothing
that prevents you from placing wildly disparate kinds of modeling elements in the same diagram, it's
more common for you to have roughly the same kinds of things in one diagram. In fact, the UML's
defined diagrams are named after the element you'll most often place in each. For example, if you
want to visualize a set of classes and their relationships, you'll use a class diagram. Similarly, if you
want to visualize a set of components, you'll use a component diagram.

Structural Diagrams

The UML's structural diagrams exist to visualize, specify, construct, and document the static aspects of
a system. You can think of the static aspects of a system as representing its relatively stable skeleton
and scaffolding. Just as the static aspects of a house encompass the existence and placement of such
things as walls, doors, windows, pipes, wires, and vents, so too do the static aspects of a software
system encompass the existence and placement of such things as classes, interfaces, collaborations,
components, and nodes.

The UML's structural diagrams are roughly organized around the major groups of things you'll find
when modeling a system.

1.Class diagram Classes, interfaces, and collaborations

2.Component diagram Components

3.Composite structure
diagram

Internal structure

4.Object diagram Objects

5.Artifact diagram Artifacts

6.Deployment diagram Nodes

Class Diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships. Class



diagrams are the most common diagram found in modeling object-oriented systems. You use class
diagrams to illustrate the static design view of a system. Class diagrams that include active classes are
used to address the static process view of a system.

Class diagrams are discussed in Chapter 8.

Component Diagram

An component diagram shows the internal parts, connectors, and ports that implement a component.
When the component is instantiated, copies of its internal parts are also instantiated.

Composite structure diagrams and component diagrams are discussed in
Chapter 15.

Composite Structure Diagram

An composite structure diagram shows the internal structure of a class or a collaboration. The
difference between components and composite structure is small and this book treats them both as
component diagrams.

Object Diagram

An object diagram shows a set of objects and their relationships. You use object diagrams to illustrate
data structures, the static snapshots of instances of the things found in class diagrams. Object
diagrams address the static design view or static process view of a system just as class diagrams do,
but from the perspective of real or prototypical cases.

Object diagrams are discussed in Chapter 14.

Artifact Diagram

An artifact diagram shows a set of artifacts and their relationships to other artifacts and to the classes
that they implement. You use artifact diagrams to show the physical implementation units of the
system. (UML considers artifacts to be part of deployment diagrams, but we separate them for
convenience of discussion.)

Artifact diagrams are discussed in Chapter 30.



Deployment Diagram

A deployment diagram shows a set of nodes and their relationships. You use deployment diagrams to
illustrate the static deployment view of an architecture. Deployment diagrams are related to
component diagrams in that a node typically encloses one or more components.

Deployment diagrams are discussed in Chapter 31.

Note

There are some common variants of these four diagrams, named after their primary
purpose. For example, you might create a subsystem diagram to illustrate the structural
decomposition of a system into subsystems. A subsystem diagram is just a class diagram
that contains, primarily, subsystems.

Behavioral Diagrams

The UML's behavioral diagrams are used to visualize, specify, construct, and document the dynamic
aspects of a system. You can think of the dynamic aspects of a system as representing its changing
parts. Just as the dynamic aspects of a house encompass airflow and traffic through the rooms of a
house, so too do the dynamic aspects of a software system encompass such things as the flow of
messages over time and the physical movement of components across a network.

The UML's behavioral diagrams are roughly organized around the major ways you can model the
dynamics of a system.

1.Use case diagram Organizes the behaviors of the system

2.Sequence diagram Focuses on the time ordering of messages

3.Communication diagram Focuses on the structural organization of objects that send and
receive messages

4.State diagram Focuses on the changing state of a system driven by events

5.Activity diagram Focuses on the flow of control from activity to activity

Use Case Diagram

A use case diagram shows a set of use cases and actors (a special kind of class) and their
relationships. You apply use case diagrams to illustrate the static use case view of a system. Use case
diagrams are especially important in organizing and modeling the behaviors of a system.



Use case diagrams are discussed in Chapter 18.

Interaction diagram is the collective name given to sequence diagrams and communication diagrams.
All sequence diagrams and communication diagrams are interaction diagrams, and an interaction
diagram is either a sequence diagram or a communication diagram. These diagrams share the same
underlying model, although in practice they emphasize different things. (Timing diagrams are another
kind of interaction diagram that are not covered in this book.)

Sequence Diagram

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages. A
sequence diagram shows a set of roles and the messages sent and received by the instances playing
the roles. You use sequence diagrams to illustrate the dynamic view of a system.

Sequence diagrams are discussed in Chapter 19.

Communication Diagram

A communication diagram is an interaction diagram that emphasizes the structural organization of the
objects that send and receive messages. A communication diagram shows a set of roles, connectors
among those roles, and messages sent and received by the instances playing the roles. You use
communication diagrams to illustrate the dynamic view of a system.

Communication diagrams are discussed in Chapter 19.

State Diagram

A state diagram shows a state machine, consisting of states, transitions, events, and activities. You
use state diagrams to illustrate the dynamic view of a system. They are especially important in
modeling the behavior of an interface, class, or collaboration. State diagrams emphasize the event-
ordered behavior of an object, which is especially useful in modeling reactive systems.

State diagrams are discussed in Chapter 25.

Activity Diagram

An activity diagram shows the flow from step to step within a computation. An activity shows a set of



actions, the sequential or branching flow from action to action, and values that are produced or
consumed by actions. You use activity diagrams to illustrate the dynamic view of a system. Activity
diagrams are especially important in modeling the function of a system. Activity diagrams emphasize
the flow of control within the execution of a behavior.

Activity diagrams, a special case of state diagrams, are discussed in Chapter 20.

Note

There are obvious practical limitations to illustrating something that's inherently dynamic
(the behavior of a system) using diagrams (inherently static artifacts, especially when you
draw them on a sheet of paper, a whiteboard, or the back of an envelope). Rendered on a
computer display, there are opportunities for animating behavioral diagrams so that they
either simulate an executable system or mirror the actual behavior of a system that's
executing. The UML allows you to create dynamic diagrams and to use color or other visual
cues to "run" the diagram. Some tools have already demonstrated this advanced use of the
UML.



Common Modeling Techniques

Modeling Different Views of a System

When you model a system from different views, you are in effect constructing your system
simultaneously from multiple dimensions. By choosing the right set of views, you set up a process that
forces you to ask good questions about your system and to expose risks that need to be attacked. If
you do a poor job of choosing these views or if you focus on one view at the expense of all others, you
run the risk of hiding issues and deferring problems that will eventually destroy any chance of success.

To model a system from different views,

Decide which views you need to best express the architecture of your system and to expose the
technical risks to your project. The five views of an architecture described earlier are a good
starting point.

For each of these views, decide which artifacts you need to create to capture the essential details
of that view. For the most part, these artifacts will consist of various UML diagrams.

As part of your process planning, decide which of these diagrams you'll want to put under some
sort of formal or semi-formal control. These are the diagrams for which you'll want to schedule
reviews and to preserve as documentation for the project.

Allow room for diagrams that are thrown away. Such transitory diagrams are still useful for
exploring the implications of your decisions and for experimenting with changes.

For example, if you are modeling a simple monolithic application that runs on a single machine, you
might need only the following handful of diagrams.

 Use case view Use case diagrams

 Design view Class diagrams (for structural modeling)

 Interaction view Interaction diagrams (for behavioral
modeling)

 Implementation view Composite structure diagrams

 Deployment view None required

If yours is a reactive system or if it focuses on process flow, you'll probably want to include state
diagrams and activity diagrams, respectively, to model your system's behavior.

Similarly, if yours is a client/server system, you'll probably want to include component diagrams and
deployment diagrams to model the physical details of your system.

Finally, if you are modeling a complex, distributed system, you'll need to employ the full range of the
UML's diagrams in order to express the architecture of your system and the technical risks to your
project, as in the following.



 Use case view Use case diagrams

  Sequence diagrams

 Design view Class diagrams (for structural modeling)

  Interaction diagrams (for behavioral
modeling)

  State diagrams (for behavioral modeling)

  Activity diagrams

 Interaction view Interaction diagrams (for behavioral
modeling)

 Implementation view Class diagrams

  Composite structure diagrams

 Deployment view Deployment diagrams

Modeling Different Levels of Abstraction

Not only do you need to view a system from several angles, you'll also find people involved in
development who need the same view of the system but at different levels of abstraction. For
example, given a set of classes that capture the vocabulary of your problem space, a programmer
might want a detailed view down to the level of each class's attributes, operations, and relationships.
On the other hand, an analyst who's walking through some use case scenarios with an end user will
likely want only a much elided view of these same classes. In this context, the programmer is working
at a lower level of abstraction, and the analyst and end user are working at a higher level of
abstraction, but all are working from the same model. In fact, because diagrams are just a graphical
presentation of the elements that make up a model, you can create several diagrams against the
same model or different models, each hiding or exposing different sets of these elements and each
showing different levels of detail.

Basically, there are two ways to model a system at different levels of abstraction: by presenting
diagrams with different levels of detail against the same model or by creating models at different
levels of abstraction with diagrams that trace from one model to another.

To model a system at different levels of abstraction by presenting diagrams with different levels of
detail,

Consider the needs of your readers, and start with a given model.

If your reader is using the model to construct an implementation, she'll need diagrams that are
at a lower level of abstraction, which means that they'll need to reveal a lot of detail. If she is
using the model to present a conceptual model to an end user, she'll need diagrams that are at a
higher level of abstraction, which means that they'll hide a lot of detail.

Depending on where you land in this spectrum of low-to-high levels of abstraction, create a
diagram at the right level of abstraction by hiding or revealing the following four categories of
things from your model:

Building blocks and relationships: Hide those that are not relevant to the intent of your
diagram or the needs of your reader.

1.

2.



1.

Adornments: Reveal only the adornments of these building blocks and relationships that are
essential to understanding your intent.

2.

Flow: In the context of behavioral diagrams, expand only those messages or transitions
that are essential to understanding your intent.

3.

Stereotypes: In the context of stereotypes used to classify lists of things, such as attributes
and operations, reveal only those stereotyped items that are essential to understanding
your intent.

4.

Messages are discussed in Chapter 16; transitions are discussed in Chapter 22;
stereotypes are discussed in Chapter 6.

The main advantage of this approach is that you are always modeling from a common semantic
repository. The main disadvantage of this approach is that changes from diagrams at one level of
abstraction may make obsolete diagrams at a different level of abstraction.

To model a system at different levels of abstraction by creating models at different levels of
abstraction,

Consider the needs of your readers and decide on the level of abstraction that each should view,
forming a separate model for each level.

In general, populate your models that are at a high level of abstraction with simple abstractions
and your models that are at a low level of abstraction with detailed abstractions. Establish trace
dependencies among the related elements of different models.

Trace dependencies are discussed in Chapter 32.

In practice, if you follow the five views of an architecture, there are four common situations you'll
encounter when modeling a system at different levels of abstraction:

Use cases and their realization: Use cases in a use case model will trace to collaborations in
a design model.

1.

Collaborations and their realization: Collaborations will trace to a society of classes that
work together to carry out the collaboration.

2.

Components and their design: Components in an implementation model will trace to the
elements in a design model.

3.

Nodes and their components: Nodes in a deployment model will trace to components in an
implementation model.

4.



4.

Use cases are discussed in Chapter 17; collaborations are discussed in Chapter
28; components are discussed in Chapter 15; nodes are discussed in Chapter
27.

The main advantage of the approach is that diagrams at different levels of abstraction remain more
loosely coupled. This means that changes in one model will have less direct effect on other models.
The main disadvantage of this approach is that you must spend resources to keep these models and
their diagrams synchronized. This is especially true when your models parallel different phases of the
software development life cycle, such as when you decide to maintain an analysis model separate from
a design model.

For example, suppose you are modeling a system for Web commerceone of the main use cases of
such a system would be for placing an order. If you re an analyst or an end user, you'd probably
create some interaction diagrams at a high level of abstraction that show the action of placing an
order, as in Figure 7-1.

Figure 7-1. Interaction Diagram at a High Level of Abstraction

Interaction diagrams are discussed in Chapter 19.

On the other hand, a programmer responsible for implementing this scenario would have to build on
this diagram, expanding certain messages and adding other players in this interaction, as in Figure 7-
2.

Figure 7-2. Interaction at a Low Level of Abstraction



Both of these diagrams work against the same model, but at different levels of detail. The second
diagram has additional messages and roles. It's reasonable to have many diagrams such as these,
especially if your tools make it easy to navigate from one diagram to another.

Modeling Complex Views

No matter how you break up your models, there are times when you'll find it necessary to create large
and complex diagrams. For example, if you want to analyze the entire schema of a database
encompassing 100 or more abstractions, it really is valuable to study a diagram showing all these
classes and their associations. In so doing, you'll be able to see common patterns of collaboration. If
you were to show this model at a higher level of abstraction by eliding some detail, you'd lose the
information necessary to make these insights.

To model complex views,

First, convince yourself that there is no meaningful way to present this information at a higher
level of abstraction, perhaps eliding some parts of the diagram and retaining the detail in other
parts.

Packages are discussed in Chapter 12; collaborations are discussed in
Chapter 28.

If you've hidden as much detail as you can and your diagram is still complex, consider grouping
some of the elements in packages or in higher-level collaborations, then render only those
packages or collaborations in your diagram.

If your diagram is still complex, use notes and color as visual cues to draw the reader's attention
to the points you want to make.

If your diagram is still complex, print it in its entirety and hang it on a convenient large wall. You
lose the interactivity that an online version of the diagram brings, but you can step back from the
diagram and study it for common patterns.



diagram and study it for common patterns.



Hints and Tips

When you create a diagram,

Remember that the purpose of a diagram in the UML is not to draw pretty pictures but to
visualize, specify, construct, and document. Diagrams are a means to the end of deploying an
executable system.

Not all diagrams are meant to be preserved. Consider building up diagrams on the fly by
querying the elements in your models, and use these diagrams to reason about your system as it
is being built. Many of these kinds of diagrams can be thrown away after they have served their
purpose (but the semantics upon which they were created will remain as a part of the model).

Avoid extraneous or redundant diagrams. They clutter your models.

Reveal only enough detail in each diagram to address the issues for which it was intended.
Extraneous information can distract the reader from the key point you re trying to make.

On the other hand, don't make your diagrams minimalist unless you really need to present
something at a very high level of abstraction. Oversimplification can hide details that are
important to reasoning about your models.

Keep a balance between the structural and behavioral diagrams in your system. Very few
systems are totally static or totally dynamic.

Don't make your diagrams too big (ones that run more than one printed page are hard to
understand) or too small (consider joining several trivial diagrams into one).

Give each diagram a meaningful name that clearly expresses its intent.

Keep your diagrams organized. Group them into packages according to view.

Don't obsess over the format of a diagram. Let tools help you.

A well-structured diagram

Is focused on communicating one aspect of a system's view.

Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction (expose only those adornments that are
essential to understanding).

Is not so minimalist that it misinforms the reader about semantics that are important.

When you draw a diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out physically
close.

Use notes and color as visual cues to draw attention to important features of your diagram. Use



color with care, however, because many people are color blind; color should only be used as a
highlight, not to convey essential information.



Chapter 8. Class Diagrams
In this chapter

Modeling simple collaborations

Modeling a logical database schema

Forward and reverse engineering

Class diagrams are the most common diagram found in modeling object-oriented systems. A class
diagram shows a set of classes, interfaces, and collaborations and their relationships.

You use class diagrams to model the static design view of a system. For the most part, this involves
modeling the vocabulary of the system, modeling collaborations, or modeling schemas. Class diagrams
are also the foundation for a couple of related diagrams: component diagrams and deployment
diagrams.

Class diagrams are important not only for visualizing, specifying, and documenting structural models,
but also for constructing executable systems through forward and reverse engineering.



Getting Started

When you build a house, you start with a vocabulary that includes basic building blocks, such as walls,
floors, windows, doors, ceilings, and joists. These things are largely structural (walls have height,
width, and thickness), but they re also somewhat behavioral (different kinds of walls can support
different loads, doors open and close, there are constraints on the span of a unsupported floor). In
fact, you can't consider these structural and behavioral features independently. Rather, when you
build your house, you must consider how they interact. The process of architecting your house thus
involves assembling these things in a unique and pleasing manner intended to satisfy all your
functional and nonfunctional requirements. The blueprints you create to visualize your house and to
specify its details to your contractors for construction are, in effect, graphical presentations of these
things and their relationships.

Building software has much the same characteristics except that, given the fluidity of software, you
have the ability to define your own basic building blocks from scratch. With the UML, you use class
diagrams to visualize the static aspects of these building blocks and their relationships and to specify
their details for construction, as you can see in Figure 8-1.

Figure 8-1. A Class Diagram





Terms and Concepts

A class diagram is a diagram that shows a set of classes, interfaces, and collaborations and their
relationships. Graphically, a class diagram is a collection of vertices and arcs.

Common Properties

A class diagram is just a special kind of diagram and shares the same common properties as do all
other diagramsa name and graphical content that are a projection into a model. What distinguishes a
class diagram from other kinds of diagrams is its particular content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Class diagrams commonly contain the following things:

Classes

Interfaces

Dependency, generalization, and association relationships

Classes are discussed in Chapters 4 and 9; interfaces are discussed in Chapter
11; relationships are discussed in Chapters 5 and 10; packages are discussed in
Chapter 12; subsystems are discussed in Chapter 32; instances are discussed in
Chapter 13.

Like all other diagrams, class diagrams may contain notes and constraints.

Class diagrams may also contain packages or subsystems, both of which are used to group elements
of your model into larger chunks. Sometimes you'll want to place instances in your class diagrams as
well, especially when you want to visualize the (possibly dynamic) type of an instance.

Note

Component diagrams and deployment diagrams are similar to class diagrams, except that
instead of containing classes they contain components and nodes, respectively.



Common Uses

You use class diagrams to model the static design view of a system. This view primarily supports the
functional requirements of a systemthe services the system should provide to its end users.

Design views are discussed in Chapter 2.

When you model the static design view of a system, you'll typically use class diagrams in one of three
ways.

To model the vocabulary of a system1.

Modeling the vocabulary of a system is discussed in Chapter 4.

Modeling the vocabulary of a system involves making a decision about which abstractions are a part of
the system under consideration and which fall outside its boundaries. You use class diagrams to
specify these abstractions and their responsibilities.

To model simple collaborations2.

Collaborations are discussed in Chapter 28.

A collaboration is a society of classes, interfaces, and other elements that work together to provide
some cooperative behavior that's bigger than the sum of all the elements. For example, when you re
modeling the semantics of a transaction in a distributed system, you can't just stare at a single class
to understand what's going on. Rather, these semantics are carried out by a set of classes that work
together. You use class diagrams to visualize and specify this set of classes and their relationships.

To model a logical database schema3.

Persistence is discussed in Chapter 24; modeling physical databases is
discussed in Chapter 30.



Think of a schema as the blueprint for the conceptual design of a database. In many domains, you'll
want to store persistent information in a relational database or in an object-oriented database. You
can model schemas for these databases using class diagrams.



Common Modeling Techniques

Modeling Simple Collaborations

No class stands alone. Rather, each works in collaboration with others to carry out some semantics
greater than each individual. Therefore, in addition to capturing the vocabulary of your system, you'll
also need to turn your attention to visualizing, specifying, constructing, and documenting the various
ways these things in your vocabulary work together. You use class diagrams to represent such
collaborations.

To model a collaboration,

Identify the mechanism you'd like to model. A mechanism represents some function or behavior
of the part of the system you are modeling that results from the interaction of a society of
classes, interfaces, and other things.

For each mechanism, identify the classes, interfaces, and other collaborations that participate in
this collaboration. Identify the relationships among these things as well.

Use scenarios to walk through these things. Along the way, you'll discover parts of your model
that were missing and parts that were just plain semantically wrong.

Be sure to populate these elements with their contents. For classes, start with getting a good
balance of responsibilities. Then, over time, turn these into concrete attributes and operations.

Mechanisms such as this are often coupled to use cases, as discussed in Chapter
17; scenarios are threads through a use case, as discussed in Chapter 16.

For example, Figure 8-2 shows a set of classes drawn from the implementation of an autonomous
robot. The figure focuses on the classes involved in the mechanism for moving the robot along a path.
You'll find one abstract class (Motor) with two concrete children, SteeringMotor and MainMotor. Both of
these classes inherit the five operations of their parent, Motor. The two classes are, in turn, shown as
parts of another class, Driver. The class PathAgent has a one-to-one association to Driver and a one-
to-many association to CollisionSensor. No attributes or operations are shown for PathAgent,
although its responsibilities are given.

Figure 8-2. Modeling Simple Collaborations



There are many more classes involved in this system, but this diagram focuses only on those
abstractions that are directly involved in moving the robot. You'll see some of these same classes in
other diagrams. For example, although not shown here, the class PathAgent collaborates with at least
two other classes (Environment and GoalAgent) in a higher-level mechanism for managing the
conflicting goals the robot might have at a given moment. Similarly, also not shown here, the classes
CollisionSensor and Driver (and its parts) collaborate with another class (FaultAgent) in a
mechanism responsible for continuously checking the robot's hardware for errors. By focusing on each
of these collaborations in different diagrams, you provide an understandable view of the system from
several angles.

Modeling a Logical Database Schema

Many of the systems you'll model will have persistent objects, which means that they can be stored in
a database for later retrieval. Most often, you'll use a relational database, an object-oriented
database, or a hybrid object/relational database for persistent storage. The UML is well-suited to
modeling logical database schemas, as well as physical databases themselves.

Modeling the distribution and of objects is discussed in Chapter 24; modeling
physical databases is discussed in Chapter 30.

The UML's class diagrams are a superset of entity-relationship (E-R) diagrams, a common modeling
tool for logical database design. Whereas classical E-R diagrams focus only on data, class diagrams go
a step further by permitting the modeling of behavior as well. In the physical database, these logical
operations are generally turned into triggers or stored procedures.

To model a schema,



Identify those classes in your model whose state must transcend the lifetime of their
applications.

Create a class diagram that contains these classes. You can define your own set of stereotypes
and tagged values to address database-specific details.

Stereotypes are discussed in Chapter 6.

Expand the structural details of these classes. In general, this means specifying the details of
their attributes and focusing on the associations and their multiplicities that relate these classes.

Watch for common patterns that complicate physical database design, such as cyclic associations
and one-to-one associations. Where necessary, create intermediate abstractions to simplify your
logical structure.

Consider also the behavior of these classes by expanding operations that are important for data
access and data integrity. In general, to provide a better separation of concerns, business rules
concerned with the manipulation of sets of these objects should be encapsulated in a layer above
these persistent classes.

Where possible, use tools to help you transform your logical design into a physical design.

Note

Logical database design is beyond the scope of this book. The focus here is simply to show
how you can model schemas using the UML. In practice, you'll end up using stereotypes
tuned to the kind of database (relational or object-oriented) you are using.

Figure 8-3 shows a set of classes drawn from an information system for a school. This figure expands
upon an earlier class diagram, and you'll see the details of these classes revealed to a level sufficient
to construct a physical database. Starting at the bottom-left of this diagram, you will find the classes
named Student, Course, and Instructor. There's an association between Student and Course,
specifying that students attend courses. Furthermore, every student may attend any number of
courses, and every course may have any number of students.

Figure 8-3. Modeling a Schema



This diagram exposes the attributes of all six of these classes. Notice that the types of all the
attributes are primitive types. When you are modeling a schema, you'll generally want to model the
relationship to any nonprimitive types using an explicit association rather than an attribute.

Modeling primitive types is discussed in Chapter 4; aggregation is discussed in
Chapters 5 and 10.

Two of these classes (School and Department) expose several operations for manipulating their parts.
These operations are included because they are important to maintain data integrity (adding or
removing a Department, for example, will have some rippling effects). There are many other
operations that you might consider for these and the other classes, such as querying the prerequisites
of a course before assigning a student. These function more as business rules than as operations for
database integrity, so they are best placed at a higher level of abstraction than this schema.

Forward and Reverse Engineering

Modeling is important, but you have to remember that the primary product of a development team is
software, not diagrams. Of course, the reason for creating models is to be able to deliver software that
satisfies the evolving goals of its users and the business at the right time. For this reason, it's
important that the models you create and the implementations you deploy map to one another and do
so in a way that minimizes or even eliminates the cost of keeping your models and your
implementation in sync with one another.



The importance of modeling is discussed in Chapter 1.

For some uses of the UML, the models you create will never map to code. For example, if you are
modeling a business process using activity diagrams, many of the activities you model will involve
people, not computers. In other cases, you'll want to model systems whose parts are, from your level
of abstraction, just a piece of hardware (although at another level of abstraction, it's a good bet that
this hardware contains an embedded computer and software).

Activity diagrams are discussed in Chapter 20.

In most cases though, the models you create will map to code. The UML does not specify a particular
mapping to any object-oriented programming language, but the UML was designed with such
mappings in mind. This is especially true for class diagrams, whose contents have a clear mapping to
all the industrial-strength object-oriented languages, such as Java, C++, Smalltalk, Eiffel, Ada,
ObjectPascal, and Forte. The UML was also designed to map to a variety of commercial object-based
languages, such as Visual Basic.

Note

The mapping of the UML to specific implementation languages for forward and reverse
engineering is beyond the scope of this book. In practice, you'll end up using stereotypes
and tagged values tuned to the programming language you are using.

Stereotypes and tagged values are discussed in Chapter 6.

Forward engineering is the process of transforming a model into code through a mapping to an
implementation language. Forward engineering results in a loss of information, because models
written in the UML are semantically richer than any current object-oriented programming language. In
fact, this is a major reason why you need models in addition to code. Structural features, such as
collaborations, and behavioral features, such as interactions, can be visualized clearly in the UML, but
not so clearly from raw code.

To forward engineer a class diagram,

Identify the rules for mapping to your implementation language or languages of choice. This is
something you'll want to do for your project or your organization as a whole.

Depending on the semantics of the languages you choose, you may want to constrain your use of
certain UML features. For example, the UML permits you to model multiple inheritance, but
Smalltalk permits only single inheritance. You can choose to prohibit developers from modeling
with multiple inheritance (which makes your models language-dependent), or you can develop



idioms that transform these richer features into the implementation language (which makes the
mapping more complex).

Use tagged values to guide implementation choices in your target language. You can do this at
the level of individual classes if you need precise control. You can also do so at a higher level,
such as with collaborations or packages.

Use tools to generate code.

Figure 8-4 illustrates a simple class diagram specifying an instantiation of the chain of responsibility
pattern. This particular instantiation involves three classes: Client, EventHandler, and
GUIEventHandler. The classes Client and EventHandler are abstract, whereas GUIEventHandler is
concrete. EventHandler has the usual operation expected of this pattern (handleRequest), although
two private attributes have been added for this instantiation.

Figure 8-4. Forward Engineering

Patterns are discussed in Chapter 29.

All of these classes specify a mapping to Java, as noted in their stereotype. Forward engineering the
classes in this diagram to Java is straightforward, using a tool. Forward engineering the class
EventHandler yields the following code.

public abstract class EventHandler {

  EventHandler successor;
  private Integer currentEventID;
  private String source;

  EventHandler() {}
  public void handleRequest() {}

}



Reverse engineering is the process of transforming code into a model through a mapping from a
specific implementation language. Reverse engineering results in a flood of information, some of which
is at a lower level of detail than you'll need to build useful models. At the same time, reverse
engineering is incomplete. There is a loss of information when forward engineering models into code,
and so you can't completely recreate a model from code unless your tools encode information in the
source comments that goes beyond the semantics of the implementation language.

To reverse engineer a class diagram,

Identify the rules for mapping from your implementation language or languages of choice. This is
something you'll want to do for your project or your organization as a whole.

Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a new
model or modify an existing one that was previously forward engineered. It is unreasonable to
expect to reverse engineer a single concise model from a large body of code. You need to select
portion of the code and build the model from the bottom.

Using your tool, create a class diagram by querying the model. For example, you might start with
one or more classes, then expand the diagram by following specific relationships or other
neighboring classes. Expose or hide details of the contents of this class diagram as necessary to
communicate your intent.

Manually add design information to the model to express the intent of the design that is missing
or hidden in the code.



Hints and Tips

When you create class diagrams in the UML, remember that every class diagram is just a graphical
presentation of the static design view of a system. No single class diagram need capture everything
about a system's design view. Collectively, all the class diagrams of a system represent the system's
complete static design view; individually, each represents just one aspect.

A well-structured class diagram

Is focused on communicating one aspect of a system's static design view.

Contains only elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction, with only those adornments that are
essential to understanding.

Is not so minimalist that it misinforms the reader about important semantics.

When you draw a class diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out physically
close.

Use notes and color as visual cues to draw attention to important features of your diagram.

Try not to show too many kinds of relationships. In general, one kind of relationship will tend to
dominate each class diagram.



Part 3: Advanced Structural Modeling



Chapter 9. Advanced Classes
In this chapter

Classifiers, special properties of attributes and operations, and different kinds of classes

Modeling the semantics of a class

Choosing the right kind of classifier

Classes are indeed the most important building block of any object-oriented system. However, classes
are just one kind of an even more general building block in the UMLclassifiers. A classifier is a
mechanism that describes structural and behavioral features. Classifiers include classes, interfaces,
datatypes, signals, components, nodes, use cases, and subsystems.

Classifiers (and especially classes) have a number of advanced features beyond the simpler properties
of attributes and operations described in the previous part: You can model multiplicity, visibility,
signatures, polymorphism, and other characteristics. In the UML, you can model the semantics of a
class so that you can state its meaning to whatever degree of formality you like.

The basic properties of classes are discussed in Chapter 4.

In the UML, there are several kinds of classifiers and classes; it's important that you choose the one
that best models your abstraction of the real world.



Getting Started

When you build a house, at some point in the project you'll make an architectural decision about your
building materials. Early on, it's sufficient to simply state wood, stone, or steel. That's a level of detail
sufficient for you to move forward. The material you choose will be affected by the requirements of
your projectsteel and concrete would be a good choice if you are building in an area susceptible to
hurricanes, for example. As you move forward, the material you choose will affect your design
decisions that followchoosing wood versus steel will affect the mass that can be supported, for
example.

Architecture is discussed in Chapter 2.

As your project continues, you'll have to refine these basic design decisions and add more detail
sufficient for a structural engineer to validate the safety of the design and for a builder to proceed with
construction. For example, you might have to specify not just wood, but wood of a certain grade that's
been treated for resistance to insects.

It's the same when you build software. Early in a project, it's sufficient to say that you'll include a
Customer class that carries out certain responsibilities. As you refine your architecture and move to
construction, you'll have to decide on a structure for the class (its attributes) and a behavior (its
operations) that are sufficient and necessary to carry out those responsibilities. Finally, as you evolve
to the executable system, you'll need to model details, such as the visibility of individual attributes and
operations, the concurrency semantics of the class as a whole and its individual operations, and the
interfaces the class realizes.

Responsibilities are discussed in Chapter 6.

The UML provides a representation for a number of advanced properties, as Figure 9-1 shows. This
notation permits you to visualize, specify, construct, and document a class to any level of detail you
wish, even sufficient to support forward and reverse engineering of models and code.

Figure 9-1. Advanced Classes



Forward and reverse engineering is discussed in Chapters 8, 14, 18, 19, 20, 25,
30, and 31.



Terms and Concepts

A classifier is a mechanism that describes structural and behavioral features. Classifiers include
classes, associations, interfaces, datatypes, signals, components, nodes, use cases, and subsystems.

Classifiers

When you model, you'll discover abstractions that represent things in the real world and things in your
solution. For example, if you are building a Web-based ordering system, the vocabulary of your
project will likely include a Customer class (representing people who order products) and a TRansaction
class (an implementation artifact, representing an atomic action). In the deployed system, you might
have a Pricing component, with instances living on every client node. Each of these abstractions will
have instances; separating the essence and the instance of the things in your world is an important
part of modeling.

Modeling the vocabulary of a system is discussed in Chapter 4; the class/object
dichotomy is discussed in Chapter 2.

Some things in the UML don't have instancesfor example, packages and generalization relationships.
In general, those modeling elements that can have instances are called classifiers. Even more
important, a classifier has structural features (in the form of attributes) as well as behavioral features
(in the form of operations). Every instance of a given classifier shares the same feature definitions, but
each instance has its own value for each attribute.

Instances are discussed in Chapter 13; packages are discussed in Chapter 12;
generalization is discussed in Chapters 5 and 10; associations are discussed in
Chapters 5 and 10; messages are discussed in Chapter 16; interfaces are
discussed in Chapter 11; datatypes are discussed in Chapters 4 and 11; signals
are discussed in Chapter 21; components are discussed in Chapter 15; nodes
are discussed in Chapter 27; use cases are discussed in Chapter 17; subsystems
are discussed in Chapter 32.

The most important kind of classifier in the UML is the class. A class is a description of a set of objects
that share the same attributes, operations, relationships, and semantics. Classes are not the only kind
of classifier, however. The UML provides a number of other kinds of classifiers to help you model.



 Interface A collection of operations that are used to specify a service of a class or a
component

 Datatype A type whose values are immutable, including primitive built-in types (such as
numbers and strings) as well as enumeration types (such as Boolean)

 Association A description of a set of links, each of which relates two or more objects.

 Signal The specification of an asynchronous message communicated between instances

 Component A modular part of a system that hides its implementation behind a set of external
interfaces

 Node A physical element that exists at run time and that represents a computational
resource, generally having at least some memory and often processing capability

 Use case A description of a set of a sequence of actions, including variants, that a system
performs that yields an observable result of value to a particular actor

 Subsystem A component that represents a major part of a system

For the most part, every kind of classifier may have both structural and behavioral features.
Furthermore, when you model with any of these classifiers, you may use all the advanced features
described in this chapter to provide the level of detail you need to capture the meaning of the
abstraction.

Graphically, the UML distinguishes among these different classifiers, as Figure 9-2 shows.

Figure 9-2. Classifiers

Note

A minimalist approach would have used one icon for all classifiers; however, a distinctive
visual cue was deemed important. Similarly, a maximal approach would have used different



icons for each kind of classifier. That doesn't make sense either because, for example,
classes and datatypes aren't that different. The design of the UML strikes a balancesome
classifiers have their own icon, and others use special keywords (such as type, signal, and
subsystem).

Visibility

One of the design details you can specify for an attribute or operation is visibility. The visibility of a
feature specifies whether it can be used by other classifiers. In the UML, you can specify any of four
levels of visibility.

1. public Any outside classifier with visibility to the given classifier can use the feature;
specified by prepending the symbol +.

2. protected Any descendant of the classifier can use the feature; specified by prepending
the symbol #.

3. private Only the classifier itself can use the feature; specified by prepending the
symbol -.

3. package Only classifiers declared in the same package can use the feature; specified by
prepending the symbol ~.

A classifier can see another classifier if it is in scope and if there is an explicit or
implicit relationship to the target; relationships are discussed in Chapters 5 and
10; descendants come from generalization relationships, as discussed in
Chapter 5; permission allows a classifier to share its private features, as
discussed in Chapter 10.

Figure 9-3 shows a mix of public, protected, and private figures for the class Toolbar.

Figure 9-3. Visibility



When you specify the visibility of a classifier's features, you generally want to hide all its
implementation details and expose only those features that are necessary to carry out the
responsibilities of the abstraction. That's the very basis of information hiding, which is essential to
building solid, resilient systems. If you don't explicitly adorn a feature with a visibility symbol, you can
usually assume that it is public.

Note

The UML's visibility property matches the semantics common among most programming
languages, including C++, Java, Ada, and Eiffel. Note that languages differ slightly in their
semantics of visibility, however.

Instance and Static Scope

Another important detail you can specify for a classifier's attributes and operations is scope. The scope
of a feature specifies whether each instance of the classifier has its own distinct value of the feature or
whether there is just a single value of the feature shared by all instances of the classifier. In the UML,
you can specify two kinds of owner scope.

Instances are discussed in Chapter 13.

1. instance Each instance of the classifier holds its own value for the feature. This is the default
and requires no additional notation.

2. static There is just one value of the feature for all instances of the classifier. This has also
been called class scope. This is notated by underlining the feature string.

As Figure 9-4 (a simplification of the first figure) shows, a feature that is static scoped is rendered by
underlining the feature's name. No adornment means that the feature is instance scoped.

Figure 9-4. Owner Scope

In general, most features of the classifiers you model will be instance scoped. The most common use
of static scoped features is for private attributes that must be shared among all instances of a class,
such as for generating unique IDs for new instances of a class.



Note

Static scope maps to what C++ and Java call static attributes and operations.

Static scope works somewhat differently for operations. An instance operation has an implicit
parameter corresponding to the object being manipulated. A static operation has no such parameter;
it behaves like a traditional global procedure that has no target object. Static operations are used for
operations that create instances or operations that manipulate static attributes.

Abstract, Leaf, and Polymorphic Elements

You use generalization relationships to model a lattice of classes, with more-generalized abstractions
at the top of the hierarchy and more-specific ones at the bottom. Within these hierarchies, it's
common to specify that certain classes are abstractmeaning that they may not have any direct
instances. In the UML, you specify that a class is abstract by writing its name in italics. For example,
as Figure 9-5 shows, Icon, RectangularIcon, and ArbitraryIcon are all abstract classes. By contrast,
a concrete class (such as Button and OKButton) may have direct instances.

Figure 9-5. Abstract and Concrete Classes and Operations



Generalization is discussed in Chapters 5 and 10; instances are discussed in
Chapter 13.

Whenever you use a class, you'll probably want to inherit features from other, more-general classes,
and have other, more-specific classes inherit features from it. These are the normal semantics you get
from classes in the UML. However, you can also specify that a class may have no children. Such an
element is called a leaf class and is specified in the UML by writing the property leaf below the class's
name. For example, in the figure, OKButton is a leaf class, so it may have no children.

Operations have similar properties. Typically, an operation is polymorphic, which means that, in a
hierarchy of classes, you can specify operations with the same signature at different points in the
hierarchy. An operation in a child class overrides the behavior of a similar operation in the parent
class. When a message is dispatched at run time, the operation in the hierarchy that is invoked is
chosen polymorphically-that is, a match is determined at run time according to the type of the object.
For example, display and isInside are both polymorphic operations. Furthermore, the operation
Icon::display() is abstract, meaning that it is incomplete and requires a child to supply an

implementation of the operation. In the UML, you specify an abstract operation by writing its name in
italics, just as you do for a class. By contrast, Icon::getID() is a leaf operation, so designated by the
property leaf. This means that the operation is not polymorphic and may not be overridden. (This is
similar to a Java final operation.)

Messages are discussed in Chapter 16.

Note

Abstract operations map to what C++ calls pure virtual operations; leaf operations in the
UML map to C++ nonvirtual operations.

Multiplicity

Whenever you use a class, it's reasonable to assume that there may be any number of instances of
that class (unless, of course, it is an abstract class and may not have any direct instances, although
there may be any number of instances of its concrete children). Sometimes, though, you'll want to
restrict the number of instances a class may have. Most often, you'll want to specify zero instances (in
which case, the class is a utility class that exposes only static-scoped attributes and operations), one
instance (a singleton class), a specific number of instances, or many instances (the default case).

Instances are discussed in Chapter 13.

The number of instances a class may have is called its multiplicity. Multiplicity is a specification of the



range of allowable cardinalities an entity may assume. In the UML, you can specify the multiplicity of a
class by writing a multiplicity expression in the upper-right corner of the class icon. For example, in
Figure 9-6, NetworkController is a singleton class. Similarly, there are exactly three instances of the
class ControlRod in the system. Multiplicity applies to attributes, as well. You can specify the
multiplicity of an attribute by writing a suitable expression in brackets just after the attribute name.
For example, in the figure, there are two or more consolePort instances in the instance of
NetworkController.

Figure 9-6. Multiplicity

Multiplicity applies to associations as well, as discussed in Chapters 5 and 10.

Attributes are related to the semantics of association, as discussed in Chapter
10.

Note

The multiplicity of a class applies within a given context. There is an implied context for the
entire system at the top level. The entire system can be regarded as a structured classifier.

Structured classifiers are discussed in Chapter 15.

Attributes

At the most abstract level, when you model a class's structural features (that is, its attributes), you
simply write each attribute's name. That's usually enough information for the average reader to
understand the intent of your model. As the previous parts have described, however, you can also
specify the visibility, scope, and multiplicity of each attribute. There's still more. You can also specify
the type, initial value, and changeability of each attribute.



In its full form, the syntax of an attribute in the UML is

You can also use stereotypes to designate sets of related attributes, such as
housekeeping attributes, as discussed in Chapter 6.

[visibility] name
[':' type] ['[' multiplicity] ']']
['=' initial-value]
[property-string {',' property-string}]

For example, the following are all legal attribute declarations:

 origin Name only

 + origin Visibility and name

 origin : Point Name and type

 name : String[0..1] Name, type, and multiplicity

 origin : Point =
(0,0)

Name, type, and initial value

 id: Integer
{readonly}

Name and property

Unless otherwise specified, attributes are always changeable. You can use the readonly property to
indicate that the attribute's value may not be changed after the object is initialized.

You'll mainly want to use readonly when modeling constants or attributes that are initialized at the
creation of an instance and not changed thereafter.

Note

The readonly property maps to const in C++.

Operations

At the most abstract level, when you model a class's behavioral features (that is, its operations and its
signals), you will simply write each operation's name. That's usually enough information for the
average reader to understand the intent of your model. As the previous parts have described,
however, you can also specify the visibility and scope of each operation. There's still more: You can
also specify the parameters, return type, concurrency semantics, and other properties of each
operation. Collectively, the name of an operation plus its parameters (including its return type, if any)
is called the operation's signature.



Signals are discussed in Chapter 21.

Note

The UML distinguishes between operation and method. An operation specifies a service that
can be requested from any object of the class to affect behavior; a method is an
implementation of an operation. Every nonabstract operation of a class must have a method,
which supplies an executable algorithm as a body (generally designated in some
programming language or structured text). In an inheritance lattice, there may be many
methods for the same operation, and polymorphism selects which method in the hierarchy is
dispatched during run time.

In its full form, the syntax of an operation in the UML is

You can also use stereotypes to designate sets of related operations, such as
helper functions, as discussed in Chapter 6.

[visibility] name ['(' parameter-list ')']
[':' return-type]
[property-string {',' property-string}]

For example, the following are all legal operation declarations:

 display Name only

 + display Visibility and name

 set(n : Name, s :
String)

Name and parameters

 getID() : Integer Name and return type

 restart() {guarded} Name and property

In an operation's signature, you may provide zero or more parameters, each of which follows the
syntax

[direction] name : type [= default-value]



Direction may be any of the following values:

 in An input parameter; may not be modified

 out An output parameter; may be modified to communicate information to the
caller

 inout An input parameter; may be modified to communicate information to the
caller

Note

An out or inout parameter is equivalent to a return parameter and an in parameter. Out and
inout are provided for compatibility with older programming languages. Use explicit return
parameters instead.

In addition to the leaf and abstract properties described earlier, there are defined properties that you
can use with operations.

1. query Execution of the operation leaves the state of the system unchanged. In other
words, the operation is a pure function that has no side effects.

2. sequential Callers must coordinate outside the object so that only one flow is in the
object at a time. In the presence of multiple flows of control, the semantics
and integrity of the object cannot be guaranteed.

3. guarded The semantics and integrity of the object is guaranteed in the presence of
multiple flows of control by sequentializing all calls to all of the object's
guarded operations. In effect, exactly one operation at a time can be invoked
on the object, reducing this to sequential semantics.

4. concurrent The semantics and integrity of the object is guaranteed in the presence of
multiple flows of control by treating the operation as atomic. Multiple calls
from concurrent flows of control may occur simultaneously to one object on
any concurrent operation, and all may proceed concurrently with correct
semantics; concurrent operations must be designed so that they perform
correctly in case of a concurrent sequential or guarded operation on the same
object.

5. static The operation does not have an implicit parameter for the target object; it
behaves like a traditional global procedure.

The concurrency properties (sequential, guarded, concurrent) address the concurrency semantics of
an operation, properties that are relevant only in the presence of active objects, processes, or
threads.

Active objects, processes, and threads are discussed in Chapter 23.

Template Classes



A template is a parameterized element. In such languages as C++ and Ada, you can write template
classes, each of which defines a family of classes. (You can also write template functions, each of
which defines a family of functions.) A template may include slots for classes, objects, and values, and
these slots serve as the template's parameters. You can't use a template directly; you have to
instantiate it first. Instantiation involves binding these formal template parameters to actual ones. For
a template class, the result is a concrete class that can be used just like any ordinary class.

The basic properties of classes are discussed in Chapter 4.

The most common use of template classes is to specify containers that can be instantiated for specific
elements, making them type-safe. For example, the following C++ code fragment declares a
parameterized Map class.

template<class Item, class VType, int Buckets>
class Map {
public:
 virtual map(const Item&, const VType&);
 virtual Boolean isMappen(const Item&) const;
 ...
};

You might then instantiate this template to map Customer objects to Order objects.

m : Map<Customer, Order, 3>;

You can model template classes in the UML as well. As Figure 9-7 shows, you render a template class
just as you do an ordinary class, but with an additional dashed box in the upper-right corner of the
class icon, which lists the template parameters.

Figure 9-7. Template Classes



Dependencies are discussed in Chapters 5 and 10; stereotypes are discussed in
Chapter 6.

As the figure goes on to show, you can model the instantiation of a template class in two ways. First,
you can do so implicitly, by declaring a class whose name provides the binding. Second, you can do so
explicitly, by using a dependency stereotyped as bind, which specifies that the source instantiates the
target template using the actual parameters.

Standard Elements

All of the UML's extensibility mechanisms apply to classes. Most often, you'll use tagged values to
extend class properties (such as specifying the version of a class) and stereotypes to specify new
kinds of components (such as model- specific components).

The UML's extensibility mechanisms are discussed in Chapter 6.

The UML defines four standard stereotypes that apply to classes.

1. metaclass Specifies a classifier whose objects are all classes

2. powertype Specifies a classifier whose objects are classes that are the children of a given
parent class

3. stereotype Specifies that the classifier is a stereotype that may be applied to other elements

4. utility Specifies a class whose attributes and operations are all static scoped



Note

A number of other standard stereotypes or keywords that apply to classes are discussed
elsewhere.



Common Modeling Techniques

Modeling the Semantics of a Class

The most common purpose for which you'll use classes is to model abstractions that are drawn from
the problem you are trying to solve or from the technology you are using to implement a solution to
that problem. Once you've identified those abstractions, the next thing you'll need to do is specify
their semantics.

The common uses of classes are discussed in Chapter 4.

In the UML, you have a wide spectrum of modeling possibilities at your disposal, ranging from the very
informal (responsibilities) to the very formal (OCLObject Constraint Language). Given these choices,
you must decide the level of detail that is appropriate to communicate the intent of your model. If the
purpose of your model is to communicate with end users and domain experts, you'll tend to lean
toward the less formal. If the purpose of your model is to support round-trip engineering, which flows
between models and code, you'll tend to lean toward the more formal. If the purpose of your model is
to rigorously and mathematically reason about your models and prove their correctness, you'll lean
toward the very formal.

Modeling is discussed in Chapter 1; you can also model the semantics of an
operation using an activity diagram, as discussed in Chapter 20.

Note

Less formal does not mean less accurate. It means less complete and less detailed.
Pragmatically, you'll want to strike a balance between informal and very formal. This means
providing enough detail to support the creation of executable artifacts, but still hiding those
details so that you do not overwhelm the reader of your models.

To model the semantics of a class, choose among the following possibilities, arranged from informal to
formal.

Specify the responsibilities of the class. A responsibility is a contract or obligation of a type or
class and is rendered in a note attached to the class, or in an extra compartment in the class
icon.



Responsibilities are discussed in Chapter 4.

Specify the semantics of the class as a whole using structured text, rendered in a note
(stereotyped as semantics) attached to the class.

Specifying the body of a method is discussed in Chapter 3.

Specify the body of each method using structured text or a programming language, rendered in
a note attached to the operation by a dependency relationship.

Specify the pre- and postconditions of each operation, plus the invariants of the class as a whole,
using structured text. These elements are rendered in notes (stereotyped as precondition,
postcondition, and invariant) attached to the operation or class by a dependency relationship.

Specifying the semantics of an operation is discussed in Chapter 20. State
machines are discussed in Chapter 22; collaborations are discussed in
Chapter 28; internal structures are discussed in Chapter 15. OCL is
discussed in The Unified Modeling Language Reference Manual.

Specify a state machine for the class. A state machine is a behavior that specifies the sequences
of states an object goes through during its lifetime in response to events, together with its
responses to those events.

Specify internal structure of the class.

Specify a collaboration that represents the class. A collaboration is a society of roles and other
elements that work together to provide some cooperative behavior that's bigger than the sum of
all the elements. A collaboration has a structural part as well as a dynamic part, so you can use
collaborations to specify all dimensions of a class's semantics.

Specify the pre- and postconditions of each operation, plus the invariants of the class as a whole,
using a formal language such as OCL.

Pragmatically, you'll end up doing some combination of these approaches for the different abstractions
in your system.

Note

When you specify the semantics of a class, keep in mind whether your intent is to specify
what the class does or how it does it. Specifying the semantics of what a class does
represents its public, outside view; specifying the semantics of how a class does it
represents its private, inside view. You'll want to use a mixture of these two views,
emphasizing the outside view for clients of the class and emphasizing the inside view for
those who implement the class.





Hints and Tips

When you model classifiers in the UML, remember that there is a wide range of building blocks at your
disposal, from interfaces to classes to components, and so on. You must choose the one that best fits
your abstraction. A well-structured classifier

Has both structural and behavioral aspects.

Is tightly cohesive and loosely coupled.

Exposes only those features necessary for clients to use the class and hides all others.

Is unambiguous in its intent and semantics.

Is not so overly specified that it eliminates all degrees of freedom for its implementers.

Is not so underspecified that it renders the meaning of the classifier as ambiguous.

When you draw a classifier in the UML,

Show only those properties of the classifier that are important to understand the abstraction in
its context.

Chose a stereotyped version that provides the best visual cue to the intent of the classifier.



Chapter 10. Advanced Relationships
In this chapter

Advanced dependency, generalization, association, realization, and refinement relationships

Modeling webs of relationships

Creating webs of relationships

When you model the things that form the vocabulary of your system, you must also model how those
things stand in relationship to one another. Relationships can be complex, however. Visualizing,
specifying, constructing, and documenting webs of relationships require a number of advanced
features.

The basic properties of relationships are discussed in Chapter 5; interfaces are
discussed in Chapter 11; components are discussed in Chapter 15; use cases are
discussed in Chapter 17; collaborations are discussed in Chapter 28.

Dependencies, generalizations, and associations are the three most important relational building
blocks of the UML. These relationships have a number of properties beyond those described in the
previous part. You can also model multiple inheritance, navigation, composition, refinement, and other
characteristics. Using a fourth kind of relationshiprealizationyou can model the connection between an
interface and a class or component, or between a use case and a collaboration. In the UML, you can
model the semantics of relationships to any degree of formality.

Managing complex webs of relationships requires that you use the right relationships at the level of
detail so that you neither under- nor over-engineer your system.



Getting Started

If you are building a house, deciding where to place each room in relation to others is a critical task. At
one level of abstraction, you might decide to put the master bedroom on the main level, away from
the front of the house. You might next think through common scenarios to help you reason about the
use of this room arrangement. For example, consider bringing in groceries from the garage. It
wouldn't make sense to walk from the garage through your bedroom to get to the kitchen, so that's
an arrangement you'd reject.

Use cases and scenarios are discussed in Chapter 17.

You can form a fairly complete picture of your house's floor plan just by thinking through these basic
relationships and use cases. However, that's not enough. You can end up with some real flaws in your
design if you don't consider more-complex relationships.

For example, you might like the arrangement of rooms on each floor, but rooms on different floors
might interact in unforeseen ways. Suppose you place your teenager daughter's room right above
your bedroom. Now, suppose your teenager decides to learn how to play the drums. You'd clearly
want to reject that floor plan, too.

Similarly, you have to consider how underlying mechanisms in the house might interact with your floor
plan. For example, you'll increase the cost of construction if you don't arrange your rooms so that you
have common walls in which to run pipes and drains.

It's the same when you build software. Dependencies, generalizations, and associations are the most
common relationships you'll encounter when modeling software-intensive systems. However, you need
a number of advanced features of these relationships in order to capture the details of many
systemsdetails that are important for you to consider so that you avoid real flaws in your design.

Forward and reverse engineering are discussed in Chapters 8, 14, 18, 19, 20,
25, 30, and 31.

The UML provides a representation for a number of advanced properties, as Figure 10-1 shows. This
notation permits you to visualize, specify, construct, and document webs of relationships to any level
of detail you wish, even sufficient to support forward and reverse engineering of models and code.

Figure 10-1. Advanced Relationships





Terms and Concepts

A relationship is a connection among things. In object-oriented modeling, the four most important
relationships are dependencies, generalizations, associations, and realizations. Graphically, a
relationship is rendered as a path, with different kinds of lines used to distinguish the different
relationships.

Dependencies

A dependency is a using relationship, specifying that a change in the specification of one thing (for
example, class SetTopController) may affect another thing that uses it (for example, class
ChannelIterator), but not the reverse. Graphically, a dependency is rendered as a dashed line,
directed to the thing that is depended on. Apply dependencies when you want to show one thing using
another.

The basic properties of dependencies are discussed in Chapter 5.

A plain, unadorned dependency relationship is sufficient for most of the using relationships you'll
encounter. However, if you want to specify a shade of meaning, the UML defines a number of
stereotypes that may be applied to dependency relationships. There are a number of stereotypes,
which can be organized into several groups.

The UML's extensibility mechanisms are discussed in Chapter 6.

First, there are stereotypes that apply to dependency relationships among classes and objects in class
diagrams.

Class diagrams are discussed in Chapter 8.

1. bind Specifies that the source instantiates the target template using the
given actual parameters

You'll use bind when you want to model the details of template classes. For example, the relationship
between a template container class and an instantiation of that class would be modeled as a bind
dependency. Bind includes a list of actual arguments that map to the formal arguments of the
template.



Templates and bind dependencies are discussed in Chapter 9.

2. derive Specifies that the source may be
computed from the target

You'll use derive when you want to model the relationship between two attributes or two associations,
one of which is concrete and the other is conceptual. For example, a Person class might have the
attribute BirthDate (which is concrete) as well as the attribute Age (which can be derived from
BirthDate, so is not separately manifest in the class). You'd show the relationship between Age and
BirthDate by using a derive dependency, showing Age derived from BirthDate.

Attributes are discussed in Chapters 4 and 9; associations are discussed in
Chapter 5 and later in this chapter.

3. permit Specifies that the source is given
special visibility into the target

You'll use permit when you want to allow a class to access private features of another class, such as
found with C++ friend classes.

Permit dependencies are discussed in Chapter 5.

4. instanceOf Specifies that the source object is an instance of
the target classifier. Ordinarily shown using text
notation in the form source : Target

5. instantiate Specifies that the source creates instances of the
target

These last two stereotypes let you model class/object relationships explicitly. You can use instanceOf
when you want to model the relationship between a class and an object in the same diagram, or
between a class and its metaclass; usually, however, this is shown using text syntax. You'll use
instantiate when you want to specify that a class creates objects of another class.

The class/object dichotomy is discussed in Chapter 2.



6. powertype Specifies that the target is a powertype of the
source; a powertype is a classifier whose objects
are the children of a given parent

You'll use powertype when you want to model classes that classify other classes, such as you'll find
when modeling databases.

Modeling logical databases is discussed in Chapter 8; modeling physical
databases is discussed in Chapter 30.

7. refine Specifies that the source is at a finer
degree of abstraction than the target

You'll use refine when you want to model classes that represent the same concept at different levels
of abstraction. For example, during analysis you might encounter a Customer class which, during
design, you refine into a more detailed Customer class, complete with its implementation.

8. use Specifies that the semantics of the source
element depends on the semantics of the public
part of the target

You'll apply use when you want to explicitly mark a dependency as a using relationship, in contrast to
the shades of dependencies other stereotypes provide.

Continuing, there are two stereotypes that apply to dependency relationships among packages.

Packages are discussed in Chapter 12.

1. import Specifies that the public contents of the target
package enter the public namespace of the
source, as if they had been declared in the
source.

2. access Specifies that the public contents of the target
package enter the private namespace of the
source. The unqualified names may be used
within the source, but they may not be re-
exported.

You'll use import and access when you want to use elements declared in other packages. Importing
elements avoids the need to use a fully qualified name to reference an element from another package
within a text expression.

Two stereotypes apply to dependency relationships among use cases:



Use cases are discussed in Chapter 17.

1. extend Specifies that the target use case extends the
behavior of the source

2. include Specifies that the source use case explicitly
incorporates the behavior of another use case at
a location specified by the source

You'll use extend and include (and simple generalization) when you want to decompose use cases into
reusable parts.

One stereotype you'll encounter in the context of interactions among objects is

Interactions are discussed in Chapter 16.

 send Specifies that the source
class sends the target event

You'll use send when you want to model an operation (such as found in the action associated with a
state transition) dispatching a given event to a target object (which in turn might have an associated
state machine). The send dependency in effect lets you tie independent state machines together.

State machines are discussed in Chapter 22.

Finally, one stereotype that you'll encounter in the context of organizing the elements of your system
into subsystems and models is

Systems and models are discussed in Chapter 32.

 TRace Specifies that the target is a historical
predecessor of the source from an earlier stage of
development

You'll use trace when you want to model the relationships among elements in different models. For



example, in the context of a system's architecture, a use case in a use case model (representing a
functional requirement) might trace to a package in the corresponding design model (representing the
artifacts that realize that use case).

The five views of an architecture are discussed in Chapter 2.

