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This article presents a detailed discussion and application of a methodology, called multinomial 
modeling, that can be used to measure and study cognitive processes. Multinomial modeling is 
a statistically based technique that involves estimating hypothetical parameters that represent the 
probabilities of unobservable cognitive events. Models in this class provide a statistical methodology 
that is compatible with computational theories of cognition. Multinomial models are relatively un- 
complicated, do not require advanced mathematical techniques, and have certain advantages over 
other, more traditional methods for studying cognitive processes. The statistical methodology behind 
multinomial modeling is briefly discussed, including procedures for data collection, model develop- 
ment, parameter estimation, and hypothesis testing. Three substantive examples of multinomial 
modeling are presented. Each example, taken from a different area within the field of human mem- 
ory, involves the development ofa multinomial model and its application to a specific experiment. 
It is shown how multinomial models facilitate the interpretation of the experiments. The conclusion 
discusses the general advantages of multinomial models and their potential application as research 
tools for the study of cognitive processes. 

Theoretical explanations in cognitive psychology often as- 
sume the existence of hypothetical mental processes. For exam- 
ple, in the areas of learning and memory, such processes include 
stimulus discrimination, spreading activation, storage and re- 
trieval, and various interference factors. The behavior that re- 
suits from these processes, such as reaction time or number of  
words recalled, is easy to measure and record; however, the un- 
derlying mental processes themselves are not directly observ- 
able. 

This article describes and applies a type of  modeling called 
multinomial modeling that can be used to measure and study 
cognitive processes. Multinomial modeling is a statistically 
based technique that involves estimating hypothetical parame- 
ters that represent the probabilities of unobservable events. 
This approach has been used extensively in scientific areas out- 
side of psychology, for example, in statistical genetics (Elandt- 
Johnson, 1971). In addition, examples of this type of  modeling 
have appeared on a few occasions within the psychological liter- 
ature (e.g., Batchelder & Riefer, 1980, 1986; Chechile & Meyer, 
1976; Humphreys & Bain, 1983; Ross & Bower, 1981). 

We feel that multinomial modeling has the potential for 
many more productive applications in cognitive psychology. 
Thus, one of our goals in this article is to critically evaluate this 
methodology in order to make it more readily understood by 
cognitive psychologists who might benefit from its use. As we 
show in the next section, multinomial modeling provides a sta- 
tistical methodology that is compatible with computational the- 
ories of cognition. To make this case, we describe the key con- 
cepts of multinomial modeling and then show how this tech- 
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nique helps one to understand theoretical issues in three 
substantively different memory paradigms. 

In addition to illustrating the techniques of  multinomial 
modeling, another goal of  this article is to outline the advan- 
tages that multinomial models have over other, more commonly 
used methods for studying cognitive processes. Foremost 
among these advantages is their simplicity. Multinomial models 
are relatively uncomplicated and do not require advanced 
mathematical techniques. Basically, the only mathematical pre- 
requisite for working with these models is some familiarity with 
elementary calculus and mathematical statistics. To apply mul- 
tinomial modeling to the study of  cognitive processes, one 
needs only to make a set of  simple theoretical assumptions con- 
cerning the nature of these processes. Often this will involve no 
more than identifying which cognitive processes are relevant to 
the situation and specifying how they influence the data. Once 
these assumptions have been made, the model itself can be ex- 
pressed as a series of  simple equations that relate the cognitive 
processes to the observable data. Standard statistical theory can 
be applied to these equations to yield estimates for the probabil- 
ity of  each cognitive event as well as to develop hypothesis tests 
of how these processes vary over experimental conditions. 

In addition to their simplicity, multinomial models also over- 
come certain limitations that are inherent in other, more com- 
monly used methods in cognitive psychology. For example, one 
standard approach for studying mental processes is the applica- 
tion of  general-purpose, off-the-shelf statistical models, such as 
the general linear model of  analysis of  variance (ANOVA) or log- 
linear models. These models may yield insights into how cogni- 
tive processes operate by studying differences in empirical data 
between experimental conditions. However, because this meth- 
odology is intended to have general applications, models such as 
ANOVA are not tailored specifically to the particular theoretical 
issues being studied. In fact, ANOVA USually does not permit 
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one to measure directly underlying mental variables but instead 
provides a method for assessing whether cognitive processes act 
in conjunction to create differences between conditions. In this 
approach, one's cognitive theory motivates the selection of ex- 
perimental conditions, but the theory itself is not reflected in 
the statistical tools used to analyze the experimental data. Mul- 
tinomial modeling is one simple way theoretical ideas can be 
represented in data analysis. 

Another common approach in cognitive psychology is the de- 
velopment of strong, theoretical models that can explain data in 
a variety of experimental paradigms. A number of such models 
have been imported from various scientific fields, such as com- 
puter science, electrical engineering, and neurobiology, and ex- 
amples include the buffer model (Atkinson & Shiffrin, 1968), 
EPAM (Feigenbaum, 1970), holographic models (Pribram, 
Newer, & Baron, 1974), ACT (Anderson, 1976), and connec- 
tionist models (Rumelhart & McClelland, 1986 ). Because they 
are theoretically motivated, these types of models have certain 
advantages over general-purpose statistical models. Specifically, 
when data are analyzed using strong theoretical models, the re- 
suits can be directly interpreted in terms of the underlying con- 
structs being studied. However, one of the goals of this type of 
modeling is to give close fits to data for as wide a range of cogni- 
tive phenomena as possible. Because of this, one drawback to 
using these models in research is that they are often compli- 
cated and require highly technical mathematical or computer 
analysis. Estimating the parameter values and testing statistical 
hypotheses can be ditficult or even infeasible and, if possible, 
may require Monte Carlo or other ad hoe techniques. 

In our opinion, multinomial models bridge a gap between 
general-purpose statistical models, on the one hand, and strong 
theoretical models, on the other. Unlike, say, ANOVAS, multi- 
nomial models are theoretically motivated, making certain as- 
sumptions about the nature of the underlying cognitive pro- 
cesses. They can therefore be used to measure more directly 
the separate influence of cognitive events on overt behavior. Of 
course, strong theoretical models also share this feature. But in 
contrast to these models, multinomial models are analytically 
simple enough so that data can be evaluated without relying on 
complicated ad hoc mathematical analysis. Classical parameter 
estimation and hypothesis-testing techniques are relatively sim- 
ple for multinomial models, and it is often the case that closed- 
form solutions can be found for the parameter estimators. 

One class of theoretical models that multinomial models bear 
a family resemblance to are finite-state Markov models. Markov 
models have been developed for many paradigms in cognitive psy- 
chology (see Greeno & Bjork, 1973, for a review), and the statisti- 
cal techniques for analyzing them are well represented in the psy- 
chological literature (e.g., Atkinson, Bower, & Crothers, 1965; 
Levine & Burke, 1972; Wickens, 1982). Both multinomial 
models and Markov models describe discrete data events as arising 
probabilistically from underlying cognitive processes; however, 
Markov models go further and attempt to describe trial-to-trial 
changes in the underlying processing events. 

