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Abstract

In distributed architecture control problems, there is a collection of interconnected decision
making components that seek to realize desirable collective behaviors through local interac-
tions and by processing local information. Applications range from autonomous vehicles to
energy to transportation. One approach to control of such distributed architectures is to view
the components as players in a game. In this approach, two design considerations are the com-
ponents’ incentives and the rules that dictate how components react to the decisions of other
components. In game theoretic language, the incentives are defined through utility functions
and the reaction rules are online learning dynamics. This chapter presents an overview of
this approach, covering basic concepts in game theory, special game classes, measures of dis-
tributed efficiency, utility design, and online learning rules, all with the interpretation of using
game theory as a prescriptive paradigm for distributed control design.

Keywords: Learning in games; Evolutionary games; Multiagent systems; Distributed decision
systems;

1 Introduction

There is growing interest in distributed architecture or networked control systems, with emergent
applications ranging from smart grid to autonomous vehicle networks to mobile sensor platforms.
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As opposed to a traditional control system architecture, there is no single decision making entity
with full information and full authority that acts as an overall system controller. Rather, decisions
are made by a collective of interacting entities with local information and limited communica-
tion capabilities. The challenge is to derive distributed controllers to induce desirable collective
behaviors.

One approach to distributed architecture systems is to view the decision making components
as individual players in a game and to formulate the distributed control problem in terms of game
theory. The basic elements of what constitutes a game are (i) a set of players or agents; (ii) for
each player, a set of choices; and (iii) for each player, preferences over the collective choices of
agents, typically expressed in the form of a utility function. In traditional game theory (e.g., [14]),
these elements are a model of a collection of decision makers, typically in a societal context (e.g.,
competing firms, voters, bidders in an auction, etc.). In the context of distributed control, these
elements are design considerations in that one has the degree of freedom on how to decompose
a distributed control problem and how to design the preferences/utility functions to properly in-
centivize agents. Stated differently, game theory in this context is being used as a prescriptive
paradigm, rather than a descriptive paradigm [28, 41].

Formulating a distributed control problem in game theoretic terms implicitly suggests that
the outcome—or more appropriately, the solution concept—of the resulting game is a desirable
collective configuration. The most well known solution concept is Nash equilibrium, in which
each player’s choice is optimal with respect to the choices of other agents. Other solution con-
cepts, which are generalizations of Nash equilibrium, are correlated and coarse correlated equilib-
rium [49]. Typically, a solution concept does not uniquely specify the outcome of a game (e.g., a
game can have multiple Nash equilibria), and so there is the issue that some outcomes are better
than others.

A remaining concern is how a solution concept emerges at all. Given the complete descrip-
tion of a game, an outside party can proceed to compute (modulo computational complexity con-
siderations [11]) a proposed solution concept realization. In actuality, the data of a game (e.g.,
specific utility functions) is distributed among the players and not necessarily shared or commu-
nicated. Rather, over time players might make observations of the choices of the other players
and eventually the collective play converges to some limiting structure. This latter scenario is
the topic of game theoretic learning, for which there are multiple survey articles and monographs
(e.g., [13,16,40,49]). Under the descriptive paradigm, the learning in games discussion provides a
plausibility argument of how players may arrive at a specified solution concept realization. Under
the prescriptive paradigm, the learning in games discussion suggests an online algorithm that can
lead agents to a desirable solution concept realization.

This article will provide an overview of approaching distributed control from the perspective
of game theory. The presentation will touch on each of the aforementioned aspects of problem
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formulation, game design, and game theoretic learning.

2 Game Theoretic Distributed Resource Utilization

2.1 Setup

Various problems of interest take the form of allocating a collection of assets to utilize a set of
resources to a desired effect. In sensor coverage problems (e.g., [10]), the “assets” are mobile
sensors, and the “resources” are the regions to be covered by the sensors. For any given allocation,
there is an overall score reflecting the quality of the coverage. In traffic routing problems (e.g, [37]),
the “assets” are vehicles (or packets in a communication setting), and the “resources” are roads (or
channels). The objective is to route traffic from origins to destinations in order to minimize a global
cost such as congestion.

It will be instructive to intrepret the forthcoming discussion on distributed control in the frame-
work of such distributed resource utilization problems. As previously mentioned, the framework
captures a variety of applications of interest. Furthermore, focusing on this specific setting will
enhance the clarity of exposition.

More formally, the problem is to allocate a collection of assets N = {1, 2, ..., n} over a col-
lection of resources R = {1, 2, . . . ,m} in order to optimize a given system level objective. The
set Ai ⊆ 2R is the allowable resource selections by asset i. In terms of the previous examples, an
allowable resource selection is an area covered by a sensor or a set of roads used by vehicle. The
system level objective is a mapping W : A → R whereA = A1×· · ·×An denotes the set of joint
resource selections. We denote a collective configuration by the tuple a = (a1, a2, ..., an) where
ai ∈ Ai is the choice, or action, of agent i.

Moving towards a game theoretic model, we will identify the set of assets as the set of agents
or players. Likewise, we will identify Ai as the choice set of agent i. We defer for now specifying
a utility function for agent i.

Looking forward to the application of game theoretic learning, we will consider agents select-
ing actions iteratively over an infinite time horizon t ∈ {1, 2, ...}. Depending on the update rules
of the agents, the outcome is a sequence of joint actions a(1), a(2), a(3), .... The action of agent i
at time t is chosen according to some update policy, πi(·), i.e.,

ai(t) = πi (information available to agent i at time t) . (1)

The update policy πi(·) specifies how agent i processes available information to formulate a de-
cision. We will be more explicit about the argument of the πi(·)’s in the forthcoming discussion.
For now, the information available to an agent can include both knowledge regarding previous ac-
tion choices of other agents and certain system-level information that is propagated throughout the
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system.
The main goal is to design both the agents’ utility functions and the agents’ local policies

{πi}i∈N to ensure that the emergent collective behavior optimizes the global objective W in terms
of the asymptotic properties of W (a(t)) as t→∞.

2.2 Prescriptive paradigm

Once the players and their choices have been set, the remaining elements in the prescriptive
paradigm that are yet to be designed are (i) the agent utility functions and (ii) the update policies,
{πi}i∈N . One can view this specification in terms of the following two-step design procedure:

Step #1: Game Design. The first step of the design involves defining the underlying interaction
structure in a game theoretic environment. In particular, this choice involves defining a utility
function for each agent i ∈ N of the form Ui : A → R. The utility of agent i for an action
profile a = (a1, a2, ..., an) is expressed as Ui(a) or alternatively Ui(ai, a−i) where a−i denotes the
collection of actions other than player i in the joint action a, i.e., a−i = (a1, ..., ai−1, ai+1, ..., an).
A key feature of this design choice is the coupling of the agents’ utility functions where the utility,
or payoff, of one agent is affected by the actions of other agents.

Step #2: Learning Design. The second step involves defining the decision making rules for
the agents. That is, how does each agent process available information to formulate a decision.
A typical assumption in the framework of learning in games is that each agent uses historical
information from previous actions of itself and other players. Accordingly, at each time t the
decision of each agent i ∈ N is made independently through a learning rule of the form

ai(t) = πi

(
{a(τ)}τ=1,...,t−1 ;Ui(·)

)
. (2)

The are two important considerations in the above formulation. First, we stated for simplicity
that agents can observe the actions of all other agents. In games with a graphical structure [22],
one only requires historical information from a subset of other players. Other reductions are also
possible, such as aggregate information of other players of even just measurements of one’s own
utility [13,16,40,49]1. Second, implicit in the above construction is that the learning rule is defined
independently of the utility function, and an agent’s utility function then enters as a parameter of a
specified learning rule.

1Alternative agent control policies where the policy of agent i also depends on previous actions of agent i or auxil-
liary “side information” could also be replicated by introducing an underlying state in the game-theoretic environment.
The framework of state based games, introduced in [23], represents one such framework that could accomplish this
goal.
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This second consideration offers a distinction between conventional distributed control and
game theoretic distributed control in the role of the utility function for the individual agents
{Ui}i∈N . An agent may be using a specific learning rule, but the realized behavior depends on
the specified utility function. In a more conventional approach, there need not be such a decom-
position. Rather, one might directly specify the agents’ control policies {πi}i∈N and perform an
analysis regarding the emergent properties of the given design, e.g., as is done in models of flocking
or bio-inspired controls [34]. An advantage of the decomposition is that one can analyze learn-
ing rules for classes of games and separately examine whether or not specified utility functions
conform to such an assumed game class.

The following example demonstrates how a given distributed control policy {π}i∈N can be
reinterpreted as a game-theoretic control approach with appropriately defined agent utility func-
tions {Ui}i∈N .

Example 2.1 (Consensus) Consider the well-studied consensus/rendezvous problem [5,21,36,42]
where the goal is to drive the agents to agreement on a state x∗ ∈ R when each agent has limited
information regarding the state of other agents in the systems. Specifically, we will say that the set
of admissible states (or actions) of each agent i ∈ N is Ai = R and agent i at stage t can observe
the previous state choices at stage t−1 of a set of neighboring agents denoted byNi(t) ⊆ N \{i}.
Consider the following localized averaging dynamics where the decision of an agent i ∈ N at time
t is of the form

ai(t) =
1

Ni(t)
∑

j∈Ni(t)

aj(t− 1). (3)

Given an initial state profile a(0), the dynamics in (3) produces a sequence of state profiles a(1),
a(2), . . . . Whether or not the state profiles converge to consensus under the above dynamics (or
variants thereof) has been extensively studied in the existing literature [4, 36, 44].

