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B Abstract We review the history of DNA mechanics and its analysis. We evaluate
several methods to analyze the structures of superhelical DNA molecules, each pred-
icated on the assumption that DNA can be modeled with reasonable accuracy as an
extended, linearly elastic polymer. Three main approaches are considered: mechani-
cal equilibrium methods, which seek to compute minimum energy conformations of
topologically constrained molecules; statistical mechanical methods, which seek to
compute the Boltzmann distribution of equilibrium conformations that arise in a finite
temperature environment; and dynamic methods, which seek to compute deterministic
trajectories of the helix axis by solving equations of motion. When these methods in-
clude forces of self-contact, which prevent strand passage and preserve the topological
constraint, each predicts plectonemically interwound structures. On the other hand,
the extent to which these mechanical methods reliably predict energetic and thermody-
namic properties of superhelical molecules is limited, in part because of their inability
to account explicitly for interactions involving solvent. Monte Carlo methods predict
the entropy associated with supercoiling to be negative, in conflict with a body of
experimental evidence that finds it is large and positive, as would be the case if super-
helical deformations significantly disrupt the ordering of ambient solvent molecules.
This suggests that the large-scale conformational properties predicted by elastome-
chanical models are not the only ones determining the energetics and thermodynamics
of supercoiling. Moreover, because all such models that preserve the topological con-
straint correctly predict plectonemic interwinding, despite these and other limitations,
this constraint evidently dominates energetic and thermodynamic factors in deter-
mining supercoil geometry. Therefore, agreement between predicted structures and
structures obtained experimentally, for example, by electron microscopy, does not in
itself provide evidence for the correctness or completeness of any given model of DNA
mechanics.
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THE EARLY HISTORY OF DNA

The central role of DNA in biological processes was first demonstrated by Oswald
Avery, who showed that DNA is the molecule that carries genetic information (1).
This observation motivated the investigation of DNA structure, which culminated
in 1953 in Watson & Crick’s model of DNA as a double helix (2). In this model,
the molecule was posited to be composed of two sugar-phosphate backbones,
with one of four nitrogenous bases (A, C, G, or T) attached to each sugar. Each
backbone had a (5'-3") chemical directionality, with the two strands oriented in an
antiparallel manner. Each base on one strand was complementarily paired with the
opposing base on the other strand, A with T and G with C. The sequence of bases
along the molecule encoded the genetic information, so complete information
could be recovered from either strand. Although crystal structures of DNA were
not available until 1979, considerable indirect evidence quickly suggested that
the Watson-Crick model was essentially correct. So for the first 25 years of the
investigation of DNA structure, the molecule was regarded as a uniform, straight,
right-handed double helix with 10 base pairs per turn.

The Large-Scale Structure of DNA

DNA was originally assumed to be a linear molecule. It was commonly isolated
in linear form, although the techniques by which it was extracted from cells were
sufficiently crude as to fractionate the molecule into relatively short fragments. Eu-
karyotic chromosomes, which were known to both appear and genetically map as
linear arrays of genes, were thought each to contain a single, linear DNA molecule.
So it came as a surprise when Jacob & Wollman found the genetic map of the bac-
terium Escherichia coli to be circular (3). This circular structure was soon directly
confirmed by electron microscopy (4), and a number of other naturally occurring
DNA:s, in particular, viral genomes and bacterial plasmids, were found also to be
circular (5, 6). Later work has shown that the DNA within chromosomes is parti-
tioned into loops, called topological domains, which are constrained in a manner
functionally equivalent to circles, as is described below. So circularity, in fact, is
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an essentially universal attribute of all biologically active DNAs, at least at some
stages in their life cycles.

It was quickly appreciated that circularity introduces a significant constraint on
DNA. Vinograd & Lebowitz were the first to understand the nature of this constraint
(7). (The history of this discovery is described in Reference 8.) To close a DNA
molecule into a circle one must join the ends of the strands. Because the strands
have antiparallel orientations, and because the directionality of each strand must be
conserved, each strand can only close by binding its ends together. So the circular
molecule has a structure comprised of two interlinked circles. The alternative, that
the end of each strand binds to the other strand to form a Moebius strip, is chem-
ically forbidden. So a closed circular molecule is constrained by the constancy of
its linking number Lk. If one strand is cut while the other remains continuously
circular, the linking number no longer remains constant. This is the nicked circu-
lar structure. The loops within chromosome domains also have constant linking
numbers because duplex rotations are forbidden at points of loop attachment.

The precise nature of the constraint imposed by circularity was first described
by Vinograd & Lebowitz (9). The constancy of the linking number in a closed
circular DNA (ccDNA) couples its large-scale supercoiled (tertiary) structure and
helical duplex winding according to the equation

Lk = Tw + Wr. (D

Here Lk is the linking number (originally called the topological winding number «).
Wr is the writhing number (originally called t, the number of superhelical turns),
a measure of the tertiary structure, and 7w is the total molecular twist (originally
called B, the duplex winding number), which is the total number of duplex turns.
According to this equation, in a closed circular molecule where Lk is fixed, the
number of tertiary turns is coupled to the number of duplex turns; changing one
forces compensating changes in the other, so their sum remains constant.

The mathematics underlying this relationship was investigated independently
by several mathematicians. The linking number was first defined by Gauss, appar-
ently in an unpublished analysis of the orbits of asteroids (10). Lk is expressed as
a double integral over the pair of curves (for DNA the two strands of the duplex),
having a form called a Gaussian integral, shown in Equation 2 below. Calugare-
anu first examined a relationship similar to Equation 1 above, although he was
considering differential geometric attributes of a single closed curve with nowhere
vanishing curvature, not a pair of curves (11). The integral geometry underlying
Calugareanu’s formula was further developed by Pohl (12). In 1969, Jim White, in
his doctoral dissertation, presented the relationship given in Equation 1 and exam-
ined it in its full mathematical generality in any number of dimensions (13). The
connection of this mathematics to DNA, which had been empirically discovered
by Vinograd & Lebowitz in 1966, was only made from the mathematical side in
1971 by Fuller (14).

Each of the three quantities, Lk, Tw, and Wr, has attributes not shared by the
others (15). The linking number Lk associated to a ccDNA is an integer topological
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invariant; Lk is fixed as long as both strands remain covalently closed. In contrast,
both Wr and Tw are geometric invariants, whose values can vary as the covalently
closed DNA is continuously deformed. Wr is an attribute of the central axis curve
of the DNA, whereas both 7w and Lk are properties of the pair of strands of the
duplex. And most importantly, both Lk and Wr are interactive parameters; their
values may be computed either by crossing algorithms or by Gaussian double
integrals. If 5| and s, parametrize the positions along strands 1 and 2 of the duplex,
the tangent vectors to the strands at these positions are T(s;) and T(s,), e(s;, 52)
is the unit vector pointing from position s; tos,, and r(sy, s») is their separation
distance, then the linking number is given by the Gaussian double integral:

L L
L//e (T(Sz)XT(Sl)) s ds,. @)
0 0

4

In contrast, Tiv is an extensive parameter, whose value is given by integration of
the intensive twist density, or local helicity, 7(s):

L
W = %/r(s)ds. 3)
0

As discussed below, this difference in the types of these parameters greatly com-
plicates the analysis and modeling of the mechanics and energetics of ccDNA.

In what follows, three types of circular molecules need to be distinguished. In
nicked circular molecules, one strand is a covalently continuous circle and the other
has been cut. So although the molecule appears circular, the constraint imposed by
Equation 1 is not operative. The relaxed state of a closed circular DNA is a phe-
nomenologically defined condition in which the molecule is as unstressed as possi-
ble, given closed circularity. The linking number characterizing the relaxed state is
denoted Lky. If Lk is not an integer, the relaxed state is not precisely attainable by
any closed molecule. A closed circular DNA is said to be superhelical if its linking
number Lk differs from the relaxed value. Its superhelicity is described by the link-
ing difference « = Lk — Lky. From any superhelical state, a single strand cut pro-
duces anicked circle, and a double strand cut produces a full-length linear molecule.

Lk, and hence superhelicity, is closely regulated in many organisms. Negative
superhelicity is seen in most organisms, although some that live at high tem-
peratures have positive superhelicities. Patterns of gene expression are known to
change with superhelicity, which gives this phenomenon considerable biological
importance.

