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Several sigmoidal functions (logistic, Gompertz, Richards, Schnute, and Stannard) were compared to
describe a bacterial growth curve. They were compared statistically by using the model of Schnute, which is
a comprehensive model, encompassing all other models. The ¢ test and the F test were used. With the ¢ test,
confidence intervals for parameters can be calculated and can be used to distinguish between models. In the F
test, the lack of fit of the models is compared with the measuring error. Moreover, the models were compared
with respect to their ease of use. All sngmondal functions were modified so that they contained biologically
relevant parameters. The models of Richards, Schnute, and Stannard appeared to be basically the same
equation. In the cases tested, the modified Gompertz equation was statistically sufficient to describe the growth

data of Lactobacillus plantarum and was easy to use.

Predictive modeling is a promising field of food microbi-
ology. Models are used to describe the behavior of microor-
ganisms under different physical or chemical conditions such
as temperature, pH, and water activity. These models allow
the prediction of microbial safety or shelf life of products,
the detection of critical parts of the production and distribu-
tion process, and the optimization of production and distri-
bution chains. In order to build these models, growth has to
be measured and modeled. Bacterial growth often shows a
phase in which the specific growth rate starts at a value of
zero and then accelerates to a maximal value (u,,) in a
certain period of time, resulting in a lag time (A). In addition,
growth curves contain a final phase in which the rate
decreases and finally reaches zero, so that an asymptote (A)
is reached. When the growth curve is defined as the loga-
rithm of the number of organisms plotted against time, these
growth rate changes result in a sigmoidal curve (Fig. 1), with
a lag phase just after # = 0 followed by an exponential phase
and then by a stationary phase.

Growth curves are found in a wide range of disciplines,
such as fishery research, crop science, and biology. Most
living matter grows with successive lag, growth, and asymp-
totic phases; examples of quantities that follow such growth
curves are the length or mass of a human, a potato, or a fish
and the extent of a population of fish or microorganisms In
addition, these sigmoidal curves are used in medical science
for dose-mortality relations.

To describe such a curve and to reduce measured data to
a limited number of interesting parameters, investigators
need adequate models. A number of growth models are
found in the literature, such as the models of Gompertz (7),
Richards (14), Stannard et al. (17), Schnute (16), and the
logistic model and others (15). These models describe only
the number of organisms and do not include the consumption
of substrate as a model based on the Monod equation would
do. The substrate level is not of interest in our application, as
we assume that there is sufficient substrate to reach intoler-
able numbers of organisms.

Besides the lag period and the asymptotic value, another
valuable parameter of the growth curve is the maximum
specific growth rate (p,,,). Since the logarithm of the number
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is used, p,, is given by the slope of the line when the
organisms grow exponentially. Usually this parameter is
estimated by deciding subjectively which part of the curve is
approximately linear and then determining the slope of this
curve section, eventually by linear regression (Table 1). A
better method is to describe the entire set of data with a
growth model and then estimate w,,, A, and A from the
model. Some authors indeed use growth models to describe
their data (Table 1). These models describe the number of
organisms (N) or the logarithm of the number of organisms
[log(N)] as a function of time.

The motivation for the decision to use a given model is
usually not stated. Only Gibson et al. (5) found better results
by a fitting procedure with the Gompertz model when they
compared that model with the logistic model. A large num-
ber of models as given in Table 1 are used, all more or less
complicated and with different numbers of parameters. It
can be expected that a difference in the results of the models
for our application exists. Besides, the models are not
written in terms of growth rate, lag time, and asymptotic
value, which makes interpretation of the parameter values
difficult.

The objective of this work is to evaluate similarities and
differences between the models and to deal with the question
of which model(s) can be used, on the basis of statistical
reasoning. The models are rewritten in such a way that they
contain parameters that are microbiologically relevant.