Now we will present a game-theoretic design that leads to the same collective behavior. More
formally, consider a game-theoretic model where each agent i ∈ N is assigned an action set
Ai = R and a utility function of the form

Ui(ai, a−i) = − 1

2 |Ni(t)|
∑

j∈Ni(t)

(ai − aj)2, (4)

where |Ni(t)| denotes the cardinality of the set Ni(t). Now, suppose each agent follows the well
known best-response learning rule of the form

ai(t) ∈ Bi(a−i(t)) = arg max
ai∈Ai

Ui(ai, a−i(t− 1)),

whereBi(a−i(t)) is referred to as the best response set of agent i to the action profile a−i(t). Given
an initial state profile a(0), it is straightforward to show that the ensuing action or state profiles
a(1), a(2), . . . , will be equivalent for both design choices.
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The above example illustrates the separation between the learning rule and the utility function.
The learning rule is best response dynamics. When the utility function is the above quadratic form,
then the combination leads to the usual distributed averaging algorithm. If the utility function
is changed (e.g., weighted, non-quadratic, etc.), then the realization of best response learning is
altered, as well as the structure of the game defined by the collection of the utility functions, but
the learning rule remains best response dynamics.

An important property of best response dynamics and other learning rules of interest is that
the actions of agent i can depend explicitly on the utility function of agent i but not (explicitly)
on the utility functions of other agents. This property of learning rules in the learning in games
literature is called being uncoupled. [3, 17, 19, 49]. Of course, the action stream of agent i, i.e.,
ai(0), ai(1), ..., does depend on the actions of other agents, but not the utility functions behind
those actions.

It turns out that there are many instances in which control policies not derived from a game
theoretic perspective can be reinterpreted as the realization of an uncoupled learning rule from a
game theoretic perspective. These include control policies that have been widely studied in the
cooperative control literature with application domains such as consensus and flocking [35, 43],
sensor coverage [29, 32], routing information over networks [37], among many others.

While the design of such control policies can be approached in either a traditional perspective
or a game-theoretic perspective, there are potential advantages associated with viewing control
design from a game theoretic perspective. In particular, a game theoretic perspective allows for a
modularized design architecture, i.e., the separation of game design and learning design, that can
be exploited in a plug-and-play fashion to provide control algorithms with automatic performance
guarantees:

Game Design Methodologies. There are several established methodologies for the design of
agent objective functions, e.g., Shapley value and marginal contribution [26]. The methodologies,
which will be briefly reviewed in Section 3.6, are systematic procedures for deriving the agent
objective functions {Ui}i∈N from a given system-level objective function G. These methodologies
often provide structural guarantees on the resulting game, e.g., existence of a pure Nash equilibrium
or a potential game structure, that can be exploited in distributed learning.

Learning Design Methodologies. The field of learning in games has sought out to establish
decision-making rules that lead to Nash equilibrium or other solution concepts in strategic form
games. In general, it has been shown (see [19]) that there are no “natural” dynamics that converge
to Nash equilibria for all games, where natural refers to dynamics that do not rely on some form
of centralized coordination, e.g., exhaustive search of the joint action profiles. For example, there
are no rules of the form (2) that provide convergence to a Nash equilibrium in any game. However,
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the same limitations do not hold when we transition from “all games” to “all games of a given
structure”. In particular, there are several positive results in context of learning in games for special
classes of games (e.g., potential games and variants thereof). These results, which will be discussed
in Section 4, identify learning dynamics that yield desirable performance guarantees when applied
to the realm of potential games.

Performance Guarantees. Merging a game design methodology with an appropriate learning
design methodology can often result in agent control policies with automatic performance guaran-
tees. For example, employing a game design where agent utility functions constitute a potential
game coupled with a learning algorithm that ensures convergence to a pure Nash equilibrium in po-
tential games, provides agent control policies that converge to the Nash equilibrium of the derived
game. Furthermore, additional structure on the agents’ utility functions can often be exploited to
provide efficiency bounds on the Nash equilibria, c.f., price of anarchy [33], as well approxima-
tions for the underlying convergence rates [8, 31, 39].

Human-Agent Collaborative Systems. Game theory constitutes a design choice for control
policies in distributed systems comprised purely of engineering components. However, when
a networked system consists of both engineering and human-decision making entities, e.g., the
smart grid, game theory transitions from a design choice to a necessity. The involvement of human
decision-making entities in a system requires that the system-operator utilizes game theory for
the purpose of modeling and influencing the human decision-making entities to optimize system-
performance.

3 Solution Concepts, Game Structures, and Efficiency

Recall that an important metric in the game theoretic approach to distributed control is the asymp-
totic properties of a system level objective function, i.e., W (a(t)) as t → ∞. These asymptotic
properties depend on both aspects of the prescriptive paradigm, i.e., the utility functions and learn-
ing rule. The specification of utility functions in itself defines an underlying game that is repeatedly
played over stages. In this section, we review properties related to this underlying game in terms
of solution concepts, game structures, and measures of efficiency.

In this section we will temporarily distance ourselves from the design objectives set forth in this
manuscript with the purpose of identifying properties of games that are relevant to our mission. To
that end, we will consider a finite strategic form game G with agent set N = {1, 2, . . . , n} where
each agent i ∈ N has an action set Ai and a utility function Ui : A → R. Further, there exists
a system-level objective W : A → R that a system designer is interested in maximizing. We
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will often denote such a game by the tuple G = {N, {Ai}, {Ui},W} where we use the shorthand
notation {·} instead of {·}i∈N to denote the agents’ action sets or utility functions.

3.1 Solution concepts

The most widely known solution concept in game theory is a pure Nash equilibrium, defined as
follows.

Definition 3.1 An action profile ane ∈ A is a pure Nash equilibrium if for any agent i ∈ N

Ui(a
ne
i , a

ne
−i) ≥ Ui(ai, a

ne
−i),∀ai ∈ Ai. (5)

A pure Nash equilibrium represents an action profile where no agent has a unilateral incentive
to alter its action provided that the behavior of the remaining agents is unchanged. A pure Nash
equilibrium need not exist for any game G.

The definition of Nash equilibrium also extends to scenarios where the agents can probabilis-
tically choose their actions. Define a strategy of agent i as pi ∈ ∆(Ai) where ∆(Ai) denotes the
simplex over the finite action set Ai. We will express a strategy pi by the tuple {paii }ai∈Ai

where
paii ≥ 0 for any ai ∈ Ai and

∑
ai∈Ai

paii = 1. We will evaluate the utility of an agent i ∈ N for a
strategy profile p = (p1, . . . , pn) as

Ui(pi, p−i) =
∑
a∈A

Ui(a)× pa11 × · · · × pann . (6)

which has the usual interpretation of the expected utility under independent randomized actions.
We can now state the definition of Nash equilibrium when extended to mixed (or probabilistic)

strategies.

Definition 3.2 A strategy profile pne ∈ ∆(A1) × · · · ×∆(An) is a mixed Nash equilibrium if for
any agent i ∈ N

Ui(p
ne
i , p

ne
−i) ≥ Ui(pi, p

ne
−i), ∀pi ∈ ∆(Ai). (7)

Unlike pure Nash equilibria, a mixed Nash equilibrium is guaranteed to exist in any2 game G.
A common critique regarding the viability of pure or mixed Nash equilibria as a characteriza-

tion of achievable behavior in multiagent systems is that the complexity associated with computing
such equilibria is often prohibitive [11]. We now introduce a weaker solution concept, which is
defined relative to a joint distribution z ∈ ∆(A), that does not suffer from such issues.

Definition 3.3 A joint distribution z = {za}a∈A ∈ ∆(A) is a coarse correlated equilibrium if for
any agent i ∈ N ∑

a∈A

Ui(ai, a−i)z
(ai,a−i) ≥

∑
a∈A

Ui(a
′
i, a−i)z

(ai,a−i), ∀a′i ∈ Ai. (8)

2Recall that we are assuming a finite set of players, each with a finite set of actions.
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Figure 1: The relationship between the three solution concepts: pure Nash equilibrium, mixed
Nash equilibrium, and coarse correlated equilibrium.

A coarse correlated equilibrium is a joint distribution z such that each agent’s expected utility
according to that distribution is at least as high as the agent’s expected utility for committing to any
fixed action a′i ∈ Awhile all the other agents play according to their marginal distribution of z. It is
straightforward to verify that any mixed Nash equilibrium is a coarse correlated equilibrium; hence,
the set of coarse correlated equilibria is non-empty for any game, G. Furthermore, as we will see
in Section 4.4, there are simple learning algorithms that ensure that the empirical frequency of play
will approach the set of coarse correlated equilibria in a reasonable period of time. We will discuss
techniques for characterizing the efficiency of this type of collective behavior in Section 3.3.3

Figure 1 highlights the relationship between the three solution concepts discussed above.

