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In deriving a cosmological model from his general theory of relativity, Einstein somewhat arbitrarily
opted for a static universe. The mathematical consequence of this decision was a nonzero value for
one of the constants of integration, the so-called cosmological constant, A. From a Newtonian ana-
logue, A can be viewed as representing a repulsive force that increases with distance and that keeps the
universe from collapsing under gravitational attraction.

In the following selection, the Russian mathematician Aleksandr Friedmann considers nonstatic
models for the first time. By treating the spatial curvature of the universe as a function of time, he
shows the possibility of nonstationary worlds with positive and negative curvature. These dynamic
world models became especially important several years later when the universe of galaxies was
found to be expanding. Although Friedmann’s nonstatic cosmology was for some years overlooked
by astronomers, Einstein noticed this paper and within a few months issued a one-paragraph critique
in the same journal, only to retract his objection early in 1923.

Friedmann begins with the general idea that at any given instant of time the cosmological model
represents a space of positive spatial curvature R(t). If R is independent of time, then the stationary
world models of Einstein and Wilhelm de Sitter follow. If R(¢) depends only on the time variable,
then a variety of monotonically expanding or periodically oscillating models result, depending on
the value chosen for A. Friedmann notes that with A = 0, there follows an oscillating model whose
period depends on the total mass of the universe.

In a second paper! Friedmann considers models with negative curvature. He finds a nonstationary
world with negative spatial curvature and positive matter density, but no static model. Friedmann
also notes in this later contribution that Einstein’s field equations do not suffice to extract a conclu-
sion about the finiteness of space without some supplementary assumptions.

1. A. Friedmann, Zeitschrift fiir Physik 21, 326 (1924).
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I

A. In their well-known works on general cosmological
questions, Einstein! and de Sitter? arrive at two possible types
of universe: Einstein obtains the so-called cylindrical world,
in which space® possesses a constant curvature independent
of time and in which the radius of curvature is connected with
the total mass of matter existing in space. De Sitter obtains a
spherical world in which not only space but also the world
can be spoken of, in a certain sense, as a world of constant
curvature.* In doing so, certain assumptions about the matter
tensor are made by both Einstein and de Sitter; these corre-
spond to the incoherence of matter and its being relatively
at rest, e.g. the velocity of matter is assumed to be sufficiently
small in comparison with the fundamental velocity,’ the ve-
locity of light.

The goal of this notice is, first, the derivation of the cylin-
drical and spherical worlds (as special cases) from some gen-
eral assumptions and, second, the proof of the possibility of
a world whose spatial curvature is constant with respect to
three coordinates that are permissible spatial coordinates and
that depend on time, e.g. on the fourth (time) coordinate.
This new type is, as far as its remaining properties are con-
cerned, an analogue of the Einsteinian cylindrical universe.

B. The assumptions on which we shall base our consid-
erations break down into two classes. To the first class be-
long assumptions that coincide well with the assumptions of
Finstein and de Sitter. They refer to the equations that the
gravitational potentials satisfy and to the state and motion
of matter. To the second class belong assumptions about the
general, so-to-speak geometric, character of the world. From
our hypothesis the cylindrical world of Einstein and the
spherical world of de Sitter follow as special cases.

Class I The assumptions of the first class are the following:

1. The gravitational potentials satisfy the Einstein system
of equations with the cosmological term, which we may also
set equal to zero:

1 _
Ry — 5 gaR + Agy = —xTy (i k=1,2,3,4). (1)

Here the g, are the gravitational potentials, T, is the matter
tensor, x is a constant, R = g*R,,, [the cosmological constant
is denoted by 4] and R;, is determined by the equations

?log(\/g) d(log+/g) {ik} d {ik} {ia} {ka}
Ry = - - + >
0x; 0%, 0x, o 0x, {0 gl la
@)

ik
where the x; (i = 1, 2, 3, 4) are world coordinates and {ll}

are the Christoffel symbols of the second kind.®
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2. The matter is incoherent and relatively at rest. Stated
less strongly, the relative velocities of matter are vanishingly
small in comparison with the velocity of light. In consequence
of these assumptions, the matter tensor is given by the
equations

T,=0foriand k #4

(3)
To= ('29944-

Here p is the density of matter and ¢ is the fundamental
velocity. Moreover, the world coordinates are divided into
three spatial coordinates x,, x;, x3 and the time coordinate x,.