In practice, Markov models usually classify data on any trial 
into a very small number of categories, such as error or success. 
Then statistics of the trial-to-trial data protocols provide the 
information for parameter estimation. In contrast, multinomial 
models require that data be classified into a large number of 

categories, typically exceeding the number of parameters of the 
model. Thus, a multinomial model attempts to achieve a static 
account of a more detailed representation of data, whereas a 
Markov model attempts both a static and dynamic account of 
a less detailed data representation. A Markov model may fail to 
account for data either because its cognitive assumptions are 
wrong or because trial-to-trial changes among cognitive states 
do not occur as postulated. Thus, in paradigms that permit 
both types of models, a multinomial model is less theoretically 
committing and may be superior for the purpose of measuring 
process probabilities. 

In the next section, the statistical methodology for multi- 
nomial modeling is presented in some detail, along with refer- 
ences for further study. We briefly outline the basic concepts 
necessary for using multinomial models, including data collec- 
tion, model development, and parameter estimation. After this, 
three substantive examples of multinomial modeling developed 
from the areas of learning and memory are analyzed. The appli- 
cations are in the areas of proactive inhibition, storage and re- 
trieval processes in free recall, and discrimination learning, and 
each application reveals facets of how multinomial modeling 
can shed light on important theoretical issues in cognitive psy- 
chology. Finally, in the conclusion of this article we further dis- 
cuss the advantages and potential application of multinomial 
modeling as a method for studying cognitive processes. 

Mult inomial  Models 

Theoretical Orientation 

We start with an assumption that is implied by many explana- 
tions and theories in cognitive psychology, basically, that cognitive 
processing involves a finite set of discrete processing states. In cog- 
nitive paradigms involving finitely many behavioral categories, it 
is often assumed that each discrete behavioral act arises from one 
and only one of these underlying states. This assumption has been 
formulated more rigorously by cognitive scientists who view cog- 
nitive processing as computations by a formal automaton with fi- 
nitely many states such as a Turing machine (Minsky, 1967). The 
computational assumption is quite unrestrictive, and many theo- 
reticians accept it as forming the basis of contemporary cognitive 
theories (e.g., Pylyshyn, 1986). 

We now show that multinomial models follow naturally from 
this assumption, and thus multinomial modeling can be viewed 
as providing a statistical methodology compatible with the com- 
putational assumption. To see this more clearly, we can recast 
the assumption in probabilistic terms. For notational purposes 
let the mutually exclusive behavioral categories be denoted by 
C~ ,C2 . . . . .  Cs, and let the cognitive states be denoted by Ti,/'2, 
. . . .  TI (where Jand 1are positive integers). We can also define 
pj to be the probability of observing a behavior in category C~. 
Then the computational assumption implies the elementary, 
conditional probability formulae 

I 

p~ = ~, P(  CjITi )P(  Ti) 
i = 1  \ 

I 

= ~ aijbi, (1) 
i = 1  
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where aii is the conditional probability of  behavior category Cj 
given cognitive state Ti, and bi is the unconditional probability 
of  being in state Ti (which of  course depends on the history of 
the automaton). 

In actual research it is relatively easy to obtain estimates for 
the values ofpj from experimental observations, as we demon- 
strate in upcoming sections. What would be desirable is a ra- 
tional technique for inferring the values of  the cognitive param- 
eters a~ and bi from these estimates ofpj. If  we had such a tech- 
nique, we could measure these cognitive quantities and study 
how they vary over different subjects or experimental factors. 
However, one barrier to developing such a technique is that 
Equation 1 contains only J - 1 independent known quantities 
(because the pj sum to one) and a larger number of  unknown 
cognitive parameters (19 ' -  1 to be exact). Without some re- 
strictions to reduce the number of  unknowns, further progress 
is not possible. 

The restriction that we impose on Equation 1 is that each of 
the a~ and bi is determined from a set of  statistical parameters 
01, O: . . . . .  Os, where S (the number of  parameters) is no larger 
than J - 1. These parameters are assumed to be the probabili- 
ties of  various cognitive events. Under this restriction, the J - 
1 independent values ofpj are each a function of  the cognitive 
parameters through Equation 1. With the number of unknown 
parameters now smaller than the number of  known data proba- 
bilities (S < J) ,  unique estimates for these parameters may be 
obtained. 

Of course, it is possible to make less restrictive assumptions 
about the number of  parameters than the ones we made above 
(see, e.g., Bamber & van Santen, 1985; Chechile & Meyer, 
1976). However, our assumptions allow for the general formula- 
tion and classical statistical analysis ofmultinomial models. We 
illustrate this in the next few subsections. 

Data  Representat ion 

In any particular application of  multinomial modeling, one 
needs to consider several steps. First, an experimental paradigm 
must be selected to generate the appropriate data for the model. 
The paradigm should be one in which data can be classified into 
a finite number of  discrete, observable categories, C1, C2 . . . . .  
Cs. In the most general case, suppose a researcher has N total 
data observations. We can then define Nj as the number of  ob- 
servations in Cj, and we can define D = ( N1 . . . . .  Nj . . . . .  Nj) 
to be the data vector of  observations for the model. If  the data 
observations are mutually independent and identically distrib- 
uted with probability pj that an observation falls into Cj, then 
the joint distribution of  the data D is given by the general multi- 
nomial model 

J 

P ( D ; p ,  . . . . .  p j )  = N! I I  p f fJ /Nj! ,  (2) 
j = l  

J 

where N = Z Nj. The general model can be viewed as having 
j = l  

the parameter space 

J 

Y J = { P = ( P l  . . . . .  Pj)  I O - < p j < I ,  Z P j =  1}. (3) 
j = l  

Model  Development 

A substantive multinomial model can be viewed as a restric- 
tion of  the general model expressed in Equation 3. Specifically, 
the substantive model assigns to each cognitive event a parame- 
ter value that represents the probability of  that event occurring. 
Then the values ofpj in Equation 3 can be expressed in terms 
of these postulated parameters. 

To put this more formally, the substantive model specifies one 
or more functionally independent parameters 01 . . . . .  0s, 1 < 
S < J, where each 0s lies within some interval of  real numbers 
Is, such asthe [0, 1] interval. The parameter space for the model 
is then given by 

= { o  = ( o ,  . . . .  , os . . . . .  Os)lOs I , 

s = l  . . . . .  S ) .  (4) 

The next step in developing a model is to generate a series of 
equations that expresses the probabilities of  the data events as 
a function of  the model's parameters. This can be accomplished 
by specifying a continuous function p from ~ into 9j that gives 
the probability distribution over the J categories. Thus, p (0) = 
(pl(O) . . . . .  pj(O)) for each 0 in ft. 

If the range ofp  is 

t2* = {p (O) le ,  f~}, (5) 

then f~* is a proper subset ofgs ,  usually an S-dimensional sub- 
set. A substantive model is said to be globally identifiable ifp is 
a one-to-one function from fl onto f~*. In other words; O ~ O' 
implies p(O) § p(0'). Global identifiability is a useful property 
if the researcher's goal is to measure a unique value of  O from 
the data D. 