Note

All relationships, including generalization, association, and realization, are conceptually kinds
of dependencies. Generalization, association, and realization have enough important
semantics about them that they are treated as distinct kinds of relationships in the UML. The
stereotypes listed above represent shades of dependencies, each of which has its own
semantics, but each of which is not so semantically distant from plain dependencies to
warrant treatment as distinct kinds of relationships. This is a judgment call on the part of the
UML, but experience shows that this approach strikes a balance between highlighting the
important kinds of relationships you'll encounter and not overwhelming the modeler with too
many choices. You won't go wrong if you model generalization, association, and realization
first, then view all other relationships as kinds of dependencies.

Generalizations

A generalization is a relationship between a general classifier (called the superclass or parent) and a
more specific classifier (called the subclass or child). For example, you might encounter the general
class Window with its more specific subclass, MultiPaneWindow. With a generalization relationship from
the child to the parent, the child (MultiPaneWindow) will inherit all the structure and behavior of the
parent (Window). The child may even add new structure and behavior, or it may override the behavior
of the parent. In a generalization relationship, instances of the child may be used anywhere instances
of the parent applymeaning that the child is substitutable for the parent.

The basic properties of generalizations are discussed in Chapter 5.

Most of the time, you'll find single inheritance sufficient. A class that has exactly one parent is said to
use single inheritance. There are times, however, when a class incorporates aspects of multiple
classes. Then multiple inheritance models those relationships better. For example, Figure 10-2 shows
a set of classes drawn from a financial services application. The class Asset has three children:
BankAccount, RealEstate, and Security. Two of these children (BankAccount and Security) have their
own children. For example, Stock and Bond are both children of Security.

Figure 10-2. Multiple Inheritance



Two of these children (BankAccount and RealEstate) inherit from multiple parents. RealEstate, for
example, is a kind of Asset as well as a kind of InsurableItem, and BankAccount is a kind of Asset as
well as a kind of InterestBearingItem and an InsurableItem.

Some superclasses are only used to add behavior (usually) and structure (occasionally) to classes that
inherit their main structure from ordinary superclasses. These additive classes are called mixins; they
do not stand alone but are always used as supplementary superclasses in a multiple inheritance
relationship. For example, InterestBearingItem and InsurableItem are mixins in Figure 10.2.

Note

Use multiple inheritance carefully. You'll run into problems if a child has multiple parents
whose structure or behavior overlap. In many cases, multiple inheritance can be replaced by
delegation, in which a child inherits from only one parent and then uses aggregation to
obtain the structure and behavior of more subordinate parents. For example, instead of
specializing Vehicle into LandVehicle, WaterVehicle, and AirVehicle on one dimension and
into GasPowered, WindPowered, and MusclePowered on another dimension, let Vehicle contain
a meansOfPropulsion as a part. The main downside with this approach is that you lose the
semantics of substitutability with these subordinate parents.

A plain, unadorned generalization relationship is sufficient for most of the inheritance relationships
you'll encounter. However, if you want to specify a shade of meaning, the UML defines four constraints
that may be applied to generalization relationships:

1. complete Specifies that all children in the generalization
have been specified in the model (although some
may be elided in the diagram) and that no
additional children are permitted

2. incomplete Specifies that not all children in the generalization
have been specified (even if some are elided) and
that additional children are permitted

The UML's extensibility mechanisms are discussed in Chapter 6.



Unless otherwise stated, you can assume that any diagram shows only a partial view of an inheritance
lattice, so it is elided. However, elision is different from the completeness of a model. Specifically,
you'll use the complete constraint when you want to show explicitly that you've fully specified a
hierarchy in the model (although no one diagram may show that hierarchy); you'll use incomplete to
show explicitly that you have not stated the full specification of the hierarchy in the model (although
one diagram may show everything in the model).

The general properties of diagrams are discussed in Chapter 7.

3. disjoint Specifies that objects of the parent may have no
more than one of the children as a type. For
example, class Person can be specialized into
disjoint classes Man and Woman.

4. overlapping Specifies that objects of the parent may have
more than one of the children as a type. For
example, class Vehicle can be specialized into
overlapping subclasses LandVehicle and
WaterVehicle (an amphibious vehicle is both).

These two constraints apply only in the context of multiple inheritance. You'll use disjoint to show
that the classes in a set are mutually incompatible; a subclass may not inherit from more than one.
You'll use overlapping to indicate that a class can multiply inherit from more than one class in the set.

Types and interfaces are discussed in Chapter 11; interactions are discussed in
Chapter 16.

Note

In most cases, an object has one type at run time; that's a case of static classification. If an
object can change its type during run time, that's a case of dynamic classification. Modeling
dynamic classification is complex. But in the UML, you can use a combination of multiple
inheritance (to show the potential types of an object) and types and interactions (to show
the changing type of an object during run time).

Associations

An association is a structural relationship, specifying that objects of one thing are connected to objects
of another. For example, a Library class might have a one-to-many association to a Book class,
indicating that each Book instance is owned by one Library instance. Furthermore, given a Book, you
can find its owning Library, and given a Library, you can navigate to all its Books. Graphically, an
association is rendered as a solid line connecting the same or different classes. You use associations



when you want to show structural relationships.

The basic properties of associations are discussed in Chapter 5.

There are four basic adornments that apply to an association: a name, the role at each end of the
association, the multiplicity at each end of the association, and aggregation. For advanced uses, there
are a number of other properties you can use to model subtle details, such as navigation, qualification,
and various flavors of aggregation.

Navigation

Given a plain, unadorned association between two classes, such as Book and Library, it's possible to
navigate from objects of one kind to objects of the other kind. Unless otherwise specified, navigation
across an association is bidirectional. However, there are some circumstances in which you'll want to
limit navigation to just one direction. For example, as Figure 10-3 shows, when modeling the services
of an operating system, you'll find an association between User and Password objects. Given a User,
you'll want to be able to find the corresponding Password objects; but given a Password, you don't
want to be able to identify the corresponding User. You can explicitly represent the direction of
navigation by adorning an association with an arrowhead pointing to the direction of traversal.

Figure 10-3. Navigation

Note

Specifying a direction of traversal does not necessarily mean that you can't ever get from
objects at one end of an association to objects at the other end. Rather, navigation is a
statement of knowledge of one class by another. For example, in the previous figure, it
might still be possible to find the User objects associated with a Password through other
associations that involve yet other classes not shown. Specifying that an association is
navigable is a statement that, given an object at one end, you can easily and directly get to
objects at the other end, usually because the source object stores some references to
objects of the target.

Visibility



Given an association between two classes, objects of one class can see and navigate to objects of the
other unless otherwise restricted by an explicit statement of navigation. However, there are
circumstances in which you'll want to limit the visibility across that association relative to objects
outside the association. For example, as Figure 10-4 shows, there is an association between UserGroup
and User and another between User and Password. Given a User object, it's possible to identify its
corresponding Password objects. However, a Password is private to a User, so it shouldn't be accessible
from the outside (unless, of course, the User explicitly exposes access to the Password, perhaps
through some public operation). Therefore, as the figure shows, given a UserGroup object, you can
navigate to its User objects (and vice versa), but you cannot in turn see the User object's Password
objects; they are private to the User. In the UML, you can specify three levels of visibility for an
association end, just as you can for a class's features by appending a visibility symbol to a role name.
Unless otherwise noted, the visibility of a role is public. Private visibility indicates that objects at that
end are not accessible to any objects outside the association; protected visibility indicates that objects
at that end are not accessible to any objects outside the association, except for children of the other
end. Package visibility indicates that classes declared in the same package can see the given element;
this does not apply to association ends.

Figure 10-4. Visibility

Public, protected, private, and package visibility are discussed in Chapter 9.

Qualification

In the context of an association, one of the most common modeling idioms you'll encounter is the
problem of lookup. Given an object at one end of an association, how do you identify an object or set
of objects at the other end? For example, consider the problem of modeling a work desk at a
manufacturing site at which returned items are processed to be fixed. As Figure 10-5 shows, you'd
model an association between two classes, WorkDesk and ReturnedItem. In the context of the
WorkDesk, you'd have a jobId that would identify a particular ReturnedItem. In that sense, jobId is an
attribute of the association. It's not a feature of ReturnedItem because items really have no knowledge
of things like repairs or jobs. Then, given an object of WorkDesk and given a particular value for jobId,
you can navigate to zero or one objects of ReturnedItem. In the UML, you'd model this idiom using a
qualifier, which is an association attribute whose values identify a subset of objects (usually a single
object) related to an object across an association. You render a qualifier as a small rectangle attached
to the end of an association, placing the attributes in the rectangle, as the figure shows. The source
object, together with the values of the qualifier's attributes, yield a target object (if the target
multiplicity is at most one) or a set of objects (if the target multiplicity is many).



Figure 10-5. Qualification

Attributes are discussed in Chapters 4 and 9.

Composition

Aggregation turns out to be a simple concept with some fairly deep semantics. Simple aggregation is
entirely conceptual and does nothing more than distinguish a "whole" from a "part." Simple
aggregation does not change the meaning of navigation across the association between the whole and
its parts, nor does it link the lifetimes of the whole and its parts.

Simple aggregation is discussed in Chapter 5.

However, there is a variation of simple aggregationcompositionthat does add some important
semantics. Composition is a form of aggregation, with strong ownership and coincident lifetime as part
of the whole. Parts with non-fixed multiplicity may be created after the composite itself, but once
created they live and die with it. Such parts can also be explicitly removed before the death of the
composite.

An attribute is essentially a shorthand for composition; attributes are discussed
in Chapters 4 and 9.

This means that, in a composite aggregation, an object may be a part of only one composite at a time.
For example, in a windowing system, a Frame belongs to exactly one Window. This is in contrast to
simple aggregation, in which a part may be shared by several wholes. For example, in the model of a
house, a Wall may be a part of one or more Room objects.

In addition, in a composite aggregation the whole is responsible for the disposition of its parts, which
means that the composite must manage the creation and destruction of its parts. For example, when
you create a Frame in a windowing system, you must attach it to an enclosing Window. Similarly, when
you destroy the Window, the Window object must in turn destroy its Frame parts.

As Figure 10-6 shows, composition is really just a special kind of association and is specified by
adorning a plain association with a filled diamond at the whole end.



Figure 10-6. Composition

Note

Alternately, you can show composition by using a structured class and nesting the symbols
of the parts within the symbol of the composite. This form is most useful when you want to
emphasize the relationships among the parts that apply only in the context of the whole.

Internal structure is discussed in Chapter 15.

Association Classes

In an association between two classes, the association itself might have properties. For example, in an
employer/employee relationship between a Company and a Person, there is a Job that represents the
properties of that relationship that apply to exactly one pairing of the Person and Company. It wouldn't
be appropriate to model this situation with a Company to Job association together with a Job to Person
association.

Attributes are discussed in Chapters 4 and 9.

That wouldn't tie a specific instance of the Job to the specific pairing of Company and Person.

In the UML, you'd model this as an association class, which is a modeling element that has both
association and class properties. An association class can be seen as an association that also has class
properties or as a class that also has association properties. You render an association class as a class
symbol attached by a dashed line to an association line as in Figure 10-7.

Figure 10-7. Association Classes



Note

Sometimes you'll want to have the same properties for several different association classes.
However, you can't attach an association class to more than one association, since an
association class is the association itself. To achieve that effect, define a class (C) and then
have each association class that needs those features inherit from C or use C as the type of
an attribute.

Constraints

These simple and advanced properties of associations are sufficient for most of the structural
relationships you'll encounter. However, if you want to specify a shade of meaning, the UML defines
five constraints that may be applied to association relationships.

The UML's extensibility mechanisms are discussed in Chapter 6.

First, you can specify whether the objects at one end of an association (with a multiplicity greater than
one) are ordered or unordered.

1. ordered Specifies that the set of objects at one end of
an association are in an explicit order.

For example, in a User/Password association, the Passwords associated with the User might be kept in
a least-recently used order and would be marked as ordered. If this keyword is absent, the objects are
unordered.

Second, you can specify that the objects at one end of an association are uniquethat is, they form a
setor whether they are nonuniquethat is, they form a bag.



These changeability properties apply to attributes as well, as discussed in
Chapter 9; links are discussed in Chapter 16.

2. set The objects are unique with no
duplicates.

3. bag The objects are nonunique, may
be duplicates.

4. ordered set The objects are unique but
ordered.

5. list or sequence The objects are ordered, may be
duplicates.

Finally, there is a constraint that restricts the changeability of the instances of an association.

6. readonly A link, once added from an object on the opposite
end of the association, may not be modified or
deleted. The default in the absence of this
constraint is unlimited changeability.

Note

To be precise, ordered and readOnly are properties of an association end. However, they are
rendered using constraint notation.

Realizations

A realization is a semantic relationship between classifiers in which one classifier specifies a contract
that another classifier guarantees to carry out. Graphically, a realization is rendered as a dashed
directed line with a large open arrowhead pointing to the classifier that specifies the contract.

Realization is different enough from dependency, generalization, and association relationships that it is
treated as a separate kind of relationship. Semantically, realization is somewhat of a cross between
dependency and generalization, and its notation is a combination of the notation for dependency and
generalization. You'll use realization in two circumstances: in the context of interfaces and in the
context of collaborations.

Interfaces are discussed in Chapter 11; classes are discussed in Chapters 4 and
components are discussed in Chapter 15; the five views of an architecture are
discussed in Chapter 2.

Most of the time you'll use realization to specify the relationship between an interface and the class or



component that provides an operation or service for it. An interface is a collection of operations that
are used to specify a service of a class or a component. Therefore, an interface specifies a contract
that a class or component must carry out. An interface may be realized by many such classes or
components, and a class or component may realize many interfaces. Perhaps the most interesting
thing about interfaces is that they let you separate the specification of a contract (the interface itself)
from its implementation (by a class or a component). Furthermore, interfaces span the logical and
physical parts of a system's architecture. For example, as Figure 10-8 shows, a class (such as
AccountBusinessRules in an order entry system) in a system's design view might realize a given
interface (such as IRuleAgent). That same interface (IRuleAgent) might also be realized by a
component (such as acctrule.dll) in the system's implementation view. Note that you can represent
realization in two ways: in the canonical form (using the interface stereotype and the dashed directed
line with a large open arrowhead) and in an elided form (using the interface lollipop notation for a
provided interface).

Figure 10-8. Realization of an Interface

You'll also use realization to specify the relationship between a use case and the collaboration that
realizes that use case, as Figure 10-9 shows. In this circumstance, you'll almost always use the
dashed arrow form of realization.

Figure 10-9. Realization of a Use Case



Use cases are discussed in Chapter 17; collaborations are discussed in Chapter
28.

Note

When a class or a component realizes an interface, it means that clients can rely on the class
or component to faithfully carry out the behavior specified by the interface. That means the
class or component implements all the operations of the interface, responds to all its signals,
and in all ways follows the protocol established by the interface for clients who use those
operations or send those signals.



Common Modeling Techniques

Modeling Webs of Relationships

When you model the vocabulary of a complex system, you may encounter dozens, if not hundreds or
thousands, of classes, interfaces, components, nodes, and use cases. Establishing a crisp boundary
around each of these abstractions is hard. Establishing the myriad of relationships among these
abstractions is even harder: This requires you to form a balanced distribution of responsibilities in the
system as a whole, with individual abstractions that are tightly cohesive and with relationships that are
expressive, yet loosely coupled.

Modeling the vocabulary of a system and modeling the distribution of
responsibilities in a system are discussed in Chapter 4.

When you model these webs of relationships,

Don't begin in isolation. Apply use cases and scenarios to drive your discovery of the
relationships among a set of abstractions.

Use cases are discussed in Chapter 17.

In general, start by modeling the structural relationships that are present. These reflect the static
view of the system and are therefore fairly tangible.

Next, identify opportunities for generalization/specialization relationships; use multiple
inheritance sparingly.

Only after completing the preceding steps should you look for dependencies; they generally
represent more-subtle forms of semantic connection.

For each kind of relationship, start with its basic form and apply advanced features only as
absolutely necessary to express your intent.

Remember that it is both undesirable and unnecessary to model all relationships among a set of
abstractions in a single diagram or view. Rather, build up your system's relationships by
considering different views on the system. Highlight interesting sets of relationships in individual
diagrams.



The five views of an architecture are discussed in Chapter 2; the Rational
Unified Process is summarized in Appendix B.

The key to successfully modeling complex webs of relationships is to do so in an incremental fashion.
Build up relationships as you add to the structure of a system's architecture. Simplify those
relationships as you discover opportunities for common mechanisms. At every release in your
development process, assess the relationships among the key abstractions in your system.

Note

In practiceand especially if you are following an incremental and iterative development
processthe relationships in your models will derive from explicit decisions by the modeler as
well as from the reverse engineering of your implementation.



Hints and Tips

When you model advanced relationships in the UML, remember that there is a wide range of building
blocks at your disposal, from simple associations to more-detailed properties of navigation,
qualification, aggregation, and so on. You must choose the relationship and the details of that
relationship to best fit your abstraction. A well-structured relationship

Exposes only those features necessary for clients to use the relationship and hides all others.

Is unambiguous in its intent and semantics.

Is not so overly specified that it eliminates all degrees of freedom by its implementers.

Is not so underspecified that it renders the meaning of the relationship ambiguous.

When you draw a relationship in the UML,

Show only those properties of the relationship that are important to understanding the
abstraction in its context.

Choose a stereotyped version that provides the best visual cue to the intent of the relationship.



Chapter 11. Interfaces, Types, and Roles
In this chapter

Interfaces, types, roles, and realization

Modeling the seams in a system

Modeling static and dynamic types

Making interfaces understandable and approachable

Interfaces define a line between the specification of what an abstraction does and the implementation
of how that abstraction does it. An interface is a collection of operations that are used to specify a
service of a class or a component.

You use interfaces to visualize, specify, construct, and document the seams within your system. Types
and roles provide a mechanism for you to model the static and dynamic conformance of an abstraction
to an interface in a specific context.

A well-structured interface provides a clear separation between the outside view and the inside view of
an abstraction, making it possible to understand and approach an abstraction without having to dive
into the details of its implementation.



Getting Started

It wouldn't make a lot of sense to design a house that required you to rip up the foundation every
time you needed to repaint the walls. Similarly, you wouldn't want to live in a place that required you
to rewire the building whenever you needed to change a light bulb. The owner of a high rise wouldn't
be thrilled to have to move doors or replace all electrical and phone jacks whenever a new tenant
moved in.

Designing houses is discussed in Chapter 1.

Centuries of building experience have provided lots of pragmatic construction-related information to
help builders avoid these obviousand some not so obviousproblems that arise when a building grows
and changes over time. In software terms, we call this designing with a clear separation of concerns.
For example, in a well-structured building, the skin or facade of the structure can be modified or
replaced without disturbing the rest of the building. Similarly, the furnishings inside a building can
easily be moved about without changing the infrastructure. Services that run through the walls for
electrical, heating, plumbing, and waste disposal facilities can be changed with some degree of scrap
and rework, but you still don't have to rend the fabric of the building to do so.

Not only do standard building practices help you build buildings that can evolve over time, but there
are many standard interfaces to which you can build, permitting you to use common, off-the-shelf
components whose use ultimately helps reduce the cost of construction and maintenance. For
example, there are standard sizes for lumber, making it easy to build walls that are multiples of a
common size. There are standard sizes of doors and windows, which means that you don't have to
hand-craft every opening in your building. There are even standards for electrical outlets and
telephone plugs (although these vary from country to country) that make it easier for you to mix and
match electronic equipment.

In software, it's important to build systems with a clear separation of concerns so that as the system
evolves, changes in one part of the system don't ripple through, damaging other parts of the system.
One important way of achieving this degree of separation is by specifying clear seams in your system,
which draw a line between those parts that may change independently. Furthermore, by choosing the
right interfaces, you can pick standard components, libraries, and frameworks to implement those
interfaces without having to build them yourself. As you discover better implementations, you can
replace the old ones without disturbing their users.

Frameworks are discussed in Chapter 29.

In the UML, you use interfaces to model the seams in a system. An interface is a collection of
operations used to specify a service of a class or a component. By declaring an interface, you can
state the desired behavior of an abstraction independent of an implementation of that abstraction.
Clients can build against that interface, and you can build or buy any implementation of that interface
as long as the implementation satisfies the responsibilities and the contract denoted by the interface.



Classes are discussed in Chapters 4 and 9; components are discussed in Chapter
15.

Many programming languages support the concept of interfaces, including Java and CORBA IDL.
Interfaces are not only important for dividing the specification and the implementation of a class or
component, but as you scale up to larger systems, you can use interfaces to specify the outside view
of a package or subsystem.

Packages are discussed in Chapter 12; subsystems are discussed in Chapter 32.

The UML provides a graphical representation for interfaces, as Figure 11-1 shows. This notation
permits you to visualize the specification of an abstraction apart from any implementation.

Figure 11-1. Interfaces

Components are discussed in Chapter 15.



Terms and Concepts

An interface is a collection of operations that are used to specify a service of a class or a component. A
type is a stereotype of a class used to specify a domain of objects, together with the operations (but
not the methods) applicable to the object. A role is the behavior of an entity participating in a
particular context.

Graphically, an interface may be rendered as a stereotyped class in order to expose its operations and
other properties. To show the relationship between a class and its interfaces, a special notation is
provided. A provided interface (one that represents services provided by the class) is shown as a small
circle attached to the class box. A required interface (one that represents services required by a class
of another class) is shown as a small semicircle attached to the class box.

Note

Interfaces may also be used to specify a contract for a use case or subsystem.

Names

Every interface must have a name that distinguishes it from other interfaces. A name is a textual
string. That name alone is known as a simple name; a path name is the interface name prefixed by
the name of the package in which that interface lives. An interface may be drawn showing only its
name, as in Figure 11-2.

Figure 11-2. Simple and Path Names



An interface name must be unique within its enclosing package, as discussed in
Chapter 12.

Note

An interface name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate an
interface name and the name of its enclosing package) and may continue over several lines.
In practice, interface names are short nouns or noun phrases drawn from the vocabulary of
the system you are modeling.

Operations

An interface is a named collection of operations used to specify a service of a class or of a component.
Unlike classes or types, interfaces do not specify any implementation (so they may not include any
methods, which provide the implementation of an operation). Like a class, an interface may have any
number of operations. These operations may be adorned with visibility properties, concurrency
properties, stereotypes, tagged values, and constraints.

Operations are discussed in Chapters 4 and 9; the UML's extensibility
mechanisms are discussed in Chapter 6.

When you declare an interface, you render an interface as a stereotyped class, listing its operations in
the appropriate compartment. Operations may be drawn showing only their name, or they may be
augmented to show their full signature and other properties, as in Figure 11-3.

Figure 11-3. Operations

Note

You can also associate signals with an interface.



Events are discussed in Chapter 21.

Relationships

Like a class, an interface may participate in generalization, association, and dependency relationships.
In addition, an interface may participate in realization relationships. Realization is a semantic
relationship between two classifiers in which one classifier specifies a contract that another classifier
guarantees to carry out.

Relationships are discussed in Chapters 5 and 10.

An interface specifies a contract for a class or a component without dictating its implementation. A
class or component may realize many interfaces. In so doing, it commits to carry out all these
contracts faithfully, which means that it provides a set of methods that properly implement the
operations defined in the interface. The set of services that it agrees to provide are its provided
interface. Similarly, a class or a component may depend on many interfaces. In so doing, it expects
that these contracts will be honored by some set of components that realize them. The set of services
that a class requires from other classes are its required interface. This is why we say that an interface
represents a seam in a system. An interface specifies a contract, and the client and the supplier on
each side of the contract may change independently, as long as each fulfills its obligations to the
contract.

As Figure 11-4 illustrates, you can show that an element realizes an interface in two ways. First, you
can use the simple form in which the interface and its realization relationship are rendered as a line
between the class box and a small circle (for a provided interface) or a small semicircle (for a required
interface). This form is useful when you simply want to expose the seams in your system; it is usually
the preferred form. However, the limitation of this style is that you can't directly visualize the
operations or signals provided by the interface. Second, you can use the expanded form in which you
render an interface as a stereotyped class, which allows you to visualize its operations and other
properties, and then draw a realization relationship (for a provided interface) or a dependency (for a
required interface) from the classifier or component to the interface box. In the UML, a realization
relationship is rendered as a dashed directed line with a large triangular arrowhead pointing to the
interface. This notation is a cross between generalization and dependency.

Figure 11-4. Realizations



Note

Interfaces are similar to abstract classes. For example, neither may have direct instances.
An abstract class can implement its concrete operations, however. An interface is more like
an abstract class in which all of the operations are also abstract.

Abstract classes are discussed in Chapter 4; components are discussed in
Chapter 15.

Understanding an Interface

When you are handed an interface, the first thing you'll see is a set of operations that specify a service
of a class or a component. Look a little deeper and you'll see the full signature of those operations,
along with any of their special properties, such as visibility, scope, and concurrency semantics.



Operations and their properties are discussed in Chapter 9; concurrency
semantics are discussed in Chapter 24.

These properties are important, but for complex interfaces they aren't enough to help you understand
the semantics of the service they represent, much less know how to use those operations properly. In
the absence of any other information, you'd have to dive into some abstraction that realizes the
interface to figure out what each operation does and how those operations are meant to work
together. However, that defeats the purpose of an interface, which is to provide a clear separation of
concerns in a system.

In the UML, you can supply much more information to an interface to make it understandable and
approachable. First, you may attach pre- and postconditions to each operation and invariants to the
class or component as a whole. By doing this, a client who needs to use an interface will be able to
understand what the interface does and how to use it, without having to dive into an implementation.
If you need to be rigorous, you can use the UML's OCL to formally specify the semantics. Second, you
can attach a state machine to the interface. You can use this state machine to specify the legal partial
ordering of an interface's operations. Third, you can attach collaborations to the interface. You can use
collaborations to specify the expected behavior of the interface through a series of interaction
diagrams.

Preconditions, postconditions, and invariants are discussed in Chapter 9; state
machines are discussed in Chapter 22; collaborations are discussed in Chapter
28; OCL is discussed in Chapter 6.



Common Modeling Techniques

Modeling the Seams in a System

The most common purpose for which you'll use interfaces is to model the seams in a system
composed of software components, such as Eclipse, .NET, or Java Beans. You'll reuse some
components from other systems or buy them off the shelf; you will create others from scratch. In any
case, you'll need to write glue code that weaves these components together. This requires you to
understand the interfaces provided and required by each component.

Components are discussed in Chapter 15; systems are discussed in Chapter 32.

Identifying the seams in a system involves identifying clear lines of demarcation in your architecture.
On either side of those lines, you'll find components that may change independently, without affecting
the components on the other side, as long as the components on both sides conform to the contract
specified by that interface.

When you reuse a component from another system or when you buy it off the shelf, you'll probably be
handed a set of operations with some minimal documentation about the meaning of each one. That's
useful, but it's not sufficient. It's more important for you to understand the order in which to call each
operation and what underlying mechanisms the interface embodies. Unfortunately, given a poorly
documented component, the best you can do is to build up, by trial and error, a conceptual model for
how that interface works. You can then document your understanding by modeling that seam in the
system using interfaces in the UML so that, later, you and others can approach that component more
easily. Similarly, when you create your own component, you'll need to understand its context, which
means specifying the interfaces it relies on to do its job as well as the interfaces it presents to the
world that others might build on.

Patterns and frameworks are discussed in Chapter 29.

Note

Most component systems, such as Eclipse, .NET, and Enterprise Java Beans, provide for
component introspection, meaning that you can programmatically query an interface to
determine its operations. Doing so is the first step in understanding the nature of any under-
documented component.

To model the seams in a system,



Within the collection of classes and components in your system, draw a line around those that
tend to be tightly coupled relative to other sets of classes and components.

Refine your grouping by considering the impact of change. Classes or components that tend to
change together should be grouped together as collaborations.

Collaborations are discussed in Chapter 28.

Consider the operations and the signals that cross these boundaries, from instances of one set of
classes or components to instances of other sets of classes and components.

Package logically related sets of these operations and signals as interfaces.

For each such collaboration in your system, identify the interfaces it requires from (imports) and
those it provides to others (exports). You model the importing of interfaces by dependency
relationships, and you model the exporting of interfaces by realization relationships.

For each such interface in your system, document its dynamics by using pre- and postconditions
for each operation, and use cases and state machines for the interface as a whole.

Behavioral modeling is discussed in Parts 4 and 5.

For example, Figure 11-5 shows the seams that surround the component Ledger drawn from a
financial system. This component provides (realizes) three interfaces: IUnknown, ILedger, and
IReports. In this diagram, IUnknown is shown in its expanded form; the other two are shown in their
simple form, as lollipops. These three interfaces are realized by Ledger and are exported to other
components for them to build on.

Figure 11-5. Modeling the Seams in a System



As this diagram also shows, Ledger requires (uses) two interfaces, IStreaming and ITransaction, the
latter of which is shown in its expanded form. These two interfaces are required by the Ledger
component for its proper operation. Therefore, in a running system, you must supply components that
realize these two interfaces. By identifying interfaces such as ITransaction, you've effectively
decoupled the components on either side of the interface, permitting you to employ any component
that conforms to that interface.

Interfaces such as ITransaction are more than just a pile of operations. This particular interface
makes some assumptions about the order in which its operations should be called. Although not shown
here, you could attach use cases to this interface and enumerate the common ways you'd use it.

Use cases are discussed in Chapter 17.

Modeling Static and Dynamic Types

Most object-oriented programming languages are statically typed, which means that the type of an
object is bound at the time the object is created. Even so, that object will likely play different roles
over time. This means that clients using that object interact with the object through different sets of
interfaces, representing interesting, possibly overlapping, sets of operations.

Instances are discussed in Chapter 13.

Modeling the static nature of an object can be visualized in a class diagram. However, when you are
modeling things like business objects, which naturally change their types throughout a workflow, it's
sometimes useful to explicitly model the dynamic nature of that object's type. In these circumstances,
an object can gain and lose types during its life. You can also model the object's life cycle using a state
machine.

Class diagrams are discussed in Chapter 8.

To model a dynamic type,

Specify the different possible types of that object by rendering each type as a class (if the
abstraction requires structure and behavior) or as an interface (if the abstraction requires only
behavior).

Associations and generalizations are discussed in Chapters 5 and 10;
interaction diagrams are discussed in Chapter 19; dependencies are
discussed in Chapters 5 and 10.



Model all the roles the class of the object may take on at any point in time. You can mark them
with the «dynamic» stereotype. (This is not a predefined UML stereotype, but one that you can
add.)

In an interaction diagram, properly render each instance of the dynamically typed class. Display
the type of the instance in brackets below the object's name, just like a state. (We are using UML
syntax in a novel way, but one that we feel is consistent with the intent of states.)

For example, Figure 11-6 shows the roles that instances of the class Person might play in the context
of a human resources system.

Figure 11-6. Modeling Static Types

This diagram specifies that instances of the Person class may be any of the three typesnamely,
Candidate, Employee, or Retiree.



Hints and Tips

When you model an interface in the UML, remember that every interface should represent a seam in
the system, separating specification from implementation. A well-structured interface:

Is simple yet complete, providing all the operations necessary yet sufficient to specify a single
service.

Is understandable, providing sufficient information to both use and realize the interface without
having to examine an existing use or implementation.

Is approachable, providing information to guide the user to its key properties without being
overwhelmed by the details of a pile of operations.

When you draw an interface in the UML,

Use the lollipop or socket notation whenever you simply need to specify the presence of a seam
in the system. Most of the time, you'll need this for components, not classes.

Use the expanded form when you need to visualize the details of the service itself. Most of the
time you'll need this for specifying the seams in a system attached to a package or a subsystem.



Chapter 12. Packages
In this chapter

Packages, visibility, importing, and exporting

Modeling groups of elements

Modeling architectural views

Scaling up to large systems

Visualizing, specifying, constructing, and documenting large systems involves manipulating potentially
large numbers of classes, interfaces, components, nodes, diagrams, and other elements. As you scale
up to systems such as these, you will find it necessary to organize these things into larger chunks. In
the UML, the package is a general-purpose mechanism for organizing modeling elements into groups.

You use packages to arrange your modeling elements into larger chunks that you can manipulate as a
group. You can control the visibility of these elements so that some things are visible outside the
package while others are hidden. You can also use packages to present different views of your
system's architecture.

Well-designed packages group elements that are semantically close and that tend to change together.
Well-structured packages are therefore loosely coupled and very cohesive, with tightly controlled
access to the package's contents.



Getting Started

Dog houses aren't complex: you have four walls, one of them with a dog-size hole, and a roof. When
you build a dog house, you really need only a small pile of lumber. There's not a lot more structure
than that.

The differences between building a dog house and building a high rise are
discussed in Chapter 1.

Houses are more complex. Walls, ceilings, and floors come together in larger abstractions that we call
rooms. Even these rooms are organized into larger chunks: the public area, the sleeping area, the
working area, and so on. These larger groups may not manifest themselves as anything to do with the
physical house itself but may just be names we give to logically related rooms in the house, which we
apply when we talk about how we'll use the house.

High rise buildings are very complex. Not only are there elementary structures, such as walls, ceilings,
and floors, but there are larger chunks, such as public areas, the retail wing, and office spaces. These
chunks are probably grouped into even larger chunks, such as rental space and building service area.
These larger chunks may have nothing to do with the final high rise itself but are simply artifacts we
use to organize our plans for the high rise.

Every large system is layered in this way. In fact, about the only way you can understand a complex
system is by chunking your abstractions into ever-larger groups. Most of these modest-size chunks
(such as rooms) are, in their own right, class-like abstractions for which there are many instances.
Most of these larger chunks are purely conceptual (such as a retail wing), for which there are no real
instances. They are not distinct objects in the physical system but, rather, they represent views on the
system itself. These latter kinds of chunks have no separate identity in the deployed system; they
represent groupings of parts selected across the system.

In the UML, the chunks that organize a model are called packages. A package is a general-purpose
mechanism for organizing elements into groups. Packages help you organize the elements in your
models so that you can more easily understand them. Packages also let you control access to their
contents so that you can control the seams in your system's architecture.

Software architecture is discussed in Chapter 2; modeling the architecture of a
system is discussed in Chapter 32.

The UML provides a graphical representation of package, as Figure 12-1 shows. This notation permits
you to visualize groups of elements that can be manipulated as a whole and in a way that lets you
control the visibility of and access to individual elements.

Figure 12-1. Packages





Terms and Concepts

A package is a general-purpose mechanism for organizing the model itself into a hierarchy; it has no
meaning to the execution. Graphically, a package is rendered as a tabbed folder. The name of the
package goes in the folder (if its contents are not shown) or in the tab (if the contents of the folder are
shown).

Names

Every package must have a name that distinguishes it from other packages. A name is a textual
string. That name alone is known as a simple name; a qualified name is the package name prefixed
by the name of the package in which that package lives, if any. A double colon (::) separates package
names. A package is typically drawn showing only its name, as in Figure 12-2. Just as with classes,
you may draw packages adorned with tagged values or with additional compartments to expose their
details.

Figure 12-2. Simple and Qualified Package Names

A package name must be unique within its enclosing package.

Note

A package name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate a package
name and the name of its enclosing package) and may continue over several lines. In



practice, package names are short grouping nouns or noun phrases drawn from the
vocabulary of the model.

Owned Elements

A package may own other elements, including classes, interfaces, components, nodes, collaborations,
use cases, diagrams, and even other packages. Ownership is a composite relationship, which means
that the element is declared in the package. If the package is destroyed, the element is destroyed.
Every element is uniquely owned by exactly one package.

Composition is discussed in Chapter 10.

Note

The package owns the model elements declared within it. These may include elements such
as classes, associations, generalizations, dependencies, and notes. It does not own elements
that are merely referenced within a package.

A package forms a namespace, which means that elements of the same kind must be named uniquely
within the context of its enclosing package. For example, you can't have two classes named Queue
owned by the same package, but you can have a class named Queue in package P1 and another (and
different) class named Queue in package P2. The classes P1::Queue and P2::Queue are, in fact, different
classes and can be distinguished by their path names. Different kinds of elements may have the same
name.

Note

It is best to avoid duplicate names in different packages, if possible, to avoid the danger of
confusion.

Elements of different kinds may have the same name within a package. Thus, you can have a class
named Timer, as well as a component named Timer, within the same package. In practice, however,
to avoid confusion, it's best to name elements uniquely for all kinds within a package.

Packages may own other packages. This means that it's possible to decompose your models
hierarchically. For example, you might have a class named Camera that lives in the package Vision
that in turn lives in the package Sensors. The full name of this class is Sensors::Vision::Camera. In
practice, it's best to avoid deeply nested packages. Two to three levels of nesting is about the limit
that's manageable. More than nesting, you'll use importing to organize your packages.



Importing is discussed later in this chapter.

These semantics of ownership make packages an important mechanism for dealing with scale. Without
packages, you'd end up with large, flat models in which all elements would have to be named
uniquelyan unmanageable situation, especially when you've brought in classes and other elements
developed by multiple teams. Packages help you control the elements that compose your system as
they evolve at different rates over time.

As Figure 12-3 shows, you can explicitly show the contents of a package either textually or graphically.
Note that when you show these owned elements, you place the name of the package in the tab. In
practice, you usually won't want to show the contents of packages this way. Instead, you'll use
graphical tools to zoom into the contents of a package.

Figure 12-3. Owned Elements

Note

The UML assumes that there is an anonymous, root package in a model, the consequence of
which is that elements of each kind at the top of a model must be uniquely named.

Visibility

You can control the visibility of the elements owned by a package just as you can control the visibility
of the attributes and operations owned by a class. Typically, an element owned by a package is public,
which means that it is visible to the contents of any package that imports the element's enclosing
package. Conversely, protected elements can only be seen by children, and private elements cannot
be seen outside the package in which they are declared. In Figure 12-3, OrderForm is a public part of
the package Client, and Order is a private part. A package that imports Client can see OrderForm, but
it cannot see Order. As viewed from the outside, the fully qualified name of OrderForm would be
Client::OrderForm.



Visibility is discussed in Chapter 9.

You specify the visibility of an element owned by a package by prefixing the element's name with an
appropriate visibility symbol. Public elements are rendered by prefixing their name with a + symbol, as
for OrderForm in Figure 12-3. Collectively, the public parts of a package constitute the package's
interface.

Just as with classes, you can designate an element as protected or private, rendered by prefixing the
element's name with a # symbol and a - symbol, respectively. Protected elements are visible only to
packages that inherit from another package; private elements are not visible outside the package at
all.

Package visibility indicates that a class is visible to other classes declared in the same package but is
invisible to classes declared in other packages. Show package visibility by prefixing a ~ symbol to the
name of the class.

Importing and Exporting

Suppose you have two classes named A and B sitting side by side. Because they are peers, A can see B
and B can see A, so both can depend on the other. Just two classes makes for a trivial system, so you
really don't need any kind of packaging.

Now, imagine having a few hundred such classes sitting side by side. There's no limit to the tangled
web of relationships that you can weave. Furthermore, there's no way that you can understand such a
large, unorganized group of classes. That's a very real problem for large systemssimple, unrestrained
access does not scale up. For these situations, you need some kind of controlled packaging to organize
your abstractions.

So suppose that instead you put A in one package and B in another package, both packages sitting
side by side. Suppose also that A and B are both declared as public parts of their respective packages.
This is a very different situation. Although A and B are both public, accessing one of the classes from
within the other package requires a qualified name. However, if A's package imports B's package, A
can now see B directly, although still B cannot see A without a qualified name. Importing adds the
public elements from the target package to the public namespace of the importing package. In the
UML, you model an import relationship as a dependency adorned with the stereotype import. By
packaging your abstractions into meaningful chunks and then controlling their access by importing,
you can control the complexity of large numbers of abstractions.

Dependency relationships are discussed in Chapter 5; the UML's extensibility
mechanisms are discussed in Chapter 6.

Note

Actually, two stereotypes apply hereimport and accessand both specify that the source
package has direct access to the public contents of the target package. Import adds the
contents of the target to the source's public namespace, so you don't have to qualify their
names. This admits the possibility of name clashes, which you must avoid to keep the model



well-formed. Access adds the contents of the target package to the sources's private
namespace. The only difference is that you cannot re-export the imported elements if a third
package imports the original source package. Most of the time you'll use import.

The public parts of a package are called its exports. For example, in Figure 12-4, the package GUI
exports two classes, Window and Form. EventHandler is not exported by GUI; EventHandler is a
protected part of the package.

Figure 12-4. Importing and Exporting

Interfaces are discussed in Chapter 11.

The parts that one package exports are visible to the contents of those packages that have visibility to
the package. In this example, Policies explicitly imports the package GUI. The classes GUI::Window
and GUI::Form are therefore made visible to the contents of the package Policies using their simple
names Window and Form. However, GUI::EventHandler is not visible because it is protected. Because
the package Server doesn't import GUI, the contents of Server may access the public contents of GUI,
but must use qualified names to do so, for example, GUI::WINDOW. Similarly, the contents of GUI don't
have permission to access any of the contents of Server because they are private; they are
inaccessible even using qualified names.

Import and access dependencies are transitive. In this example, Client imports Policies and
Policies imports GUI, so Client TRansitively imports GUI. Therefore, the contents of Client have
access to the exports of Policies as well as access to the exports of GUI. If Policies accesses GUI,
instead of importing it, Client does not add the elements of GUI to its namespace, but it can still
reference them using qualified names (such as GUI::Window).



Note

If an element is visible within a package, it is visible within all packages nested inside the
package. Nested packages can see everything that their containing packages can see. A
name in a nested package can hide a name in a containing package, in which case a
qualified name is required to reference it.



Common Modeling Techniques

Modeling Groups of Elements

The most common purpose for which you'll use packages is to organize modeling elements into groups
that you can name and manipulate as a set. If you are developing a trivial application, you won't need
packages at all. All your abstractions will fit nicely into one package. For every other system, however,
you'll find that many of your system's classes, interfaces, components, and nodes tend to naturally fall
into groups. You model these groups as packages.

There is one important distinction between classes and packages: Classes are abstractions of things
found in your problem or solution; packages are mechanisms you use to organize the things in your
model. Packages do not appear in a running system; they are strictly mechanisms to organize the
design.

Most of the time you'll use packages to group the same basic kind of elements. For example, you
might separate all the classes and their corresponding relationships from your system's design view
into a series of packages using the UML's import dependencies to control access among these
packages. You might organize all the components in your system's implementation view in a similar
fashion.

The five views of an architecture are discussed in Chapter 2.

You can also use packages to group different kinds of elements. For example, for a system being
developed by a geographically distributed team, you might use packages as your unit of configuration
management, putting in them all the classes and diagrams that each team can check in and check out
separately. In fact, it's common to use packages to group modeling elements and their associated
diagrams.

To model groups of elements,

Scan the modeling elements in a particular architectural view and look for clumps defined by
elements that are conceptually or semantically close to one another.

Surround each of these clumps in a package.

For each package, distinguish which elements should be accessible outside the package. Mark
them public, and all others protected or private. When in doubt, hide the element.

Explicitly connect packages that build on others via import dependencies.

In the case of families of packages, connect specialized packages to their more general part via
generalizations.

For example, Figure 12-5 shows a set of packages that organize the classes in an information system's
design view into a classic three-tier architecture. The elements in the package User Services provide
the visual interface for presenting information and gathering data. The elements in the package Data
Services maintain, access, and update data. The elements in the package Business Services bridge



the elements in the other two packages and encompass all the classes and other elements that
manage requests from the user to execute a business task, including business rules that dictate the
policies for manipulating data.

Figure 12-5. Modeling Groups of Elements

In a trivial system, you could lump all your abstractions into one package. However, by organizing
your classes and other elements of the system's design view into three packages, you not only make
your model more understandable, but you can control access to the elements of your model by hiding
some and exporting others.

The documentation tagged value is discussed in Chapter 6.

Note

When you render models such as these, you'll typically want to expose elements that are
central to each package. To make clear the purpose of each package, you can also expose a
documentation tagged value for each package.

Modeling Architectural Views

Using packages to group related elements is important; you can't develop complex models without
doing so. This approach works well for organizing related elements, such as classes, interfaces,
components, nodes, and diagrams. As you consider the different views of a software system's



architecture, you need even larger chunks. You can use packages to model the views of an
architecture.

The five views of an architecture are discussed in Chapter 2.

Remember that a view is a projection into the organization and structure of a system, focused on a
particular aspect of that system. This definition has two implications. First, you can decompose a
system into almost orthogonal packages, each of which addresses a set of architecturally significant
decisions. For example, you might have a design view, an interaction view, an implementation view, a
deployment view, and a use case view. Second, these packages own all the abstractions germane to
that view. For example, all the components in your model would belong to the package that
represents the implementation view. Packages can reference elements owned by other packages,
however.

Views are related to models, as discussed in Chapter 32.

To model architectural views,

Identify the set of architectural views that are significant in the context of your problem. In
practice, this typically includes a design view, an interaction view, an implementation view, a
deployment view, and a use case view.

Place the elements (and diagrams) that are necessary and sufficient to visualize, specify,
construct, and document the semantics of each view into the appropriate package.

As necessary, further group these elements into their own packages.

There will typically be dependencies across the elements in different views. So, in general, let each
view at the top of a system be open to all others at that level.

For example, Figure 12-6 illustrates a canonical top-level decomposition that's appropriate for even
the most complex system you might encounter.

Figure 12-6. Modeling Architectural Views



Modeling systems is discussed in Chapter 32.



Hints and Tips

When you model packages in the UML, remember that they exist only to help you organize the
elements of your model. If you have abstractions that manifest themselves as objects in the real
system, don't use packages. Instead, use modeling elements such as classes or components. A well-
structured package

Is cohesive, providing a crisp boundary around a set of related elements.

Is loosely coupled, exporting only those elements other packages really need to see, and
importing only those elements necessary and sufficient for the elements in the package to do
their job.

Is not deeply nested, because there are limits to the human understanding of deeply nested
structures.

Owns a balanced set of contents; relative to one another in a system, packages should not be
too large (split them up if necessary) or too small (combine elements that you manipulate as a
group).

When you draw a package in the UML,

Use the simple form of a package icon unless it's necessary for you to explicitly reveal the
contents of that package.

When you do reveal a package's contents, show only elements that are necessary to understand
the meaning of that package in context.

Especially if you are using packages to model things under configuration management, reveal the
values of tags associated with versioning.



Chapter 13. Instances
In this chapter

Instances and objects

Modeling concrete instances

Modeling prototypical instances

The real and conceptual world of instances

The terms "instance" and "object" are largely synonymous, so, for the most part, they may be used
interchangeably. An instance is a concrete manifestation of an abstraction to which a set of operations
may be applied and which may have a state that stores the effects of the operation.

See Chapter 15 for a discussion of internal structure, which is preferable when
dealing with prototypical objects and roles.

You use instances to model concrete things that live in the real world. Almost every building block in
the UML participates in this class/object dichotomy. For example, you can have use cases and use
case instances, nodes and node instances, associations and association instances, and so on.



Getting Started

Suppose you've set out to build a house for your family. By saying "house" rather than "car," you've
already begun to narrow the vocabulary of your solution space. House is an abstraction of "a
permanent or semipermanent dwelling, the purpose of which is to provide shelter." Car is "a mobile,
powered vehicle, the purpose of which is to transport people from place to place." As you work to
reconcile the many competing requirements that shape your problem, you'll want to refine your
abstraction of this house. For example, you might choose "a three-bedroom house with a walkout
basement," a kind of house, albeit a more specialized one.

When your builder finally hands you the keys to your house and you and your family walk through the
front door, you are now dealing with something concrete and specific. It's no longer just a three-
bedroom house with a walkout, but it's "my three-bedroom house with a walkout basement, located at
835 S. Moore Street." If you are terminally sentimental, you might even name your house something
like Sanctuary or Our Money Pit.

There's a fundamental difference between a three-bedroom house with a walkout basement and my
three-bedroom house named Sanctuary. The former is an abstraction representing a certain kind of
house with various properties; the latter is a concrete instance of that abstraction, representing some
thing that manifests itself in the real world, with real values for each of those properties.

An abstraction denotes the ideal essence of a thing; an instance denotes a concrete manifestation.
You'll find this separation of abstraction and instance in everything you model. For a given abstraction,
you can have innumerable instances. For a given instance, there is some abstraction that specifies the
characteristics common to all such instances.

In the UML, you can represent abstractions and their instances. Almost every building block in the
UMLmost notably classes, components, nodes, and use casesmay be modeled in terms of their
essence or in terms of their instances. Most of the time, you'll work with them as abstractions. When
you want to model concrete manifestations, you'll need to work with their instances.

Classes are discussed in Chapters 4 and 9; components are discussed in Chapter
15; nodes are discussed in Chapter 27; use cases are discussed in Chapter 17.
UML actually uses the term instance specification, but that is a metamodel
subtlety.

The UML provides a graphical representation for instances, as Figure 13-1 shows. This notation
permits you to visualize named instances, as well as anonymous ones.

Figure 13-1. Instances





Terms and Concepts

An instance is a concrete manifestation of an abstraction to which a set of operations can be applied
and which has a state that stores the effects of the operations. Instance and object are largely
synonymous. Graphically, an instance specification is rendered by underlining its name.

The UML's class/object dichotomy is discussed in Chapter 2.

Note

From common usage, the concrete manifestation of a class is called an object. Objects are
instances of classes, so it's excruciatingly proper to say that all objects are instances,
although some instances are not objects (for example, an instance of an association is really
not an object, it's just an instance, also known as a link). Only power modelers will really
care about this subtle distinction.

Associations are discussed in Chapters 5 and 10; links are discussed in Chapters
14 and 16.

Abstractions and Instances

Instances don't stand alone; they are almost always tied to an abstraction. Most instances you'll
model with the UML will be instances of classes (and these things are called objects), although you can
have instances of other things, such as components, nodes, use cases, and associations. In the UML,
an instance is easily distinguishable from an abstraction. To indicate an instance, you underline its
name.

Classifiers are discussed in Chapter 9.

In a general sense, an object is something that takes up space in the real or conceptual world, and
you can do things to it. For example, an instance of a node is typically a computer that physically sits
in a room; an instance of a component takes up some space on the file system; an instance of a
customer record consumes some amount of physical memory. Similarly, an instance of a flight
envelope for an aircraft is something you can manipulate mathematically.



Abstract classes are discussed in Chapter 9; interfaces are discussed in Chapter
11.

You can use the UML to model these physical instances, but you can also model things that are not so
concrete. For example, an abstract class, by definition, may not have any direct instances. However,
you can model indirect instances of abstract classes to show the use of a prototypical instance of that
abstract class. Literally, no such object might exist. But pragmatically, this instance lets you name one
of any potential instances of concrete children of that abstract class. This same touch applies to
interfaces. By their very definition, interfaces may not have any direct instances, but you can model a
prototypical instance of an interface, representing one of any potential instances of concrete classes
that realize that interface.

When you model instances, you'll place them in object diagrams (if you want to visualize their
structural details) or in interaction and activity diagrams (if you want to visualize their participation in
dynamic situations). Although typically not necessary, you can place objects in class diagrams if you
want to explicitly show the relationship of an object to its abstraction.

Object diagrams are discussed in Chapter 14.

Types

An instance has a type. The type of an actual instance must be a concrete classifier, but an instance
specification (that does not represent a single instance) could have an abstract type. In notation, the
name of the instance is followed by a colon followed by the type, for example, t : TRansaction.

Interaction diagrams are discussed in Chapter 19; activity diagrams are
discussed in Chapter 20; dynamic typing is discussed in Chapter 11; classifiers
are discussed in Chapter 9.

The classifier of an instance is usually static. For example, once you create an instance of a class, its
class won't change during the lifetime of that object. In some modeling situations and in some
programming languages, however, it is possible to change the abstraction of an instance. For
example, a Caterpillar object might become a Butterfly object. It's the same object, but of a
different abstraction.

Note

During development, it's also possible for you to have instances with no associated classifier,
which you can render as an object but with its abstraction name missing, as in Figure 13-2.
You can introduce orphan objects such as these when you need to model very abstract
behavior, although you must eventually tie such instances to an abstraction if you want to
enforce any degree of semantics about the object.



Figure 13-2. Named and Anonymous Instances

Names

An instance may have a name that distinguishes it from other instances within its context. Typically,
an object lives within the context of an operation, a component, or a node. A name is a textual string,
such as t and myCustomer in Figure 13-2. That name alone is known as a simple name. The abstraction
of the instance may be a simple name (such as transaction) or it may be a path name (such as
Multimedia::AudioStream) which is the abstraction's name prefixed by the name of the package in
which that abstraction lives.

Operations are discussed in Chapters 4 and 9; components are discussed in
Chapter 15; nodes are discussed in Chapter 27.

When you explicitly name an object, you are really giving it a name (such as myCustomer) that's usable
by a human. You can also simply name an object (such as myCustomer) and elide its abstraction if it's
obvious in the given context. In many cases, however, the real name of an object is known only to the
computer on which that object lives. In such cases, you can render an anonymous object (such as
:AudioStream). Each occurrence of an anonymous object is considered distinct from all other
occurrences. If you don't even know the object's associated abstraction, you must at least give it an
explicit name (such as agent:).

The name and the type of an object form one string in the notation, for example, t : TRansaction.The name and the type of an object form one string in the notation, for example, t : TRansaction.
For an object (as opposed to a role within a structured class), the entire string is underlined.

Roles and structured classes are discussed in Chapter 15.

Note

An instance name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate the name
of the instance from the name of its abstraction) and may continue over several lines. In
practice, instance names are short nouns or noun phrases drawn from the vocabulary of the



system you are modeling. Typically, you capitalize the first letter of all but the first word in
an instance name, as in t or myCustomer.

Operations

Not only is an object something that usually takes up space in the real world, it is also something you
can do things to. The operations you can perform on an object are declared in the object's abstraction.
For example, if the class TRansaction defines the operation commit, then given the instance t :
transaction, you can write expressions such as t.commit(). The execution of this expression means
that t (the object) is operated on by commit (the operation). Depending on the inheritance lattice
associated with TRansaction, this operation may or may not be invoked polymorphically.

Operations are discussed in Chapters 4 and 9; polymorphism is discussed in
Chapter 9.

State

An object also has state, which in this sense encompasses all the properties of the object plus the
current values of each of these properties (also including links and related objects, depending on your
viewpoint). These properties include the attributes and associations of the object, as well as all its
aggregate parts. An object's state is therefore dynamic. So when you visualize its state, you are really
specifying the value of its state at a given moment in time and space. It's possible to show the
changing state of an object by showing it multiple times in the same interaction diagram, but with
each occurrence representing a different state.

When you operate on an object, you typically change its state; when you query an object, you don't
change its state. For example, when you make an airline reservation (represented by the object r :
Reservation), you might set the value of one of its attributes (for example, price = 395.75). If you
change your reservation, perhaps by adding a new leg to your itinerary, then its state might change
(for example, price = 1024.86).

Attributes are discussed in Chapter 4; interaction diagrams are discussed in
Chapter 19. Another way to show the changing state of an individual object
over time is via state machines, which are discussed in Chapter 22.

As Figure 13-3 shows, you can use the UML to render the value of an object's attributes. For example,
myCustomer is shown with the attribute id having the value "432-89-1783." In this case, id's type (SSN)
is shown explicitly, although it can be elided (as for active = True), because its type can be found in
the declaration of id in myCustomer's associated class.

Figure 13-3. Object State



You can associate a state machine with a class, which is especially useful when modeling event-driven
systems or when modeling the lifetime of a class. In these cases, you can also show the state of this
machine for a given object at a given time. The state is shown in square brackets following the type.
For example, as Figure 13-3 shows, the object c (an instance of the class Phone) is indicated in the
state WaitingForAnswer, a named state defined in the state machine for Phone.

Note

Because an object may be in several states simultaneously, you can also show a list of its
current states.

Other Features

Processes and threads are an important element of a system's process view, so the UML provides a
visual cue to distinguish elements that are active (those that are part of a process or thread and
represent a root of a flow of control) from those that are passive. You can declare active classes that
reify a process or thread, and in turn you can distinguish an instance of an active class, as in Figure
13-4.

Figure 13-4. Active Objects

Processes and threads are discussed in Chapter 23.



Note

Most often you'll use active objects in the context of interaction diagrams that model
multiple flows of control. Each active object represents the root of a flow of control and may
be used to name distinct flows.

Interaction diagrams are discussed in Chapter 19.

There are two other elements in the UML that may have instances. The first is an association. An
instance of an association is a link. A link is a semantic connection among a list of objects. A link is
rendered as a line, just like an association, but it can be distinguished from an association because
links connect objects.

Links are discussed in Chapters 14 and 16; static-scoped attributes and
operations are discussed in Chapter 9.

The second kind of instance is a static (class-scoped) attribute. A static attribute is, in effect, an object
owned by the class that is accessible by all instances of the class. It is therefore shown in a class
declaration as an underlined attribute.

Standard Elements

All of the UML's extensibility mechanisms apply to objects. Usually, however, you don't stereotype an
instance directly, nor do you give it its own tagged values. Instead, an object's stereotype and tagged
values derive from the stereotype and tagged values of its associated abstraction. For example, as
shown in Figure 13-5, you can explicitly indicate an object's stereotype as well as its abstraction.

Figure 13-5. Stereotyped Objects

The UML's extensibility mechanisms are discussed in Chapter 6.

The UML defines two standard stereotypes that apply to the dependency relationships among objects
and among classes:



1.
instanceOf

Specifies that the client object is an instance of the supplier classifier. This is rarely
shown graphically; it is usually shown using text notation following a colon.

2.
instantiate

Specifies that the client class creates instances of the supplier class



Common Modeling Techniques

Modeling Concrete Instances

When you model concrete instances, you are in effect visualizing things that live in the real world. You
can't exactly see an instance of a Customer class, for example, unless that customer is standing beside
you; in a debugger, you might be able to see a representation of that object, however.