Class 2 The assumptions of the second class are the
following:

1. After distribution of the three spatial coordinates x,
X,, X3, we have a space of constant curvature, which, however,
may depend on x,, the time coordinate. The interval” ds,
determined by ds? = g;dx;dx,, can be brought into the
following form by the introduction of suitable spatial co-
ordinates:

ds® = R¥{(dx,? + sin? x, dx,? + sin? x, sin® x, dx;?)
+ 2g1adx, dx, + 2ga4dx,dxy + 2934 dx;dx,
+ Gaadxy’. 4

Here R depends only on x, and it is proportional to the
radius of curvature of space, which may therefore change
with time.

2. In the expression for ds?, the g14, g4, 934 can be made
to vanish by a suitable choice of the time coordinate. In brief,
time is orthogonal to space. It seems to me that no physical
or philosophical grounds can be given for the second assump-
tion. It serves exclusively to simplify the calculation. One
must still notice that the worlds of Einstein and de Sitter are
contained in our assumptions as special cases.

In consequence of assumptions 1 and 2, ds* can be brought
into the form

ds? = R¥dx,? + sin® x, dx,? + sin? x, sin? x, dx3?)

+ M?dx,2, &)
where R is a function of x, and M depends, in the general case,
on all four world coordinates. The Einstein universe is ob-
tained if one replaces R? by — R?/c? in equation (5) and if one

also sets M = 1, whereby R signifies the constant (indepen-
dent of x,) radius of curvature of space.

R? . . .
de? = —?(dxl2 + sin? x, dx,2 + sin? x, sin? x, dx;?) + dx,?

(6)
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The universe of de Sitter is obtained if one replaces R? by
—R?/c* and M by cos x, in equation® (5)

2
dr? = "CT(dXIZ + sin? x, dx,? + sin? x, sin? x, dx;?)

+ cos? x; dx,? 7N

c¢. Now we must still strike an agreement about the bound-
aries within which the world coordinates are confined, e.g.
what points of the 4-dimensional manifold we will treat as
different. Without engaging in a more detailed motivation,
we shall assume that the spatial coordinates are confined to
the following intervals: x; in the interval (0, n), x, in the
interval (0, #), and x in the interval (0, 27). With respect to
the time coordinate we make, for the present, no restricting
assumptions, but we shall consider this question further below.

I

A.  From equations (3) and (5) it follows, if one sets i = 1,
2, 3 and k = 4 in equation (1), that

M oM M
Xg) 77— = Xg) 77— = Xq — = U
R( )6x1 R( )6x2 R( )6x3 0

Two cases arise. (1) R'(x,) = 0, R is independent of x,. We
shall designate this world as a stationary world. (2) R'(x,) # 0,
M depends only on x,. This shall be called a nonstationary
world.

We consider, first, the stationary world and write the equa-
tions (1) for i, k = 1, 2, 3 and moreover i # k. Then we obtain
the following system of formulae:

oM cotgx, — =10
0x10x, 0x,

oM —cotgx; — =0
0xy 0x5 0x3

o — cotg x, —M =0.
0x, 0x3 0x3

The integration of these equations yields the following
expression for M:

M = A(x;, x4) sin x; sin x, + B(x,, x4) sin x; + C(x, X4),

@

where A4, B, C are arbitrary functions of their arguments. If
we solve the equations (1) for R, and eliminate the unknown
density® p from the still-unused equations, we obtain, if we
insert for M equation (8), the following two possibilities for
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M after some long, but elementary calculations:
M = M, = const. 9
M = (Ayx, + By) cos x, (10

where M, A, and B, are constants.