Once the data events and the substantive model have been 
identified, there are three classes of  statistical problems that can 
be addressed. The first involves using the empirical data to ob- 
tain estimates of  the model's parameters. The second problem 
involves testing the goodness of  fit of  the substantive model rela- 
tive to the general multinomial model. Finally, the third prob- 
lem involves testing various hypotheses concerning how the pa- 
rameters may vary over the conditions of  an experiment. In the 
next three subsections we consider these problems briefly and 
provide references for those readers interested in exploring 
these issues in more detail. 

Parameter Es t imat ion  

In this section we discuss parameter estimation from the 
point of  view of  maximum likelihood methods. We have taken 
this approach because maximum likelihood estimation is fairly 
standard, has many desirable properties, and is particularly use- 
ful for multinomial modeling. The discussion that follows ex- 
plores parameter estimation for three situations: (a) the general 
multinomial model, (b) substantive models with one parame- 
ter, and (c) substantive models with more than one parameter. 
Excellent discussions of  maximum likelihood estimation in 
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multinomial modeling can be found in Bishop, Fienberg, and 
Holland (1975, chapter 14), Cox and Hinkley (1974), and 
Elandt-Johnson (1971, chapters 11 and 12). For a comprehen- 
sive discussion of other approaches to estimation, see Lehmann 
(1983). 

Estimation for the General Multinomial Model 

To obtain maximum likelihood estimators (MLEs) for any 
model, it is first necessary to generate the likelihood function for 
that model. This is an equation that expresses the probability of 
the data as a function of  the parameter values. Equation 2 gives 
the likelihood function for the general multinomial model, pro- 
vided that the equation is viewed as a function ofp  = (Pl . . . . .  
p j) given the data D. 

The MLEs,/~1 . . . . .  /3j are the values that maximize the likeli- 
hood function in Equation 2 for any given data set D. It is straight- 
forward to show that these MLEs are unique and given by 

/ ; j (D) = N J N ,  (6) 

for j  = 1, 2 . . . .  , J. Furthermore, the estimators are unbiased 
E(/~j) = pj, have variance 

Var(fij) = 

and covariance 

pj(1 - -Pi)  

N 

Cov(pj, -p oe 
N ' 

f o r l < j # e < J .  

Estimation for a Substantive Model With One Parameter 

In this subsection we will consider parameter estimation for 
the simplest situation: when there is only a single parameter 0 
to be estimated. When this is the case, the likelihood function 
for the substantive model is a straightforward extension of 
Equation 2: 

L ( D ; p ~  . . . . .  Ps) = N! ~I 
[pj(O)INJ 

j= l Nfl (7) 

As before, the MLEs of 0 are the values of 0 in ~ that maximize 
this function. From this point on we are assuming certain stan- 
dard regularity conditions that are almost always satisfied in 
practice (see Bishop et al., 1975, chapter 14.8.1). Among other 
things, the regularity conditions assure global identifiability and 
the existence of the quantities we compute from the likelihood 
function. 

To maximize Equation 7 for a given data set D, it is conve- 
nient to work with the natural log of  the likelihood function. 
Log L is a monotonically increasing function of L, and thus any 
0 that maximizes L will maximize log L as well. This function 
is given by 

J 

l o g L ( D ;  p (0 ) )  = logN[ + ~ [Nj logpj(0) - logNi!  ]. 
j = l  

(8) 

Equation 8 has local maxima for all 0' that satisfy the equations 

and 

U(O)-  d l o g L  s dpj(O) 
dO - E [Nj/pj(O)] dO = 0 (9) 

j = l  

d21ogL 

1o., <0, 
unless the maximum is achieved on the boundary of  ft. 

Equation 9 may yield several local maxima 0' within ft. How- 
ever, these maxima can be screened to obtain the MLE that is a 
global maximum in ft. In practice, under the assumed regular- 
ity conditions, there will usually be only a single MLE 0 in ft. 
Sometimes Equation 9 can be solved analytically, yielding 
closed-form solutions for the parameter estimates. However, if 
Equation 9 is complicated, then iterative search methods may 
have to be used to find the MLEs. These methods are available 
in a number of computer packages, such as that from the Inter- 
national Mathematical and Statistical Libraries (IMSL; 1982). 
Elandt-Johnson (197 l, chapter 11.7.2) and Lawley and Max- 
well (197 l, Appendix II) provide useful discussions of  iterative 
methods for maximum likelihood estimation. 

If the substantive model is true, and N is sufficiently large, 
then the regularity conditions assure that the MLE derived from 
the aforementioned methods will have a number of  useful as- 
ymptotic properties. For one, it is asymptotically unbiased, 
E(O) = 0. Also, 0 is efficient in the sense that its variance is no 
larger than that of  any other asymptotically unbiased estimator. 
Furthermore, 0 (suitably standardized) has an asymptotic nor- 
mal distribution. 

The value of  0 provides a useful point estimate for the mea- 
surement of  0. But with any type of  measurement, one is also 
concerned with its reliability. Fortunately, confidence intervals 
can be computed for 0 as well. To do this, one must compute 
the asymptotic variance of  0, which is given by 

V a r ( O ) =  1 II(0), (10) 

where I(0) is the expected "total amount of  information" about 
0 obtainable from the data through 0 (see Elandt-Johnson, 
1971, chapter 12). The exact value of  I(0) is given by 

tidy(0)] I(0)= i---ST- ] 

= N ~, [1/pj(O)] (11) 
j = l  

where U(O) is defined from Equation 9. In practice, however, 
Equation l 1 usually does not yield a numerical value because 
the true value of 0 is unknown. When this is the case, the value 
of  I(0) can be approximated by computing I(0),  the estimated 
total amount of  information. This is given by 

I(O) = ~ Nj[1/pj(O)] (12) 
j = l  =0  

Once 0 and Var(O) have been computed, then the quantity z = 
(0 - 0)/~(0) is asymptotically distributed as a standard normal 
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variate, N(0, 1). Using this information, one can obtain a two- 
tailed I - a confidence interval for 0 given by 

[ 0 -  z , a ( 0 ) ]  < 0 ~ [0 + z , a ( 0 ) ] ,  (13) 

where z, is the standard normal deviate that satisfies Pr(Z < 
z,) = 1 - ( a /2 ) ,  and a(0) is obtained from Equations 10 
and 12. 

Example 

At this point, it may be helpful to illustrate the techniques 
presented so far with a simple, concrete example. Suppose one 
has N independent data observations, where each observation 
consists of  two trials of  a Bernoulli process with an unknown 
probability of  success O, 0 < O < 1. Suppose also that the obser- 
vations are classified into o n e o f  three categories: (a) C l - -no  
successes; (b) C2--one and only one success; and (c) C3--two 
successes. Let D = (N1, N2, N3) be the data andpj be the proba- 
bility that an observation falls into Cj,j = 1, 2, 3. 

Under these assumptions, the parameter space for the general 
multinomial model from Equation 3 becomes 

3 

93 = {p=(pl,p2,Pa)iO<pj<-- 1, ~ p j =  1}. 
j=l 

From Equation 6, the MLEs for the general model are given by 
A = NJN. 