Supercoiled DNA molecules can be sorted according to their linking numbers
using gel electrophoresis. Otherwise identical molecules whose linking numbers
differ by one migrate at different velocities, and hence can be distinguished (16).
In this way, populations of molecules having identical linking numbers can be
isolated. Two chemically identical circular DNA molecules that have the same
value of Lk are said to be topoisomers.
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Figure1l Branched, plectonemically interwound superhelical DNA [adapted from an
electron micrograph of a seven-kilobase plasmid witha/Lky = —0.027 (17)]. There
are two branch points, indicated by asterisks. Overcrossings and undercrossings are
indistinguishable.

When superhelical DNA is examined microscopically, it is found to be es-
sentially always plectonemically interwound, with some proportion of branched
structures (17, 18). This interwound configuration, an example of which is shown
in Figure 1, was said to be supercoiled because the winding involved was of a
higher order than the duplex winding of the Watson-Crick helix itself. (The term
superhelicity formally refers to the topological constraint, whereas supercoiling
refers to the tertiary structures that are observed in superhelical molecules.)

When the DNA is coated with RecA, its effective thickness increases,
allowing one to distinguish over-crossings from under-crossings. This allows one
to determine the writhing numbers of these molecules. If they are taken from a
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fully characterized population that is topologically identical (and hence all have
the same superhelicity), one knows both Lk and «. So from Equation 1, one can
infer Tw, which is otherwise difficult to measure directly.

Electron micrograph (EM) data can be used to assess population averages of
a variety of parameters of DNA supercoils, including branch number, average
supercoil diameter, and Wr. However, the relationship of these results to solution
conformations is not clear. In preparing samples for the electron microscope, the
DNA is adsorbed on a surface where it experiences large spreading forces, then
it is dried and coated with metal. These drastic manipulations could make the
resulting configurations unrepresentative of the shapes of the DNA when free in
solution. Certainly the observed structures are not projections onto a plane of
the solution structures, as they must preserve length. However, small angle X-ray
scattering and cryoelectron microscopy, which probe solution structures, both also
find interwound conformations (19, 20). So the interwound geometry itself is quite
robust, although the parameter distributions found by analyzing populations of EM
images may not be representative of the solution properties.

The Energetics of DNA Deformations

Investigations of DNA energetics proceeded in parallel with analyses of its struc-
ture. Because DNA was initially assumed to be linear, the first associations of
energetics with deformations involved only bending deformations. These focused
on assessing the thermal equilibrium behavior of long, unconstrained molecules
subjected to random thermal motion. Twist was not considered because it was not
regarded as relevant to this process. Once it was realized that DNA could be super-
helical, so that twisting and bending were coupled by Equation 1, more complex
models were introduced.

THE MECHANICS OF DNA AS A LINEAR POLYMER It was known early on that DNA
is stiff, but not infinitely so; sufficiently long linear segments can be deformed into
random coils by thermal motion. Previously developed methods of polymer phys-
ical chemistry were directly applied to analyze these large-scale deformations.
Specifically, a linear DNA molecule was represented in various ways as a jointed
chain, an idea that dates back at least to Kirkwood & Riseman (21).

The two major classes of such models are the Gaussian chain (or random-
walk) and the wormlike coil. The Gaussian chain model divides the molecule
into n uncorrelated segments of length /., such that the mean square end-to-end
distance, (R?), is given by

(R*) = nl?. 4
The Kratky-Porod wormlike coil (22) is effectively a Gaussian chain taken in the
limit/, — 0, i.e., so the molecule forms a continuous curve with
l 1

(R?) = - + 3 {exp(=24l) — 1). (5)



Annu. Rev. Biomed. Eng. 2005.7:21-53. Downloaded from arjournals.annualreviews.org
by University of California- Davis on 07/01/08. For personal use only.

DNA MECHANICS 27

Here, [, = nl, is the molecular contour length, and % is the Kuhn statistical length.
The persistence length % is the minimum contour length needed for the initial
tangent direction to be randomized by thermal fluctuations. Equivalently, it is the
effective radius of the random coil produced by an arbitrarily long DNA. The value
of the persistence length of DNA has been measured under a variety of conditions
(23-25). As shown below, this view of DNA mechanics may be interpreted in
terms of linear elasticity, but originally it was not described that way.

In 1958, Landau & Lifshitz (26) proposed an explicitly elastic model to analyze
thermal fluctuations of linear molecules. The polymer was regarded as a threadlike
elastic curve, with constant length and zero thickness, making it analogous to the
Kratky-Porod wormlike coil. Its unstressed shape was regarded as straight, with
energy required for bending. If the curvature at position s isk(s), then the free
energy density needed to bend the DNA to that curvature is quadratic,

F(s) = Fo(s) + %Aﬁ(s), (6)

where Fy(s) is the free energy density associated with the equilibrium (straight)
conformation, and A is the bending stiffness. The bending energy is the integral of
this density, and hence is an extensive conformational property. In this analysis,
the mean square end-to-end distance is

R2—2izl”kT—1+ —1.KT/A) 7)
(R7) = (kT n exp(—I.kT/A) ¢, (

where k is Boltzmann’s constant and 7 the temperature. Comparison of Equations
5 and 7 gives the expression (27, 28)

A kT 8

] ®

which suggests that a persistence length is equivalent to an effective bending
stiffness in a linear model.

Landau & Lifshitz explicitly described the bending energy in their model as a
Helmbholtz free energy. This was justified by the fact that molecules in their model,
having no thickness, have effective volumes equivalent to their constant lengths.
The Landau-Lifshitz approach has been extended to cases in which the system
volume is not necessarily constant, but the temperature and pressure are assumed
to be so, i.e., the bending energy in these cases is equated with a Gibbs free energy
(28-30).

Gray & Hearst (28) first evaluated the enthalpic and entropic contributions to
the free energy of bending. They showed that for a linearly elastic polymer that
is bent to uniform curvature k, a plot of % versus % will be linear, with slope
corresponding to A H; /1, the enthalpy of bending per unit curvature squared per
unit length, and intercept corresponding to AS;/«>l, the entropy of bending per
unit curvature squared per unit length. Using a relation derived in Reference 23,
Gray & Hearst estimated the Kuhn length as a function of temperature from
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sedimentation data, and thereby evaluated the enthalpy and entropy of bending
to be (28)

AH, keal A
— =T77+25———,

K2l radian? mole

AS keal A

22 017400922
k2l radian? mole K

These authors point out that the negative entropy result, if it can be taken at
face value in light of experimental uncertainties, has intriguing implications—
for instance, the possibility that bending somehow orders ambient solvent. We
note that a negative entropy also implies that the bending stiffness of DNA would
increase with temperature. There is substantial experimental evidence (described
below) that the entropy associated to DNA superhelicity (as distinct from bending)
is in fact positive. We will return to this issue later.

THE FULL ELASTIC MODEL A superhelical DNA domain, whether a circular
molecule or a loop within a longer region, is not able to deform so as to re-
lieve its constraint. Moreover, as shown in Equation 1, the superhelical constraint
couples bending deformations (involving writhe) with twisting deformations. So
once it was understood that DNA occurs in superhelically constrained states, the
need for a more complete treatment of its mechanics became clear.

In the first such analysis, the molecule was regarded as being linearly elastic, and
hence endowed with a full set of elastic parameters—two bending stiffnessesA;
andA,, and one torsional stiffness C (31). The unstressed state of the molecule
was taken to be straight, with a helical twist rate of 10 base pairs per turn. If «;(s)
and k,(s) are the curvatures in the principal directions as functions of position s,
and 7(s) is the helical deformation density there, then in linear elasticity the energy
associated with this conformation in a molecule of length L is

L

E= %/Ale(s) + Axk3(s) + CT2(s) ds. ©)
0

In the first analyses of this type, the DNA was regarded as a superhelically
constrained circular molecule, with the mechanical properties of a homogeneous,
isotropic, linearly elastic, mechanically symmetric (i.e., A] = Aj;) rod (31-33).
These assumptions embodied the simplest elastic properties and conformed to the
then-current view that unstressed DNA had a uniform, straight, helical structure. As
more precise information became available, it became clear that both the unstressed
shape and the mechanical properties (i.e., elastic parameters) in fact could vary with
base sequence. Moreover, more complex energy laws, including stretch and shear,
and the possibility of terms coupling bending and twisting, were also considered.
This work is described in the following sections.