3.2 Measures of efficiency

It is important to highlight that the above equilibrium definitions have no dependence on the system
level objective function. The goal here is to understand how the efficiency associated with such
equilibria compares to the optimal behavior with respect to a system level objective function. Here,
we investigate two common worst-case measures, termed price of anarchy and price of stability
[33], for characterizing the inefficiency associated with equilibria in games.

The first measure that we consider is the price of anarchy, which is defined as the worst-case
ratio between the performance of the worst equilibrium and the optimal system behavior. We use
the terminology worst equilibrium as the price of anarchy could be defined by restricting attention
to any of the aforementioned equilibrium sets. Focusing on pure Nash equilibria for simplicity, the
price of anarchy associated with a game G is defined as

PoA(G) = min
ane∈PNE(G)

{
W (ane)

W (aopt)

}
≤ 1, (9)

3Another common equilibrium set, termed correlated equilibrium, is similar to coarse correlated equilibrium where
the difference lies in the consideration of conditional deviations as opposed to the unconditional deviations considered
in (8). A formal definition of correlated equilibrium can be found in [49].
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where aopt ∈ arg maxa∈AW (a) and PNE(G) denotes the set of pure Nash equilibria in the game
G. Note that the price of anarchy given in (9) provides a lower bound on the performance associated
with any pure Nash equilibrium in the game G.

The second measure that we consider is the price of stability, which is defined as the best-case
ratio between the performance of the best equilibrium and the optimal system behavior. Focusing
on pure Nash equilibria for simplicity, the price of stability associated with a game G is defined as

PoS(G) = max
ane∈PNE(G)

{
W (ane)

W (aopt)

}
≤ 1. (10)

By definition, PoS(G) ≥ PoA(G). The price of stability is a more optimistic measure of the
efficiency loss associated with pure Nash equilibrium. When analyzing dynamics that converge to
specific types of equilibrium, e.g., the best Nash equilibrium, the price of stability may be a more
reasonable characterization of the efficiency associated with the limiting behavior.

The above definition of price of anarchy and price of stability also extend to situations where
there is uncertainty regarding the structure of the specific game. To that end, let G denote a family
of possible games. The price of anarchy and price of stability associated with the family of games
is then defined as the worst-case performance of all games within that family, i.e.,

PoA(G) = min
G∈G
{PoA(G)} , (11)

PoS(G) = min
G∈G
{PoS(G)} . (12)

Clearly, 1 ≥ PoS(G) ≥ PoA(G). For clarity, a PoA(G) = 0.5 implies that regardless of the
underlying game G ∈ G, any pure Nash equilibrium is at least 50% efficient when compared to the
performance of the optimal allocation for that game.

The definitions of price of anarchy and price of stability given in (9) and (10) can be extended
to broader classes of equilibria, i.e., mixed Nash equilbria or coarse correlated equilibria, in the
logical manner. To perform the above analysis for broader equilibrium sets, we extend the defi-
nition of the welfare function to a distribution z ∈ ∆(A) as W (z) =

∑
a∈AW (a)za. Note that

for a given family of games G, the price of anarchy associated with pure Nash equilibria would be
better (closer to 1) than the price of anarchy associated with coarse correlated equilibrium. Since
coarse correlated equilibria contain Nash equilibria, one would naturally expect that the efficiency
associated with equilibria could be far worse than the efficiency associated with Nash equilibria.
Surprisingly, it often turns out that this is not the case as we will see below.

3.3 Smoothness

Charactering the inefficiency of equilibria often is challenging and often involves a non-trivial do-
main specific analysis. One attempt at providing a universal approach to characterizing efficiency
loss in distributed systems, termed smoothness [38], is given in the following theorem.

10



Theorem 3.1 Consider any game G where the agents’ utility functions satisfy
∑

i∈N Ui(a) ≤
W (a) for any a ∈ A. If there exists parameters λ > 0 and µ > −1 such that for any two action
profiles a, a∗ ∈ A ∑

i

Ui(a
∗
i , a−i) ≥ λ ·W (a∗)− µ ·W (a), (13)

then the efficiency associated with any coarse correlated equilibrium zcce ∈ ∆(A) of G must
satisfy

W (zcce)

W (aopt)
≥ λ

1 + µ
. (14)

We will refer to a game G as (λ, µ)−smooth if the game satisfies (13).

Theorem 3.1 demonstrates that the problem of evaluating the price of anarchy in a given game
can effectively be recast as a problem of solving for the appropriate coefficients (λ, µ) that satisfsy
(13) and maximize λ

1+µ
. This analysis naturally extends to guarantees over a family of games G,

PoA(G) ≥ inf
λ>0,µ>−1

{
λ

1 + µ
: G is (λ, µ) smooth for all G ∈ G

}
, (15)

where the above expression is referred to as the robust price of anarchy [38]. In line with the
forthcoming discussion (cf., Section 4.4), implementing a learning rule that leads to the set of
coarse correlated equilibrium provides performance guarantees that conform to this robust price of
anarchy.

One example of an entire class of games with known price of anarchy bounds is congestion
games with affine congestion functions [37] (see also Example 3.1). Another class is valid utility
games, introduced in [45], which is very relevant to distributed resource utilization problems. A
critical property of valid utility games is a system-level objective that is submodular. Submod-
ularity corresponds to a notion of decreasing marginal returns that is a common feature of many
objective function in engineering systems. A set-based function f : 2N → R is submodular if for
any S ⊆ T ⊆ N \ {i}, we have

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ). (16)

In each of these settings, [38] has derived the appropriate smoothness parameters hence provid-
ing the price of anarchy guarantees. Accordingly, the resulting price of anarchy holds for coarse
correlated equilibrium as well as Nash equilibrium.

Theorem 3.2 ( [38, 45]) Consider any game G = (N, {Ai}, {Ui},W ) that satisfies the following
three properties:

(i) The objective function W is submodular;
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(ii) For any agent i ∈ N and any action profile a ∈ A,

Ui(a) ≥ W (a)−W (ai = ∅, a−i),

where ai = ∅ is when player i is removed from the game;

(iii) For any action profile a ∈ A, the sum of the agents’ utilities satisfies∑
i∈N

Ui(a) ≤ W (a).

We will refer to such a game as a valid utility game. Any valid utility game G is smooth with
parameters λ = 1 and µ = 1; hence, the robust price of anarchy is 1/2 for the class of valid utility
games. Accordingly, the efficiency guarantees associated with any coarse correlated equilibrium
zcce ∈ ∆(A) in a valid utility game satisfies

W (zcce) ≥
(

1

2

)
W (aopt).

One example of a valid utility game is the vehicle target assignment problem which will be
presented in Example 3.3. Here, the system-level objective function is submodular and Condi-
tion (ii) in Theorem 3.2 is satisfied by the given design. Further, it is straightforward to verify that
Condition (iii) is also satisfied. Accordingly, all coarse correlated equilibria in the designed game
for the vehicle target assignment problem are at least 50% efficient. Consequently, the application
of learning rules that lead to coarse correlated equilibria (cf., Section 4.4) will lead to a collective
behavior in line with these efficiency guarantees.

3.4 Game structures

The two components associated with a game-theoretic design are the agent utility functions, which
define an underlying game, and the learning rule. Both components impact various performance
objectives associated with the distributed control design. The specification of the agent utility func-
tions directly impacts the price of anarchy, which can be viewed as the efficiency associated with
the asymptotic collective behavior. On the other hand, the specification of the learning algorithm
dictates the transient behavior in its attempt to drive the collective behavior to the solution concept
of interest.

At first glance it appears that the objectives associated with these two components are unrelated
to one another. For example, one could employ a design where (i) the agents’ utility functions are
chosen to optimize the price of anarchy of pure Nash equilibria and (ii) a learning algorithm is
employed that drives the collective behavior to a pure Nash equilibrium. Unfortunately, such de-
coupling is not necessarily possible due to limitations associated with (ii). As previously discussed,
there are no “natural dynamics” of the form

ai(t) = Πi (a(0), a(1), . . . , a(t− 1);Ui) (17)
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that lead to a (pure or mixed) Nash equilibrium in every game [19], where “natural” refers to
uncoupled dynamics (i.e., agents are uninformed of the utility functions of other agents) and rules
out behaviors such as exhaustive search or centralized coordination.

Given such impossibility results, it is imperative that the game design component addresses
objectives beyond just price of anarchy. In particular, it is of paramount importance that the result-
ing game has properties that can be exploited in distributed learning. In this section we will review
such game structures. Each of these game structures provides a degree of alignment between the
agents’ utility functions {Ui} and a system-level potential function φ : A → R.

The first class of games we introduce, termed potential games [30], exhibits perfect alignment
between the agents’ utility functions and the potential function φ.

Definition 3.4 (Potential Game) A game G is an (exact) potential game if there exists a potential
function φ : A → R such that for any action profile a ∈ A, agent i ∈ N , and action choice
a′i ∈ Ai, we have

Ui(a
′
i, a−i)− Ui(ai, a−i) = φ(a′i, a−i)− φ(ai, a−i). (18)

Note that any maximizing action profile a ∈ arg maxa∈A φ(a) is a pure Nash equilibrium; hence,
a pure Nash equilibrium is guaranteed to exist in any potential game. Further, as we will see in
the forthcoming Section 4, the structure inherent to potential games can be exploited to bypass the
impossibility result highlighted above. In other words, there are natural dynamics that lead to a
Nash equilibrium in any potential game. We will survey some of these dynamics in Section 4.