The next step is to specify the substantive multinomial 
model. This model has a parameter space given by Equation 4: 
12 = {/7 [0 < O < 1 }. The substantive model can be defined by 
the continuous function p (/9) = (Pl, P2, P3), which expresses the 
probabilities of  the data events as a function of  the parameter O. 
It is easy to see that for this example pl = (l - 0) 2, P2 = 200 - 
O),p3 = 02. Also t *  from Equation 5 given by 

f / * =  {[(1 -0)2 ,20(1  1}. (14) 

It is a simple matter to determine that the model is globally 
identified. For example, note that if0 @ 0', then pl(0) = (1 - 
O) z § (1 - 0') 2 = pl(0'), and so p(0) @ p(0'). 

Once the substantive model has been specified, one can ob- 
tain the MLE of 0. First, the likelihood function for the model 
is expressed as follows: 

L(D;pl ,P2,P3)  - N! [(1 - 0)2] u, 
N,!N2IN3! 

X [20(1 - 0)]~:2[02]N3. (15) 

Then, the function U(O) from Equation 9 can be computed by 
differentiating log L with respect to 0: 

U(O) -  d l o g L _  - 2 N l  .~ 2 N 2 ( 1 -  20) t 2N3 
dO (1 - 0) 20(1 - 0) 0 

Setting U(O) = 0 and solving algebraically yields a unique MLE 
given by 

= (Nz + 2N3)/ZN.  (16) 

Finally, if one wishes to obtain a confidence interval for 0, this 

can be accomplished by computing Var(O) from Equations 10 
and 12. Working with these equations for this example yields 

var(0") 

(N2 + 2N~)2(2NI + N2) 2 

= 16N2[Ni(N2 + 2N3) 2 (17) 
+ N2(NI - N3) 2 + N3(2NI + N2) 2 ] 

Once 0 and Vat(0) have been computed, they can be inserted 
into Equation 13 to derive the confidence interval. 

To give a numerical illustration of this example, suppose that 
a researcher has N = I00 observations, resulting in the data 
vector D = (15, 35, 50). From Equation 16, the MLE 0 can be 
computed to be .675. Also, Var(0) = .001 and (~(0) = .033 from 
Equation 17. From this a 95% confidence interval for 0 is given 
from Equation 13 to be .61 < 0 < .74. 

Estimation for a Substantive Model With Many 
Parameters 

In actual practice, most multinomial models will usually con- 
tain more than one parameter. This will be true of  the three 
examples we present in the next section. Fortunately, the basic 
estimation procedures for this situation are straightforward ex- 
tensions of the one-parameter case, and thus the key ideas in 
this subsection parallel the previous subsection. The presenta- 
tion follows closely to that of  Elandt-Johnson (1971, chapter 
12.12). We continue to assume the standard regularity condi- 
tions, guaranteeing a unique MLE in the interior of  12. 

If  we assume that S > 1 in Equation 4, then the likelihood 
function for the substantive model is still given by Equation 7, 
except with pj(O) becomingpj(0) = pj(01 . . . . .  Os). Again the 
MLEs of  0 are those values 01, . . . ,  Os in fl that maximize the 
natural log of  the likelihood function. Under our assumptions, 
this amounts to simultaneously solving for the 0' that satisfies 
the equations 

�9 , rap:e) 1 U,(O) = OlogL(D;do, O) = j:'~ I I . .  = o, 

(18) 
for all s = 1, 2 . . . . .  S. As can be seen, Equation 18 is an exten- 
sion of  Equation 9 for the multiple-parameter case. The values 
of  O' that satisfy this equation and also satisfy the usual con- 
straint for a local maximum (see, e.g., Cox & Hinkley, 1974, p. 
283) can be screened to obtain the MLE 0 guaranteed by the 
regularity conditions. 

Although closed-form solutions can sometimes be derived for 
the parameter estimates, it is often the case that iterative search 
methods must be used to obtain 0. If  iterative methods are re- 
quired, it is recommended that the search method be guided by 
the Fisher information matrix, I(0) (see Lawley & Maxwell, 
1971, Appendix II). Such methods provide an estimate of / (0)  
at the end of  the search, and knowledge of  this allows one to 
estimate the variance-covariance matrix for 0. As seen next, 
the variance-covariance matrix is an important component for 
computing confidence intervals and confdence regions for the 
parameters. 

If  N is sufficiently large, and if the model is true, then 0 is 
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asymptotically unbiased. Furthermore, 0, suitably standard- 
ized, is asymptotically distributed as a multivariate normal dis- 
tribution with mean vector 0 (the true parameter vector) and 
asymptotic variance-covariance matrix given by 

V ( 0 )  = I - I ( 0 ) .  (19) 

In this equation, I(0) is the S • S Fisher information matrix 
whose stth term is given by 

s [Opj(O)].{Opj(O)] (20) 
Ist(0) = N • [l/pj(O)] ] 

k 00t /" 
j=l 

As with the one-parameter case, a useful approximation to 
Equation 19 is to substitute the estimated information matrix 
I(0). The general term for this matrix is given by 

J . / O p j ( O ) \  / O p j ( O ) \  

j= l  \ O V s / \ O V t / o = ~  

s,t  = 1,2 . . . . .  S. 
Once the variance-covariance matrix has been computed, 

confidence regions for 0 can be obtained using standard meth- 
ods that we will not detail here (see Johnson & Kotz, 1972, 
chapter 35). It is important to realize that confidence regions 
for any subset of parameters in b can be computed. For exam- 
ple, confidence regions for a pair of  parameters will consist of 
ellipses within a two-dimensional space. For more detail on this, 
the ease of two-dimensional regions is discussed in Batchelder 
and Riefer (1986) and also in Johnson and Kotz (1972, chap- 
ter 36). 

The ease of  confidence intervals for individual parameters 
can be handled by computing V (0) from Equation 19 and in- 
serting the diagonal terms of  this matrix into Equation 13. 
However, a disadvantage of this method is that one must be able 
to compute the estimated information matrix I(0) and then in- 
vert it to obtain V (0). For situations where these computations 
are unwieldy, Elandt-Johnson (1971, Equation 12.55 ) provides 
an approximate formula for the variance of each parameter: 

V a r ( 0 i ) -  ~ [ 00i ]a p j ( l - p j )  
j= lkOpj]  N 

( 00i / (  00i / p Pin (22) 
- 2 s 1 6 3  N 

g < m  

To use this formula, set Pi = Nj/N and view the MLE 0i as a 
function of the Pi s, that is, 

where ~ = (NI/N . . . . .  Ns/N). 
This method is illustrated in the first empirical example, and 

the method based on the estimated information matrix is illus- 
trated in the third empirical example (and also in Batchelder & 
Riefer, 1986). 

Goodness o f  Fit 

Once parameter estimates have been computed for the 
model, a separate issue is whether the model adequately fits the 

data. Of course, the general multinomial model supposes no 
constraints on the true p in gj and thus always fits the data per- 
fectly. However, the substantive multinomial model will often 
contain fewer parameters than the general model (S < J - 1). 
More formally, the substantive model requires that p be con- 
tained within 9" ,  which is an S-dimensional subset of  9s. The 
substantive model, with its fewer parameters, can be said to fit 
the data if its description of the data is comparable to that 
achieved by the general model. 

