Non-Preemptive Multitasking
by Joe Bartel, Hawthorne Technology

Multitasking, where one computer appears to be executing
more than one program at the same time, is needed in many con-
trol applications. Usually a terminal or some kind of keyboard
and display is communicating with the operator while a process is
being monitored and/or controlled in the background. This is dif-
ferent from common programs being written for a PC where only
one thing is happening at a time and one job is finished before the
next job starts.

For every problem there is usually a simple solution and a
complex solution. There are many multiuser, multitasking
operating systems on the market today, of which Unix is just one
example. There are also many small real-time kernels available on
the market that implement preemptive multitasking without file
management. [f only some of the features of a full multitasking
system are needed, then a special purpose program can do the job
without many of the costs and problems that occur with a full
generalized solution. By having a model of a nonpreemptive
multitask system to follow, it is easier to conceptualize a solution
and plan a program for a specific application.

How Preemptive Multitasking Works

In a normal or presmptive multitask system there is a
scheduler module that takes over and takes control of the system
away from one task and gives it to another task. The task swap
can be in response to an interrupt from an external device or the
result of a condition set by another task. The most common event
is requesting 1/0, which causes the task to wait until the request is
filled. A task may also be swapped because the time allotted to it
has expired and it is time for the next task to run awhile.

Programs start to get complicated when a task can be in-
terrupted at any point instead of running to completion. First,
any shared routines have to be reentrant. That means it must be
possible for a second task to start executing the routine before the
first task has finished its execution of the routine. Any data areas

that are shared by two or more tasks must have locks and

semaphores to prevent two tasks from trying to update the shared
data at the same time and corrupting the data. Because the task
swapping routine doesn’t know anything about the task that is
running it must save all the registers and status.

Most generalized multitasking systems have the ability to
start new tasks and to delete old tasks. This requires sophisticated
memory management to allocate and reclaim memory, and makes
the control tables more complex because they can change in size.
For many control multitask applications there is a fixed number
of tasks and fixed memory allocation. The number of tasks is
decided when the program is written and doesn’t change when it
runs.

The Value of Non Preemptive Multitasking
A nonpreemptive muititask system is one where the tasks
cooperate with each other. A task runs for a while, long enough

The Computer Journal / [ssue #30

to accomplish something useful but not too long, and then i:
voluntarily gives up control of the system to the next ready task.
Each task is also expected to be careful and not trash areas usec
by the other tasks in the system.

[f a task cannot be swapped with another task without per-
mission, then many things become much simpler. First you don’t
need tae elaborate safeguards to prevent an update from being in-
terrupted because the task will not be giving up control during the
update process. Second you don’t have to make shared routines
reenterant because no other task will enter the routine until the
using task is finished. Because a task knows it will be swapped
out, the routine that gives up control can save any informaiion
that nzeds to be saved — the swap routine needs to save only -he
minirum.

For many applications, the use of nonpreemptive
multitasking means that an existing single user/single :ask
operaring system can be used for character [/O and for disk file
management. In our case this means the use of K-OS ONE, hut
the techniques will also work with CP/M and MS-DOS. A single
task operating system is usually much less expensive, less ccm-
plex, and smaller than a multiuser system. A single user system is
also much more available.

11 any multitask system it is important not to waste time that
could be used by other tasks. There are two main areas where iime
gets wasted. One is waiting in a loop for a character from the omn-
sole or for an I/0 device to become ready. In this case the
TESTIO command should be used to check for an available
character and give up the machine to the next task if there is no
character available. Another waste of time is a timing loop. To
avoid this, the system time command should be used and if it is
not yet time to act, then give up the system to the next task.

Implementation

MNow that you are sold on the advantages of using a non-
preemptive multitask scheme how is it done? As simple as
possible, that’s how. Since everyone with K-OS ONE has an HT-
PL compiler, I will use that language to demonstrate the concept.
The same principles can be used to multitask in almost any
language but it will be more complex because more registers have
to be saved and reloaded with each context switch. You need to
find out which registers are used by the language you are tsing
when you write the swap routine. The routines to start the system

.-and to switch to the next task are prototypes that you change =0 (it

your special application. The examples show how to use the rask
switching,

“he program presented here is in several parts. There are
three routines needed in your multitasking system. There are two
HTPL routines, PROGRAM and NEXT, and one assembly
language routine SWAPTSK. These are shown in Listing number
1. The versions here are for a system that has three tasks. The
main program gets things started. NEXT changes to the next task.