There are several variants of potential games that seek to relax the equality given in (18) while
preserving the exploitability of the game structure for distributed learning. One of the properties
that is commonly exploited in distributed learning is the monotonicity of the potential function
along a better reply path, which is defined as follows:

Definition 3.5 (Better Reply Path) A better reply path is a sequence of joint actions a1, a2, . . . , am

such that for each k ∈ {1, . . . ,m − 1} (i) ak+1 = (ai, a
k
−i) for some agent i ∈ N with action

ai ∈ Ai, ai 6= aki , and (ii) Ui(ak+1) > Ui(a
k).

Informally, a better reply path is a sequence of joint actions where each subsequent joint action
is the result of an advantageous unilateral deviation. In a potential game, the potential function is
monotonically increasing along a better reply path. Since the joint action set A is finite, any better
reply will lead to a pure Nash equilibrium in a finite number of iterations. This property is known
as the finite improvement property [30].4

We now introduce the class of weakly acyclic games which relaxes the finite improvement
property condition.

4Commonly studied variants of exact potential games, e.g., ordinal or weighted potential games, also possess the
finite improvement property.
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Definition 3.6 (Weakly Acyclic Game) A gameG is weakly acyclic under better replies if for any
joint action a ∈ A there exists a better reply path from a to a pure Nash equilibrium of G.

As with potential games, a pure Nash equilibrium is guaranteed to exist in any weakly acyclic
game. One advantage of considering broader game classes as a mediating layer for game theoretic
control designs is the expansion of available game design methodologies for designing agent utility
functions within that class.

3.5 Illustrative examples

At first glance it may appear that the framework of potential games (or weakly acyclic games) is
overly restrictive as a framework for the design of networked control systems. Here, we provide
three examples of potential games, which illustrates the breadth of the problem domains that can
be modeled and analyzed within this framework.

The first example focuses on distributed routing and highlights how a reasonable model of user
behavior, i.e., users seeking to minimize their experienced congestion, constitutes a potential game.

Example 3.1 (Distributed Routing) A routing problem consists of a collection of self-interested
agents that need to utilize a common network to satisfy their individual demands. The network is
characterized by a collection of edgesE = {e1, . . . , em} where each edge e ∈ E is associated with
an anonymous congestion function ce : {1, 2, . . . } → R that defines the congestion associated with
that edge as a function of the number of agents using that edge. That is, ce(k) is the congestion
on edge e when there are k ≥ 1 agents using that edge. Each agent i ∈ N is associated with an
action setAi ⊆ 2E , which satisfies the agent’s underlying demands, as well as a local cost function
Ji : A → R of the form

Ji(ai, a−i) =
∑
e∈ai

ce(|a|e),

where |a|e = |{i ∈ N : e ∈ ai}| denotes the number of agents using edge e in the allocation a.5

In general, a system designer would like to allocate the agents over the network to minimize the
aggregate congestion given by

C(a) =
∑
e∈E

|a|e · ce (|a|e) .

It is well-known that any routing game of the above form, which is commonly referred to as an
anonymous congestion game, is a potential game with a potential function φ : A → R of the form

φ(a) =
∑
e∈E

|a|e∑
k=1

ce (k) .

5Here, we use cost functions Ji(·) instead of utility functions Ui(·) in situation where the agents are minimizers
instead of maximizers.
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This implies that a pure Nash equilibrium is guaranteed to exist in any anonymous congestion,
namely any action profile that minimizes φ(a). Furthermore, it is often the case that this is unique
pure Nash equilibrium with regards to aggregate behavior, i.e., ane ∈ arg mina∈A φ(a). The fact
that the potential function and the system cost are not equivalent, i.e., φ(·) 6= C(·), can lead to
inefficiencies of the resulting Nash equilibria.

The second example focuses on coordination games over graphs. A coordination game is
typically posed between two agents where each agent’s utility function favors agreement on an
action choice over disagreement. However, the agents may have different preferences over which
action is agreed upon. Graphical coordination games, or coordination games over graphs, extend
such two agent scenarios to n agent scenarios where the underlying graph depicts the population
that each agent is seeking to coordinate with.

Example 3.2 (Graphical Coordination Games) Graphical coordination games characterize a
class of strategic interactions where the agents’ utility functions are derived from local interac-
tions with neighboring agents. In a graphical coordination game, each agent i ∈ N is associated
with a common action set Ai = Ā, a neighbor set Ni ⊆ N , and a utility function of the form

Ui(a) =
∑
j∈Ni

U(ai, aj) (19)

where U : Ā × Ā → R captures the (symmetric) utility associated with a pairwise interaction.
As an example, U(ai, aj) designates the payoff for agent i selecting action ai that results from the
interaction with agent j selecting action aj . Throughout, we adopt the convention that the payoff
U(ai, aj) is associated with the player i whose action ai is the first in the tuple (ai, aj).

In the case where the common action set has two actions, i.e., Ā = {x, y}, and the interaction
graph is undirected, i.e., j ∈ Ni ⇔ i ∈ Nj , it is straightforward to show that this utility structure
gives rise to a potential game with a potential function of the form

φ(a) =
1

2

∑
(i,j)∈E

φpw(ai, aj) (20)

where φpw : Ā × Ā → R is a local potential function. One choice for this local potential function
is the following:

φpw(x, x) = 0,

φpw(y, x) = U(y, x)− U(x, x),

φpw(x, y) = U(y, x)− U(x, x),

φpw(y, y) = (U(y, y)− U(x, y))− (U(y, x)− U(x, x)) .

Observe that any potential function φ′pw = φpw +α where α ∈ R also leads to a potential function
for the given graphical coordination game.
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The first two examples show how potential games could naturally emerge in two different types
of strategic scenarios. The last example we present focuses on a engineering inspired resource
allocation problem, termed the vehicle target assignment problem [32], where the vehicles’ utility
functions are engineered so that the resulting game is a potential game.

Example 3.3 (Vehicle Target Assignment Problem) In the well-studied vehicle target assignment
problem, there is a finite set of targets T , and each target t ∈ T has a relative value of importance
vt ≥ 0. Further, there are a set of vehicles N = {1, 2, . . . , n} where each vehicle i ∈ N has
an invariant success/destroy probability satisfying 0 ≤ pi ≤ 1 and a set of possible assignment
Ai ⊆ 2T . The goal of vehicle target assignment problem is to find an allocation of vehicles to
targets a ∈ A to optimize a global objective W : A → R of the form

W (a) =
∑
t∈T (a)

vt ·

1−
∏
j:t∈aj

(1− pj)


where T (a) ⊆ T denotes the collection of targets that are assigned to at least one agent, i.e.,
T (a) = ∪i∈Nai.

Note that in this engineering based application there is no appropriate model of utility func-
tions of the engineered vehicles. Rather, vehicle utility functions are designed with the goal of
engineering desirable system-wide behavior. Consider one such design where the utility functions
of the vehicles are set as the marginal contribution of the vehicles to the system level objective, i.e.,
for each vehicle i ∈ N and allocation a ∈ A we have

Ui(a) =
∑
t∈ai

vt ·

1−
∏
j:t∈aj

(1− pj)

− vt ·
1−

∏
j 6=i:t∈aj

(1− pj)

 ,

=
∑
t∈ai

vt ·

pi ∏
j 6=i:t∈aj

(1− pj)

 .

Given this design of utility functions, it is straightforward to verify that the resulting game is a
potential game with potential function φ(a) = W (a). This immediately implies that any optimal
allocation, aopt ∈ arg maxa∈AW (a), is a pure Nash equilibrium. However, other inefficient Nash
equilibria may also exist due to the lack of uniqueness of Nash equilibrium for such scenarios.

3.6 A brief review of game design methodologies

The examples in the previous section illustrate various settings that happen to fall under the special
category of potential games. Given that utility function specification is a design degree of free-
dom in the prescriptive paradigm, it is possible to exploit this degree of freedom to design utility
functions to induce desirable structural properties.
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There are several objectives that a system designer needs to consider when designing the game
that defines the interaction framework of the agents in a multiagent system [26]. These goals could
include (i) ensuring the existence of a pure Nash equilibrium, (ii) ensuring that the agents’ utility
functions fit into the realm of potential games, or (iii) ensuring that the agents’ utility functions
optimize the price of anarchy / price of stability over an admissible class of agent utility functions,
e.g., local utility functions. While recent research has identified the full space of methodologies
that guarantee (i) and (ii) [15], the existing research has yet to provide mechanisms for optimizing
the price of anarchy.

The following theorem provides one methodology for the design of agent utility functions with
guarantees on the resulting game structure [26, 47].