Bishop et al. (1975, chapter 14) treated this goodness-of-fit 
problem for a variety of  estimation methods. They showed that 
the MLE 0 is the member of  ~ that minimizes the "distance" 
between the MLE } of the general model given by Equation 6 
and the "fitted" probability distribution p(0) in 9*. This dis- 
tance is given by 

J 
G2[~, p(0) ]  = 2 E Nj log[Nj/Npj(O)]. (24) 

j = l  

Under the assumed regularity conditions, Equation 24 is 
minimized by the vector p(0), where 0 is the MLE of 0 in ~2. If 
the model is true, then the asymptotic distribution of G2[~, 
p(0)], called the log-likelihood ratio statistic, is a chi-square 
with J - S - 1 degrees of  freedom. Thus, if N is sufficiently 
large, one can test the hypothesis that the model fits the data by 
computing G 2 and seeing if it is sufficiently small. 

Fortunately, the computation of G z is simplified by noting 
that the goodness-of-fit test based on G z is actually a likelihood 
ratio test (Hogg & Craig, 1978, chapter 7 ). The likelihood ratio 
test is based on the statistic 

~, = L [ D ; p ( 0 ) ]  < 1, (25) 
L(D;fi) 

which contains expressions originally defined in Equations 7 
and 8. The term ~ is simply the maximized value of the likeli- 
hood function for the substantive model, divided by the maxi- 
mized value of the likelihood function for the general model. 
These values are easy to compute once the MLEs for each func- 
tion have been obtained. It is straightforward to show that 

- 2  log k = G2[fi ,  p ( 0 ) ] ,  (26) 

and thus G 2 is a function of the likelihood ratio statistic. 

Hypothesis Testing 

In this subsection we briefly discuss how to test various 
hypotheses concerning the parameters of a multinomial model. 
Hypotheses about parameter values are often of critical concern 
in research situations. For example, research data will often 
come from several independent experimental conditions, repre- 
senting the various levels of an independent variable. One might 
therefore wish to test the hypothesis that certain parameters 
have a constant value across the conditions. Hypotheses for a 
model's parameters can take on many forms, but basically any 
hypothesis will constitute some restriction of  the dimensional- 
ity of the parameter space ft. The restrictions considered in this 
article are of  two types: (a) a set of parameters are constrained 
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to be equal to each other, and (b) one or more parameters are 
set equal to specific values. 

Suppose we have a substantive multinomial model Mr, with 
parameter space Ot given by Equation 4. If  we put a restriction 
on one or more of the model's S parameters, this in essence 
creates a restricted version of  M1, which we can denote as M2. 
Suppose there are a total of R such restrictions on the parame- 
ters, R < S. Then the restricted model M2 will have a new pa- 
rameter space f12, which will be a nested subset contained in 
ill. In addition, fl~' will be a proper subset of  fir, usually an S - 
R dimensional subset. 

The main question of  interest is whether the restricted ver- 
sion of  the model is able to capture the true parameter vector 
of  the model. If  not, then the restriction placed on the model's 
parameters is not a valid one and can be rejected. If0 is the true 
parameter vector, then we are basically testing the null hypothe- 
sis that 0 lies in the restricted parameter space t2 versus the 
alternative hypothesis that 0 is not in f12. 

It is straightforward to develop a likelihood ratio test of  these 
hypotheses. The asymptotic test is based on the statistic 

G2[f i ,  p(b) ]  - G2[f i ,  p(0)] 
J ^ 

= - 2 N  ~ (Nj /N)  log[pj(O)/pj(O)]. (27) 
j = l  

In this equation, 0 is the vector~of MLEs within ~2~ for the full 
version of the model Mi. Also, 0 is the vector of  new MLEs that 
maximize th~ likelihood function for the restricted model M2. 
The value of 0 may differ from 0 because it is constrained to be 
within the restricted parameter space ~22. 

If N is sufficiently large, then the statistic in Equation 27 is 
approximately chi-square with S - R degrees of  freedom. As 
with the goodness-of-fit test, computation of  this statistic is sim- 
plified by the fact that Equation 27 can be rewritten as a func- 
tion of  the likelihood ratio: 

Gz [~ ,  p (0 ) ]  - G2[~ ,  p (0 ) ]  

= - 2  l o g [ L ( D ;  0 ) / L ( D ;  0)].  (28) 

Joint Multinomial Models 

In some of  the examples that we present in the next section, 
the models are not technically multinomial models as devel- 
oped so far. Rather, they are more accurately termed joint mul- 
tinomial models. This type of  model is needed when the experi- 
mental observations are separated into two or more disjoint 
data sets based on the experimental design. When there is more 
than one set of  data, a possibly different multinomial model 
applies to each set independently. Then the likelihood function 
is given by the product of the separate multinomial likelihood 
functions. Familiar examples of this are models for yes-no sig- 
nal detection (Green & Swets, 1966), where data are separated 
into signal and noise trials. Although they are not usually 
thought of  as multinomial models, models of signal detection 
can in fact be classified as joint multinomial models because the 
signal and noise data are each analyzed by separate binomial 
distributions. 

More formally, suppose there are K separate category sys- 

tems for the data, each possibly containing a different number 
of  categories. If  ark is the number of  categories for the kth sys- 
tem, then Clk, C2k . . . . .  CJkk are the mutually exclusive and 
exhaustive categories for that system. The data observations are 
then partitioned into K separate data sets based on the experi- 
mental design, with Dk = (Nlk . . . . .  Nskk ) being the data set 
for each separate system of categories. 

The parameter space for this joint multinomial model is 
given by Equation 4 as before, and the likelihood function for 
the kth data set is given by 

Jk 
Lk(Dk; 0) = Xk! 1-I [Pjk(0)]~k/Njk], (29) 

j = l  

where 

sk 

Nk= ~Njk. 
j = l  

The likelihood function for the joint multinomial model is 
simply the product of the K individual likelihood functions. If  
the entire collection of data sets is denoted by D, then this likeli- 
hood function is 

K 

L ( D ;  0) = 1 I  Zk(Dk;  0), (30) 
k = l  

and, of  course, 

K 

l ogL  = ~ logLk. 
k = l  

The results of  the previous subsections apply to joint multi- 
nomial models, with the obvious notational changes. In partic- 
ular, the basic techniques for parameter estimation, goodness- 
of-fit, and hypothesis testing still apply to the joint likelihood 
function in Equation 30. The details will be illustrated in the 
empirical examples to follow. 

Special Considerations 

In this subsection, we briefly mention several practical prob- 
lems that researchers may face with multinomial modeling. 
Usually these problems are ignored in applications, and some 
of  them are appropriate for further research. 

The first problem concerns the data collection procedure for 
testing a model. Any substantive model as well as the general 
multinomial model requires the sampling assumptions that the 
observations be independently and identically distributed over 
the Jcategories. Often, in practice, data are collected from sev- 
eral subjects, and several observations are obtained from each 
subject. This practice is typical in learning and memory model- 
ing. Such an approach to data collection runs the risk of  violat- 
ing both the identically distributed and the independence as- 
sumptions. In particular, possible individual differences and 
within-subject dependence are risks in such a practice and may 
lead to estimated confidence intervals that are too narrow. In- 
formally, it appears that many multinomial models are fairly 
robust under small violations in the sampling assumptions. 
However, if this is of concern for a particular model, it is usually 
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easy to introduce violations in the model and study their effects 
in Monte Carlo studies. This approach is followed in the first 
example in the next section. 