One of the things for which you'll use objects is to model concrete instances that exist in the real
world. For example, if you want to model the topology of your organization's network, you'll use
deployment diagrams containing instances of nodes. Similarly, if you want to model the components
that live on the physical nodes in this network, you'll use component diagrams containing instances of
the components. Finally, suppose you have a debugger connected to your running system; it can
present the structural relationships among instances by rendering an object diagram.

Component diagrams are discussed in Chapter 15; deployment diagrams are
discussed in Chapter 31; object diagrams are discussed in Chapter 14.

To model concrete instances,

Identify those instances necessary and sufficient to visualize, specify, construct, or document the
problem you are modeling.

Render these objects in the UML as instances. Where possible, give each object a name. If there
is no meaningful name for the object, render it as an anonymous object.

Expose the stereotype, tagged values, and attributes (with their values) of each instance
necessary and sufficient to model your problem.

Render these instances and their relationships in an object diagram or other diagram appropriate
to the kind of the instance.

For example, Figure 13-6 shows an object diagram drawn from the execution of a credit card
validation system, perhaps as seen by a debugger that's probing the running system.

Figure 13-6. Modeling Concrete Instances





Hints and Tips

When you model instances in the UML, remember that every instance should denote a concrete
manifestation of some abstraction, typically a class, component, node, use case, or association. A
well-structured instance

Is explicitly associated with a specific abstraction.

Has a unique name drawn from the vocabulary of the problem domain or the solution domain.

When you draw an instance in the UML,

Render the name of the abstraction of which it is an instance unless it's obvious by context.

Show the instance's stereotype and state only as necessary to understand the object in its
context.

If visible, organize long lists of attributes and their values by grouping them according to their
category.



Chapter 14. Object Diagrams
In this chapter

Modeling object structures

Forward and reverse engineering

Object diagrams model the instances of things contained in class diagrams. An object diagram shows
a set of objects and their relationships at a point in time.

You use object diagrams to model the static design view or static process view of a system. This
involves modeling a snapshot of the system at a moment in time and rendering a set of objects, their
state, and their relationships.

Object diagrams are not only important for visualizing, specifying, and documenting structural models,
but also for constructing the static aspects of systems through forward and reverse engineering.



Getting Started

If you are not used to the game, soccer looks like a terribly simple sportan unruly mob of people
madly running about a field chasing a white ball. Looking at the blurred image of bodies in motion,
there hardly seems to be any subtlety or style to it.

Freeze the motion for a moment, then classify the individual players, and a very different picture of
the game emerges. No longer just a mass of humanity, you'll be able to distinguish the forwards,
halfbacks, and fullbacks. Dig a bit deeper and you'll understand how these players collaborate:
following strategies for goal-tending, moving the ball, stealing the ball, and attacking. In a winning
team, you won't find players placed randomly around the field.

Instead, at every moment of the game, you'll find their placement on the field and their relationship to
other players well calculated.

Trying to visualize, specify, construct, or document a software-intensive system is similar. If you were
to trace the control flow of a running system, you'd quickly lose sight of the bigger picture for how the
system's parts are organized, especially if you have multiple threads of control. Similarly, if you have a
complex data structure, just looking at the state of one object at a time doesn't help much. Rather,
you need to study a snapshot of the object, its neighbors, and its relationships to these neighbors. In
all but the simplest object-oriented systems, you'd find a multitude of objects present, each standing
in precise relationship with others. In fact, when an object-oriented system breaks, it's typically not
because of a failure in logic, but because of broken connections among objects or a mangled state in
individual objects.

With the UML, you use class diagrams to visualize the static aspects of your system's building blocks.
You use interaction diagrams to visualize the dynamic aspects of your system, consisting of instances
of these building blocks and messages dispatched among them. An object diagram covers a set of
instances of the things found in a class diagram. An object diagram, therefore, expresses the static
part of an interaction, consisting of the objects that collaborate but without any of the messages
passed among them. In both cases, an object diagram freezes a moment in time, as in Figure 14-1.

Figure 14-1. An Object Diagram



Class diagrams are discussed in Chapter 8; interactions are discussed in Chapter
16; interaction diagrams are discussed in Chapter 19.



Terms and Concepts

An object diagram is a diagram that shows a set of objects and their relationships at a point in time.
Graphically, an object diagram is a collection of vertices and arcs.

Common Properties

An object diagram is a special kind of diagram and shares the same common properties as all other
diagramsthat is, a name and graphical contents that are a projection into a model. What distinguishes
an object diagram from all other kinds of diagrams is its particular content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Objects are discussed in Chapter 13; links are discussed in Chapter 16.

Object diagrams commonly contain

Objects

Links

Like all other diagrams, object diagrams may contain notes and constraints.

Sometimes you'll want to place classes in your object diagrams as well, especially when you want to
visualize the classes behind each instance.

Class diagrams are discussed in Chapter 8; interaction diagrams are discussed
in Chapter 19.

Note

An object diagram correlates with a class diagram: The class diagram describes the general
situation, and the instance diagram describes specific instances derived from the class



diagram.An object diagram contains primarily objects and links. Deployment diagrams may
also occur in generic and instance forms: General deployment diagrams describe node types,
and instance deployment diagrams describe a concrete configuration of node instances
described by those types.

Common Uses

You use object diagrams to model the static design view or static process view of a system just as you
do with class diagrams, but from the perspective of real or prototypical instances. This view primarily
supports the functional requirements of a systemthat is, the services the system should provide to its
end users. Object diagrams let you model static data structures.

Design views are discussed in Chapter 2.

When you model the static design view or static interaction view of a system, you typically use object
diagrams to model object structures.

Interaction diagrams are discussed in Chapter 19.

Modeling object structures involves taking a snapshot of the objects in a system at a given moment in
time. An object diagram represents one static frame in the dynamic storyboard represented by an
interaction diagram. You use object diagrams to visualize, specify, construct, and document the
existence of certain instances in your system, together with their relationships to one another. You can
show dynamic behavior and execution as a sequence of frames.



Common Modeling Techniques

Modeling Object Structures

When you construct a class diagram, a component diagram, or a deployment diagram, what you are
really doing is capturing a set of abstractions that are interesting to you as a group and, in that
context, exposing their semantics and their relationships to other abstractions in the group. These
diagrams show only potentiality. If class A has a one-to-many association to class B, then for one
instance of A there might be five instances of B; for another instance of A there might be only one
instance of B. Furthermore, at a given moment in time, that instance of A, along with the related
instances of B, will each have certain values for their attributes and state machines.

If you freeze a running system or just imagine a moment of time in a modeled system, you'll find a set
of objects, each in a specific state and each in a particular relationship to other objects. You can use
object diagrams to visualize, specify, construct, and document the structure of these snapshots.
Object diagrams are especially useful for modeling complex data structures.

When you model your system's design view, a set of class diagrams can be used to completely specify
the semantics of your abstractions and their relationships. With object diagrams, however, you cannot
completely specify the object structure of your system. For an individual class, there may be a
multitude of possible instances, and for a set of classes in relationship to one another, there may be
many times more possible configurations of these objects. Therefore, when you use object diagrams,
you can only meaningfully expose interesting sets of concrete or prototypical objects. This is what it
means to model an object structurean object diagram shows one set of objects in relation to one
another at one moment in time.

To model an object structure,

Identify the mechanism you'd like to model. A mechanism represents some function or behavior
of the part of the system you are modeling that results from the interaction of a society of
classes, interfaces, and other things.

Mechanisms such as these are often coupled to use cases, as discussed in
Chapters 17 and 29.

Create a collaboration to describe a mechanism.

For each mechanism, identify the classes, interfaces, and other elements that participate in this
collaboration; identify the relationships among these things as well.

Consider one scenario that walks through this mechanism. Freeze that scenario at a moment in
time, and render each object that participates in the mechanism.

Expose the state and attribute values of each such object, as necessary, to understand the
scenario.

Similarly, expose the links among these objects, representing instances of associations among
them.



For example, Figure 14-2 shows a set of objects drawn from the implementation of an autonomous
robot. This figure focuses on some of the objects involved in the mechanism used by the robot to
calculate a model of the world in which it moves. There are many more objects involved in a running
system, but this diagram focuses on only those abstractions that are directly involved in creating this
world view.

Figure 14-2. Modeling Object Structures

As this figure indicates, one object represents the robot itself (r, an instance of Robot), and r is
currently in the state marked moving. This object has a link to w, an instance of World, which
represents an abstraction of the robot's world model.

At this moment in time, w is linked to two instances of Area. One of them (a2) is shown with its own
links to three Wall objects and one Door object. Each of these walls is marked with its current width,
and each is shown linked to its neighboring walls. As this object diagram suggests, the robot has
recognized this enclosed area, which has walls on three sides and a door on the fourth.

Reverse Engineering

Reverse engineering (the creation of a model from code) an object diagram can be useful. In fact,
while you are debugging your system, this is something that you or your tools will do all the time. For
example, if you are chasing down a dangling link, you'll want to literally or mentally draw an object
diagram of the affected objects to see where, at a given moment in time, an object's state or its
relationship to other objects is broken.

To reverse engineer an object diagram,

Chose the target you want to reverse engineer. Typically, you'll set your context inside an
operation or relative to an instance of one particular class.

Using a tool or simply walking through a scenario, stop execution at a certain moment in time.

Identify the set of interesting objects that collaborate in that context and render them in an



object diagram.

As necessary to understand their semantics, expose these object's states.

As necessary to understand their semantics, identify the links that exist among these objects.

If your diagram ends up overly complicated, prune it by eliminating objects that are not germane
to the questions about the scenario you need answered. If your diagram is too simplistic, expand
the neighbors of certain interesting objects and expose each object's state more deeply.

You will usually have to manually add or label structure that is not explicit in the target code. The
missing information supplies the design intent that is only implicit in the final code.



Hints and Tips

When you create object diagrams in the UML, remember that every object diagram is just a graphical
representation of the static design view or static interaction view of a system. This means that no
single object diagram need capture everything about a system's design or process view. In fact, for all
but trivial systems, you'll encounter hundreds if not thousands of objects, most of them anonymous.
So it's impossible to completely specify all the objects of a system or all the ways in which these
objects may be associated. Consequently, object diagrams reflect some of the concrete or prototypical
objects that live in the running system.

A well-structured object diagram

Is focused on communicating one aspect of a system's static design view or static process view.

Represents one frame in the dynamic storyboard represented by an interaction diagram.

Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction; you should expose only those attribute
values and other adornments that are essential to understanding.

Is not so minimalist as to misinform the reader about semantics that are important.

When you draw an object diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out to be
physically close.

Use notes and color as visual cues to draw attention to important features of your diagram.

Include the values and state of each object as necessary to communicate your intent.



Chapter 15. Components
In this chapter

Components, interfaces, and realization

Internal structure, ports, parts, and connectors

Wiring subcomponents together

Modeling an API

A component is a logical, replaceable part of a system that conforms to and provides the realization of
a set of interfaces.

Good components define crisp abstractions with well-defined interfaces, making it possible to easily
replace older components with newer, compatible ones.

Interfaces bridge your logical and design models. For example, you may specify an interface for a
class in a logical model, and that same interface will carry over to some design component that
realizes it.

Interfaces allow you to build the implementation of a component using smaller components by wiring
ports on the components together.



Getting Started

When you are building a house, you may choose to install a home entertainment system. It is possible
to buy a single unit that includes everything: television screen, tuner, VCR, DVD player, and speakers.
Such a system is easy to install and works great if it meets your needs. A one-piece unit is not very
flexible, however. You have to take the combination of features that the manufacturer provides. You
probably won't be able to get high-quality speakers. If you want to install a new high-definition
television screen, you have to throw away the entire unit and replace it, including the VCR and DVD
player that may still be working fine. If you have a collection of records (some of you readers may
remember what those are), you are out of luck.

A more flexible approach is to build your entertainment system out of individual components, each
focused on a single functionality. A monitor displays the picture; individual speakers play the sound,
and they can be placed wherever your room and ears allow; the tuner, VCR, and DVD player are each
separate units, their capabilities adjusted to your videophile requirements and your budget. Instead of
being locked together in a rigid fashion, you place each component where you want and hook them
together with cables. Each cable has a specific kind of plug that fits into a matching port on a
component, so you can't plug a speaker wire into a video output. You can hook up your old turntable if
you want. When you want to upgrade your system, you can replace one component at a time without
trashing the entire system and starting over. Components provide more flexibility and permit you to
obtain higher quality, if you want it and can afford it.

You can plug the amplifier input into the video output, because they happen to
use the same kinds of plugs. Software has the advantage of an unlimited
number of "plug" types.

Software is similar. You can construct an application as a large, monolithic unit, but it will be rigid and
difficult to modify as needs change. In addition, you can't take advantage of existing capabilities. Even
if an existing system has much of the functionality you need, it may also have a lot of other parts that
you don't want, and they are difficult or impossible to remove. The solution for software systems is the
same as for electronics systems: Build them from well defined components that can be wired together
flexibly and replaced individually as requirements change.



Terms and Concepts

An interface is a collection of operations that specify a service that is provided by or requested from a
class or component.

Interfaces are discussed in Chapter 11; classes are discussed in Chapters 4 and
9

A component is a replaceable part of a system that conforms to and provides the realization of a set of
interfaces.

A port is a specific window into an encapsulated component accepting messages to and from the
component conforming to specified interfaces.

Internal structure is the implementation of a component by means of a set of parts that are connected
together in a specific way.

A part is the specification of a role that composes part of the implementation of a component. In an
instance of the component, there is an instance corresponding to the part.

A connector is a communication relationship between two parts or ports within the context of a
component.

Components and Interfaces

An interface is a collection of operations that are used to specify a service of a class or a component.
The relationship between component and interface is important. All the most common component-
based operating system facilities (such as COM+, CORBA, and Enterprise Java Beans) use interfaces
as the glue that binds components together.

Interfaces are discussed in Chapter 11.

To construct a system based on components, you decompose your system by specifying interfaces
that represent the major seams in the system. You then provide components that realize the
interfaces, along with other components that access the services through their interfaces. This
mechanism permits you to deploy a system whose services are somewhat location-independent and,
as discussed in the next section, replaceable.

Modeling distributed systems is discussed in Chapter 24.



An interface that a component realizes is called a provided interface, meaning an interface that the
component provides as a service to other components. A component may declare many provided
interfaces. The interface that a component uses is called a required interface, meaning an interface
that the component conforms to when requesting services from other components. A component may
conform to many required interfaces. Also, a component may both provide and require interfaces.

Realization is discussed in Chapter 10.

As Figure 15-1 indicates, a component is shown as a rectangle with a small two-pronged icon in its
upper right corner. The name of the component appears in the rectangle. A component can have
attributes and operations, but these are often elided in diagrams. A component can show a network of
internal structure, as described later in this chapter.

Figure 15-1. Components and Interfaces

You can show the relationship between a component and its interfaces in one of two ways. The first
(and most common) style renders the interface in its elided, iconic form. A provided interface is shown
as a circle attached to the component by a line (a "lollipop"). A required interface is shown as a
semicircle attached to the component by a line (a "socket"). In both cases, the name of the interface
is placed next to the symbol. The second style renders the interface in its expanded form, perhaps
revealing its operations. The component that realizes the interface is connected to the interface using
a full realization relationship. The component that accesses the services of the other component
through the interface is connected to the interface using a dependency relationship.

A given interface may be provided by one component and required by another. The fact that this
interface lies between the two components breaks the direct dependency between the components. A
component that uses a given interface will function properly no matter what component realizes that
interface. Of course, a component can be used in a context if and only if all its required interfaces are
realized as provided interfaces of other components.



Note

Interfaces apply at multiple levels just like other elements. The design-level interface you
find used or realized by a component will map to an implementation-level interface used or
realized by the artifact that implements the component.

Replaceability

The basic intent of every component-based operating system facility is to permit the assembly of
systems from binary replaceable artifacts. This means that you can design a system using components
and then implement those components using artifacts. You can then evolve that system by adding
new components and replacing old ones, without rebuilding the system. Interfaces are the key to
making this happen. In the executable system, you can use any artifacts that implement a component
conforming to or providing that interface. You can extend the system by making the components
provide new services through other interfaces, which, in turn, other components can discover and use.
These semantics explain the intent behind the definition of components in the UML. A component
conforms to and provides the realization of a set of interfaces and enables substitutability both in the
logical design and in the physical implementation based on it.

Artifacts are discussed in Chapter 26.

A component is replaceable. A component is substitutableit is possible to replace a component with
another that conforms to the same interfaces. At design time, you choose a different component.
Typically, the mechanism of inserting or replacing an artifact in a run time system is transparent to
the component user and is enabled by object models (such as COM+ and Enterprise Java Beans) that
require little or no intervening transformation or by tools that automate the mechanism.

A component is part of a system. A component rarely stands alone. Rather, a given component
collaborates with other components and in so doing exists in the architectural or technology context in
which it is intended to be used. A component is logically and physically cohesive and thus denotes a
meaningful structural and/or behavioral chunk of a larger system. A component may be reused across
many systems. Therefore, a component represents a fundamental building block on which systems
can be designed and composed. This definition is recursivea system at one level of abstraction may
simply be a component at a higher level of abstraction.

Systems and subsystems are discussed in Chapter 32.

Finally, as discussed in the previous section, a component conforms to and provides the realization of
a set of interfaces.

Organizing Components

You can organize components by grouping them in packages in the same manner in which you
organize classes.



Packages are discussed in Chapter 12.

You can also organize components by specifying dependency, generalization, association (including
aggregation), and realization relationships among them.

Relationships are discussed in Chapters 5 and 10.

Components can be built from other components. See the discussion on internal structure later in this
chapter.

Ports

Interfaces are useful in declaring the overall behavior of a component, but they have no individual
identity; the implementation of the component must merely ensure that all the operations in all of the
provided interfaces are implemented. To have greater control over the implementation, ports can be
used.

A port is an explicit window into an encapsulated component. In an encapsulated component, all of the
interactions into and out of the component pass through ports. The externally visible behavior of the
component is the sum of its ports, no more and no less. In addition, a port has identity. Another
component can communicate with the component through a specific port. The communications are
described completely by the interfaces that the port supports, even if the component supports other
interfaces. In the implementation, the internal parts of the component may interact through a specific
external port, so that each part can be independent of the requirements of the other parts. Ports
permit the interfaces of a component to be divided into discrete packets and used independently. The
encapsulation and independence provided by ports permit a much greater degree of encapsulation and
substitutability.

A port is shown as a small square straddling the border of a componentit represents a hole through
the encapsulation boundary of the component. Both provided and required interfaces may be attached
to the port symbol. A provided interface represents a service that can be requested through that port.
A required interface represents a service that the port needs to obtain from some other component.
Each port has a name so that it can be uniquely identified given the component and the port name.
The port name can be used by internal parts of the component to identify the port through which to
send and receive messages. The component name and port name together uniquely identify a specific
port in a specific component for use by other components.

Ports are part of a component. Instances of ports are created and destroyed along with the instance of
the component to which they belong. Ports may also have multiplicity; this indicates the possible
number of instances of a particular port within an instance of the component. Each port on a
component instance has an array of port instances. Although the port instances in an array all satisfy
the same interface and accept the same kinds of requests, they may have different states and data
values. For example, each instance in an array might have a different priority level, with the higher-
priority port instances being served first.



Parts may also have multiplicity, therefore one part in a component may
correspond to several instances in an instance of the component.

Figure 15-2 shows the model of a Ticket Seller component with ports. Each port has a name and,
optionally, a type to tell what kind of a port it is. The component has ports for ticket sales, attractions,
and credit card charging.

Figure 15-2. Ports on a Component

There are two ports for ticket sales, one for normal customers and one for priority customers. They
both have the same provided interface of type Ticket Sales. The credit card processing port has a
required interface; any component that provides the specified services can satisfy it. The attractions
port has both provided and required interfaces. Using the Load Attractions interface, a theater can
enter shows and other attractions into the ticket database for sale. Using the Booking interface, the
ticket seller component can query the theaters for the availability of tickets and actually buy the
tickets.

Internal Structure

A component can be implemented as a single piece of code, but in larger systems it is desirable to be
able to build large components using smaller components as building blocks. The internal structure of
a component is the parts that compose the implementation of the component together with the
connections among them. In many cases, the internal parts can be instances of smaller components
that are wired together statically through ports to provide the necessary behavior without the need for
the modeler to specify extra logic.

A part is a unit of the implementation of a component. A part has a name and a type. In an instance
of the component, there is one or more instance corresponding to each part having the type specified
by the part. A part has a multiplicity within its component. If the multiplicity of the part is greater than
one, there may be more than one part instance in a given component instance. If the multiplicity is
something other than a single integer, the number of part instances may vary from one instance of
the component to another. A component instance is created with the minimum number of parts;
additional parts can be added later. An attribute of a class is a kind of part: it has a type and a
multiplicity, and each instance of the class has one or more instance of the given type.



Figure 15-3 shows a compiler component built from four kinds of parts. There is a lexical analyzer, a
parser, a code generator, and one to three optimizers. More complete versions of the compiler can be
configured with different levels of optimization; within a given version, the appropriate optimizer can
be selected at run time.

Figure 15-3. Parts Within a Component

Note that a part is not the same as a class. Each part is potentially distinguishable by its name, just
like each attribute in a class is distinguishable. There can be more than one part of the same type, but
you can tell them apart by their names, and presumably they have distinct functions within the
component. For example, in Figure 15-4 an Air Ticket Sales component might have separate Sales
parts for frequent fliers and for regular customers; they both work the same, but the frequent-flier
part is available only to special customers and involves less chance of waiting in line and may provide
additional perks. Because these components have the same type, they must have names to
distinguish them. The other two components of types SeatAssignment and InventoryManagement do not
require names because there is only one of each type within the Air Ticket Sales component.

Figure 15-4. Parts of the Same Type



If the parts are components with ports, you can wire them together through their ports. The rule is
simple: Two ports can be connected together if one provides a given interface and the other requires
the interface. Connecting the ports means that the requiring port will invoke the providing port to
obtain services. The advantage of ports and interfaces is that nothing else needs to be known; if the
interfaces are compatible, the ports can be connected. A tool could automatically generate calling code
from one component to another. They can also be reconnected to other components that provide the
same interfaces, if new components become available. A wire between two ports is called a connector.
In an instance of the overall component, it represents a link or a transient link. A link is an instance of
an ordinary association. A transient link represents a usage relationship between two components.
Instead of an ordinary association, it might be supplied by a procedure parameter or a local variable
that serves as the target of an operation. The advantage of ports and interfaces is that the two
components don't have to know about each other at design time, as long as their interfaces are
compatible.

You can show connectors in two ways (Figure 15-5). If two components are explicitly wired together,
either directly or through ports, just draw a line between them or their ports. On the other hand, if
two components are connected because they have compatible interfaces, you can use a ball-and-
socket notation to show that there is no inherent relationship between the components, although they
are connected inside this component. You could substitute some other component that satisfies the
interface.

Figure 15-5. Connectors

[View full size image]



You can also wire internal ports to external ports of the overall component. This is called a delegation
connector, because messages on the external port are delegated to the internal port. This is shown by
an arrow from an internal port to an external port. You can think of this in two ways, whichever you
prefer: In the first approach, the internal port is the same as the external port; it has been moved to
the boundary and allowed to peek through. In the second approach, any message to the external port
is transmitted immediately to the internal port, and vice versa. It really doesn't matter; the behavior
is the same in either case.

Figure 15-5 shows an example with internal ports and different kinds of connectors. External requests
on the OrderEntry port are delegated to the internal port of the OrderTaking subcomponent. This
component in turn sends its output to its OrderHandoff port. This port is connected by a ball-and-
socket symbol to the OrderHandling subcomponent. This kind of connection implies that there is no
special knowledge between the two components; the output could be connected to any component
that obeys the OrderHandoff interface. The OrderHandling component communicates with the
Inventory component to find the items in stock. This is shown as a direct connector; because no
interfaces are shown, this tends to suggest that the connection is more tightly coupled. Once the items
are found in stock, the OrderHandling component accesses an external Credit service; this is shown
by the delegation connector to the external port called changing. Once the external credit service
responds, the OrderHandling component communicates with a different port ShipItems on the
Inventory component to prepare the order for shipment. The Inventory component accesses an
external Fulfillment service to actually perform the shipment.

Note that the component diagram shows the structure and potential message paths of the component.
The component diagram itself does not show the sequencing of messages through the component.
Sequencing and other kinds of dynamic information can be shown using interaction diagrams.

Interaction diagrams are discussed in Chapter 19.

Note

Internal structure, including ports, parts, and connectors, can be used as the implementation
of any class, not just components. There really isn't much of a semantic distinction between
classes and components. It is often useful, however, to use the convention that components



are used for encapsulated concepts with internal structure, particularly those concepts that
do not map directly to a single class in the implementation.



Common Modeling Techniques

Modeling Structured Classes

A structured class can be used to model data structures in which the parts have contextual
connections that apply only within the class. Ordinary attributes or associations can define composite
parts of a class, but the parts cannot be related to each other on a plain class diagram. A class whose
internal structure is shown with parts and connectors avoids this problem.

To model a structured class,

Identify the internal parts of the class and their types.

Give each part a name that indicates its purpose in the structured class, not its generic type.

Draw connectors between parts that communicate or have contextual relationships.

Feel free to use other structured classes as the types of parts, but remember that you can't
make connections to parts inside another structured class; connect to its external ports.

Figure 15-6 shows the design of the structured class TicketOrder. This class has four parts and one
ordinary attribute, price. The customer is a Person object. The customer may or may not have a
priority status, so the priority part is shown with multiplicity 0..1; the connector from customer to
priority also has the same multiplicity. There are one or more seats reserved; seat has a multiplicity
value. It is unnecessary to show a connector from customer to seats because they are in the same
structured class anyway. Notice that Attraction is drawn with a dashed border. This means that the
part is a reference to an object that is not owned by the structured class. The reference is created and
destroyed with an instance of the TicketOrder class, but instances of Attraction are independent of the
TicketOrder class. The seat part is connected to the attraction reference because the order may
include seats for more than one attraction, and each seat reservation must be connected to a
specific attraction. We see from the multiplicity on the connector that each Seat reservation is
connected to exactly one Attraction object.

Figure 15-6. Structured Class



Modeling an API

If you are a developer who's assembling a system from component parts, you'll often want to see the
application programming interfaces (APIs) that you use to glue these parts together. APIs represent
the programmatic seams in your system, which you can model using interfaces and components.

An API is essentially an interface that is realized by one or more components. As a developer, you'll
really care only about the interface itself; which component realizes an interface's operations is not
relevant as long as some component realizes it. From a system configuration management
perspective, though, these realizations are important because you need to ensure that when you
publish an API, there's some realization available that carries out the API's obligations. Fortunately,
with the UML, you can model both perspectives.

The operations associated with any semantically rich API will be fairly extensive, so most of the time
you won't need to visualize all these operations at once. Instead, you'll tend to keep the operations in
the backplane of your models and use interfaces as handles with which you can find these sets of
operations. If you want to construct executable systems against these APIs, you will need to add
enough detail so that your development tools can compile against the properties of your interfaces.
Along with the signatures of each operation, you'll probably also want to include uses cases that
explain how to use each interface.

To model an API,

Identify the seams in your system and model each seam as an interface, collecting the attributes
and operations that form this edge.

Expose only those properties of the interface that are important to visualize in the given context;
otherwise, hide these properties, keeping them in the interface's specification for reference, as
necessary.

Model the realization of each API only insofar as it is important to show the configuration of a
specific implementation.

Figure 15-7 exposes the APIs of an animation component. You'll see four interfaces that form the API:
IApplication, IModels, IRendering, and IScripts. Other components can use one or more of these
interfaces as needed.



Figure 15-7. Modeling an API



Hints and Tips

Components allow you to encapsulate the parts of your system to reduce dependencies, make them
explicit, and enhance replaceability and flexibility when the system must be changed in the future. A
good component:

Encapsulates a service that has a well-defined interface and boundary.

Has enough internal structure to be worth describing.

Does not combine unrelated functionality into a single unit.

Organizes its external behavior using a few interfaces and ports.

Interacts only through declared ports.

If you choose to show the implementation of a component using nested subcomponents:

Use a moderate number of subcomponents. If there are too many to show comfortably on one
page, use additional levels of decomposition in some of the subcomponents.

Ensure that the subcomponents interact only through defined ports and connectors.

Determine which subcomponents interact directly with the external world and model them with
delegation connectors.

When you draw a component in the UML:

Give it a name that clearly indicates its purpose. Name interfaces in the same way.

Name subcomponents and ports if their meaning is not clear from their types or if there are
multiple parts of the same type.

Hide unnecessary detail. You don't have to show every detail of the implementation on the
component diagram.

Show the dynamics of a component using interaction diagrams.



Part 4: Basic Behavioral Modeling



Chapter 16. Interactions
In this chapter

Roles, links, messages, actions, and sequences

Modeling flows of control

Creating well-structured algorithms

In every interesting system, objects don't just sit idle; they interact with one another by passing
messages. An interaction is a behavior that comprises a set of messages exchanged among a set of
objects within a context to accomplish a purpose.

You use interactions to model the dynamic aspect of collaborations, representing societies of objects
playing specific roles, all working together to carry out some behavior that's bigger than the sum of
the elements. These roles represent prototypical instances of classes, interfaces, components, nodes,
and use cases. Their dynamic aspects are visualized, specified, constructed, and documented as flows
of control that may encompass simple, sequential threads through a system, as well as more-complex
flows that involve branching, looping, recursion, and concurrency. You can model each interaction in
two ways: by emphasizing its time ordering of messages or by emphasizing its sequencing of
messages in the context of some structural organization of objects.

Well-structured interactions are like well-structured algorithmsefficient, simple, adaptable, and
understandable.



Getting Started

A building is a living thing. Although every building is constructed of static stuff, such as bricks,
mortar, lumber, plastic, glass, and steel, those things work together dynamically to carry out behavior
that is useful to those who use the building. Doors and windows open and close. Lights turn on and off.
A building's furnace, air conditioner, thermostat, and ventilation ducts work together to regulate the
building's temperature. In intelligent buildings, sensors detect the presence or absence of activity and
adjust lighting, heating, cooling, and music as conditions change. Buildings are laid out to facilitate the
flow of people and materials from place to place. More subtly, buildings are designed to adapt to
changes in temperature, expanding and contracting during the day and night and across the seasons.
All well-structured buildings are designed to react to dynamic forces, such as wind, earthquakes, and
the movement of its occupants, in ways that keep the building in equilibrium.

The differences between building a dog house and building a high rise are
discussed in Chapter 1.

Software-intensive systems are the same way. An airline system might manage many terabytes of
information that sit untouched on some disk most of the time, only to be brought to life by outside
events, such as the booking of a reservation, the movement of an aircraft, or the scheduling of a
flight. In reactive systems, such as those found on the computer in a microwave oven, objects spring
to life and work gets carried out when the system is stimulated by such events as a user pushing a
button or by the passage of time.

Modeling the structural aspects of a system is discussed in Parts 2 and 3; you
can also model the dynamic aspects of a system by using state machines, as
discussed in Chapter 22; object diagrams are discussed in Chapter 14;
interaction diagrams are discussed in Chapter 19; collaborations are discussed
in Chapter 28.

In the UML, you model the static aspects of a system by using such elements as class diagrams and
object diagrams. These diagrams let you visualize, specify, construct, and document the things that
live in your system, including classes, interfaces, components, nodes, and use cases and their
instances, together with the way those things sit in relationship to one another.

In the UML, you model the dynamic aspects of a system by using interactions. Like an object diagram,
an interaction statically sets the stage for its behavior by introducing all the objects that work together
to carry out some action. Going beyond object diagrams, however, interactions also introduce
messages that are dispatched from object to object. Most often, messages involve the invocation of an
operation or the sending of a signal; messages may also encompass the creation and destruction of
other objects.

You use interactions to model the flow of control within an operation, a class, a component, a use
case, or the system as a whole. Using interaction diagrams, you can reason about these flows in two
ways. First, you can focus on how messages are dispatched across time. Second, you can focus on the
structural relationships among the objects in an interaction and then consider how messages are



passed within the context of that structure.

The UML provides a graphical representation of messages, as Figure 16-1 shows. This notation permits
you to visualize a message in a way that lets you emphasize its most important parts: its name,
parameters (if any), and sequence. Graphically, a message is rendered as a directed line and almost
always includes the name of its operation.

Figure 16-1. Messages, Links, and Sequencing



Terms and Concepts

An interaction is a behavior that comprises a set of messages exchanged among objects in a set of
roles within a context to accomplish a purpose. A message is a specification of a communication
between objects that conveys information with the expectation that activity will ensue.

Internal structure diagrams show the structural connection among roles, as
discussed in Chapter 15; objects are discussed in Chapter 14; systems and
subsystems are discussed in Chapter 32; collaborations are discussed in
Chapter 28.

Context

You may find an interaction wherever objects are linked to one another. You'll find interactions in the
collaboration of objects that exist in the context of your system or subsystem. You will also find
interactions in the context of an operation. Finally, you'll find interactions in the context of a class.

Most often, you'll find interactions in the collaboration of objects that exist in the context of your
system or subsystem as a whole. For example, in a system for Web commerce, you'll find objects on
the client (such as instances of the classes BookOrder and OrderForm) interacting with one another.
You'll also find objects on the client (again, such as instances of BookOrder) interacting with objects on
the server (such as instances of BackOrderManager). These interactions therefore not only involve
localized collaborations of objects (such as the interactions surrounding OrderForm), but they may also
cut across many conceptual levels of your system (such as the interactions surrounding
BackOrderManager).

You'll also find interactions among objects in the implementation of an operation. The parameters of
an operation, any variables local to the operation, and any objects global to the operation (but still
visible to the operation) may interact with one another to carry out the algorithm of that operation's
implementation. For example, the operation moveToPosition(p : Position) defined for a class in a
mobile robot will involve the interaction of a parameter (p), an object global to the operation (such as
the object currentPosition), and possibly several local objects (such as local variables used by the
operation to calculate intermediate points in a path to the new position).

Operations are discussed in Chapters 4 and 9; modeling an operation is
discussed in Chapters 20 and 28.

Finally, you will find interactions in the context of a class. You can use interactions to visualize, specify,
construct, and document the semantics of a class. For example, to understand the meaning of a class
RayTraceAgent, you might create interactions that show how the attributes of that class collaborate
with one another (and with objects global to instances of the class and with parameters defined in the
class's operations).



Classes are discussed in Chapters 4 and 9.

Note

An interaction may also be found in the representation of a component, node, or use case,
each of which is really a kind of UML classifier. In the context of a use case, an interaction
represents a scenario that, in turn, represents one thread through the action of the use
case.

Components are discussed in Chapter 15; nodes are discussed in Chapter 27;
use cases are discussed in Chapter 17; modeling the realization of a use case is
discussed in Chapter 28; classifiers are discussed in Chapter 9.

Objects and Roles

The objects that participate in an interaction are either concrete things or prototypical things. As a
concrete thing, an object represents something in the real world. For example, p, an instance of the
class Person, might denote a particular human. Alternately, as a prototypical thing, p might represent
any instance of Person.

Note

In a collaboration, the interactors are usually prototypical things that play particular roles,
not specific objects in the real world, although it is sometimes useful to describe
collaborations among particular objects.

In the context of an interaction, you may find instances of classes, components, nodes, and use cases.
Although abstract classes and interfaces, by definition, may not have any direct instances, you may
represent instances of these things in an interaction. Such instances do not represent direct instances
of the abstract class or of the interface, but may represent, respectively, indirect (or prototypical)
instances of any concrete children of the abstract class of some concrete class that realizes that
interface.

Abstract classes are discussed in Chapter 4; interfaces are discussed in Chapter
11.

You can think of an object diagram as a representation of the static aspect of an interaction, setting



the stage for the interaction by specifying all the objects that work together. An interaction goes
further by introducing a dynamic sequence of messages that may pass along the links that connect
these objects.

Instances are discussed in Chapter 13; object diagrams are discussed in
Chapter 14.

Links and Connectors

A link is a semantic connection among objects. In general, a link is an instance of an association. As
Figure 16-2 shows, wherever a class has an association to another class, there may be a link between
the instances of the two classes; wherever there is a link between two objects, one object can send a
message to the other object.

Figure 16-2. Associations, Links, and Connectors



Associations are discussed in Chapters 5 and 10; connectors and roles are
discussed in Chapter 15.

A link specifies a path along which one object can dispatch a message to another (or the same) object.
Most of the time it is sufficient to specify that such a path exists. If you need to be more precise about
how that path exists, you can adorn the appropriate end of the link with one of the following
constraints:

 association Specifies that the corresponding object is visible by association

 self Specifies that the corresponding object is visible because it is the dispatcher of
the operation

 global Specifies that the corresponding object is visible because it is in an enclosing
scope

 local Specifies that the corresponding object is visible because it is in a local scope

 parameter Specifies that the corresponding object is visible because it is a parameter

Note

As an instance of an association, a link may be rendered with most of the adornments
appropriate to associations, such as a name, association role name, navigation, and
aggregation. Multiplicity, however, does not apply to links, since they are instances of an
association.

In most models, we are more interested in prototypical objects and links within some context rather
than individual objects and links. A prototypical object is called a role; a prototypical link is called a
connector; the context is a collaboration or the internal structure of a classifier. The multiplicity of
roles and connectors are defined relative to their enclosing context. For example, a multiplicity of 1 on
a role means one object represents the role for each object that represents the context. A
collaboration or internal structure can be used many times, just like a class declaration; each use is
bound to a separate set of objects and links for the context, roles, and links.

Roles, connectors, and internal structure are discussed in Chapter 15;
collaborations are discussed in Chapter 28.

Figure 16-2 shows an example. The top of the figure shows a class diagram that declares classes
Person and Company and the many-to-many employee-employer association between them. The middle
shows the contents of a collaboration WorkAssignment that assigns an employee to a job. It has two
roles and a connector between them. The bottom shows an instance of this collaboration, in which
there are objects and links bound to the roles and connectors. A concrete message in the bottom
represents the prototypical message declaration in the collaboration.



Messages

Suppose you have a set of objects and a set of links that connect those objects. If that's all you have,
then you have a completely static model that can be represented by an object diagram. Object
diagrams model the state of a society of objects at a given moment in time and are useful when you
want to visualize, specify, construct, or document a static object structure.

Object diagrams are discussed in Chapter 14.

Suppose you want to model the changing state of a society of objects over a period of time. Think of it
as taking a motion picture of a set of objects, each frame representing a successive moment in time.
If these objects are not totally idle, you'll see objects passing messages to other objects, sending
events, and invoking operations. In addition, at each frame you can explicitly visualize the current
state and role of individual instances.

Operations are discussed in Chapters 4 and 9; events are discussed in Chapter
21; instances are discussed in Chapter 13.

A message is the specification of a communication among objects that conveys information with the
expectation that activity will ensue. The receipt of a message instance may be considered an
occurrence of an event. (An occurrence is the UML name for an instance of an event.)

When you pass a message, an action usually results on its receipt. An action may result in a change in
state of the target object and objects accessible from it.

In the UML, you can model several kinds of messages.

 Call Invokes an operation on an object; an object may send a message to itself,
resulting in the local invocation of an operation

 Return Returns a value to the caller

 Send Sends a signal to an object

 Create Creates an object

 Destroy Destroys an object; an object may commit suicide by destroying itself

Operations are discussed in Chapters 4 and 9; signals are discussed in Chapter
21.

Note



You can model complex actions in the UML as well. In addition to the five basic kinds of
messages listed above, you can include actions on individual objects. The UML does not
specify the syntax or semantics of such actions; it is expected that tools will supply various
actions languages or use the syntax of programming languages.

The UML provides a visual distinction among these kinds of messages, as Figure 16-3 shows.

Figure 16-3. Messages

Create and destroy are visualized as stereotypes, which are discussed in
Chapter 6; the distinction between synchronous and asynchronous messages is
most relevant in the context of concurrency, as discussed in Chapter 23.

The most common kind of message you'll model is the call, in which one object invokes an operation
of another (or the same) object. An object can't just call any random operation. If an object, such as c
in the example above, calls the operation setItinerary on an instance of the class TicketAgent, the
operation setItinerary must not only be defined for the class TicketAgent (that is, it must be declared
in the class TicketAgent or one of its parents), it must also be visible to the caller c.

Classes are discussed in Chapters 4 and 9.

Note

Languages such as C++ are statically typed (although polymorphic), meaning that the



legality of a call is checked at compilation time. Languages such as Smalltalk, however, are
dynamically typed, meaning that you can't determine if an object can properly receive a
message until execution time. In the UML, a well-formed model can in general be checked
statically by a tool because, at modeling time, the developer typically knows the intent of the
operation.

When an object calls an operation or sends a signal to another object, you can provide actual
parameters to the message. Similarly, when an object returns control to another object, you can
model the return value as well.

Messages can also correspond to the sending of signals. A signal is an object value communicated to a
target object asynchronously. After sending a signal, the sending object continues its own execution.
When the target object receives the signal message, it independently decides what to do about it.
Usually signals trigger transitions in the state machine of the target object. Firing a transition causes
the target object to execute actions and change to a new state. In an asynchronous message-passing
system, communicating objects execute concurrently and independently. They share values only by
passing messages, so there is no danger of conflict over shared memory.

Interfaces are discussed in Chapter 11.

Note

You can also qualify an operation by the class or interface in which it is declared. For
example, invoking the operation register upon an instance of Student would
polymorphically invoke whatever operation matches that name in the Student class
hierarchy; invoking IMember::register would invoke the operation specified in the interface
IMember (and realized by some suitable class, also in the Student class hierarchy).

Sequencing

When an object passes a message to another object (in effect, delegating some action to the
receiver), the receiving object might in turn send a message to another object, which might send a
message to yet a different object, and so on. This stream of messages forms a sequence. Any
sequence must have a beginning; the start of every sequence is rooted in some process or thread.
Furthermore, any sequence will continue as long as the process or thread that owns it lives. A nonstop
system, such as you might find in real time device control, will continue to execute as long as the node
it runs on is up.

Processes and threads are discussed in Chapter 23.

Each process and thread within a system defines a distinct flow of control, and within each flow,
messages are ordered in sequence by time. To better visualize the sequence of a message, you can
explicitly model the order of the message relative to the start of the sequence by prefixing the



message with a sequence number set apart by a colon separator.

Systems are discussed in Chapter 32.

A communication diagram shows message flow between roles within a collaboration. Messages flow
along connections of the collaboration, as in Figure 16-4.

Figure 16-4. Procedural Sequence

Most commonly, you can specify a procedural or nested flow of control, rendered using a filled solid
arrowhead, as Figure 16-4 shows. In this case, the message findAt is specified as the first message
nested in the second message of the sequence (2.1).

Less common but also possible, as Figure 16-5 shows, you can specify a flat flow of control, rendered
using a stick arrowhead, to model the nonprocedural progression of control from step to step. In this
case, the message assertCall is specified as the second message in the sequence.

Figure 16-5. Flat Sequence

Note

The distinction between asynchronous and procedural sequences is important in the modern
concurrent computing world. To show the overall behavior of a system of concurrent objects,



use asynchronous message passing. This is the most general case. When the calling object is
able to make a request and wait for a respond, you can use procedural flow of control.
Procedural flow of control is familiar from traditional programming languages, but keep in
mind that a series of nested procedure calls results in a stack of blocked objects that are
temporarily unable to do anything, so it is not very useful if they represent servers or shared
resources.

Processes and threads are discussed in Chapter 23; you can also specify
asynchronous flow of control, rendered using a half-stick arrowhead, as
discussed in Chapter 23.

When you are modeling interactions that involve multiple flows of control, it's especially important to
identify the process or thread that sent a particular message. In the UML, you can distinguish one flow
of control from another by prefixing a message's sequence number with the name of the process or
thread that sits at the root of the sequence. For example, the expression

D5 : ejectHatch(3)

specifies that the operation ejectHatch is dispatched (with the actual argument 3) as the fifth message
in the sequence rooted by the process or thread named D.

Not only can you show the actual arguments sent along with an operation or a signal in the context of
an interaction, you can show the return values of a function as well. As the following expression
shows, the value p is returned from the operation find, dispatched with the actual parameter
"Rachelle". This is a nested sequence, dispatched as the second message nested in the third message
nested in the first message of the sequence. In the same diagram, p can then be used as an actual
parameter in subsequent messages.

Iteration, branching, and guarded messages are discussed in Chapter 19; timing
marks are discussed in Chapter 24; stereotypes and constraints are discussed in
Chapter 6.

1.3.2 : p := find("Rachelle")

Note

In the UML, you can also model more-complex forms of sequencing, such as iteration,
branching, and guarded messages. In addition, to model timing constraints such as you
might find in real time systems, you can associate timing marks with a sequence. Other,
more exotic forms of messaging, such as balking and time out, can be modeled by defining
an appropriate message stereotype.



Creation, Modification, and Destruction

Most of the time the objects you show participating in an interaction exist for the entire duration of the
interaction. However, in some interactions objects may be created (specified by a create message)
and destroyed (specified by a destroy message). The same is true of links: The relationships among
objects may come and go. To specify if an object or link enters and/or leaves during an interaction,
you can attach a note to its role within a communication diagram.

During an interaction, an object typically changes the values of its attributes, its state, or its roles. You
can represent the modification of an object in a sequence diagram by showing the state or the values
on the lifeline.

Lifelines are discussed in Chapter 19.

Within a sequence diagram, the lifetime, creation, and destruction of objects or roles are explicitly
shown by the vertical extent of their lifelines. Within a communication diagram, creation and
destruction must be indicated using notes. Use sequence diagrams if object lifetimes are important to
show.

Representation

When you model an interaction, you typically include both roles (each one representing objects that
appear in an instance of the interaction) and messages (each one representing the communication
between objects, with some resulting action).

You can visualize those roles and messages involved in an interaction in two ways: by emphasizing the
time ordering of its messages, and by emphasizing the structural organization of the roles that send
and receive messages. In the UML, the first kind of representation is called a sequence diagram; the
second kind of representation is called a communication diagram. Both sequence diagrams and
communication diagrams are kinds of interaction diagrams. (UML also has a more specialized kind of
interaction diagram called a timing diagram, which shows the exact times at which messages are
exchanged by roles. This diagram is not covered in this book. See the UML Reference Manual for more
information.)

Interaction diagrams are discussed in Chapter 19.

Sequence diagrams and communication diagrams are similar, meaning that you can take one and
transform it into the other, although they often show different information, so it may not be so useful
to go back and forth. There are some visual differences. First, sequence diagrams permit you to model
the lifeline of an object. An object's lifeline represents the existence of the object at a particular time,
possibly covering the object's creation and destruction. Second, communication diagrams permit you
to model the structural links that may exist among the objects in an interaction.





Common Modeling Techniques

Modeling a Flow of Control

The most common purpose for which you'll use interactions is to model the flow of control that
characterizes the behavior of a system as a whole, including use cases, patterns, mechanisms, and
frameworks, or the behavior of a class or an individual operation. Whereas classes, interfaces,
components, nodes, and their relationships model the static aspects of your system, interactions
model its dynamic aspects.

Use cases are discussed in Chapter 17; patterns and frameworks are discussed
in Chapter 29; classes and operations are discussed in Chapters 4 and 9;
interfaces are discussed in Chapter 11; components are discussed in Chapter
15; nodes are discussed in Chapter 27; you can also model the dynamic aspects
of a system by using state machines, as discussed in Chapter 22.

When you model an interaction, you essentially build a storyboard of the actions that take place
among a set of objects. Techniques such as CRC cards are particularly useful in helping you to
discover and think about such interactions.

To model a flow of control,

Set the context for the interaction, whether it is the system as a whole, a class, or an individual
operation.

Set the stage for the interaction by identifying which objects play a role; set their initial
properties, including their attribute values, state, and role. Name the roles.

If your model emphasizes the structural organization of these objects, identify the links that
connect them, relevant to the paths of communication that take place in this interaction. Specify
the nature of the links using the UML's standard stereotypes and constraints, as necessary.

In time order, specify the messages that pass from object to object. As necessary, distinguish
the different kinds of messages; include parameters and return values to convey the necessary
detail of this interaction.

Also to convey the necessary detail of this interaction, adorn each object at every moment in
time with its state and role.

For example, Figure 16-6 shows a set of roles that interact in the context of a publish and subscribe
mechanism (an instance of the observer design pattern). This figure includes three roles: p (a
StockQuotePublisher), s1, and s2 (both instances of StockQuoteSubscriber). This figure is an example
of a sequence diagram, which emphasizes the time order of messages.

Figure 16-6. Flow of Control by Time



Sequence diagrams are discussed in Chapter 19.

Figure 16-7 is semantically equivalent to the previous one, but it is drawn as a communication
diagram, which emphasizes the structural organization of the objects. This figure shows the same flow
of control, but it also provides a visualization of the links among these objects.

Figure 16-7. Flow of Control by Organization

Communication diagrams are discussed in Chapter 19.



Hints and Tips

When you model interactions in the UML, remember that every interaction represents the dynamic
aspect of a society of objects. A well-structured interaction

Is simple and should encompass only those objects that work together to carry out some
behavior bigger than the sum of all these elements.

Has a clear context and may represent the interaction of objects in the context of an operation, a
class, or the system as a whole.

Is efficient and should carry out its behavior with an optimal balance of time and resources.

Is adaptable, and elements of an interaction that are likely to change should be isolated so that
they can be easily modified.

Is understandable and should be straightforward, involving no hacks, hidden side effects, or
obscure semantics.

When you draw an interaction in the UML,

Choose an emphasis for the interaction. You can emphasize either the ordering of messages over
time or the sequencing of messages in the context of some structural organization of objects.
You can't do both at the same time.

Note that events in separate subsequences are only partially ordered. Each subsequence is
ordered but the relative times of events in different subsequences is not fixed.

Show only those properties of each object (such as attribute values, role, and state) that are
important to understanding the interaction in its context.

Show only those properties of each message (such as its parameters, concurrency semantics,
and return value) that are important to understanding the interaction in its context.



Chapter 17. Use Cases
In this chapter

Use cases, actors, include, and extend

Modeling the behavior of an element

Realizing use cases with collaborations

No system exists in isolation. Every interesting system interacts with human or automated actors that
use that system for some purpose, and those actors expect that system to behave in predictable
ways. A use case specifies the behavior of a subjecta system or a part of a systemit describes
sequences of actions, including variants, that a subject performs to yield an observable result of value
to an actor.

You apply use cases to capture the intended behavior of the system you are developing, without
having to specify how that behavior is implemented. Use cases provide a way for your developers to
come to a common understanding with your system's end users and domain experts. In addition, use
cases serve to help validate your architecture and to verify your system as it evolves during
development. As you implement your system, these use cases are realized by collaborations whose
elements work together to carry out each use case.

Well-structured use cases denote essential subject behaviors only, and are neither overly general nor
too specific.



Getting Started

A well-designed house is much more than a bunch of walls thrown together to hold up a roof that
keeps out the weather. When you work with your architect to design your house, you'll give strong
consideration to how you'll use that house. If you like entertaining, you'll want to think about the flow
of people through your family room in a way that facilitates conversation and avoids dead ends that
result in bunching. As you think about preparing meals for your family, you'll want to make sure your
kitchen is designed for efficient placement of storage and appliances. Even plotting the path from your
car to the kitchen in order to unload groceries will affect how you eventually connect rooms to one
another. If you have a large family, you'll want to give thought to bathroom usage. Planning for the
right number and right placement of bathrooms early on in the design will greatly reduce the risk of
bottlenecks in the morning as your family heads to school and work. If you have teenagers, this issue
has especially high risk, because the emotional cost of failure is high.

Reasoning about how you and your family will use your house is an example of use case-based
analysis. You consider the various ways in which you'll use the house, and these use cases drive the
architecture. Many families will have the same kinds of use casesyou use houses to eat, sleep, raise
children, and hold memories. Every family will also have its own special use cases or variations of
these basic ones. The needs of a large family, for example, are different from the needs of a single
adult just out of college. It's these variations that have the greatest impact on the shape of your final
home.

One key factor in creating use cases such as these is that you do so without specifying how the use
cases are implemented. For example, you can specify how an ATM system should behave by stating in
use cases how users interact with the system; you don't need to know anything about the inside of
the ATM at all. Use cases specify externally visible behavior; they do not dictate how that behavior will
be carried out internally. The great thing about this is that it lets you (as an end user and domain
expert) communicate with your developers (who build systems that satisfy your requirements) without
getting hung up on details. Those details will come, but use cases let you focus on the issues of
highest risk to you.

In the UML, all such behaviors are modeled as use cases that may be specified independent of their
realization. A use case is a description of a set of sequences of actions, including variants, that a
subject performs to yield an observable result of value to an actor. There are a number of important
parts to this definition.

At the system level, a use case describes a set of sequences, in which each sequence represents the
interaction of the things outside the system (its actors) with the system itself (and its key
abstractions). These behaviors are in effect system-level functions that you use to visualize, specify,
construct, and document the intended behavior of your system during requirements capture and
analysis. A use case represents a functional requirement of your system as a whole. For example, one
central use case of a bank is to process loans.

Interactions are discussed in Chapter 16; requirements are discussed in Chapter
6.

A use case involves the interaction of actors and the system or other subject. An actor represents a
coherent set of roles that users of use cases play when interacting with these use cases. Actors can be
human or they can be automated systems. For example, in modeling a bank, processing a loan
involves, among other things, the interaction between a customer and a loan officer.



A use case may have variants. In all interesting systems, you'll find use cases that are specialized
versions of other use cases, use cases that are included as parts of other use cases, and use cases
that extend the behavior of other core use cases. You can factor the common, reusable behavior of a
set of use cases by organizing them according to these three kinds of relationships. For example, in
modeling a bank, you'll find many variations among the basic use case of processing a loan, such as
the difference in processing a jumbo mortgage versus a small business loan. In each case, however,
these use cases share some degree of common behavior, such as the use case of qualifying the
customer for the loan, a behavior that is part of processing every kind of loan.

A use case carries out some tangible amount of work. From the perspective of a given actor, a use
case does something that's of value to an actor, such as calculate a result, generate a new object, or
change the state of another object. For example, in modeling a bank, processing a loan results in the
delivery of an approved loan, manifest in a pile of money handed to the customer.

You can apply use cases to your whole system. You can also apply use cases to part of your system,
including subsystems and even individual classes and interfaces. In each case, these use cases not
only represent the desired behavior of these elements, but they can also be used as the basis of test
cases for these elements as they evolve during development. Use cases applied to subsystems are
excellent sources of regression tests; use cases applied to the whole system are excellent sources of
integration and system tests. The UML provides a graphical representation of a use case and an actor,
as Figure 17-1 shows. This notation permits you to visualize a use case apart from its realization and
in context with other use cases.

Figure 17-1. Actor and Use Case

Subsystems are discussed in Chapter 32; classes are discussed in Chapters 4
and 9; interfaces are discussed in Chapter 11.



Terms and Concepts

A use case is a description of a set of sequences of actions, including variants, that a system performs
to yield an observable result of value to an actor. Graphically, a use case is rendered as an ellipse.

The notation for use cases is similar to that for collaborations, as discussed in
Chapter 28.

Subject

The subject is a class described by a set of use cases. Usually the class is a system or subsystem. The
use cases represent aspects of the behavior of the class. The actors represent aspects of other classes
that interact with the subject. Taken together, the use cases describe the complete behavior of the
subject.

Names

Every use case must have a name that distinguishes it from other use cases. A name is a textual
string. That name alone is known as a simple name; a qualified name is the use case name prefixed
by the name of the package in which that use case lives. A use case is typically drawn showing only its
name, as in Figure 17-2.

Figure 17-2. Simple and Qualified Names

A use case name must be unique within its enclosing package, as discussed in
Chapter 12.



Note

A use case name may be text consisting of any number of letters, numbers, and most
punctuation marks (except for marks such as the colon, which is used to separate a class
name and the name of its enclosing package) and may continue over several lines. In
practice, use case names are short active verb phrases naming some behavior found in the
vocabulary of the system you are modeling.

Use Cases and Actors

An actor represents a coherent set of roles that users of use cases play when interacting with these
use cases. Typically, an actor represents a role that a human, a hardware device, or even another
system plays with a system. For example, if you work for a bank, you might be a LoanOfficer. If you
do your personal banking there, as well, you'll also play the role of Customer. An instance of an actor,
therefore, represents an individual interacting with the system in a specific way. Although you'll use
actors in your models, actors are not actually part of the software application. They live outside the
application within the surrounding environment.

In an executing system, actors need not exist as separate entities. One object may play the part of
multiple actors. For example, one Person may be both a LoanOfficer and a Customer. An actor
represents one aspect of an object.

As Figure 17-3 indicates, actors are rendered as stick figures. You can define general kinds of actors
(such as Customer) and specialize them (such as CommercialCustomer) using generalization
relationships.

Figure 17-3. Actors

Generalization is discussed in Chapters 5 and 10.



Stereotypes are discussed in Chapter 6.

Note

You can use the UML's extensibility mechanisms to stereotype an actor in order to provide a
different icon that might offer a better visual cue for your purposes.

Association relationships are discussed in Chapters 5 and 10; messages are
discussed in Chapter 16.

Actors may be connected to use cases only by association. An association between an actor and a use
case indicates that the actor and the use case communicate with one another, each one possibly
sending and receiving messages.

Use Cases and Flow of Events

A use case describes what a system (or a subsystem, class, or interface) does but it does not specify
how it does it. When you model, it's important that you keep clear the separation of concerns between
this outside and inside view.