Theorem 3.3 Consider the class of resource utilization problems defined in Section 2.1 with agent
set N , action sets {Ai}, and a global objective W : A → R. Define the marginal contribution
utility function for each agent i ∈ N and allocation a ∈ A as

Ui(a) = φ(a)− φ(abi , a−i), (21)

where φ : A → R is any system-level function and abi ∈ A is the fixed baseline action for agent i.
Then the resulting game G = {N, {Ai}, {Ui},W} is an exact potential game where the potential
function is φ.

A few notes are in order regarding Theorem 3.3. First, the assignment of the agents’ utility
functions is a byproduct of the chosen system-level design function φ and the transformation of
φ into the agents’ utility functions, which is given by (21) and the choice of the baseline action
abi for each agent i ∈ N . Observe that the utility design presented in Example 3.3 is precisely
the design detailed in Theorem 3.3 where φ = W and abi = ∅ for each agent i ∈ N . While a
system designer could clearly set φ = W , judging whether this design choice is effective centers
on a detailed analysis regarding the properties of the resulting game, e.g., price of anarchy. In
fact, recent research has demonstrated that setting φ = W does not optimize the price of anarchy
for a large class of objective functions W . Furthermore, there are also alternative mechanisms
for transforming the system-level function φ to agent utility functions {Ui}, as opposed to (21),
that provide similar guarantees on the structure of the resulting game, e.g., Shapley and weighted
Shapley values [15]. It remains an open question as to what combination, i.e., the transformation
and system-level design function that the transformation operates on, gives rise to the optimal
utility design.

4 Distributed Learning Rules

We now turn our attention towards distributed learning rules. We can categorize the learning
algorithms into the following four areas:
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Model-Based Learning. In model-based learning, each agent observes the past behavior of the
other agents and uses this information to develop a model for the action choice of the other agents
at the ensuing period. Equipped with this model, each agent can then optimally select its actions
based on its expected utility at the ensuing time-step. As the play evolves, so do the models of
other agents.

Robust Learning. A learning algorithm of the form (2) defines a systematic rule for how individ-
ual agents process available information to formulate a decision. Many of the learning algorithms
in the existing literature provide guarantees on the asymptotic collective behavior provided that
the agents following these rules precisely. Here, we explore the robustness of such learning al-
gorithms, i.e., the asymptotic guarantees on the collective behavior preserved when agents follow
variations of the prescribed learning rules stemming from delays in information or asynchronous
clock rates.

Equilibrium Selection. The price of anarchy and price of stability are two measures characteriz-
ing the inefficiency associated with Nash equilibria. The differences between these two measures
follow from the fact that Nash equilibria are often not unique. This lack of uniqueness of Nash
equilibria prompts the question of whether deriving distributed learning that favor certain types
of Nash equilibria is attainable. Focusing of the framework of potential games, we will review
one such algorithm that guarantees the collective behavior will lead to the specific Nash equilibria
that optimize the potential function. Note that when utility functions are engineered, as in Exam-
ple 3.3, a system designer can often ensure that the resulting game is potential game where the
action profiles that optimize the potential function coincide with the action profiles that optimize
the system-level objective. (We reviewed one such methodology in Section 3.6.)

Universal Learning. All of the above learning algorithms provide asymptotic guarantees when
attention is restricted to specific game structures, e.g., potential games or weakly acyclic games.
Here, we focus on the derivation of learning algorithms that provide desirable asymptotic guaran-
tees irrespective of the underlying game structure. Recognizing the previously discussed impos-
sibility of natural and universal dynamics leading to Nash equilibria [19], we shift our emphasis
from convergence to Nash equilibria to convergence to the set of coarse correlated equilibrium.
We introduce one such algorithm, termed regret matching, that guarantees convergence to the set
of coarse correlated equilibrium irrespective of the underlying game structure. Lastly, we discuss
the implications of such learning algorithms on the efficiency of the resulting collective behavior.

We will primarily gauge the quality of a learning algorithm by characterizing the collective
behavior as time t → ∞. When merging a particular distributed learning algorithm with an un-
derlying game, the efficiency analysis techniques presented in Section 3.2 can then be employed
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to characterize the quality of the emergent collective behavior with regards to a given system-level
objective.

4.1 Model-based learning

The central challenge in distributed learning is dealing with the fact that each agent’s environment
is inherently non-stationary in that the environment from the perspective of any agent consists of
the behaviors of other agents, which are evolving. A common approach in distributed learning is to
have agents make decisions in a myopic fashion, thereby neglecting the ramifications of an agent’s
current decision on the future behavior of the other agents. In this section we review two learning
algorithms of this form that we categorize as model-based learning algorithms. In model-based
learning, each agent observes the past behavior of the other agents and utilizes this information to
develop a behavioral model of the other agents. Equipped with this behavioral model, each agent
then performs a myopic best response seeking to optimize its expected utility. It is important to
stress here that the goal is not to accurately model the behavior of the other agents in ensuing
period. Rather, the goal is to derive systematic agent responses that will guide the collective
behavior to a desired equilibrium.

4.1.1 Fictitious play

One of the most well-studied algorithms of this form is fictitious play [30]. Here, each agent uses
the empirical frequency of past play as a model for the behavior of the other agents at the ensuing
time-step. To that end, define the empirical frequency of play for each player i ∈ N at time
t ∈ {1, 2, . . . } as qi(t) = {qaii }ai∈Ai

∈ ∆(Ai) where

qaii (t) =
1

t

t−1∑
τ=0

I{ai(τ) = ai}, (22)

and I{·} is the usual indicator function. At time t, each agent seeks to myopically maximize its
expected utility given the belief that each agent j 6= i will select its action independently according
to a strategy qj(t). This update rule takes on the form

ai(t) ∈ arg max
ai∈Ai

∑
a−i∈A−i

Ui(ai, a−i)
∏
j 6=i

q
aj
j (t). (23)

The following theorem provided in [30] characterizes the long run behavior associated with
fictitious play in potential games.

Theorem 4.1 Consider any exact potential game G. If all players follow the fictitious play learn-
ing rule, then the players’ empirical frequencies of play q1(t), . . . , qn(t) will converge to a Nash
equilibrium of the game G.
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The fictitious play learning rule provides a mechanism to guide individual agent behavior in
distributed control systems when the agents (i) can observe the previous action choices of the other
agents in the system and (ii) have access to the structural form of their utility function. Further,
fictitious play provides provable guarantees on the emergent collective behavior provided that the
system can be modeled by an exact potential game. For example, consider the distributed routing
problem given in Example 3.1 which can be modeled as a potential game irrespective of the number
of agents, the number of edges, the topology of the network, or the edge-specific latency functions.
Regardless of the structure of the routing problem, the fictitious play algorithm can be employed
to drive the collective system behavior to a Nash equilibrium.

While the asymptotic guarantees associate with fictitious play in distributed routing problems
is appealing, the implementation of fictitious play in such settings is problematic. First, each agent
must be able to observe the specific behavior of all other agents in the network each period. Second,
the choice of each agent at any time given in (23) requires (i) knowledge of the structural form of
the agent’s utility function and (ii) computing an expectation of its utility function, which involves
evaluating a weighted summation over |A−i| terms. In large-scale systems, such as distributed
routing, each of these requirements could be prohibitive. Accordingly, research has attempted to
alter the fictitious play algorithm to minimize such requirements while preserving the desirable
asymptotic guarantees.

4.1.2 Variants of fictitious play

One of the first attempts to relax the implementation requirements associated with fictitious play
centered on the computation of a best response given in (23). In [20], the authors proposed a
sample-based approach for computing this best response, where each agent randomly drew samples
of the other agents’ behavior using their empirical frequencies of play and evaluated the average
performance of each possible routing decision against the drawn samples. The choice with the best
average performance was then substituted for the choice that maximized the agent’s expected utility
in (23), and the process was repeated. While simulations demonstrated reasonable performance
even for limited samples, unfortunately preserving the theoretical asymptotic guarantees associated
with fictitious play required that the number of samples drawn each period grew prohibitively large.

A second variant of fictitious play focused on the underlying asymptotic guarantees given in
Theorem 4.1, which state that the empirical frequency of play converges to a Nash equilibrium. It
is important to highlight this does not imply that the day-to-day behavior of the agents converges
to a Nash equilibrium, e.g., the agents’ day-to-day behavior could oscillate yielding a frequency of
play consistent with a Nash equilibrium. Furthermore, the cumulative payoff may be less than the
payoff associated with the limiting empirical frequencies. With this issue in mind, [12] introduced
a variant of fictitious play that assures a specific payoff consistency property against arbitrary
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environments, i.e., not just when other agents employ fictitious play.

4.1.3 Joint strategy ficitious play with inertia

The focus in model-based learning is not whether such models accurately reflect the behavior of
the other agents. Rather, the focus is on whether systematic responses to potentially inaccurate
models can guide the collective behavior to a desired equilibrium. The behavioral models used
in fictitious play, i.e., assuming each agent will play a strategy independently according the the
agent’s empirical frequency of play, provided nice asymptotic guarantees but was prohibitive from
an implementations perspective. Here, we consider a variant of fictitious play, termed joint strategy
fictitious play (JSFP), which provides similar asymptotic guarantees while alleviating many of
the computational and observational challenges associated with fictitious play [24]. The main
difference between fictitious play and joint strategy fictitious play resides in the behavioral model
of the other agents. In joint strategy fictitious play, each agent presumes that the other players will
select an action collectively in accordance with their empirical frequency of their past joint play.
In two player games, fictitious play and joint strategy fictitious play are equivalent. However, the
learning algorithms yield fundamentally different behavior beyond two player games.