A second problem often occurs in obtaining the MLE. Some- 
times analytic solutions lead to estimates outside t ,  and uncon- 
strained iterative search methods may lead to the same prob- 
lem. If  the model is true, such problems are likely to occur if 
the true 0 lies near or on the boundary o f t .  If  the model is false, 
then data can easily exist where standard methods fail to obtain 
an MLE in ft. In cases like these, iterative search methods that 
impose boundary constraints on the search are required (e.g., 
IMSL, 1982; for a general discussion see Lawley & Maxwell, 
1971, p. 143). Even if, say, 0s has an MLE 0s on the boundary 
of  Is, the other parameters may have MLEs that are interior 
points. Such parameters can be identified adequately and usu- 
ally have the standard maximum likelihood asymptotic proper- 
ties. 

A third problem deals with the minimum number of data 
observations needed for reliable estimation of  the parameters. 
As we stated earlier, if a model is true, and N is large enough, 
the asymptotic theory of maximum likelihood estimation en- 
ables one to get confidence intervals for the model's parameters. 
In practice, this raises the question of how large an N is re- 
quired. As with any mathematical approximation, one can al- 
ways use it if the approximation is accurate enough for the in- 
vestigator's purposes. For a given level of accuracy, the requisite 
level of  N will depend on the particular model. Therefore, if 
accurate confidence intervals are an important issue, it may be 
useful to conduct Monte Carlo studies for various parameter 
values and N to examine the usefulness of the asymptotic the- 
ory. In practice, most researchers collect at least N = 100 obser- 
vations, and in our opinion this is a useful rule of  thumb if 
Monte Carlo studies are unavailable. 

A fourth problem is that the goodness-of-fit test in Equation 
26 is frequently rejected i fNis  very large. This is because most 
substantive models are only approximations to reality and 
therefore are technically false. Because the power of  the good- 
ness-of-fit test increases with N, rejection of a good, but techni- 
cally incorrect, model becomes very likely with very large N. 

If  the model is incorrect (misspecified), Bishop et al. (1975 ) 
remarked that the asymptotic properties of  0 and G2[ ~, p (0)] 
are not as developed here. Some work has been done on the 
asymptotic properties of  these likelihood statistics for general 
models (e.g., see White, 1982, for results and further 
references). In particular, quasi maximum likelihood estima- 
tors can be defined with desirable properties, and robust infer- 
ence procedures can sometimes be obtained based on the infor- 
mation matrix. This is an interesting subject for further re- 
search in the context of multinomial modeling. Until some of  
this work becomes standard in the psychological modeling area, 
it seems reasonable to continue to analyze data with technically 
incorrect models if they explain much of the variance in the 
data. On the other hand, goodness-of-fit statistics should be rou- 
tinely computed and presented in such cases. 

Finally, the property of global identifiability is a useful and 
necessary one for most of  the apparatus discussed in this sec- 
tion. It is sometimes possible to check global identifiability di- 
rectly by showing that if0 4: 0', then p(0) ~ p(0'), for example, 
by obtaining the inverse p-~ from t *  into ft. Actually the as- 

ymptotic results require a stronger form of identifiability, 
namely, that p-~ is continuous at all 0 in the interior o f t .  Most 
substantive models will be identifiable in this sense; however, 
this issue should be addressed with either analytic or numerical 
work in any application of multinomial modeling where identi- 
fiability is not obvious. 

Empir ical  Examples  

In this section we use multinomial modeling to explore sev- 
eral theoretical issues dealing with cognitive processes. Three 
multinomial models are presented, each one designed to ad- 
dress a specific issue in a different area within the field of human 
memory. The examples also provide a concrete illustration of  
the general techniques for multinomial modeling outlined in 
the previous section, including model development, parameter 
estimation, goodness-of-fit, and hypothesis testing. 

The first example is a model originally presented by Greeno, 
James, DaPolito, and Poison (1978) to investigate a controver- 
sial finding in the area of interference theory known as the inde- 
pendent retrievalphenomenon. We present here a detailed anal- 
ysis of their model that goes beyond what was presented in 
Greeno et al. (1978). For example, we present techniques of  
parameter estimation and hypothesis testing that were not in- 
cluded in their original discussion of  the model. The second 
example is a model for examining storage and retrieval pro- 
cesses in human memory that was originally developed by Bat- 
chelder and Riefer ( 1980; see also Riefer, 1982). Although this 
model has been extensively analyzed elsewhere (Batchelder & 
Riefer, 1986), a new application of the model is reported that 
explores the role storage and retrieval play in retroactive inhibi- 
tion. The third model deals with discrimination learning and is 
a new model that has been developed specifically for this article. 
The model is capable of  taking the recall of  discriminable stim- 
uli and separating that recall into learnability and confusability 
factors. The usefulness and validity of  this model is dem- 
onstrated using a standard experiment on discrimination 
learning. 

Proactive Inhibition 

Theoretical Background 

Research in interference theory has a long history in the field 
of  memory (see Underwood, 1983, for a review). Proactive in- 
hibition is one form of interference in which the recall of  mate- 
rial is interfered with by information learned at an earlier date. 
In the standard experiment dealing with proactive inhibition, a 
list of  paired associates is presented for learning (A-B),  fol- 
lowed by a second list of associates where the same stimuli are 
paired with new responses (A-C).  Recall of  the C responses is 
typically poorer after the A-B list is learned, in comparison 
with a control group that does not receive the A-B list. 

A controversial finding in the area of  interference theory is 
the independent retrieval phenomenon (Martin, 1971). A num- 
ber of research studies (e.g., DaPolito, 1966; Eich, 1982; Wicha- 
wut & Martin, 1971) have found the recall of B and C to be 
stochastically independent, even when strong interference 
effects are evident. The controversy centers around the interpre- 
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tation of  this finding. Martin (1971, 1981) claimed that inde- 
pendent retrieval presents compelling evidence against associa- 
tive interference theories (Postman & Underwood, 1973). Ac- 
cording to these theories, the strength of  the B associations 
should have a direct effect on the C responses. Specifically, if 
B competes or interferes with the recall of  C, then stronger B 
associations should inhibit C more. From this line of  reasoning, 
interference theory predicts a negative correlation between B 
and C that is simply not evident in the data. However, Martin's 
viewpoint has come under strong criticism from Hintzman 
(1972, 1980) on methodological grounds. The crux of Hintz- 
man's argument is that the finding of  independent retrieval is 
based on correlational evidence, from which conclusions about 
cause and effect are not necessarily justified. Specifically, posi- 
tive correlations between B and C may exist (due to subject or 
item differences) that would tend to obscure the negative corre- 
lation predicted by interference theory. 

In our opinion, a strong test of  the independent retrieval phe- 
nomenon has been provided in an experiment by DaPolito 
(reported in Greeno et al., 1978, chapter 7). In this experiment, 
DaPolito directly manipulated the strength of  the A-B associa- 
tions by presenting the A-B list for one, two, or three study 
trials. Even though the recall of  B increased with trials, and even 
though there was strong proactive inhibition in the experiment, 
the decrement of  A-C attributable to proactive inhibition was 
unaffected by the strength of  B. As Greeno et al. pointed out, 
this study provides strong, noncorrelational evidence that the 
recall of the C responses is independent of the strength of  B. 