In(N/No)

)\ ‘ Time

FIG. 1. A growth curve.
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TABLE 1. Some growth models used in the literature

Author(s) Modeling Model(s)
Adair et al. (1) log(N) Linear regression
Bratchell et al. (2) log(N) Gompertz
Broughall et al. (3) log(N) Linear regression
Einarsson and Eriksson (4) log(N) Logistic, polynominal
Gibson et al. (5) log(N) Logistic, Gompertz
Gibson et al. (6) log(N) Gompertz
Griffiths and Phillips (8) log(N)? Stannard
Jason (9) N Logistic
Mackey and Kerridge (10) N Gompertz
Phillips and Griffiths (12) log(N)? Stannard
Stannard et al. (17) log(N)? Stannard

THEORY

Description of the bacterial growth curve. Since bacteria
grow exponentially, it is often useful to plot the logarithm of
the relative population size [y = In(N/N,)] against time (Fig.
1). The three phases of the growth curve can be described by
three parameters: the maximum specific growth rate, p,,,, is
defined as the tangent in the inflection point; the lag time, A,
is defined as the x-axis intercept of this tangent; and the
asymptote [A = In(N,./N,)] is the maximal value reached.
Curves may show a decline. This kind of behavior is called
the death phase and is not considered in this paper.

Reparameterization of the growth models. Most of the
equations describing a sigmoidal growth curve contain math-
ematical parameters (a, b, ¢, . . .) rather than parameters
with a biological meaning (A4, p,,, and A). It is difficult to
estimate start values for the parameters if they have no
biological meaning. Moreover, it is difficult to calculate the
95% confidence intervals for the biological parameters if
they are not estimated directly in the equation but have to be
calculated from the mathematical parameters. Therefore, all
the growth models were rewritten to substitute the mathe-
matical parameters with A, p,,, and . This was done by
deriving an expression of the biological parameters as a
function of the parameters of the basic function and then
substituting them in the formula. As an example, we show
here the modification of the Gompertz equation, which is
written as:

y = a-expl —exp(b — c1)] @

ApPPL. ENVIRON. MICROBIOL.

To obtain the inflection point of the curve, the second
derivative of the function with respect to ¢ is calculated:

d

-‘% = ac - exp[ —exp(b — ct)] - exp(b — c?) 2
il = ac? b b

pr i ac” exp[ — exp( ct)] - exp( ct) -

[exp(b — ct) — 1] 3)

At the inflection point, where ¢ = t,, the second derivative is
equal to zero:
& 0 bl “)
—_— = - . = c
dr !

Now an expression for the maximum specific growth rate
can be derived by calculating the first derivative at the

inflection point.
dy ac
= —_— = — 5
Mom ( dt>’ p &)

The parameter ¢ in the Gompertz equation can be substi-
tuted for by ¢ = p,.e/a.
The description of the tangent line through the inflection
point is:
a
y=um-t+;—u~mt.~ (6)

The lag time is defined as the z-axis intercept of the tangent
through the inflection point:

a
0=um-7\+;—v~mt.~ Y

Using equations 4, S, and 7 yields:
b -1
A= — ®)
c

The parameter b in the Gompertz equation can be substi-
tuted by:

TABLE 2. Models used and their modified forms

Model Equation

Modified equation®

Logistic
a

r= [1 + exp(b — cx)]

Gompertz
y = a-exp[ —exp(b — cx)]

Richards

y =afl + v.exp[k(r — 0~
Stannard { a+ ko)-»

y = ayl + exp| —

p

Schnute

e, (o b\ 1z exel-alt — ]|
Y "1 (IS Y R R T ——

A

y =
4pm
{1 + exp[—A—()\ -1 + 2]}
Km - €
y = Aexp{—exp[ 1 N=1n + 1]}

o 1 (-1
y = A{l + v.exp(l + v)-exp[:-(l + v)(“‘:)~()\ - 1)]}

o 1 (-1
y = A{l + v.exp(1 + v).exp[x~(1 + v)(“;)-()\ - t)]}

( (1—b))[l—bAexp(a~)\+l—b—at)]””
y= “'m
a 1 -5

e = exp(l).
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TABLE 3. Selection of models based on Schnute (16)

Values of a and b Model No. of
parameters
a>0,b=0 Gompertz 3
a>0,b<0 Richards 4
a>0,b=-1 Logistic 3
a=0,b=1 Linear 2
a=0,b=05 Quadratic 2
a=0,b=0 tth power 2
a<0,b=1 Exponential 3
me€
b = L A+ 1 (&)
a

The asymptotic value is reached for ¢ approaching infinity:
t—> oy >a>A=a (10)

The parameter a in the Gompertz equation can be substi-
tuted for by A, yielding the modified Gompertz equation:

Wm€
y = Aexp{ —exp[T N-10+ 1]} 11

The models with four parameters also contain a shape
parameter (v).