If M is equal to a constant, then the stationary world is the
cylindrical world. Here it is advantageous to work with the
gravitational potentials of equation (6). If we determine
the density and the quantity A, then the well-known result of
Einstein is obtained:

A=— p=

35 M=-—R,
R K

kR?
where M denotes the total mass of space.®

In the second possible case, when M is given by equation
(10), we get, by means of a judicious transformation'® of x,,
the spherical world of de Sitter in which M = cos x,. With
the help of equation (7) we obtain the relations of de Sitter:

A=3c¢%R:,  p=0, M=0.

We thus have the following result: the stationary world is
either the Einstein cylindrical world or the de Sitter spherical
world.

B. We now want to consider the nonstationary world.
M is now a function of x,. By an appropriate choice of x,
one can obtain M = 1, without loss of generality. In order
to couple to our customary presentation, we give ds? a form
that is analogous to equations (6) and (7):

2 _ _Rz(x4) 2 i02 2 in2 102 2
dv? = ———5—"(dx,* + sin® x; dx,* + sin® x, sin® x, dx;%)
¢
+dx, 2 (11

Our task is now the determination of R and p from the
equations (1). It is clear that the equations (1) with different
indices yield nothing. The equations (1) for i=k=1,2, 3
give the relation

R? 2RR" ¢*

F+7+F—l=0. (12)

The equations (1) with i = k = 4 yield the relation

3R?  3¢?

?-FF—i:KCZp (13)
with
R R o _ PR
= —— an = .
dx, dx42




Because R’ # 0, the integration of equation (12), if we write
t for x4, gives the following equation:

A
RJFFR3

A—
1 /dR\? ¢
A\dt ) R ’
where A is an arbitrary constant. From this equation, we

obtain R through the inversion of an elliptic integral, e.g.
through the solution for R of the equation

(14)

(15)

in which B and a are constants. Attention must still be paid
to the usual conditions about sign variation in the square
root. The mass density, p, may be determined from equation
(13):

3A

pyEh (16)

p=

The constant A is expressed in terms of the total mass of space
M in the following way:

a7

If M is positive, then A is also positive.

C. We must base the consideration of the nonstationary
world on equations (14) and (15). The quantity A is not deter-
mined by these equations. We shall postulate that it can have
an arbitrary value. We now determine that value of the
variable x, for which the square root of equation (15) changes
its sign. If we restrict our consideration to positive radii of
curvature, it will suffice to consider the interval (0, o0) for x
and in this interval the values of x that make the radicand
equal to zero or co. One value of x for which the square root
in equation (15) equals 0 is x = 0. The remaining values of x,
for which the square root in equation (15) changes sign,
are given by the positive roots of the equation 4 — x +
(4/3¢?)x® = 0. We denote 4/3¢> by y and consider the system
of third degree curves in the x—y plane:

ypx3—x+ A=0. (18)
Here A is the parameter of the curve, which varies over the
interval (0, c0). A curve of the system cuts the x-axis at the
point x = A, y = 0 and has a maximum at the point

X VS
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From figure 125.1 it is obvious that the equation A — x +
(1/3¢})x* = 0 has a positive root X, in the interval (0, 4) for
negative 4. If one considers x, as a function of A and A, then

Xo = G)()v’ A)’

one finds that @ is an increasing function of 4 and of A. If A
is in the interval [0, 4c2/(94%)], the equation has two positive
roots x, = @(4, 4) and x, = ®(4, 4), where x, is the root in
the interval (4, 34/2) and x,’ is in the interval (34/2, o).
(2, A) is an increasing function of A and 4, whereas ©(4, 4)
is a decreasing function of A and A. Finally, if A is bigger than
4¢*/(9A?), then the equation has no positive roots.

Let us now pass on to a discussion of equation (15) taking
into consideration the following remark: Let the radius of
curvature equal R, for ¢ = t,. The sign of the square root
in equation (15) is, for t = t,, positive or negative depending
on whether the radius of curvature is increasing or decreasing
for t = t,. Since we can replace t by —t, if need be, we can
always make the square root positive, ¢.g. by choice of the

Fig. 125.1 A plotinthe x —y plane of the curves satisfying
the non-stationary world equation yx3 — x + A =0 where
y = A/3c? is the reciprocal of the radius R and A is a constant
which is proportional to the total mass of the universe.
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time it can always be arranged such that the radius of curva-
ture increases with increasing time at ¢t = .