We begin by defining the average hypothetical utility of agent i ∈ N for each action ai ∈ A as

Ūai
i (t) =

1

t

t−1∑
τ=0

Ui(ai, a−i(τ)) =
t− 1

t
Ūai
i (t− 1) +

1

t
Ui(ai, a−i(t− 1)). (24)

Note that this average hypothetical utility is computed under the belief that the action choices of
the other agents remain unchanged. Now, consider the decision making rule where each agent
i ∈ N independently selects its action probabilistically according to the rule

ai(t) =

{
arg maxai∈Ai

Ūai
i (t) with probability (1− ε),

ai(t− 1) with probability ε,
(25)

where ε > 0 is referred to as the agent’s inertia or probabilistic reluctance to change actions.
Hence, with high probability, i.e., probability (1− ε), each agent selects the action that maximizes
the agent’s hypothetic utility.

The following theorem from [24] characterizes the long run behavior of joint strategy fictitious
play in potential games.

Theorem 4.2 Consider any exact potential gameG. If all players following the learning algorithm
joint strategy fictitious play defined above, then the joint action profile will converge almost surely
to a pure Nash equilibrium of the game G.

Hence, JFSP with inertia provides similar asymptotic guarantees to Fictitious Play while min-
imizing the computational and observational burden on the agents. The name “joint strategy fic-
titious play” is derived from the fact that maximizing the average hypothetical utility in (24) is
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equivalent to maximizing an expected utility under the belief that all agents will play collectively
according to the empirical frequency of their past joint play.

4.2 Robust distributed learning

Both Fictitious Play and Joint Strategy Fictitious Play are intricate decision-making rules that
provide guarantees regarding the emergent collective behavior. A natural question that emerges
when considering the practicality of such rules for control of networked systems is the robustness of
these guarantees to common implementation issues including asynchronous clocks, noisy payoffs,
delays in information, among others. This section highlights that the framework of potential games,
or more generally weakly acyclic games, is inherently robust to such issues.

We review the result in [49] that deals with this exact issue. In particular, [49] demonstrates the
robustness of weakly acyclic games by identifying a broad family of learning rules, termed finite
memory better response processes, with the property that any rule within this family will provably
guide the collective behavior to a pure Nash equilibrium in any weakly acyclic game.

A finite memory better reply process with inertia is any learning algorithm of the following
form: at each time t, each agent selects its action independently according to the rule

ai(t) =

{
Bm
i (hm(t)) with probability (1− ε),

ai(t− 1) with probability ε,
(26)

where m ≥ 1 is the size of the agent’s memory, ε > 0 is the agent’s inertia, hm(t) = {a(t −
1), a(t − 2), . . . , a(t − m)} denotes the previous m action profiles, and Bm

i : Am → ∆(Ai) is
the finite memory better reply process.6 A finite memory better reply process Bm

i (·) can be any
process that satisfies the following properties:

• If the history is saturated, i.e., hm(t) = {ā, ā, . . . , ā, ā} for some action profile ā ∈ A, then
the strategy pi = Bm

i (hm(t)) must satisfy

– If āi ∈ arg maxai∈Ai
Ui(ai, ā−i), then pāii = 1 and paii = 0 for all ai 6= āi.

– Otherwise, if āi /∈ arg maxai∈Ai
Ui(ai, ā−i), then paii > 0 if and only if Ui(ai, ā−i) ≥

Ui(āi, ā−i).

• If the history is not saturated, then the strategy pi = Bm
i (hm(t)) can be any probability

distribution in ∆(Ai).7

6We write ai(t) = Bm
i (hm(t)) with the understanding that this implies that the action profile ai(t) is chosen

randomly according to the probability distribution specified by Bm
i (hm(t)).

7The actually definition of a finite-better reply process considered in [49] puts a further condition on the structure
of Bm

i under the case where the memory is not saturated, i.e., the strategy assigns positive probability to any action
with strictly positive regret. However, an identical proof holds for any Bm

i that satisfies the weaker conditions set forth
in this chapter.
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In summary, the only constraint imposed on a finite memory better reply process is that a better
reply to saturated memory {a, . . . , a} is consistent with a better reply to the single action profile a.

The following theorem from [49] (Theorem 6.2) demonstrates the inherent robustness of weakly
acyclic games.

Theorem 4.3 Consider any weakly acyclic game G. If all agents follow a finite memory better
reply process defined above, then the joint action profile will converge almost surely to a pure
Nash equilibrium of the game G.

One can view this result from two perspectives. The first perspective is that the system-designer
has extreme flexibility in designing learning rules for weakly acyclic games that guarantee the
agents’ collective behavior will converge to a pure Nash equilibrium. The second perspective is
that perturbations of a nominal learning rule, e.g., agents updating asynchronously or responding
to delayed or inaccurate histories, will also satisfy the conditions above and ultimately lead be-
havior to a Nash equilibrium as well. These perspectives provide the basis for our claim of robust
distributed learning.

4.3 Equilibrium selection in potential games

The preceding discussion focused largely on algorithms that ensured the emergent collective be-
havior constitutes a (pure) Nash equilibrium. In the case where there are multiple Nash equilibria,
these algorithms provide no guarantees on which equilibrium is likely to emerge. Accordingly,
characterizing the efficiency associated with the emergent collective behavior is equivalent to char-
acterizing the efficiency associated with the worst performing Nash equilibrium, i.e., the price of
anarchy.

In this section we explore the notion of equilibrium selection in distributed learning. That is,
are there classes of distributed learning algorithms that converge to specific classes of equilibria?
One motivation for pursuing such developments is the marginal cost utility, given in Theorem 3.3,
which ensures that the optimal allocation is a Nash equilibrium, i.e., the price of stability is 1. Ac-
cordingly, the focus of this section will be on learning dynamics that converge to the most efficient
action profile in potential games, i.e., the action profile that maximizes the potential function.

4.3.1 Log linear learning

We begin this subsection by describing a simple asynchronous best reply process, where each agent
chooses a best reply when given the opportunity to revise its strategy. Let a(t) represent the action
profile at time t. The action profile at time t+ 1 is chosen as follows:

(i) An agent i ∈ N is randomly picked to update its action according to a uniform distribution.
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(ii) Agent i selects an action that is a best response to the action profile played by the other
agents in the previous period, i.e.,

ai(t+ 1) ∈ arg max
ai∈Ai

Ui(ai, a−i(t)). (27)

(iii) All other agents j 6= i play their previous actions, i.e., a−i(t+ 1) = a−i(t).

(iv) The process is then repeated.

It is straightforward to see that the above process will converge almost surely to a pure Nash equi-
librium in any potential game by observing that φ(a(t+1)) ≥ φ(a(t)) for all times t. Accordingly,
the efficiency guarantees associated with the application of this algorithm to a potential game are
in line with the price of anarchy of the game.

Here, a slight modification, or perturbation, is introduced of the above best reply dynamics that
ensures that the resulting behavior leads to the pure Nash equilibrium that optimizes the potential
function, i.e., aopt ∈ arg maxa∈A φ(a). The algorithm, known as log-linear learning or the logit
response dynamics [1,6,7,25,48], follows the best reply process highlighted above where step (ii)
is replaced by a noisy best response. More formally, step (ii) is now of the form:

(ii) Agent i selects an action ai(t+1) according to a probability distribution pi(t) = {paii (t)}ai∈Ai
∈

∆(Ai) that is of the form

paii (t) =
e(1/T )·Ui(ai,a−i(t))∑

ãi∈Ai
e(1/T )·Ui(ãi,a−i(t))

, (28)

where the parameter T > 0 is referred to as the temperature.

A few remarks are in order regarding the update protocol specified in (28). First, when T →∞,
the agent’s strategy is effectively a uniform distribution over the agent’s action set. Second, when
T → 0+, the agent’s strategy is effectively the best response strategy given in (27). Lastly, we
present this algorihtm (and the forthcoming Binary Log-Linear Learning) with regards to a fixed
temperature parameter that is common to all agents. However, there are variations of this algorithm
which allow for annealing of this temperature parameter that preserve the resulting asymptotic
guarantees, e.g., [50].

The following theorem establishes the asymptotic guarantees associated with the learning al-
gorithm log linear learning in potential games [6, 7, 48].

Theorem 4.4 Consider any potential game G with potential function φ. If all players follow the
learning algorithm log-linear learning with temperature T > 0, then the resulting process has a
unique stationary distribution π = {πa}a∈A ∈ ∆(A) of the form

πa =
e(1/T )·φ(a)∑
ã∈A e

(1/T )·φ(ã)
. (29)
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The stationary distribution of the process given in (29) follows the same intuition as presented
for the update protocol in (28). That is, when T → ∞ the stationary distribution is effectively a
uniform distribution over the joint action set A. However, when T → 0+, all of the weight of the
stationary distribution is concentrated on the action profiles that maximize the potential function
φ. The above stationary distribution provides an accurate assessment of the resulting assymptotic
behavior due to the fact that the log-linear learning process is both irreducible and aperiodic, hence
(29) is the unique stationary distribution.