Table 2 shows the results for all equations used in this
article.

The modified Stannard equation appears to be the same as
the modified Richards equation. The parameters a and b in
the Schnute equation are retained in the modified Schnute
equation because they may be used for model selection
(Table 3). However, substitution of a and b in the Schnute
equation would result in the modified Richards equation.

Broughall et al. (3) used the Verhulst differential equation
(resulting in a logistic curve) at times greater than the lag
time and used N = N, if the time was smaller than the lag
time. This relation has no smooth transition from a lag phase
to a growth phase. Since all our growth data show such a
smooth transition, this model was not considered.

Fitting of the data. The nonlinear equations were fitted to
growth data by nonlinear regression with a Marquardt algo-
rithm (11, 13). This is a search method to minimize the sum
of the squares of the differences between the predicted and
measured values. The program automatically calculates
starting values by searching for the steepest ascent of the
curve between four datum points (estimation of p,), by
intersecting this line with the x axis (estimation of A), and by
taking the final datum point as estimation for the asymptote
(A). The algorithm then calculates the set of parameters with
the lowest residual sum of squares (RSS) and their 95%
confidence intervals.

Model comparison. One way to discriminate among mod-
els is to compare them statistically. In that case, the RSS
alone does not give enough information because different
models can have a different number of parameters. Models
with a greater number of parameters usually give a lower
RSS. A better method is to determine whether it is worth-
while to use more parameters to lower the RSS. Therefore,
data fits obtained by using the various models were com-
pared statistically by the use of the ¢ test and the F ratio test.

t test. First, the data were fitted by the Schnute model and
parameters a and b were evaluated. The Schnute model is a
comprehensive model; it encompasses all of the other sim-
pler models. This is shown in Table 3, in which values of the
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FIG. 2. Growth curve of L. plantarum at 18.2°C fitted with the
Gompertz (Gom) and Richards (Rich) models.

Schnute parameters a and b are given, leading to one of the
other models. The 95% confidence intervals of the different
parameters were calculated with the value given by the
Student ¢ test. If, for instance, a value of zero is in the 95%
confidence interval of b (and a > 0), the Gompertz model is
suitable (Table 3).

F test. The logistic, Gompertz, Richards, and Schnute
models were used to fit the data, and the RSS was calcu-
lated. Under the assumption that the four-parameter
Schnute model exactly predicts the number of organisms,
the RSS of the Schnute model was taken as an estimate of
the measuring error. Whether a three-parameter model
would be sufficient to describe the data could then be
validated with an F test. In this test, the difference between
the RSS values for the three- and four-parameter models was
compared to the RSS of the four-parameter model. The
difference in RSS of the three- and the four-parameter
models is the profit we get from adding one parameter. If this
profit is much smaller than the measuring error, as deter-
mined from the four-parameter model, adding the extra
parameter is not worthwhile, as it would not be observable.
If, however, this profit is much greater than the measuring
error, it is worthwhile to add the extra parameter. The
following is then calculated:

_ (RSS; - RSS,)/(DF, — DFy

tested against F pr’ ~DF1

RSS,/DF,;
In(N/No ) s e
8
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4
2..
LR i
-1 e VG e -
0 4 8 12 16 20 24 28
Time (hr)
s data — Gom - Rich

FIG. 3. Growth curve of L. plantarum at 35.0°C fitted with the
Gompertz (Gom) and Richards (Rich) models.
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TABLE 4. Statistical-analytical data for 40 growth curves of L. plantarum

APPL. ENVIRON. MICROBIOL.