As part of their discussion of this research, Greeno et al. 
(1978 ) developed a simple process model capable of  analyzing 
data from proactive inhibition experiments. The model was 
used to provide a quantitative illustration of  some of  their find- 
ings and conclusions about the independent retrieval phenome- 
non. However, Greeno et al. stopped short of  formulating the 
model statistically as a multinomial model or applying the 
model in any detail to their experimental data. Thus, as our first 
example of  multinomial modeling, we will present a complete 
analysis of  Greeno et al.'s model for proactive inhibition. We 
begin first by developing the model in detail, followed by an 
application of  the model to DaPolito's experimental data. 

Model Development 

The experimental paradigm used by DaPolito follows closely 
to the standard experiment for studying proactive inhibition. 
Subjects are presented with a list of  paired associates, followed 
by a standard recall test. Within the list, a subset of  the paired 
associates are presented only once and therefore have only one 
correct response. These are the control stimuli. For the remain- 
ing paired associates, the stimulus member occurs twice within 
the list, each time with a different response (i.e., A-B followed 
by A-C).  These are the experimental stimuli. If the recall of the 
C responses is poorer than the controls, then proactive inhibi- 
tion can be assumed to have occurred. 

In this experimental task, some stimuli have two correct re- 
sponses, whereas other stimuli have only one response. To avoid 
biasing the subjects' recall by decisions about whether an item 
has one or two responses, on test trials subjects are always asked 
to give two responses to each stimulus. (This is a variation of  a 

recall procedure known as modified modified free recall.) Of 
course, for those stimuli with two responses this is no problem. 
For stimuli with only one response, subjects are instructed to 
give that response plus any other. 

For the analysis of the model to be described next, only the 
recall data from the A-B and A-C stimuli will be considered 
here. It should be easy to see that there are four distinct recall 
events for this situation: (a) El, both the B and C responses are 
correctly recalled (BC); (b) E2, only B is recalled (B(2); (c) E3, 
only C is recalled (BC); and (d) E4, neither response is recalled 
(BC). Let Ni be the frequency of  Ei in an experiment, 
with 

4 

N = E N i .  
i = l  

Greeno et al.'s (I 978) model is based on the idea that stimuli 
are encoded in memory as a series of  features. Recognition and 
retrieval of  stimuli are then determined by a retrieval network 
that allows discrimination between different stimuli on the basis 
of these features. With these assumptions, the model attempts 
to describe the recall of the paired associates as a consequence 
of three hypothetical, dichotomous events. 

Accessing the retrieval network. Stimuli that share different 
responses (such as A-B and A-C)  are assumed to be stored 
within the same retrieval network. During a test trial, this re- 
trieval network may or may not be successfully accessed. Define 
p to be the probability of accessing the retrieval network for an 
item,0 < p  < 1. 

Retrieving the A-B association. Even though A-B and A-C 
may share the same stimulus network, it is assumed that each 
item occupies a different terminal node of  that network. Even 
if the retrieval network is successfully accessed, the A-B item 
may or may not be retrieved. Define q to be the probability 
of  retrieving the A-B item given that the retrieval network is 
accessed, 0 < q < 1. In this event, B is given as a correct response 
to A. 

Retrieving the A-C association. If  the retrieval network is 
successfully accessed, it is assumed that the A-C item is re- 
trieved with probability r, 0 < r < 1. In this event, C will also 
be given as a correct response to A. 

In multinomial models such as this one, in which the data 
statistics are assumed to be a function of  dichotomous events, 
it is often convenient to express the model in tree diagram form. 
Figure 1 presents the tree diagram for Greeno et al 's (1978) 
model. From this tree structure, it is easy to write expressions 
for the probabilities of each data event: 

P ( B C )  = pqr (3 la) 

P ( B C )  = pq(1 - r) (3 lb)  

P ( B C )  = p(1 - q)r (31c) 

P ( B C )  = (1 - p )  + p ( 1  - q)(1 - r).  (31d) 

In summary, the current model consists of  the data vector D = 
(N1 ,N2,N3,N4), where iV, corresponds to recall event BC, N2 
to BC, N3 to BC, and N4 to BC. The parameter space can be 
represented as fl = { O = (p, q, r)10 ~ p, q, r < 1 }. 

As described in the previous section, MLEs for the model's 
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r BC 

- r  - - B C ,  r--°c 
r - - B C  

BC 

Figure 1. Tree diagram for Greeno, James, DaPolito, and Poison's 
(1978) model for proaetive inhibition. (BC = both response____s correctly 
recalled; BC = only B recalled; BC = only C recalled; and BC = neither 
response recalled. 

parameters can be found by determining the values of  the pa- 
rameters that maximize the likelihood function. The likelihood 
function for this model is given by 

L = (N!/N~!N2!N3!N4!)(pqr) N' [ p q ( l  - r ) ]  N2 

x [p (1  - q)r]~V3[l - p  + p ( 1  - q)(1 - r ) ]  N4, (32) 

where L has previously been defined in Equation 7. 
Fortunately, the calculus methods in Equation 18 can be used 

to derive closed-form solutions for the MLEs of  the model. The 
results are 

/~ = (NI + N2)(N~ + N3) = (PI + P2)(P~ + P3) (33a) 
(NI) (N) PI 

t] = N~ _ e_______L___~ (33b) 
N~ + Na PI + P3' 

= N~ e~ (33c) 
Nt + N2 PI + P2' 

where Pi = Ni/N. 

DaPolito's Experiment 

We will apply the model to the DaPolito experiment dis- 
cussed earlier (Experiment 2 in Greeno et al., 1978, chapter 7 ). 
The main experimental variable in this study was the number 
of  A-B  presentations. Specifically, subjects received one, two, 
or three A-B presentations for each item before studying A-C. 
They also received two test trials for this material. 

According to Greeno et al. (1978), increasing the number of 
A-B  presentations should function to strengthen the B re- 
sponse. This should in turn be reflected in an increase in the 
value of  parameter q, which measures the strength of  the A-B  
associations. Moreover, associative interference theory predicts 
that the value of r (which measures the recall of C) should de- 
crease as q increases, because of  the interference that the A-B 
associations have on C. But Greeno et al. argued that the recall 
of  C is independent of  B. Thus, although they agreed that q 

should increase with extra A-B presentations, they predicted 
that r should be unaffected by this manipulation. 

The multinomial model can now be used to test these predic- 
tions. Table 1 presents the original data from the DaPolito 
study. The recall frequencies for events BC, BC, BC, and BC are 
given for each of  the three A-B presentation conditions and for 
both test trials. (Because they are not central to the model's 
analysis, the recall data for the control stimuli are not presented 
here; however, they reveal that there were strong proactive inhi- 
bition effects in the experiment.) 