The assumption of linear elasticity has a more precise justification. If DNA is a
conservative system, it will have energies associated with deformations. One may
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expand the local energy density in a Taylor series as a function of the generalized
coordinates k1 (s), k2(s), and (s), setting the zero point to correspond to the un-
deformed structure. Because the undeformed structure has minimum energy, the
zeroth and first-order terms in the Taylor series vanish, so the lowest order terms
are quadratic. The original linearly elastic model results when one only considers
these terms, and there are no cross terms. Although the deformation energies may
in fact also have higher order terms, which would make DNA nonlinearly elastic,
their evaluation would require measuring higher order effects.

EXPERIMENTAL MEASUREMENTS OF DNA MECHANICAL PARAMETERS An effective
bending stiffness was inferred from the measured persistence length of DNA,
as shown in Equation 8 above, from which the value Lx = 50 nm for DNA
under physiological conditions yields A ~ 2.0 x 10‘192 erg cm. If DNA is in
fact linearly elastic, homogeneous, and symmetric, then this would be its actual
bending stiffness. If there is asymmetry, so A| # A», the effective bending stiffness
would be the harmonic mean of these two stiffnesses.

When DNA crystal structures became available, it was immediately clear that
the actual structure of the molecule varies somewhat with base identity and near
neighbors. One could surmise that other parameters, including those describing
the mechanical properties, may also be sequence dependent. Unfortunately, many
of the methods available to measure bending or torsional stiffnesses of DNA yield
averages over substantial lengths (the persistence length, in the analysis leading to
Equation 8). Although one can infer a sequence effect if experimental results for
AT-rich and GC-rich DNA differ, it is difficult to determine the precise sequence
specificity of the stiffnesses from such experiments.

An effective torsional stiffness was first measured by Barkley & Zimm using
fluorescence depolarization (34). Here a fluorescent dye is intercalated into the
DNA, and the molecule is illuminated with polarized light at a wavelength ab-
sorbed by the dye. Any change in the orientation of the dye between absorption
and fluorescent emission is observed as a depolarization. The extent of this depo-
larization can be used to estimate a torsional stiffness. This method assumes that
the dye’s motion is a faithful reflection of the torsional fluctuations the DNA would
experience in the absence of the dye. And the value measured is the average over
all sequence positions at which intercalation occurs.

This procedure found torsional fluctuations of 5 to 7 degrees between neighbor
base pairs, which showed DNA to be a remarkably flexible molecule. Rather
than having a well-specified interpair helical twist of approximately 34 degrees,
at room temperature the actual value fluctuates between 28 and 40 degrees, and
one third of the time it undergoes excursions beyond those limits. Fluctuations of
this magnitude are occurring simultaneously for all base pairs. Clearly, the rigid
picture of DNA structure resulting from X-ray crystallography is an artifact of that
method. The actual molecule is vastly more flexible.

A second method to measure the DNA torsional stiffness uses ring closure
probabilities (35, 36). Here a short, nicked circular DNA molecule containing a
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known number N of base pairs is constructed. N is chosen so the unstressed twist
of the molecule is not integral. Then a ligase enzyme is introduced. This closes
the nicks, producing closed circular molecules having integer linking numbers.
Because closure requires torsional fluctuations that either overtwist the molecule
to the next higher (integer) value of Lk or undertwist it to the next lower value,
the ratio between these two topoisomers in the resulting population will depend
on the effective torsional stiffness. (By using short molecules bending effects are
excluded.) A succession of molecules is generated, each of which is one base pair
longer than its predecessor, and the fraction of molecules with each linking num-
ber is measured for each length N. The results permit the evaluation of a sequence
average torsional stiffness C of the DNA. Values of C from this procedure range
from 300—400 pN nm?.

More recently, mechanical parameters have been obtained from micromanip-
ulation experiments in which the ends of single DNA molecules are attached to
micron-scale beads held with magnetic or optical “tweezers” or micropipettes. This
arrangement allows individual DNA molecules to be stretched, twisted, subjected
to magnetic fields, or immersed in hydrodynamic flows. Force and extension mea-
surements, and comparisons of bead motions with expected magnetic or hydrody-
namic behavior, permit assessment of a wide range of properties, such as bending,
torsional and entropic elasticity, and characterization of both responses to enzyme
action and transitions to unusual forms induced by extreme stresses (37-41). For
example, Bryant et al. (42) have directly measured a DNA torsional stiffness by
observing the rotation of calibrated “rotor” beads attached to twisted and stretched
molecules near a site-specific nick. They measured a stiffness of C = 410 £
30 pN nm?, 40% to 50% higher than that obtained from topoisomer distribu-
tion experiments. The authors note that this discrepancy may be due either to
the high tension imposed on the molecules in their experiments or an inability of
previous experiments to adequately constrain writhing degrees of freedom. This
illustrates the fact that because single-molecule micromanipulation assays are not
likely to sample the same ensembles of structures explored by molecules in their
in vivo environments or in solution, mechanical or thermodynamic parameters ob-
tained from these studies are not necessarily directly applicable to physiological
DNA.

The only method that explicitly derives sequence-dependent mechanical prop-
erties involves the analysis of the deformations of DNA structure in cocrystals with
protein molecules (43). This approach provides information on deformability at
the atomic level, which is considerably more detailed than what is possible using
other approaches. However, it assumes that the deformations imposed on DNA by
binding proteins are a faithful reflection of the deformations the molecule would
undergo if it were free in solution.

THE ENERGETICS OF SUPERHELICITY The free energy associated with DNA
superhelicity was first measured by Bauer & Vinograd using dye intercalation
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(44). Because the intercalation of a dye molecule between neighbor base pairs
decreases the twist angle between the pairs, in a negatively superhelical domain it
“captures” a portion of the linking difference at the intercalation site, which causes
the rest of the domain to relax by a corresponding amount. This relaxation decreases
the unfavorable free energy associated to superhelicity, which drives the binding
equilibrium toward the bound state. Conversely, when the DNA is positively su-
perhelical, the unwinding caused by dye intercalation increases the superhelical
stresses in the domain. The increment of superhelical free energy required will
diminish the binding equilibrium below the level seen in an unconstrained linear
molecule. By measuring the binding equilibrium with different amounts of added
dye, hence different amounts of either induced relaxation or stress, one can deter-
mine the extent to which the resulting changes of effective superhelicity assist or
impede binding. In this way Bauer & Vinograd (44) measured the free energy as-
sociated with superhelicity over a wide range of both positive and negative linking
differences.

If transient nicks are introduced into circular DNA molecules their linking num-
bers can change. If this process comes to equilibrium it will generate a population
distributed around the relaxed state (16, 45). These topoisomer distributions have
been shown to be effectively Boltzmann (i.e., Gaussian), although once closed
the molecules only take on integer values. The mean of this distribution gives the
linking number of the relaxed state, and from the variance one can determine the
free energy of superhelicity. This procedure, called the Gaussian centers method,
only evaluates the free energy around the relaxed state.

Sufficient negative DNA superhelicity can drive local transitions to other sec-
ondary structures whose right-handed helicities are smaller than that of the B-form
helix. If the energetics of the transition involved are well understood in linear
molecules, a quantitative analysis of the extent of transition in a range of topoiso-
mers allows one to evaluate the free energy associated to superhelicity (46). This
procedure evaluates the free energy of superhelicity around the stress levels that
drive transitions, which usually occur at substantially negative linking differences.
As topoisomer transition data can be gathered at different temperatures, this pro-
cedure has been used to evaluate the temperature dependence of the free energy
of superhelicity.

The first two methods find the free energy of superhelicity to be essentially
quadratic in the linking difference o, with a coefficient that is inversely proportional
to molecular length:

RT
AG(a) = %az.

(10)
(The dye binding method, which is the only one that maps out the free energy
over large ranges of «, also suggested the possibility of a very small asymmetry.)
The transition competition method assumes a quadratic functional form, and eval-
uates its coefficient. At the time Bauer & Vinograd performed their dye-binding



Annu. Rev. Biomed. Eng. 2005.7:21-53. Downloaded from arjournals.annualreviews.org
by University of California- Davis on 07/01/08. For personal use only.