Merging log-linear learning with the marginal contribution utility design given in Theorem 3.3
leads to the following corollary.

Corollary 4.1 Consider the class of resource allocation problems defined in Section 2.1 with agent
setN , action sets {Ai}, and a global objectiveW : A → R. Consider the following game theoretic
control design:

(i) Assign each agent a utility function that captures the agent’s marginal contribution to the
global objective, i.e.,

Ui(a) = W (a)−W (abi , a−i), (30)

where abi ∈ Ai is any fixed baseline action for agent i.

(ii) Each agent follows the log-linear learning rule with temperature parameter T > 0.

Then the resulting process has a unique stationary distribution π(T ) = {πa(T )}a∈A ∈ ∆(A) of
the form

πa(T ) =
e(1/T )·W (a)∑
ã∈A e

(1/T )·W (ã)
. (31)

Observe that this design rule ensures that the resulting asymptotic behavior will be concen-
trated around the allocations that maximize the global objective W . This fact has made this design
methodology an attractive option for several domains including wind farms, sensor networks, co-
ordination of unmanned vehicles, among others.

4.3.2 Binary log-linear learning

The framework of log-linear learning imposes a fairly rigid structure on the update process of the
agents. This structure mandates that (i) only one agent updates the action choice at any iteration,
(ii) agents are able to select any action in their action set, and (iii) agents are able to assess their
utility for any alternative action choice given the observed behavior of the other agents. In gen-
eral, [1] demonstrates that relaxing these structures arbitrarily can significantly alter the resulting
asymptotic guarantees associated with log-linear learning. However, in each of the scenarios vari-
ations of log-linear learning can preserve the asymptotic guarantees while making the structure
more amenable to engineering systems [25].
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Here, we present a variation of log-linear learning that preserves the asymptotic guarantees
associated with log-linear learning while accommodating restrictions in the agents’ action sets. By
restrictions in action sets, we mean that the set of actions available to a given agent is dependent on
the agent’s current action choice, and we express this dependence by the function Ri : Ai → 2Ai

where ai ∈ Ri(ai) for all ai. That is, if the choice of agent i at time t is ai(t), then the ensuing
choice of the agent ai(t + 1) must be contained in the set Ri(ai(t)). Throughout this section, we
consider restricted action sets that satisfy two properties:

(i) Reversibility: Let ai, a′i be any two action choices in Ai. If a′i ∈ Ri(ai) then ai ∈ Ri(a
′
i).

(ii) Completeness: Let ai, a′i be any two action choices inAi. There exists a sequence of actions
ai = a0

i , a
1
i , . . . , a

m
i = a′i with the property that ak+1

i ∈ Ri(a
k
i ) for all k ∈ {0, . . . ,m− 1}.

One motivation for considering restricted action sets of the above form is when the individual
agents have mobility limitations, e.g., mobile sensor networks.

Note that the log-linear learning update rule given in (28) has full support on the agent’s action
setAi thereby disqualifying this algorithm for use in the case where there are restrictions in action
sets. Here, we seek to address the question of how to alter the algorithm so as to preserve the
asymptotic guarantees, i.e., convergence in the stationary distribution to the action profile that
maximizes the potential function. One natural variation would be to replace (28) with a strategy of
the form: for any ai ∈ Ri(ai(t))

paii (t) =
e(1/T )·Ui(ai,a−i(t))∑

ãi∈Ri(ai(t))
e(1/T )·Ui(ãi,a−i(t))

, (32)

and paii (t) = 0 for any ai /∈ Ri(ai(t)). However, such modifications can have drastic consequences
on the resulting asymptotic guarantees. In fact, such a rule is not even able to guarantee that the
potential function maximizer is the support of the limiting distribution as T → 0+ [25].

Here, we introduce a variation of log-linear learning, termed binary log-linear learning with
restricted action sets [25], that preserves these asymptotic guarantees. Binary log-linear learning
follows the same setup as log-linear learning where step (ii) is now of the form:

(ii) Agent i selects a trial action at
i ∈ Ri(ai(t)) according to any distribution with full support

on the set Ri(ai(t)). Conditioned on the selection of this trial action, the agent selects the
action ai(t+ 1) according to a probability distribution pi(t) = {paii (t)}ai∈Ai

∈ ∆(Ai) of the
form

paii (t) =


ai(t− 1) with probability e(1/T )·Ui(a(t))

e(1/T )·Ui(a(t))+e(1/T )·Ui(a
t
i
,a−i(t))

,

at
i with probability e(1/T )·Ui(a

t
i,a−i(t))

e(1/T )·Ui(a(t))+e(1/T )·Ui(a
t
i
,a−i(t))

,
(33)

where paii (t) = 0 for any ai /∈ {ai(t− 1), at
i}.
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Much like log-linear learning, for any temperature T > 0 binary log-linear learning can be
modeled by an irreducible and aperiodic Markov chain over the state space A; hence, there is a
unique stationary distribution which we denote by π(T ) = {πa(T )}a∈A. While log-linear learning
provides the explicit form of the stationary distribution π(T ), the value of log-linear learning cen-
ters on the fact that the support of the limiting distribution is precisely the set of potential function
maximizers, i.e.,

lim
T→0+

πa(T ) > 0 ⇔ a ∈ arg max
a∈A

φ(a)

The action profiles contained in the support of the limiting distribution are termed the stochastically
stable states. Accordingly, log-linear learning ensures that an action profile is stochastically stable
if and only if it is a potential function maximizer.

The following theorem from [25] characterizes the long run behavior of binary log-linear learn-
ing.

Theorem 4.5 Consider any potential game G with potential function φ. If all players follow the
learning algorithm binary log-linear learning with restricted action set and temperature T > 0,
then an action profile is stochastically stable if and only if it is a potential function maximizer.

This theorem demonstrates that a system-designer can effectively deal with restrictions in ac-
tion sets by appropriately modifying the learning rule. However, a consequence of this is that we
are no longer able to provide a precise characterization of the stationary distribution as a function
of the temperature parameter T . Unlike log-linear learning, binary log-linear learning applied to
such a game does not satisfy reversibility unless there are additional constraints imposed on the
agents’ restricted action sets, i.e., |Ri(ai)| = |Ri(a

′
i)| for all i ∈ N and ai, a′i ∈ Ai. Hence, in this

theorem we forgo a precise analysis of the stationary distribution in favor of a coarse analysis of
the stationary distribution that demonstrates roughly the same asymptotic guarantees.

4.3.3 Beyond asymptotic guarantees

In potential games, both log-linear learning and binary log-linear learning ensure that the resulting
collective behavior can be characterized by the action profiles that maximize the potential function
when the temperature T → 0+. Here, we focus on the question of characterizing the convergence
rates of this process. That is, how long does it take for the collective behavior to reach these desired
equilibrium points.

Several negative results have emerged regarding the convergence rates of such algorithms [11,
17, 39]. In particular, [17, 39] demonstrates that in general the amount of time that it may take to
reach such an equilibrium could be exponential in both the number of agents and the cardinality of
their action sets. Accordingly, research has shifted to identifying whether there are classes of games
and variants of the above dynamics that exhibit more desirable guarantees on the convergence rates.

The following briefly highlights three domains where such positive results exist.
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Symmetric Parallel Congestion Games. Consider the class of congestion games introduced in
Example 3.1. A symmetric parallel congestion game is a congestion game where each agent i ∈ N
has an action setAi = R; that is, any agent can choose any single edge from the the set of available
roadsR. In [39], the authors demonstrate that the mixing times associated with log-linear learning
could grow exponentially with regards to the number of players n even in such limited scenarios.
However, the authors introduce a variant of log-linear learning, which effectively replaces Step
(i) of the algorithm (pick an updating player uniformly) with a new procedure which biases the
selection rate of certain agents based on the current action profile a. This modification of log-
linear learning provides similar asymptotic guarantees with far superior transient guarantees. In
particular, this variant of log-linear learning provides a mixing time that is nearly linear in the
number of agents for this class of congestion games.

Semi-Anonymous Potential Games. In symmetric parallel congestion games all of the agents
are anonymous (or identical) with regards to their impact on the potential function and their avail-
able action choices. More formally, we will call two agents i, j ∈ N anonymous in a potential
game if (i) Ai = Aj and (ii) φ(a) = φ(a′) for any action profiles a, a′ where a′i = aj , a′j = ai,
and a′k = ak for all k 6= i, j. Accordingly, let C1, . . . Cm represent a minimal partition of N such
that each set of agents Ck, k ∈ {1, . . . ,m}, is anonymous with respect to one another, i.e., any
agents i, j ∈ Ck are anonymous with respect to each other. The authors in [8] derive a variant
of log-linear learning algorithm, similar to the algorithm for symmetric parallel congestion games
in [39] highlighted above, that provides mixing times that are nearly linear in the number of agents
n, but exponential in the number of indistinguishable groups of agents, m.

