Complex Analysis
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CAUCHY-HADAMARD FORMULA

Theorem [Cauchy, 1821] The radius of convergence of the power series Z cn(z—20)" is
n=0
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Example. For any increasing sequence of natural numbers n; the radius of convergence

of the power series Z 2% is R=1.
j=1

Proof. Let R=1/lim,../|c,|€[0, oo].

If R<oo, choose any r>R. Then lim, .o 3/|c.|>1/r and so |c,|r™ > 1 for infinitely
many indices n. So ¢,(z—z))" does not approach 0 for any z with |z—z|=r>R.
So the power series diverges for any z with |z - z| > R.

If R>0, choose any 0<7<R. Then lim,_ e /|c.|<1/r andso |c,|r® <1 for all but
finitely many indices n. Hence for any z with |z - 2| <7,
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So the power series converges for any z with |z - z| < R.
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< 0.
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It follows that the radius of convergence is R. O

Exercises. Find the radius of convergence of each of the following power series.
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