32

BENHAM = MIELKE

experiments, the dye used was thought to untwist DNA by 12° per intercalation
event. A subsequent reevaluation found it actually untwists by 26° per event. Once
this correction has been made, all three methods evaluate the quadratic coefficient
to be nearg ~ 1110.

The transition competition method has been used to evaluate the free energy of
superhelicity at a variety of temperatures (46). This enabled AG(«) to be decom-
posed into its enthalpic (A H) and entropic (AS) contributions as

AG(e) = AH(a) — TAS(x). an

The values found under the experimental conditions of Bauer & Benham (46)
are AH(a) = 1893a2/N and AS(a) = 3.735052/N. The conclusion that A S(«)
and AG(«) are both positive at room temperature means that the enthalpy of su-
perhelicity exceeds its free energy, and that this free energy decreases as tem-
perature increases. These conclusions are supported by multiple other lines of
evidence. Lee et al. (47) used van’t Hoff methods to measure the enthalpy of
superhelicity, A H (o), whereas Seidl & Hinz (48) used microcalorimetry for the
same purpose. Both groups found that this enthalpy substantially exceeds the free
energy AG(«) at room temperature, which requires a positive entropy. Duguet (49)
evaluated the temperature dependence of the free energy of superhelicity using the
Gaussian centers method. He also found that this free energy varies essentially
linearly with 7, with a negative slope indicating again that AS(«) > 0.

So all available experimental data indicate that the entropy of superhelicity
is large and positive. This contrasts with the negative entropy of DNA bending
found by Gray & Hearst (28). It also stands in opposition to the entropy val-
ues derived from theoretical analyses of the large-scale structure of superhelical
DNA, as is described below. These uniformly find a negative entropy, consistent
with the increasingly constrained set of interwound tertiary structures available to
incrementally superhelical molecules.

METHODS TO ANALYZE THE STRUCTURE
OF SUPERHELICAL DNA

There are three qualitatively different approaches to the analysis of the structure
of superhelically constrained DNA. In all cases, one regards the DNA as hav-
ing an unstressed conformation, deformations away from which require energy.
At increasing levels of refinement, these attributes can be regarded as sequence
dependent. The first method proposed for analyzing superhelical DNA sought the
mechanical equilibrium configuration, which is the minimum energy configura-
tion of the topologically constrained molecule (31-33). This has the advantage of
being a relatively tractable problem. However, mechanical equilibria may not be
fully representative of the actual behavior of superhelical DNA. At finite tempera-
tures, random thermal motion drives molecules into higher energy configurations.
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So equilibrium in this case is a distribution among all available states, with high
energy states exponentially less occupied than low energy states. The second
class of methods uses statistical mechanics to analyze superhelical DNA structure
by either calculating or simulating this distribution. In this view, the mechanical
equilibrium configuration corresponds to the structure the molecule would have
atT = OK. These methods elucidate the behaviors of populations of molecules
at equilibrium at ambient temperatures; however, they do not say anything about
the dynamics of deformations in DNA or the rates at which individual molecules
move among the states. Further, both of these approaches calculate equilibria.
If the DNA is not at equilibrium their results may not be useful. For this rea-
son, dynamic methods also have been developed. Here we briefly describe each
approach.

Mechanical Equilibrium Methods

These methods calculate the minimum energy configuration of a topologically
constrained circular DNA molecule, the constraint being the constancy of its link-
ing number. Mathematically, a set of local coordinates is embedded in the polymer
at each position s along its central axis. The shape of the molecule at mechanical
equilibrium is calculated by finding the orientations of these local coordinates with
respect to a fixed set of lab coordinates, as functions of s.

The first approach, based on Kirchhoff rod theory, modeled the DNA as a
homogeneous, isotropic, linearly elastic rod that is straight when unstressed (31—
33, 50, 51). It also assumed no external forces or torques were imposed on the
molecule. This method formally calculates the shape of the elastica curve, which
is the central axis curve of the rod. Only deformations of curvature and of twist
were permitted. Under these conditions it was shown that the mechanical equi-
libria were toroidal helices. The stability of these equilibria initially was not
assessed.

This approach has been extended and refined in a variety of ways. The system
of local coordinates and the parametrization of the coordinate transformation can
be chosen in different ways to suit specific purposes. The first approach used the
mechanically determined principal axes of each cross-section, and described the
coordinate transformation using Euler angles. However, the Euler angle transfor-
mation has an inherent singularity that can be removed by using instead Euler
parameters. Other approaches based on differential geometry use the Frenet frame
as local coordinates and the curvature and torsion as transformations. Shi et al. (52)
showed that use of cylindrical local coordinates enabled closed-form solutions to
be found, even in a considerably more general formulation.

Elastic equilibrium analyses using more detailed models of DNA have been pre-
sented. Sequence dependence of the unstressed DNA structure has been included
(53). A recent extension also incorporates sequence dependence of the deforma-
tion energies, as estimated from crystal structure data (54). An elastic rod model
in which the DNA is regarded as explicitly double helical also has been introduced
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(55). The set of allowable deformations has been expanded to include shear and
extension, in addition to twist and bending (52). This has the important practical
effect of allowing more highly deformed states to be analyzed than are possible
with elastica-based theories, where the curvature must be so gradual that the finite
diameter of the rod, and hence shear effects, can be ignored.

Regarding stability, LeBret showed that, in the initial elastica theory, as the
superhelicity decreased away from zero the mechanical equilibrium initially
remained a planar circle, with all the deformation partitioned to twist (56). How-
ever, as the deformation was continued a bifurcation occurred to writhed con-
formations (57). This behavior had been independently discovered in analyzing
hockling of submarine cables (58). A finite element analysis has shown that this
bifurcation behavior is stringently dependent on the precise unstressed shape of
the elastic rod (59). If there is a single kink in an otherwise straight rod, the
bifurcation occurs earlier, while the presence of two kinks can lead to different
twisting behaviors in the two regions of the circle they bound. Interestingly, if
the DNA is regarded as naturally curved, forming an O-ring when unstressed,
the bifurcation to writhing does not occur. Instead, the molecule immediately de-
forms to a writhed state as soon as any linking difference is imposed. Maddocks
and coworkers have made an exhaustive bifurcation analysis of the equilibrium
configurations available to a superhelical DNA, as a function of « (60, 61).
They assume the molecule can pass through itself, so self-contacts do not occur.
They again find large families of mechanical equilibrium structures as mechani-
cal and bifurcation parameters are varied. All are approximately toroidal helical
structures.

When superhelical circular DNA is examined microscopically, it is found to be
essentially always plectonemically interwound, with some proportion of branched
structures (17, 18). Small-angle X-ray scattering and cryoelectron microscopy,
which probe the solution structure, also find interwound conformations (19, 20).
This leads to an apparent discrepancy between the observed structures and the
predictions of mechanical equilibrium analyses.

This problem is resolved when one notes that the models used to calculate
mechanical equilibria assume no externally imposed forces or torques on the DNA.
When the molecule comes into self-contact, each side of the contact point exerts
a force on the other, so the assumption of no external forces implicitly excludes
self-contacts. The precise conclusion of these analyses is that, in the absence of
self-contacts, the only equilibria are toroidal. Because superhelical DNA in fact
is interwound, not toroidal, it follows that these so-called plectonemic structures
are stabilized by the forces of self-contact that they experience. In their absence,
interwound structures would not be equilibria.

Several groups have extended the mechanical approach to include forces of
self-contact. This was done initially using finite element methods (62). Later,
contact forces were successfully incorporated into a rigorous analysis of the elastic
stability of superhelical DNA configurations (63, 64). These analyses show that in
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the presence of self-contacts, the equilibria are indeed interwound. This conclusion
has important implications, which are presented below.

Statistical Mechanical Methods

At finite temperatures, random thermal motion will cause a molecule to sample
states whose energies are above the absolute minimum. So the equilibria that
occur are statistical distributions in which a population of identical molecules
samples all possible states, with the relative frequencies of two states varying
exponentially with their energy difference. In practice, one must make drastic
simplifying assumptions before either this approach or the dynamics approaches,
examined below, become tractable. Even if one assumes the molecule has no
cross-section, but instead is a mathematical closed curve with smoothly varying
curvature and helicity, the problem remains intractable, for several reasons.