You can specify the behavior of a use case by describing a flow of events in text clearly enough for an
outsider to understand it easily. When you write this flow of events, you should include how and when
the use case starts and ends, when the use case interacts with the actors and what objects are
exchanged, and the basic flow and alternative flows of the behavior.

For example, in the context of an ATM system, you might describe the use case ValidateUser in the
following way:

Main flow of events: The use case starts when the system prompts the Customer for a PIN
number. The Customer can now enter a PIN number via the keypad. The Customer commits the
entry by pressing the Enter button. The system then checks this PIN number to see if it is valid.
If the PIN number is valid, the system acknowledges the entry, thus ending the use case.

Exceptional flow of events: The Customer can cancel a transaction at any time by pressing the
Cancel button, thus restarting the use case. No changes are made to the Customer's account.

Exceptional flow of events: The Customer can clear a PIN number anytime before committing it
and reenter a new PIN number.

Exceptional flow of events: If the Customer enters an invalid PIN number, the use case restarts.
If this happens three times in a row, the system cancels the entire transaction, preventing the
Customer from interacting with the ATM for 60 seconds.

Note



You can specify a use case's flow of events in a number of ways, including informal
structured text (as in the example above), formal structured text (with pre- and
postconditions), state machines (particularly for reactive systems), activity diagrams
(particularly for workflows), and pseudocode.

Use Cases and Scenarios

Typically, you'll first describe the flow of events for a use case in text. As you refine your
understanding of your system's requirements, however, you'll want to also use interaction diagrams to
specify these flows graphically. Typically, you'll use one sequence diagram to specify a use case's main
flow, and variations of that diagram to specify a use case's exceptional flows.

Interaction diagrams, including sequence diagrams and collaboration diagrams,
are discussed in Chapter 19.

It is desirable to separate main versus alternative flows because a use case describes a set of
sequences, not just a single sequence, and it would be impossible to express all the details of an
interesting use case in just one sequence. For example, in a human resources system, you might find
the use case Hire employee. This general business function might have many possible variations. You
might hire a person from another company (the most common scenario); you might transfer a person
from one division to another (common in international companies); or you might hire a foreign
national (which involves its own special rules). Each of these variants can be expressed in a different
sequence.

This one use case (Hire employee) actually describes a set of sequences in which each sequence in the
set represents one possible flow through all these variations. Each sequence is called a scenario. A
scenario is a specific sequence of actions that illustrates behavior. Scenarios are to use cases as
instances are to classes, meaning that a scenario is basically one instance of a use case.

Instances are discussed in Chapter 13.

Note

There's an expansion factor from use cases to scenarios. A modestly complex system might
have a few dozen use cases that capture its behavior, and each use case might expand out
to several dozen scenarios. For each use case, you'll find primary scenarios (which define
essential sequences) and secondary scenarios (which define alternative sequences).

Use Cases and Collaborations

A use case captures the intended behavior of the system (or subsystem, class, or interface) you are



developing, without having to specify how that behavior is implemented. That's an important
separation because the analysis of a system (which specifies behavior) should, as much as possible,
not be influenced by implementation issues (which specify how that behavior is to be carried out).
Ultimately, however, you have to implement your use cases, and you do so by creating a society of
classes and other elements that work together to implement the behavior of this use case. This society
of elements, including both its static and dynamic structure, is modeled in the UML as a collaboration.

Collaborations are discussed in Chapter 28.

As Figure 17-4 shows, you can explicitly specify the realization of a use case by a collaboration. Most
of the time, though, a given use case is realized by exactly one collaboration, so you will not need to
model this relationship explicitly.

Figure 17-4. Use Cases and Collaborations

Realization is discussed in Chapters 9 and 10.

Note

Although you may not visualize this relationship explicitly, the tools you use to manage your
models will likely maintain this relationship.

Note

Finding the minimal set of well-structured collaborations that satisfy the flow of events
specified in all the use cases of a system is the focus of a system's architecture.



Architecture is discussed in Chapter 2.

Organizing Use Cases

You can organize use cases by grouping them in packages in the same manner in which you can
organize classes.

Packages are discussed in Chapter 12.

You can also organize use cases by specifying generalization, include, and extend relationships among
them. You apply these relationships in order to factor common behavior (by pulling such behavior
from other use cases that it includes) and in order to factor variants (by pushing such behavior into
other use cases that extend it).

Generalization among use cases is just like generalization among classes. Here it means that the child
use case inherits the behavior and meaning of the parent use case; the child may add to or override
the behavior of its parent; and the child may be substituted any place the parent appears (both the
parent and the child may have concrete instances). For example, in a banking system, you might have
the use case Validate User, which is responsible for verifying the identity of the user. You might then
have two specialized children of this use case (Check password and Retinal scan), both of which
behave just like Validate User and may be applied anywhere Validate User appears, yet both of
which add their own behavior (the former by checking a textual password, the latter by checking the
unique retina patterns of the user). As shown in Figure 17-5, generalization among use cases is
rendered as a solid directed line with a large triangular arrowhead, just like generalization among
classes.

Figure 17-5. Generalization, Include, and Extend



Generalization is discussed in Chapters 5 and 10.

An include relationship between use cases means that the base use case explicitly incorporates the
behavior of another use case at a location specified in the base. The included use case never stands
alone, but is only instantiated as part of some larger base that includes it. You can think of include as
the base use case pulling behavior from the supplier use case.

You use an include relationship to avoid describing the same flow of events several times, by putting
the common behavior in a use case of its own (the use case that is included by a base use case). The
include relationship is essentially an example of delegationyou take a set of responsibilities of the
system and capture it in one place (the included use case), then let all other parts of the system
(other use cases) include the new aggregation of responsibilities whenever they need to use that
functionality.

Dependency relationships are discussed in Chapters 5 and 10; stereotypes are
discussed in Chapter 6.

You render an include relationship as a dependency, stereotyped as include. To specify the location in
a flow of events in which the base use case includes the behavior of another, you simply write include
followed by the name of the use case you want to include, as in the following flow for TRack order:

Track order:
 obtain and verify the order number;
 include 'Validate user';
 for each part in the order,



  query the order status;
 report overall status to user.

Note

There is no predefined UML notation for expressing use case scenarios. The syntax used
here is a kind of structured natural language. Several authors have suggested that an
informal notation is best, because use cases should not be regarded as rigid specifications
that generate code automatically; others have proposed formal notations.

An extend relationship between use cases means that the base use case implicitly incorporates the
behavior of another use case at a location specified indirectly by the extending use case. The base use
case may stand alone, but under certain conditions its behavior may be extended by the behavior of
another use case. This base use case may be extended only at certain points called, not surprisingly,
its extension points. You can think of extend as the extension use case pushing behavior to the base
use case.

You use an extend relationship to model the part of a use case the user may see as optional system
behavior. In this way, you separate optional behavior from mandatory behavior. You may also use an
extend relationship to model a separate subflow that is executed only under given conditions. Finally,
you may use an extend relationship to model several flows that may be inserted at a certain point,
governed by explicit interaction with an actor. You may also use an extend relationship to distinguish
configurable parts of an implementable system; the implication is that the system can exist with or
without the various extensions.

You render an extend relationship as a dependency, stereotyped as extend. You may list the extension
points of the base use case in an extra compartment. These extension points are just labels that may
appear in the flow of the base use case. For example, the flow for Place order might read as follows:

Place order:
 include 'Validate user';
 collect the user's order items;
 set priority: extension point;
 submit the order for processing.

Dependency relationships are discussed in Chapters 5 and 10; stereotypes and
extra compartments are discussed in Chapter 6.

In this example, set priority is an extension point. A use case may have more than one extension
point (which may appear more than once), and these are always matched by name. Under normal
circumstances, this base use case will execute without regard for the priority of the order. If, on the
other hand, this is an instance of a priority order, the flow for this base case will carry out as above.
But at the extension point set priority, the behavior of the extending use case Place rush order will
be performed, then the flow will resume. If there are multiple extension points, the extending use case
will simply fold in its flows in order.



Note

Organizing your use cases by extracting common behavior (through include relationships)
and distinguishing variants (through extend relationships) is an important part of creating a
simple, balanced, and understandable set of use cases for your system.

Other Features

Use cases are classifiers, so they may have attributes and operations that you may render just as for
classes. You can think of these attributes as the objects inside the use case that you need to describe
its outside behavior. Similarly, you can think of these operations as the actions of the system you
need to describe a flow of events. These objects and operations may be used in your interaction
diagrams to specify the behavior of the use case.

Attributes and operations are discussed in Chapter 4; state machines are
discussed in Chapter 22.

As classifiers, you can also attach state machines to use cases. You can use state machines as yet
another way to describe the behavior represented by a use case.



Common Modeling Techniques

Modeling the Behavior of an Element

The most common thing for which you'll apply use cases is to model the behavior of an element,
whether it is the system as a whole, a subsystem, or a class. When you model the behavior of these
things, it's important that you focus on what that element does, not how it does it.

Systems and subsystems are discussed in Chapter 32; classes are discussed in
Chapters 4 and 9.

Applying use cases to elements in this way is important for three reasons. First, by modeling the
behavior of an element with use cases, you provide a way for domain experts to specify its outside
view to a degree sufficient for developers to construct its inside view. Use cases provide a forum for
your domain experts, end users, and developers to communicate to one another. Second, use cases
provide a way for developers to approach an element and understand it. A system, subsystem, or
class may be complex and full of operations and other parts. By specifying an element's use cases,
you help users of these elements to approach them in a direct way, according to how they are likely to
use them. In the absence of such use cases, users have to discover on their own how to use those
elements. Use cases let the author of an element communicate his or her intent about how that
element should be used. Third, use cases serve as the basis for developing tests for each element as it
evolves during development. By deriving tests from use cases and applying them repeatedly, you
continuously validate the implementation. Not only do these use cases provide a source of regression
tests, but every time you throw a new use case at an element, you are forced to reconsider your
implementation to ensure that this element is resilient to change. If it is not, you must fix your
architecture appropriately.

To model the behavior of an element,

Identify the actors that interact with the element. Candidate actors include groups that require
certain behavior to perform their tasks or that are needed directly or indirectly to perform the
element's functions.

Organize actors by identifying general and more specialized roles.

For each actor, consider the primary ways in which that actor interacts with the element.
Consider also interactions that change the state of the element or its environment or that involve
a response to some event.

Consider also the exceptional ways in which each actor interacts with the element.

Organize these behaviors as use cases, applying include and extend relationships to factor
common behavior and distinguish exceptional behavior.

For example, a retail system will interact with customers who place and track orders. In turn, the
system will ship orders and bill the customer. As Figure 17-6 shows, you can model the behavior of
such a system by declaring these behaviors as use cases (Place order, track order, Ship order, and
Bill customer). Common behavior can be factored out (Validate customer) and variants (Ship



partial order) can be distinguished as well. For each of these use cases, you would include a
specification of the behavior, either by text, state machine, or interactions.

Figure 17-6. Modeling the Behavior of an Element

As your models get bigger, you will find that many use cases tend to cluster together in groups that
are conceptually and semantically related. In the UML, you can use packages to model these clusters
of classes.

Packages are discussed in Chapter 12.



Hints and Tips

When you model use cases in the UML, every use case should represent some distinct and identifiable
behavior of the system or part of the system. A well-structured use case

Names a single, identifiable, and reasonably atomic behavior of the system or part of the system.

Factors common behavior by pulling such behavior from other use cases that it includes.

Factors variants by pushing such behavior into other use cases that extend it.

Describes the flow of events clearly enough for an outsider to easily understand it.

Is described by a minimal set of scenarios that specify the normal and variant semantics of the
use case.

When you draw a use case in the UML,

Show only those use cases that are important to understand the behavior of the system or the
part of the system in its context.

Show only those actors that relate to these use cases.



Chapter 18. Use Case Diagrams
In this chapter

Modeling the context of a system

Modeling the requirements of a system

Forward and reverse engineering

Use case diagrams are one of the diagrams in the UML for modeling the dynamic aspects of systems.
(Activity diagrams, state diagrams, sequence diagrams, and communication diagrams are four other
kinds of diagrams in the UML for modeling the dynamic aspects of systems.) Use case diagrams are
central to modeling the behavior of a system, a subsystem, or a class. Each one shows a set of use
cases and actors and their relationships.

Activity diagrams are discussed in Chapter 20; state diagrams are discussed in
Chapter 25; sequence and communication diagrams are discussed in Chapter
19.

You apply use case diagrams to model the use case view of a system. For the most part, this involves
modeling the context of a system, subsystem, or class, or modeling the requirements of the behavior
of these elements.

Use case diagrams are important for visualizing, specifying, and documenting the behavior of an
element. They make systems, subsystems, and classes approachable and understandable by
presenting an outside view of how those elements may be used in context. Use case diagrams are also
important for testing executable systems through forward engineering and for comprehending
executable systems through reverse engineering.



Getting Started

Suppose someone hands you a box. On one side of that box, there are some buttons and a small LCD
panel. Other than that, the box is nondescript; you aren't even given a hint about how to use it. You
could randomly punch buttons and see what happens, but you'd be hard pressed to figure out what
that box does or how to use it properly unless you spent a lot of trial-and-error time.

Software-intensive systems can be like that. If you are a user, you might be handed an application
and told to use it. If the application follows normal conventions of the operating system you are used
to, you might be able to get it to do something useful after a fashion, but you'd never come to
understand its more complex and subtle behavior that way. Similarly, if you are a developer, you
might be handed a legacy application or a set of components and told to use them. You'd be hard
pressed to know how to use the elements until you formed a conceptual model for their use.

With the UML, you apply use case diagrams to visualize the behavior of a system, subsystem, or class
so that users can comprehend how to use that element, and so that developers can implement that
element. As Figure 18-1 shows, you can provide a use case diagram to model the behavior of that
boxwhich most people would call a cellular phone.

Figure 18-1. A Use Case Diagram



Terms and Concepts

A use case diagram is a diagram that shows a set of use cases and actors and their relationships.

Common Properties

A use case diagram is just a special kind of diagram and shares the same common properties as do all
other diagramsa name and graphical contents that are a projection into a model. What distinguishes a
use case diagram from all other kinds of diagrams is its particular content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Use case diagrams commonly contain

Use cases and actors are discussed in Chapter 17; relationships are discussed in
Chapters 5 and 10; packages are discussed in Chapter 12; instances are
discussed in Chapter 13.

Subject

Use cases

Actors

Dependency, generalization, and association relationships

Like all other diagrams, use case diagrams may contain notes and constraints.

Use case diagrams may also contain packages, which are used to group elements of your model into
larger chunks. Occasionally, you'll want to place instances of use cases in your diagrams as well,
especially when you want to visualize a specific executing system.

Notation

The subject is shown as a rectangle containing a set of use case ellipses. The name of the subject is
placed within the rectangle. The actors are shown as stick figures placed outside the rectangle; their
names are placed under them. Lines connect actor icons to the use case ellipses with which they
communicate. Relationships among use cases (such as extend and include) are drawn inside the



rectangle.

Common Uses

You apply use case diagrams to model the use case view of a subject, such as a system. This view
primarily models the external behavior of a subjectthe outwardly visible services that the subject
provides in the context of its environment.

Use case views are discussed in Chapter 2.

When you model the use case view of a subject, you'll typically apply use case diagrams in one of two
ways.

To model the context of a subject1.

Modeling the context of a subject involves drawing a line around the whole system and asserting
which actors lie outside the subject and interact with it. Here, you'll apply use case diagrams to specify
the actors and the meaning of their roles.

To model the requirements of a subject2.

Requirements are discussed in Chapters 4 and 6.

Modeling the requirements of a subject involves specifying what that subject should do (from a point
of view of outside the subject) independent of how that subject should do it. Here, you'll apply use
case diagrams to specify the desired behavior of the subject. In this manner, a use case diagram lets
you view the whole subject as a black box; you can see what's outside the subject and you can see
how that subject reacts to the things outside, but you can't see how that subject works on the inside.



Common Modeling Techniques

Modeling the Context of a System

Given a system-any system-some things will live inside the system, some things will live outside it. For
example, in a credit card validation system, you'll find such things as accounts, transactions, and fraud
detection agents inside the system. Similarly, you'll find such things as credit card customers and
retail institutions outside the system. The things that live inside the system are responsible for
carrying out the behavior that those on the outside expect the system to provide. All those things on
the outside that interact with the system constitute the system's context. This context defines the
environment in which that system lives.

In the UML, you can model the context of a system with a use case diagram, emphasizing the actors
that surround the system. Deciding what to include as an actor is important because in doing so you
specify a class of things that interact with the system. Deciding what not to include as an actor is
equally, if not more, important because that constrains the system's environment to include only
those actors that are necessary in the life of the system.

Systems are discussed in Chapter 32.

To model the context of a system,

Identify the boundaries of the system by deciding which behaviors are part of it and which are
performed by external entities. This defines the subject.

Identify the actors that surround the system by considering which groups require help from the
system to perform their tasks, which groups are needed to execute the system's functions, which
groups interact with external hardware or other software systems, and which groups perform
secondary functions for administration and maintenance.

Organize actors that are similar to one another in a generalization-specialization hierarchy.

Where it aids understandability, provide a stereotype for each such actor.

Populate a use case diagram with these actors and specify the paths of communication from each
actor to the system's use cases.

For example, Figure 18-2 shows the context of a credit card validation system, with an emphasis on
the actors that surround the system. You'll find Customers, of which there are two kinds (Individual
customer and Corporate customer). These actors are the roles that humans play when interacting with
the system. In this context, there are also actors that represent other institutions, such as Retail
institution (with which a Customer performs a card transaction to buy an item or a service) and
Sponsoring financial institution (which serves as the clearinghouse for the credit card account). In
the real world, these latter two actors are likely software-intensive systems themselves.

Figure 18-2. Modeling the Context of a System



This same technique applies to modeling the context of a subsystem. A system at one level of
abstraction is often a subsystem of a larger system at a higher level of abstraction. Modeling the
context of a subsystem is therefore useful when you are building systems of interconnected systems.

Subsystems are discussed in Chapter 32.

Modeling the Requirements of a System

A requirement is a design feature, property, or behavior of a system. When you state a system's
requirements, you are asserting a contract, established between those things that lie outside the
system and the system itself, which declares what you expect that system to do. For the most part,
you don't care how the system does it, you just care that it does it. A well-behaved system will carry
out all its requirements faithfully, predictably, and reliably. When you build a system, it's important to
start with agreement about what that system should do, although you will certainly evolve your
understanding of those requirements as you iteratively and incrementally implement the system.
Similarly, when you are handed a system to use, knowing how it behaves is essential to using it
properly.

Requirements can be expressed in various forms, from unstructured text to expressions in a formal
language, and everything in between. Most, if not all, of a system's functional requirements can be
expressed as use cases, and the UML's use case diagrams are essential for managing these
requirements.

Notes can be used to state requirements, as discussed in Chapter 6.



To model the requirements of a system,

Establish the context of the system by identifying the actors that surround it.

For each actor, consider the behavior that each expects or requires the system to provide.

Name these common behaviors as use cases.

Factor common behavior into new use cases that are used by others; factor variant behavior into
new use cases that extend more main line flows.

Model these use cases, actors, and their relationships in a use case diagram.

Adorn these use cases with notes or constraints that assert nonfunctional requirements; you may
have to attach some of these to the whole system.

Figure 18-3 expands on the previous use case diagram. Although it elides the relationships among the
actors and the use cases, it adds additional use cases that are somewhat invisible to the average
customer yet are essential behaviors of the system. This diagram is valuable because it offers a
common starting place for end users, domain experts, and developers to visualize, specify, construct,
and document their decisions about the functional requirements of this system. For example, Detect
card fraud is a behavior important to both the Retail institution and the Sponsoring financial
institution. Similarly, Report on account status is another behavior required of the system by the
various institutions in its context.

Figure 18-3. Modeling the Requirements of a System



Modeling dynamics for load balancing and network reconfiguration are
discussed in Chapter 24.

The requirement modeled by the use case Manage network outage is a bit different from all the others
because it represents a secondary behavior of the system necessary for its reliable and continuous
operation.

Once the structure of the use case is determined, you must describe the behavior of each use case.
Usually you should write one or more sequence diagrams for each mainline case. Then you should
write sequence diagrams for variant cases. Finally, you should write at least one sequence diagram to
illustrate each kind of error or exception condition; error handling is part of the use case and should be
planned along with the normal behavior.

Subsystems are discussed in Chapter 32.

This same technique applies to modeling the requirements of a subsystem.

Forward and Reverse Engineering

Most of the UML's other diagrams, including class, component, and state diagrams, are clear
candidates for forward and reverse engineering because each has an analog in the executable system.
Use case diagrams are a bit different in that they reflect rather than specify the implementation of a
system, subsystem, or class. Use cases describe how an element behaves, not how that behavior is
implemented, so it cannot be directly forward or reverse engineered.

Diagrams are discussed in Chapter 7; use cases are discussed in Chapter 17.

Forward engineering is the process of transforming a model into code through a mapping to an
implementation language. A use case diagram can be forward engineered to form tests for the
element to which it applies. Each use case in a use case diagram specifies a flow of events (and
variants of those flows), and these flows specify how the element is expected to behave-that's
something worthy of testing. A well-structured use case will even specify pre- and postconditions that
can be used to define a test's initial state and its success criteria. For each use case in a use case
diagram, you can create a test case that you can run every time you release a new version of that
element, thereby confirming that it works as required before other elements rely on it.

To forward engineer a use case diagram,

Identify the objects that interact with the system. Try to identify the various roles that each
external object may play.

Make up an actor to represent each distinct interaction role.

For each use case in the diagram, identify its flow of events and its exceptional flow of events.



Depending on how deeply you choose to test, generate a test script for each flow, using the
flow's preconditions as the test's initial state and its postconditions as its success criteria.

As necessary, generate test scaffolding to represent each actor that interacts with the use case.
Actors that push information to the element or are acted on by the element may either be
simulated or substituted by its real-world equivalent.

Use tools to run these tests each time you release the element to which the use case diagram
applies.

Reverse engineering is the process of transforming code into a model through a mapping from a
specific implementation language. To automatically reverse engineer a use case diagram is currently
beyond the state of the art, simply because there is a loss of information when moving from a
specification of how an element behaves to how it is implemented. However, you can study an existing
system and discern its intended behavior by hand, which you can then put in the form of a use case
diagram. Indeed, this is pretty much what you have to do anytime you are handed an undocumented
body of software. The UML's use case diagrams simply give you a standard and expressive language in
which to state what you discover.

To reverse engineer a use case diagram,

Identify each actor that interacts with the system.

For each actor, consider the manner in which that actor interacts with the system, changes the
state of the system or its environment, or responds to some event.

Trace the flow of events in the executable system relative to each actor. Start with primary flows
and only later consider alternative paths.

Cluster related flows by declaring a corresponding use case. Consider modeling variants using
extend relationships, and consider modeling common flows by applying include relationships.

Render these actors and use cases in a use case diagram, and establish their relationships.



Hints and Tips

When you create use case diagrams in the UML, remember that every use case diagram is just a
graphical presentation of the static use case view of a system. This means that no single use case
diagram need capture everything about a system's use case view. Collectively, all the use case
diagrams of a system represent the system's complete static use case view; individually, each
represents just one aspect.

A well-structured use case diagram

Is focused on communicating one aspect of a system's static use case view.

Contains only those use cases and actors that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction; you should expose only those adornments
(such as extension points) that are essential to understanding.

Is not so minimalist as to misinform the reader about semantics that are important.

When you draw a use case diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that behaviors and roles that are semantically close are laid
out physically close.

Use notes and color as visual cues to draw attention to important features of your diagram.

Try not to show too many kinds of relationships. In general, if you have complicated include and
extend relationships, take these elements to another diagram.



Chapter 19. Interaction Diagrams
In this chapter

Modeling flows of control by time ordering

Modeling flows of control by organization

Forward and reverse engineering

Sequence diagrams and communication diagramswhich are collectively called interaction diagramsare
two of the diagrams used in the UML for modeling the dynamic aspects of systems. An interaction
diagram shows an interaction, consisting of a set of objects and their relationships, including the
messages that may be dispatched among them. A sequence diagram is an interaction diagram that
emphasizes the time ordering of messages; a communication diagram is an interaction diagram that
emphasizes the structural organization of the objects that send and receive messages.

Activity diagrams, state diagrams, and use case diagrams are three other kinds
of diagrams used in the UML for modeling the dynamic aspects of systems;
activity diagrams are discussed in Chapter 20; state diagrams are discussed in
Chapter 25; use case diagrams are discussed in Chapter 18

You use interaction diagrams to model the dynamic aspects of a system. For the most part, this
involves modeling concrete or prototypical instances of classes, interfaces, components, and nodes,
along with the messages that are dispatched among them, all in the context of a scenario that
illustrates a behavior. Interaction diagrams may stand alone to visualize, specify, construct, and
document the dynamics of a particular society of objects, or they may be used to model one particular
flow of control of a use case.

Interaction diagrams are not only important for modeling the dynamic aspects of a system, but also
for constructing executable systems through forward and reverse engineering.



Getting Started

When you watch a movie projected from film or broadcast on television, your mind actually plays
tricks on you. Instead of seeing continuous motion as you would in live action, you really see a series
of static images played back to you fast enough to give the illusion of continuous motion.

When directors and animators plan a film, they use the same technique but at lower fidelity. By
storyboarding key frames, they build up a model of each scene, sufficient in detail to communicate the
intent to all the stakeholders on the production team. In fact, creating this storyboard is a major
activity in the production process, helping the team visualize, specify, construct, and document a
model of the movie as it evolves from inception through construction and finally deployment.

In modeling software-intensive systems, you have a similar problem: How do you model its dynamic
aspects? Imagine, for a moment, how you might visualize a running system. If you have an interactive
debugger attached to the system, you might be able to watch a section of memory and observe how it
changes its contents over time. With a bit more focus, you might even monitor several objects of
interest. Over time, you'd see the creation of some objects, changes in the value of their attributes,
and then the destruction of some of them.

Modeling the structural aspects of a system is discussed in Parts 2 and 3.

The value of visualizing the dynamic aspects of a system this way is quite limited, especially if you are
talking about a distributed system with multiple concurrent flows of control. You might as well try to
understand the human circulatory system by looking at the blood that passes through one point in one
artery over time. A better way to model the dynamic aspects of a system is by building up storyboards
of scenarios, involving the interaction of certain interesting objects and the messages that may be
dispatched among them.

In the UML, you model these storyboards by using interaction diagrams. As Figure 19-1 shows, you
can build up these storyboards in two ways: by emphasizing the time ordering of messages and by
emphasizing the structural relationships among the objects that interact. Either way, the diagrams are
semantically equivalent; you can convert one to the other without loss of information.

Figure 19-1. Interaction Diagrams





Terms and Concepts

An interaction diagram shows an interaction, consisting of a set of objects and their relationships,
including the messages that may be dispatched among them. A sequence diagram is an interaction
diagram that emphasizes the time ordering of messages. Graphically, a sequence diagram is a table
that shows objects arranged along the X axis and messages, ordered in increasing time, along the Y
axis. A communication diagram is an interaction diagram that emphasizes the structural organization
of the objects that send and receive messages. Graphically, a communication diagram is a collection of
vertices and arcs.

Common Properties

An interaction diagram is just a special kind of diagram and shares the same common properties as do
all other diagramsa name and graphical contents that are a projection into a model. What
distinguishes an interaction diagram from all other kinds of diagrams is its particular content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Objects are discussed in Chapter 13; links are discussed in Chapters 14 and 16;
messages and interactions are discussed in Chapter 16; internal structure is
discussed in Chapter 15; collaborations are discussed in Chapter 28.

Interaction diagrams commonly contain

Roles or objects

Communications or links

Messages

Note

An interaction diagram is basically a projection of the elements found in an interaction. The
semantics of an interaction's context, objects and roles, links and connectors, messages,
and sequencing apply to interaction diagrams.



Like all other diagrams, interaction diagrams may contain notes and constraints.

Sequence Diagrams

A sequence diagram emphasizes the time ordering of messages. As Figure 19-2 shows, you form a
sequence diagram by first placing the objects or roles that participate in the interaction at the top of
your diagram, across the horizontal axis. Typically, you place the object or role that initiates the
interaction at the left, and increasingly more subordinate objects or roles to the right. Next, you
arrange the messages that these objects send and receive along the vertical axis in order of increasing
time from top to bottom. This gives the reader a clear visual cue to the flow of control over time.

Figure 19-2. Sequence Diagram

Sequence diagrams have two features that distinguish them from communication diagrams. First,
there is the lifeline. An object lifeline is the vertical dashed line that represents the existence of an
object over a period of time. Most objects that appear in an interaction diagram will be in existence for
the duration of the interaction, so these objects are all aligned at the top of the diagram, with their
lifelines drawn from the top of the diagram to the bottom. Objects may be created during the
interaction. Their lifelines start with the receipt of the message create (drawn to box at the head of
the lifeline). Objects may be destroyed during the interaction. Their lifelines end with the receipt of the
message destroy (and are given the visual cue of a large X, marking the end of their lives).

If the interaction represents the history of specific, individual objects, then object symbols with
underlined names are placed at the head of the lifelines. Most of the time, however, you will be
showing prototypical interactions. The lifelines do not represent specific objects; they represent
prototypical roles that represent different objects in each instance of the interaction. In that normal
case, you do not underline the names, as they are not specific objects.

Note



If an object changes the values of its attributes, its state, or its roles, you can place a state
icon on its lifeline at the point that the change occurs, showing those modifications.

Second, there is the focus of control. The focus of control is a tall, thin rectangle that shows the period
of time during which an object is performing an action, either directly or through a subordinate
procedure. The top of the rectangle is aligned with the start of the action; the bottom is aligned with
its completion (and can be marked by a return message). You can show the nesting of a focus of
control (caused by recursion, a call to a self-operation, or by a callback from another object) by
stacking another focus of control slightly to the right of its parent (and can do so to an arbitrary
depth). If you want to be especially precise about where the focus of control lies, you can also shade
the region of the rectangle during which the object's method is actually computing and control has not
passed to another object, but this is rather fussy.

The main content in a sequence diagram is the messages. A message is shown by an arrow from one
lifeline to another. The arrowhead points to the receiver. If the message is asynchronous, the line has
a stick arrowhead. If the message is synchronous (a call), the line has a filled triangular arrowhead. A
reply to a synchronous message (a return from a call) is shown by a dashed arrow with a stick
arrowhead. The return message may be omitted, as there is an implicit return after any call, but it is
often useful for showing return values.

The ordering of time along a single lifeline is significant. Usually the exact distance does not matter;
lifelines only show relative sequences, so the lifeline is not a scale diagram of time. Usually the
positions of messages on separate pairs of lifelines do not imply any sequencing information; the
messages could occur in any order. The entire set of messages on separate lifelines forms a partial
ordering. A series of messages establishes a chain of causality, however, so that any point on another
lifeline at the end of the chain must always follow the point on the original lifeline at the start of the
chain.

Structured Control in Sequence Diagrams

A sequence of messages is fine for showing a single, linear sequence, but often we need to show
conditionals and loops. Sometimes we want to show concurrent execution of multiple sequences. This
kind of high-level control can be shown using structured control operators in sequence diagrams.

A control operator is shown as a rectangular region within the sequence diagram. It has a taga text
label inside a small pentagon in the upper left cornerto tell what kind of a control operator it is. The
operator applies to the lifelines that cross it. This is considered the body of the operator. If a lifeline
does not apply to the operator, it may be interrupted at the top of the control operator and resumed
at the bottom. The following kinds of control are the most common:

Optional execution

The tag is opt. The body of the control operator is executed if a guard condition is true when the
operator is entered. The guard condition is a Boolean expression that may appear in square brackets
at the top of any one lifeline within the body and may reference attributes of that object.

Conditional execution

The tag is alt. The body of the control operator is divided into multiple subregions by horizontal
dashed lines. Each subregion represents one branch of a conditional. Each subregion has a guard
condition. If the guard condition for a subregion is true, the subregion is executed. However, at most



one subregion may be executed; if more than one guard condition is true, the choice of subregion is
nondeterministic and could vary from execution to execution. If no guard condition is true, then
control continues past the control operator. One subregion may have a the special guard condition
[else]; this subregion is executed if none of the other guard conditions are true.

Parallel execution

The tag is par. The body of the control operator is divided into multiple subregions by horizontal
dashed lines. Each subregion represents a parallel (concurrent) computation. In most cases, each
subregion involves different lifelines. When the control operator is entered, all of the subregions
execute concurrently. The execution of the messages in each subregion is sequential, but the relative
order of messages in parallel subregions is completely arbitrary. This construct should not be used if
the different computations interact. There are very many real-world situations that decompose into
independent, parallel activities, however, so this is a very useful operator.

Loop (iterative) execution

The tag is loop. A guard condition appears at the top of one lifeline within the body. The body of the
loop is executed repeatedly as long as the guard condition is true before each iteration. When the
guard condition is false at the top of the body, control passes out of the control operator.

There are many other kinds of operators, but these are the most useful.

To provide a clear indication of the boundary, a sequence diagram may be enclosed in a rectangle,
with a tag in the upper left corner. The tag is sd, which may be followed by the name of the diagram.

Figure 19-3 shows a simplified example that illustrates some control operators. The user initiates the
sequence. The first operator is a loop operator. The numbers in parentheses (1,3) indicate the
minimum and maximum number of times the loop body must be executed. Since the minimum is one,
the body is always executed at least once before the condition is tested. In the loop, the user enters
the password and the system verifies it. The loop continues as long as the password is incorrect.
However, after three tries, the loop terminates in any case.

Figure 19-3. Structured Control Operators



The next operator is an optional operator. The optional body is executed if the password is valid;
otherwise the rest of the sequence diagram is skipped. The optional body contains a parallel operator.
Operators can be nested as shown.

The parallel operator has two subregions: one allows the user to enter an account and the other allows
the user to enter an amount. Because they are parallel, there is no required order for making the two
entries; they can occur in either order. This emphasizes that concurrency does not always imply
physically simultaneous execution. Concurrency really means that two actions are uncoordinated and
can happen in any order. If they are truly independent actions, they can overlap; if they are sequential
actions, they can occur in any order.

Once both actions have been performed, the parallel operator is complete. In the next action within
the optional operator, the bank delivers cash to the user. The sequence diagram is now complete.

Nested Activity Diagrams

Activity diagrams that are too large can be difficult to understand. Structured sections of an activity
can be organized into a subordinate activity, especially if the subordinate activity is used more than
once within the main activity. The main activity and the subordinate activities are shown on separate
diagrams. Within the main activity diagram, a use of a subordinate activity is shown by a rectangle
with the tag ref in its upper left corner; the name of the subordinate behavior is shown in the box. The
subordinate behavior is not restricted to an activity diagram; it could also be a state machine,
sequence diagram, or other behavioral specification. Figure 19-4 shows the diagram from Figure 19-3
rearranged by moving two sections into separate activity diagrams and referencing them from the
main diagram.



Figure 19-4. Nested activity diagram

Communication Diagrams

A communication diagram emphasizes the organization of the objects that participate in an
interaction. As Figure 19-5 shows, you form a communication diagram by first placing the objects that
participate in the interaction as the vertices in a graph. Next, you render the links that connect these
objects as the arcs of this graph. The links may have rolenames to identify them. Finally, you adorn
these links with the messages that objects send and receive. This gives the reader a clear visual cue
to the flow of control in the context of the structural organization of objects that collaborate.

Figure 19-5. Communication Diagram



Note

Unlike a sequence diagram, you don't show the lifeline of an object explicitly in a
communication diagram, although you can show both create and destroy messages. In
addition, you don't show the focus of control explicitly in a communication diagram, although
the sequence number on each message can indicate nesting.

Communication diagrams have two features that distinguish them from sequence diagrams. First,
there is the path. You render a path corresponding to an association. You also render paths
corresponding to local variables, parameters, global variables, and self access. A path represents a
source of knowledge to an object.

Second, there is the sequence number. To indicate the time order of a message, you prefix the
message with a number (starting with the message numbered 1), increasing monotonically for each
new message in the flow of control (2, 3, and so on). To show nesting, you use Dewey decimal
numbering (1 is the first message, which contains message 1.1 and message 1.2, and so on). You can
show nesting to an arbitrary depth. Note also that, along the same link, you can show many messages
(possibly being sent from different directions), and each will have a unique sequence number.

You can use an advanced form of sequence numbers to distinguish concurrent
flows of control, as discussed in Chapter 23; path stereotypes are discussed in
Chapter 18; complex branching and iteration can be more easily specified in
activity diagrams, as discussed in Chapter 20.

Most of the time you'll model straight, sequential flows of control. However, you can also model more-
complex flows involving iteration and branching. An iteration represents a repeated sequence of
messages. To model an iteration, you prefix the sequence number of a message with an iteration
expression such as *[i := 1..n] (or just * if you want to indicate iteration but don't want to specify its
details). An iteration indicates that the message (and any nested messages) will be repeated in
accordance with the given expression. Similarly, a condition represents a message whose execution is
contingent on the evaluation of a Boolean condition. To model a condition, you prefix the sequence
number of a message with a condition clause, such as [x > 0]. The alternate paths of a branch will



have the same sequence number, but each path must be uniquely distinguishable by a nonoverlapping
condition.

For both iteration and branching, the UML does not prescribe the format of the expression inside the
brackets; you can use pseudocode or the syntax of a specific programming language.

Note

You don't show the links among objects explicitly in a sequence diagram. You don't show the
sequence number of a message in a sequence diagram explicitly either: It is implicit in the
physical ordering of messages from top to bottom of the diagram. You can show iteration
and branching, however, using sequence diagram control structures.

Semantic Equivalence

Because they both derive from the same information in the UML's metamodel, sequence diagrams and
communication diagrams are semantically equivalent. As a result, you can take a diagram in one form
and convert it to the other without any loss of information, as you can see in the previous two figures,
which are semantically equivalent. However, this does not mean that both diagrams will explicitly
visualize the same information. For example, in the previous two figures, the communication diagram
shows how the objects are linked (note the {local} and {global} annotations); the corresponding
sequence diagram does not. Similarly, the sequence diagram shows message return (note the return
value committed), but the corresponding communication diagram does not. In both cases, the two
diagrams share the same underlying model, but each may render some things the other does not.
However, a model entered in one format may lack some of the information shown on the other
format, so although the underlying model can include both kinds of information, the two kinds of
diagrams may lead to different models.

The five views of an architecture are discussed in Chapter 2; instances are
discussed in Chapter 13; classes are discussed in Chapters 4 and 9; active
classes are discussed in Chapter 23; interfaces are discussed in Chapter 11;
components are discussed in Chapter 15; nodes are discussed in Chapter 27;
systems and subsystems are discussed in Chapter 32; operations are discussed
in Chapters 4 and 9; use cases are discussed in Chapter 17; collaborations are
discussed in Chapter 28.

Common Uses

You use interaction diagrams to model the dynamic aspects of a system. These dynamic aspects may
involve the interaction of any kind of instance in any view of a system's architecture, including
instances of classes (including active classes), interfaces, components, and nodes.

When you use an interaction diagram to model some dynamic aspect of a system, you do so in the
context of the system as a whole, a subsystem, an operation, or a class. You can also attach
interaction diagrams to use cases (to model a scenario) and to collaborations (to model the dynamic
aspects of a society of objects).

When you model the dynamic aspects of a system, you typically use interaction diagrams in two ways.

1.



To model flows of control by time ordering1.

Here you'll use sequence diagrams. Modeling a flow of control by time ordering emphasizes the
passing of messages as they unfold over time, which is a particularly useful way to visualize dynamic
behavior in the context of a use case scenario. Sequence diagrams do a better job of visualizing simple
iteration and branching than do communication diagrams.

To model flows of control by organization2.

Here you'll use communication diagrams. Modeling a flow of control by organization emphasizes the
structural relationships among the instances in the interaction, along which messages may be passed.



Common Modeling Techniques

Modeling Flows of Control by Time Ordering

Consider the objects that live in the context of a system, subsystem, operation or class. Consider also
the objects and roles that participate in a use case or collaboration. To model a flow of control that
winds through these objects and roles, you use an interaction diagram; to emphasize the passing of
messages as they unfold over time, you use a sequence diagram, a kind of interaction diagram.

Systems and subsystems are discussed in Chapter 32; operations and classes
are discussed in Chapters 4 and 9; use cases are discussed in Chapter 17;
collaborations are discussed in Chapter 28.

To model a flow of control by time ordering,

Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one
scenario of a use case or collaboration.

Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the sequence diagram from left to right, placing the more important objects to the
left and their neighboring objects to the right.

Set the lifeline for each object. In most cases, objects will persist through the entire interaction.
For those objects that are created and destroyed during the interaction, set their lifelines, as
appropriate, and explicitly indicate their birth and death with appropriately stereotyped
messages.

Starting with the message that initiates this interaction, lay out each subsequent message from
top to bottom between the lifelines, showing each message's properties (such as its parameters),
as necessary to explain the semantics of the interaction.

If you need to visualize the nesting of messages or the points in time when actual computation is
taking place, adorn each object's lifeline with its focus of control.

If you need to specify time or space constraints, adorn each message with a timing mark and
attach suitable time or space constraints.

If you need to specify this flow of control more formally, attach pre- and postconditions to each
message.

Timing marks are discussed in Chapter 24; pre- and postconditions are
discussed in Chapter 4; packages are discussed in Chapter 12.



A single sequence diagram can show only one thread of control (although you can show structured
concurrency by using the structured control constructs). Typically, you'll have a number of interaction
diagrams, some of which are primary and others that show alternative paths or exceptional conditions.
You can use packages to organize these collections of sequence diagrams, giving each diagram a
suitable name to distinguish it from its siblings.

For example, Figure 19-6 shows a sequence diagram that specifies the flow of control involved in
initiating a simple, two-party phone call. At this level of abstraction, there are four roles involved: two
Callers (s and r); an unnamed telephone Switch; and c, the reification of the Conversation between
the two parties. Note that the diagram models the four roles; each instance of the diagram has
particular objects bound to each of the roles. The same pattern of interaction applies to every instance
of the diagram.

Figure 19-6. Modeling Flows of Control by Time Ordering

Signals are discussed in Chapter 21; timing marks are discussed in Chapter 24;
constraints are discussed in Chapter 6; responsibilities are discussed in Chapter
4; notes are discussed in Chapter 6

The sequence begins with one Caller (s) dispatching a signal (liftReceiver) to the Switch object. In
turn, the Switch sends setDialTone to the Caller, and the Caller iterates on the message dialDigit.
Note that this sequence must be less than 30 seconds, as specified by the constraint. This diagram
does not indicate what happens if this time constraint is violated. To show that, you could include a
branch or a completely separate sequence diagram. The Switch object then calls itself to perform the
routeCall operation. It then creates a Conversation object (c), to which it delegates the rest of the
work. Although not shown in this interaction, c would have the additional responsibility of being a
party in the switch's billing mechanism (which would be expressed in another interaction diagram).
The Conversation object (c) rings the Caller (r), who asynchronously sends the message



liftReceiver. The Conversation object then tells the Switch to connect the call, then tells both Caller
objects to connect, after which they may exchange information, as indicated by the attached note.

An interaction diagram can begin or end at any point of a sequence. A complete trace of the flow of
control would be incredibly complex, so it's reasonable to break up parts of a larger flow into separate
diagrams.

Modeling Flows of Control by Organization

Consider the objects that live in the context of a system, subsystem, operation, or class. Consider also
the objects and roles that participate in a use case or collaboration. To model a flow of control that
winds through these objects and roles, you use an interaction diagram; to show the passing of
messages in the context of that structure, you use a communication diagram, a kind of interaction
diagram.

Systems and subsystems are discussed in Chapter 32; operations and classes
are discussed in Chapters 4 and 9; use cases are discussed in Chapter 17;
collaborations are discussed in Chapter 28.

To model a flow of control by organization,

Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one
scenario of a use case or collaboration.

Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the communication diagram as vertices in a graph, placing the more important
objects in the center of the diagram and their neighboring objects to the outside.

Specify the links among these objects, along which messages may pass.

Lay out the association links first; these are the most important ones, because they
represent structural connections.

1.

Lay out other links next, and adorn them with suitable path annotations (such as global
and local) to explicitly specify how these objects are related to one another.

2.

Dependency relationships are discussed in Chapters 5 and 10; path
constraints are discussed in Chapter 16

Starting with the message that initiates this interaction, attach each subsequent message to the
appropriate link, setting its sequence number, as appropriate. Show nesting by using Dewey
decimal numbering.

If you need to specify time or space constraints, adorn each message with a timing mark and
attach suitable time or space constraints.

If you need to specify this flow of control more formally, attach pre- and postconditions to each



message.

Timing marks are discussed in Chapter 24; pre- and postconditions are
discussed in Chapter 4; packages are discussed in Chapter 12.

As with sequence diagrams, a single communication diagram can show only one flow of control
(although you can show simple variations by using the UML's notation for interaction and branching).
Typically, you'll have a number of such interaction diagrams, some of which are primary and others
that show alternative paths or exceptional conditions. You can use packages to organize these
collections of communication diagrams, giving each diagram a suitable name to distinguish it from its
siblings.

For example, Figure 19-7 shows a communication diagram that specifies the flow of control involved in
registering a new student at a school, with an emphasis on the structural relationships among these
objects. You see four roles: a RegistrarAgent (r), a Student (s), a Course (c), and an unnamed School
role. The flow of control is numbered explicitly. Action begins with the RegistrarAgent creating a
Student object, adding the student to the school (the message addStudent), then telling the Student
object to register itself. The Student object then invokes getSchedule on itself, obtaining a set of
Course objects for which it must register. For each course object in the set, the Student object then
adds itself to each Course object.

Figure 19-7. Modeling Flows of Control by Organization

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for both sequence and
communication diagrams, especially if the context of the diagram is an operation. For example, using
the previous communication diagram, a reasonably clever forward engineering tool could generate the
following Java code for the operation register, attached to the Student class.

public void register() {
 CourseCollection courses = getSchedule();
 for (int i = 0; i < courses.size(); i++)
  courses.item(i).add(this);



 this.registered = true;
}

"Reasonably clever" means the tool would have to realize that getSchedule returns a CourseCollection
object, which it could determine by looking at the operation's signature. By walking across the
contents of this object using a standard iteration idiom (which the tool could know about implicitly),
the code could then generalize to any number of course offerings.

Reverse engineering (the creation of a model from code) is also possible for both sequence and
communication diagrams, especially if the context of the code is the body of an operation. Segments
of the previous diagram could have been produced by a tool from a prototypical execution of the
register operation.

Note

Forward engineering is straightforward; reverse engineering is hard. It's easy to get too
much information from simple reverse engineering, so the hard part is being clever about
what details to keep.

However, more interesting than the reverse engineering of a model from code is the animation of a
model against the execution of a deployed system. For example, given the previous diagram, a tool
could animate the messages in the diagram as they were dispatched in a running system. Even better,
with this tool under the control of a debugger, you could control the speed of execution, possibly
setting breakpoints to stop the action at interesting points to examine the attribute values of individual
objects.



Hints and Tips

When you create interaction diagrams in the UML, remember that sequence diagrams and
communication diagrams are both projections on the same model of a system's dynamic aspects. No
single interaction diagram can capture everything about a system's dynamic aspects. Rather, you'll
want to use many interaction diagrams to model the dynamics of the system as a whole, as well as its
subsystems, operations, classes, use cases, and collaborations.

A well-structured interaction diagram

Is focused on communicating one aspect of a system's dynamics.

Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction and should expose only those adornments
that are essential to understanding.

Is not so minimalist that it misinforms the reader about semantics that are important.

When you draw an interaction diagram,

Give it a name that communicates its purpose.

Use a sequence diagram if you want to emphasize the time ordering of messages. Use a
communication diagram if you want to emphasize the organization of the objects involved in the
interaction.

Lay out its elements to minimize lines that cross.

Use notes and color as visual cues to draw attention to important features of your diagram.

Use branching sparingly; you can represent complex branching much better using activity
diagrams.



Chapter 20. Activity Diagrams
In this chapter

Modeling a workflow

Modeling an operation

Forward and reverse engineering

Sequence diagrams, communication diagrams, state diagrams, and use case
diagrams also model the dynamic aspects of systems. Sequence and
communication diagrams are discussed in Chapter 19; state diagrams are
discussed in Chapter 25; use case diagrams are discussed in Chapter 18; actions
are discussed in Chapter 16.

Activity diagrams are one of the five diagrams in the UML for modeling the dynamic aspects of
systems. An activity diagram is essentially a flowchart, showing flow of control from activity to activity.
Unlike a traditional flowchart, an activity diagram shows concurrency as well as branches of control.

You use activity diagrams to model the dynamic aspects of a system. For the most part, this involves
modeling the sequential (and possibly concurrent) steps in a computational process. With an activity
diagram, you can also model the flow of values among steps. Activity diagrams may stand alone to
visualize, specify, construct, and document the dynamics of a society of objects, or they may be used
to model the flow of control of an operation. Whereas interaction diagrams emphasize the flow of
control from object to object, activity diagrams emphasize the flow of control from step to step. An
activity is an ongoing structured execution of a behavior. The execution of an activity ultimately
expands into the execution of individual actions, each of which may change the state of the system or
communicate messages.

Activity diagrams are not only important for modeling the dynamic aspects of a system, but also for
constructing executable systems through forward and reverse engineering.



Getting Started

Consider the workflow associated with building a house. First, you select a site. Next, you commission
an architect to design your house. After you've settled on the plan, your developer asks for bids to
price the house. Once you agree on a price and a plan, construction can begin. Permits are secured,
ground is broken, the foundation is poured, the framing is erected, and so on, until everything is done.
You're then handed the keys and a certificate of occupancy, and you take possession of the house.

Although that's a tremendous simplification of what really goes on in a construction process, it does
capture the critical path of the workflow. In a real project, there are lots of parallel activities among
various trades. Electricians can be working at the same time as plumbers and carpenters, for example.
You'll also encounter conditions and branches. For example, depending on the result of soils tests, you
might have to blast, dig, or float. There might even be iterations. For example, a building inspection
might reveal code violations that result in scrap and rework.

In the construction industry, such techniques as Gantt charts and Pert charts are commonly used for
visualizing, specifying, constructing, and documenting the workflow of the project.

In modeling software-intensive systems, you have a similar problem. How do you best model a
workflow or an operation, both of which are aspects of the system's dynamics? The answer is that you
have two basic choices, similar to the use of Gantt charts and Pert charts.

Modeling the structural aspects of a system is discussed in Parts 2 and 3;
interaction diagrams are discussed in Chapter 19.

On the one hand, you can build up storyboards of scenarios, involving the interaction of certain
interesting objects and the messages that may be dispatched among them. In the UML, you can
model these storyboards in two ways: by emphasizing the time ordering of messages (using sequence
diagrams) or by emphasizing the structural relationships among the objects that interact (using
collaboration diagrams). Interaction diagrams such as these are akin to Gantt charts, which focus on
the objects (resources) that carry out some activity over time.

On the other hand, you can model these dynamic aspects using activity diagrams, which focus first on
the activities that take place among objects, as Figure 20-1 shows. In that regard, activity diagrams
are akin to Pert charts. An activity diagram is essentially a flowchart that emphasizes the activity that
takes place over time. You can think of an activity diagram as an interaction diagram turned inside
out. An interaction diagram looks at the objects that pass messages; an activity diagram looks at the
operations that are passed among objects. The semantic difference is subtle, but it results in a very
different way of looking at the world.

Figure 20-1. Activity Diagram



Actions are discussed in Chapter 16.



Terms and Concepts

An activity diagram shows the flow from activity to activity. An activity is an ongoing nonatomic
execution within a state machine. The execution of an activity ultimately expands into the execution of
individual actions, each of which may change the state of the system or communicate messages.
Actions encompass calling another operation, sending a signal, creating or destroying an object, or
some pure computation such as evaluating an expression. Graphically, an activity diagram is a
collection of nodes and arcs.

Common Properties

An activity diagram is a kind of diagram and shares the same common properties as do all other
diagramsa name and graphical contents that are a projection into a model. What distinguishes an
interaction diagram from other kinds of diagrams is its content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Activity diagrams commonly contain

States, transitions, and state machines are discussed in Chapter 22; objects are
discussed in Chapter 13.

Actions

Activity nodes

Flows

Object values

Like all other diagrams, activity diagrams may contain notes and constraints.

Actions and Activity Nodes

In the flow of control modeled by an activity diagram, things happen. You might evaluate some
expression that sets the value of an attribute or that returns some value. Alternately, you might call
an operation on an object, send a signal to an object, or even create or destroy an object. These
executable, atomic computations are called actions. As Figure 20-2 shows, you represent an action



using a rounded box. Inside that shape, you may write an expression.

Figure 20-2. Actions

Attributes and operations are discussed in Chapters 4 and 9; signals are
discussed in Chapter 21; creation and destruction of objects are discussed in
Chapter 16; states and state machines are discussed in Chapter 22.

Note

The UML does not prescribe the language of these expressions. Abstractly, you might just
use structured text; more concretely, you might use the syntax and semantics of a specific
programming language.

Actions can't be decomposed. Furthermore, actions are atomic, meaning that events may occur, but
the internal behavior of the action state is not visible. You can't execute part of an action; either it
executes completely or not at all. Finally, the work of an action state is often considered to take
insignificant execution time, but some actions may have substantial duration.

Note

In the real world, of course, every computation takes some amount of time and space.
Especially for hard real time systems, it's important that you model these properties.

Modeling time and space is discussed in Chapter 24.

An activity node is an organizational unit within an activity. In general, activity nodes are nested
groupings of actions or other nested activity nodes. Furthermore, activity nodes have visible
substructure; in general, they are considered to take some duration to complete. You can think of an
action as a special case of an activity node. An action is an activity node that cannot be further
decomposed. Similarly, you can think of an activity node as a composite whose flow of control is made



up of other activity nodes and actions. Zoom into the details of an activity node and you'll find another
activity diagram. As Figure 20-3 shows, there's no notational distinction between actions and activity
nodes, except that an activity node may have additional parts, which will usually be maintained in the
background by an editing tool.

Figure 20-3. Activity Nodes

Control Flows

When an action or activity node completes execution, flow of control passes immediately to the next
action or activity node. You specify this flow by using flow arrows to show the path of control from one
action or activity node to the next action or activity node. In the UML, you represent a flow as a simple
arrow from the predecessor action to its successor, without an event label, as Figure 20-4 shows.

Figure 20-4. Completion Transitions

Indeed, a flow of control has to start and end someplace (unless, of course, it's an infinite flow, in
which case it will have a beginning but no end). Therefore, as the figure shows, you may specify
initialization (a solid ball) and completion (a solid ball inside a circle) as special symbols.

Branching

Simple, sequential flows are common, but they aren't the only kind of path you'll need to model a flow
of control. As in a flowchart, you can include a branch, which specifies alternate paths taken based on
some Boolean expression. As Figure 20-5 shows, you represent a branch as a diamond. A branch may
have one incoming and two or more outgoing flows. On each outgoing flow, you place a Boolean
expression, which is evaluated on entering the branch. The guards on the outgoing flows should not
overlap (otherwise, the flow of control would be ambiguous), but they should cover all possibilities
(otherwise, the flow of control would freeze).



Figure 20-5. Branching

Branches are a notational convenience, semantically equivalent to multiple
transitions with guards, as discussed in Chapter 22.

As a convenience, you can use the keyword else to mark one outgoing transition, representing the
path taken if no other guard expression evaluates to true.

When two paths of control merge back together, you can also use a diamond symbol with two input
arrows and one output arrow. No guards are necessary on merge.

Branching and iteration are possible in interaction diagrams, as discussed in
Chapter 19.

You can achieve the effect of iteration by using one action that sets the value of an iterator, another
action that increments the iterator, and a branch that evaluates if the iteration is finished. The UML
includes node types for loops, but these may often be expressed more easily in text than in graphics.

Note

The UML does not prescribe the language of these expressions. Abstractly, you might just
use structured text; more concretely, you might use the syntax and semantics of a specific
programming language.



Forking and Joining

Simple and branching sequential transitions are the most common paths you'll find in activity
diagrams. Howeverespecially when you are modeling workflows of business processesyou might
encounter flows that are concurrent. In the UML, you use a synchronization bar to specify the forking
and joining of these parallel flows of control. A synchronization bar is rendered as a thick horizontal or
vertical line.

A concurrent flow of control often lives in the context of an independent active
object, which is typically modeled as either a process or a thread, as discussed
in Chapter 23; nodes are discussed in Chapter 27.

For example, consider the concurrent flows involved in controlling an audio-animatronic device that
mimics human speech and gestures. As Figure 20-6 shows, a fork represents the splitting of a single
flow of control into two or more concurrent flows of control. A fork may have one incoming transition
and two or more outgoing transitions, each of which represents an independent flow of control. Below
the fork, the activities associated with each of these paths continues in parallel. Conceptually, the
activities of each of these flows are truly parallel, although, in a running system, these flows may be
either truly concurrent (in the case of a system deployed across multiple nodes) or sequential yet
interleaved (in the case of a system deployed across one node), thus giving only the illusion of true
concurrency.

Figure 20-6. Forking and Joining

As the figure also shows, a join represents the synchronization of two or more concurrent flows of
control. A join may have two or more incoming transitions and one outgoing transition. Above the join,
the activities associated with each of these paths continues in parallel. At the join, the concurrent
flows synchronize, meaning that each waits until all incoming flows have reached the join, at which
point one flow of control continues on below the join.



Note

Joins and forks should balance, meaning that the number of flows that leave a fork should
match the number of flows that enter its corresponding join. Also, activities that are in
parallel flows of control may communicate with one another by sending signals. This style of
communicating sequential processes is called a coroutine. Most of the time you model this
style of communication using active objects.

Active objects are discussed in Chapter 23; signals are discussed in Chapter 21.

