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Sugden, Mary C., and Mark J. Holness. Recent advances in mech-
anisms regulating glucose oxidation at the level of the pyruvate dehy-
drogenase complex by PDKs. Am J Physiol Endocrinol Metab 284:
E855–E862, 2003; 10.1152/ajpendo.00526.2002.—The mitochondrial
pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decar-
boxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle
and fatty acid (FA) synthesis. Knowledge of the mechanisms that regu-
late PDC activity is important, because PDC inactivation is crucial for
glucose conservation when glucose is scarce, whereas adequate PDC
activity is required to allow both ATP and FA production from glucose.
The mechanisms that control mammalian PDC activity include its phos-
phorylation (inactivation) by a family of pyruvate dehydrogenase kinases
(PDKs 1–4) and its dephosphorylation (activation, reactivation) by the
pyruvate dehydrogenase phosphate phosphatases (PDPs 1 and 2). Iso-
form-specific differences in kinetic parameters, regulation, and phos-
phorylation site specificity of the PDKs introduce variations in the
regulation of PDC activity in differing endocrine and metabolic states. In
this review, we summarize recent significant advances in our knowledge
of the mechanisms regulating PDC with emphasis on the PDKs, in
particular PDK4, whose expression is linked with sustained changes in
tissue lipid handling and which may represent an attractive target for
pharmacological interventions aimed at modulating whole body glucose,
lipid, and lactate homeostasis in disease states.
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THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX

(PDC) catalyzes the oxidative decarboxylation of pyru-
vate. This reaction links glycolysis to the energetic and
anabolic functions of the tricarboxylic acid (TCA) cycle
(Fig. 1). As a consequence, adequate flux through PDC
is particularly important in tissues with a high ATP
requirement, including exercising muscle. Acetyl-CoA
production via PDC is also important in tissues that
are active in fatty acid (FA) synthesis (liver, lactating
mammary gland, and adipose tissue), since mitochon-
drial acetyl-CoA, via citrate formation and efflux, pro-
vides the precursor of cytosolic acetyl-CoA, which is
used for FA synthesis (Fig. 1). Because substrate com-
petition exists potentially between glucose and FAs,
PDC’s role in facilitating production of the lipogenic
intermediate malonyl-CoA under conditions where glu-
cose is abundant (Fig. 1) means that a high PDC
activity can limit mitochondrial FA uptake (and there-

fore oxidation) via inhibition of carnitine palmitoyl-
transferase I. Conversely, because no pathway exists
for the conversion of acetyl-CoA to glucose in mam-
mals, suppression of PDC activity is crucial for conser-
vation of glucose (and facilitation of FA oxidation)
when glucose is scarce. This review describes recent
advances relating to the regulation of mammalian PDC
activity by reversible phosphorylation, with emphasis
placed on the acute and long-term modes of regulation
of pyruvate dehydrogenase kinase (PDK), which phos-
phorylates and inactivates PDC.

CHARACTERISTICS OF PHOSPHORYLATION AND
DEPHOSPHORYLATION OF PDC

In addition to the three components that catalyze the
conversion of pyruvate to acetyl-CoA [pyruvate dehydro-
genase (E1), dihydrolipoamide acetyltransferase (E2),
and dihydrolipoamide dehydrogenase (E3)], PDC con-
tains two specific regulatory enzymes, PDK and pyruvate
dehydrogenase phosphate phosphatase (PDP). PDK and
PDP together catalyze a phosphorylation-dephosphoryla-
tion cycle involving specific serine residues on the �-sub-
unit of E1 (Fig. 1). Importantly, because the phosphory-
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lation of the �-subunits of E1 renders PDC completely
devoid of activity (31), the percentage of active PDC at
any one time reflects the percentage of �-subunits of E1
that are phosphorylated. The percentage of active PDC
thus reflects the activity of PDK (which catalyzes ATP-
dependent E1 phosphorylation) (71) and PDP (which cat-
alyzes E1 dephosphorylation) (56) (reviewed in Ref. 53).