First, because the curvature and twist are specified at each point, the state space
is infinite dimensional. One cannot allow curvature to vary arbitrarily because the
molecule must remain topologically closed circular. It is an unsolved problem
of differential geometry to determine which curvature and torsion functions are
consistent with smooth closure, so the configuration space of allowable curvature
functions is not known.

Second, although the twisting energies and constraints are harmonious, those
relevant to bending have fundamentally different characters. Specifically, the total
twist Tiv is an extensive parameter, found by integrating the twist density t(s)
as shown in Equation 3. The energy of twisting is also extensive, given in the
linear elastic case by integrating an expression in the same intensive parameter T
(see the twist part of the integral in Equation 9). In contrast, the conformational
constraint relevant to bending deformations is the writhing number Wr. Being an
inherently interactive parameter, given by a Gausssian double integral, it bears no
simple relationship to any intensive parameter, such as the curvature « (s). Yet the
bending energy, which is the energy associated to changes of tertiary structure,
is an extensive parameter of the intensive curvature. So the writhing constraint
on tertiary structure and the energy density associated to deformations of tertiary
structure have fundamentally different characters.

For these reasons, calculations of structures and energetics are not tractable
for conformations of superhelically constrained DNA molecules having smoothly
varying curvatures and twists, other than the mechanical equilibria. So various
simplifications are required, which we describe in sequence. First, in both sta-
tistical and dynamic models, the infinite dimensionality of the state space is re-
solved by assuming the molecule consists of a finite number of straight segments
joined by flexible joints of some type. Energy of bending is then associated to
the angles between neighbor joints. As there are a finite number of joints, the
state space for bending is now finite dimensional. There are a variety of such
models.
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The crudest is a statistical segment model in which the length of each segment
is the Kuhn segment length and the joints are universal joints, so there is no energy
associated to the intersegment angles. To understand the limited relevance of this
class of models, note that a sufficiently long, linearly elastic polymer under random
thermal buffeting will assume a random coil conformation whose effective diame-
ter equals the Kuhn segment length. A few moments of drawing random coils with
pencils, then trying to approximate them with a set of statistical segments of equal
total length, each the diameter of the coil, will convince one of the inability of such
models to accurately represent conformations of continuously varying polymers.
Calculation of Wr is particularly problematic. Because neighbor segments do not
cross in projection, they make no contribution to Wr. So, in this model, points
can only contribute to Wr if they are more than approximately three persistence
lengths (i.e., 150 nm) apart! One anticipates that this would lead to a substantial
underestimate of the writhe of a smoothly varying molecule.

One can also approximate the smooth curve of an elastic polymer by a se-
quence of shorter segments, with a quadratic energy associated to bending the inter-
segment angle away from straight. By varying the segment length and number so
the total length is fixed, and also varying the bending stiffness (i.e., the coefficient of
the quadratic) in synchrony, one can model with successively better refinement—
even taking it to the continuum limit. The hydrodynamic properties of linear, flex-
ible polymers can be approximated by assuming the segments are in fact beads.

In these segment-based models of superhelical DNA, the discordance between
parameter types is handled as follows: The writhing number of each configuration
is calculated first. This is subtracted from the assumed linking difference, and the
difference is ascribed to twist. In the early models this twist was assumed to be
uniformly distributed, and the quadratic energy associated with it was calculated.
This approach allows bending to fluctuate, but twist must instantly equilibrate
without fluctuations. This effectively allows bending to occur at finite tempera-
ture, but constrains twisting to 7 = 0 K. Recent approaches have corrected this
simplification (65—-67).

Jointed chain, bead, or continuum models can be used to calculate attributes
of equilibrium distributions for linearly elastic polymers with free ends (22, 23,
27, 68-70). However, these methods encounter substantial difficulties when the
molecule is topologically constrained. So investigators instead use Monte Carlo
methods (71, 72), which sample the thermal equilibrium distribution instead of
calculating it exactly.

The basic Monte Carlo strategy involves two steps. One starts the molecule
in a current state C whose energy is E.. Then one selects a new state N having
energy E,. Finally, one determines whether to stay in the current state or move to
the new state. This is done iteratively, and a distribution is built by periodically
sampling the current state.

Two conditions must be met for this procedure to converge to the equilibrium
distribution. First, the state selection step must not introduce any bias. This re-
quires that it satisfy two subconditions, ergodicity and detailed balance. Ergodicity
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requires that every state can be reached from any current state, either directly or
by a finite sequence of steps. That is, if one constructs a directed graph of all
allowable choices of new state that can be made, for all initial states, ergodicity
requires the result to be a connected digraph with every point accessible from any
other point by a path consisting of directed edges. Detailed balance requires that
the processs of selecting the new state be unbiased. Specifically, let p(N|C) be the
probability of selecting new state N, given one is in current state C. Then detailed
balance requires that, for all states A and B, p(A|B) = p(B|A). Satisfying detailed
balance can be surprisingly difficult, as is shown below. The second requirement
for faithfully sampling an equilibrium distribution is that once the new state N has
been chosen, the decision whether to stay in C or move to N must be consistent with
equilibrium statistics. The following Metropolis criterion is most commonly used.
If E, < E., move to the new state N. Otherwise, choose a random number r uni-
formly distributed on the closed interval [0, 1]. If r < exp(—(E,, — E.)/RT), move
to N; otherwise, stay in C. In their classic paper, Metropolis et al. (73) showed that
if the selection step satisfies ergodicity and detailed balance, and if the Metropo-
lis decision criterion is used, then the distribution generated will asymptotically
converge to the equilibrium distribution.

Unfortunately, in practice the rate of convergence of this method can be difficult
to determine, and is often exceedingly slow. In that case, several remedial steps
can be taken to decrease the correlations between successively sampled states.
One can build one’s distribution by performing multiple iterations of the above
two-step process before selecting the next sample state. If this does not suffice,
supplementary selection steps can be introduced that are designed to more rapidly
move through the configuration space. However, these also must satisfy ergodicity
and detailed balance.

The condition of detailed balance can be especially difficult to satisfy. For exam-
ple, suppose that in current state C there are n, possible choices of new state, each
of which may be selected with equal probability, 1/n.. Although this would seem
a safe criterion, in fact it will violate detailed balance unless every state has the
same number of possible choices. To see this, consider the state space in Figure 2,
in which four states are denoted by vertices A, B, C, and D, and the possible choices
of new state are shown as edges between pairs of vertices. Note that vertices B and
C have three connections, whereas vertices A and D have only two. If one is
currently in state A, there are two choices of new state. If one chooses either at
random, the probability of choosing state B is p(B|A) = 1/2. Butif one is in state
B there are three possible choices of new state. If one again chooses at random from
among them, then p(A|B) = 1/3 # p(B|A). So this simple and seemingly fair
criterion actually violates detailed balance unless all states have the same number
of possibilities. From this example one sees that satisfying detailed balance can
require a careful analysis of the connectivities within the entire state space.

The most extensive application of the Metropolis Monte Carlo method to the
analysis of superhelical DNA has been made by Vologodskii et al. (72), who
model the molecule as a chain of segments that is closed into a topological circle.
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D

Figure 2 State space illustrating violation of detailed
balance. The probability of moving from state A to state
Bis 1, but the probability of moving from B to A is §.

A quadratic bending energy is associated with deviations from straightness of each
angle between successive segments, and the 7 = 0 K approximation for twist
energy is made, as described above. Two types of trial motions are used to select
the new state from the current one, as shown in Figure 3. In the crankshaft move
(Figure 3A) two vertices are selected at random, and the subchain they bound is
rotated through angle ¢ around the axis joining them. Here ¢ is chosen at random,
uniformly distributed in the interval 0 < ¢ < 2. As this move can result in strand
crossings, it has the potential to change the topological type of the molecule. As
long as this is regarded as allowable, this crankshaft move will satisfy detailed
balance but may not conserve topology. If topology is to be conserved, then some
rotation angles may be forbidden for specific pairs of vertices. Care must be taken
in the design of this move to assure it does not violate detailed balance.