7

SAMPLE CODE
........ HTPL CODE FOR MULTITASK {

J— SWAP TASK (OLD NEW —)

SWAPTSK MOVE.L (A4)+,Al ;NEW POINTER
MOVE.L (Ad)+, AQ ;0LD POINTER
MOVE.L - (A7)+,A3 sRETURN
MOVE.L A4, (AQ)+ ;SAVE PARAM PNTR
MOVE.L A7,(A0) ;SAVE STACK PNTR
MOVE.L (A1)+ A4 ;NEW PARAM PNTR
MOVE.L (Al1),A7 ;NEW STACK PNTR
JMP (A3) ;RETURN TO CALLER

(HTPL NONPREEMPTIVE MULTITASK)

(these must be contiguous and in order)
long tskOp tskOr tsklp tskir tsk2p tsk2r tsk3p tsk3r ;
long tskpn tskid ;

program
512 allocate 512 + ltskip
512 allocate 508 + ftaskl 14 +4 ltskir
512 allocate 512 + ltsk2p
512 allocate 508 + ftask2 !4 +4 !tsk2r

512 alloacte 512 + 1tsk3p
512 allocate 508 + ftask3 !4 +4 !+sk3r

Ftsklp !tskpn 1 !tskid
#tskOp @tskpn swaptsk (start system)
return
end
proc next

@tskpn #tskOp swaptsk (save old task)
@tskid +1 dup !tskid

if 3 > then 1 !tskid FtskOp !tskpn end
@tskpn 8 + !tskpn
#tskOp @tskpn swaptsk
end

(start new task)

(~--- user interface ----)
proc taskl
repeat
repeat next chkchr until
upcase case
['Ar
['8')
{'c' 1
end
false until
end

(action for command A here
(action for command B here
{ action for command C here

—

{ =-- timed sequence task ---)
proc task2
while true do next
gettime !now { get current time)
if @now 8target >= then
doaction (do timed actlion)
@target 8interval ltarget end (set new time target)

end end

(--- generalized task ---)

proc task3
(any repeating loop goes here)
end

SWAPTSK is used by next to change tasks.

The first part of the system is PROGRAM where the HTPL
program will start executing. There needs to be a startup routine
that gets each task ready to run. It will only execute once when the
program starts. Its purpose is to initialize the tasks, the tables
used to switch tasks, and start the first task. Because HTPL uses
two stacks, space for the stacks must be allocated. The main
program allocates space for the parameter stack for each task.
Next the return stack space is allocated. The starting address for
the task is placed at the top of the return stack that has been
allocated. To start the process going the program calls SWAP-
TSK with a pointer to TSKOP where its own parameter stack
pointer and its return pointer will be saved. The other pointer is to
where it will find the parameter stack pointer and return stack

38

pointer for the first task. When the return statement is executed
then the first task starts.

The stcond part of the system is the routine that transfers
control from one task to the next task. This routine, which we call
simply NEXT, looks like an ordinary procedure call to the task
giving up control. The difference is that it doesn’t use any
arguments and it doesn’t return any results. The NEXT routine
uses SWAPTSK twice, once to get into the scheduler and once to
get out of it. If the task stack is used for the scheduler routine
then it would be possible to rewrite this to use SWAPTSK only
once. If there are routines that use variables and are used by more
than one task, then the values of the variables should also be
swapped. It is important to realize that this is a generic prototype
routine that needs to be customized for the specific set of tasks for
which it will be used.

The final and smailest part is SWAPTSK (swap task), a
routine that needs to be added to the runtime library HTPLRTL
or linked in as an include file. The SWAPTSK is in assembler
because it is much easier to do that way. The first job of the
SWAPTSK routine is to save the state of an HTPL routine. In
this context, only the parameter stack pointer and the return stack
pointers need to be saved. The routine takes two parameters. First
is a pointer to a place to save the old task parameter pointer and
return pointer. Second is a pointer to a place to get the parameter
stack and return pointer for the new task. The SWAPTSK routine
returns to the routine that cailed it. This leaves the return address
of the routine that called NEXT as the return address on the old
return stack. Because all the tasks are written together in a single
HTPL program all the other registers are either the same or do
not need to be saved because all computations are done on the
stack.

Using the Multitasker

Each rask in the multitasking system needs to call NEXT at
regular intervals to let the other tasks have some time to run.
Most programs have a major wait loop where they get a character
or wait for time to pass. If there is no wait loop, then any place in
the main Icop of a routine will do. It is also important to be aware
of approxi:nately how much time is used for each routine. Try to
keep the titne between calls to NEXT short and uniform. In many
cases it is neccessary to fine tune the tasks that are running by
changing where NEXT is called to get a smoother running system.