T Vid F RSS
emp a. a,b b_. a,b,c b
0 e i e Gompertz Logistic table Gompertz Logistic® Richards
6.0 0.003 —0.988 0.994 0.001 0.078 4.13 1.70 1.70 1.70
6.1 —0.0006 -1.18 1.98 0.194 1.49 4.75 0.282 0.312 0.277
8.3 0.011 -0.113 0.435 1.91 53.6 4.21 0.707 1.97 0.660
8.6 0.008 —0.748 0.470 0.204 4.21 4.33 1.09 1.30 1.08
12.0 0.024 —0.247 0.548 0.577 18.4 4.36 1.13 2.11 1.10
12.2 0.023 —0.337 0.672 4.10 40.6 4.97 0.424 1.56 0.300
15.1 0.049 —0.786 0.289 0.875 5.03 4.45 1.06 1.30 1.00
15.2 0.049 —0.096 0.501 1.80 46.2 4.84 0.375 1.67 0.322
18.0 0.065 —0.086 0.540 7.84 49.9 4.60 0.611 2.02 0.391
18.2 0.059 —-4.23 0.275 1.45 0.485 4.75 1.39 1.29 1.24
18.2 0.076 —0.058 0.471 3.78 60.4 4.84 0.233 1.12 0.173
18.2 0.068 —0.192 0.350 0.301 30.0 4.31 0.516 1.20 0.509
18.6 —0.607 —4.72 6.39 1.99 6.35 6.60 0.155 0.252 0.111
21.5 -0.322 -2.04 2.89 0.277 2.50 5.99 0.486 0.658 0.464
21.5 0.092 —0.167 0.614 1.05 19.2 4.75 0.648 1.55 0.596
25.0 0.116 -0.317 0.786 3.10 23.8 4.97 0.800 2.07 0.611
25.0 0.082 -0.147 0.970 2.4 16.8 4.84 1.07 2.21 0.876
28.4 0.259 —0.676 0.201 1.69 10.0 4.84 0.430 0.714 0.373
28.6 0.252 —0.352 0.183 0.481 34.5 4.84 0.210 0.833 0.201
32.0 0.257 —1.06 0.432 1.06 2.71 4.97 0.883 1.01 0.798
32.0 0.260 —0.933 0.367 1.33 4.85 5.59 0.334 0.475 0.281
324 0.272 -0.276 0.328 0.035 324 4.84 0.241 0.948 0.240
34.9 0.301 —0.544 0.421 0.099 114 5.59 0.200 3.41 0.197
35.0 0.255 —0.314 0.623 0.510 17.0 4.97 0.482 1.24 0.459
35.3 0.257 -0.320 0.455 0.136 21.1 4.75 0.471 1.28 0.466
36.6 0.262 —0.207 0.635 1.08 22.2 4.67 0.722 1.81 0.667
37.9 0.245 —0.299 0.676 0.604 15.4 4.60 0.880 1.77 0.844
38.4 0.264 —0.870 0.487 0.469 5.11 5.99 0.229 0.394 0.213
40.0 0.247 -1.73 0.391 2.65 0.382 4.84 1.17 0.974 0.941
41.4 0.151 -1.26 0.713 0.416 1.65 5.12 0.668 0.756 0.638
41.5 0.043 -0.220 0.855 5.18 29.1 4.75 0.331 0.792 0.231
41.5 0.070 —0.403 1.26 1.06 6.45 4.75 1.57 2.22 1.44
41.8 —0.278 —-0.641 1.69 0.899 4.76 6.60 0.209 0.346 0.178
41.9 -1.01 —4.50 5.40 0.464 1.49 7.72 0.844 1.04 0.757
42.1 0.156 -0.152 0.726 3.31 26.8 4.67 0.400 0.975 0.319
42.2 0.014 —0.355 1.46 1.93 6.15 4.67 1.47 1.89 1.28
42.6 —0.101 —0.443 2.44 3.20 6.11 6.60 0.633 0.858 0.386
42.8 -7.82 -52.1 46.0 1.79 0.395 5.12 0.633 0.551 0.528
42.8 0.315 -1.09 0.824 0.083 2.63 4.75 0.141 0.171 0.140
42.8 —0.061 -2.20 1.61 0.084 0.527 5.12 0.105 0.110 0.104

¢ a and b are Schnute parameters.

® min and max are 95% confidence limits.

¢ Boldface data indicate acceptance of logistic model with ¢ test.
4 Boldface data indicate acceptance of given model with F test.