The second trial motion is reptation, in which two disjoint subsections of the
chain are exchanged as shown in Figure 3B. Here one chooses two vertices at ran-
dom (e.g.,V; and V; in the figure), and selects for exchange the disjoint subchains
they bound. The lengths of these subchains can also be chosen at random, confining
oneself to small values. In Figure 3B, the 3-subchain bounded by [V, — 3, V|]isto
be exchanged with the 4-subchain bounded by [V,, V, + 4]. Once the subchains
to be exchanged are identified, the interior angles of each are uniformly either
increased or decreased so they span the gap to which they will be moved. Only
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Figure 3 Trial motions employed in the Monte Carlo method of Vologodskii et al.
(adapted from Reference 72). A. Crankshaft move. A section of the chain is rotated
through a random angle, ¢, about an axis connecting two randomly chosen vertices, v,
and v,. The new configuration of the affected segments is represented by a dashed line.
B. Reptation move. The angles 6;—65 are modified so that the two randomly chosen
sections of the chain bounded by [v; — 3, v;] and [v;, v, +4] can be exchanged. Again
the alteration is represented by dashes.

pairs of subchains in which each member can fit into the gap left by the other
can be exchanged. Starting in any state, one chooses the pairs of subchains to be
exchanged randomly and with equal probability from among all possibilities.

If any subchain could be moved to any other position, reptation (if carefully
implemented) would satisfy detailed balance because every state would have the
same number of possible choices. Because this is not the case, this reptation move
violates detailed balance. To see this, consider the two states shown in Figure 4,
where a 4-chain is exchanged with a 3-chain. The essence of the problem is that
not all 4-chains may be possible choices. If the gap created by removing a 4-chain
is greater than 3L (L is the length of a segment) then no 3-chain can span it. So
the possible choices are only those 4-chains whose end-to-end distances do not
exceed 3L, the number of which can vary from one state to another. In state A of
Figure 4 there is exactly one 4-chain whose gap is small enough to be spanned by
a 3-chain. If there are N segments in this molecule, then there are N — 6 choices
of 3-chain, and one 4-chain, that can be exchanged. If each choice has equal
probability of selection, then p(B|A) = 1/(N — 6), where state B is shown in the
figure. In state B, however, there are four different choices of 4-chain whose ends
are close enough to be spanned by a 3-chain, and for each of these there are N — 6
different 3-chains that could be selected. So if each choice has equal probability
then p(A|B) = 1/[4(N — 6)]. As p(A|B) # p(B|A), this reptation move violates
detailed balance. Therefore, this implementation of the Monte Carlo method cannot
be regarded as converging to the equilibrium distribution.
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A

Figure 4 Reptation move violates detailed balance. In state A, there is one possible
choice of 4-segment, RSTUV, whose ends are separated by 3L. In this state there
are (N — 6) choices of 3-segment. Choosing segment AD and performing the reptation
move produces state B, in which there are four possible choices of 4-segment for
exchange with AD; if RSTUV is half a regular octagon, thenxS < 3L, yT < 3L,zU <
3L,and RV = 3L, so any of these could be chosen. Hence, in this state there are 4(N —
6) ways to perform the reptation move, and ﬁ = Psp # Ppp = 4(N;—6)'

Vologodskii et al. (72) found that the crankshaft move alone generated a smaller
fraction of branched supercoiled structures than what was observed experimentally.
So they introduced the reptation move to raise the frequency of branching to that
seen in electron micrographs (EM). But EM sample preparation requires the DNA
to be spread on a planar grid, which may cause the conformational characteristics
of a population, and in particular its branching frequency, to differ from those
achieved in solution. So it is not clear that EM provides the best experimental
comparisons for these purposes. CryoEM, which does not suffer this disadvantage,
may prove to be better suited.

APPLICATIONS TO THE ANALYSIS OF SUPERHELICAL DNA  Statistical methods, if
they faithfully reflect the equilibrium distribution, enable comparisons to be made
with experimental information on the conformational properties of populations of
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molecules. They also have been used to assess the configurational entropy associ-
ated with supercoiling, as well as other energetic and thermodynamic quantities.

Hearst & Hunt (74) have applied a wormlike coil method to estimate the distri-
bution properties of highly supercoiled DNA. They restrict consideration to simple
plectonemes, which are interwound supercoils without branches. With this restric-
tion they find that the molecule persists in a highly restricted condition in which its
configurational entropy is greatly reduced. This suggests that the molecule may not
wander far from its mechanical equilibrium configuration. If correct, this indicates
that the results of mechanical equilibrium calculations may provide reasonable
approximations of the conformational attributes of DNA at finite temperatures.

The Monte Carlo method of Vologodskii et al. (72) has been applied to evaluate
by simulation a wide variety of conformational, energetic, thermodynamic, and/or
hydrodynamic properties of superhelical DNA. Despite the formal problem this
method has with satisfying detailed balance, its accuracy in evaluating conforma-
tional parameters (superhelix geometry, axis length, writhe, even knot-type fre-
quencies) has generally been reasonably good. However, it has been less successful
at assessing the thermodynamic parameters associated with DNA superhelicity. In
particular, all statistical analyses of superhelical DNA performed to date find a
negative entropy, consistent with the constraints imposed by plectonemic inter-
winding. The enthalpy of superhelicity, which has sometimes been identified with
the elastic energy (72, 75), is calculated to be less than its free energy. These results
strongly conflict with all experimental data, which measure a large enthalpy and a
large positive entropy associated with superhelicity. If the entropy of superhelic-
ity were negative, the free energy of supercoiling would increase with increasing
temperature; the molecule would become stiffer. The opposite behavior is seen in
practice. This discrepancy suggests that the large-scale configurational properties
of supercoils, as found by these strictly elastomechanical models, do not dominate
their energetics. Instead, superhelically driven changes in smaller scale attributes
of molecular structure, such as the interactions between the DNA and the solvent,
may play significant, even dominant, roles in determining the thermodynamics of
this phenomenon.

Dynamic Methods

Dynamic methods calculate deterministic, time-dependent trajectories of the helix
axes of individual DNA molecules by either numerical or analytical integration of
the equations of motion. If this can be done over sufficiently long times, which
are well beyond the scope of currently available methods, an individual molecule
will sample its accessible states with a distribution that asymptotically converges
to the equilibrium distribution of a population. Dynamic methods, like every other
method that includes the possibility of self-contacts, find that superhelical DNA
assumes interwound supercoiled configurations.

Numerical methods for simulating dynamic fluctuations in superhelical DNA
have been widely implemented. In this section, we summarize several of the
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principle approaches that have been taken. To date, these methods have been
employed predominantly to simulate “equilibrium” dynamics in which closed,
initially circular structures with specified linking differences, constrained by Equa-
tion 1, collapse to more stable interwound forms. More recently, fully dynamic,
nonequilibrium scenarios have been explored. In such scenarios, which are likely
more representative of in vivo events that involve DNA supercoiling, A Lk itself
varies dynamically in response to external processes, such as torsional loads im-
posed by bound proteins.

B-SPLINE LANGEVIN DYNAMICS Among the first dynamic models of DNA super-
coiling was the B-spline representation of Schlick & Olson (76—79). In this method,
the axis curve of ccDNA of length up to a few thousand basepairs is represented
as a B-spline “ribbon” defined by a set of control vertices. The ribbon is charac-
terized by linearly elastic energies of twisting and bending, as well as energies
associated with self-contact, translational and rotational degrees of freedom, and
restraint of the total contour length. As discussed above, the twist is assumed to
remain uniformly distributed at all times. The work reported in References 78, 79
additionally includes salt-screened electrostatics via a Debye-Hiickel term in the
energy function. Deterministic trajectories of the vertices, and thereby also of the
B-spline helix axis curve they generate, are obtained by numerically integrating
the Langevin equations of motion (80) using an implicit-Euler algorithm (81).