Swimlanes

You'll find it useful, especially when you are modeling workflows of business processes, to partition the
activity states on an activity diagram into groups, each group representing the business organization
responsible for those activities. In the UML, each group is called a swimlane because, visually, each
group is divided from its neighbor by a vertical solid line, as shown in Figure 20-7. A swimlane
specifies a set of activities that share some organizational property.

Figure 20-7. Swimlanes



Each swimlane has a name unique within its diagram. A swimlane really has no deep semantics,
except that it may represent some real-world entity, such as an organizational unit of a company.
Each swimlane represents a high-level responsibility for part of the overall activity of an activity
diagram, and each swimlane may eventually be implemented by one or more classes. In an activity
diagram partitioned into swimlanes, every activity belongs to exactly one swimlane, but transitions
may cross lanes.

A swimlane is a kind of package. Packages are discussed in Chapter 12; classes
are discussed in Chapters 4 and 9; processes and threads are discussed in
Chapter 23.

Note

There's a loose connection between swimlanes and concurrent flows of control. Conceptually,
the activities of each swimlane are generallybut not alwaysconsidered separate from the
activities of neighboring swimlanes. That makes sense because, in the real world, the
business organizations that generally map to these swimlanes are independent and
concurrent.



Object Flow

Objects may be involved in the flow of control associated with an activity diagram. For example, in the
workflow of processing an order as in the previous figure, the vocabulary of your problem space will
also include such classes as Order and Bill. Instances of these two classes will be produced by certain
activities (Process order will create an Order object, for example); other activities may use or modify
these objects (for example, Ship order will change the state of the Order object to filled).

Objects are discussed in Chapter 13; modeling the vocabulary of a system is
discussed in Chapter 4.

As Figure 20-8 shows, you can specify the things that are involved in an activity diagram by placing
these objects in the diagram, connected by arrows to the actions that produce or consume them.

Figure 20-8. Object Flow



Dependency relationships are discussed in Chapters 5 and 10.

This called an object flow because it represents the flow of an object value from one action to another.
An object flow inherently implies control flow (you can't execute an action that requires a value
without the value!), so it is unnecessary to draw a control flow between actions connected by object
flows.



In addition to showing the flow of an object through an activity diagram, you can also show how its
state changes. As shown in the figure, you represent the state of an object by naming its state in
brackets below the object's name.

The values and state of an object are discussed in Chapter 13; attributes are
discussed in Chapters 4 and 9.

Expansion Regions

Often the same operation must be performed on the elements of a set. For example, if an order
comprises a set of line items, the order handler must perform the same operation for each line item:
check availability, look up the cost, check if this kind of item is taxable, and so on. Operations on lists
are often modeled as loops, but then the modeler must iterate over the items, extract them one at a
time, perform the operation, assemble the results into an output array, increment the index, and
check for completion. The mechanics of executing the loop obscure the actual significance of the
operation. This extremely common pattern can be modeled directly using an expansion region.

An expansion region represents a activity model fragment that is performed on the elements of a list
or set. It is shown in an activity diagram by drawing a dashed line around a region in the diagram. The
inputs to the region and the outputs from the region are collections of values, such as the line items in
an order. Collection inputs and outputs are shown as a row of small squares joined together (to
suggest an array of values). When an array value arrives at a collection input on an expansion region
from the rest of the activity model, it is broken apart into the individual values. The execution region is
executed once for each element in the array. It is unnecessary to model the iteration; it is implicit in
the expansion region. The different executions can be performed concurrently, if possible. When each
execution of the expansion region completes, its output value (if any) is placed into an output array in
the same order as the corresponding input. In other words, an expansion region performs a "forall"
operation on the elements of an array to create a new array.

In the simplest case, an expansion region has one array input and one array output, but it can have
one or more input array and zero or more output arrays. All of the arrays must be the same size, but
they need not contain the same type of value. Values from corresponding positions execute together
to produce output values at the same position. The region could have zero outputs if all the operations
are performed as side effects directly on array elements.

Expansion regions allow operations on collections and operations on individual elements of the
collections to be shown on the same diagram, without the need to show all of the detailed but
straightforward iteration machinery.

Figure 20-9 shows an example of an expansion region. In the main body of the diagram, an order is
received. This produces a value of type Order, which consists of an array of LineItem values. The
Order value is the input to an expansion region. Each execution of the expansion region works on one
element from the Order collection. Therefore, inside the region the type of input value corresponds to
one element of the Order array, namely a LineItem. The expansion region activity forks into two
actions: one action finds the Product and adds it to the shipment, and the other action computes the
cost of that item. It is not necessary that the LineItems be taken in order; the different executions of
the expansion region can proceed concurrently. When all executions of the expansion region are
complete, the Items are formed into a Shipment (a collection of Products) and the charges are formed
into a Bill (a collection of Money values). The Shipment value is the input to the ShipOrder action and
the Bill value is the input to the SendBill action.

Figure 20-9. Expansion region



Common Uses

You use activity diagrams to model the dynamic aspects of a system. These dynamic aspects may
involve the activity of any kind of abstraction in any view of a system's architecture, including classes
(which includes active classes), interfaces, components, and nodes.

The five views of an architecture are discussed in Chapter 2; classes are
discussed in Chapters 4 and 9; active classes are discussed in Chapter 23;
interfaces are discussed in Chapter 11; operations are discussed in Chapters 4
and 9; use cases and actors are discussed in Chapter 17; components are
discussed in Chapter 15; nodes are discussed in Chapter 27; systems and
subsystems are discussed in Chapter 32.

When you use an activity diagram to model some dynamic aspect of a system, you can do so in the
context of virtually any modeling element. Typically, however, you'll use activity diagrams in the
context of the system as a whole, a subsystem, an operation, or a class. You can also attach activity
diagrams to use cases (to model a scenario) and to collaborations (to model the dynamic aspects of a
society of objects).

When you model the dynamic aspects of a system, you'll typically use activity diagrams in two ways.

To model a workflow1.



1.

Here you'll focus on activities as viewed by the actors that collaborate with the system. Workflows
often lie on the fringe of software-intensive systems and are used to visualize, specify, construct, and
document business processes that involve the system you are developing. In this use of activity
diagrams, modeling object flow is particularly important.

To model an operation2.

Here you'll use activity diagrams as flowcharts to model the details of a computation. In this use of
activity diagrams, the modeling of branch, fork, and join states is particularly important. The context
of an activity diagram used in this way involves the parameters of the operation and its local objects.



Common Modeling Techniques

Modeling a Workflow

No software-intensive system exists in isolation; there's always some context in which a system lives,
and that context always encompasses actors that interact with the system. Especially for mission-
critical enterprise software, you'll find automated systems working in the context of higher-level
business processes. These business processes are kinds of workflows because they represent the flow
of work and objects through the business. For example, in a retail business, you'll have some
automated systems (for example, point-of-sale systems that interact with marketing and warehouse
systems), as well as human systems (the people that work at each retail outlet, as well as the
telesales, marketing, buying, and shipping departments). You can model the business processes for
the way these various automated and human systems collaborate by using activity diagrams.

Modeling the context of a system is discussed in Chapter 18.

To model a workflow,

Establish a focus for the workflow. For nontrivial systems, it's impossible to show all interesting
workflows in one diagram.

Select the business objects that have the high-level responsibilities for parts of the overall
workflow. These may be real things from the vocabulary of the system, or they may be more
abstract. In either case, create a swimlane for each important business object or organization.

Modeling the vocabulary of a system is discussed in Chapter 4;
preconditions and postconditions are discussed in Chapter 9.

Identify the preconditions of the workflow's initial state and the postconditions of the workflow's
final state. This is important in helping you model the boundaries of the workflow.

Beginning at the workflow's initial state, specify the actions that take place over time and render
them in the activity diagram.

For complicated actions or for sets of actions that appear multiple times, collapse these into calls
to a separate activity diagram.

Render the flows that connect these actions and activity nodes. Start with the sequential flows in
the workflow first, next consider branching, and only then consider forking and joining.

If there are important object values that are involved in the workflow, render them in the activity
diagram as well. Show their changing values and state as necessary to communicate the intent
of the object flow.



For example, Figure 20-10 shows an activity diagram for a retail business, which specifies the
workflow involved when a customer returns an item from a mail order. Work starts with the Customer
action Request return and then flows through Telesales (Get return number), back to the Customer
(Ship item), then to the Warehouse (Receive item then Restock item), finally ending in Accounting
(Credit account). As the diagram indicates, one significant object (an instance of Item) also flows the
process, changing from the returned to the available state.

Figure 20-10. Modeling a Workflow

Note

Workflows are most often business processes, but not always. For example, you can also use
activity diagrams to specify software development processes, such as your process for
configuration management. Furthermore, you can use activity diagrams to model
nonsoftware systems, such as the flow of patients through a healthcare system.

In this example, there are no branches, forks, or joins. You'll encounter these features in more
complex workflows.

Modeling an Operation

An activity diagram can be attached to any modeling element for the purpose of visualizing,
specifying, constructing, and documenting that element's behavior. You can attach activity diagrams
to classes, interfaces, components, nodes, use cases, and collaborations. The most common element



to which you'll attach an activity diagram is an operation.

Classes and operations are discussed in Chapters 4 and 9; interfaces are
discussed in Chapter 11; components are discussed in Chapter 15; nodes are
discussed in Chapter 27; use cases are discussed in Chapter 17; collaborations
are discussed in Chapter 28; preconditions, postconditions, and invariants are
discussed in Chapter 9; active classes are discussed in Chapter 23.

Used in this manner, an activity diagram is simply a flowchart of an operation's actions. An activity
diagram's primary advantage is that all the elements in the diagram are semantically tied to a rich
underlying model. For example, any other operation or signal that an action state references can be
type-checked against the class of the target object.

To model an operation,

Collect the abstractions that are involved in this operation. This includes the operation's
parameters (including its return type, if any), the attributes of the enclosing class, and certain
neighboring classes.

Identify the preconditions at the operation's initial state and the postconditions at the operation's
final state. Also identify any invariants of the enclosing class that must hold during the execution
of the operation.

Beginning at the operation's initial state, specify the activities and actions that take place over
time and render them in the activity diagram as either activity states or action states.

Use branching as necessary to specify conditional paths and iteration.

Only if this operation is owned by an active class, use forking and joining as necessary to specify
parallel flows of control.

For example, in the context of the class Line, Figure 20-11 shows an activity diagram that specifies
the algorithm of the operation intersection, whose signature includes one parameter (line, of the
class Line) and one return value (of the class Point). The class Line has two attributes of interest:
slope (which holds the slope of the line) and delta (which holds the offset of the line relative to the
origin).

Figure 20-11. Modeling an Operation



If an operation involves the interaction of a society of objects, you can also
model the realization of that operation using collaborations, as discussed in
Chapter 28.

The algorithm of this operation is simple, as shown in the following activity diagram. First, there's a
guard that tests whether the slope of the current line is the same as the slope of parameter line. If
so, the lines do not intersect, and a Point at (0,0) is returned. Otherwise, the operation first
calculates an x value for the point of intersection, then a y value; x and y are both objects local to the
operation. Finally, a Point at (x,y) is returned.

Note

Using activity diagrams to flowchart an operation lies on the edge of making the UML a
visual programming language. You can flowchart every operation, but pragmatically, you
won't want to. Writing the body of an operation in a specific programming language is
usually more direct. You will want to use activity diagrams to model an operation when the
behavior of that operation is complex and therefore difficult to understand just by staring at
code. Looking at a flowchart will reveal things about the algorithm you could not have seen
just by looking at the code.

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for activity diagrams, especially if
the context of the diagram is an operation. For example, using the previous activity diagram, a
forward engineering tool could generate the following C++ code for the operation intersection.

Point Line::intersection (line : Line) {
 if (slope == line.slope) return Point(0,0);
 int x = (line.delta - delta) / 
                 (slope - line.slope);
 int y = (slope * x) + delta;



 return Point(x, y);
}

There's a bit of cleverness here, involving the declaration of the two local variables. A less-
sophisticated tool might have first declared the two variables and then set their values.

Reverse engineering (the creation of a model from code) is also possible for activity diagrams,
especially if the context of the code is the body of an operation. In particular, the previous diagram
could have been generated from the implementation of the class Line.

More interesting than the reverse engineering of a model from code is the animation of a model
against the execution of a deployed system. For example, given the previous diagram, a tool could
animate the action states in the diagram as they were dispatched in a running system. Even better,
with this tool also under the control of a debugger, you could control the speed of execution, possibly
setting breakpoints to stop the action at interesting points in time to examine the attribute values of
individual objects.



Hints and Tips

When you create activity diagrams in the UML, remember that activity diagrams are just projections
on the same model of a system's dynamic aspects. No single activity diagram can capture everything
about a system's dynamic aspects. Rather, you'll want to use many activity diagrams to model the
dynamics of a workflow or an operation.

A well-structured activity diagram

Is focused on communicating one aspect of a system's dynamics.

Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction; you expose only those adornments that
are essential to understanding.

Is not so minimalist that it misinforms the reader about important semantics.

When you draw an activity diagram,

Give it a name that communicates its purpose.

Start with modeling the primary flow. Address branching, concurrency, and object flow as
secondary considerations, possibly in separate diagrams.

Lay out its elements to minimize lines that cross.

Use notes and color as visual cues to draw attention to important features of your diagram.



Part 5: Advanced Behavioral Modeling



Chapter 21. Events and Signals
In this chapter

Signal events, call events, time events, and change events

Modeling a family of signals

Modeling exceptions

Handling events in active and passive objects

In the real world, things happen. Not only do things happen, but lots of things may happen at the
same time, and at the most unexpected times. "Things that happen" are called events, and each one
represents the specification of a significant occurrence that has a location in time and space.

In the context of state machines, you use events to model the occurrence of a stimulus that can
trigger a state transition. Events may include signals, calls, the passing of time, or a change in state.

Events may be synchronous or asynchronous, so modeling events is wrapped up in the modeling of
processes and threads.



Getting Started

A perfectly static system is intensely uninteresting because nothing ever happens. All real systems
have some dynamic dimension to them, and these dynamics are triggered by things that happen
externally or internally. At an ATM machine, action is initiated by a user pressing a button to start a
transaction. In an autonomous robot, action is initiated by the robot bumping into an object. In a
network router, action is initiated by the detection of an overflow of message buffers. In a chemical
plant, action is initiated by the passage of time sufficient for a chemical reaction.

In the UML, each thing that happens is modeled as an event. An event is the specification of a
significant occurrence that has a location in time and space. A signal, the passing of time, and a
change of state are asynchronous events, representing events that can happen at arbitrary times.
Calls are generally synchronous events, representing the invocation of an operation.

The UML provides a graphical representation of an event, as Figure 21-1 shows. This notation permits
you to visualize the declaration of events (such as the signal OffHook) as well as the use of events to
trigger a state transition (such as the signal OffHook, which causes a transition from the Active to the
Idle state as well as the execution of the dropConnection action).

Figure 21-1. Events



Terms and Concepts

An event is the specification of a significant occurrence that has a location in time and space. In the
context of state machines, an event is an occurrence of a stimulus that can trigger a state transition.
A signal is a kind of event that represents the specification of an asynchronous message
communicated between instances.

Kinds of Events

Events may be external or internal. External events are those that pass between the system and its
actors. For example, the pushing of a button and an interrupt from a collision sensor are both
examples of external events. Internal events are those that pass among the objects that live inside
the system. An overflow exception is an example of an internal event.

Actors are discussed in Chapter 17; systems are discussed in Chapter 32.

In the UML, you can model four kinds of events: signals, calls, the passing of time, and a change in
state.

The creation and destruction of objects are also kinds of signals, as discussed in
Chapter 16.

Signals

A message is a named object that is sent asynchronously by one object and then received by another.
A signal is a classifier for messages; it is a message type.

Classes are discussed in Chapters 4 and 9; generalization is discussed in
Chapters 5 and 10.

Signals have a lot in common with plain classes. For example, signals may have instances, although
you don't generally need to model them explicitly. Signals may also be involved in generalization
relationships, permitting you to model hierarchies of events, some of which are general (for example,
the signal NetworkFailure) and some of which are specific (for example, a specialization of
NetworkFailure called WarehouseServerFailure). Also as for classes, signals may have attributes and
operations. Before it has been sent by one object or after it is received by another, a signal is just an
ordinary data object.



Note

The attributes of a signal serve as its parameters. For example, when you send a signal such
as Collision, you can also specify a value for its attributes as parameters, such as
Collision(5.3).

A signal may be sent by the action of a transition in a state machine. It may be modeled as a message
between two roles in an interaction. The execution of a method can also send signals. In fact, when
you model a class or an interface, an important part of specifying the behavior of that element is
specifying the signals that its operations can send.

State machines are discussed in Chapter 22; interactions are discussed in
Chapter 16; interfaces are discussed in Chapter 11; dependencies are discussed
in Chapter 5; stereotypes are discussed in Chapter 6.

In the UML, as Figure 21-2 shows, you model signals as stereotyped classes. You can use a
dependency, stereotyped as send, to indicate that an operation sends a particular signal.

Figure 21-2. Signals

Call Events

Just as a signal event represents the occurrence of a signal, a call event represents the receipt by an
object of a call request for an operation on the object. A call event may trigger a state transition in a
state machine or it may invoke a method on the target object. The choice is specified in the class
definition for the operation.

State machines are discussed in Chapter 22.

Whereas a signal is an asynchronous event, a call event is usually synchronous. This means that when
an object invokes an operation on another object that has a state machine, control passes from the



sender to the receiver, the transition is triggered by the event, the operation is completed, the
receiver transitions to a new state, and control returns to the sender. In those cases where the caller
does not need to wait for a response, a call can be specified as asynchronous.

As Figure 21-3 shows, modeling a call event is indistinguishable from modeling a signal event. In both
cases, you show the event, along with its parameters, as the trigger for a state transition.

Figure 21-3. Call Events

Note

Although there are no visual cues to distinguish a signal event from a call event, the
difference is clear in the backplane of your model. The receiver of an event will know the
difference, of course (by declaring the operation in its operation list). Typically, a signal will
be handled by its state machine, and a call event will be handled by a method. You can use
your tools to navigate from the event to the signal or the operation.

Time and Change Events

A time event is an event that represents the passage of time. As Figure 21-4 shows, in the UML you
model a time event by using the keyword after followed by some expression that evaluates to a
period of time. Such expressions can be simple (for example, after 2 seconds) or complex (for
example, after 1 ms since exiting Idle). Unless you specify it explicitly, the starting time of such an
expression is the time since entering the current state. To indicate a time event that occurs at an
absolute time, use the keyword at. For example, the time event at (1 Jan 2005, 1200 UT) specifies
an event that occurs on noon Universal Time on New Year's Day 2005.

Figure 21-4. Time and Change Events



A change event is an event that represents a change in state or the satisfaction of some condition. As
Figure 21-4 shows, in the UML you model a change event by using the keyword when followed by some
Boolean expression. You can use such expressions for the continuous test of an expression (for
example, when altitude < 1000).

A change event occurs once when the value of the condition changes from false to true. It does not
occur when the value of the condition changes from true to false. The event does not recur while the
event remains true.

Note

Although a change event models a condition that is tested continuously, you can typically
analyze the situation to see when to test the condition at discrete points in time.

Sending and Receiving Events

Signal events and call events involve at least two objects: the object that sends the signal or invokes
the operation and the object to which the event is directed. Because signals are asynchronous, and
because asynchronous calls are themselves signals, the semantics of events interact with the
semantics of active objects and passive objects.

Processes and threads are discussed in Chapter 23.

Any instance of any class can send a signal to or invoke an operation of a receiving object. When an
object sends a signal, the sender dispatches the signal and then continues along its flow of control, not
waiting for any return from the receiver. For example, if an actor interacting with an ATM system
sends the signal pushButton, the actor may continue along its way independent of the system to which
the signal was sent. In contrast, when an object calls an operation, the sender dispatches the
operation and then waits for the receiver to reply. For example, in a trading system, an instance of the
class trader might invoke the operation confirmTransaction on some instance of the class TRade,



thereby affecting the state of the TRade object. If this is a synchronous call, the trader object will wait
until the operation is finished.

Instances are discussed in Chapter 13.

Note

In some situations, you may want to show one object sending a signal to a set of objects
(multicasting) or to any object in the system that might be listening (broadcasting). To
model multicasting, you'd show an object sending a signal to a collection containing a set of
receivers. To model broadcasting, you'd show an object sending a signal to another object
that represents the system as a whole.

Any instance of any class can receive a call event or a signal. If this is a synchronous call event, then
the sender and the receiver are in a rendezvous for the duration of the operation. This means that the
flow of control of the sender suspends until the execution of the operation completes. If this is a
signal, then the sender and receiver do not rendezvous: The sender dispatches the signal but does not
wait for a response from the receiver. In either case, this event may be lost (if no response to the
event is specified), it may trigger the receiver's state machine (if there is one), or it may just invoke a
normal method call.

State machines are discussed in Chapter 22; active objects are discussed in
Chapter 23.

Note

A call may be asynchronous. In this case, the caller continues immediately after issuing the
call. The transmission of the message to the receiver and its execution by the receiver occur
concurrently with the subsequent execution of the caller. When the execution of the method
is complete, it just ends. If the method attempts to return values, they are ignored.

In the UML, you model the call events that an object may receive as operations on the class of the
object. In the UML, you model the named signals that an object may receive by naming them in an
extra compartment of the class, as shown in Figure 21-5.

Figure 21-5. Signals and Active Classes



Operations are discussed in Chapter 4; extra class compartments are discussed
in Chapter 4.

Interfaces are discussed in Chapter 11; asynchronous operations are discussed
in Chapter 23.

Note

You can also attach named signals to an interface in this same manner. In either case, the
signals you list in this extra compartment are not the declarations of a signal, but only the
use of a signal.



Common Modeling Techniques

Modeling a Family of Signals

In most event-driven systems, signal events are hierarchical. For example, an autonomous robot
might distinguish between external signals, such as a Collision, and internal ones, such as a
HardwareFault. External and internal signals need not be disjoint, however. Even within these two
broad classifications, you might find specializations. For example, HardwareFault signals might be
further specialized as BatteryFault and MovementFault. Even these might be further specialized, such
as MotorStall, a kind of MovementFault.

Generalization is discussed in Chapters 5 and 10.

By modeling hierarchies of signals in this manner, you can specify polymorphic events. For example,
consider a state machine with a transition triggered only by the receipt of a MotorStall. As a leaf
signal in this hierarchy, the transition can be triggered only by that signal, so it is not polymorphic. In
contrast, suppose you modeled the state machine with a transition triggered by the receipt of a
HardwareFault. In this case, the transition is polymorphic and can be triggered by a HardwareFault or
any of its specializations, including BatteryFault, MovementFault, and MotorStall.

State machines are discussed in Chapter 22.

To model a family of signals,

Consider all the different kinds of signals to which a given set of active objects may respond.

Look for the common kinds of signals and place them in a generalization/specialization hierarchy
using inheritance. Elevate more general ones and lower more specialized ones.

Look for the opportunity for polymorphism in the state machines of these active objects. Where
you find polymorphism, adjust the hierarchy as necessary by introducing intermediate abstract
signals.

Abstract classes are discussed in Chapters 5 and 9.

Figure 21-6 models a family of signals that may be handled by an autonomous robot. Note that the
root signal (RobotSignal) is abstract, which means that there may be no direct instances. This signal
has two immediate concrete specializations (Collision and HardwareFault), one of which



(HardwareFault) is further specialized. Note that the Collision signal has one parameter.

Figure 21-6. Modeling Families of Signals

Modeling Abnormal Occurrences

An important part of visualizing, specifying, and documenting the behavior of a class or an interface is
specifying the abnormal occurrences that its operations can produce. If you are handed a class or an
interface, the operations you can invoke will be clear, but the abnormal occurrences that each
operation may raise will not be clear unless you model them explicitly.

Classes are discussed in Chapters 4 and 9; interfaces are discussed in Chapter
11; stereotypes are discussed in Chapter 6.

In the UML, abnormal occurrences are just additional kinds of events that can be modeled as signals.
Error events may be attached to specification operations. Modeling exceptions is somewhat the inverse
of modeling a general family of signals. You model a family of signals primarily to specify the kinds of
signals an active object may receive; you model abnormal occurrences primarily to specify the kinds of
abnormal occurrences that an object may produce.

To model abnormal occurrences

For each class and interface, and for each operation of such elements, consider the normal things
that happen. Then think of things that can go wrong and model them as signals among objects.

Arrange the signals in a hierarchy. Elevate general ones, lower specialized ones, and introduce
intermediate exceptions as necessary.



For each operation, specify the abnormal occurrence signals that it may raise. You can do so
explicitly (by showing send dependencies from an operation to its signals) or you can use
sequence diagrams illustrating various scenarios.

Figure 21-7 models a hierarchy of abnormal occurrences that may be produced by a standard library
of container classes, such as the template class Set. This hierarchy is headed by the abstract signal
Error and includes three specialized kinds of errors: Duplicate, Overflow, and Underflow. As shown,
the add operation may produce Duplicate and Overflow signals, and the remove operation produces
only the Underflow signal. Alternatively, you could have put these dependencies in the background by
naming them in each operation's specification. Either way, by knowing which signals each operation
may send, you can create clients that use the Set class correctly.

Figure 21-7. Modeling Error Conditions

Template classes are discussed in Chapter 9.

Note

Signals, including abnormal occurrence signals, are asynchronous events between objects.
UML also includes exceptions such as those found in Ada or C++. Exceptions are conditions
that cause the mainline execution path to be abandoned and a secondary execution path
executed instead. Exceptions are not signals; instead, they are a convenient mechanism for
specifying an alternate flow of control within a single synchronous thread of execution.



Hints and Tips

When you model an event,

Build hierarchies of signals so that you exploit the common properties of related signals.

Be sure you have a suitable state machine behind each element that may receive the event.

Be sure to model not only those elements that may receive events, but also those elements that
may send them.

When you draw an event in the UML,

In general, model hierarchies of events explicitly, but model their use in the backplane of each
class that sends or receives such an event.



Chapter 22. State Machines
In this chapter

States, transitions, and activities

Modeling the lifetime of an object

Creating well-structured algorithms

Using an interaction, you can model the behavior of a society of objects that work together. Using a
state machine, you can model the behavior of an individual object. A state machine is a behavior that
specifies the sequences of states an object goes through during its lifetime in response to events,
together with its responses to those events.

Interactions are discussed in Chapter 16; objects are discussed in Chapter 13.

You use state machines to model the dynamic aspects of a system. For the most part, this involves
specifying the lifetime of the instances of a class, a use case, or an entire system. These instances
may respond to such events as signals, operations, or the passing of time. When an event occurs,
some effect will take place, depending on the current state of the object. An effect is the specification
of a behavior execution within a state machine. Effects ultimately resolve into in the execution of
actions that change the state of an object or return values. A state of an object is a period of time
during which it satisfies some condition, performs some activity, or waits for some event.

Classes are discussed in Chapters 4 and 9; use cases are discussed in Chapter
17; systems are discussed in Chapter 32; activity diagrams are discussed in
Chapter 20; state diagrams are discussed in Chapter 25.

You can visualize the dynamics of execution in two ways: by emphasizing the flow of control from
activity to activity (using activity diagrams) or by emphasizing the potential states of the objects and
the transitions among those states (using state diagrams).

Well-structured state machines are like well-structured algorithms: They are efficient, simple,
adaptable, and understandable.



Getting Started

Consider the life of your home's thermostat on one crisp fall day. In the wee hours of the morning,
things are pretty quiet for the humble thermostat. The temperature of the house is stable and, save
for a rogue gust of wind or a passing storm, the temperature outside the house is stable, too. Toward
dawn, however, things get more interesting. The sun starts to peek over the horizon, raising the
ambient temperature slightly. Family members start to wake; someone might tumble out of bed and
twist the thermostat's dial. Both of these events are significant to the home's heating and cooling
system. The thermostat starts behaving like all good thermostats should, by commanding the home's
heater to raise the inside temperature or the air conditioner to lower the inside temperature.

Once everyone has left for work or school, things get quiet, and the temperature of the house
stabilizes once again. However, an automatic program might then cut in, commanding the thermostat
to lower the temperature to save on electricity and gas. The thermostat goes back to work. Later in
the day, the program comes alive again, this time commanding the thermostat to raise the
temperature so that the family can come home to a cozy house.

In the evening, with the home filled with warm bodies and heat from cooking, the thermostat has a lot
of work to do to keep the temperature even while it runs the heater and cooler efficiently. Finally, at
night, things return to a quiet state.

A number of software-intensive systems behave just like that thermostat. A pacemaker runs
continuously but adapts to changes in activity or heartbeat pattern. A network router runs
continuously as well, silently guiding asynchronous streams of bits, sometimes adapting its behavior in
response to commands from the network administrator. A cell phone works on demand, responding to
input from the user and to messages from the local cells.

In the UML, you model the static aspects of a system by using such elements as class diagrams and
object diagrams. These diagrams let you visualize, specify, construct, and document the things that
live in your system, including classes, interfaces, components, nodes, and use cases and their
instances, together with the way those things sit in relationship to one another.

Modeling the structural aspects of a system is discussed in Parts 2 and 3.

In the UML, you model the dynamic aspects of a system by using state machines. Whereas an
interaction models a society of objects that work together to carry out some action, a state machine
models the lifetime of a single object, whether it is an instance of a class, a use case, or even an
entire system. In the life of an object, it may be exposed to a variety of events, such as a signal, the
invocation of an operation, the creation or destruction of the object, the passing of time, or the change
in some condition. In response to these events, the object performs some action, which is a
computation, and then it changes its state to a new value. The behavior of such an object is therefore
affected by the past, at least as the past is reflected in the current state. An object may receive an
event, respond with an action, then change its state. An object may receive another event and its
response may be different, depending on its current state in response to the previous event.



You can also model the dynamic aspects of a system by using interactions, as
discussed in Chapter 16; events are discussed in Chapter 21.

You use state machines to model the behavior of any modeling element, most commonly a class, a
use case, or an entire system. State machines may be visualized using state diagrams. You can focus
on the event-ordered behavior of an object, which is especially useful in modeling reactive systems.

Activity diagrams are discussed in Chapter 20; state diagrams are discussed in
Chapter 25.

The UML provides a graphical representation of states, transitions, events, and effects, as Figure 22-1
shows. This notation permits you to visualize the behavior of an object in a way that lets you
emphasize the important elements in the life of that object.

Figure 22-1. State Machines



Terms and Concepts

A state machine is a behavior that specifies the sequences of states an object goes through during its
lifetime in response to events, together with its responses to those events. A state is a condition or
situation during the life of an object during which it satisfies some condition, performs some activity,
or waits for events. An event is the specification of a significant occurrence that has a location in time
and space. In the context of state machines, an event is an occurrence of a stimulus that can trigger a
state transition. A transition is a relationship between two states indicating that an object in the first
state will perform certain actions and enter the second state when a specified event occurs and
specified conditions are satisfied. An activity is ongoing nonatomic execution within a state machine.
An action is an executable computation that results in a change in state of the model or the return of a
value. Graphically, a state is rendered as a rectangle with rounded corners. A transition is rendered as
a solid directed line or path from the original state to the new state.

Context

Every object has a lifetime. On creation, an object is born; on destruction, an object ceases to exist.
In between, an object may act on other objects (by sending them messages) as well as be acted on
(by being the target of a message). In many cases, these messages will be simple, synchronous
operation calls. For example, an instance of the class Customer might invoke the operation
getAccountBalance on an instance of the class BankAccount. Objects such as these don't need a state
machine to specify their behavior because their current behavior does not depend on their past.

Objects are discussed in Chapter 13; messages are discussed in Chapter 16.

In other kinds of systems, you'll encounter objects that must respond to signals, which are
asynchronous messages communicated between instances. For example, a cellular phone must
respond to random phone calls (from other phones), keypad events (from the customer initiating a
phone call), and to events from the network (when the phone moves from one call to another).
Similarly, you'll encounter objects whose current behavior depends on their past behavior. For
example, the behavior of an air-to-air missile guidance system will depend on its current state, such
as NotFlying (it's not a good idea to launch a missile while it's attached to an aircraft that's still sitting
on the ground) or Searching (you shouldn't arm the missile until you have a good idea what it's going
to hit).

Signals are discussed in Chapter 21.

The behavior of an object that must respond to asynchronous messages or whose current behavior
depends on its past is best specified by using a state machine. This encompasses instances of classes
that can receive signals, including many active objects. In fact, an object that receives a signal but has
no transition for that signal in its current state and does not defer the signal in that state will simply
ignore that signal. In other words, the absence of a transition for a signal is not an error; it means
that the signal is not of interest at that point. You'll also use state machines to model the behavior of



entire systems, especially reactive systems, which must respond to signals from actors outside the
system.

Active objects are discussed in Chapter 23; modeling reactive systems is
discussed in Chapter 25; use cases and actors are discussed in Chapter 17;
interactions are discussed in Chapter 16; interfaces are discussed in Chapter 11.

Note

Most of the time, you'll use interactions to model the behavior of a use case, but you can
also use state machines for the same purpose. Similarly, you can use state machines to
model the behavior of an interface. Although an interface may not have any direct instances,
a class that realizes such an interface may. Such a class must conform to the behavior
specified by the state machine of this interface.

States

A state is a condition or situation during the life of an object during which it satisfies some condition,
performs some activity, or waits for some event. An object remains in a state for a finite amount of
time. For example, a Heater in a home might be in any of four states: Idle (waiting for a command to
start heating the house), Activating (its gas is on, but it's waiting to come up to temperature), Active
(its gas and blower are both on), and ShuttingDown (its gas is off but its blower is on, flushing residual
heat from the system).

When an object's state machine is in a given state, the object is said to be in that state. For example,
an instance of Heater might be Idle or perhaps ShuttingDown.

You can visualize the state of an object in an interaction, as discussed in
Chapter 13; the last four parts of a state are discussed in later sections of this
chapter.

A state has several parts:

1. Name A textual string that distinguishes the state from other states; a
state may be anonymous, meaning that it has no name

2. Entry/exit effects Actions executed on entering and exiting the state, respectively

3. Internal transitions Transitions that are handled without causing a change in state

4. Substates The nested structure of a state, involving nonorthogonal
(sequentially active) or orthogonal (concurrently active) substates

5. Deferred events A list of events that are not handled in that state but, rather, are
postponed and queued for handling by the object in another state



Note

A state name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon) and may continue over several
lines. In practice, state names are short nouns or noun phrases drawn from the vocabulary
of the system you are modeling. Typically, you capitalize the first letter of every word in a
state name, as in Idle or ShuttingDown.

As Figure 22-2 shows, you represent a state as a rectangle with rounded corners.

Figure 22-2. States

Initial and Final States

As the figure shows, there are two special states that may be defined for an object's state machine.
First, there's the initial state, which indicates the default starting place for the state machine or
substate. An initial state is represented as a filled black circle. Second, there's the final state, which
indicates that the execution of the state machine or the enclosing state has been completed. A final
state is represented as a filled black circle surrounded by an unfilled circle (a bull's eye).

Note

Initial and final states are really pseudostates. Neither may have the usual parts of a normal
state, except for a name. A transition from an initial state to an ordinary state may have the
full complement of features, including a guard condition and action (but not a trigger event).

Transitions

A transition is a relationship between two states indicating that an object in the first state will perform
certain actions and enter the second state when a specified event occurs and specified conditions are
satisfied. On such a change of state, the transition is said to fire. Until the transition fires, the object is
said to be in the source state; after it fires, it is said to be in the target state. For example, a Heater



might transition from the Idle to the Activating state when an event such as tooCold (with the
parameter desiredTemp) occurs.

A transition has five parts.

1. Source state The state affected by the transition; if an object is in the source
state, an outgoing transition may fire when the object receives
the trigger event of the transition and if the guard condition, if
any, is satisfied

2. Event trigger The event whose recognition by the object in the source state
makes the transition eligible to fire, providing its guard condition
is satisfied

3. Guard condition A Boolean expression that is evaluated when the transition is
triggered by the reception of the event trigger; if the expression
evaluates true, the transition is eligible to fire; if the expression
evaluates false, the transition does not fire, and if there is no
other transition that could be triggered by that same event, the
event is lost

4. Effect An executable behavior, such as an action, that may act on the
object that owns the state machine and indirectly on other objects
that are visible to the object

5. Target state The state that is active after the completion of the transition

Events are discussed in Chapter 21.

As Figure 22-3 shows, a transition is rendered as a solid directed line from the source to the target
state. A self-transition is a transition whose source and target states are the same.

Figure 22-3. Transitions



Note

A transition may have multiple sources (in which case, it represents a join from multiple
concurrent states) as well as multiple targets (in which case, it represents a fork to multiple
concurrent states). See later discussion under orthogonal substates.

Event Trigger

An event is the specification of a significant occurrence that has a location in time and space. In the
context of state machines, an event is an occurrence of a stimulus that can trigger a state transition.
As shown in the previous figure, events may include signals, calls, the passing of time, or a change in
state. A signal or a call may have parameters whose values are available to the transition, including
expressions for the guard condition and action.

Events are discussed in Chapter 21.

Specifying a family of signals is discussed in Chapter 21; multiple,
nonoverlapping guard conditions form a branch, as discussed in Chapter 20.

It is also possible to have a completion transition, represented by a transition with no event trigger. A
completion transition is triggered implicitly when its source state has completed its behavior, if any.



Note

An event trigger may be polymorphic. For example, if you've specified a family of signals,
then a transition whose trigger event is S can be triggered by S, as well as by any children of
S.

Guard Condition

As the previous figure shows, a guard condition is rendered as a Boolean expression enclosed in
square brackets and placed after the trigger event. A guard condition is evaluated only after the
trigger event for its transition occurs. Therefore, it's possible to have multiple transitions from the
same source state and with the same event trigger, as long as those conditions don't overlap.

A guard condition is evaluated just once for each transition at the time the event occurs, but it may be
evaluated again if the transition is retriggered. Within the Boolean expression, you can include
conditions about the state of an object (for example, the expression aHeater in Idle, which evaluates
true if the Heater object is currently in the Idle state). If the condition is not true when it is tested,
the event does not occur later when the condition becomes true. Use a change event to model that
kind of behavior.

Change events are discussed in Chapter 21.

Note

Although a guard condition is evaluated only once each time its transition triggers, a change
event is potentially evaluated continuously.

Effect

An effect is a behavior that is executed when a transition fires. Effects may include inline computation,
operation calls (to the object that owns the state machine as well as to other visible objects), the
creation or destruction of another object, or the sending of a signal to an object. To indicate sending a
signal you can prefix the signal name with the keyword send as a visual cue.

Transitions only occur when the state machine is quiescent, that is, when it is not executing an effect
from a previous transition. The execution of the effect of a transition and any associated entry and exit
effects run to completion before any additional events are allowed to cause additional transitions. This
is in contrast to a do-activity (described later in this chapter), which may be interrupted by events.

Activities are discussed in a later section of this chapter; dependencies are
discussed in Chapters 5 and 10.



Note

You can explicitly show the object to which a signal is sent by using a dependency
stereotyped as send, whose source is the state and whose target is the object.

Advanced States and Transitions

You can model a wide variety of behavior using only the basic features of states and transitions in the
UML. Using these features, you'll end up with flat state machines, which means that your behavioral
models will consist of nothing more than arcs (transitions) and vertices (states).

UML state machines have a number of features that help you to manage complex behavioral models.
These features often reduce the number of states and transitions you'll need, and they codify a
number of common and somewhat complex idioms you'd otherwise encounter using flat state
machines. Some of these advanced features include entry and exit effects, internal transitions, do-
activities, and deferred events. These features are shown as text strings within a text compartment of
the state symbol, as shown in Figure 22-4.

Figure 22-4. Advanced States and Transitions

Entry and Exit Effects

In a number of modeling situations, you'll want to perform some setup action whenever you enter a
state, no matter which transition led you there. Similarly, when you leave a state, you'll want to
perform some cleanup action no matter which transition led you away. For example, in a missile
guidance system, you might want to explicitly announce the system is onTrack whenever it's in the
tracking state, and offTrack whenever it's out of the state. Using flat state machines, you can
achieve this effect by putting those actions on every entering and exiting transition, as appropriate.
However, that's somewhat error prone; you have to remember to add these actions every time you
add a new transition. Furthermore, modifying this action means that you have to touch every
neighboring transition.

As Figure 22-4 shows, the UML provides a shorthand for this idiom. In the symbol for the state, you
can include an entry effect (marked by the keyword entry) and an exit effect (marked by the keyword
exit), each with its appropriate action. Whenever you enter the state, its entry action is dispatched;
whenever you leave the state, its exit action is dispatched.

Entry and exit effects may not have arguments or guard conditions, but the entry effect at the top
level of a state machine for a class may have parameters for the arguments that the machine receives



when the object is created.

Internal Transitions

Once inside a state, you'll encounter events you'll want to handle without leaving the state. These are
called internal transitions, and they are subtly different from self-transitions. In a self-transition, such
as you see in Figure 21-3, an event triggers the transition, you leave the state, an action (if any) is
performed, and then you reenter the same state. Because this transition exits and then enters the
state, a self-transition executes the state's exit action, then it executes the action of the self-
transition, and finally, it executes the state's entry action.

However, suppose you want to handle the event but don't want to execute the state's entry and exit
actions. The UML provides a shorthand for this idiom using an internal transition. An internal transition
is a transition that responds to an event by performing an effect but does not change state. In Figure
21-4, the event newTarget labels an internal transition; if this event occurs while the object is in the
tracking state, action tracker.acquire is executed but the state remains the same, and no entry or
exit actions are executed. You indicate an internal transition by including a transition string (including
an event name, optional guard condition, and effect) inside the symbol for a state instead of on a
transition arrow. Note that the keywords entry, exit, and do are reserved words that may not be used
as event names. Whenever you are in the state and an event labeling an internal transition occurs, the
corresponding effect is performed without leaving and then reentering the state. Therefore, the event
is handled without invoking the state's exit and then entry actions.

Note

Internal transitions may have events with parameters and guard conditions.

Do-Activities

When an object is in a state, it generally sits idle, waiting for an event to occur. Sometimes, however,
you may wish to model an ongoing activity. While in a state, the object does some work that will
continue until it is interrupted by an event. For example, if an object is in the tracking state, it might
followTarget as long as it is in that state. As Figure 21-4 shows, in the UML you use the special do
transition to specify the work that's to be done inside a state after the entry action is dispatched. You
can also specify a behavior, such as a sequence of actionsfor example, do / op1(a); op2(b); op3(c). If
the occurrence of an event causes a transition that forces an exit from the state, any ongoing do-
activity of the state is immediately terminated.

Note

A do-activity is equivalent to an entry effect that starts the activity when the state is entered
and an exit effect that stops the activity when the state is exited.

Deferred Events



Consider a state such as tracking. As illustrated in Figure 21-3, suppose there's only one transition
leading out of this state, triggered by the event contact. While in the state TRacking, any events other
than contact and other than those handled by its substates will be lost. That means that the event
may occur, but it will be ignored and no action will result because of the presence of that event.

Events are discussed in Chapter 21.

In every modeling situation, you'll want to recognize some events and ignore others. You include those
you want to recognize as the event triggers of transitions; those you want to ignore you just leave
out. However, in some modeling situations, you'll want to accept some events but postpone a
response to them until later. For example, while in the TRacking state, you may want to postpone a
response to signals such as selfTest, perhaps sent by some maintenance agent in the system.

In the UML, you can specify this behavior by using deferred events. A deferred event is an event
whose processing in the state is postponed until another state becomes active; if the event is not
deferred in that state, the event is handled and may trigger transitions as if it had just occurred. If the
state machine passes through a sequence of states in which the event is deferred, it is preserved until
a state is finally encountered in which the event is not deferred. Other nondeferred events may occur
during the interval. As you can see in Figure 21-4, you can specify a deferred event by listing the
event with the special action defer. In this example, selfTest events may happen while in the
TRacking state, but they are held until the object is in the Engaging state, at which time it appears as
if they just occurred.

Note

The implementation of deferred events requires the presence of an internal queue of events.
If an event happens but is listed as deferred, it is queued. Events are taken off this queue as
soon as the object enters a state that does not defer these events.

Submachines

A state machine may be referenced within another state machine. Such a referenced state machine is
called a submachine. They are useful in building large state models in a structured manner. See the
UML Reference Manual for details.

Substates

These advanced features of states and transitions solve a number of common state machine modeling
problems. However, there's one more feature of the UML's state machinessubstatesthat does even
more to help you simplify the modeling of complex behaviors. A substate is a state that's nested inside
another one. For example, a Heater might be in the Heating state, but also while in the Heating state,
there might be a nested state called Activating. In this case, it's proper to say that the object is both
Heating and Activating.

A simple state is a state that has no substructure. A state that has substatesthat is, nested statesis
called a composite state. A composite state may contain either concurrent (orthogonal) or sequential
(nonorthogonal) substates. In the UML, you render a composite state just as you do a simple state,



but with an optional graphic compartment that shows a nested state machine. Substates may be
nested to any level.

Composite states have a nested structure similar to composition, as discussed
in Chapters 5 and 10.

Nonorthogonal Substates

Consider the problem of modeling the behavior of an ATM. This system might be in one of three basic
states: Idle (waiting for customer interaction), Active (handling a customer's transaction), and
Maintenance (perhaps having its cash store replenished). While Active, the behavior of the ATM
follows a simple path: Validate the customer, select a transaction, process the transaction, and then
print a receipt. After printing, the ATM returns to the Idle state. You might represent these stages of
behavior as the states Validating, Selecting, Processing, and Printing. It would even be desirable to
let the customer select and process multiple transactions after Validating the account and before
Printing a final receipt.

The problem here is that, at any stage in this behavior, the customer might decide to cancel the
transaction, returning the ATM to its Idle state. Using flat state machines, you can achieve that effect,
but it's quite messy. Because the customer might cancel the transaction at any point, you'd have to
include a suitable transition from every state in the Active sequence. That's messy because it's easy
to forget to include these transitions in all the right places, and many such interrupting events means
you end up with a multitude of transitions zeroing in on the same target state from various sources,
but with the same event trigger, guard condition, and action.

Using nested substates, there's a simpler way to model this problem, as Figure 22-5 shows. Here, the
Active state has a substructure, containing the substates Validating, Selecting, Processing, and
Printing. The state of the ATM changes from Idle to Active when the customer enters a credit card
in the machine. On entering the Active state, the entry action readCard is performed. Starting with
the initial state of the substructure, control passes to the Validating state, then to the Selecting
state, and then to the Processing state. After Processing, control may return to Selecting (if the
customer has selected another transaction) or it may move on to Printing. After Printing, there's a
completion transition back to the Idle state. Notice that the Active state has an exit action, which
ejects the customer's credit card.

Figure 22-5. Sequential Substates



Notice also the transition from the Active state to the Idle state, triggered by the event cancel. In
any substate of Active, the customer might cancel the transaction, and that returns the ATM to the
Idle state (but only after ejecting the customer's credit card, which is the exit action dispatched on
leaving the Active state, no matter what caused a transition out of that state). Without substates,
you'd need a transition triggered by cancel on every substructure state.

Substates such as Validating and Processing are called nonorthogonal, or disjoint, substates. Given a
set of nonorthogonal substates in the context of an enclosing composite state, the object is said to be
in the composite state and in only one of those substates (or the final state) at a time. Therefore,
nonorthogonal substates partition the state space of the composite state into disjoint states.

From a source outside an enclosing composite state, a transition may target the composite state or it
may target a substate. If its target is the composite state, the nested state machine must include an
initial state, to which control passes after entering the composite state and after performing its entry
action, if any. If its target is the nested state, control passes to the nested state after performing the
entry action (if any) of the composite state and then the entry action (if any) of the substate.

A transition leading out of a composite state may have as its source the composite state or a substate.
In either case, control first leaves the nested state (and its exit action, if any, is executed), then it
leaves the composite state (and its exit action, if any, is executed). A transition whose source is the
composite state essentially cuts short (interrupts) the activity of the nested state machine. The
completion transition of a composite state is taken when control reaches the final substate within the
composite state.

Note

A nested nonorthogonal state machine may have at most one initial substate and one final
substate.

History States



A state machine describes the dynamic aspects of an object whose current behavior depends on its
past. A state machine in effect specifies the legal ordering of states an object may go through during
its lifetime.

Unless otherwise specified, when a transition enters a composite state, the action of the nested state
machine starts over again at its initial state (unless, of course, the transition targets a substate
directly). However, there are times you'd like to model an object so that it remembers the last
substate that was active prior to leaving the composite state. For example, in modeling the behavior
of an agent that does an unattended backup of computers across a network, you'd like it to remember
where it was in the process if it ever gets interrupted by, for example, a query from the operator.

Using flat state machines, you can model this, but it's messy. For each sequential substate, you'd
need to have its exit action post a value to some variable local to the composite state. Then the initial
state to this composite state would need a transition to every substate with a guard condition,
querying the variable. In this way, leaving the composite state would cause the last substate to be
remembered; entering the composite state would transition to the proper substate. That's messy
because it requires you to remember to touch every substate and to set an appropriate exit action. It
leaves you with a multitude of transitions fanning out from the same initial state to different target
substates with very similar (but different) guard conditions.

In the UML, a simpler way to model this idiom is by using history states. A history state allows a
composite state that contains nonorthogonal substates to remember the last substate that was active
in it prior to the transition from the composite state. As Figure 22-6 shows, you represent a shallow
history state as a small circle containing the symbol H.

Figure 22-6. History State

If you want a transition to activate the last substate, you show a transition from outside the composite
state directly to the history state. The first time you enter a composite state, it has no history. This is
the meaning of the single transition from the history state to a sequential substate such as
Collecting. The target of this transition specifies the initial state of the nested state machine the first
time it is entered. Continuing, suppose that while in the BackingUp state and the Copying state, the
query event is posted. Control leaves Copying and BackingUp (dispatching their exit actions as
necessary) and returns to the Command state. When the action of Command completes, the completion
transition returns to the history state of the composite state BackingUp. This time, because there is a
history to the nested state machine, control passes back to the Copying statethus bypassing the
Collecting statebecause Copying was the last substate active prior to the transition from the state
BackingUp.



Note

The symbol H designates a shallow history, which remembers only the history of the
immediate nested state machine. You can also specify deep history, shown as a small circle
containing the symbol H*. Deep history remembers down to the innermost nested state at
any depth. If you have only one level of nesting, shallow and deep history states are
semantically equivalent. If you have more than one level of nesting, shallow history
remembers only the outermost nested state; deep history remembers the innermost nested
state at any depth.

In either case, if a nested state machine reaches a final state, it loses its stored history and behaves
as if it had not yet been entered for the first time.

Orthogonal Substates

Nonorthogonal substates are the most common kind of nested state machine you'll encounter. In
certain modeling situations, however, you'll want to specify orthogonal regions. These regions let you
specify two or more state machines that execute in parallel in the context of the enclosing object.

For example, Figure 22-7 shows an expansion of the Maintenance state from Figure 21-5. Maintenance
is decomposed into two orthogonal regions, Testing and Commanding, shown by nesting them in the
Maintenance state but separating them from one another with a dashed line. Each of these orthogonal
regions is further decomposed into substates. When control passes from the Idle to the Maintenance
state, control then forks to two concurrent flowsthe enclosing object will be in both the Testing region
and the Commanding region. Furthermore, while in the Commanding region, the enclosing object will be in
the Waiting or the Command state.

Figure 22-7. Concurrent Substates



Note

This is what distinguishes nonorthogonal substates and orthogonal substates. Given two or
more nonorthogonal substates at the same level, an object will be in one of those substates
or the other. Given two or more orthogonal regions at the same level, an object will be in a
state from each of the orthogonal regions.

Execution of these two orthogonal regions continues in parallel. Eventually, each nested state machine
reaches its final state. If one orthogonal region reaches its final state before the other, control in that
region waits at its final state. When both nested state machines reach their final states, control from
the two orthogonal regions joins back into one flow.

Whenever there's a transition to a composite state decomposed into orthogonal regions, control forks
into as many concurrent flows as there are orthogonal regions. Similarly, whenever there's a transition
from a composite substate decomposed into orthogonal regions, control joins back into one flow. This
holds true in all cases. If all orthogonal regions reach their final states, or if there is an explicit
transition out of the enclosing composite state, control joins back into one flow.

Note

Each orthogonal region may have an initial, final, and history state.

Fork and Join

Usually, entry to a composite state with orthogonal regions goes to the initial state of each orthogonal
region. It is also possible to transition from an external state directly to one or more orthogonal
states. This is called a fork, because control passes from a single state to several orthogonal states. It
is shown as a heavy black line with one incoming arrow and several outgoing arrows, each to one of
the orthogonal states. There must be at most one target state in each orthogonal region. If one or
more orthogonal regions have no target states, then the initial state of those regions is implicitly
chosen. A transition to a single orthogonal state within a composite state is also an implicit fork; the
initial states of all the other orthogonal regions are implicitly part of the fork.

Similarly, a transition from any state within a composite state with orthogonal regions forces an exit
from all the orthogonal regions. Such a transition often represents an error condition that forces
termination of parallel computations.

A join is a transition with two or more incoming arrows and one outgoing arrow. Each incoming arrow
must come from a state in a different orthogonal region of the same composite state. The join may
have a trigger event. The join transition is effective only if all of the source states are active; the
status of other orthogonal regions in the composite state is irrelevant. If the event occurs, control
leaves all of the orthogonal regions in the composite state, not just the ones with arrows from them.

Figure 22-8 shows a variation on the previous example with explicit fork and join transitions. The
transition maintain to the composite state Maintenance is still an implicit fork into the default initial
states of the orthogonal regions. In this example, however, there is also an explicit fork from Idle into
the two nested states Self diagnose and the final state of the Commanding region. (A final state is a
real state and can be the target of a transition.) If an error event occurs while the Self diagnose state
is active, the implicit join transition to Repair fires: Both the Self diagnose state and whatever state



is active in the Commanding region are exited. There is also an explicit join transition to the Offline
state. This transition fires only if the disconnect event occurs while the Testing devices state and the
final state of the Commanding region are both active; if both states are not active, the event has no
effect.

Figure 22-8. Fork and join transitions

Active Objects

Another way to model concurrency is by using active objects. Thus, rather than partitioning one
object's state machine into two (or more) concurrent regions, you could define two active objects,
each of which is responsible for the behavior of one of the concurrent regions. If the behavior of one of
these concurrent flows is affected by the state of the other, you'll want to model this using orthogonal
regions. If the behavior of one of these concurrent flows is affected by messages sent to and from the
other, you'll want to model this using active objects. If there's little or no communication between the
concurrent flows, then the approach you choose is a matter of taste, although most of the time, using
active objects makes your design decisions more obvious.

Active objects are discussed in Chapter 23.



Common Modeling Techniques

Modeling the Lifetime of an Object

The most common purpose for which you'll use state machines is to model the lifetime of an object,
especially instances of classes, use cases, and the system as a whole. Whereas interactions model the
behavior of a society of objects working together, a state machine models the behavior of a single
object over its lifetime, such as you'll find with user interfaces, controllers, and devices.

When you model the lifetime of an object, you essentially specify three things: the events to which the
object can respond, the response to those events, and the impact of the past on current behavior.
Modeling the lifetime of an object also involves deciding on the order in which the object can
meaningfully respond to events, starting at the time of the object's creation and continuing until its
destruction.

To model the lifetime of an object,

Objects are discussed in Chapter 13; classes are discussed in Chapters 4 and 9;
use cases are discussed in Chapter 17; systems are discussed in Chapter 32;
interactions are discussed in Chapter 16; collaborations are discussed in
Chapter 28; pre- and postconditions are discussed in Chapter 10; interfaces are
discussed in Chapter 11.

Set the context for the state machine, whether it is a class, a use case, or the system as a
whole.

If the context is a class or a use case, find the neighboring classes, including any parents of
the class and any classes reachable by associations or dependences. These neighbors are
candidate targets for actions and are candidates for including in guard conditions.

If the context is the system as a whole, narrow your focus to one behavior of the system.
Theoretically, every object in the system may be a participant in a model of the system's
lifetime, and except for the most trivial systems, a complete model would be intractable.

Establish the initial and final states for the object. To guide the rest of your model, possibly state
the pre- and postconditions of the initial and final states, respectively.

Decide on the events to which this object may respond. If already specified, you'll find these in
the object's interfaces; if not already specified, you'll have to consider which objects may interact
with the object in your context, and then which events they may possibly dispatch.

Starting from the initial state to the final state, lay out the top-level states the object may be in.
Connect these states with transitions triggered by the appropriate events. Continue by adding
actions to these transitions.

Identify any entry or exit actions (especially if you find that the idiom they cover is used in the
state machine).



Expand these states as necessary by using substates.

Check that all events mentioned in the state machine match events expected by the interface of
the object. Similarly, check that all events expected by the interface of the object are handled by
the state machine. Finally, look to places where you explicitly want to ignore events.

Check that all actions mentioned in the state machine are sustained by the relationships,
methods, and operations of the enclosing object.

Trace through the state machine, either manually or by using tools, to check it against expected
sequences of events and their responses. Be especially diligent in looking for unreachable states
and states in which the machine may get stuck.

After rearranging your state machine, check it against expected sequences again to ensure that
you have not changed the object's semantics.

For example, Figure 22-9 shows the state machine for the controller in a home security system, which
is responsible for monitoring various sensors around the perimeter of the house.

Figure 22-9. Modeling the Lifetime of An Object

In the lifetime of this controller class, there are four main states: Initializing (the controller is
starting up), Idle (the controller is ready and waiting for alarms or commands from the user), Command
(the controller is processing commands from the user), and Active (the controller is processing an
alarm condition). When the controller object is first created, it moves first to the Initializing state
and then unconditionally to the Idle state. The details of these two states are not shown, other than
the self-transition with the time event in the Idle state. This kind of time event is commonly found in
embedded systems, which often have a heartbeat timer that causes a periodic check of the system's
health.