Phosphorylation of E1 occurs at three specific serine
residues (45, 57, 71), serine-264 (designated phosphor-
ylation site 1), serine-271 (phosphorylation site 2) and
serine-203 (phosphorylation site 3) (57). Half-of-the-
site reactivity during phosphorylation of all three sites
has been reported, which implies that a maximum of
only three of the six potential phosphorylation sites
(three potential sites for each E1� subunit) can be
phosphorylated (26). Analysis of relative initial rates of
phosphorylation of each site on E1� by use of rat heart
complex demonstrated that site 1 phosphorylation is
the most rapid and site 3 phosphorylation the least
rapid (45). Construction of mutant human E1s with
single functional phosphorylation sites has revealed
that phosphorylation of each site alone can cause PDC
inactivation (26). However, to reiterate the results ob-

tained with purified mammalian PDC (45), phosphor-
ylation of site 1 is 4.6-fold more rapid than that of site
2 and 16-fold more rapid than that of site 3 (26).
Studies using recombinant proteins with mutations in
the three phosphorylation sites have also revealed that
dephosphorylation of sites 1, 2, and 3 occurs randomly
(26). This implies that, in functional terms, phosphor-
ylation of sites 2 and 3 could retard the rate of dephos-
phorylation of all three sites through site competition
for PDP. Multisite phosphorylation of E1 leading to
impaired reactivation by PDP has been proposed as
one possible explanation for the delay in PDC reacti-
vation that is found in liver, heart, and oxidative skel-
etal muscle on refeeding after starvation (15, 17, 52).

REGULATION OF PDP

Dephosphorylation of PDC is catalyzed by two PDP
isoforms (PDP1 and PDP2), which are variably ex-
pressed in different tissues (11, 18, 40, 41, 44). PDP1,
the dominant isoform in Ca2�-sensitive tissues, re-
quires Mg2� and is stimulated by Ca2� (18). Ca2�

stimulation of PDP1 arises in part because PDP1 binds

Fig. 1. Mechanisms regulating the
pyruvate dehydrogenase complex
(PDC) by phosphorylation-dephosphor-
ylation, together with the reaction cat-
alyzed by PDC and its links with other
metabolic pathways. PDK, pyruvate
dehydrogenase kinase; PDP, pyruvate
dehydrogenase phosphate phospha-
tase; TCA, tricarboxylic acid cycle.
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to E2 via an interaction that requires micromolar con-
centrations of Ca2� (38) and in part because Ca2�

decreases the Km of PDP1 for Mg2� (61). PDP1 com-
prises a catalytic and a regulatory subunit (42, 56). The
catalytic subunit (PDP1c) is in the phosphatase 2C
class (28). The regulatory subunit (PDP1r) is a fla-
voprotein with a bound flavin adenine dinucleotide
that influences the Mg2� concentration that is required
for PDP1c activity (29, 69). The second PDP isoform,
PDP2, is found in liver and adipose tissue (18). Rat
PDP2 shares 55% sequence identity with rat PDP1c
but is not activated by Ca2� (18). In adipose tissue,
insulin reduces the concentration dependence of
PDP(2) activity for Mg2� (60).

REGULATION OF PDK

The activity of PDK is also highly regulated (see Fig.
1). Short-term mechanisms of PDK regulation by me-
tabolites include its inhibition by the E1 substrate
pyruvate (generated via glycolysis or from circulating
lactate) and its activation by acetyl-CoA and NADH,
products of both the PDC reaction and FA �-oxidation
(22). PDK consists of two dissimilar subunits (� and �).
Kinase activity resides in the �-subunit, as its selective
proteolytic cleavage results in loss of activity. The
�-subunit is a regulatory subunit.