This framework permits time steps larger than those available to traditional
molecular dynamics (MD) schemes (100 femtosecond steps are taken in the sim-
ulations reported in References 76, 77), but requires setting y, the “collision
frequency” characterizing molecular damping and stochastic forcing owing to
coupling with the heat bath, in a manner that freezes high frequency vibrational
modes. This obscures the connection between numerical and physical times, lead-
ing to simulated motions estimated to be at least three orders of magnitude faster
than “real” motions; simulations spanning nanoseconds in numerical time are pro-
posed to correspond to dynamics occurring in microseconds of physical time (77).
(The effect of varying y upon supercoiling dynamics within this framework is fully
explored in Reference 79.) This method has been used as described above to obtain
energy-minimized conformations and to simulate equilibrium dynamics. As in the
Monte Carlo work described previously, the generated structures were compared
with electron microscopy data, with which they were deemed to be consistent. Re-
sults reported in Reference 78, which investigates the effects of salt concentration
upon folding pathways, suggest that tightly interwound conformations are favored
at in vivo and higher ionic strengths. This conclusion is in qualitative agreement
with experimental results (19), but conflicts with predictions of statistical methods,
which, as discussed above, account only for configurational contributions to the
entropy.

This approach applies the equations of motion explicitly only to the finite set
of vertices, then constructs the full molecular axis curve at each time step by B-
spline interpolation from the vertex positions. This procedure need not conserve
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topology. (An example of this behavior is shown in Reference 77, where a trefoil
knot arises from an initial planar circle.) Any procedure involving calculations at a
finite set of node points and interpolation of a curve will be guaranteed to conserve
topology only if explicit tests for self-crossings are made at each time step.

DISCRETE-CHAIN BROWNIAN DYNAMICS In part as an effort to provide a model in
which twist evolves dynamically, and simulation times correspond more closely
with physical times, Chirico & Langowski introduced a discrete-chain Brownian
dynamics (BD) procedure (65) based on a method originally developed for free
linear DNA (82). In this method, the helix axis is represented as a segmented chain
(a polygon in the case of ccDNA), whose vertices interact through linearly elastic
twisting, stretching, and bending potentials. Twist-bend coupling, which allows the
model to capture the effects of superhelicity upon the dynamics, enters through a
set of torsional forces that result from the independence of the infinitesimal coordi-
nates describing the axis (65, 83). For purposes of modeling collisions of the chain
with solvent molecules (i.e., coupling with the heat bath), hydrodynamic beads
are attached to the vertices, whose positions and relative twist angles are time-
evolved using a second-order BD algorithm (84) that permits time steps as long
as a few nanoseconds, and simulations out to milliseconds. [BD algorithms arise
from numerical integration of the Langevin equations of motion in the overdamped
regime (80).] The size of the beads is set according to the hydrodynamic diameter
of B-DNA [e.g., the value 31.84 A (85) is used in Reference 65], so that each bead
represents several basepairs. Interactions resulting from local disturbance of the
solvent owing to nonlocal motion of the chain (hydrodynamic interactions) are
incorporated through a diffusion tensor (86). Contact (excluded volume) forces to
prevent self-crossing of the chain are typically introduced either through Lennard-
Jones potentials or Debye-Hiickel electrostatics (87), which attempt to account
collectively for backbone charges, excluded volume, and physiological ionic con-
ditions. Like the B-spline approach, this framework has in general been used to
simulate the folding of kilobase-length, closed (initially) circular structures of
fixed linking differences into more stable interwound forms. Theoretical diffusion
coefficient calculations by Langowski and coworkers based on their simulation
results compare reasonably well with measurements obtained from dynamic light
scattering experiments.

Extensions of this work (e.g., References 88-90) have investigated the effects
of static bends, DNA-protein interactions, and external loads (see below) upon
supercoiling dynamics. Because it assumes motions to be overdamped as a starting
point, this method fails to resolve dynamics on timescales smaller than a few
picoseconds.

DISCRETIZED CONTINUUM DYNAMICS Several numerical procedures for equilib-
rium dynamics based on Kirchhoff’s elastic rod model have also been proposed.
In one approach, the continuous axis curve of the rod is discretized into a number
of points, with twists associated to those points. The dynamics of this model are
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evaluated by numerically integrating a system of equations consisting of Kirch-
hoff’s equations of motion, the constitutive relation of linear elasticity, and equa-
tions for the time evolution of twist (66, 91, 92). This approach typically includes
self-contact through a stiff inverse power law potential centered at the discretiza-
tion points. Viscosity is considered through a damping term. Stochastic forcing,
either through a Langevin or BD formulation, is generally not considered because
accurately correlating the thermal noise requires discretization approaching base-
pair resolution. This would eliminate the numerical advantages of approximating
the system as continuous in the first place (93), and calls into question the validity
of that approximation at a scale on which the system might better be considered
discrete. This may represent an advantage of discrete over discretized continuous
approaches to dynamic modeling. Although the latter are computationally advan-
tageous for simulations involving deformations of very large systems over long
times, because thermal fluctuations certainly influence dynamics in vivo, the for-
mer may provide the best compromise between the coarse-graining necessary to
model large-scale, long-time conformational changes, and the resolution neces-
sary to account for both the finite temperature environment and the localized DNA
features, like bending anisotropy, that contribute to those changes. In point of fact,
Klapper & Qian have shown that the energy functionals characterizing these two
approaches are fundamentally inconsistent with one another, an artifact of localiz-
ing twist and bend energy in the discrete case, and distributing it in the continuum
case (93). The implications of this inconsistency remain unresolved.

VARIATIONAL (HAMILTONIAN) DYNAMICS The fully general form of the Hamil-
tonian/Euler parameter formulation of Maddocks and coworkers, discussed above
in the context of static equilibrium and bifurcation analyses, provides equations of
motion for the dynamics of both constrained (inextensible and/or unshearable) and
unconstrained Cosserat rods. In a dynamic context, this formulation has the ad-
vantages (67) of being first-order in time, and relying upon continuous symmetries
to generate integrals of the motion via Noether’s theorem. On the other hand, as
with discretized Kirchhoff rod approaches, although the Hamiltonian approach is
capable of including self-interaction forces and obtaining interwound geometries,
the facility and accuracy with which it is able to model the effects of an electrolytic
environment at physiological temperature are not clear.

DYNAMIC SUPERHELICITY The dynamic methods discussed so far have focused
exclusively on the evolution toward mechanical equilibrium of closed, initially
circular structures of fixed, nonzero linking differences. But this does not address
the question of how the linking differences became nonzero in the first place.
Processes that alter DNA topology in vivo are inherently dynamic in character,
so that, although studies of equilibrium conformations, and dynamic approaches
to those conformations at fixed superhelicity, are potentially valuable, dynamic
modeling of DNA supercoiling in a nonequilibrium context must include loading
processes that dynamically change DNA superhelicity. A well-known example of
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such a process is transcription within a torsionally constrained domain. In 1987,
Liu & Wang (94) proposed the “transcription-induced twin-supercoiled-domain”
model to explain several features characterizing transcriptionally active plasmids;
in particular, the observation that high degrees of positive or negative supercoiling
of intracellular pBR322 DNA accompany inhibition of DNA gyrase or topoiso-
merase I, respectively. In this model, illustrated in Figure 5, rotation of RNA
polymerase (RNAP) around the helical template during transcription is hindered,
for example, by viscous drag, producing a localized torque that leads instead to
rotation of the template. If the template is topologicaly constrained, for instance,
owing to anchoring of its ends to intracellular structures, this torque can generate
substantial positive supercoiling ahead of the transcription ensemble and negative
supercoiling behind it. There is now substantial experimental evidence for such a
scenario (reviewed, e.g., in Reference 95).

(a) R
1) R
©

QL e‘iim@,l

Figure5 Schematic illustration of transcriptional twin-loop formation (adapted from
figure 1 in Reference (94)). (a) A transcription ensemble, R, tracks from left to right
along a linear DNA template, both ends of which are anchored, torsionally constraining
the domain. (b) If R is rotationally hindered, for instance, owing to anchoring or
viscous drag in the intracellular environment, transcription exerts a localized torque
upon the template, represented by the vertical bar in the center of the figure. (¢) Because
the domain is topologically constrained, this torque simultaneously generates positive
supercoils downstream and negative supercoils upstream from transcription.
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Recently, Mielke and coworkers (90) have invoked a BD bead-chain formula-
tion to simulate the dynamic twin-supercoiling of a 477 bp region of topologically
constrained B-DNA in response to an applied torque of magnitude comparable
to that exerted by Escherichia coli RNAP during transcription (40, 96). These
simulations successfully capture the salient features of twin-domain formation,
and illuminate a number of general features characterizing the dynamically driven
supercoiling of a torsionally relaxed domain, including (a) superhelical stress man-
ifests principally as torsional deformation at early times, as imposed twist prop-
agates through the structure; (b) thereafter, an approximately constant amount of
evenly distributed twist is maintained, and additional imposed stress manifests as
a slow rise in writhe, until localized buckling results in plectonemic supercoiling;
(c) the introduced stress continues to be apportioned approximately exclusively
to writhe, resulting in additional supercoiling; until (d) the structure ultimately
reaches mechanical equilibrium with the torsional load, and writhe too is main-
tained at a level approximately constant on average out to late times. These results
demonstrate the feasibility of dynamically modeling, within a framework that
approximates physiological conditions, nonequilibrium scenarios in which super-
helicity itself is time-dependent.