¢ Boldface data indicate that RSS with Gompertz model is greater than RSS with logistic model.

where RSS,; is the RSS from the Schnute model, RSS, is the
RSS from the three-parameter model, DF, is the number of
degrees of freedom from the Schnute model and equals n
points — 4, and DF, is the number of degrees of freedom
from the three-parameter model and equals »n points — 3.
Note that DF, — DF, = 1, so the F test becomes:

RSS; — RSS;
"~ RSS,/DF

If the models were linear in their parameters, this f value
would be F-distributed under the assumption that the four-
parameter model is correct. Even for nonlinear models, the
variance ratio shown above is approximately F-distributed
when the sample size is large (16). This analysis is an
approximation at best, and this procedure should be consid-
ered an informal process, rather than a rigorous statistical
analysis, because of the use of nonlinear models (16). In

tested against F b,

TABLE 5. Determination of models for L. plantarum based on
the method of Schnute (16)

No. (% of total)? of

Values of a Model results accepted with:
and b
t test F test

a>0,b=0 Gompertz 40 (100) 38 (95)
a>0,b<0 Richards 40 (100)
a>0,b=-1 Logistic 11 (28) 17 (43)
a=0,b=1 Linear 8 (20)
a=0,b=0.5 Quadratic 8 (20)
a=0,b=0 tth power 8 (20)
a<0,b=1 Exponential 8 (20)

“ Total number of experiments = 40.
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FIG. 4. Growth curve of L. plantarum at 18.0°C fitted with the
Gompertz (Gom) and Richards (Rich) models.

some boundary cases, the Student ¢ test and the F test can
therefore give contradictory results.

MATERIALS AND METHODS

In 40 experiments, Lactobacillus plantarum (American
Type Culture Collection [ATCC]l-identified; no ATCC num-
ber) was cultivated in MRS medium (Difco Laboratories) at
different temperatures. Growth was measured with plate
counts on pour plates (MRS medium with 12 g of agar [Agar
technical; Oxoid Ltd.] per liter). The inoculation level was
0.01% (about 5 - 10° organisms).

Growth data of Candida parapsilosis, Pseudomonas
putida, Enterobacter agglomerans, a Nocardia sp., Salmo-
nella heidelberg, Staphylococcus aureus, and Listeria
monocytogenes were kindly provided by J. P. M. Smelt,
C. J. M. Winkelmolen, P. Breeuwer, and F. G. C. T.
Sommerdijk.

RESULTS

All of the models visually gave reasonably good fits of the
data (Fig. 2 and 3, for example). In some cases, the Schnute
and Richards models gave some problems with the fitting
because the parameter estimates came in an area where the
function predicted such a large value that an overflow error
resulted. The Gompertz and logistic models never gave

In(N/No) 8

o 2 4 & 8 10 12
Time (hr)
= data — Gom  ----- Rich

FIG. 5. Growth curve of L. plantarum at 41.5°C fitted with the
Gompertz (Gom) and Richards (Rich) models.

BACTERIAL GROWTH CURVE MODELING 1879

In(N/No ) & <
s . -
4
2 e -
.»"'
0 ——— — — .
0 4 8 12 16 20 24

« daa — Gom - Log Time (hr)

FIG. 6. Growth curve of L. plantarum at 40.0°C fitted with the
Gompertz (Gom) and logistic (Log) models.

problems with fitting. In all cases, the RSS values for the
Richards and Schnute models were the same, which was
expected because the models are basically the same.

Plate count data for L. plantarum. In Table 4, the results of
the parameter estimation for 40 sets of data are reported. In
this table, the temperature at which the experiment was
conducted is given. With the use of the Student ¢ test value,
the 95% confidence intervals for the parameters a and b were
calculated. The lower 95% confidence limit of the parameter
ais given in Table 4 to determine whether a = 0 is within the
confidence interval. Furthermore, the 95% confidence limits
for b are given. Comparing the confidence intervals in Table
4 for b with Table 3 results in Table 5. In Table 3, we can see
that if b = 0, the Schnute model changes into the Gompertz
model, so we accepted the Gompertz model if the value of
zero was within the 95% confidence interval of b. This was
true in all cases (Table 4), so the Gompertz model, although
a three-parameter model, was accepted in all cases by the ¢
test. Furthermore, the f-testing values for the Gompertz and
the logistic models and the F table values are given in Table
4. With the use of the F test, the difference between the RSS
values for the three- and four-parameter models was com-
pared to the RSS of the four-parameter model. For the
Gompertz model, the f-testing value was lower than the F
table value in all but two cases (Table 4).

In the cases in which the F test favored the Richards

2]
olissetsiunnl lenlert, otlatenl oyt rer?]
LTI RR T Rl LS Sl kel P L LN N Al L)
2 v * LI .
2]
_6<
.a..
10 , : : . . ' Y
o 10 20 30 40
Exp. No.