Isolation of a cDNA encoding a 48-kDa form of PDK,
later termed PDK1, from a rat heart cDNA library
allowed determination of the primary structure of PDK
(41). Analysis of the deduced amino acid sequences
demonstrated that the PDKs lack the signature se-
quence motifs found in other eukaryotic serine/threo-
nine protein kinases but contain highly conserved re-
gions in the COOH terminus resembling motifs
conserved in prokaryotic histidine protein kinases (41).
In addition, molecular modeling has suggested that the
PDKs are folded into a three-dimensional structure
resembling that of prokaryotic histidine protein ki-
nases (3). It has thus been suggested that the PDKs
belong to the ATPase/kinase superfamily (composed of
bacterial histidine protein kinases, DNA gyrases, and
molecular chaperone Hsp90) (2, 3, 47). To date, four
PDK isoenzymes have been identified in humans and
rodents. These have been designated PDK1, PDK2,
PDK3, and PDK4 (3, 39). Two PDK isoforms are found
in plants (58, 59), one in nematodes (5), and one in
Drosophila melanogaster (21). The primary structures
of the four PDK isoforms are extremely conserved, with
66–74% identity: PDK3 and PDK4 are the most dis-
tinct and PDK1 and PDK2 the most conserved (with
70% identity between PDK1 and PDK2) (40). There is
also very high sequence identity for the same PDK
isoform between species, and PDK1 and PDK2 are
�95% identical between rat and human. The amino
acid sequences of the human precursor PDKs vary,
with 436 residues for PDK1, 411 for PDK4, 407 for
PDK2, and 406 for PDK3 (44). Similarly, the molecular
masses of the PDKs vary such that mature PDK1
corresponds to a 48-kDa subunit, whereas mature

PDK2, PDK3, and PDK4 correspond to a 45-kDa sub-
unit.

Mammalian PDKs exhibit tissue-specific expression
(3). PDK1 has been detected in heart (3, 55, 68), the
pancreatic islet (48), and skeletal muscle (36). PDK2 is
ubiquitously expressed in the fed state, with particu-
larly high expression in heart, liver, and kidney (3).
PDK3 has a relatively limited tissue distribution (tes-
tis, kidney, and brain) (3, 18). PDK4 is expressed at
high levels in heart (3, 55, 68), skeletal muscle (3, 14,
36, 54, 66), liver (3, 50, 51, 65), kidney (3, 49, 51, 65),
and the pancreatic islet (48).

Isoform-specific differences in kinetic parameters,
regulation, and phosphorylation site specificity intro-
duce variations in the regulation of PDC activity in
differing endocrine and metabolic states. Although all
four PDK isoenzymes can phosphorylate and inacti-
vate PDC in vitro, the relative catalytic activity of
recombinant isoenzymes toward wild-type E1 varies
(PDK2 � PDK4 � PDK1 � PDK3) (3). In addition,
individual recombinant PDK isoenzymes differ in their
acute regulation by metabolites (3). Recombinant
(r)PDK2 is the most sensitive (Ki � 0.2 mM) to inhibi-
tion by the pyruvate analog dichloroacetate (DCA) (3)
(Fig. 2). In contrast, rPDK4 is relatively insensitive to
suppression by DCA (3) but more responsive to an
increased NADH-to-NAD� concentration ratio than
rPDK2 (3) (Fig. 2). However, further addition of acetyl-
CoA activates rPDK2, but rPDK4 does not show acti-
vation above that seen with NADH alone (3) (Fig. 2).

The specificity of the four mammalian PDKs toward
the three phosphorylation sites of E1 has been inves-
tigated using recombinant E1 mutant proteins with
only one functional phosphorylation site (25, 27). All
four PDKs phosphorylate sites 1 and 2; site 3 is phos-
phorylated only by PDK1 (25, 27) (Fig. 2). Although
PDK is activated by binding to E2 (70), all four PDKs
can phosphorylate sites 1 and 2, and PDK1 can phos-
phorylate site 3 in the absence of E2-E3 binding pro-
tein (27). All four PDKs exhibit higher activity toward
site 1 of free E1 compared with the other two phos-
phorylation sites, PDK2 exhibiting the highest activity
and PDK3 the lowest activity toward site 1 (27). In
contrast, in the free form, PDK4 exhibits a much higher
activity toward site 2 compared with PDK1, PDK2, and
PDK3 (27).