The check character procedure (chckchr) is an example of
how a procedure that returns a variable number of arguments is
used.

repea: next chckchr until

If there is a character available, the character and a true in-
dicator are returned. If there is no character available then a false
is returned. This causes the loop to continue until a character is
available which it returns on the stack. This allows processing to
occur in th: background while waiting for the operator to input a
character. After the input character is processed, then the wait
loop can be entered to wait for the next character.

In most cases there is no need to wait to output characters.
The BIOS on the HT-68k has a 256 character output queue. If this
doesn’t become full then there is no wait for output because the
operating system merely places characters in the output queue. 1f
there are several tasks running and a lot of characters need to be
sent out, then a small number should be sent each time the task
sending the characters is active. This allows the other tasks to run
while K-Of ONE sends the characters from the output queue un-
der interrupt control. If a larger buffer is needed then the BIOS

{Continued on page 28)

The Computer Journal/ Issue #30

text substitution facility like #define in C.

I’ve always been mystified by the fact that some high level
languages don't have certain high level features that are included
in the most primative of assemblers. Until just recently, BASIC
did not allow symbols for branch or call addresses, and C does
niot have symbolic constants that assemblers and other languages
have. Text substitution is a perverse way to simulate symbolic
constants (because of the huge time penalty). I was also shocked
when i learned that C did not check the parameter list of the fun-
ction definition when compiling a call to a function. In my first
kludgy experiment in compilation of functions, I would not have
dreamed of neglecting this kind of checking. Of course, you
would have to draw and quarter me to make me do run-time
checking.

Here’s a summary of the current state of 32HL: [t’s a com-
plete native assembler and assembles itself in one pass. It calls Z80
CP/M to get source text from a CP/M file. It has its own com-
mand loop and executes statements (assembly or otherwise) that
are typed at the keyboard. It has character, string, and numeric
1/0 routines that are callable by client programs. [now have the
disassembler integrated and STOP/CONT implemented, but not
breakpoints or the high level words. The transcendentals and
complex transcendentals are written and waiting to be installed.
I'm now blacksmithing the expression parser to fit the new en-
vironment. When [get the expression parser in place, all the high-

e |

SAN FRANCISCO
FEBRUARY 17- 19, 1988

The most comprehensive seminar ever held on the
practical aspects of software development. You can
choose from 90 lectures by the foremost software
development experts, attend three days of technical
workshops, and view exhlbits by industry suppliers.
This Is an event tailored to your needs. Don’t miss it.

A MAJOR
TECHNICAL CONFERENCE

Toregister, write to:
Miller Freeman Publications
500 Howard Street
San Francisco, CA 94105
(415) 397-1881

| ‘WH‘WI

8

level keywords will fall in almost automatically.

Since I’'m only a hobbyist running open loop, I welcome any
comments about what I’'m doing wrong or what would be neat to
include.

Those interested in 32000 hacking should also contact
Richard Rodman, 1923 Anderson Road, Falls Church VA 22043.
He has started a small newsletter for 32000 hackers, which he
currently gives free of charge. It is to be a forum on the creation
of a public dormain operating system, and a focal point for ex-
change of 32000 schematics, software, and information. He is
starting an inventory of P.D. software that anyone can get for $8
a disk. The first volume contains my cross assembler, my Z80 .
assembler, and 32000 source code for transcendentals, complex
math, complex transcendentals, a disassembler, and a math-
intensive orbital game program in assembly. If anyone wants to
see my old FORTH/BASIC system or my half-done 32HL
system, I can s2nd those for $8 each on CP/M SSSD 8" or on
IBM 360k format (the IBM format for mailing only; no IBM
code). W

Neil R. Koozer
Kellogg Star Route Box 125
Oakland, Oregon 97462
(503)-459-3709

Multitasking

(Continued frorn page 38)

can be edited and reassembled with a larger queue. At 9600 baud,
960 characters can be sent each second. At low baud rates, fewer
can be sent. Send small groups of characters so that the rate of
sending will not exceed the rate of the hardware, causing a wait
from the system.

A second common control action is for the program to do
specific actions at regular time intervals. These actions might be
taking a reading or creating some kind of a log record. The get
time command gets the elapsed time from when the system star-
ted. The number has no meaning per se, but elapsed time can be
measured by coinparing the results of two different calls. Another
way is to use a software timer with a flag, and check the flag to see
if the correct amount of time has elapsed.

The routines presented here can be used as a starting point
for multitasking process applications. They can help simplify
what might otherwise have been a complex or unsovable problem.
Even though the examples given use HTPL and K-OS ONE, it is
possible to use the same techniques with other operating systems
or for dedicated systems that don’t have an operating system in-
stalled. Also, these techniques are a much lower cost solution
than using a real time kernel.

The Computer Journai / Issue #30