FIG. 7. b confidence intervals of L. plantarum growth data fitted
with the Schnute model (16). Exp. No., Experiment number.
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FIG. 8. Results of an F test of L. plantarum growth data. The
Gompertz and Richards models are compared.

+ Fevalue

model over the Gompertz model (Fig. 4 and 5), the differ-
ences between the two models were still very small. The
logistic model, however, was accepted by the ¢ test only 11
times (out of 40) and by the F test 17 times (Table 4).

In addition, the RSS values of the Gompertz, logistic, and
Richards models are given in Table 4. The RSS values for the
four-parameter models were always lower than the RSS
values for the three-parameter models. In only three cases,
the logistic model gave a lower RSS value than the Gompertz
model (Table 4; Fig. 6), but in these cases the Gompertz
model still fitted the data acceptably.

In Fig. 7, the confidence intervals for the parameter b
(Schnute model with the ¢ test) are shown. In this graph, it
can be seen that the value of zero (Table 3, Gompertz model)

AprpPL. ENVIRON. MICROBIOL.

was always within the confidence interval; however, the
value of —1 (Table 3, logistic model) was much less fre-
quently within the confidence interval (only 11 times).

In Fig. 8, the results from the F test for the Gompertz
model are shown. The squares represent the f-testing values,
and the pluses represent the critical F table values (95%
confidence). If the f-testing value was smaller than the F
table value, the three-parameter model was accepted. In this
graph, it can be seen that the Gompertz model was rejected
only 2 times out of 40 (5%). This 5% rejection level may be
expected with a 95% confidence level.

Plate count data for other organisms. While it could be that
only L. plantarum growth data are described well by the
Gompertz model, the same comparison of models was
carried out with growth data from other microorganisms
(Tables 6 and 7). With these data, the Gompertz model was
accepted in 70% of the cases by the ¢ test (b = 0 within the
confidence interval) and in 67% of the cases by the F test.
The logistic model was accepted in 52% of the cases by the
t test (b = 0 within the confidence interval) and in 59% of the
cases by the F test.

DISCUSSION

In order to build models to describe the growth of micro-
organisms in food, it is necessary to measure growth curves.
To reduce the measured data to interesting parameters such
as the growth rate, it is recommended that the data be
described with a model instead of by using linear regression
over a subset of the data. Sigmoidal models to describe the
growth data can be constructed with three or four parameters.

We compared several models statistically and found that,

TABLE 6. Statistical-analytical data for 27 growth curves of organisms other than L. plantarum

r F RSS
Organism pin™? brin®?¢ bmax® — bl — -
Gompertz  Logistic table Gompertz Logistic® Richards
Candida parapsilosis 0.038 -1.60 0.761 1.71 1.11 10.1 0.114 0.100 0.073
C. parapsilosis 0.136 -1.12 0.154 6.67 4.86 10.1 0.086 0.070 0.027
C. parapsilosis 0.039 -1.60 1.16 0.071 1.07 10.1 0.102 0.135 0.100
C. parapsilosis 0.117 —0.673 0.751 0.557 21.1 10.1 0.030 0.205 0.025
C. parapsilosis -0.071 —-3.68 1.70 3.22 0.000 10.1 0.362 0.175 0.175
Pseudomonas putida 0.050 —-2.42 -0.513 18.7 1.08 4.17 4.47 2.86 2.76
P. putida 0.027 0.114 1.12 3.84 15.3 4.17 6.42 8.60 5.70
P. putida 0.059 —0.169 0.701 1.25 16.2 4.13 3.98 5.66 3.83
P. putida 0.037 —0.174 1.54 6.31 17.5 4.16 11.9 15.4 9.85
Enterobacter agglomerans 0.002 0.141 1.10 15.2 41.5 4.14 13.4 20.7 9.19
E. agglomerans 0.015 0.412 0.802 26.7 111 4.17 4.87 12.1 2.58
E. agglomerans 0.020 0.240 0.793 9.26 48.8 4.13 5.07 9.70 3.98
E. agglomerans 0.025 0.432 1.01 17.7 59.9 4.15 7.80 14.4 5.03
Nocardia sp. 0.072 -2.08 1.29 0.540 1.21 5.12 0.176 0.188 0.166
Salmonella heidelberg —3.18 -10.9 12.9 0.720 1.43 161 1.23 1.74 0.717
Staphylococcus aureus 0.178 —-0.759 1.82 0.843 3.86 6.61 0.526 0.798 0.450
S. aureus 0.009 -3.73 5.39 15.2 42.5 6.61 0.543 1.28 0.134
S. aureus -2.13 -3.39 5.39 1.25 1.73 6.61 1.87 2.01 1.49
S. aureus —3.60 -5.07 7.07 1.28 1.56 6.61 0.886 0.926 0.706
S. aureus -0.529 =2.11 4.09 2.86 4.66 6.61 4.54 5.58 2.89
S. aureus -0.315 -4.67 6.44 1.51 3.31 6.61 0.807 1.03 0.620
S. aureus 0.062 0.235 1.77 10.8 21.6 10.1 1.12 1.99 0.243
S. aureus 0.094 —0.056 2.06 14.4 29.6 10.1 0.873 1.63 0.151
S. aureus 0.452 0.747 1.25 3.4 5.31 10.1 0.273 0.353 0.127
S. aureus 0.066 -0.512 1.87 2.62 8.59 10.1 0.628 1.29 0.335
S. aureus -16.5 -171 172 0.000 0.136 18.5 0.007 0.007 0.007
Listeria monocytogenes -0.060 —1.66 1.81 0.094 3.20 18.5 0.031 0.078 0.030