LONG-TERM REGULATION OF MAMMALIAN
PDK EXPRESSION

PDK activity in several oxidative tissues is increased
in response to nutritional and endocrine manipulations
that increase lipid supply and utilization. Culture of
hepatocytes (9), cardiac myocytes (32, 35), and soleus
strips (46) with FAs increases PDK activity. PDK is
present in limited amounts in PDC (1–2 molecules per
complex), and, in the intact animal, the protein expres-
sion of one specific PDK isoenzyme, PDK4, is modified
when there is a sustained change in tissue lipid deliv-
ery and/or handling. PDK4 protein expression in heart,
skeletal muscle, and liver increases with starvation
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(13, 16, 50, 65, 68), insulin resistance induced by high-
fat feeding (14, 37, 55), streptozotocin diabetes (68),
and hyperthyroidism (16, 55). Hence, one long-term
mechanism of PDK regulation involves changes in the
relative expression of individual PDK isoforms. PDK2
activity may account for short-term inhibition of PDC
through phosphorylation of site 1. In contrast, the
longer-term increase in PDK4 protein observed in re-
sponse to a sustained increase in lipid delivery/oxida-
tion may be more important for phosphorylating site 2.
It would be predicted that, in the absence of increased
site 2 phosphorylation, PDC would be more rapidly
dephosphorylated and reactivated. In support of this
scenario, reactivation of PDC in liver, heart, and skel-
etal muscle is much slower when PDK4 expression is
enhanced by prolonged starvation than after acute
starvation (15, 17, 52). Similarly, because PDK1 alone
is capable of phosphorylating site 3, phosphorylation of
all three sites must be limited to tissues containing
PDK1. From this, it follows that multisite phosphory-
lation of E1 in tissues expressing PDK1 would be
greater than in tissues expressing only PDK2, PDK3,
and/or PDK4, leading to even greater retardation of
dephosphorylation and reactivation. This is demon-
strated by greatly retarded reactivation of PDC in
heart, which expresses PDK1, PDK2, and PDK4, com-
pared with that in liver, which expresses only PDK2
and PDK4 (15, 52). Insulin suppresses hepatoma
PDK2 mRNA expression but is less effective at lower-
ing hepatoma PDK4 mRNA expression (19). Differen-
tial sensitivity of PDK2 and PDK4 to suppression by
insulin may possibly be extrapolated to other tissues.
Thus starvation increases only PDK4 in slow-twitch
muscle (54) but increases both PDK2 and PDK4 pro-
tein in fast-twitch skeletal muscle (54), which is rela-
tively less insulin sensitive than slow-twitch skeletal
muscle (20).

Regulation of PDK expression may occur at the lev-
els of both mRNA and protein expression. The half-life
of the PDK4 mRNA in Morris hepatoma cells is rela-
tively short (�1.5 h) compared with that of PDK2 (t1⁄2 �
6 h) (19). Increases in PDK2 mRNA and protein ex-
pression evoked by prolonged starvation on PDK iso-
form expression in liver and kidney are relatively sim-
ilar (�2-fold) in magnitude, suggesting that regulation
of PDK2 expression occurs primarily at the level of
transcription (65). Conversely, the relative increases in
hepatic and renal PDK4 mRNA expression evoked by
prolonged starvation (3.0- and 8.9-fold, respectively)
are much higher than the corresponding increases in
PDK4 protein expression (1.9- and 3.8-fold, respec-
tively) (65). Hence, both transcriptional and transla-
tional mechanisms are likely to participate in the long-
term regulation of PDK4 expression in liver and kidney
(65). Interestingly, starvation increases PDK4 mRNA
expression in brain and white adipose tissue without
any corresponding increase in PDK4 protein expres-
sion, suggesting dominant regulation of PDK4 protein
expression in these tissues at the level of translation.