Control passes from the Idle state to the Active state on receipt of an alarm event (which includes the
parameter s, identifying the sensor that was tripped). On entering the Active state, setAlarm is
performed as the entry action, and control then passes first to the Checking state (validating the
alarm), then to the Calling state (calling the alarm company to register the alarm), and finally to the
Waiting state. The Active and Waiting states are exited only upon clearing the alarm or by the user
signaling the controller for attention, presumably to issue a command.

Notice that there is no final state. That, too, is common in embedded systems, which are intended to
run indefinitely.



Hints and Tips

When you model state machines in the UML, remember that every state machine represents the
dynamic aspects of an individual object, typically representing an instance of a class, a use case, or
the system as a whole. A well-structured state machine

Is simple and therefore should not contain any superfluous states or transitions.

Has a clear context and therefore may have access to all the objects visible to its enclosing
object (these neighbors should be used only as necessary to carry out the behavior specified by
the state machine).

Is efficient and therefore should carry out its behavior with an optimal balance of time and
resources as required by the actions it dispatches.

Modeling the vocabulary of a system is discussed in Chapter 4.

Is understandable and therefore should name its states and transitions from the vocabulary of
the system.

Is not nested too deeply (nesting substates at one or two levels will handle most complex
behaviors).

Uses orthogonal regions sparingly because using active classes is often a better alternative.

When you draw a state machine in the UML,

Avoid transitions that cross.

Expand composite states in place only as necessary to make the diagram understandable.



Chapter 23. Processes and Threads
In this chapter

Active objects, processes, and threads

Modeling multiple flows of control

Modeling interprocess communication

Building thread-safe abstractions

Not only is the real world a harsh and unforgiving place, but it is a very busy place as well. Events
happen and things take place all at the same time. Therefore, when you model a system of the real
world, you must take into account its process view, which encompasses the threads and processes
that form the system's concurrency and synchronization mechanisms.

Interaction views in the context of software architecture are discussed in
Chapter 2.

In the UML, you model each independent flow of control as an active object that represents a process
or thread that can initiate control activity. A process is a heavyweight flow that can execute
concurrently with other processes; a thread is a lightweight flow that can execute concurrently with
other threads within the same process.

Building abstractions so that they work safely in the presence of multiple flows of control is hard. In
particular, you have to consider approaches to communication and synchronization that are more
complex than for sequential systems. You also have to be careful to neither over-engineer your
process view (too many concurrent flows and your system ends up thrashing) nor under-engineer it
(insufficient concurrency does not optimize the system's throughput.



Getting Started

In the life of a dog and his doghouse, the world is a pretty simple and sequential place. Eat. Sleep.
Chase a cat. Eat some more. Dream about chasing cats. Using the doghouse to sleep in or for shelter
from the rain is never a problem because the dog, and only the dog, needs to go in and out through
the doghouse door. There's never any contention for resources.

Modeling doghouses and high rises is discussed in Chapter 1.

In the life of a family and its house, the world is not so simple. Without getting too metaphysical, each
family member lives his or her own life, yet still interacts with other members of the family (for dinner,
watching television, playing games, cleaning). Family members will share certain resources. Children
might share a bedroom; the whole family might share one phone or one computer. Family members
will also share chores. Dad does the laundry and the grocery shopping; mom does the bills and the
yard work; the children help with the cleaning and cooking. Contention among these shared resources
and coordination among these independent chores can be challenging. Sharing one bathroom when
everyone is getting ready to go to school or to work can be problematic; dinner won't be served if dad
didn't first get the groceries.

In the life of a high rise and its tenants, the world is really complex. Hundreds, if not thousands, of
people might work in the same building, each following his or her own agenda. All must pass through a
limited set of entrances. All must jockey for the same bank of elevators. All must share the same
heating, cooling, water, electrical, sanitation, and parking facilities. If they are to work together
optimally, they have to communicate and synchronize their interactions properly.

In the UML, each independent flow of control is modeled as an active object. An active object is a
process or thread that can initiate control activity. As for every kind of object, an active object is an
instance of a class. In this case, an active object is an instance of an active class. Also, as for every
kind of object, active objects can communicate with one another by passing messages, although here,
message passing must be extended with certain concurrency semantics to help you to synchronize the
interactions among independent flows.

Objects are discussed in Chapter 13.

In software, many programming languages directly support the concept of an active object. Java,
Smalltalk, and Ada all have concurrency built in. C++ supports concurrency through various libraries
that build on a host operating system's concurrency mechanisms. Using the UML to visualize, specify,
construct, and document these abstractions is important because without doing so, it's nearly
impossible to reason about issues of concurrency, communication, and synchronization.

The UML provides a graphical representation of an active class, as Figure 23-1 shows. Active classes
are kinds of classes, so they have all the usual compartments for class name, attributes, and
operations. Active classes often receive signals, which you typically enumerate in an extra
compartment.



Figure 23-1. Active Class

Classes are discussed in Chapters 4 and 9; signals are discussed in Chapter 21.



Terms and Concepts

An active object is an object that owns a process or thread and can initiate control activity. An active
class is a class whose instances are active objects. A process is a heavyweight flow that can execute
concurrently with other processes. A thread is a lightweight flow that can execute concurrently with
other threads within the same process. Graphically, an active class is rendered as a rectangle with
double lines for left and right sides. Processes and threads are rendered as stereotyped active classes
(and also appear as sequences in interaction diagrams).

Interaction diagrams are discussed in Chapter 19.

Flow of Control

In a purely sequential system, there is one flow of control. This means that one thing, and one thing
only, can take place at a time. When a sequential program starts, control is rooted at the beginning of
the program and operations are dispatched one after another. Even if there are concurrent things
happening among the actors outside the system, a sequential program will process only one event at
a time, queuing or discarding any concurrent external events.

Actors are discussed in Chapter 17.

This is why it's called a flow of control. If you trace the execution of a sequential program, you'll see
the locus of execution flow from one statement to another, in sequential order. You might see actions
that branch, loop, and jump about, and if there is any recursion or iteration, you see the flow circle
back on itself. Nonetheless, in a sequential system, there would be a single flow of execution.

Actions are discussed in Chapter 16.

In a concurrent system, there is more than one flow of controlthat is, more than one thing can take
place at a time. In a concurrent system, there are multiple simultaneous flows of control, each rooted
at the head of an independent process or a thread. If you take a snapshot of a concurrent system
while it's running, you'll logically see multiple loci of execution.

In the UML, you use an active class to represent a process or thread that is the root of an independent
flow of control and that is concurrent with all peer flows of control.



Nodes are discussed in Chapter 27.

Note

You can achieve true concurrency in one of three ways: first, by distributing active objects
across multiple nodes; second, by placing active objects on nodes with multiple processors;
and third, by a combination of both methods.

Classes and Events

Active classes are just classes, albeit ones with a very special property. An active class represents an
independent flow of control, whereas a plain class embodies no such flow. In contrast to active
classes, plain classes are implicitly called passive because they cannot independently initiate control
activity.

Classes are discussed in Chapters 4 and 9.

You use active classes to model common families of processes or threads. In technical terms, this
means that an active objectan instance of an active classreifies (is a manifestation of) a process or
thread. By modeling concurrent systems with active objects, you give a name to each independent
flow of control. When an active object is created, the associated flow of control is started; when the
active object is destroyed, the associated flow of control is terminated.

Objects are discussed in Chapter 13; attributes and operations are discussed in
Chapter 4; relationships are discussed in Chapters 4 and 10; extensibility
mechanisms are discussed in Chapter 6; interfaces are discussed in Chapter 11.

Active classes share the same properties as all other classes. Active classes may have instances.
Active classes may have attributes and operations. Active classes may participate in dependency,
generalization, and association (including aggregation) relationships. Active classes may use any of
the UML's extensibility mechanisms, including stereotypes, tagged values, and constraints. Active
classes may be the realization of interfaces. Active classes may be realized by collaborations, and the
behavior of an active class may be specified by using state machines. Active classes may participate in
collaborations.

In your diagrams, active objects may appear wherever passive objects appear. You can model the
collaboration of active and passive objects by using interaction diagrams (including sequence and
collaboration diagrams). An active object may appear as the target of an event in a state machine.



State machines are discussed in Chapter 22; events are discussed in Chapter 21.

Speaking of state machines, both passive and active objects may send and receive signal events and
call events.

Note

The use of active classes is optional. They don't actually add much to the semantics.

Communication

When objects collaborate with one another, they interact by passing messages from one to the other.
In a system with both active and passive objects, there are four possible combinations of interaction
that you must consider.

Interactions are discussed in Chapter 16.

First, a message may be passed from one passive object to another. Assuming there is only one flow
of control passing through these objects at a time, such an interaction is nothing more than the simple
invocation of an operation.

Second, a message may be passed from one active object to another. When that happens, you have
interprocess communication, and there are two possible styles of communication. First, one active
object might synchronously call an operation of another. That kind of communication has rendezvous
semantics, which means that the caller calls the operation; the caller waits for the receiver to accept
the call; the operation is invoked; a method is chosen for execution based on the operation and the
class of the receiver object; the method is executed; a return object (if any) is passed back to the
caller; and then the two objects continue on their independent paths. For the duration of the call, the
two flows of control are in lock step. Second, one active object might asynchronously send a signal or
call an operation of another object. That kind of communication has mailbox semantics, which means
that the caller sends the signal or calls the operation and then continues on its independent way. In
the meantime, the receiver accepts the signal or call whenever it is ready (with intervening events or
calls queued) and continues on its way after it is done. This is called a mailbox because the two
objects are not synchronized; rather, one object drops off a message for the other.

Signal events and call events are discussed in Chapter 21.

In the UML, you render a synchronous message with a solid (filled) arrowhead and an asynchronous
message as a stick arrowhead, as in Figure 23-2.



Figure 23-2. Communication

Third, a message may be passed from an active object to a passive object. A potential conflict arises if
more than one active object at a time passes its flow of control through one passive object. It is an
actual conflict if more than one object writes or reads and writes the same attributes. In that situation,
you have to model the synchronization of these two flows very carefully, as discussed in the next
section.

Fourth, a message may be passed from a passive object to an active one. At first glance, this may
seem illegal, but if you remember that every flow of control is rooted in some active object, you'll
understand that a passive object passing a message to an active object has the same semantics as an
active object passing a message to an active object.

Constraints are discussed in Chapter 6.

Note

It is possible to model variations of synchronous and asynchronous message passing by
using constraints. For example, to model a balking rendezvous as found in Ada, you'd use a
synchronous message with a constraint such as {wait = 0}, saying that the caller will not
wait for the receiver. Similarly, you can model a time out by using a constraint such as {wait
= 1 ms}, saying that the caller will wait no more than one millisecond for the receiver to
accept the message.

Synchronization

Visualize for a moment the multiple flows of control that weave through a concurrent system. When a



flow passes through an operation, we say that at a given moment, the locus of control is in the
operation. If that operation is defined for some class, we can also say that at a given moment, the
locus of control is in a specific instance of that class. You can have multiple flows of control in one
operation (and therefore in one object), and you can have different flows of control in different
operations (but still result in multiple flows of control in the one object).

The problem arises when more than one flow of control is in one object at the same time. If you are
not careful, more than one flow might modify the same attribute, corrupting the state of the object or
losing information. This is the classical problem of mutual exclusion. A failure to deal with it properly
yields all sorts of race conditions and interference that cause concurrent systems to fail in mysterious
and unrepeatable ways.

The key to this problem is serialization of access to the critical object. There are three approaches,
each of which involves attaching certain synchronization properties to the operations defined in a
class. In the UML, you can model all three approaches.

1. Sequential Callers must coordinate outside the object so that only one flow is in the object at a
time. In the presence of multiple flows of control, the semantics and integrity of the
object cannot be guaranteed.

2. Guarded The semantics and integrity of the object are guaranteed in the presence of
multiple flows of control by sequentializing all calls to all of the object's guarded
operations. In effect, exactly one operation at a time can execute on the object,
reducing this to sequential semantics. There is a danger of deadlock if care is not
taken.

3. Concurrent The semantics and integrity of the object are guaranteed in the presence of
multiple flows of control because multiple flows of control access disjoint sets of
data or only read data. This situation can be arranged by careful design rules.

Some programming languages support these constructs directly. Java, for example, has the
synchronized property, which is equivalent to the UML's concurrent property. In every language that
supports concurrency, you can build support for all these properties by constructing them out of
semaphores.

As Figure 23-3 shows, you can attach these properties to an operation, which you can render in the
UML by using constraint notation. Note that concurrency must be asserted separately for each
operation and for the entire object. Asserting concurrency for an operation means that multiple
invocations of that operation can execute concurrently without danger. Asserting concurrency for an
object means that invocations of different operations can execute concurrently without danger; this is
a more stringent condition.

Figure 23-3. Synchronization



Constraints are discussed in Chapter 6.

Note

It is possible to model variations of these synchronization primitives by using constraints. For
example, you might modify the concurrent property by allowing multiple simultaneous
readers but only a single writer.



Common Modeling Techniques

Modeling Multiple Flows of Control

Building a system that encompasses multiple flows of control is hard. Not only do you have to decide
how best to divide work across concurrent active objects, but once you've done that, you also have to
devise the right mechanisms for communication and synchronization among your system's active and
passive objects to ensure that they behave properly in the presence of these multiple flows. For that
reason, it helps to visualize the way these flows interact with one another. You can do that in the UML
by applying class diagrams (to capture their static semantics) and interaction diagrams (to capture
their dynamic semantics) containing active classes and objects.

Mechanisms are discussed in Chapter 29; class diagrams are discussed in
Chapter 8; interaction diagrams are discussed in Chapter 19.

To model multiple flows of control,

Identify the opportunities for concurrent execution and reify each flow as an active class.
Generalize common sets of active objects into an active class. Be careful not to over-engineer
your system by introducing unnecessary concurrency.

Process views are discussed in Chapter 19; classes are discussed in
Chapters 4 and 9; relationships are discussed in Chapters 5 and 10.

Consider a balanced distribution of responsibilities among these active classes, then examine the
other active and passive classes with which each collaborates statically. Ensure that each active
class is both tightly cohesive and loosely coupled relative to these neighboring classes and that
each has the right set of attributes, operations, and signals.

Capture these static decisions in class diagrams, explicitly highlighting each active class.

Consider how each group of classes collaborates with one another dynamically. Capture those
decisions in interaction diagrams. Explicitly show active objects as the root of such flows. Identify
each related sequence by identifying it with the name of the active object.

Pay close attention to communication among active objects. Apply synchronous and
asynchronous messaging, as appropriate.

Pay close attention to synchronization among these active objects and the passive objects with
which they collaborate. Apply sequential, guarded, or concurrent operation semantics, as
appropriate.

For example, Figure 23-4 shows part of the process view of a trading system. You'll find three objects



that push information into the system concurrently: a StockTicker, an IndexWatcher, and a
CNNNewsFeed (named s, i, and c, respectively). Two of these objects (s and i) communicate with their
own Analyst instances (a1 and a2). At least as far as this model goes, the Analyst can be designed
under the simplifying assumption that only one flow of control will be active in its instances at a time.
Both Analyst instances, however, communicate simultaneously with an AlertManager (named m).
Therefore, m must be designed to preserve its semantics in the presence of multiple flows. Both m and
c communicate simultaneously with t, a tradingManager. Each flow is given a sequence number that is
distinguished by the flow of control that owns it.

Figure 23-4. Modeling Flows of Control

Note

Interaction diagrams such as these are useful in helping you to visualize where two flows of
control might cross paths and, therefore, where you must pay particular attention to the
problems of communication and synchronization. Tools are permitted to offer even more
distinct visual cues, such as by coloring each flow in a distinct way.

In diagrams such as this, it's also common to attach corresponding state machines, with orthogonal
states showing the detailed behavior of each active object.

State machines are discussed in Chapter 22.

Modeling Interprocess Communication

As part of incorporating multiple flows of control in your system, you also have to consider the
mechanisms by which objects that live in separate flows communicate with one another. Across
threads (which live in the same address space), objects may communicate via signals or call events,
the latter of which may exhibit either asynchronous or synchronous semantics. Across processes



(which live in separate address spaces), you usually have to use different mechanisms.

Signals and call events are discussed in Chapter 21.

The problem of interprocess communication is compounded by the fact that, in distributed systems,
processes may live on separate nodes. Classically, there are two approaches to interprocess
communication: message passing and remote procedure calls. In the UML, you still model these as
asynchronous or synchronous events, respectively. But because these are no longer simple in-process
calls, you need to adorn your designs with further information.

Modeling location is discussed in Chapter 24.

To model interprocess communication,

Model the multiple flows of control.

Stereotypes are discussed in Chapter 6; notes are discussed in Chapter 6;
collaborations are discussed in Chapter 28; nodes are discussed in Chapter
27.

Model messaging using asynchronous communication; model remote procedure calls using
synchronous communication.

Informally specify the underlying mechanism for communication by using notes, or more formally
by using collaborations.

Figure 23-5 shows a distributed reservation system with processes spread across four nodes. Each
object is marked using the process stereotype. Each object is marked with a location attribute,
specifying its physical location. Communication among the ReservationAgent, TicketingManager, and
HotelAgent is asynchronous. Communication is described in a note as building on a Java Beans
messaging service. Communication between the tripPlanner and the ReservationSystem is
synchronous. The semantics of their interaction is found in the collaboration named CORBA ORB. The
TRipPlanner acts as a client, and the ReservationAgent acts as a server. By zooming into the
collaboration, you'll find the details of how this server and client collaborate.

Figure 23-5. Modeling Interprocess Communication





Hints and Tips

A well-structured active class and active object

Represents an independent flow of control that maximizes the potential for true concurrency in
the system.

Is not so fine-grained that it requires a multitude of other active elements that might result in an
over-engineered and fragile process architecture.

Carefully manages communication among peer active elements, choosing between asynchronous
and synchronous messaging.

Carefully treats each object as a critical region, using suitable synchronization properties to
preserve its semantics in the presence of multiple flows of control.

When you draw an active class or an active object in the UML,

Mark those attributes, operations, and signals that are important in understanding the
abstraction in its context and hide the others using a filtering capability, if your modeling tool
allows.

Explicitly show all operation synchronization properties.



Chapter 24. Time and Space
In this chapter

Time, duration, and location

Modeling timing constraints

Modeling the distribution of objects

Modeling objects that migrate

Dealing with real time and distributed systems

The real world is a harsh and unforgiving place. Events may happen at unpredictable times yet
demand specific responses at specific times. A system's resources may have to be distributed around
the worldsome of those resources might even move aboutraising issues of latency, synchronization,
security, and quality of service.

Modeling time and space is an essential element of any real time and/or distributed system. You use a
number of the UML's features, including timing marks, time expressions, constraints, and tagged
values, to visualize, specify, construct, and document these systems.

Dealing with real time and distributed systems is hard. Good models reveal the properties of a
system's time and space characteristics.



Getting Started

When you start to model most software systems, you can usually assume a frictionless
environmentmessages are sent in zero time, networks never go down, workstations never fail, the
load across your network is always evenly balanced. Unfortunately, the real world does not work that
waymessages do take time to deliver (and, sometimes, never get delivered), networks do go down,
workstations do fail, and a network's load is often unbalanced. Therefore, when you encounter
systems that must operate in the real world, you have to take into account the issues of time and
space.

A real-time system is one in which certain behavior must be carried out at a precise absolute or
relative time and within a predictable, often constrained, duration. At one extreme, such systems may
be hard real time and require complete and repeatable behavior within nanoseconds or milliseconds.
At the other extreme, models may be near real time and also require predictable behavior, but on the
order of seconds or longer.

A distributed system is one in which components may be physically distributed across nodes. These
nodes may represent different processors physically located in the same box, or they may even
represent computers that are located half a world away from one another.

Components are discussed in Chapter 26; nodes are discussed in Chapter 27.

To represent the modeling needs of real time and distributed systems, the UML provides a graphic
representation for timing marks, time expressions, timing constraints, and location, as Figure 24-1
shows.

Figure 24-1. Timing Constraints and Location



Terms and Concepts

A timing mark is a denotation for the time at which an event occurs. Graphically, a timing mark is
depicted as a small hash mark (horizontal line) on the border of a sequence diagram. A time
expression is an expression that evaluates to an absolute or relative value of time. A time expression
can also be formed using the name of a message and an indication of a stage in its processing, for
example, request.sendTime or request.receiveTime. A timing constraint is a semantic statement
about the relative or absolute value of time. Graphically, a timing constraint is rendered as for any
constraint-that is, a string enclosed by brackets and generally connected to an element by a
dependency relationship. Location is the placement of a component on a node. Location is an attribute
of an object.

Time

Real time systems are, by their very name, time-critical systems. Events may happen at regular or
irregular times; the response to an event must happen at predictable absolute times or at predictable
times relative to the event itself.

Events, including time events, are discussed in Chapter 21; messages and
interactions are discussed in Chapter 16; constraints are discussed in Chapter 6.

The passing of messages represents the dynamic aspect of any system, so when you model the time-
critical nature of a system with the UML, you can give a name to each message in an interaction to be
used in time expressions. Messages in an interaction are usually not given names. They are mainly
rendered with the name of an event, such as a signal or a call. However, you can give them names to
write a time expression because the same event may trigger different messages. If the designated
message is ambiguous, use the explicit name of the message in an expression to designate the
message you want to mention in a time expression. Given a message name, you can refer to any of
three functions of that messagethat is, sendTime, receiveTime, and transmissionTime. (These are our
suggested functions, not official UML functions. A real-time system might have even more functions.)
For synchronous calls, you can also reference the round-trip message time with executionTime (again
our suggestion). You can then use these functions to specify arbitrarily complex time expressions,
perhaps even using weights or offsets that are either constants or variables (as long as those variables
can be bound at execution time). Finally, as shown in Figure 24-2, you can place these time
expressions in a timing constraint to specify the timing behavior of the system. As constraints, you can
render them by placing them adjacent to the appropriate message, or you can explicitly attach them
using dependency relationships.

Figure 24-2. Time



Note

Especially for complex systems, it's a good idea to write expressions with named constants
instead of writing explicit times. You can define those constants in one part of your model
and then refer to those constants in multiple places. In that way, it's easier to update your
model if the timing requirements of your system change.

Location

Distributed systems, by their nature, encompass components that are physically scattered among the
nodes of a system. For many systems, components are fixed in place at the time they are loaded on
the system; in other systems, components may migrate from node to node.

Components are discussed in Chapter 15; nodes are discussed in Chapter 27; deployment
diagrams are discussed in Chapter 31; the class/object dichotomy is discussed in Chapters
2 and 13; classes are discussed in Chapters 4 and 9.

In the UML, you model the deployment view of a system by using deployment diagrams that represent
the topology of the processors and devices on which your system executes. Artifacts such as
executables, libraries, and tables reside on these nodes. Each instance of a node will own instances of
certain artifacts, and each instance of an artifact will be owned by exactly one instance of a node
(although instances of the same kind of artifact may be spread across different nodes).

Components and classes may be manifested as artifacts. For example, as Figure 24-3 shows, class
LoadAgent is manifested by the artifact initializer.exe that lives on the node of type Router.

Figure 24-3. Location



As the figure illustrates, you can model the location of an artifact in two ways in the UML. First, as
shown for the Router, you can physically nest the element (textually or graphically) in a extra
compartment in its enclosing node. Second, you can use a dependency with the keyword «deploy»
from the artifact to the node that contains it.



Common Modeling Techniques

Modeling Timing Constraints

Modeling the absolute time of an event and modeling the relative time between events are the primary
time-critical properties of real time systems for which you'll use timing constraints.

Constraints, one of the UML's extensibility mechanisms, are discussed in
Chapter 6.

To model timing constraints,

For each event in an interaction, consider whether it must start at some absolute time. Model
that real time property as a timing constraint on the message.

For each interesting sequence of messages in an interaction, consider whether there is an
associated maximum relative time for that sequence. Model that real time property as a timing
constraint on the sequence.

For example, as shown in Figure 24-4, the left-most constraint specifies the repeating start time for
the call event refresh. Similarly, the right timing constraint specifies the maximum duration for calls
to getImage.

Figure 24-4. Modeling Timing Constraint

Often, you'll choose short names for messages so that you don't confuse them with operation names.

Modeling the Distribution of Objects



When you model the topology of a distributed system, you'll want to consider the physical placement
of both nodes and artifacts. If your focus is the configuration management of the deployed system,
modeling the distribution of nodes is especially important in order to visualize, specify, construct, and
document the placement of physical things such as executables, libraries, and tables. If your focus is
the functionality, scalability, and throughput of the system, modeling the distribution of objects is
what's important.

Modeling the distribution of a component is discussed in Chapter 15.

Deciding how to distribute the objects in a system is a difficult problem, and not just because the
problems of distribution interact with the problems of concurrency. Naive solutions tend to yield
profoundly poor performance, and over-engineered solutions aren't much better. In fact, they are
probably worse because they usually end up being brittle.

Modeling processes and threads is discussed in Chapter 23.

To model the distribution of objects,

For each interesting class of objects in your system, consider its locality of reference. In other
words, consider all its neighbors and their locations. A tightly coupled locality will have
neighboring objects close by; a loosely coupled one will have distant objects (and thus there will
be latency in communicating with them). Tentatively allocate objects closest to the actors that
manipulate them.

Next consider patterns of interaction among related sets of objects. Colocate sets of objects that
have high degrees of interaction, to reduce the cost of communication. Partition sets of objects
that have low degrees of interaction.

Next consider the distribution of responsibilities across the system. Redistribute your objects to
balance the load of each node.

Consider also issues of security, volatility, and quality of service, and redistribute your objects as
appropriate.

Assign objects to artifacts so that tightly coupled objects are on the same artifact.

Assign artifacts to nodes so that the computation needs of each node are within capacity. Add
additional nodes if necessary.

Balance performance and communication costs by assigning tightly coupled artifacts to the same
node.

Figure 24-5 provides an object diagram that models the distribution of certain objects in a retail
system. The value of this diagram is that it lets you visualize the physical distribution of certain key
objects. As the diagram shows, two objects reside on a Workstation (the Order and Sales objects),
two objects reside on a Server (the ObserverAgent and the Product objects), and one object resides on
a DataWarehouse (the ProductTable object).



Figure 24-5. Modeling the Distribution of Objects

Object diagrams are discussed in Chapter 14.



Hints and Tips

A well-structured model with time and space properties

Exposes only those time and space properties that are necessary and sufficient to capture the
desired behavior of the system.

Centralizes the use of those properties so that they are easy to find and easy to modify.

When you draw a time or space property in the UML,

Give your timing marks (the names of messages) meaningful names.

Clearly distinguish between relative and absolute time expressions.

Show space properties only when it's important to visualize the placement of elements across a
deployed system.

For more advanced needs, consider the UML Profile for Schedulability, Performance, and Time.
This OMG specification addresses the needs of real-time and high-performance reactive systems.



Chapter 25. State Diagrams
In this chapter

Modeling reactive objects

Forward and reverse engineering

Sequence diagrams, communication diagrams, activity diagrams, and use case
diagrams also model the dynamic aspects of systems. Sequence diagrams and
communication diagrams are discussed in Chapter 19; activity diagrams are
discussed in Chapter 20; use case diagrams are discussed in Chapter 18.

State diagrams are one of the five diagrams in the UML for modeling the dynamic aspects of systems.
A state diagram shows a state machine. Both activity and state diagrams are useful in modeling the
lifetime of an object. However, whereas an activity diagram shows flow of control from activity to
activity across various objects, a state diagram shows flow of control from state to state within a
single object.

You use state diagrams to model the dynamic aspects of a system. For the most part, this involves
modeling the behavior of reactive objects. A reactive object is one whose behavior is best
characterized by its response to events dispatched from outside its context. A reactive object has a
clear lifetime whose current behavior is affected by its past. State diagrams may be attached to
classes, use cases, or entire systems in order to visualize, specify, construct, and document the
dynamics of an individual object.

State diagrams are not only important for modeling the dynamic aspects of a system, but also for
constructing executable systems through forward and reverse engineering.



Getting Started

Consider the investor who finances the building of a new high rise. She is unlikely to be interested in
the details of the building process. The selection of materials, the scheduling of the trades, and the
many meetings about engineering details are activities that are important to the builder, but far less
so to the person bankrolling the project.

The differences between building a dog house and building a high rise are
discussed in Chapter 1.

The investor is interested in getting a good return on the investment, and that also means protecting
the investment against risk. A very trusting investor will give a builder a pile of money, walk away for
a while, and return only when the builder is ready to hand over the keys to the building. Such an
investor is really interested in the final state of the building.

A more pragmatic investor will still trust the builder, but will also want to verify that the project is on
track before releasing money. So, rather than give the builder an unattended pile of money to dip into,
the prudent investor will set up clear milestones for the project, each of which is tied to the completion
of certain activities, and only after meeting each one will money be released to the builder for the next
phase of the project. For example, a modest amount of funds might be released at the project's
inception to fund the architectural work. After the architectural vision has been approved, then more
funds may be released to pay for the engineering work. After that work is completed to the project
stakeholders satisfaction, a larger pile of money may be released so that the builder can proceed with
breaking ground.

Along the way, from ground breaking to issuance of the certificate of occupancy, there are other
milestones. Each of these milestones names a stable state of the project: architecture complete,
engineering done, ground broken, infrastructure completed, building sealed, and so on. For the
investor, following the changing state of the building is more important than following the flow of
activities, which is what the builder might be doing by using Pert charts to model the workflow of the
project.

Gantt charts and Pert charts are discussed in Chapter 20.

In modeling software-intensive systems as well, you'll find that the most natural way to visualize,
specify, construct, and document the behavior of certain kinds of objects is by focusing on the flow of
control from state to state rather than from activity to activity. You would do the latter with a
flowchart (and in the UML, with an activity diagram). Imagine, for a moment, modeling the behavior
of an embedded home security system. Such a system runs continuously, reacting to events from the
outside, such as the breaking of a window. In addition, the order of events changes the way the
system behaves. For example, the detection of a broken window will only trigger an alarm if the
system is first armed. The behavior of such a system is best specified by modeling its stable states
(for example, Idle, Armed, Active, Checking, and so on), the events that trigger a change from state
to state, and the actions that occur on each state change.



Activity diagrams as flowcharts are discussed in Chapter 20; state machines are
discussed in Chapter 22.

In the UML, you model the event-ordered behavior of an object by using state diagrams. As Figure 25-
1 shows, a state diagram is simply a presentation of a state machine, emphasizing the flow of control
from state to state.

Figure 25-1. State Diagram



Terms and Concepts

A state diagram shows a state machine, emphasizing the flow of control from state to state. A state
machine is a behavior that specifies the sequences of states an object goes through during its lifetime
in response to events, together with its responses to those events. A state is a condition or situation in
the life of an object during which it satisfies some condition, performs some activity, or waits for some
event. An event is the specification of a significant occurrence that has a location in time and space. In
the context of state machines, an event is an occurrence of a stimulus that can trigger a state
transition. A transition is a relationship between two states indicating that an object in the first state
will perform certain actions and enter the second state when a specified event occurs and specified
conditions are satisfied. An activity specifies an ongoing execution within a state machine. An action
specifies a primitive executable computation that results in a change in state of the model or the
return of a value. Graphically, a state diagram is a collection of nodes and arcs.

Note

The state diagrams used in UML are based on the statechart notation invented by David
Harel. In particular, the concepts of nested states and orthogonal states were developed by
Harel into a precise, formal system. The concepts in UML are somewhat less formal than
Harel's notation and differ in some details, in particular, by being focused on object-oriented
systems.

Common Properties

A state diagram is just a special kind of diagram and shares the same common properties as do all
other diagramsthat is, a name and graphical contents that are a projection into a model. What
distinguishes a state diagram from all other kinds of diagrams is its content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Simple states, composite states, transitions, events, and actions are discussed
in Chapter 22; activity diagrams are discussed in Chapter 20; notes and
constraints are discussed in Chapter 6.

State diagrams commonly contain



Simple states and composite states

Transitions, events, and actions

Like all other diagrams, state diagrams may contain notes and constraints.

Note

A state diagram is basically a projection of the elements found in a state machine. This
means that state diagrams may contain branches, forks, joins, action states, activity states,
objects, initial states, final states, history states, and so on. Indeed, a state diagram may
contain any and all features of a state machine.

Common Uses

The five views of an architecture are discussed in Chapter 2; instances are
discussed in Chapter 13; classes are discussed in Chapters 4 and 9.

You use state diagrams to model the dynamic aspects of a system. These dynamic aspects may
involve the event-ordered behavior of any kind of object in any view of a system's architecture,
including classes (which includes active classes), interfaces, components, and nodes.

When you use a state diagram to model some dynamic aspect of a system, you do so in the context of
virtually any modeling element. Typically, however, you'll use state diagrams in the context of the
system as a whole, a subsystem, or a class. You can also attach state diagrams to use cases (to
model a scenario).

When you model the dynamic aspects of a system, a class, or a use case, you'll typically use state
diagrams to model reactive objects.

Active classes are discussed in Chapter 23; interfaces are discussed in Chapter
11; components are discussed in Chapter 15; nodes are discussed in Chapter
27; use cases are discussed in Chapter 17; systems are discussed in Chapter 32.

A reactiveor event-drivenobject is one whose behavior is best characterized by its response to events
dispatched from outside its context. A reactive object is typically idle until it receives an event. When it
receives an event, its response usually depends on previous events. After the object responds to an
event, it becomes idle again, waiting for the next event. For these kinds of objects, you'll focus on the
stable states of that object, the events that trigger a transition from state to state, and the actions
that occur on each state change.

Note



In contrast, you'll use activity diagrams to model a workflow or to model an operation.
Activity diagrams are better suited to modeling the flow of activities over time, such as you
would represent in a flowchart.



Common Modeling Techniques

Modeling Reactive Objects

The most common purpose for which you'll use state diagrams is to model the behavior of reactive
objects, especially instances of classes, use cases, and the system as a whole. Whereas interactions
model the behavior of a society of objects working together, a state diagram models the behavior of a
single object over its lifetime. Whereas an activity diagram models the flow of control from activity to
activity, a state diagram models the flow of control from event to event.

Interactions are discussed in Chapter 16; activity diagrams are discussed in
Chapter 20.

When you model the behavior of a reactive object, you essentially specify three things: the stable
states in which that object may live, the events that trigger a transition from state to state, and the
actions that occur on each state change. Modeling the behavior of a reactive object also involves
modeling the lifetime of an object, starting at the time of the object's creation and continuing until its
destruction, highlighting the stable states in which the object may be found.

Modeling the lifetime of an object is discussed in Chapter 22.

A stable state represents a condition in which an object may exist for some identifiable period of time.
When an event occurs, the object may transition from state to state. These events may also trigger
self- and internal transitions, in which the source and the target of the transition are the same state.
In reaction to an event or a state change, the object may respond by dispatching an action.

Time and space are discussed in Chapter 24.

Note

When you model the behavior of a reactive object, you can specify its action by tying it to a
transition or to a state change. In technical terms, a state machine whose actions are all
attached to transitions is called a Mealy machine; a state machine whose actions are all
attached to states is called a Moore machine. Mathematically, the two styles have equivalent
power. In practice, you'll typically develop state diagrams that use a combination of Mealy
and Moore machines.



Pre- and postconditions are discussed in Chapter 10; interfaces are discussed in
Chapter 11.

To model a reactive object,

Choose the context for the state machine, whether it is a class, a use case, or the system as a
whole.

Choose the initial and final states for the object. To guide the rest of your model, possibly state
the pre-and postconditions of the initial and final states, respectively.

Decide on the stable states of the object by considering the conditions in which the object may
exist for some identifiable period of time. Start with the high-level states of the object and only
then consider its possible substates.

Decide on the meaningful partial ordering of stable states over the lifetime of the object.

Decide on the events that may trigger a transition from state to state. Model these events as
triggers to transitions that move from one legal ordering of states to another.

Attach actions to these transitions (as in a Mealy machine) and/or to these states (as in a Moore
machine).

Consider ways to simplify your machine by using substates, branches, forks, joins, and history
states.

Check that all states are reachable under some combination of events.

Check that no state is a dead end from which no combination of events will transition the object
out of that state.

Trace through the state machine, either manually or by using tools, to check it against expected
sequences of events and their responses.

For example, Figure 25-2 shows the state diagram for parsing a simple context-free language, such as
you might find in systems that stream in or stream out messages to XML. In this case, the machine is
designed to parse a stream of characters that match the syntax

message : '<' string '>' string ';'

Figure 25-2. Modeling Reactive Objects



The first string represents a tag; the second string represents the body of the message. Given a
stream of characters, only well-formed messages that follow this syntax may be accepted.

As the figure shows, there are only three stable states for this state machine: Waiting, GettingToken,
and GettingBody. This state is designed as a Mealy machine, with actions tied to transitions. In fact,
there is only one event of interest in this state machine, the invocation of put with the actual
parameter c (a character). While Waiting, this machine throws away any character that does not
designate the start of a token (as specified by the guard condition). When the start of a token is
received, the state of the object changes to GettingToken. While in that state, the machine saves any
character that does not designate the end of a token (as specified by the guard condition). When the
end of a token is received, the state of the object changes to GettingBody. While in that state, the
machine saves any character that does not designate the end of a message body (as specified by the
guard condition). When the end of a message is received, the state of the object changes to Waiting,
and a value is returned indicating that the message has been parsed (and the machine is ready to
receive another message).

Events are discussed in Chapter 21.

Note that this state specifies a machine that runs continuously; there is no final state.

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for state diagrams, especially if
the context of the diagram is a class. For example, using the previous state diagram, a forward
engineering tool could generate the following Java code for the class MessageParser.

class MessageParser {
public
 boolean put(char c) {
  switch (state) {
   case Waiting:
    if (c == '<') {



     state = GettingToken;
     token = new StringBuffer();
     body = new StringBuffer();
    }
    break;
   case GettingToken :
    if (c == '>')
     state = GettingBody;
    else
     token.append(c);
    break;
   case GettingBody :
    if (c == ';')
     state = Waiting;
    else
     body.append(c);
    return true;
  }
  return false;
 }
 StringBuffer getToken() {
  return token;
 }
 StringBuffer getBody() {
  return body;
 }
private
 final static int Waiting = 0;
 final static int GettingToken = 1;
 final static int GettingBody = 2;
 int state = Waiting;
 StringBuffer token, body;
}

This requires a little cleverness. The forward engineering tool must generate the necessary private
attributes and final static constants.

Reverse engineering (the creation of a model from code) is theoretically possible but practically not
very useful. The choice of what constitutes a meaningful state is in the eye of the designer. Reverse
engineering tools have no capacity for abstraction and therefore cannot automatically produce
meaningful state diagrams. More interesting than the reverse engineering of a model from code is the
animation of a model against the execution of a deployed system. For example, given the previous
diagram, a tool could animate the states in the diagram as they were reached in the running system.
Similarly, the firing of transitions could be animated, showing the receipt of events and the resulting
dispatch of actions. Under the control of a debugger, you could control the speed of execution, setting
breakpoints to stop the action at interesting states to examine the attribute values of individual
objects.



Hints and Tips

When you create state diagrams in the UML, remember that every state diagram is just a projection
on the same model of a system's dynamic aspects. A single state diagram can capture the semantics
of a single reactive object, but no one state diagram can capture the semantics of an entire nontrivial
system.

A well-structured state diagram

Is focused on communicating one aspect of a system's dynamics.

Contains only those elements essential to understanding that aspect.

Provides detail consistent with its level of abstraction (expose only those features that are
essential to understanding).

Uses a balance between the styles of Mealy and Moore machines.

When you draw a state diagram,

Give it a name that communicates its purpose.

Start with modeling the stable states of the object, then follow with modeling the legal transitions
from state to state. Address branching, concurrency, and object flow as secondary
considerations, possibly in separate diagrams.

Lay out its elements to minimize lines that cross.

For large state diagrams, consider advanced features such as submachines that are included in
the full UML specification.



Part 6: Architectural Modeling

[View full size image]





Chapter 26. Artifacts
In this chapter

Artifacts, classes, and manifestation

Modeling executables and libraries

Modeling tables, files, and documents

Modeling source code

Artifacts live in the material world of bits and therefore are an important building block in modeling the
physical aspects of a system. An artifact is a physical and replaceable part of a system.

You use artifacts to model the physical things that may reside on a node, such as executables,
libraries, tables, files, and documents. An artifact typically represents the physical packaging of
otherwise logical elements, such as classes, interfaces, and collaborations.



Getting Started

The end product of a construction company's work is a physical building that exists in the real world.
You build logical models to visualize, specify, and document your decisions about the building
envelope; the placement of walls, doors, and windows; the routing of electrical and plumbing systems;
and the overall architectural style. When you actually construct the building, these walls, doors,
windows, and other conceptual things get turned into real, physical things.

The differences between building a dog house and building a high rise are
discussed in Chapter 1.

These logical and physical views are both necessary. If you are building a disposable building for which
the cost of scrap and rework is essentially zero (for example, if you are building a doghouse), you can
probably go straight to the physical building without doing any logical modeling. If, on the other hand,
you are building something enduring for which the cost of change or failure is high, then building both
logical and physical models is the pragmatic thing to do to manage risk.

It's the same thing when building a software-intensive system. You do logical modeling to visualize,
specify, and document your decisions about the vocabulary of your domain and the structural and
behavioral way those things collaborate. You do physical modeling to construct the executable system.
Whereas these logical things live in the conceptual world, the physical things live in the world of
bitsthat is, they ultimately reside on physical nodes and can be executed directly or can, in some
indirect manner, participate in an executing system.

In the UML, all these physical things are modeled as artifacts. An artifact is a physical thing at the
level of the implementation platform.

In software, many operating systems and programming languages directly support the concept of an
artifact. Object libraries, executables, .NET components, and Enterprise Java Beans are all examples
of artifacts that may be represented directly in the UML. Not only can artifacts be used to model these
kinds of things, they can also be used to represent other things that participate in an executing
system, such as tables, files, and documents.

Stereotypes are discussed in Chapter 6.

The UML provides a graphical representation of an artifact, as Figure 26-1 shows. This canonical
notation permits you to visualize an artifact apart from any operating system or programming
language. Using stereotypes, one of the UML's extensibility mechanisms, you can tailor this notation to
represent specific kinds of artifacts.

Figure 26-1. Artifacts





Terms and Concepts

A artifact is a physical part of a system that exists at the level of the implementation platform.
Graphically, an artifact is rendered as a rectangle with the keyword «artifact».

Names

Every artifact must have a name that distinguishes it from other artifacts. A name is a textual string.
That name alone is known as a simple name; a qualified name is the artifact name prefixed by the
name of the package in which that artifact lives. An artifact is typically drawn showing only its name,
as in Figure 26-2. Just as with classes, you may draw artifacts adorned with tagged values or with
additional compartments to expose their details, as you see in the figure.

Figure 26-2. Simple and Qualified Artifact Names

An artifact name must be unique within its enclosing node.

Note

An artifact name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate an artifact
name and the name of its enclosing package) and may continue over several lines. In
practice, artifact names are short nouns or noun phrases drawn from the vocabulary of the
implementation and, depending on your target operating system, include extensions (such
as java and dll).

Artifacts and Classes

Classes and artifacts are both classifiers. However, there are some significant differences between



artifacts and classes.

Classes represent logical abstractions; artifacts represent physical things that live in the world of
bits. In short, artifacts may live on nodes, classes may not.

Artifacts represent the physical packaging of bits on the implementation platform.

Classes may have attributes and operations. Artifacts may implement classes and methods, but
they do not have attributes or operations themselves.

Classes are discussed in Chapters 4 and 9; interactions are discussed in Chapter
16.

The first difference is the most important. When modeling a system, deciding whether you should use
a class or an artifact involves a simple decisionif the thing you are modeling lives directly on a node,
use an artifact; otherwise, use a class. The second difference also makes this clear.

Nodes are discussed in Chapter 27.

The third difference suggests a relationship between classes and artifacts. In particular, an artifact is
the physical implementation of a set of logical elements, such as classes and collaborations. As Figure
26-3 shows, the relationship between an artifact and the classes it implements can be shown explicitly
by using a manifestation relationship.

Figure 26-3. Artifacts and Classes

Kinds of Artifacts

Three kinds of artifacts may be distinguished.



First, there are deployment artifacts. These are the artifacts necessary and sufficient to form an
executable system, such as dynamic libraries (DLLs) and executables (EXEs). The UML's definition of
artifact is broad enough to address classic object models, such as .NET, CORBA, and Enterprise Java
Beans, as well as alternative object models, perhaps involving dynamic Web pages, database tables,
and executables using proprietary communication mechanisms.

Second, there are work product artifacts. These artifacts are essentially the residue of the
development process, consisting of things such as source code files and data files from which
deployment artifacts are created. These artifacts do not directly participate in an executable system
but are the work products of development that are used to create the executable system.

Third are execution artifacts. These artifacts are created as a consequence of an executing system,
such as a .NET object, which is instantiated from a DLL.

Standard Elements

UML's extensibility mechanisms apply to artifacts. Most often, you'll use tagged values to extend
artifact properties (such as specifying the version of a development artifact) and stereotypes to specify
new kinds of artifacts (such as operating system-specific artifacts).

The UML's extensibility mechanisms are discussed in Chapter 6.

The UML predefines standard stereotypes that apply to artifacts:

1. executable Specifies an artifact that may be executed on a node

2. library Specifies a static or dynamic object library

3. file Specifies an artifact that represents a document containing source
code or data

4. document Specifies an artifact that represents a document

Others can be defined for specific platforms and systems.



Common Modeling Techniques

Modeling Executables and Libraries

The most common purpose for which you'll use artifacts is to model the deployment artifacts that
make up your implementation. If you are deploying a trivial system whose implementation consists of
exactly one executable file, you will not need to do any artifact modeling. If, on the other hand, the
system you are deploying is made up of several executables and associated object libraries, doing
artifact modeling will help you to visualize, specify, construct, and document the decisions you've
made about the physical system. Artifact modeling is even more important if you want to control the
versioning and configuration management of these parts as your system evolves.

For most systems, these deployment artifacts are drawn from the decisions you make about how to
segment the physical implementation of your system. These decisions will be affected by a number of
technical issues (such as your choice of artifact-based operating system facilities), configuration
management issues (such as your decisions about which parts will likely change over time), and reuse
issues (that is, deciding which artifacts you can reuse in or from other systems).

These decisions are also affected by the topology of your target system, as
discussed in Chapter 27.

To model executables and libraries,

Identify the partitioning of your physical system. Consider the impact of technical, configuration
management, and reuse issues.

Model any executables and libraries as artifacts, using the appropriate standard elements. If your
implementation introduces new kinds of artifacts, introduce a new appropriate stereotype.

If it's important for you to manage the seams in your system, model the significant interfaces
that some artifacts use and others realize.

As necessary to communicate your intent, model the relationships among these executables,
libraries, and interfaces. Most often, you'll want to model the dependencies among these parts to
visualize the impact of change.

For example, Figure 26-4 shows a set of artifacts drawn from a personal productivity tool that runs on
a single personal computer. This figure includes one executable (animator.exe) and four libraries
(dlog.dll, wrfrme.dll, render.dll, and raytrce.dll), all of which use the UML's standard elements
for executables and libraries, respectively. This diagram also presents the dependencies among these
artifacts.

Figure 26-4. Modeling Executables and Libraries



As your models get bigger, you will find that many artifacts tend to cluster together in groups that are
conceptually and semantically related. In the UML, you can use packages to model these clusters of
artifacts.

Packages are discussed in Chapter 12.

For larger systems that are deployed across several computers, you'll want to model the way your
artifacts are distributed by asserting the nodes on which they are located.

Modeling deployment is discussed in Chapter 27.

Modeling Tables, Files, and Documents

Modeling the executables and libraries that make up the physical implementation of your system is
useful, but often you'll find there are a host of ancillary deployment artifacts that are neither
executables nor libraries and yet are critical to the physical deployment of your system. For example,
your implementation might include data files, help documents, scripts, log files, initialization files, and
installation/removal files. Modeling these artifacts is an important part of controlling the configuration
of your system. Fortunately, you can use UML artifacts to model all of these artifacts.

To model tables, files, and documents,

Identify the ancillary artifacts that are part of the physical implementation of your system.



Model these things as artifacts. If your implementation introduces new kinds of artifacts,
introduce a new appropriate stereotype.

As necessary to communicate your intent, model the relationships among these ancillary artifacts
and the other executables, libraries, and interfaces in your system. Most often, you'll want to
model the dependencies among these parts in order to visualize the impact of change.

For example, Figure 26-5 builds on the previous figure and shows the tables, files, and documents that
are part of the deployed system surrounding the executable animator.exe. This figure includes one
document (animator.hlp), one simple file (animator.ini), and one database table (shapes.tbl). This
example illustrates some user-defined stereotypes and icons for artifacts.

Figure 26-5. Modeling Tables, Files, and Documents

Modeling logical and physical databases are discussed in Chapters 8 and 30,
respectively.

Modeling databases can get complicated when you start dealing with multiple tables, triggers, and
stored procedures. To visualize, specify, construct, and document these features, you'll need to model
the logical schema as well as the physical databases.



Modeling Source Code

The most common purpose for which you'll use artifacts is to model the physical parts that make up
your implementation. The second most common purpose for which you'll use artifacts is to model the
configuration of all the source code files that your development tools use to create these artifacts.
These represent the work product artifacts of your development process.

Modeling source code graphically is particularly useful for visualizing the compilation dependencies
among your source code files and for managing the splitting and merging of groups of these files when
you fork and join development paths. In this manner, UML artifacts can be the graphical interface to
your configuration management and version control tools.

For most systems, source code files are drawn from the decisions you make about how to segment the
files your development environment needs. These files are used to store the details of your classes,
interfaces, collaborations, and other logical elements as an intermediate step to creating the physical,
binary artifacts that are derived from these elements by your tools. Most of the time these tools will
impose a style of organization (one or two files per class is common), but you'll still want to visualize
the relationships among these files. How you organize groups of these files using packages and how
you manage versions of these files is driven by your decisions about how to manage change.

To model source code,

Depending on the constraints imposed by your development tools, model the files used to store
the details of all your logical elements, along with their compilation dependencies.

If it's important for you to bolt these models to your configuration management and version
control tools, you'll want to include tagged values, such as version, author, and check-in/check-
out information, for each file that's under configuration management.

As far as possible, let your development tools manage the relationships among these files, and
use the UML only to visualize and document these relationships.

For example, Figure 26-6 shows some source code files that are used to build the library render.dll
from the previous examples. This figure includes four header files (render.h, rengine.h, poly.h, and
colortab.h) that represent the source code for the specification of certain classes. There is also one
implementation file (render.cpp) that represents the implementation of one of these headers.

Figure 26-6. Modeling Source Code



As your models get bigger, you will find that many source code files tend to cluster together in groups
that are conceptually and semantically related. Most of the time, your development tools will place
these groups in separate directories. In the UML, you can use packages to model these clusters of
source code files.

Packages are discussed in Chapter 12; trace relationships, a kind of

dependency, are discussed in Chapters 5 and 10.

In the UML, it is possible to visualize the relationship of a class to its source code file and, in turn, the
relationship of a source code file to its executable or library by using trace relationships. However,
you'll rarely need to go to this detail of modeling.



Hints and Tips

When you model artifacts in the UML, remember that you are modeling in the physical dimension. A
well-structured artifact

Directly implements a set of classes that work together to carry out the semantics of these
interfaces with economy and elegance.

Is loosely coupled to other artifacts.



Chapter 27. Deployment
In this chapter

Nodes and connections

Modeling processors and devices

Modeling the distribution of artifacts

Systems engineering

Nodes, just like artifacts, live in the material world and are an important building block in modeling the
physical aspects of a system. A node is a physical element that exists at run time and represents a
computational resource, generally having at least some memory and, often, processing capability.

You use nodes to model the topology of the hardware on which your system executes. A node typically
represents a processor or a device on which artifacts may be deployed. Good nodes crisply represent
the vocabulary of the hardware in your solution domain.



Getting Started

The artifacts you develop or reuse as part of a software-intensive system must be deployed on some
set of hardware in order to execute. This is in effect what a software-intensive system is all aboutsuch
a system encompasses both software and hardware.

Modeling nonsoftware things is discussed in Chapter 4; the five views of an
architecture are discussed in Chapter 2.

When you architect a software-intensive system, you have to consider both its logical and physical
dimensions. On the logical side, you'll find things such as classes, interfaces, collaborations,
interactions, and state machines. On the physical side, you'll find artifacts (which represent the
physical packaging of these logical things) and nodes (which represent the hardware on which these
artifacts are deployed and execute).

The UML provides a graphical representation of node, as Figure 27-1 shows. This canonical notation
permits you to visualize a node apart from any specific hardware. Using stereotypesone of the UML's
extensibility mechanismsyou can (and often will) tailor this notation to represent specific kinds of
processors and devices.

Figure 27-1. Nodes

Stereotypes are discussed in Chapter 6.

Note

The UML is mainly intended for modeling software-intensive systems, although the UML, in
conjunction with textual hardware modeling languages, such as VHDL, can be quite
expressive for modeling hardware systems. The UML is also sufficiently expressive for
modeling the topologies of stand-alone, embedded, client/server, and distributed systems.





Terms and Concepts

A node is a physical element that exists at run time and represents a computational resource,
generally having at least some memory and, often, processing capability. Graphically, a node is
rendered as a cube.

Names

Every node must have a name that distinguishes it from other nodes. A name is a textual string. That
name alone is known as a simple name; a qualified name is the node name prefixed by the name of
the package in which that node lives.

A node name must be unique within its enclosing package, as discussed in
Chapter 12.

A node is typically drawn showing only its name, as in Figure 27-2. Just as with classes, you may draw
nodes adorned with tagged values or with additional compartments to expose their details.

Figure 27-2. Nodes with Simple and Qualified Names

Note



A node name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate a node
name and the name of its enclosing package) and may continue over several lines. In
practice, node names are short nouns or noun phrases drawn from the vocabulary of the
implementation.

Nodes and Artifacts

In many ways, nodes are a lot like artifacts: Both have names; both may participate in dependency,
generalization, and association relationships; both may be nested; both may have instances; both
may be participants in interactions. However, there are some significant differences between nodes
and artifacts.

Artifacts are discussed in Chapter 26.

Artifacts are things that participate in the execution of a system; nodes are things that execute
artifacts.

Artifacts represent the physical packaging of otherwise logical elements; nodes represent the
physical deployment of artifacts.

This first difference is the most important. Simply put, nodes execute artifacts; artifacts are things
that are executed by nodes.

The second difference suggests a relationship among classes, artifacts, and nodes. In particular, an
artifact is the manifestation of a set of logical elements, such as classes and collaborations, and a node
is the location upon which artifacts are deployed. A class may be manifested by one or more artifacts,
and, in turn, an artifact may be deployed on one or more nodes. As Figure 27-3 shows, the
relationship between a node and the artifacts it deploys can be shown explicitly by using nesting. Most
of the time, you won't need to visualize these relationships graphically but will indicate them as a part
of the node's specification, for example, using a table.

Figure 27-3. Nodes and Artifacts



Dependency relationships are discussed in Chapters 5 and 10.

A set of objects or artifacts that are allocated to a node as a group is called a distribution unit.

Note

Nodes are also class-like in that you can specify attributes and operations for them. For
example, you might specify that a node provides the attributes processorSpeed and memory,
as well as the operations turnOn, turnOff, and suspend.

Organizing Nodes

You can organize nodes by grouping them in packages in the same manner in which you can organize
classes and artifacts.

Packages are discussed in Chapter 12.

You can also organize nodes by specifying dependency, generalization, and association (including
aggregation) relationships among them.



Relationships are discussed in Chapters 5 and 10.

Connections

The most common kind of relationship you'll use among nodes is an association. In this context, an
association represents a physical connection among nodes, such as an Ethernet connection, a serial
line, or a shared bus, as Figure 27-4 shows. You can even use associations to model indirect
connections, such as a satellite link between distant processors.

Figure 27-4. Connections

Because nodes are class-like, you have the full power of associations at your disposal. This means that
you can include roles, multiplicity, and constraints. As in the previous figure, you should stereotype
these associations if you want to model new kinds of connectionsfor example, to distinguish between a
10-T Ethernet connection and an RS-232 serial connection.



Common Modeling Techniques

Modeling Processors and Devices

Modeling the processors and devices that form the topology of a stand-alone, embedded,
client/server, or distributed system is the most common use of nodes.

The UML's extensibility mechanisms are discussed in Chapter 6.

Because all of the UML's extensibility mechanisms apply to nodes, you will often use stereotypes to
specify new kinds of nodes that you can use to represent specific kinds of processors and devices. A
processor is a node that has processing capability, meaning that it can execute a artifact. A device is a
node that has no processing capability (at least, none that are modeled at this level of abstraction)
and, in general, represents something that interfaces to the real world.

To model processors and devices,

Identify the computational elements of your system's deployment view and model each as a
node.

If these elements represent generic processors and devices, then stereotype them as such. If
they are kinds of processors and devices that are part of the vocabulary of your domain, then
specify an appropriate stereotype with an icon for each.

As with class modeling, consider the attributes and operations that might apply to each node.

For example, Figure 27-5 takes the previous diagram and stereotypes each node. The server is a node
stereotyped as a generic processor; the kiosk and the console are nodes stereotyped as special kinds
of processors; and the RAID farm is a node stereotyped as a special kind of device.