¢ a and b are Schnute parameters.

% min and max are 95% confidence limits.
© Boldface data indicate acceptance of logistic model with ¢ test.
¢ Boldface data indicate acceptance of given model with F test.
¢ Boldface data indicate that RSS with Gompertz model is greater than RSS with logistic model.
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TABLE 7. Determination of models for organisms other than L.
plantarum based on the method of Schnute (16)

No. (% of total)* of

Val::j ;:f a Model results accepted with:

t test F test
a>0,b=0 Gompertz 19 (70) 18 (67)
a>0,b<0 Richards 25 (93)
a>0,b=-1 Logistic 14 (52) 16 (59)
a=0,b=1 Linear 8 (30)
a=0,b=0.5 Quadratic 8 (30)
a=0,b=0 1th power 8 (30)
a<0,b=1 Exponential 8 (30)

“ Total number of experiments = 27.

for L. plantarum, the Gompertz model was accepted in all
cases by the ¢ test and was accepted in 95% of the cases by
the F ratio test; therefore, the Gompertz model can be
regarded as sufficient to describe the growth curves of L.
plantarum. The logistic model, however, seems not to be
sufficient to describe the data. It was accepted in 28% of the
cases by the 7 test and in 43% of the cases by the F test with
L. plantarum.

With the data of other microorganisms, the Gompertz
model was accepted in 70% of the cases. With the data of the
other organisms, the logistic model was accepted in 52% of
the cases with the ¢ test and in 59% of the cases with the F
test. Linear, quadratic, tth-power, and exponential models
were accepted in very few cases. Therefore, we can con-
clude that all growth curves are better fitted with the
Gompertz model than with logistic, linear, quadratic, sth-
power, and exponential models.

In some cases, the confidence interval of the Schnute
parameter b (b,in — bmax) Was very large. In these cases,
there were not enough data to describe all three growth
phases. Therefore, the confidence level of the resulting
parameters is not very high. These sets of data are not very
suitable for the estimation of parameters.

In a number of cases, the four-parameter Schnute model
was statistically better than the Gompertz model (P. putida
and E. agglomerans). These growth curves contained a very
large number of datum points (34 to 38), and with such a
large number of datum points the difference in degrees of
freedom between three- and four-parameter models is not
important (with 34 datum points: 31 degrees of freedom for
Gompertz or 30 degrees of freedom for Richards). For the
other organisms (C. parapsilosis and S. aureus), the Gomp-
ertz model was accepted in most cases. For the growth
curves of the Nocardia sp., Salmonella heidelberg, and
Listeria monocytogenes, the Gompertz model was accepted
in all the cases, but only one curve for these organisms was
used.