FUNCTIONAL SIGNIFICANCE OF PDK
ISOFORM SHIFTS

We have previously developed the hypothesis that
PDK4 is a “lipid status”-responsive PDK isoform, facil-
itating FA oxidation by “sparing” pyruvate for oxalo-
acetate formation (51). In heart and skeletal muscle,
increased anaplerotic entry of pyruvate into the TCA
cycle as oxaloacetate facilitates entry of acetyl-CoA
derived from FA �-oxidation into the TCA cycle
through increased citrate formation. In turn, citrate
formation acts as a signal of FA abundance to suppress
glucose uptake and glycolysis. Furthermore, by main-
taining acyl-CoA removal by �-oxidation, upregulation
of PDK4 would be predicted to allow continued uptake

Fig. 2. Comparison of the kinetic pa-
rameters of PDK1, PDK2, and PDK4.
Data are taken from Refs. 3, 25, and
27. Thicknesses of the lines indicate
the relative activities of individual
PDK isoforms toward the phosphoryla-
tion sites on the pyruvate dehydroge-
nase �-subunit (E1�) of PDC.
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of long-chain fatty acyl-CoA into the mitochondria for
oxidation, preventing long-chain fatty acyl-CoA accu-
mulation in the cytoplasm, where it would be predicted
to exert deleterious effects on function. We have dem-
onstrated in skeletal muscle that enhanced PDK4 pro-
tein expression after prolonged starvation is associated
with a rightward shift in the sensitivity curve for
suppression of PDK activity by pyruvate and attenua-
tion of the maximal response of PDK to suppression by
pyruvate (54). A similar shift in sensitivity of PDK
activity to suppression by pyruvate is observed in re-
sponse to prolonged starvation in the heart (43). Thus
the relative insensitivity of PDK to suppression by
pyruvate in heart and skeletal muscle evoked by pro-
longed starvation (43, 54) correlates with selective in-
creases in PDK4 protein expression (16, 68). Insulin
resistance induced by prolonged high-fat feeding also
leads to a reduction in the sensitivity of skeletal muscle
PDK to inhibition by pyruvate (14). Thus it appears
that PDK isoform switching toward increased PDK4
expression can be associated with altered regulatory
characteristics of PDK in vivo, as would be predicted
from studies with the recombinant PDK4 protein (3).
Within the physiological context of intermittent feed-
ing, loss of sensitivity of skeletal muscle PDK to sup-
pression by pyruvate as a consequence of PDK4 up-
regulation may be geared to facilitate direction of
glycolytically derived pyruvate toward lactate output
rather than oxidation, with subsequent use for glucose
synthesis. Within the pathological context of prolonged
starvation, trauma, and sepsis, a further functional
consequence of altered muscle PDK4 expression may
relate to the fact that skeletal muscle protein, partic-
ularly fast-twitch muscle protein, is relatively expend-
able to generate carbon skeletons of amino acids to act
as additional gluconeogenic precursors. Skeletal mus-
cle amino acids are transaminated with pyruvate to
produce alanine, which is then released into the circu-
lation. Increased expression of PDK4, which is less
pyruvate sensitive (Fig. 2), may permit the mainte-
nance of adequately high pyruvate levels to ensure the
removal of amine nitrogen from muscle in states of
negative nitrogen balance. Finally, diversion of pyru-
vate from oxidation toward lactate or alanine output by
skeletal muscle may fuel excessive rates of endogenous
glucose production and ultimately the development of
hyperglycemia in insulin-resistant states. Thus phar-
macological suppression of skeletal muscle PDK4 ex-
pression/activity may represent a potential strategy to
oppose the development of hyperglycemia associated
with insulin resistance.

In liver and kidney, PDK4 upregulation during star-
vation (49, 50, 65, 67) may again participate in direct-
ing available pyruvate toward oxaloacetate formation,
but in this case for entry into the gluconeogenic path-
way and glucose synthesis. Concomitant upregulation
of PDK2 may couple suppression of pyruvate oxidation
with stimulation of pyruvate carboxylation via the
common effector acetyl-CoA. Conversely, impaired up-
regulation of PDK4 protein expression, resulting in an
inappropriately high PDK2-to-PDK4 activity ratio,

could result in increased flux via PDC at the expense of
entry of pyruvate into gluconeogenesis. Support for
this possibility comes from studies of peroxisome pro-
liferator-activated receptor-� (PPAR�)-null mice where
pharmacological inhibition of mitochondrial FA oxidation
results in severe hypoglycemia (7). Upregulation of PDK2
protein expression, in addition to that of PDK4, in liver
after prolonged starvation may subserve a further func-
tion in that it could permit activation of PDC should
pyruvate accumulate. Such circumstances might include
vigorous exercise (where lactate efflux from fast-twitch
muscle contributes to a greatly enhanced hepatic lactate
supply) or suppression of FA oxidation.