CONCLUSIONS AND OPEN QUESTIONS

Determinants of Superhelical DNA Structure

All the mechanics-based models of superhelical DNA structure developed to date,
as long as they do not exclude self-contacts, predict interwound conformations.
This is equally true of analyses of stable mechanical equilibria, dynamics of fluctu-
ations or of introduced supercoils, or statistical mechanical analyses—even those
that cannot be said to converge to the equilibrium distribution. This uniform con-
clusion also agrees with virtually all experimental data on solution or EM confor-
mations of superhelical DNA. This strong concordance stands in stark contrast to
the predictions of thermodynamic parameters made by these same theories, some
of which find entropies associated to superhelicity that have both wrong magnitude
and opposite sign from their experimentally measured values. One might conclude
that, although the existing mechanics-based theories of DNA structure accurately
capture conformational information, they do not reflect the real energetics under-
lying superhelicity. To propose a resolution of this discrepancy, we first consider
the assumptions implicit in these analyses.

All the models developed to date make large simplifications regarding the ac-
tual structure of DNA. In some cases, the molecule is modeled as a succession of
straight segments, or as beads, with bending confined to the joints between them.
In other analyses, specifically those of mechanical equilibrium, much more detail
can be incorporated. DNA can be regarded as continuously deformable with an ex-
plicitly helical structure, and sequence variations of both structure and mechanical
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properties can be included. But even these conditions greatly simplify the actual
structure of DNA, which experiments find to be a highly flexible molecule. There
are six single covalent bonds between the phosphorous atom on one base and that
of its nearest neighbor, five of which allow unrestrained rotations in the absence
of steric clashes. At the atomic scale this allows many degrees of freedom that
are not included in any existing mechanical analyses of DNA structure. Moreover,
interactions with the aqueous solvent are very important determinants of DNA
structure that also are not explicitly considered. Indeed, the primary factor stabi-
lizing the double helix is base stacking to exclude water. And DNA orders the water
molecules in its immediate neighborhood. Some of the closest water molecules,
found in the grooves of the helix, occur so uniformly at specific positions that they
appear in crystal structures (so-called crystallographic water). Then the grooves
are filled with partially ordered water, which participates in the motions of the
molecule and may impart to it more symmetric mechanical properties than the
structure of the double helix would suggest. Further out there are hydration shells
of partially ordered water around the DNA helix that fade with distance into bulk
solvent. Small changes of local DNA conformation may cause large changes in the
ensemble of states that the water molecules can assume in response. For these rea-
sons solvent (and ionic) effects are very important determinants of DNA structure
that can profoundly influence the thermodynamics, and particularly the entropy,
associated to DNA deformations. None of these factors are explicitly included in
existing models of DNA structure or mechanics.

All the mechanics-based analyses of DNA structure and superhelicity, whether
mechanical, statistical, or dynamic, use experimentally measured values for the
mechanical and structural parameters of DNA. However, there are disagreements
regarding the precise nature of these mechanical properties, the bending and tor-
sional stiffnessses, and hence also of the elastic and superhelical energies deter-
mined therefrom. Is elastic energy an internal energy, that is an enthalpy, or is it
a free energy? Landau & Lifshitz (26) and Gray & Hearst (28) assume the lat-
ter, whereas other investigators assume the former. Although we do not propose
a resolution, we note that each measured stiffness is a single number that is dis-
tilled from an experiment in which the DNA and its entrained ions and hydration
shells are sampling a very large number of conformational microstates. Thus the
measured stiffness is not a property of a single conformation, but of a distribution
among states. So, for example, to measure an effective bending energy associated
to a particular value of curvature, one in fact is finding some sort of ensemble
average over all states of the DNA, water, and ions that is consistent with that
amount of overall curvature. Because the accommodation of the ions and solvent
to this conformational change are included, this suggests that the bending energy
one finds should contain entropic terms; it should be a free energy.

To our knowledge, only the experiments of Gray & Hearst (28) have inves-
tigated how the bending stiffness of linear DNA is partitioned between entropic
and enthalpic components. No comparable information is available regarding the
DNA torsional stiffness. In this regard, single-molecule experiments will only help
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if they deform the DNA in a manner comparable to that in which it is deformed in
solution. And to evaluate free energies, these deformed states must differ infinites-
imally from equilibrium throughout whatever deformation is imposed.

All theoretical analyses that have considered the question have found the entropy
of superhelicity to be negative, whereas all experiments find it to be positive.
We suggest that this discrepancy arises because these analyses do not determine
the full entropy, but only the configurational entropy of supercoiling. They use a
highly simplified, jointed segment model of DNA structure in which only its large-
scale conformation is explicitly examined, and that often in a simplistic way. It is
intuitively clear that interwound DNA is constrained to sample a more confined
set of states than is relaxed DNA. So the configurational entropy of plectonemic
supercoiling is expected to be negative, as all calculations have shown that it
is. But the fact that the experimentally determined entropy of superhelicity is
positive clearly indicates that these large-scale deformations are not the primary
determinants of the thermodynamics of superhelicity. This reinforces the view
that full understanding of superhelical DNA mechanics and energetics will require
much more explicit, atomic-scale models.

And yet, all theoretical analyses performed to date correctly predict interwound
structures. This occurs despite the fact that the models used are simplistic, do not
correctly reproduce the governing thermodynamics, and in some cases even appear
to contain errors. Moreover, the experimental evidence regarding the structure
of superhelical DNA in solution also points to interwound structures. Clearly
interwound conformations must be very robustly stable structures to be so virtually
universal.

We suggest that the occurrence of interwound structures is determined more by
topology than by energetics or mechanics. To see this, note that, if the DNA duplex
were able pass through itself it would change Lk by +2, depending on the sign
of the passage. So suppose the DNA has some conformational preference for the
relaxed state, the nature of which is not now specified. If Lk # Lk, the relaxed
state is not attainable, although the molecule will still strive to reach it. Thus for
example, at linking difference Lk — Lky = o = —2, the molecule will be found in
a figure eight shape because it strives to make the single self-crossing that would
return it to the relaxed state. Because this self-crossing is topologically forbidden,
the molecule abides in this configuration. At more negative linking differences
the molecule simply interwinds further because more self-passages are required
to reach the relaxed state.

This scenario is consistent with the conclusion from linear mechanical analyses
that it is the forces of self-contact which stabilize interwound structures. Yet the
same scenario would occur under much more general conditions. Virtually any hy-
perelastic mechanics, linear or otherwise, homogeneous or sequence dependent,
symmetric or not, would produce the same qualitative behavior, provided the min-
imum energy state was relaxed. Indeed, one may speculate that even dissipative
models would give much the same behavior. At the most extreme, suppose there
were no enthalpy associated to DNA deformations at all, and the only driving
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factor was the configurational entropy. Because this is negative, the resulting free
energy of superhelicity would be positive. So configurational entropy alone could
drive DNA toward the relaxed state, which can only be achieved by self-passage.
Because this is topologically forbidden in a ccDNA, the molecule will tend to occur
predominantly in states of self-contact, which will be interwound supercoils.

If this view is correct, then interwound configurations would result virtually re-
gardless of what mechanical and energetic properties DNA might have. So agree-
ment between the predictions of a model and experimental results would not by
itself constitute strong evidence for the correctness of that model. However, if
the model correctly predicts more detailed attributes of the distribution of inter-
wound states that may vary among models (such as branching frequency, average
supercoil diameter or axis length, distributions between T and Wr, etc.), such
agreement could be viewed as corroborative.
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