D. We consider first the case 4 > 4¢2/(942), e.g. the case
in which the equation 4 — x + (4/3¢?)x* = 0 has no positive
roots. Equation (15) can then be written

1R X

cj‘ Ao,
A—x+?x

Ro

t—ty= dx, (19)

where, in consequence of our remark, the square root is always
positive. From that, it follows that R is an increasing function
of t. The positive initial value R, is free of any restriction.

Since the radius of curvature may not be smaller than zero,
it must decrease with decreasing time, ¢, from R, to the value
zero at time t'. We shall call the growth time of R from 0 to
R, the time since the creation of the world.'! This time, ¢/,
is given by

(20)

We denote the world under consideration as a monotonic
world of the first kind.

The time since the creation of the monotonic world of the
first kind, considered as a function of R, 4, 1, has the fol-
lowing properties:

1) It increases with increasing R,.

2) It decreases if A increases, e.g. if the mass in space is
increased.

3) It decreases if A increases.

If A > 2R/3, then for an arbitrary A the time elapsed since
the creation of the world is finite. If 4 < 2R,/3, then a value
of =2, =4c*/(94% can always be found that as A ap-
proaches this value, the time since the creation of the world
increases without limit.

E. Now let A lie in the interval [0, 4¢*/(94%)]; then the
initial value of the radius of curvature can lie in one of the
intervals

(0’ xO)s (XO’ XO,)’ or (XO’a w)

If R, falls in the interval (x,, xo'), then the square root in
equation (15) is imaginary. A space with this initial curvature
is impossible.

We devote the next section to the case where R, lies in
the interval (0, x,). Here we consider the third case: Ry > x,’
or Ry > @(4, 4). Through considerations that are analogous
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to the preceding ones, it can be shown that R is an increasing
function of time, whereby R can begin with the value x,’ =
®(4, A). The time that has elapsed from the moment when
R = x,, to the moment that corresponds to R = R, we again
call the time since the creation of the world. Let it be t'; then

(21)

We call this world a monotonic world of the second kind.

F. We now consider the case that 4 falls between the limits
(=00, 0). If Ry > x4 = O(4, A), the square root in equation
(15) becomes imaginary, and the space with this R, is impos-
sible. If R, < x4, the considered case is identical with that
which we have left aside in the preceding sections. We there-
fore assume that A lies in the interval [ — co,4¢2/(942)] and
Ry < x¢. By means of a well-known argument!? one can now
show that R becomes a periodic function of ¢ with the period
t,, which we name the world period; t, is given by the formula

(22)

The radius of curvature varies between 0 and x,. We shall
call this universe the periodic world. The period of the periodic
world increases if we increase 4 and tends to infinity if A tends
to the value A, = 4¢?/(943).

For small 4, the period is represented by the approximate
formula

t, = nA/c. 23)

With reference to the periodic world two points of view are
possible: We count two events as coincident if their spatial
coordinates coincide and the difference of time coordinate is
an integral multiple of the period, so that the radius of curva-
ture grows from 0 to x, and thereafter decreases to the value 0.
The time of world existence is finite. On the other hand, if the
time varies between — oo and + oo (e.g. if we consider two
events as coincident only when not only their spatial but also
their world coordinates coincide), we come to a real period-
icity of the space curvature.

G. Our information is completely insufficient to carry out
numerical calculations and to distinguish which world our
universe is. It is possible that the causality problem and the
problem of centrifugal force will illuminate these questions.
It remains to note that the “cosmological” magnitude A re-
mains undetermined in our formula, because it is a super-
fluous constant in the problem. Possibly electrodynamic
considerations can lead to its evaluation. It we set 4 = 0 and
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M =5 x 102! solar masses, the world period becomes of the
order 10 billion years. However, these numbers are valid only
as an illustration of our calculation.
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