REGULATION OF MAMMALIAN PDK4 EXPRESSION
BY PPARS

PPARs are ligand-activated transcription factors
that have hypolipidemic actions (reviewed in Ref. 23).
PPAR�, the predominant molecular target for the in-
sulin-sensitizing thiazolidinediones, is most abun-
dantly expressed in adipose tissue, where it induces
adipocyte genes that increase FA delivery (e.g., lipopro-
tein lipase) or uptake and sequestration (e.g., fatty acid
transporter 1) (reviewed in Ref. 23). Through its action
to facilitate lipid trapping in adipose tissue, lipid de-
livery to tissues other than adipose tissue, including
those that express PDK4 at relatively high levels, is
reduced. Use of PCR differential mRNA display, DNA
microarrays, and related techniques has shown that
skeletal muscle PDK4 gene expression is suppressed
by treatment of insulin-resistant rats with PPAR� ago-
nists (64). This observation supports a direct inverse
relationship between lipid entrapment in adipose tis-
sue and tissue PDK4 expression.

PPAR� is the molecular target for the fibrate class of
lipid-modulating drugs (reviewed in Ref. 23). Like
PPAR�, PPAR� has a hypolipidemic action. However,
in this case, the lipid-lowering effect results from en-
hanced FA uptake, activation, and oxidation by tissues
other than white adipose tissue (4, 6, 7, 12, 33, 62, 63).
Because of the clear correlation between altered lipid
homeostasis and tissue PDK4 protein expression and
the resulting impact that this might have on rates of
glucose oxidation, much current interest has been fo-
cused on the potential regulation of PDK4 expression
by PPAR�.

PPAR� is expressed at high levels in the liver and
kidney (8). PPAR�-deficient mice exhibit an impaired
ability to upregulate hepatic FA oxidation in response
to fasting, despite suppression of insulin levels and
increases in FA supply (24, 30). Activation of PPAR� by
WY-14643 in vivo enhances hepatic and renal PDK4
protein expression in the fed state (19, 51). Further-
more, the upregulation of hepatic and renal PDK4
protein expression normally evoked in response to pro-
longed starvation is markedly impaired in PPAR�-
deficient mice (49, 50, 67). Incubation of Morris hepa-
toma 7800C1 cells with WY-14643 or an FA (palmitate
or oleate) increases PDK4 mRNA and protein (19).
Thus there is compelling evidence that FAs, acting at
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least in part via PPAR�, are important factors in the
regulation of hepatic and renal PDK4 expression.