Figure 27-5. Processors and Devices



Note

Nodes are probably the most stereotyped building block in the UML. When, as part of
systems engineering, you model the deployment view of a software-intensive system,
there's great value in providing visual cues that speak to your intended audience. If you are
modeling a processor that's a common kind of computer, render it with an icon that looks
like that computer. If you are modeling a common device, such as a cellular phone, fax,
modem, or camera, render it with an icon that looks like that device.

Modeling the Distribution of Artifacts

When you model the topology of a system, it's often useful to visualize or specify the physical
distribution of its artifacts across the processors and devices that make up the system.

The semantics of location are discussed in Chapter 24.

To model the distribution of artifacts,

For each significant artifact in your system, allocate it to a given node.

Consider duplicate locations for artifacts. It's not uncommon for the same kind of artifact (such
as specific executables and libraries) to reside on multiple nodes simultaneously.

Render this allocation in one of three ways.

Don't make the allocation visible, but leave it as part of the backplane of your modelthat is,
in each node's specification.

1.

Using dependency relationships, connect each node with the artifacts it deploys.2.

3.



2.

List the artifacts deployed on a node in an additional compartment.3.

Using the third approach, Figure 27-6 takes the earlier diagrams and specifies the executable artifacts
that reside on each node. This diagram is a bit different from the previous ones in that it is an object
diagram, visualizing specific instances of each node. In this case, the RAID farm and kiosk instances
are both anonymous and the other two instances are named (c for the console and s for the server).
Each processor in this figure is rendered with an additional compartment showing the artifact it
deploys. The server object is also rendered with its attributes (processorSpeed and memory) and their
values visible. The deployment compartment can show a text list of artifact names, or it can show
nested artifact symbols.

Figure 27-6. Modeling the Distribution of Artifacts

Instances are discussed in Chapter 13; object diagrams are discussed in
Chapter 14.



Hints and Tips

A well-structured node

Provides a crisp abstraction of something drawn from the vocabulary of the hardware in your
solution domain.

Is decomposed only to the level necessary to communicate your intent to the reader.

Exposes only those attributes and operations that are relevant to the domain you are modeling.

Directly deploys a set of artifacts that reside on the node.

Is connected to other nodes in a manner that reflects the topology of the real world system.

When you draw a node in the UML,

For your project or organization as a whole, define a set of stereotypes with appropriate icons to
provide meaningful visual cues to your readers.

Show only the attributes and operations (if any) that are necessary to understand the meaning
of that node in the given context.



Chapter 28. Collaborations
In this chapter

Collaborations, realizations, and interactions

Modeling the realization of a use case

Modeling the realization of an operation

Modeling a mechanism

Reifying interactions

In the context of a systems architecture, a collaboration allows you to name a conceptual chunk that
encompasses both static and dynamic aspects. A collaboration names a society of classes, interfaces,
and other elements that work together to provide some cooperative behavior that's bigger than the
sum of all its parts.

You use collaborations to specify the realization of use cases and operations, and to model the
architecturally significant mechanisms of your system.



Getting Started

Think about the most beautiful building you've even seenperhaps the Taj Mahal or Notre Dame. Both
structures exhibit a quality that's hard to name. In many ways, both structures are architecturally
simple, yet they are also profoundly deep. In each, you can immediately recognize a consistent
symmetry. Look harder, and you'll see details that are themselves beautiful and that work together to
produce a beauty and functionality that's greater than the individual parts.

Now think about the ugliest building you've even seenperhaps your local fast food outlet. You'll find a
visual cacophony of architectural stylesa touch of modernism combined with a Georgian roof line, all
decorated in a jarring fashion, with bold colors that assault the eye. Usually these buildings are pure
manipulation, with narrow function and hardly any form.

What's the difference between these two kinds of civil architecture? First, in buildings of quality, you'll
find a harmony of design that's lacking in the others. Quality architecture uses a small set of
architectural styles applied in a consistent fashion. For example, the Taj Mahal uses complex,
symmetrical, and balanced geometric elements throughout. Second, in buildings of quality, you'll find
common patterns that transcend the building's individual elements. For example, in Notre Dame,
certain walls are load bearing and serve to support the cathedral's dome. Yet some of these same
walls, along with other architectural details, serve as part of the building's system for diverting water
and waste.

So it is with software. A quality software-intensive system is not only functionally sound, but it also
exhibits a harmony and balance of design that makes it resilient to change. This harmony and balance
most often come from the fact that all well-structured object-oriented systems are full of patterns.
Look at any quality object-oriented system and you'll see elements that work together in common
ways to provide some cooperative behavior that's bigger than the sum of all its parts. In a well-
structured system, many of the elements, in various combinations, will participate in different
mechanisms.

The five views of an architecture are discussed in Chapter 2. Patterns and
frameworks are discussed in Chapter 29.

Note

A pattern provides a good solution to a common problem in some context. In any well-
structured system, you'll find a spectrum of patterns, including idioms (representing
common ways of programming), mechanisms (design patterns that represent conceptual
chunks of a system's architecture), and frameworks (architectural patterns that provide
extensible templates for applications within a domain).

Patterns and frameworks are discussed in Chapter 29.



In the UML, you model mechanisms using collaborations. A collaboration gives a name to the
interacting building blocks of your system, encompassing both structural and behavioral elements. For
example, you might have a distributed management information system whose databases are spread
across several nodes. From the user's perspective, updating information looks atomic; from the inside
perspective, it's not so simple, because such an action has to touch multiple machines. To give the
illusion of simplicity, you'd want to devise a transaction mechanism with which a client could name
what looks like a single, atomic transaction, even across various databases. Such a mechanism would
span multiple classes working together to carry out a transaction. Many of these classes would be
involved in other mechanisms as well, such as mechanisms for making information persistent. This
collection of classes (the structural part), together with their interactions (the behavioral part), forms
a mechanism, which, in the UML, you can represent as a collaboration.

Structural modeling is discussed in Parts 2 and 3; behavioral modeling is
discussed in Parts 4 and 5; interactions are discussed in Chapter 16.

Collaborations not only name a system's mechanisms, they also serve as the realization of use cases
and operations.

Use cases are discussed in Chapter 17; operations are discussed in Chapters 4
and 9.

The UML provides a graphical representation for collaborations, as Figure 28-1 shows. This notation
permits you to visualize the structural and behavioral building blocks of a system, especially as they
may overlap the classes, interfaces, and other elements of the system.

Figure 28-1. Collaborations

Class diagrams are discussed in Chapter 8; interaction diagrams are discussed
in Chapter 19.

Note



This notation lets you visualize a collaboration from the outside as one chunk. What's often
more interesting is what's inside this notation. Zoom into a collaboration and you'll be led to
other diagramsmost notably, class diagrams (for the collaboration's structural part) and
interaction diagrams (for the collaboration's behavioral part).



Terms and Concepts

A collaboration is a society of classes, interfaces, and other elements that work together to provide
some cooperative behavior that's bigger than the sum of all its parts. A collaboration is also the
specification of how an element, such as a classifier (including a class, interface, component, node, or
use case) or an operation, is realized by a set of classifiers and associations playing specific roles used
in a specific way. Graphically, a collaboration is rendered as an ellipse with dashed lines.

The notation for collaborations is intentionally similar to that for use cases, as
discussed in Chapter 17.

Names

Every collaboration must have a name that distinguishes it from other collaborations. A name is a
textual string. That name alone is known as a simple name; a qualified name is the collaboration
name prefixed by the name of the package in which that collaboration lives. Typically, a collaboration
is drawn showing only its name, as in the previous figure.

A collaboration name must be unique within its enclosing package, as discussed
in Chapter 12.

Note

A collaboration name may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate a
collaboration name and the name of its enclosing package) and may continue over several
lines. In practice, collaboration names are short nouns or noun phrases drawn from the
vocabulary of the system you are modeling. Typically, you capitalize the first letter of a
collaboration name, as in transaction or Chain of responsibility.

Structure

Collaborations have two aspects: a structural part that specifies the classes, interfaces, and other
elements that work together to carry out the named collaboration; and a behavioral part that specifies
the dynamics of how those elements interact.



Structural elements are discussed in Parts 2 and 3.

The structural part of a collaboration is an internal (composite) structure that may include any
combination of classifiers, such as classes, interfaces, components, and nodes. Within a collaboration,
these classifiers may be organized using all the usual UML relationships, including associations,
generalizations, and dependencies. In fact, the structural aspects of a collaboration may use the full
range of the UML's structural modeling facilities.

Classifiers are discussed in Chapter 9; relationships are discussed in Chapters 5
and 10; internal structure is discussed in Chapter 15; packages are discussed in
Chapter 12; subsystems are discussed in Chapter 32; use cases are discussed in
Chapter 17.

However, unlike a structured class, a collaboration does not own its structural elements. Rather, a
collaboration simply references or uses the classes, interfaces, components, nodes, and other
structural elements that are declared elsewhere. That's why a collaboration names a conceptual
chunknot a physical chunkof a system's architecture. A collaboration may cut across many levels of a
system. Furthermore, the same element may appear in more than one collaboration (and some
elements will not be named as part of any collaboration at all).

For example, given a Web-based retail system described by a dozen or so use cases (such as Purchase
Items, Return Items, and Query Order), each use case will be realized by a single collaboration. In
addition, each of these collaborations will share some of the same structural elements (such as the
classes Customer and Order), but they will be organized in different ways. You'll also find collaborations
deeper inside the system, which represent architecturally significant mechanisms. For example, in this
same retail system, you might have a collaboration called Internode messaging that specifies the
details of secure messaging among nodes.

Given a collaboration that names a conceptual chunk of a system, you can zoom inside that
collaboration to expose the structural details of its parts. For example, Figure 28-2 illustrates how
zooming inside the collaboration Internode messaging might reveal the following set of classes,
rendered in a class diagram.

Figure 28-2. Structural Aspects of a Collaboration



Class diagrams are discussed in Chapter 8.

Behavior

Whereas the structural part of a collaboration is typically rendered using a composite structure
diagram, the behavioral part of a collaboration is typically rendered using an interaction diagram. An
interaction diagram specifies an interaction that represents a behavior comprised of a set of messages
that are exchanged among a set of objects within a context to accomplish a specific purpose. An
interaction's context is provided by its enclosing collaboration, which establishes the classes,
interfaces, components, nodes, and other structural elements whose instances may participate in that
interaction.

Interaction diagrams are discussed in Chapter 19; instances are discussed in
Chapter 13; composite structure is discussed in Chapter 15.

The behavioral part of a collaboration may be specified by one or more interaction diagrams. If you
want to emphasize the time ordering of messages, use a sequence diagram. If you want to emphasize
the structural relationships among these objects as they collaborate, use a collaboration diagram.
Either diagram is appropriate because, for most purposes, they are semantically equivalent.

This means that when you model a society of classes by naming their interaction as a collaboration,
you can zoom inside that collaboration to expose the details of their behavior. For example, zooming
inside the collaboration named Internode messaging might reveal the interaction diagram shown in
Figure 28-3.

Figure 28-3. Behavioral Aspects of a Collaboration



Note

The behavioral parts of a collaboration must be consistent with its structural parts. This
means that the roles found in a collaboration's interactions must match the roles found in its
internal structure. Similarly, the messages named in an interaction must relate to operations
visible in the collaboration's structural part. You can have more than one interaction
associated with a collaboration, each of which may show a differentbut consistentaspect of
its behavior.

Organizing Collaborations

The heart of a system's architecture is found in its collaborations, because the mechanisms that shape
a system represent significant design decisions. All well-structured object-oriented systems are
composed of a modestly sized and regular set of such collaborations, so it's important for you to
organize your collaborations well. There are two kinds of relationships concerning collaborations that
you'll need to consider.

First, there is the relationship between a collaboration and the thing it realizes. A collaboration may
realize either a classifier or an operation, which means that the collaboration specifies the structural
and behavioral realization of that classifier or operation. For example, a use case (which names a set
of sequences of actions that a system performs) may be realized by a collaboration. That use case,
including its associated actors and neighboring use cases, provides a context for the collaboration.
Similarly, an operation (which names the implementation of a service) may be realized by a
collaboration. That operation, including its parameters and possible return value, also provides a
context for the collaboration. The relationship between a use case or an operation and the
collaboration that realizes it is modeled as a realization relationship.

Use cases are discussed in Chapter 17; operations are discussed in Chapters 4
and 9; realization relationships are discussed in Chapter 10. Classifiers are
discussed in Chapter 9.



Note

A collaboration may realize any kind of classifier, including classes, use cases, interfaces,
and components. A collaboration that models a mechanism of the system may also stand
alone, therefore its context is the system as a whole.

Classifiers are discussed in Chapter 9.

Second, there is the relationship among collaborations. Collaborations may refine other collaborations,
and you also model this relationship as a refinement. The refinement relationships among
collaborations typically mirror the refinement relationships among the use cases they represent.

Figure 28-4 illustrates these two kinds of relationships.

Figure 28-4. Organizing Collaborations

Note

Collaborations, like any other modeling element in the UML, may be grouped into larger
packages. Typically, you'll only need to do this for very large systems.



Packages are discussed in Chapter 12.



Common Modeling Techniques

Modeling Roles

Objects represent single individuals in a situation or execution. They are useful within concrete
examples, but most of the time we want to show general parts within some context. A part within a
context is called a role. Perhaps the most important thing for which you'll use roles is to model the
dynamic interactions. When you model such interactions, you are generally not modeling concrete
instances that exist in the real world. Instead, you are modeling roles within a reusable pattern, within
which the roles are essentially proxies or stand-ins for objects that will appear within individual
instances of the pattern. For example, if you want to model the ways objects in a windowing
application react to a mouse event, you'd draw an interaction diagram containing roles whose types
include windows, events, and handlers.

Interactions are discussed in Chapters 16 and 19; internal structure is
discussed in Chapter 15.

To model roles,

Identify a context within which several objects interact.

Identify those roles necessary and sufficient to visualize, specify, construct, or document the
context you are modeling.

Render these roles in the UML as roles in a structured context. Where possible, give each role a
name. If there is no meaningful name for the role, render it as an anonymous role.

Expose the properties of each role necessary and sufficient to model your context.

Render these roles and their relationships in an interaction diagram or a class diagram.

Note

The semantic difference between concrete objects and roles is subtle but not difficult. To be
precise, a UML role is a predefined part of a structured classifier, such as a structured class
or a collaboration. A role is not an object, but a description; a role is bound to a value within
each instance of a structured classifier. A role therefore corresponds to many possible
values, just as an attribute does. Concrete objects appear in specific examples, such as
object diagrams, component diagrams, and deployment diagrams. Roles appear in generic
descriptions as interaction diagrams and activity diagrams.



Interaction diagrams are discussed in Chapter 19; activity diagrams are
discussed in Chapter 20.

Figure 28-5 shows an interaction diagram illustrating a partial scenario for initiating a phone call in the
context of a switch. There are four roles: a (a CallingAgent), c (a Connection), and t1 and t2 (both
instances of Terminal). All four of these roles represent conceptual proxies for concrete objects that
may exist in the real world.

Figure 28-5. Modeling Roles

Note

This example is a collaboration, which represents a society of objects and other elements
that work together to provide some cooperative behavior that's bigger than the sum of all
the elements. Collaborations have two aspectsone structural (representing the classifier
roles and their relationships) and one dynamic (representing the interactions among those
prototypical instances).

Modeling the Realization of a Use Case

One of the purposes for which you'll use collaborations is to model the realization of a use case. You'll
typically drive the analysis of your system by identifying your system's use cases, but when you finally
turn to implementation, you'll need to realize these use cases with concrete structures and behaviors.
In general, every use case should be realized by one or more collaborations. For the system as a
whole, the classifiers involved in a given collaboration that is linked to a use case will participate in
other collaborations as well. In this way, the structural contents of collaborations tend to overlap one
another.

Use cases are discussed in Chapter 17.



To model the realization of a use case,

Identify those structural elements necessary and sufficient to carry out the semantics of the use
case.

Capture the organization of these structural elements in class diagrams.

Consider the individual scenarios that represent this use case. Each scenario represents a specific
path through the use case.

Capture the dynamics of these scenarios in interaction diagrams. Use sequence diagrams if you
want to emphasize the time ordering of messages. Use communication diagrams if you want to
emphasize the structural relationships among these objects as they collaborate.

Organize these structural and behavioral elements as a collaboration that you can connect to the
use case via realization.

For example, Figure 28-6 shows a set of use cases drawn from a credit card validation system,
including the primary use cases Place order and Generate bill, together with two other subordinate
use cases, Detect card fraud and Validate transaction. Although most of the time you won't need
to model this relationship explicitly (but will leave it up to your tools), this figure explicitly models the
realization of Place order by the collaboration Order management. In turn, this collaboration can be
further expanded into its structural and behavioral aspects, leading you to class diagrams and
interaction diagrams. It is through the realization relationship that you connect a use case to its
scenarios.

Figure 28-6. Modeling the Realization of a Use Case

In most cases, you won't need to model the relationship between a use case and the collaboration that
realizes it explicitly. Instead, you'll tend to leave that in the backplane of your model. Then let tools



use that connection to help you navigate between a use case and its realization.

Modeling the Realization of an Operation

Another purpose for which you'll use collaborations is to model the realization of an operation. In
many cases, you can specify the realization of an operation by going straight to code. However, for
those operations that require the collaboration of a number of objects, it's better to model their
implementation via collaborations before you dive into code.

Operations are discussed in Chapters 4 and 9.

The parameters, return value, and objects local to an operation provide the context for its realization.
Therefore, these elements are visible to the structural aspect of the collaboration that realizes the
operation, just as actors are visible to the structural aspect of a collaboration that realizes a use case.
You can model the relationship among these parts using a composite structure diagram that specifies
the structural part of a collaboration.

Notes are discussed in Chapter 6.

To model the implementation of an operation,

Identify the parameters, return value, and other objects visible to the operation. These become
roles of the collaboration.

If the operation is trivial, represent its implementation directly in code, which you can keep in the
backplane of your model, or explicitly visualize it in a note.

If the operation is algorithmically intensive, model its realization using an activity diagram.

If the operation is complex or otherwise requires some detailed design work, represent its
implementation as a collaboration. You can further expand the structural and behavioral parts of
this collaboration using class and interaction diagrams, respectively.

For example, Figure 28-7 shows the active class RenderFrame with three of its operations exposed. The
function progress is simple enough to be implemented directly in code, as specified in the attached
note. However, the operation render is much more complicated, so its implementation is realized by
the collaboration Ray trace. Although not shown here, you could zoom inside the collaboration to see
its structural and behavioral aspects.

Figure 28-7. Modeling the Realization of an Operation



Active classes are discussed in Chapter 23.

Note

You can also model an operation using activity diagrams. Activity diagrams are essentially
flowcharts. So for those algorithmically intensive operations that you want to model
explicitly, activity diagrams are usually the best choice. However, if your operation requires
the participation of many objects, you'll want to use collaborations, because they let you
model the structural, as well as behavioral, aspects of an operation.

Activity diagrams are discussed in Chapter 20.

Modeling a Mechanism

In all well-structured object-oriented systems, you'll find a spectrum of patterns. At one end, you'll
find idioms that represent patterns of use of the implementation language. At the other end, you'll find
architectural patterns and frameworks that shape the system as a whole and impose a particular style.
In the middle, you'll find mechanisms that represent common design patterns by which the things in
the system interact with one another in common ways. You can represent a mechanism in the UML as
a collaboration.

Patterns and frameworks are discussed in Chapter 29; an example of modeling
a mechanism is discussed in the same chapter.

Mechanisms are collaborations that stand alone; their context is not a single use case or an operation
but, rather, the system as a whole. Any element visible in that part of the system is a candidate for
participation in a mechanism.



Mechanisms such as these represent architecturally significant design decisions and should not be
treated lightly. Typically, your system's architect will devise its mechanisms, and you'll evolve these
mechanisms with each new release. At the end, you'll find your system simple (because these
mechanisms reify common interactions), understandable (because you can approach the system from
its mechanisms), and resilient (by tuning each mechanism, you tune the system as a whole).

To model a mechanism,

Identify the major mechanisms that shape your system's architecture. These mechanisms are
driven by the overall architectural style you choose to impose on your implementation, along
with the style appropriate to your problem domain.

Represent each of these mechanisms as a collaboration.

Expand on the structural and behavioral part of each collaboration. Look for sharing, where
possible.

Validate these mechanisms early in the development lifecycle (they are of strategic importance),
but evolve them with each new release, as you learn more about the details of your
implementation.



Hints and Tips

When you model collaborations in the UML, remember that every collaboration should represent either
the realization of a use case or operation or should stand alone as a mechanism of the system. A well-
structured collaboration

Consists of both structural and behavioral aspects.

Provides a crisp abstraction of some identifiable interaction in the system.

Is rarely completely independent, but will overlap with the structural elements of other
collaborations.

Is understandable and simple.

When you draw a collaboration in the UML,

Explicitly render a collaboration only when it's necessary to understand its relationship to other
collaborations, classifiers, operations, or the system as a whole. Otherwise, use collaborations,
but keep them in the backplane.

Organize collaborations according to the classifier or operation they represent, or in packages
associated with the system as a whole.



Chapter 29. Patterns and Frameworks
In this chapter

Patterns and frameworks

Modeling design patterns

Modeling architectural patterns

Making patterns approachable

All well-structured systems are full of patterns. A pattern provides a good solution to a common
problem in a given context. A mechanism is a design pattern that applies to a society of classes; a
framework is typically an architectural pattern that provides an extensible template for applications
within a domain.

You use patterns to specify mechanisms and frameworks that shape the architecture of your system.
You make a pattern approachable by clearly identifying the slots, tabs, knobs, and dials that a user of
that pattern may adjust to apply the pattern in a particular context.



Getting Started

It's amazing to think of the various ways you can assemble a pile of lumber to build a house. In the
hands of a master builder in San Francisco, you might see that pile transformed into a Victorian-style
house, complete with a gabled roof line and brightly colored, storybook siding. In the hands of a
master builder in Maine, you might see that same pile transformed into saltbox house, with clapboard
siding and rectangular shapes throughout.

From the outside, these two houses represent clearly different architectural styles. Every builder,
drawing from experience, must choose a style that best meets the needs of his or her customer, and
then adapt that style to the customer's wishes and the constraints of the building site and local
covenants.

For the inside, each builder must also design the house to solve some common problems. There are
only so many proven ways to engineer trusses to support a roof; there are only so many proven ways
to design a load-bearing wall that must also handle openings for doors and windows. Every builder
must select the appropriate mechanisms that solve these common problems, adapted to an overall
architectural style and the constraints of local building codes.

Building a software-intensive system is just like that. Every time you raise your eyes above individual
lines of code, you'll find common mechanisms that shape the way you organize your classes and other
abstractions. For example, in an event-driven system, using the chain of responsibility design pattern
is a common way to organize event handlers. Raise your eyes above the level of these mechanisms
and you'll find common frameworks that shape your system's entire architecture. For example, in
information systems, using a three-tier architecture is a common way to achieve a clear separation of
concerns among the system's user interface, its persistent information, and its business objects and
rules.

In the UML, you will typically model design patternsalso called mechanismswhich you can represent as
collaborations. Similarly, you will typically model architectural patterns as frameworks, which you can
represent as stereotyped packages.

Collaborations are discussed in Chapter 28; packages are discussed in Chapter
12.

The UML provides a graphical representation for both kinds of patterns, as Figure 29-1 shows.

Figure 29-1. Mechanisms and Frameworks





Terms and Concepts

A pattern is a common solution to a common problem in a given context. A mechanism is a design
pattern that applies to a society of classes. A framework is an architectural pattern that provides an
extensible template for applications within a domain.

Patterns and Architecture

Whether you're architecting a new system or evolving an existing one, you never really start from
scratch. Rather, experience and convention will lead you to apply common ways to solve common
problems. For example, if you are building a user-intensive system, one proven way to organize your
abstractions is to use a model-view-controller pattern, in which you clearly separate objects (the
model) from their presentation (the view) and the agents that keep the two in sync (the controller).
Similarly, if you are building a system for solving cryptograms, one proven way to organize your
system is to use a blackboard architecture, which is well-suited to attacking intractable problems in
opportunistic ways.

Software architecture is discussed in Chapter 2.

Both of these are examples of patternscommon solutions to common problems in a given context. In
all well-structured systems, you'll find lots of patterns at various levels of abstraction. Design patterns
specify the structure and behavior of a society of classes, whereas architectural patterns specify the
structure and behavior of an entire system.

Patterns are part of the UML simply because patterns are important parts of a developer's vocabulary.
By making the patterns in your system explicit, you make your system far more understandable and
easier to evolve and maintain. For example, if you are handed a new, raw body of code to extend,
you'll struggle for a while trying to figure out how it all fits together. On the other hand, if you are
handed that same body of code and told, "These classes collaborate using a publish-and-subscribe
mechanism," you will be a lot further down the path of understanding how it works. The same idea
applies to a system as a whole. Saying "This system is organized as a set of pipes and filters" explains
a great deal about the system's architecture that would otherwise be difficult to comprehend just by
starting at individual classes.

Patterns help you to visualize, specify, construct, and document the artifacts of a software-intensive
system. You can forward engineer a system by selecting an appropriate set of patterns and applying
them to the abstractions specific to your domain. You can also reverse engineer a system by
discovering the patterns it embodies, although that's hardly a perfect process. Even better, when you
deliver a system, you can specify the patterns it embodies so that when someone later tries to reuse
or adapt that system, its patterns will be clearly manifest.

In practice, there are two kinds of patterns of interestdesign patterns and frameworksand the UML
provides a means of modeling both. When you model either pattern, you'll find that it typically stands
alone in the context of some larger package, except for dependency relationships that bind them to
other parts of your system.

Mechanisms



A mechanism is just another name for a design pattern that applies to a society of classes. For
example, one common design problem you'll encounter in Java is adapting a class that knows how to
respond to a certain set of events so that it responds to a slightly different set without altering the
original class. A common solution to this problem is the adaptor pattern, a structural design pattern
that converts one interface to another. This pattern is so common that it makes sense to name it and
then model it so that you can use it anytime you encounter a similar problem.

In modeling, these mechanisms show up in two ways.

First, as shown in the previous figure, a mechanism simply names a set of abstractions that work
together to carry out some common and interesting behavior. You model these mechanisms as plain
collaborations because they just name a society of classes. Zoom into that collaboration and you'll see
its structural aspects (typically rendered as class diagrams) as well as its behavioral aspects (typically
rendered as interaction diagrams). Collaborations such as these cut across individual abstractions in
the system; a given class will likely be a member of many collaborations.

Collaborations are discussed in Chapter 28.

Second, as shown in Figure 29-2, a mechanism names a template for a set of abstractions that work
together to carry out some common and interesting behavior. You model these mechanisms as
parameterized collaborations, which are rendered in the UML similar to the way template classes are
rendered. Zoom into that collaboration and you'll see its structural and behavioral aspects. Zoom out
of the collaboration and you'll see how that pattern applies to your system by binding the template
parts of the collaboration to existing abstractions in your system. When you model a mechanism as a
parameterized collaboration, you identify the slots, tabs, knobs, and dials you use to adapt that
pattern by means of its template parameters. Collaborations such as these may appear repeatedly in
your system, bound to different sets of abstractions.

Figure 29-2. Mechanisms



Template classes are discussed in Chapter 9.

In this example, the Subject and the Observer classes of the pattern are bound to the concrete classes
TaskQueue and SliderBar, respectively.

Note

Deciding to model a mechanism as a plain collaboration versus a parameterized one is
straightforward. Use a plain collaboration if all you are doing is naming a specific society of
classes in your system that work together; use a template collaboration if you can abstract
the essential structural and behavioral aspects of the mechanism in a completely domain-
independent way, which you can then bind to your abstractions in a given context.



Frameworks

A framework is an architectural pattern that provides an extensible template for applications within a
domain. For example, one common architectural pattern you'll encounter in real time systems is a
cyclic executive, which divides time into frames and subframes, during which processing takes place
under strict deadlines. Choosing this pattern versus its alternative (an event-driven architecture)
colors your entire system. Because this pattern (and its alternative) is so common, it makes sense to
name it as a framework.

A framework is bigger than a mechanism. In fact, you can think of a framework as a kind of micro-
architecture that encompasses a set of mechanisms that work together to solve a common problem
for a common domain. When you specify a framework, you specify the skeleton of an architecture,
together with the slots, tabs, knobs, and dials that you expose to users who want to adapt that
framework to their own context.

The five views of an architecture are discussed in Chapter 2.

In the UML, you model a framework as a stereotyped package. Zoom inside that package and you'll
see mechanisms that live in any of various views of a system's architecture. For example, not only
might you find parameterized collaborations, you might also find use cases (which explain how to use
the framework) as well as plain collaborations (which provide sets of abstractions that you can build
uponfor instance, by subclassing).

Packages are discussed in Chapter 12; stereotypes are discussed in Chapter 6.

Figure 29-3 illustrates such a framework, named CyclicExecutive. Among other things, this
framework includes a collaboration (CommonEvents) encompassing a set of event classes, along with a
mechanism (EventHandler) for processing these events in a cyclic fashion. A client that builds on this
framework (such as Pacemaker) could build on the abstractions in CommonEvents via subclassing and
could also apply an instance of the EventHandler mechanism.

Figure 29-3. Frameworks



Events are discussed in Chapter 21.

Note

Frameworks can be distinguished from plain class libraries. A class library contains
abstractions that your abstractions instantiate or invoke; a framework contains abstractions
that may instantiate or invoke your abstractions. Both of these kinds of connections
constitute the framework's slots, tabs, knobs, and dials that you must adjust to adapt the
framework to your context.



Common Modeling Techniques

Modeling Design Patterns

One thing for which you'll use patterns is to model a design pattern. When you model a mechanism
such as this, you have to take into account its inside as well as its outside view.

When viewed from the outside, a design pattern is rendered as a parameterized collaboration. As a
collaboration, a pattern provides a set of abstractions whose structure and behavior work together to
carry out some useful function. The collaboration's parameters name the elements that a user of this
pattern must bind. This makes the design pattern a template that you use in a particular context by
supplying elements that match the template parameters.

When viewed from the inside, a design pattern is simply a collaboration and is rendered with its
structural and behavioral parts. Typically, you'll model the inside of this collaboration with a set of
class diagrams (for the structural aspect) and a set of interactions (for the behavioral aspect). The
collaboration's parameters name certain of these structural elements, which, when the design pattern
is bound in a particular context, are instantiated using abstractions from that context.

To model a design pattern,

Identify the common solution to the common problem and reify it as a mechanism.

Model the mechanism as a collaboration, providing its structural as well as its behavioral aspects.

Identify the elements of the design pattern that must be bound to elements in a specific context
and render them as parameters to the collaboration.

Using collaborations to model a mechanism is discussed in Chapter 28.

For example, Figure 29-4 shows a use of the Command design pattern (as discussed in Gamma et al.,
Design Patterns, Reading, Massachusetts: Addison-Wesley, 1995). As its documentation states, this
pattern "encapsulates a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations." As the model indicates, this design
pattern has three parameters that, when you apply the pattern, must be bound to elements in a given
context. This model shows two such bindings, in which PasteCommand and OpenCommand are bound to
separate bindings of the pattern.

Figure 29-4. Modeling a Design Pattern



The parameters are the AbstractCommand, which must be bound to the same abstract superclass in
every case; the ConcreteCommand, which is bound to the various specific classes in various bindings;
and the Receiver, which is bound to the class on which the command acts. The Command class could be
created by the pattern, but making it a parameter permits multiple command hierarchies to be
created.

Note that PasteCommand and OpenCommand are both subclasses of the Command class. Very likely, your
system will use this pattern a number of times, perhaps with different bindings. The ability to reuse a
design pattern like this as a first-class modeling element is what makes developing with patterns so
powerful.

To complete your model of a design pattern, you must specify its structural as well as its behavioral
parts, which represent the inside of the collaboration.

For example, Figure 29-5 shows a class diagram that represents the structure of this design pattern.
Notice how this diagram uses classes that are named as parameters to the pattern. Figure 29-6 shows
a sequence diagram that represents the behavior of this design pattern. Note that the diagram is only
suggestive of the possibilities; a design pattern is not a rigid thing.

Figure 29-5. Modeling the Structural Aspect of a Design Pattern



Figure 29-6. Modeling the Behavioral Aspect of a Design Pattern

Collaborations are discussed in Chapter 28; class diagrams are discussed in
Chapter 8; interaction diagrams are discussed in Chapter 19.

Modeling Architectural Patterns

The other thing for which you'll use patterns is to model architectural patterns. When you model such
a framework, you are, in effect, modeling the infrastructure of an entire architecture that you plan to
reuse and adapt to some context.



Packages are discussed in Chapter 12.

A framework is rendered as a stereotyped package. As a package, a framework provides a set of
elements, includingbut certainly not limited toclasses, interfaces, use cases, components, nodes,
collaborations, and even other frameworks. In fact, you'll place in a framework all the abstractions
that work together to provide an extensible template for applications within a domain. Some of these
elements will be public and represent resources that clients can build on. These are parts of the
framework that you can connect to the abstractions in your context. Some of these public elements
will be design patterns and represent resources to which clients bind. These are the parts of the
framework that you fill in when you bind to the design pattern. Finally, some of these elements will be
protected or private and represent encapsulated elements of the framework that are hidden from the
outside view.

When you model an architectural pattern, remember that a framework is, in fact, a description of an
architecture, albeit one that is incomplete and possibly parameterized. As such, everything you know
about modeling a well-structured architecture applies to modeling well-structured frameworks. The
best frameworks are not designed in isolation; to do so is an guaranteed way to fail. Rather, the best
frameworks are harvested from existing architectures that are proven to work, and the frameworks
evolve to find the slots, tabs, knobs, and dials that are necessary and sufficient to make that
framework adaptable to other domains.

Software architecture is discussed in Chapter 2.

To model an architectural pattern,

Harvest the framework from an existing, proven architecture.

Model the framework as a stereotyped package, containing all the elements (and especially the
design patterns) that are necessary and sufficient to describe the various views of that
framework.

Expose the plug-ins, interfaces, and parameters necessary to adapt the framework in the form of
design patterns and collaborations. For the most part, this means making it clear to the user of
the pattern which classes must be extended, which operations must be implemented, and which
signals must be handled.

For example, Figure 29-7 shows a specification of the Blackboard architectural pattern (as discussed in
Buschmann et al., Pattern-Oriented Software Architecture, New York, NY: Wiley, 1996). As its
documentation states, this pattern "tackles problems that do not have a feasible deterministic solution
for the transformation of raw data into high-level data structures." The heart of this architecture is the
Blackboard design pattern, which dictates how KnowledgeSources, a Blackboard, and a Controller
collaborate. This framework also includes the design pattern Reasoning engine, which specifies a
general mechanism for how each KnowledgeSource is driven. Finally, as the figure shows, this
framework exposes one use case, Apply new knowledge sources, which explains to a client how to
adapt the framework itself.

Figure 29-7. Modeling an Architectural Pattern



Note

In practice, modeling a framework completely is no less a task than modeling a system's
architecture completely. In some ways, the task is even harder because to make the
framework approachable, you must also expose the slots, tabs, knobs, and dials of the
framework, and perhaps even provide meta-use cases (such as Apply new knowledge
sources) that explain how to adapt the framework, as well as plain use cases that explain
how the framework behaves.



Hints and Tips

When you model patterns in the UML, remember that they work at many levels of abstraction, from
individual classes to the shape of the system as a whole. The most interesting kinds of patterns are
mechanisms and frameworks. A well-structured pattern

Solves a common problem in a common way.

Consists of both structural and behavioral aspects.

Exposes the slots, tabs, knobs, and dials by which you adapt those aspects to apply them to
some context.

Is atomic, meaning that it is not easily broken into smaller patterns.

Tends to cut across individual abstractions in the system.

When you draw a pattern in the UML,

Expose the elements of the pattern that you must adapt in context.

Supply use cases for using, as well as adapting, the pattern.



Chapter 30. Artifact Diagrams
In this chapter

Modeling source code

Modeling executable releases

Modeling physical databases

Modeling adaptable systems

Forward and reverse engineering

Artifact diagrams are one of the two kinds of diagrams found in modeling the physical aspects of
object-oriented systems. An artifact diagram shows the organization and dependencies among a set of
artifacts.

Deployment diagrams, the second kind of diagram used in modeling the
physical aspects of an object-oriented system, are discussed in Chapter 31.

You use artifact diagrams to model the static implementation view of a system. This involves modeling
the physical things that reside on a node, such as executables, libraries, tables, files, and documents.
Artifact diagrams are essentially class diagrams that focus on a system's artifacts.

Artifact diagrams are not only important for visualizing, specifying, and documenting artifact-based
systems, but also for constructing executable systems through forward and reverse engineering.



Getting Started

When you build a house, you must do more than create blueprints. Mind you, blueprints are important
because they help you visualize, specify, and document the kind of house you want to build so that
you'll build the right house at the right time at the right price. Eventually, however, you've got to turn
your floor plans and elevation drawings into real walls, floors, and ceilings made of wood, stone, or
metal. Not only will you build your house out of these raw materials, you'll also incorporate pre-built
artifacts, such as cabinets, windows, doors, and vents. If you are renovating a house, you'll reuse
even larger artifacts, such as whole rooms and frameworks.

It's the same with software. You create use case diagrams to reason about the desired behavior of
your system. You specify the vocabulary of your domain with class diagrams. You create sequence
diagrams, collaboration diagrams, state diagrams, and activity diagrams to specify the way the things
in your vocabulary work together to carry out this behavior. Eventually, you will turn these logical
blueprints into things that live in the world of bits, such as executables, libraries, tables, files, and
documents. You'll find that you must build some of these artifacts from scratch, but you'll also end up
reusing older artifacts in new ways.

With the UML, you use artifact diagrams to visualize the static aspect of these physical artifacts and
their relationships and to specify their details for construction, as in Figure 30-1.

Figure 30-1. An Artifact Diagram



Terms and Concepts

A artifact diagram shows a set of artifacts and their relationships. Graphically, a artifact diagram is a
collection of vertices and arcs.

Common Properties

An artifact diagram is just a special usage of diagram that shares the same common properties as do
all other diagramsa name and graphical contents that are a projection into a model. What
distinguishes an artifact diagram from all other kinds of diagrams is its particular content.

The general properties of diagrams are discussed in Chapter 7.

Contents

Artifacts are discussed in Chapter 26; interfaces are discussed in Chapter 11;
relationships are discussed in Chapters 5 and 10; packages are discussed in
Chapter 12; subsystems are discussed in Chapter 32; instances are discussed in
Chapter 13; class diagrams are discussed in Chapter 8; implementation views,
in the context of software architecture, are discussed in Chapter 2.

Artifact diagrams commonly contain

Artifacts

Dependency, generalization, association, and realization relationships

Like all other diagrams, artifact diagrams may contain notes and constraints.

Common Uses

You use artifact diagrams to model the static implementation view of a system. This view primarily
supports the configuration management of a system's parts, made up of artifacts that can be
assembled in various ways to produce a running system.

When you model the static implementation view of a system, you'll typically use artifact diagrams in
one of four ways.

1.



To model source code1.

With most contemporary object-oriented programming languages, you'll cut code using integrated
development environments that store your source code in files. You can use artifact diagrams to
model the configuration of these files, which represent work-product artifacts, and to set up your
configuration management system.

To model executable releases2.

A release is a relatively complete and consistent set of artifacts delivered to an internal or external
user. In the context of artifacts, a release focuses on the parts necessary to deliver a running system.
When you model a release using artifact diagrams, you are visualizing, specifying, and documenting
the decisions about the physical parts that constitute your softwarethat is, its deployment artifacts.

Persistence is discussed in Chapter 24; modeling logical database schemas is
discussed in Chapter 8.

To model physical databases3.

Think of a physical database as the concrete realization of a schema living in the world of bits.
Schemas, in effect, offer an API to persistent information; the model of a physical database represents
the storage of that information in the tables of a relational database or the pages of an object-oriented
database. You use artifact diagrams to represent these and other kinds of physical databases.

To model adaptable systems4.

Some systems are quite static; their artifacts enter the scene, participate in an execution, and then
depart. Other systems are more dynamic, involving mobile agents or artifacts that migrate for
purposes of load balancing and failure recovery. You use artifact diagrams in conjunction with some of
the UML's diagrams for modeling behavior to represent these kinds of systems.



Common Modeling Techniques

Modeling Source Code

If you develop software in Java, you'll usually save your source code in .java files. If you develop
software using C++, you'll typically store your source code in header files (.h files) and bodies (.cpp
files). If you use IDL to develop COM+ or CORBA applications, one interface from your design view will
often expand into four source code files: the interface itself, the client proxy, the server stub, and a
bridge class. As your application grows, no matter which language you use, you'll find yourself
organizing these files into larger groups. Furthermore, during the construction phase of development,
you'll probably end up creating new versions of some of these files for each new incremental release
you produce, and you'll want to place these versions under the control of a configuration management
system.

Much of the time, you will not need to model this aspect of a system directly. Instead, you'll let your
development environment keep track of these files and their relationships. Sometimes, however, it's
helpful to visualize these source code files and their relationships using artifact diagrams. Artifact
diagrams used in this way typically contain only work-product artifacts stereotyped as files, together
with dependency relationships. For example, you might reverse engineer a set of source code files to
visualize their web of compilation dependencies. You can go in the other direction by specifying the
relationships among your source code files and then using those models as input to compilation tools,
such as make on Unix. Similarly, you might want to use artifact diagrams to visualize the history of a
set of source code files that are under configuration management. By extracting information from your
configuration management system, such as the number of times a source code file has been checked
out over a period of time, you can use that information to color artifact diagrams, showing "hot spots"
of change among your source code files and areas of architectural churn.

The file stereotype for artifacts is discussed in Chapter 26.

To model a system's source code,

Either by forward or reverse engineering, identify the set of source code files of interest and
model them as artifacts stereotyped as files.

For larger systems, use packages to show groups of source code files.

Consider exposing a tagged value indicating such information as the version number of the
source code file, its author, and the date it was last changed. Use tools to manage the value of
this tag.

Model the compilation dependencies among the source files using dependencies. Again, use tools
to help generate and manage these dependencies.

For example, Figure 30-2 shows five source code files. The file signal.h is a header file. Three of its
versions are shown, tracing from new versions back to their older ancestors. Each variant of this
source code file is rendered with a tagged value exposing its version number.



Figure 30-2. Modeling Source Code

The trace dependency stereotype is discussed in Chapter 10.

This header file (signal.h) is used by two other files (interp.cpp and .signal.cpp), both of which are
bodies. One of these files (interp.cpp) has a compilation dependency to another header (irq.h); in
turn, device.cpp has a compilation dependency to interp.cpp. Given this artifact diagram, it's easy to
trace the impact of changes. For example, changing the source code file signal.h will require the
recompilation of three other files: signal.cpp, interp.cpp, and transitively, device.cpp. As this
diagram also shows, the file irq.h is not affected.

Diagrams such as this can easily be generated by reverse engineering from the information held by
your development environment's configuration management tools.

Modeling an Executable Release

Releasing a simple application is easy: You throw the bits of a single executable file on a disk and your
users just run that executable. For these kinds of applications, you don't need artifact diagrams
because there's nothing difficult to visualize, specify, construct, or document.

Releasing anything other than a simple application is not so easy. You need the main executable
(usually, a .exe file), but you also need all its ancillary parts, such as libraries (commonly .dll files if
you are working in the context of COM+, or .class and .jar files if you are working in the context of
Java), databases, help files, and resource files. For distributed systems, you'll likely have multiple
executables and other parts scattered across various nodes. If you are working with a system of
applications, you'll find that some of these artifacts are unique to each application but that many are
shared among applications. As you evolve your system, controlling the configuration of these many
artifacts becomes an important activityand a more difficult one because changes in the artifacts



associated with one application may affect the operation of other applications.

For this reason, you use artifact diagrams to visualize, specify, construct, and document the
configuration of your executable releases, encompassing the deployment artifacts that form each
release and the relationships among those artifacts. You can use artifact diagrams to forward engineer
a new system and to reverse engineer an existing one.

When you create artifact diagrams such as these, you actually just model a part of the things and
relationships that make up your system's implementation view. For this reason, each artifact diagram
should focus on one set of artifacts at a time.

To model an executable release,

Identify the set of artifacts you'd like to model. Typically, this will involve some or all the artifacts
that live on one node, or the distribution of these sets of artifacts across all the nodes in the
system.

The UML's extensibility mechanisms are discussed in Chapter 6; interfaces
are discussed in Chapter 11.

Consider the stereotype of each artifact in this set. For most systems, you'll find a small number
of different kinds of artifacts (such as executables, libraries, tables, files, and documents). You
can use the UML's extensibility mechanisms to provide visual cues for these stereotypes.

For each artifact in this set, consider its relationship to its neighbors. Most often, this will involve
interfaces that are exported (realized) by certain artifacts and then imported (used) by others. If
you want to expose the seams in your system, model these interfaces explicitly. If you want your
model at a higher level of abstraction, elide these relationships by showing only dependencies
among the artifacts.

For example, Figure 30-3 models part of the executable release for an autonomous robot. This figure
focuses on the deployment artifacts associated with the robot's driving and calculation functions. You'll
find one artifact (driver.dll) that manifests a component Driving that exports an interface (IDrive)
that is, in turn, used by another component Path manifested by another artifact (path.dll). The
dependency among components Path and Driving induces a dependency among the artifacts path.dll
and driver.dll that implement them. There's one other artifact shown in this diagram
(collision.dll), and it, too, manifests a component, although these details are elided: path.dll is
shown with a dependency directly to collision.dll.

Figure 30-3. Modeling an Executable Release



There are many more artifacts involved in this system. However, this diagram only focuses on those
deployment artifacts that are directly involved in moving the robot. Note that in this component-based
architecture, you could replace a specific version of driver.dll with another that manifests the same
component or one that manifests a different component supporting the same (and perhaps additional)
interfaces, and path.dll would still function properly.

Modeling a Physical Database

A logical database schema captures the vocabulary of a system's persistent data, along with the
semantics of their relationships. Physically, these things are stored in a database for later retrieval,
either a relational database, an object-oriented one, or a hybrid object/relational database. The UML is
well suited to modeling physical databases as well as logical database schemas.

Modeling a logical database schema is discussed in Chapter 8.

Mapping a logical database schema to an object-oriented database is straightforward because even
complex inheritance lattices can be made persistent directly. Mapping a logical database schema to a
relational database is not so simple, however. In the presence of inheritance, you have to make
decisions about how to map classes to tables. Typically, you can apply one or a combination of three
strategies.

Physical database design is beyond the scope of this book; the focus here is
simply to show you how you can model databases and tables using the UML.

1.



(Push down) Define a separate table for each class. This is a simple but naive approach because
it introduces maintenance headaches when you add new child classes or modify your parent
classes.

1.

(Pull up) Collapse your inheritance lattices so that all instances of any class in a hierarchy has the
same state. The downside with this approach is that you end up storing superfluous information
for many instances.

2.

(Split tables) Separate parent and child states into different tables. This approach best mirrors
your inheritance lattice, but the downside is that traversing your data will require many cross-
table joins.

3.

When designing a physical database, you also have to make decisions about how to map operations
defined in your logical database schema. Object-oriented databases make the mapping fairly
transparent. But with relational databases, you have to make some decisions about how these logical
operations are implemented. Again, you have some choices.

For simple CRUD (create, read, update, delete) operations, implement them with standard SQL
or ODBC calls.

1.

For more-complex behavior (such as business rules), map them to triggers or stored procedures.2.

Given these general guidelines, to model a physical database,

Identify the classes in your model that represent your logical database schema.

Select a strategy for mapping these classes to tables. You will also want to consider the physical
distribution of your databases. Your mapping strategy will be affected by the location in which
you want your data to live on your deployed system.

To visualize, specify, construct, and document your mapping, create an artifact diagram that
contains artifacts stereotyped as tables.

Where possible, use tools to help you transform your logical design into a physical design.

Figure 30-4 shows a set of database tables drawn from an information system for a school. You will
find one database (school.db with the stereotypdatabase) that's composed of five tables: student,
class, instructor, department, and course. In the corresponding logical database schema, there was
no inheritance, so mapping to this physical database design is straightforward.

Figure 30-4. Modeling a Physical Database



Although not shown in this example, you can specify the contents of each table. Artifacts can have
attributes, so a common idiom when modeling physical databases is to use these attributes to specify
the columns of each table. Similarly, artifacts can have operations, and these can be used to denote
stored procedures.

Modeling Adaptable Systems

All the artifact diagrams shown thus far have been used to model static views. Their artifacts spend
their entire lives on one node. This is the most common situation you'll encounter, but especially in the
domain of complex, distributed systems, you'll need to model dynamic views. For example, you might
have a system that replicates its databases across several nodes, switching the one that is the
primary database when a server goes down. Similarly, if you are modeling a globally distributed 24x7
operation (that is, a system that's up 24 hours a day, 7 days a week), you will likely encounter mobile
agents, artifacts that migrate from node to node to carry out some transaction. To model these
dynamic views, you'll need to use a combination of artifact diagrams, object diagrams, and interaction
diagrams.

To model an adaptable system,

Consider the physical distribution of the artifacts that may migrate from node to node. You can
specify the location of an artifact instance by marking it with a location attribute, which you can
then render in an artifact diagram.

The location attribute is discussed in Chapter 24; object diagrams are

discussed in Chapter 14.

If you want to model the actions that cause an artifact to migrate, create a corresponding
interaction diagram that contains artifact instances. You can illustrate a change of location by
drawing the same instance more than once, but with different values for its state, which includes
its location.

For example, Figure 30-5 models the replication of the database from the previous figure. We show
two instances of the artifact school.db. Both instances are anonymous, and both have a different
value for their location tagged value. There's also a note, which explicitly specifies which instance
replicates the other.

Figure 30-5. Modeling Adaptable Systems



If you want to show the details of each database, you can render them in their canonical forman
artifact stereotyped as a database.

Although not shown here, you could use an interaction diagram to model the dynamics of switching
from one primary database to another.

Interaction diagrams are discussed in Chapter 19.

Forward and Reverse Engineering

Forward engineering and reverse engineering artifacts are pretty direct, because artifacts are
themselves physical things (executables, libraries, tables, files, and documents) that are therefore
close to the running system. When you forward engineer a class or a collaboration, you really forward
engineer to an artifact that represents the source code, binary library, or executable for that class or
collaboration. Similarly, when you reverse engineer source code, binary libraries, or executables, you
really reverse engineer to an artifact or set of artifacts that, in turn, trace to classes or collaborations.

Choosing to forward engineer (the creation of code from a model) a class or collaboration to source
code, a binary library, or an executable is a mapping decision you have to make. You'll want to take
your logical models to source code if you are interested in controlling the configuration management of
files that are then manipulated by a development environment. You'll want to take your logical models
directly to binary libraries or executables if you are interested in managing the artifacts that you'll
actually deploy on a running system. In some cases, you'll want to do both. A class or collaboration
may be manifested by source code as well as by a binary library or executable.

To forward engineer an artifact diagram,

For each artifact, identify the classes or collaborations that the artifact implements. Show this
with a manifest relationship.

Choose the form for each artifact. Your choice is basically between source code (a form that can
be manipulated by development tools) or a binary library or executable (a form that can be
dropped into a running system).

Use tools to forward engineer your models.

Reverse engineering (the creation of a model from code) an artifact diagram is straightforward, but
obtaining a class model is not a perfect process because there is always a loss of information. From
source code, you can reverse engineer back to classes; this is the most common thing you'll do.
Reverse engineering source code to artifacts will uncover compilation dependencies among those files.
For binary libraries, the best you can hope for is to denote the library as an artifact and then discover
its interfaces by reverse engineering. This is the second most common thing you'll do with artifact
diagrams. In fact, this is a useful way to approach a set of new libraries that may be otherwise poorly
documented. For executables, the best you can hope for is to denote the executable as an artifact and
then disassemble its codesomething you'll rarely need to do unless you work in assembly language.

Reverse engineering class diagrams is discussed in Chapter 8.



To reverse engineer an artifact diagram,

Choose the target you want to reverse engineer. Source code can be reverse engineered to
discover artifacts and then classes. Binary libraries can be reverse engineered to uncover their
interfaces. Executables can be reverse engineered the least.

Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a new
model or to modify an existing one that was previously forward engineered.

Using your tool, create an artifact diagram by querying the model. For example, you might start
with one or more artifacts, then expand the diagram by following relationships or neighboring
artifacts. Expose or hide the details of the contents of this artifact diagram as necessary to
communicate your intent.

For example, Figure 30-6 provides an artifact diagram that represents the reverse engineering of the
ActiveX artifact vbrun.dll. As the figure shows, the artifact manifests 11 interfaces. Given this
diagram, you can begin to understand the semantics of the artifact by next exploring the details of its
interface classes.

Figure 30-6. Reverse Engineering

[View full size image]

Especially when you reverse engineer from source code, and sometimes when you reverse engineer
from binary libraries and executables, you'll do so in the context of a configuration management
system. This means that you'll often be working with specific versions of files or libraries, with all
versions of a configuration compatible with one another. In these cases, you'll want to include a note
that represents the artifact version, which you can derive from your configuration management
system. In this manner, you can use the UML to visualize the history of an artifact across various
releases.



Hints and Tips

When you create artifact diagrams in the UML, remember that every artifact diagram is just a
graphical presentation of the static implementation view of a system. This means that no single
artifact diagram need capture everything about a system's implementation view. Collectively, all the
artifact diagrams of a system represent the system's complete static implementation view;
individually, each represents just one aspect.

A well-structured artifact diagram

Is focused on communicating one aspect of a system's static implementation view.

Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction, with only those adornments that are
essential to understanding exposed.

Is not so minimalist that it misinforms the reader about important semantics.

When you draw an artifact diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out physically
close.

Use notes and color as visual cues to draw attention to important features of your diagram.

Use stereotyped elements carefully. Choose a small set of common icons for your project or
organization and use them consistently.



Chapter 31. Deployment Diagrams
In this chapter

Modeling an embedded system

Modeling a client/server system

Modeling a fully distributed system

Forward and reverse engineering

Deployment diagrams are one of the two kinds of diagrams used in modeling the physical aspects of
an object-oriented system. A deployment diagram shows the configuration of run time processing
nodes and the artifacts that live on them.

Artifact diagrams, the second kind of diagram used in modeling the physical
aspects of an object-oriented system, are discussed in Chapter 30

You use deployment diagrams to model the static deployment view of a system. For the most part,
this involves modeling the topology of the hardware on which your system executes. Deployment
diagrams are essentially class diagrams that focus on a system's nodes.

Deployment diagrams are not only important for visualizing, specifying, and documenting embedded,
client/server, and distributed systems, but also for managing executable systems through forward and
reverse engineering.



Getting Started

When you create a software-intensive system, your main focus as a software developer is on
architecting and deploying its software. However, as a systems engineer, your main focus is on the
system's hardware and software and in managing the trade-offs between the two. Whereas software
developers work with somewhat intangible artifacts, such as models and code, system developers
work with quite tangible hardware as well.

The UML is primarily focused on facilities for visualizing, specifying, constructing, and documenting
software artifacts, but it's also designed to address hardware artifacts. This is not to say that the UML
is a general-purpose hardware description language like VHDL. Rather, the UML is designed to model
many of the hardware aspects of a system sufficient for a software engineer to specify the platform on
which the system's software executes and for a systems engineer to manage the system's
hardware/software boundary. In the UML, you use class diagrams and artifact diagrams to reason
about the structure of your software. You use sequence diagrams, collaboration diagrams, state
diagrams, and activity diagrams to specify the behavior of your software. At the edge of the your
system's software and hardware, you use deployment diagrams to reason about the topology of
processors and devices on which your software executes.

With the UML, you use deployment diagrams to visualize the static aspect of these physical nodes and
their relationships and to specify their details for construction, as in Figure 31-1.

Figure 31-1. A Deployment Diagram



Terms and Concepts

A deployment diagram is a diagram that shows the configuration of run time processing nodes and the
artifacts that live on them. Graphically, a deployment diagram is a collection of vertices and arcs.

Common Properties

A deployment diagram is just a special kind of diagram and shares the same common properties as all
other diagramsa name and graphical contents that are a projection into a model. What distinguishes a
deployment diagram from all other kinds of diagrams is its particular content.

The general properties of diagrams are discussed in Chapter 7

Contents

Deployment diagrams commonly contain

Nodes are discussed in Chapter 27; relationships are discussed in Chapters 5
and 10; artifacts are discussed in Chapter 26; packages are discussed in
Chapter 12; subsystems are discussed in Chapter 32; instances are discussed in
Chapter 13; class diagrams are discussed in Chapter 8.

Nodes

Dependency and association relationships

Like all other diagrams, deployment diagrams may contain notes and constraints. Deployment
diagrams may also contain artifacts, each of which must live on some node. Deployment diagrams
may also contain packages or subsystems, both of which are used to group elements of your model
into larger chunks. Sometimes, you'll want to place instances in your deployment diagrams, as well,
especially when you want to visualize one instance of a family of hardware topologies.

Note

In many ways, a deployment diagram is just a special kind of class diagram, which focuses
on a system's nodes.



Common Uses

You use deployment diagrams to model the static deployment view of a system. This view primarily
addresses the distribution, delivery, and installation of the parts that make up the physical system.

There are some kinds of systems for which deployment diagrams are unnecessary. If you are
developing a piece of software that lives on one machine and interfaces only with standard devices on
that machine that are already managed by the host operating system (for example, a personal
computer's keyboard, display, and modem), you can ignore deployment diagrams. On the other hand,
if you are developing a piece of software that interacts with devices that the host operating system
does not typically manage or that is physically distributed across multiple processors, then using
deployment diagrams will help you reason about your system's software-to-hardware mapping.

Deployment views in the context of software architecture are discussed in
Chapter 2

When you model the static deployment view of a system, you'll typically use deployment diagrams in
one of three ways.