The three-parameter models gave no difficulties in finding
the least-square parameters. In almost all the cases, the
Gompertz model can be regarded as the best model to
describe the growth data. If a three-parameter model is
sufficient to describe the data, it is recommended over a
four-parameter model because the three-parameter model is
simpler and therefore easier to use and because the three-
parameter solution is more stable since the parameters are
less correlated. Moreover, when a three-parameter model is
used, the estimates have more degrees of freedom, which
can be important when a growth curve with a small number
of measured points is used. Furthermore, it is very important
that all three parameters can be given a biological meaning.
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The fourth parameter in the four-parameter models is a
shape parameter and is difficult to explain biologically.

In a number of cases (especially when a large number of
datum points are collected), a four-parameter model can be
significantly better; therefore, it is recommended that the
procedure given in this paper be carried out with a number of
sets of data in order to find out the best model to describe the
specific sets of data.

ACKNOWLEDGMENTS

This work was partly supported by Unilever Research Laborato-
rium Vlaardingen.

We thank P. M. Klapwijk, J. P. M. Smelt, and H. G. A. M. Cuppers
for valuable discussions and H. H. Beeftink for reading the manuscript.

LITERATURE CITED

1. Adair, C., D. C. Kilsby, and P. T. Whittall. 1989. Comparison of
the Schoolfield (non-linear Arrhenius) model and the square
root model for predicting bacterial growth in foods. Food
Microbiol. 6:7-18.

2. Bratchell, N., A. M. Gibson, M. Truman, T. M. Kelly, and T. A.
Roberts. 1989. Predicting microbial growth: the consequences of
quantity of data. Int. J. Food Microbiol. 8:47-58.

3. Broughall, J. M., P. A. Anslow, and D. C. Kilsby. 1983. Hazard
analysis applied to microbial growth in foods: development of
mathematical models describing the effect of water activity. J.
Appl. Bacteriol. 55:101-110.

4. Einarsson, H., and S. G. Eriksson. 1986. Microbial growth
models for prediction of shelf life of chilled meat, p. 397402. In
Recent advances and developments in the refrigeration of meat
by chilling. Institut International du Froid-International Insti-
tute of Refrigeration, Paris.

5. Gibson, A. M., N. Bratchell, and T. A. Roberts. 1987. The effect
of sodium chloride and temperature on the rate and extent of
growth of Clostridium botulinum type A in pasteurized pork
slurry. J. Appl. Bacteriol. 62:479—490.

6. Gibson, A. M., N. Bratchell, and T. A. Roberts. 1988. Predicting
microbial growth: growth responses of salmonellae in a labora-
tory medium as affected by pH, sodium chloride and storage
temperature. Int. J. Food Microbiol. 6:155-178.

7. Gompertz, B. 1825. On the nature of the function expressive of
the law of human mortality, and on a new mode of determining
the value of life contingencies. Philos. Trans. R. Soc. London
115:513-585.

8. Griffiths, M. W., and J. D. Phillips. 1988. Prediction of the
shelf-life of pasteurized milk at different storage temperatures.
J. Appl. Bacteriol. 65:269-278.

9. Jason, A. C. 1983. A deterministic model for monophasic
growth of batch cultures of bacteria. Antonie van Leeuwenhoek
J. Microbiol. Serol. 49:513-536.

10. Mackey, B. M., and A. L. Kerridge. 1988. The effect of
incubation temperature and inoculum size on growth of salmo-
nellae in minced beef. Int. J. Food Microbiol. 6:57-65.

11. Marquardt, D. W. 1963. An algorithm for least-squares estimation
of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431-441.

12. Phillips, J. D., and M. W. Griffiths. 1987. The relation between
temperature and growth of bacteria in diary products. Food
Microbiol. 4:173-185.

13. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. 1988. MRQMIN, p. 772-776. In Numerical recipes.
Cambridge University Press, Cambridge.

14. Richards, F. J. 1959. A flexible growth function for empirical
use. J. Exp. Bot. 10:290-300.

15. Ricker, W. E. 1979. Growth rates and models. Fish Physiol.
8:677-743.

16. Schnute, J. 1981. A versatile growth model with statistically
stable parameters. Can. J. Fish. Aquat. Sci. 38:1128-1140.

17. Stannard, C. J., A. P. Williams, and P. A. Gibbs. 1985. Tem-
perature/growth relationship for psychotrophic food-spoilage
bacteria. Food Microbiol. 2:115-122.

1sonb Aq 6T0Z ‘T2 Areniga- uo /610" wse’war//.dny woll papeojumoq


http://aem.asm.org/