Cardiac PDK4 mRNA and protein expression are
enhanced in response to dietary administration of WY-
14643 for 3 days in wild-type mice but not in PPAR�-
deficient mice (67). Cardiac-specific overexpression of
PPAR� also results in enhanced cardiac PDK4 mRNA
expression, which is further augmented when the
PPAR�-overexpressing transgenic mice are chronically
treated with WY-14643 as a component of the diet (10).
Conversely, cardiac PDK4 mRNA expression is sup-
pressed in pressure overload cardiac hypertrophy (72),
where cardiac PPAR� expression and activity are sup-
pressed (1). These data indicate that modulation of
PPAR� expression can influence PDK4 expression.
Nevertheless, the enhancement of cardiac PDK4 pro-
tein expression elicited by starvation is only modestly
attenuated by PPAR� deficiency in PPAR�-null mice
(16, 34, 67). Thus mechanisms in addition to signaling
via PPAR� contribute to the regulation of cardiac
PDK4 expression in starvation. Within this context,
both prolonged starvation and experimental diabetes,
conditions associated with increased cardiac FA utili-
zation, have been reported to suppress cardiac PPAR�
expression (72). A comparison of the responses of car-
diac PDK isoform protein expression to PPAR� activa-
tion by WY-14643 in fed and starved rats over a time-
scale comparable to that over which effects of
starvation can be observed (24 h) failed to demonstrate
an effect of PPAR� activation on cardiac PDK4 protein
expression (16). The apparent lack of impact of acute
(24 h) WY-14643 treatment on cardiac PDK4 protein
expression (16) compared with the increased cardiac
PDK4 mRNA expression observed after longer periods
of treatment with WY-14643 (67) probably reflects the
fact that the adult rat heart is a relatively poor target
for PPAR� activators compared with other tissues, in
particular liver. It should be appreciated that, in
PPAR�-null mice, FA oxidation is not completely sup-
pressed; rather, the ability to increase the required
rate of FA oxidation sufficiently to avoid tissue accu-
mulation of lipid is impaired (24, 30). PPAR�-null mice
fed ad libitum on a standard high-carbohydrate, low-
fat rodent diet do not exhibit any obvious cardiac ab-
normalities (24, 30).

Oxidative skeletal muscle is a major site of FA ca-
tabolism in mammals, for example during starvation
and exercise, when circulating lipid delivery increases.
However, most evidence suggests that signaling via
PPAR� may be more important for the regulation of
PDK4 expression in fast-twitch muscle, which does not
oxidize FA as avidly as slow oxidative muscle. Al-
though dietary administration of WY-14643 for 3 days
selectively upregulates PDK4 in gastrocnemius muscle
(a fast glycolytic skeletal muscle) (66) and activation of
PPAR� with WY-14643 in vivo for 24 h increases PDK4
protein expression in anterior tibialis (a predominantly
fast oxidative-glycolytic skeletal muscle), PPAR� acti-
vation does not significantly increase PDK4 protein
expression in soleus (a slow oxidative skeletal muscle)
(13). Conversely, the response of PDC activity to phar-

macological inhibition of PDK with DCA in vivo is less
in fast-twitch than in slow-twitch muscle, suggesting a
higher functional PDK activity in slow-twitch muscle
in the fed state (13). Activation of PPAR� by WY-14643
during prolonged starvation does not further enhance
upregulation of PDK4 protein expression in either fast
oxidative glycolytic or slow oxidative skeletal muscle
(13), and the effect of 24-h starvation to increase PDK4
mRNA and protein expression in skeletal muscle is
intact in PPAR�-null mice (13, 34). These data demon-
strate that there is no obligatory participation of sig-
naling via PPAR�. Ablation of PPAR� results in ab-
normally high accumulation of neutral lipid in heart
and liver in response to physiological or pharmacolog-
ical interventions that influence FA metabolism (6, 7).
In contrast, starvation of PPAR�-null mice leads to
only minor abnormalities of skeletal muscle FA metab-
olism and no accumulation of neutral lipid (34). These
observations have been attributed to a relatively low
level of PPAR� expression in mouse skeletal muscle,
where PPAR	 is the major PPAR subtype expressed (8)
and may substitute for PPAR� (34). Activation of ei-
ther PPAR� or PPAR	 leads to marked increases in
PDK4 mRNA expression in both primary human skel-
etal muscle cultures and L6 myotubes (34).

CONCLUDING REMARKS

In this review, we have presented strong evidence
that the mechanisms regulating PDK4 protein expres-
sion differ significantly among tissues in a manner that
may reflect individual tissue responses to altered lipid
supply and/or oxidation. Further studies in this area
will refine and expand our knowledge of the mechanis-
tic impact of chronic changes in expression of specific
regulatory kinases, such as PDK, with a view to poten-
tial therapeutic uses in the correction of hyperglycemia
and metabolic acidosis as well as metabolic disorders in
which tissue ATP generation from glucose is inade-
quate.

Our work cited in this review was supported by funding from the
British Heart Foundation, Diabetes UK, and the UK Medical Re-
search Council.
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