To model embedded systems1.

An embedded system is a software-intensive collection of hardware that interfaces with the physical
world. Embedded systems involve software that controls devices such as motors, actuators, and
displays and that, in turn, is controlled by external stimuli such as sensor input, movement, and
temperature changes. You can use deployment diagrams to model the devices and processors that
comprise an embedded system.

To model client/server systems2.

A client/server system is a common architecture focused on making a clear separation of concerns
between the system's user interface (which lives on the client) and the system's persistent data
(which lives on the server). Client/server systems are one end of the continuum of distributed systems
and require you to make decisions about the network connectivity of clients to servers and about the
physical distribution of your system's software artifacts across the nodes. You can model the topology
of such systems by using deployment diagrams.

To model fully distributed systems3.

At the other end of the continuum of distributed systems are those that are widely, if not globally,
distributed, typically encompassing multiple levels of servers. Such systems are often hosts to multiple
versions of software artifacts, some of which may even migrate from node to node. Crafting such
systems requires you to make decisions that enable the continuous change in the system's topology.
You can use deployment diagrams to visualize the system's current topology and distribution of
artifacts to reason about the impact of changes on that topology.



Common Modeling Techniques

Modeling an Embedded System

Developing an embedded system is far more than a software problem. You have to manage the
physical world in which there are moving parts that break and in which signals are noisy and behavior
is nonlinear. When you model such a system, you have to take into account its interface with the real
world, and that means reasoning about unusual devices as well as nodes.

Nodes and devices are discussed in Chapter 27

Deployment diagrams are useful in facilitating the communication between your project's hardware
engineers and software developers. By using nodes that are stereotyped to look like familiar devices,
you can create diagrams that are understandable by both groups. Deployment diagrams are also
helpful in reasoning about hardware/software trade-offs. You'll use deployment diagrams to visualize,
specify, construct, and document your system engineering decisions.

The UML's extensibility mechanisms are discussed in Chapter 6

To model an embedded system,

Identify the devices and nodes that are unique to your system.

Provide visual cues, especially for unusual devices, by using the UML's extensibility mechanisms
to define system-specific stereotypes with appropriate icons. At the very least, you'll want to
distinguish processors (which contain software artifacts) and devices (which, at that level of
abstraction, don't contain software that you write).

Model the relationships among these processors and devices in a deployment diagram. Similarly,
specify the relationship between the artifacts in your system's implementation view and the
nodes in your system's deployment view.

As necessary, expand on any intelligent devices by modeling their structure with a more detailed
deployment diagram.

For example, Figure 31-2 shows th hardware for a simple autonomous robot. You'll find one node
(Pentium motherboard) stereotyped as a processor. Surrounding this node are eight devices, each
stereotyped as a device and rendered with an icon that offers a clear visual cue to its real-world
equivalent.

Figure 31-2. Modeling an Embedded System



Modeling a Client/Server System

The moment you start developing a system whose software no longer resides on a single processor,
you are faced with a host of decisions: How do you best distribute your software artifacts across these
nodes? How do they communicate? How do you deal with failure and noise? At one end of the
spectrum of distributed systems, you'll encounter client/server systems in which there's a clear
separation of concerns between the system's user interface (typically managed by the client) and its
data (typically managed by the server).

There are many variations on this theme. For example, you might choose to have a thin client,
meaning that it has a limited amount of computational capacity and does little more than manage the
user interface and visualization of information. Thin clients may not even host a lot of artifacts but,
rather, may be designed to load artifacts from the server, as needed, as with Enterprise Java Beans.
On the other hand, you might chose to have a thick client, meaning that it has a goodly amount of
computational capacity and does more than just visualization. A thick client typically carries out some
of the system's logic and business rules. The choice between thin and thick clients is an architectural
decision that's influenced by a number of technical, economic, and political factors.

Either way, partitioning a system into its client and server parts involves making some hard decisions
about where to physically place its software artifacts and how to impose a balanced distribution of
responsibilities among those artifacts. For example, most management information systems are
essentially three-tier architectures, which means that the system's GUI, business logic, and database
are physically distributed. Deciding where to place the system's GUI and database are usually fairly
obvious, so the hard part lies in deciding where the business logic lives.

You can use the UML's deployment diagrams to visualize, specify, and document your decisions about
the topology of your client/server system and how its software artifacts are distributed across the
client and server. Typically, you'll want to create one deployment diagram for the system as a whole,
along with other, more detailed diagrams that drill down to individual segments of the system.

To model a client/server system,

Identify the nodes that represent your system's client and server processors.



Highlight those devices that are germane to the behavior of your system. For example, you'll
want to model special devices, such as credit card readers, badge readers, and display devices
other than monitors, because their placement in the system's hardware topology are likely to be
architecturally significant.

Provide visual cues for these processors and devices via stereotyping.

Model the topology of these nodes in a deployment diagram. Similarly, specify the relationship
between the artifacts in your system's implementation view and the nodes in your system's
deployment view.

For example, Figure 31-3 shows ttopology of a human resources system, which follows a classical
client/server architecture. This figure illustrates the client/server split explicitly by using the packages
named client and server. The client package contains two nodes (console and kiosk), both of which
are stereotyped and are visually distinguishable. The server package contains two kinds of nodes
(caching server and server), and both of these have been adorned with some of the artifacts that
reside on each. Note also that caching server and server are marked with explicit multiplicities,
specifying how many instances of each are expected in a particular deployed configuration. For
example, this diagram indicates that there may be two or more caching servers in any deployed
instance of the system.

Figure 31-3. Modeling a Client/Server System

Packages are discussed in Chapter 12 multiplicity is discussed in Chapter 10

Modeling a Fully Distributed System

Distributed systems come in many forms, from simple two-processor systems to those that span
many geographically dispersed nodes. The latter are typically never static. Nodes are added and
removed as network traffic changes and processors fail; new and faster communication paths may be
established in parallel with older, slower channels that are eventually decommissioned. Not only may
the topology of these systems change, but the distribution of their software artifacts may change as
well. For example, database tables may be replicated across servers, only to be moved as traffic
dictates. For some global systems, artifacts may follow the sun, migrating from server to server as the
business day begins in one part of the world and ends in another.

Visualizing, specifying, and documenting the topology of fully distributed systems such as these are
valuable activities for the systems administrator who must keep tabs on an enterprise's computing
assets. You can use the UML's deployment diagrams to reason about the topology of such systems.
When you document fully distributed systems using deployment diagrams, you'll want to expand on



the details of the system's networking devices, each of which you can represent as a stereotyped
node.

To model a fully distributed system,

Identify the system's devices and processors as for simpler client/server systems.

If you need to reason about the performance of the system's network or the impact of changes
to the network, model these communication devices to a level of detail sufficient to make these
assessments.

Pay close attention to logical groupings of nodes, which you can specify by using packages.

Packages are discussed in Chapter 12

Model these devices and processors using deployment diagrams. Where possible, use tools that
discover the topology of your system by walking your system's network.

If you need to focus on the dynamics of your system, introduce use case diagrams to specify the
kinds of behavior you are interested in, and expand on these use cases with interaction
diagrams.

Use cases are discussed in Chapter 17; interaction diagrams are described in
Chapter 19; instances are discussed in Chapter 13.

Note

When modeling a highly distributed system, it's common to reify the network itself as an
node. For example, the Internet might be represented as a node (as in Figure 31-1, shown a
a stereotyped node). You can also reify a local area network (LAN) or wide-area network
(WAN) in the same way (as in Figure 31-1). In eac- case, you can use the node's attributes
and operations to capture properties about the network.

Figure 31-4 shows ttopology of a particular configuration of a fully distributed system. This particular
deployment diagram is also an object diagram, for it contains only instances. You can see three
consoles (anonymous instances of the stereotyped node console), which are linked to the Internet
(clearly a singleton node). In turn, there are three instances of regional servers, which serve as front
ends of country servers, only one of which is shown. As the note indicates, country servers are
connected to one another, but their relationships are not shown in this diagram.

Figure 31-4. Modeling a Fully Distributed System



In this diagram, the Internet has been reified as a stereotyped node.

Forward and Reverse Engineering

There's only a modest amount of forward engineering (the creation of code from models) that you can
do with deployment diagrams. For example, after specifying the physical distribution of artifacts across
the nodes in a deployment diagram, it is possible to use tools that then push these artifacts out to the
real world. For system administrators, using the UML in this way helps you visualize what can be a
very complicated task.

Reverse engineering (the creation of models from code) from the real world back to deployment
diagrams is of tremendous value, especially for fully distributed systems that are under constant
change. You'll want to supply a set of stereotyped nodes that speak the language of your system's
network administrators to tailor the UML to their domain. The advantage of using the UML is that it
offers a standard language that addresses not only their needs, but the needs of your project's
software developers as well.

To reverse engineer a deployment diagram,

Choose the target that you want to reverse engineer. In some cases, you'll want to sweep across
your entire network; in others, you can limit your search.

Choose also the fidelity of your reverse engineering. In some cases, it's sufficient to reverse
engineer just to the level of all the system's processors; in others, you'll want to reverse
engineer the system's networking peripherals as well.

Use a tool that walks across your system, discovering its hardware topology. Record that
topology in a deployment model.

Along the way, you can use similar tools to discover the artifacts that live on each node, which
you can also record in a deployment model. You'll want to use an intelligent search, for even a
basic personal computer can contain gigabytes of artifacts, many of which may not be relevant
to your system.

Using your modeling tools, create a deployment diagram by querying the model. For example,
you might start with visualizing the basic client/server topology, then expand on the diagram by
populating certain nodes with artifacts of interest that live on them. Expose or hide the details of
the contents of this deployment diagram as necessary to communicate your intent.



Hints and Tips

When you create deployment diagrams in the UML, remember that every deployment diagram is just
a graphical presentation of the static deployment view of a system. This means that no single
deployment diagram need capture everything about a system's deployment view. Collectively, all the
deployment diagrams of a system represent the system's complete static deployment view;
individually, each represents just one aspect.

A well-structured deployment diagram

Focuses on communicating one aspect of a system's static deployment view.

Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction; expose only those adornments that are
essential to understanding.

Is not so minimalist that it misinforms the reader about important semantics.

When you draw a deployment diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out physically
close.

Use notes and color as visual cues to draw attention to important features of your diagram.

Use stereotyped elements carefully. Choose a small set of common icons for your project or
organization, and use them consistently.



Chapter 32. Systems and Models
In this chapter

Systems, subsystems, models, and views

Modeling the architecture of a system

Modeling systems of systems

Organizing the artifacts of development

The UML is a graphical language for visualizing, specifying, constructing, and documenting the artifacts
of a software-intensive system. You use the UML to model systems. A model is a simplification of
realityan abstraction of a systemcreated in order to better understand the system. A system, possibly
decomposed into a collection of subsystems, is a set of elements organized to accomplish a purpose
and described by a set of models, possibly from different viewpoints. Things like classes, interfaces,
components, and nodes are important parts of a system's model. In the UML, you use models to
organize these and all the other abstractions of a system. As you move to more-complex domains,
you'll find that a system at one level of abstraction looks like a subsystem at another, higher, level. In
the UML, you can model systems and subsystems as a whole so that you can seamlessly move up to
problems of scale.

Well-structured models help you visualize, specify, construct, and document a complex system from
different, yet interrelated, aspects. Well-structured systems are functionally, logically, and physically
cohesive, formed of loosely coupled subsystems.



Getting Started

Building a dog house doesn't take a lot of thought. The needs of a dog are simple, so to satisfy all but
the most demanding dog, you can just do it.

Building a house or a high rise takes a lot more thought. The needs of a family or a building's tenants
are not so simple, so to satisfy even the least demanding client, you can't just do it. Rather, you have
to do some modeling. Different stakeholders will look at the problem from different angles and with
different concerns. That's why, for complex buildings, you'll end up creating floor plans, elevation
plans, heating/cooling plans, electrical plans, plumbing plans, and perhaps even networking plans.
There's no one model that can adequately capture all the interesting aspects of a complex building.

The differences between building a dog house and building a high rise are
discussed in Chapter 1

In the UML, you organize all the abstractions of a software-intensive system into models, each of
which represents some relatively independent, yet important, aspect of the system under
development. You then use diagrams to visualize interesting collections of these abstractions. Looking
at the five views of an architecture is a particularly useful way to channel the attention of a software
system's different stakeholders. Collectively, these models work together to provide a complete
statement of a system's structure and behavior.

Diagrams are discussed in Chapter 7; the five views of a software architecture
are discussed in Chapter 2

For larger systems, you'll find that the elements of such systems can be meaningfully decomposed
into separate subsystems, each of which looks just like a smaller system when viewed from a lower
level of abstraction.

The UML provides a graphical representation for systems and subsystems, as Figure 32-1 shows. This
notation permits you to visualize the decomposition of a system into smaller subsystems. Graphically,
a system and a subsystem are rendered as a stereotyped component icon. Models and views have a
special graphical representation (other than rendering them as stereotyped packages), but it is rarely
used because they are primarily things that are manipulated by tools that you use to organize the
different aspects of a system.

Figure 32-1. Systems and Subsystems



The UML's extensibility mechanisms are discussed in Chapter 6; packages are
discussed in Chapter 12



Terms and Concepts

A system, possibly decomposed into a collection of subsystems, is a set of elements organized to
accomplish a purpose and described by a set of models, possibly from different viewpoints. A
subsystem is a grouping of elements of which some constitute a specification of the behavior offered
by other contained elements. Graphically, a system and a subsystem are rendered as a stereotyped
component icon. A model is a simplification of reality, an abstraction of a system, created to better
understand the system. A view is a projection of a model, which is seen from one perspective or
vantage point and omits entities that are not relevant to this perspective.

Systems and Subsystems

A system is the thing that you are developing and for which you build models. A system encompasses
all the artifacts that constitute that thing, including all its models and modeling elements, such as
classes, interfaces, components, nodes, and their relationships. Everything you need to visualize,
specify, construct, and document a system is part of that system, and everything you don't need to
visualize, specify, construct, and document a system lies outside that system.

Stereotypes are discussed in Chapter 6; packages are discussed in Chapter 12;
classes are discussed in Chapters 4 and 9; use cases are discussed in Chapter
17; state machines are discussed in Chapter 22; collaborations are discussed in
Chapter 28.

In the UML, a system is rendered as a stereotyped component, as shown in Figure 32-1. As a
stereotyped component, a system owns elements. If you zoom inside a system, you'll see all its
models and individual modeling elements (including diagrams), perhaps further decomposed into
subsystems. As a classifier, a system may have instances (a system may be deployed in multiple
instances in the real world), attributes and operations (actors outside the system may act on the
system as a whole), use cases, state machines, and collaborations, all of which may specify the
behavior of the system. A system may even realize interfaces, which is important when you are
constructing systems of systems.

A subsystem is simply a part of a system and is used to decompose a complex system into nearly
independent parts. A system at one level of abstraction may be a subsystem of a system at a higher
level of abstraction.

The primary relationship between a system and its subsystems is composition. A system (the whole)
may contain zero or more subsystems (the parts). You can also have generalization relationships
among subsystems. Using generalization, you can model families of subsystems, some of which
represent general kinds of systems and others of which represent specific tailorings of those systems.
The subsystems have various connections among themselves.

Aggregation and generalization are discussed in Chapters 5 and 10



Note

A system represents the highest-level thing in a given context; the subsystems that make
up a system provide a complete and non-overlapping partitioning of the system as a whole.
A system is a top-level subsystem.

Models and Views

A model is a simplification of reality, in which reality is defined in the context of the system being
modeled. In short, a model is an abstraction of a system. A subsystem represents a partitioning of the
elements of a larger system into independent parts; a model is a partitioning of the abstractions that
visualize, specify, construct, and document that system. The difference is subtle but important. You
decompose a system into subsystems so that you can develop and deploy these parts somewhat
independently; you partition the abstractions of a system or a subsystem into models so that you can
better understand the different aspects of the thing you are developing and deploying. Just as a
complex system such as an aircraft may have many parts (for example, the airframe, propulsion,
avionics, and passenger subsystems), those subsystems and the system as a whole may be modeled
from a number of different points of view (such as from the perspective of structural, dynamic,
electrical, and heating/cooling models, for example).

A model contains a set of packages. You'll rarely need to model models explicitly, however. Tools need
to manipulate models, however, so a tool will typically use package notation to represent a model as
seen by the tool.

Packages are discussed in Chapter 12

A model owns packages that, in turn, own elements. The models associated with a system or
subsystem completely partition the elements of that system or subsystem, meaning that every
element is owned by exactly one package. Typically, you'll organize the artifacts of a system or
subsystem into a set of nonoverlapping models, covered by the five views of software architecture
that are described elsewhere.

The five views of a software architecture are discussed in Chapter 2

A model (for example, a process model) may contain so many artifacts (such as active classes,
relationships, and interactions) that in systems of scale, you simply cannot embrace all those artifacts
at once. Think of a view as a projection into a model. For each model, you'll have a number of
diagrams that exist to give you a peek into the things owned by the model. A view encompasses a
subset of the things owned by a model; a view typically may not cross model boundaries. As described
in the next section, there are no direct relationships among models, although you'll find trace
relationships among the elements contained in different models.



Diagrams are discussed in Chapter 7

Note

The UML does not dictate which models you should use to visualize, specify, construct, and
document a system, although the Rational Unified Process does suggest a proven set of
models.

Trace

Specifying relationships among elements such as classes, interfaces, components, and nodes is an
important structural part of any model. Specifying the relationships among elements such as
documents, diagrams, and packages that live in different models is an important part of managing the
development artifacts of complex systems, many of which may exist in multiple versions.

Relationships are discussed in Chapters 5 and 10

In the UML, you can model the conceptual relationship among elements that live in different models by
using a trace relationship; a trace may not be applied among elements in the same model. A trace is
represented as a stereotyped dependency. You can often ignore the direction of this dependency,
although you'll typically direct it to the older or more-specific element, as in Figure 32-2. The two most
common uses for the trace relationship are to trace from requirements to implementation (and all the
artifacts in between) and to trace from version to version.

Figure 32-2. Trace Relationships

[View full size image]

Dependencies are discussed in Chapter 5; stereotypes are discussed in Chapter
6



Note

Most of the time you will not want to render trace relationships explicitly but, rather, will
treat them as hyperlinks.



Common Modeling Techniques

Modeling the Architecture of a System

The most common use for which you'll apply systems and models is to organize the elements you use
to visualize, specify, construct, and document a system's architecture. Ultimately, this touches
virtually all the artifacts you'll find in a software development project. When you model a system's
architecture, you capture decisions about the system's requirements, its logical elements, and its
physical elements. You'll also model both structural and behavioral aspects of the systems and the
patterns that shape these views. Finally, you'll want to focus on the seams between subsystems and
the tracing from requirements to deployment.

Architecture and modeling are discussed in Chapter 1

To model the architecture of a system,

Identify the views that you'll use to represent your architecture. Most often, you'll want to
include a use case view, a design view, an interaction view, a implementation view, and a
deployment view, as shown in Figure 32-3.

Figure 32-3. Modeling a System's Architecture

[View full size image]

Specify the context for this system, including the actors that surround it.



The five views of a software architecture are discussed in Chapter 2; diagrams
are discussed in Chapter 7

As necessary, decompose the system into its elementary subsystems.

The following activities apply to the system, as well as to its subsystems.

Specify a use case view of the system, encompassing the use cases that describe the behavior of
the system as seen by its end users, analysts, and testers. Apply use case diagrams to model
static aspects, and interaction diagrams, state diagrams, and activity diagrams to model the
dynamic aspects.

Specify a design view of the system, encompassing the classes, interfaces, and collaborations
that form the vocabulary of the problem and its solution. Apply class diagrams and object
diagrams to model static aspects, and iteration diagrams, state diagrams, and activity diagrams
to model the dynamic aspects.

Specify an interaction view of the system, encompassing the threads, processes, and messages
that form the system's concurrency and synchronization mechanisms. Apply the same diagrams
as for the design view, but with a focus on active classes and objects that represent threads and
processes as well as on messages and flow of control.

Specify an implementation view of the system, encompassing the artifacts that are used to
assemble and release the physical system. Apply artifact diagrams to model static aspects, and
interaction diagrams, state diagrams, and activity diagrams to model the dynamic aspects.

Specify a deployment view of the system, encompassing the nodes that form the system's
hardware topology on which the system executes. Apply deployment diagrams to model static
aspects, and interaction diagrams, state diagrams, and activity diagrams to model the dynamic
aspects of the system in its execution environment.

Model the architectural patterns and design patterns that shape each of these models using
collaborations.

Understand that you don't ever create a system's architecture in one big-bang event. Rather, a well-
structured process for the UML involves the successive refinement of a system's architecture in a
manner that is use casedriven, architecture-centric, and iterative and incremental.

The Rational Unified Process is discussed in Appendix B.

For all but the most trivial systems, you'll have to manage versions of your system's artifacts. You can
use the UML's extensibility mechanismsand tagged values in particularto capture your decisions about
the version of each element.

The UML's extensibility mechanisms are discussed in Chapter 6



Modeling Systems of Systems

A system at one level of abstraction will look like a subsystem of a higher level of abstraction.
Similarly, a subsystem at one level of abstraction will look like a full-fledged system from the
perspective of the team responsible for creating it.

All complex systems exhibit this kind of hierarchy. As you move to systems of greater and greater
complexity, you'll find it necessary to decompose your effort into subsystems, each of which can be
developed somewhat separately, and iteratively and incrementally grown into the whole system. The
development of a subsystem looks just like the development of a system.

To model a system or a subsystem,

Identify major functional parts of the system that may be developed, released, and deployed
somewhat independently. Technical, political, legacy, and legal issues will often shape how you
draw the lines around each subsystem.

For each subsystem, specify its context, just as you do for the system as a whole; the actors
that surround a subsystem encompass all its neighboring subsystems, so they must all be
designed to collaborate.

For each subsystem, model its architecture just as you do for the system as a whole.



Hints and Tips

It's important to choose the right set of models to visualize, specify, construct, and document a
system. A well-structured model

Provides a simplification of reality from a distinct and relatively independent point of view.

Is self-contained in that it requires no other content to understand its semantics.

Is loosely coupled to other models via trace relationships.

Collectively (with other neighboring models) provides a complete statement of a system's
artifacts.

Similarly, it's important to decompose complex systems into well-structured subsystems. A well-
structured system

Is functionally, logically, and physically cohesive.

Can be decomposed into nearly independent subsystems that themselves are systems at a lower
level of abstraction.

Can be visualized, specified, constructed, and documented via a set of interrelated,
nonoverlapping models.

UML has a graphical symbol for a model, but it is best to avoid it; model the system and not the model
itself. Editing tools will provide facilities for browsing, organizing, and managing sets of models.

When you draw a system or a subsystem in the UML,

Use each as a starting point for all the artifacts associated with that system or subsystem.

Show only the basic aggregation among the system and its subsystems; typically, you'll leave
the details of their connections to lower-level diagrams.



Part 7: Wrapping Up



Chapter 33. Applying the UML
In this chapter

Transitioning to the UML

Where to go next

Simple problems are easy to model with the UML. Hard problems are easy to model, too, especially
after you've become fluent in the language.

Reading about using the UML is one thing, but it's only through using the language that you will come
to master it. Depending on your background, there are different ways to approach using the UML for
the first time. As you gain more experience, you will come to understand and appreciate its more
subtle parts.

If you can think it, the UML can model it.



Transitioning to the UML

You can model 80 percent of most problems by using about 20 percent of the UML. Basic structural
things, such as classes, attributes, operations, use cases, and packages, together with basic structural
relationships, such as dependency, generalization, and association, are sufficient to create static
models for many kinds of problem domains. Add to that list basic behavioral things, such as simple
state machines and interactions, and you can model many useful aspects of a system's dynamics.
You'll need to use only the more advanced features of the UML once you start modeling the things you
encounter in more-complex situations, such as modeling concurrency and distribution.

A good starting place for using the UML is to model some of the basic abstractions or behavior that
already exist in one of your systems. Develop a conceptual model of the UML so that you'll have a
framework around which you can grow your understanding of the language. Later on, you'll better
understand how the more advanced parts of the UML fit together. As you attack more-complex
problems, drill down into specific features of the UML by studying the common modeling techniques in
this book.

A conceptual model for the UML is discussed in Chapter 2

If you are new to object-orientation,

Start by getting comfortable with the idea of abstraction. Team exercises with CRC cards and use
case analysis are excellent ways to develop your skills of identifying crisp abstractions.

Model a simple static part of your problem using classes, dependency, generalization, and
association to get familiar with visualizing societies of abstractions.

Use simple sequence or communication diagrams to model a dynamic part of your problem.
Building a model of user interaction with the system is a good starting place and will give you an
immediate payback by helping you reason through some of the system's more important use
cases.

If you are new to modeling,

Start by taking a part of some system you've already builtpreferably implemented in some
object-oriented programming language, such as Java or C++and build a UML model of these
classes and their relationships.

Using the UML, try to capture some details of programming idioms or mechanisms you used in
that system, which are in your head but you can't put down directly in the code.

Especially if you have a nontrivial application, try to reconstruct a model of its architecture by
using components (including subsystems) to represent its major structural elements. Use
packages to organize the model itself.

After you become comfortable with the vocabulary of the UML and before you start cutting code
on your next project, build a UML model of that part of the system first. Think about the
structure or behavior you've specified, and only then, when you are happy with its size, shape,



and semantics, use that model as a framework for your implementation.

If you are already experienced with another object-oriented method,

Take a look at your current modeling language and construct a mapping from its elements to the
elements of the UML. In most cases, you'll find a one-to-one mapping and that most of the
changes are cosmetic.

Consider some difficult modeling problem that you found clumsy or impossible to model with your
current modeling language. Look at some of the advanced features of the UML that might
address that problem with greater clarity or simplicity.

If you are a power user,

Be sure you first develop a conceptual model of the UML. You may miss its harmony of concepts
if you dive into the most sophisticated parts of the language without first understanding its basic
vocabulary.

Pay particular attention to the UML's features for modeling internal structure, collaboration,
concurrency, distribution, and patternsissues that often involve complex and subtle semantics.

Look also at the UML's extensibility mechanisms and see how you might tailor the UML to directly
speak the vocabulary of your domain. Take care to resist the temptation to go to extremes that
yield a UML model that no one but other power users will recognize.



Where to Go Next

This user guide is part of a larger set of books that, collectively, can help you learn how to apply the
UML. In addition to the user guide, there are:

James Rumbaugh, Ivar Jacobson, Grady Booch, The Unified Modeling Language Reference
Manual, Second Edition, Addison-Wesley, 2005. This provides a comprehensive reference to the
syntax and semantics of the UML.

Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development Process,
Addison-Wesley, 1999. This presents a recommended development process for use with the UML.

To learn more about modeling from the principal authors of the UML, take a look at the following
references:

Michael Blaha, James Rumbaugh, Object-Oriented Modeling and Design with UML, Second
Edition. Prentice Hall, 2005.

Grady Booch, Object-Oriented Analysis and Design with Applications, Second Edition. Addison-
Wesley, 1993.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

Information about the Rational Unified Process can be found in:

Philippe Kruchten, The Rational Unified Process: An Introduction, Third Edition. Addison-Wesley,
2004.

The latest information about the UML can be found on the OMG Website at www.omg.org, where you
can find the latest version of the UML standard.

There are many other books that describe UML and various development methods, in addition to the
large number of books that describe software engineering practice in general.



Appendix A. UML Notation
The UML is a language for visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system. As a language, the UML has a well-defined syntax and semantics. The
most visible part of the UML's syntax is its graphical notation.

A overview of the UML is discussed in Chapter 2.

This appendix summarizes the elements of the UML notation.



Things

Structural Things

Structural things are the nouns of UML models. These include classes, interfaces, collaborations, use
cases, active classes, components, and nodes.

Behavioral Things



Behavioral things are the dynamic parts of UML models. These include interactions and state
machines.

Grouping Things

Grouping things are the organizational parts of UML models. This includes packages.



Annotational Things

Annotational things are the explanatory parts of UML models. This includes notes.



Relationships

Dependency

A dependency is a semantic relationship between two things in which a change to one thing (the
independent thing) may affect the semantics of the other thing (the dependent thing).

Association

An association is a structural relationship that describes a set of links; a link is a connection among
objects.

Generalization

Generalization is a specialization/generalization relationship in which objects of the specialized element
(the child) are substitutable for objects of the generalized element (the parent).



Extensibility

The UML provides three mechanisms for extending the language's syntax and semantics: stereotypes
(which represent new modeling elements), tagged values (which represent new modeling attributes),
and constraints (which represent new modeling semantics).



Diagrams

A diagram is the graphical presentation of a set of elements, most often rendered as a connected
graph of vertices (things) and arcs (relationships). A diagram is a projection into a system. The UML
includes thirteen such diagrams.

1. Class diagram A structural diagram that shows a set of classes, interfaces,
collaborations, and their relationships

2. Object diagram A structural diagram that shows a set of objects and their relationships

3. Component diagram A structural diagram that shows the external interfaces, including ports,
and internal composition of a component

4. Composite structure
diagram

A structural diagram that shows the external interfaces and internal
composition of a structured class. In this book, we combine treatment of
the composite structure diagram with component diagram.

5. Use case diagram A behavioral diagram that shows a set of use cases and actors and their
relationships

6. Sequence diagram A behavioral diagram that shows an interaction, emphasizing the time
ordering of messages

7. Communication diagram A behavioral diagram that shows an interaction, emphasizing the
structural organization of the objects that send and receive messages

8. State diagram A behavioral diagram that shows a state machine, emphasizing the
event-ordered behavior of an object

9. Activity diagram A behavioral diagram that shows a computational process, emphasizing
the flow from activity to activity

10. Deployment diagram A structural diagram that shows the relationships among a set of nodes,
artifacts, and manifested classes and components. In this book, we also
specialize the modeling of artifacts as an artifact diagram.

11. Package diagram A structural diagram that shows the organization of the model into
packages

12. Timing diagram A behavioral diagram that shows an interaction with messages at
specific times. This is not covered in this book.

13. Interaction overview
diagram

A behavioral diagram that combines aspects of activity diagrams and
sequence diagrams. This is not covered in this book.

Hybrid diagram types are allowed; there is no strict separation among model elements.



Appendix B. Rational Unified Process
A process is a set of partially ordered steps intended to reach a goal. In software engineering, your
goal is to efficiently and predictably deliver a software product that meets the needs of your business.

The UML is largely process-independent, meaning that you can use it with a number of software
engineering processes. The Rational Unified Process is one such life cycle approach that is especially
well-suited to the UML. The goal of the Rational Unified Process is to enable the production of highest
quality software that meets end-user needs within predictable schedules and budgets. The Rational
Unified Process captures some of the best current software development practices in a form that is
tailorable for a wide range of projects and organizations. The Rational Unified Process provides a
disciplined approach on how to assign tasks and responsibilities within a software development
organization while allowing the team to adapt to the changing needs of a project.

This appendix summarizes the elements of the Rational Unified Process.



Characteristics of the Process

The Rational Unified Process is an iterative process. For simple systems, it would seem perfectly
feasible to sequentially define the whole problem, design the entire solution, build the software, and
then test the end product. However, given the complexity and sophistication demanded of current
systems, this linear approach to system development is unrealistic. An iterative approach advocates
an increasing understanding of the problem through successive refinements and an incremental
growth of an effective solution over multiple cycles. Built into the iterative approach is the flexibility to
accommodate new requirements or tactical changes in business objectives. It also allows the project
to identify and resolve risks sooner rather than later.

The Rational Unified Process's activities emphasize the creation and maintenance of models rather
than paper documents. Modelsespecially those specified using the UMLprovide semantically rich
representations of the software system under development. They can be viewed in multiple ways, and
the information represented can be instantaneously captured and controlled electronically. The
rationale behind the Rational Unified Process's focus on models rather than paper documents is to
minimize the overhead associated with generating and maintaining documents and to maximize the
relevant information content.

Development under the Rational Unified Process is architecture-centric. The process focuses on the
early development and baselining of a software architecture. Having a robust architecture in place
facilitates parallel development, minimizes rework, and increases the probability of component reuse
and eventual system maintainability. This architectural blueprint serves as a solid basis against which
to plan and manage software component-based development.

Development activities under the Rational Unified Process are use case-driven. The Rational Unified
Process places strong emphasis on building systems based on a thorough understanding of how the
delivered system will be used. The notions of use cases and scenarios are used to align the process
flow from requirements capture through testing and to provide traceable threads through development
to the delivered system.

The Rational Unified Process supports object-oriented techniques. Rational Unified Process models
supports the concepts of objects and classes and the relationships among them, and they use the UML
as its common notation.

The Rational Unified Process is a configurable process. Although no single process is suitable for all
software development organizations, the Rational Unified Process is tailorable and can be scaled to fit
the needs of projects ranging from small software development teams to large development
organizations. The Rational Unified Process is founded on a simple and clear process architecture that
provides commonality across a family of processes, and yet can be varied to accommodate various
situations. Contained in the Rational Unified Process is guidance about how to configure the process to
suit the needs of an organization.

The Rational Unified Process encourages objective ongoing quality control and risk management.
Quality assessment is built into the process, in all activities and involving all participants, using
objective measurements and criteria. It is not treated as an afterthought or as a separate activity.
Risk management is built into the process, so that risks to the success of the project are identified and
attacked early in the development process, when there is time to react.



Phases and Iterations

A phase is the span of time between two major milestones of the process in which a well-defined set of
objectives are met, artifacts are completed, and decisions are made whether to move into the next
phase. As Figure B-1 illustrates, the Rational Unified Process consists of the following four phases:

Figure B-1. The Software Development Life Cycle

1. Inception Establish the vision, scope, and initial plan for the project

2. Elaboration Design, implement, and test a sound architecture and complete
the project plan

3. Construction Build the first operational system version

4. Transition Deliver the system to its end users

Inception and elaboration focus more on the creative and engineering activities of the development life
cycle, while construction and transition focus more on production activities.

Within each phase are a number of iterations. An iteration represents a complete development cycle,
from requirements capture in analysis to implementation and testing, that results in an executable
release. The release need not include a complete set of features for commercial release. Its purpose is
to provide a solid basis for evaluation and testing as well as a uniform baseline for the next
development cycle.

Each phase and iteration has some risk mitigation focus and concludes with a well-defined milestone.



The milestone review provides a point in time to assess how well key goals have been met and
whether the project needs to be restructured in any way to proceed.

Phases

Inception

During the inception phase, you establish the vision for the system and delimit the project's scope.
This includes the business case, the high-level requirements, and the initial project plan. The project
plan includes success criteria, risk assessment, estimates of the resources needed, and a phase plan
showing a schedule of major milestones. During inception, it is common to create an executable
prototype that serves as a proof of concept.

This phase usually involves a handful of persons.

At the end of the inception phase, you examine the life cycle objectives of the project and decide
whether to proceed with full-scale development.

Elaboration

The goals of the elaboration phase are to analyze the problem domain, establish a sound architectural
foundation, refine the project plan, and eliminate the highest risk elements of the project.
Architectural decisions must be made with an understanding of the whole system. This implies that
you describe most of the system's requirements. To verify the architecture, you implement a system
that demonstrates the architectural choices and executes significant use cases.

This phase involves the system architect and the project manager as key players, as well as analysts,
developers, testers, and others. Typically, elaboration involves a larger team than inception and
requires more time.

At the end of the elaboration phase, you examine the detailed system objectives and scope, the choice
of architecture, and the resolution of major risks, and decide whether to proceed with construction.

Construction

During the construction phase, you iteratively and incrementally develop a complete product that is
ready to transition to its user community. This implies describing the remaining requirements and
acceptance criteria, fleshing out the design, and completing the implementation and test of the
software.

This phase involves the system architect, the project manager, and the construction team leaders, as
well as the full development and testing staff.

At the end of the construction phase, you decide whether the software, sites, and users are all ready
to deploy the first operational version of the system.

Transition

During the transition phase, you deploy the software to the user community. Note that you have had
involvement with users throughout the project through demonstrations, workshops, and alpha and
beta releases. Once the system has been put into the hands of its end users, issues often arise that



require additional development to adjust the system, correct some undetected problems, or finish
some features that have been postponed. This phase typically starts with a beta release of the
system, which is then replaced with the production system.

Key team members for this phase include the project manager, testers, release specialists, marketers,
and sales personnel. Note that the work of preparing for external release, marketing, and sales
started much earlier in the project.

At the end of the transition phase, you decide whether the life cycle objectives of the project have
been met and determine whether you should start another development cycle. This is also a point at
which you wrap up the lessons learned on the project to improve your development process, which will
be applied to the next project.

Iterations

Each phase in the Rational Unified Process can be further broken down into iterations. An iteration is a
complete development loop resulting in a release (internal or external) of an executable product
constituting a subset of the final product under development, which then is grown incrementally from
iteration to iteration to become the final system. Each iteration goes through the various disciplines,
although with a different emphasis on each discipline depending on the phase. During inception, the
focus is on requirements capture. During elaboration, the focus turns toward analysis, design, and
architecture implementation. In construction, detailed design, implementation, and testing are the
central activities, and transition centers on deployment. Testing is important throughout.

Development Cycles

Going through the four major phases is called a development cycle, and it results in one software
generation. The first pass through the four phases is called the initial development cycle. Unless the
life of the product stops, an existing product will evolve into its next generation by repeating the same
sequence of inception, elaboration, construction, and transition phases. This is the evolution of the
system, so the development cycles after the initial development cycles are its evolution cycles.



Disciplines

The Rational Unified Process consists of nine disciplines.

1. Business modeling Describes the structure and dynamics of the customer's organization

2. Requirements Elicits requirements using a variety of approaches

3. Analysis and design Describes the multiple architectural views

4. Implementation Takes into account software development, unit test, and integration

5. Test Describes scripts, test execution, and defect-tracking metrics

6. Deployment Includes bill of materials, release notes, training, and other aspects of
delivering an application.

7. Configuration
management

Controls changes to and maintains the integrity of a project's artifacts
and management activities

8. Project Management Describes various strategies of working with an iterative process

9. Environment Covers the necessary infrastructure required to develop a system

Captured within each discipline is a set of correlated artifacts and activities. An artifact is some
document, report, or executable that is produced, manipulated, or consumed. An activity describes the
tasksthinking steps, performing steps, and reviewing stepsperformed by workers to create or modify
artifacts, together with the techniques and guidelines to perform the tasks, possibly including the use
of tools to help automate some of the tasks.

Important connections among the artifacts are associated with certain of these disciplines. For
example, the use case model generated during requirements capture is realized by the design model
from the analysis and design discipline, implemented by the implementation model from the
implementation discipline, and verified by the test model from the test discipline.



Artifacts

Each Rational Unified Process activity has associated artifacts, either required as an input or generated
as an output. Some artifacts are used to direct input to subsequent activities, kept as reference
resources on the project, or generated in a format as contractual deliverables.

Models

Modeling is discussed in Chapter 1.

Models are the most important kind of artifact in the Rational Unified Process. A model is a
simplification of reality, created to better understand the system being created. In the Rational Unified
Process, there are a number of models that collectively cover all the important decisions that go into
visualizing, specifying, constructing, and documenting a software-intensive system.

1. Business use case model Establishes an abstraction of the organization

2. Business analysis model Establishes the context of the system

3. Use case model Establishes the system's functional requirements

4. Analysis model (optional) Establishes a conceptual design

5. Design model Establishes the vocabulary of the problem and its solution

6. Data model (optional) Establishes the representation of data for databases and other
repositories

7. Deployment model Establishes the hardware topology on which the system is executed as
well as the systems concurrency and synchronization mechanisms

8. Implementation model Establishes the parts used to assemble and release the physical
system

Architecture is discussed in Chapter 2.

A view is a projection into a model. In the Rational Unified Process, the architecture of a system is
captured in five interlocking views: design view, interaction view, deployment view, implementation
view, and use case view.

Other Artifacts



The Rational Unified Process's artifacts are categorized as either management artifacts or technical
artifacts. The Rational Unified Process's technical artifacts may be divided into four main sets.

1. Requirements set Describes what the system must do

2. Analysis and design set Describes how the system is to be constructed

3. Test set Describes the approach by which the system is validated and
verified

4. Implementation set Describes the assembly of developed software components

5. Deployment set Provides all the data for the deliverable configuration

Requirements Set

This set groups all information describing what the system must do. This may comprise a use case
model, a nonfunctional requirements model, a domain model, an analysis model, and other forms of
expression of the user's needs, including but not limited to mock-ups, interface prototypes, regulatory
constraints, and so on.

Design Set

This set groups information describing how the system is to be constructed and captures decisions
about how the system is to be built, taking into account all the constraints of time, budget, legacy,
reuse, quality objectives, and so forth. This may comprise a design model, a test model, and other
forms of expression of the system's nature, including but not limited to prototypes and executable
architectures.

Test Set

This set groups information about testing the system, including scripts, test cases, defect-tracking
metrics, and acceptance criteria.

Implementation Set

This set groups all information about the elements of the software that comprises the system,
including but not limited to source code in various programming languages, configuration files, data
files, software components, and so on, together with the information describing how to assemble the
system.

Deployment Set

This set groups all information about the way the software is actually packaged, shipped, installed, and
run on the target environment.





Glossary
abstract class

A class that cannot be directly instantiated.

abstraction

The essential characteristics of an entity that distinguish it from all other kinds of entities. An
abstraction defines a boundary relative to the perspective of the viewer.

action

An executable computation that results in a change in state of the system or the return of a
value.

active class

A class whose instances are active objects.

active object

An object that owns a process or thread and can initiate control activity.

activity

Behavior expressed as a set of actions connected by control and data flows.

activity diagram

A diagram that shows the flow of control and data from activity to activity. Activity diagrams
address the dynamic view of a system.

actor

A coherent set of roles that users of use cases play when interacting with the use cases.

actual parameter

A function or procedure argument.



adornment

Detail from an element's specification added to its basic graphical notation.

aggregate

A class that represents the "whole" in an aggregation relationship.

aggregation

A special form of association that specifies a whole-part relationship between the aggregate (the
whole) and a component (the part).

architecture

The set of significant decisions about the organization of a software system, the selection of the
structural elements and their interfaces by which the system is composed, together with their
behavior as specified in the collaborations among those elements, the composition of these
structural and behavioral elements into progressively larger subsystems, and the architectural
style that guides this organizationthese elements and their interfaces, their collaborations, and
their composition. Software architecture is not only concerned with structure and behavior, but
also with usage, functionality, performance, resilience, reuse, comprehensibility, economic and
technology constraints and trade-offs, and aesthetic concerns.

architecture-centric

In the context of the software development life cycle, a process that focuses on the early
development and baselining of a software architecture, then uses the system's architecture as a
primary artifact for conceptualizing, constructing, managing, and evolving the system under
development.

argument

A specific value corresponding to a parameter.

artifact

A quantized piece of information that is used or produced by a software development process or
an existing system.

association

A structural relationship that describes a set of links, in which a link is a connection among
objects; the semantic relationship between two or more classifiers that involves the connections
among their instances.



association class

A modeling element that has both association and class properties. An association class can be
seen as an association that also has class properties or as a class that also has association
properties.

association end

The endpoint of an association, which connects that association to a classifier.

asynchronous action

A request in which the sending object does not pause to wait for results.

attribute

A named property of a classifier that describes a range of values that instances of the property
may hold.

behavior

A specification of an executable computation.

behavioral feature

A dynamic feature of an element such as an operation.

binary association

An association between two classes.

binding

The creation of an element from a template by supplying arguments for the parameters of the
template.

Boolean

An enumeration whose values are true and false.

Boolean expression

An expression that evaluates to a Boolean value.



cardinality

The number of elements in a set.

child

A subclass or other specialized element.

class

A description of a set of objects that share the same attributes, operations, relationships, and
semantics.

class diagram

A diagram that shows a set of classes, interfaces, and collaborations and their relationships;
class diagrams address the static design view of a system; a diagram that shows a collection of
declarative (static) elements.

classifier

A mechanism that describes structural and behavioral features. Classifiers include classes,
interfaces, datatypes, signals, components, nodes, use cases, and subsystems.

client

A classifier that requests service from another classifier.

collaboration

A society of roles and other elements that work together to provide some cooperative behavior
that's bigger than the sum of all its parts; the specification of how an element, such as a use
case or an operation, is realized by a set of classifiers and associations playing specific roles and
used in a specific way.

comment

An annotation attached to an element or a collection of elements.

communication diagram

An interaction diagram that emphasizes the structural organization of the objects that send and
receive messages; a diagram that shows interactions organized around instances and their links
to each other.



component

A physical and replaceable part of a system that conforms to and provides the realization of a
set of interfaces.

component diagram

A diagram that shows the organization of and dependencies among a set of components;
component diagrams address the static implementation view of a system.

composite

A class that is related to one or more classes by a composition relationship.

composite state

A state that consists of either concurrent substates or disjoint substates.

composition

A form of aggregation with strong ownership and coincident lifetime of the parts by the whole;
parts with nonfixed multiplicity may be created after the composite itself, but once created they
live and die with it; such parts can also be explicitly removed before the death of the composite.

concrete class

A class that can be directly instantiated.

concurrency

The occurrence of two or more loci of execution during the same time interval. Concurrency can
be achieved by interleaving or simultaneously executing two or more threads.

constraint

An extension of the semantics of a UML element, allowing you to add new rules or modify
existing ones.

container

An object that exists to contain other objects and that provides operations to access or iterate
over its contents.



containment hierarchy

A namespace hierarchy consisting of elements and the aggregation relationships that exist
between them.

context

A set of related elements for a particular purpose, such as to specify an operation.

construction

The third phase of the software development life cycle, in which the software is brought from an
executable architectural baseline to the point at which it is ready to be transitioned to the user
community.

datatype

A type whose values have no identity. Datatypes include primitive built-in types (such as
numbers and strings) as well as enumeration types (such as Boolean).

delegation

The ability of an object to issue a message to another object in response to a message.

dependency

A semantic relationship between two things in which a change to one thing (the independent
thing) may affect the semantics of the other thing (the dependent thing).

deployment diagram

A diagram that shows the configuration of run time processing nodes and the components that
live on them; a deployment diagram addresses the static deployment view of a system.

deployment view

The view of a system's architecture that encompasses the nodes that form the system's
hardware topology on which the system executes; a deployment view addresses the
distribution, delivery, and installation of the parts that make up the physical system.

derived element

A model element that can be computed from another element, but that is shown for clarity or
that is included for design purposes even though it adds no semantic information.



design view

The view of a system's architecture that encompasses the classes, interfaces, and collaborations
that form the vocabulary of the problem and its solution; a design view addresses the functional
requirements of a system.

diagram

The graphical presentation of a set of elements, most often rendered as a connected graph of
vertices (things) and arcs (relationships).

domain

An area of knowledge or activity characterized by a set of concepts and terminology understood
by practitioners in that area.

dynamic classification

A semantic variation of generalization in which an object may change type or role.

dynamic view

An aspect of a system that emphasizes its behavior.

elaboration

The second phase of the software development life cycle, in which the product vision and its
architecture are defined.

element

An atomic constituent of a model.

elision

Modeling an element with certain of its parts hidden to simplify the view.

enumeration

A list of named values used as the range of a particular attribute type.

event

The specification of a significant occurrence that has a location in time and space; in the context



of state machines, the occurrence of an event can trigger a state transition.

execution

The running of a dynamic model.

export

In the context of packages, to make an element visible outside its enclosing namespace.

expression

A string that evaluates to a value of a particular type.

extensibility mechanism

One of three mechanisms (stereotypes, tagged values, and constraints) that permit you to
extend the UML in controlled ways.

feature

A property, such as an operation or an attribute, that is encapsulated within another entity, such
as an interface, a class, or a datatype.

fire

To execute a state transition.

focus of control

A symbol on a sequence diagram that shows the period of time during which an object is
performing an action directly or through a subordinate operation.

formal parameter

A parameter.

forward engineering

The process of transforming a model into code through a mapping to a specific implementation
language.

framework



An architectural pattern that provides an extensible template for applications within a domain.

generalization

A specialization/generalization relationship, in which objects of the specialized element (the
child) are substitutable for objects of the generalized element (the parent).

guard condition

A condition that must be satisfied to enable an associated transition to fire.

implementation

A concrete realization of the contract declared by an interface; a definition of how something is
constructed or computed.

implementation inheritance

The inheritance of the implementation of a more general element; also includes inheritance of
the interface.

implementation view

The view of a system's architecture that encompasses the artifacts used to assemble and
release the physical system; an implementation view addresses the configuration management
of the system's releases, made up of somewhat independent artifacts that can be assembled in
various ways to produce a running system.

import

In the context of packages, a dependency that shows the package whose classes may be
referenced within a given package (including packages recursively embedded within it) without
supplying a qualified name.

inception

The first phase of the software development life cycle, in which the seed idea for the
development is brought to the point of being sufficiently well-founded to warrant entering into
the elaboration phase.

incomplete

Modeling an element with certain of its parts missing.



inconsistent

Modeling an element for which the integrity of the model is not guaranteed.

incremental

In the context of the software development life cycle, a process that involves the continuous
integration of the system's architecture to produce releases, with each new release embodying
incremental improvements over the other.

inheritance

The mechanism by which more-specific elements incorporate the structure and behavior of
more-general elements.

instance

A concrete manifestation of an abstraction; an entity to which a set of operations can be applied
and that has a state that stores the effects of the operations.

integrity

How things properly and consistently relate to one another.

interaction

A behavior that comprises a set of messages that are exchanged among a set of objects within
a particular context to accomplish a purpose.

interaction diagram

A diagram that shows an interaction, consisting of a set of objects and their relationships,
including the messages that may be dispatched among them; interaction diagrams address the
dynamic view of a system; a generic term that applies to several types of diagrams that
emphasize object interactions, including communication diagrams and sequence diagrams.
Activity diagrams are related but semantically distinct.

interaction view

The view of a system's architecture that encompasses the objects, threads, and processes that
form the system's concurrency and synchronization mechanisms, the set of activities, and the
flow of messages, control, and data among them. The interaction view also addresses the
performance, scalability, and throughput of the system.

iteration



A distinct set of activities with a baseline plan and evaluation criteria that results in a release,
either internal or external.

iterative

In the context of the software development life cycle, a process that involves managing a
stream of executable releases.

interface

A collection of operations that are used to specify a service of a class or a component.

interface inheritance

The inheritance of the interface of a more specific element; does not include inheritance of the
implementation.

level of abstraction

A place in a hierarchy of abstractions ranging from high levels of abstraction (very abstract) to
low levels of abstraction (very concrete).

link

A semantic connection among objects; an instance of an association.

link end

An instance of an association end.

location

The placement of an artifact on a node.

mechanism

A design pattern that applies to a society of classes.

message

A specification of a communication between objects that conveys information with the
expectation that activity will ensue; the receipt of a message instance is normally considered an
instance of an event.



metaclass

A class whose instances are classes.

method

The implementation of an operation.

model

A simplification of reality, created to better understand the system being created; a semantically
closed abstraction of a system.

multiple classification

A semantic variation of generalization in which an object may belong directly to more than one
class.

multiple inheritance

A semantic variation of generalization in which a child may have more than one parent.

multiplicity

A specification of the range of allowable cardinalities that a set may assume.

n-ary association

An association among three or more classes.

name

What you call a thing, relationship, or diagram; a string used to identify an element.

namespace

A scope in which names may be defined and used; within a namespace, each name denotes a
unique element.

node

A physical element that exists at run time and that represents a computational resource,
generally having at least some memory and often having processing capability.



nonorthogonal substate

A substate that cannot be held simultaneously with other substates contained in the same
composite state.

note

A graphic symbol for rendering constraints or comments attached to an element or a collection
of elements.

object

A concrete manifestation of an abstraction; an entity with a well-defined boundary and identity
that encapsulates state and behavior; an instance of a class.

Object Constraint Language (OCL)

A formal language used to express side effect-free constraints.

object diagram

A diagram that shows a set of objects and their relationships at a point in time; object diagrams
address the static design view or static process view of a system.

object lifeline

A line in a sequence diagram that represents the existence of an object over a period of time.

occurrence

An instance of an event, including a location in space and time and a context. An occurrence
may trigger a state machine transition.

operation

The implementation of a service that can be requested from any object of the class in order to
affect behavior.

orthogonal substate

An orthogonal substate that can be held simultaneously with other substates contained in the
same composite state.



package

A general-purpose container for organizing elements into groups.

parameter

The specification of a variable that can be changed, passed, or returned.

parameterized element

The descriptor for an element with one or more unbound parameters.

parent

A superclass or other more general element.

persistent object

An object that exists after the process or thread that created it has ceased to exist.

pattern

A common solution to a common problem in a given context.

phase

The span of time between two major milestones of the development process during which a
well-defined set of objectives are met, artifacts are completed, and decisions are made whether
to move into the next phase.

postcondition

A constraint that must be true at the completion of execution of an operation.

precondition

A constraint that must be true when an operation is invoked.

primitive type

A basic type, such as an integer or a string.

process



A heavyweight flow of control that can execute concurrently with other processes.

product

The artifacts of development, such as models, code, documentation, and work plans.

projection

A mapping from a set to a subset of it.

property

A named value denoting a characteristic of an element.

pseudostate

A node in a state machine that has the form of a state but doesn't behave as a state;
pseudostates include initial, final, and history nodes.

qualifier

An association attribute whose values partition the set of objects related to an object across an
association.

realization

A semantic relationships between classifiers, in which one classifier specifies a contract that
another classifier guarantees to carry out.

receive

The handling of a message instance passed from a sender object.

receiver

The object to which a message is sent.

refinement

A relationship that represents a fuller specification of something that has already been specified
at a certain level of detail.



relationship

A semantic connection among elements.

release

A relatively complete and consistent set of artifacts delivered to an internal or external user; the
delivery of such a set.

requirement

A desired feature, property, or behavior of a system.

responsibility

A contract or obligation of a type or class.

reverse engineering

The process of transforming code into a model through a mapping from a specific
implementation language.

risk-driven

In the context of the software development life cycle, a process in which each new release is
focused on attacking and reducing the most significant risks to the success of the project.

role

A structural participant within a particular context.

scenario

A specific sequence of actions that illustrates behavior.

scope

The context that gives meaning to a name.

send

The passing of a message instance from a sender object to a receiver object.



sender

The object from which a message is sent.

sequence diagram

An interaction diagram that emphasizes the time ordering of messages.

signal

The specification of an asynchronous stimulus communicated between instances.

signature

The name and parameters of an operation.

single inheritance

A semantic variation of generalization in which a child may have only one parent.

specification

A textual statement of the syntax and semantics of a specific building block; a declarative
description of what something is or does.

state

A condition or situation during the life of an object during which it satisfies some condition,
performs some activity, or waits for some event.

state diagram

A diagram that shows a state machine; state diagrams address the dynamic view of a system.

state machine

A behavior that specifies the sequences of states an object goes through during its lifetime in
response to events, together with its responses to those events.

static classification

A semantic variation of generalization in which an object may not change type and may not
change role.



static view

An aspect of a system that emphasizes its structure.

stereotype

An extension of the vocabulary of the UML that allows you to create new kinds of building blocks
derived from existing ones but that are specific to your problem.

stimulus

An operation or a signal.

string

A sequence of text characters.

structural feature

A static feature of an element.

subclass

In a generalization relationship, the child, which is the specialization of another class.

substate

A state that is part of a composite state.

subsystem

A grouping of elements of which some constitute a specification of the behavior offered by the
other contained elements.

superclass

In a generalization relationship, the parent, which is the generalization of another class.

supplier

A type, class, or component that provides services that can be invoked by others.



swimlane

A partition on a sequence diagram for organizing responsibilities for actions.

synchronous call

A request in which the sending object pauses to wait for a reply.

system

A set of elements organized to accomplish a specific purpose and described by a set of models,
possibly from different viewpoints. A system is often decomposed into a set of subsystems.

tagged value

An extension of the properties of a UML stereotype, which allows you to create new information
in the specification of an element bearing that stereotype.

template

A parameterized element.

task

A single path of execution through a program, a dynamic model, or some other representation
of control flow; a thread or a process.

thread

A lightweight flow of control that can execute concurrently with other threads in the same
process.

time

A value representing an absolute or relative moment.

time event

An event that denotes the time elapsed since the current state was entered.

time expression

An expression that evaluates to an absolute or relative value of time.



timing constraint

A semantic statement about the relative or absolute value of time or duration.

timing mark

A denotation for the time at which an event occurs.

trace

A dependency that indicates an historical or process relationship between two elements that
represent the same concept, without rules for deriving one from the other.

transient object

An object that exists only during the execution of the thread or process that created it.

transition

The fourth phase of the software development life cycle, in which the software is turned into the
hands of the user community; a relationship between two states indicating that an object in the
first state will perform certain actions and enter the second state when a specified event occurs
and conditions are satisfied.

type

The relationship between an element and its classification.

type expression

An expression that evaluates to a reference to one or more classifiers.

UML

The Unified Modeling Language, a language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system.

usage

A dependency in which one element (the client) requires the presence of another element (the
supplier) for its correct functioning or implementation.

use case



A description of a set of sequences of actions, including variants, that a system performs that
yields an observable result of value to an actor.

use case diagram

A diagram that shows a set of use cases and actors and their relationships; use case diagrams
address the static use case view of a system.

use case-driven

In the context of the software development life cycle, a process in which use cases are used as a
primary artifact for establishing the desired behavior of the system, for verifying and validating
the system's architecture, for testing, and for communicating among the stakeholders of the
project.

use case view

The view of a system's architecture that encompasses the use cases that describe the behavior
of the system as seen by its end users, analysts, and testers.

value

An element of a type domain.

view

A projection into a model, which is seen from a given perspective or vantage point and omits
entities that are not relevant to this perspective.

visibility

How a name can be seen and used by others.
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