Graphical Coordination Games. Consider the family of graphical coordination games intro-
duced in Example 3.2. In [31], the authors study the mixing times associated with log-linear
learning in a special class of graphical coordination games where the underlying pairwise util-
ity function constitutes a 2 × 2 symmetric utility function. In particular, the authors demonstrate
that the structure of the network, in particular the min-cut of graph, is intimately related to the
underlying speed of convergence. A consequence of this characterization is that the mixing times
associated with log-linear learning is effectively linear in the number of agents when the underlying
graph is sparse.

4.4 Universal learning

The preceding sections presented algorithms that guarantee convergence to Nash equilibria (or po-
tential function maximizers) for specific game structures, e.g., potential games or weakly acyclic
games. Here, we focus on the question of whether there are universal algorithms that provide con-
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vergence to an equilibrium irrespective of the underlying game structure. With regards to Nash
equilibrium, it turns out that such an objective is impossible as demonstrated by [19] which es-
tablishes that no natural dynamics converge to a Nash equilibrium in all games. Here, the phrase
natural seeks to disqualify dynamics that can be thought of as an exhaustive search or utilizing
a central coordinator. Nonetheless, by relaxing our equilibrium requirements focus from Nash
equilibria to coarse correlated equilibria, such universal algorithms do exists. In the following, we
survey the most well-known algorithm that achieves this objective and discuss its implications on
the efficiency of this broader class of equilibria.

In this section we present an algorithm proposed in [18], referred to as regret matching, that
guarantees convergence to the set of coarse correlated equilibrium. The informational demands
and computations associated with the decision-making rule regret matching is very similar to those
presented for the algorithm Joint Strategy Fictitious Play with inertia highlighted above. The main
driver for each agent’s strategy selection is the regret associated with each of its actions. For any
time t ∈ {1, 2 . . . }, the regret of agent i ∈ N for action ai ∈ Ai is defined as

Rai
i (t) = Ūai

i (t)− Ūi(t), (34)

where Ūi(t) = 1
t

∑t−1
τ=0 Ui(a(τ)) is the average utility received by agent i up to time t and Ūai

i (t) =
1
t

∑t−1
τ=0 Ui(ai, a−i(τ)) is the average utility that would have been received by agent i up to time

t if the agent committed to action ai all time steps and the behavior of the other agents were
unchanged. Observe that Rai

i (t) > 0 implies that agent i could have received a higher average
utility if the agent had committed to the action ai for all previous time-steps and the action choices
of the other agents was unchanged.

The regret matching algorithm proceeds as follows: at each time t ∈ {1, 2, . . . }, each agent
i ∈ N independently selects its action according to the strategy pi(t) ∈ ∆(Ai) of the form

paii (t) =
[Rai

i (t)]+∑
ãi∈Ai

[
Rãi
i (t)

]
+

(35)

where [·]+ denotes the projection to the positive orthant, i.e., [x]+ = max{x, 0}.
The following theorem characterizes the long run behavior of regret matching in any game.

Theorem 4.6 Consider any finite game G. If all players follow the learning algorithm regret
matching defined above, then the positive regret for any agent i ∈ N and action ai ∈ Ai asymp-
totically vanishes, i.e.,

lim
t→∞

[Rai
i (t)]+ = 0. (36)

Alternatively, the empirical frequency of play converges to the set of coarse correlated equilibria.
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The connection between the condition (36) and the definition of coarse correlated equilibria
stems from the fact that an agent’s regret and average utility can also be computed using the em-
pirical frequency of play z(t) = {za(t)}a∈A where

za(t) =
1

t

t−1∑
τ=0

I{a(τ) = a}. (37)

In particular, at any time t ∈ {1, 2, . . . } we have that

Ui(z(t)) =
∑
a∈A

Ui(a)za(t) = Ūi(t). (38)

Further, defining the marginal distribution of the empirical frequency of play of all agents j 6= i as
z
a−i

−i (t) =
∑

ai∈Ai
z(ai,a−i)(t), we have

Ui(ai, z−i(t)) =
∑

a−i∈A−i

Ui(ai, a−i)z
a−i

−i (t) = Ūai
i (t). (39)

Accordingly, if a sequence of play a(0), a(1), . . . , a(t − 1), satisfies (36), then we know that the
empirical frequency of play z(t) satisfies

lim
t→∞
{Ui(z(t))− Ui(ai, z−i(t))} ≤ 0, ∀i ∈ N, ai ∈ Ai. (40)

Hence, the limiting empirical frequency of play z(t) is contained in the set of coarse correlated
equilibria. Note that the convergence highlighted above does not state that the empirical frequency
of play will converge to any specific correlated equilibrium; rather, it merely states that the empir-
ical frequency of play will approach the set of coarse correlated equilibria.

Lastly, we presented a version of regret matching that provides convergence to the set of coarse
correlated equilibria. Variants of the presented regret matching could also ensure convergence to
the set of correlated equilibrium, which is a more rigid solution concept than presented in Defini-
tion 3.3. We direct the readers to [18, 49] for the details associated with this variation.

4.4.1 Equilibrium selection of correlated equilibrium

The set of correlated equilibra is much larger than the set of Nash equilibria and can potentially be
exploited to provide systems with better performance guarantees. One example of such a system
is the Shapley game, which is a two-player game with utility functions of the form

Agent 1

Agent 2
A B C

A 0, 0 0, 1 1, 0

B 1, 0 0, 0 0, 1

C 0, 1 1, 0 0, 0

Payoff Matrix
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There are no pure Nash equilibria in this game and the unique (mixed) Nash equilibrium is when
each agent i employs a strategy pi = (1/3, 1/3, 1/3), which yields an expected payoff of 1/3 to
each agent. However, there is also a coarse correlated equilibrium where the distribution z has a
value 1/6 on each of the six joint actions where some agent receives non-zero payoff; z has a value
0 for the other three joint actions. This coarse correlated equilibrium yields an expected utility of
1/2 to each agent and is clearly more desirable. One could easily imagine other scenarios, e.g.,
team versus team games, where specific coarse correlated equilibrium could provide significant
performance improvements over any Nash equilibrium.

The problem with regret matching for exploiting this potential opportunity is that behavior is
not guaranteed to converge to any specific coarse correlated equilibrium. Accordingly, the effi-
ciency guarantees associated with coarse correlated equilibria cannot be better than the efficiency
bounds associated with pure Nash equilibria and can often be quite worse. With this issue in mind,
recent work in [9, 27] has sought to develop learning algorithms that converge to the efficient
coarse correlated equilibrium, where efficiency is measured by the sum of the agents’ expected
utilities. Here, the algorithm introduced in [27] ensures that the empirical frequency of play will
converge to the most efficient coarse correlated equilibrium while [9] provides an algorithm that
guarantees that the day-to-day behavior of the agents will converge to the most efficient correlated
equilibrium. Both of these algorithms view convergence in a stochastic stability sense.

The motivation for these developments centers on the fact that joint randomization, which can
potentially be characterized by correlated equilibria, can be key to providing desirable system-level
behavior. One example of such a system is a peer-to-peer file sharing system where users engage
in interactions with other users to transfer files of interest and satisfy demands [46]. Here, [46]
demonstrates that the optimal system performance is actually characterized by the most efficient
correlated equilibrium as defined above. Another example of such a system is the problem of
access control for wireless communications, where there are a collection of mobile terminals that
compete over access to a common channel [2]. Optimizing system-throughput requires a level
of correlation between the transmission strategies of the mobiles so as to minimize the chance
of simultaneous transmissions and failures. The authors in [2] study the efficiency of correlated
equilibria in this context. Identifying the role of correlated equilibrium equilibrium (and learning
strategies for attaining specific correlated equilibrium) warrants further research attention.

5 Final Remarks

The goal of this chapter has been to highlight a potential role of game theoretic learning in the
design of networked control systems. We reviewed several classes of learning algorithms accentu-
ating their performance guarantees and reliance on game structures.

It is important to re-emphasize that game theoretic learning represents just a single dimension
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of a game theoretic control design. The other dimension centers on the assignment of objective
functions to the individual agents. The structure of these agent objective functions not only dictate
convergence guarantees associated with various game theoretic learning algorithms, but can also
be exploited to characterize the efficiency of the resulting behavior. To that end, consider the as-
signment of agent objective functions that yields a potential game and has a given price of anarchy.
Marrying this design with a learning algorithm that guarantees convergence to a pure Nash equi-
librium in potential games yields a game theoretic control design that ensures that the collective
behavior will converge to a specific allocation (in particular a Nash equilbrium associated with the
designed agent objective functions) and the efficiency of this allocation will be in line with the
given price of anarchy.

Taking full advantage of this game theoretic approach requires assigning agent objective func-
tions that yield a potential game and optimize the price of anarchy over all such objective functions.
Unfortunately, the existing literature provides no mechanism for accomplishing this goal as utility
design for distributed engineering systems is currently not well understood. A reason for this gap
is that agent objective function are traditionally modeled to reflect agent preferences in a given
social system, e.g., a reasonable objective for drivers on a transportation network is minimizing
experienced congestion. Hence, efficiency measures in games, such as the price of anarchy, are
traditionally viewed from an analysis perspective with virtually no design component. Reversing
this trend and deriving systematic methodologies for utility design in multiagent systems represents
a significant opportunity for game theoretic control moving forward.
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