Table 1 also presents the estimates for p,  q, and r from Equa- 
tion 33. Two of  the data sets yielded an estimate ofp  from Equa- 
tion 33a that slightly exceeded the upper limit of one. As it turns 
out, it is possible for Equation 33a to yield impossible values 
for the parameter p,  that is, values that are outside the [ 0, 1 ] 
interval. This could occur even if the model is true (especially 
i fp  is close to one), and in fact it did occur for two of  these data 
sets. For these cases, instead of  using Equation 33, we used the 
computer subroutine ZXMIN from IMSL (1982) to search for 
the best fitting set of  parameters, under the constraint that the 
solutions be within the [0, 1] interval. 

As can be seen from Table 1, the value of q does increase as 
the number of  presentations increases. This is true for both the 
first and second test. However, the value of  parameter r does not 
show any corresponding decrease as a function of  the number 
of  A-B presentations. 

The MLEs in Table 1 provide a measure for the probabilities 
of  the hypothesized cognitive processes of  the model. But with 
any type of  measurement, one should also be interested in the 
reliability of the measurements. Constructing confidence inter- 
vals for each of the parameters is a way of  assessing this reliabil- 
ity. As described in the previous section, one way to compute 
these confidence intervals is to use the technique in Equation 
22 to obtain the variances of the MLEs. To use Equation 22, it 
is first necessary to obtain the partial derivatives for each pa- 
rameter, Op/OPi, Oq/OPi, and O~/OPi. This is done by differen- 
tiating Equation 33 with respect to each Pi, where, as before, 

Table 1 
Recall Frequencies and Parameter Estimates for DaPolito's 
(1966) Experiment on Proactive Inhibition 

No. of A-B 
presentations BC BC §C B---C /~ 4 ~: 

Test l 
1 24 65 30 61 1.00 ~ .49 .30 
2 40 91 12- 37 .95 .77 .31 
3 50 98 7 25 .94 .88 .34 

Test2 
l 25 58 29 68 .99 .46 .30 
2 28 97 18 37 1.00 ~ .69 .26 
3 52 97 l0 21 .99 .84 .35 

Note. BC = both resl~onses correctly recalled; BC = only B recalled; 
BC = only C recalled; BC = neither response reca/led. Column headings 
are estimates of parameters from Equation 33. 
a The estimate for p slightly exceeded the upper limit of 1.00 for this 
data set. In this case, we used iterative search methods to obtain the 
parameter estimates. 
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Table 2 
95% Confidence Intervals for Parameters q and r 
From the Proactive-Inhibition Model 

No. of A-B 
presentations q 

Parameter 

Test 1 
1 (.36, .63) (.21, .39) 
2 (.66, .88) (.23, .38) 
3 (.79, .96) (.26, .41) 

Test 2 
1 (.33, .60) (.20, .40) 
2 (.55, .84) (.18, .33) 
3 (.75, .93) (.27, .43) 

Pi = Ni/N, i = 1, 2, 3. These quantities can then be inserted 
into Equation 22 along with the Pi. The results are 

Var(/3) "-- 

(P12 - P2P3) 2 + PIPz(PI +/~ 2 
+ PxP3(PI + Pz) 2 - Pl(P1 + P2)Z(PI + 1~ 2 

"..L. 

Np3 

(34a) 

Va r (4 )  - P, P3 
N(P1 +/)3) 3 '  (34b) 

Var  (P) - PI P2 
N(P~ + P2) 3" (34c) 

Once these variances have been computed, the standard devi- 
ations can be inserted into Equation 13 to obtain approximate 
confidence intervals for the parameters. We have computed the 
95% confidence intervals for the parameters q and r, which are 
presented in Table 2. Unfortunately, it was not feasible to con- 
struct confidence intervals for p because most of  the estimates 
ofp  are at or close to the upper boundary of  one. 

We emphasize that the parameter estimates and asymptotic 
confidence intervals in Tables 1 and 2 are only approximate, 
because they are based on the assumptions that Nis  sufficiently 
large and that the data observations are identically distributed. 
As we mentioned earlier, small sample sizes or individual 
differences in the parameter values may lead to violations of 
these assumptions, and an important question is what happens 
to the parameter estimates when this happens. For example, 
these violations may introduce systematic bias in the parameter 
estimates or result in confidence intervals that are too narrow. 
To explore this, we have conducted Monte Carlo simulations of 
Greeno et al.'s (1978) model under the assumption that p = 1, 
and q and r vary independently across observations. We chose 
the beta distribution to represent the variation in q and r be- 
cause it is a convenient and flexible distribution for represent- 
ing individual differences within the unit internal. 

We first conducted a simulation of  the model using very small 
sample sizes (30 data observations) and large individual differ- 
ences in the model's parameters (standard deviations exceeding 

.3). As expected, substantial bias in the parameter estimates 
and noticeable underestimation of  the confidence intervals were 
introduced under these extreme conditions. However, these de- 
viations were negligible (less than 5% error) when the number 
of data observations exceeded 120, even for extreme variances. 
Moreover, when the variability of  the parameters was only mod- 
erate or small (a standard deviation as high as. 15 ), the devia- 
tions were negligible even for small samples as low as 50 data 
observations. Thus, the estimation procedures for the model 
seem fairly robust, and the 180 data observations obtained for 
DaPolito's (1966) experiment appear sufficient for reliable pa- 
rameter estimation. 

Hypothesis Testing 

In Greeno et al.'s (1978) multinomial model, the number of  
parameters of  the model (three) is equal to the number of  inde- 
pendent data events. Thus, there are no degrees of  freedom with 
which to test the goodness of  fit of  the model. However, it is 
possible to conduct hypothesis testing of  the model's parame- 
ters. Although DaPolito's (1966) experiment revealed differ- 
ences in the parameters across the experimental conditions, a 
separate question concerns whether these differences are statis- 
tically reliable. In other words, it would be useful to be able to 
test the null hypothesis that the parameters are a constant value 
across conditions, versus the alternate hypothesis that they are 
significantly different. 

These hypotheses can be assessed using the likelihood ratio 
test for multinomial models described earlier. If  there are J sets 
of data (e.g., the J conditions in an experiment), then the hy- 
pothesis tests are based on the joint likelihood function for all 
of  the J data sets combined. This likelihood function is a 
straightforward extension of Equation 32 and is 

+ Nfl 

�9 = I NajtN2itN3itN4i! [PJqjrilU'J 

• [pjqi(1 - rj)]u2j[pj(l  - qi)ri]~% 

X [ ( 1 - p j ) + p j ( 1 - q j ) ( 1 - - q ) ] N 4 j .  (35) 

For the purposes of this example, we will use the likelihood ratio 
test to test two separate hypotheses: (a) qj is a constant across 
J,  and (b) r i is a constant across J. 

Hypothesis 1: qj is a constant. To test the null hypothesis 
that qi is a constant across J, it is first necessary to rewrite the 
likelihood function in Equation 35 with qj as a constant. Then 
it is a relatively simple matter to use the calculus methods in 
Equation 18 to derive new MLEs for this function. Again, 
closed-form solutions for these MLEs can be found, which are 

Nq 

= J (36a) 
Z (Nq "t- N3j) 
J 

(Nij + N3j)q (36b) 
= (Ulj + U3j)4 + U2j 

fij = (NIj -b N3j)q + N2j (36c) 
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The MLEs from Equation 36 represent the parameter esti- 
mates for the model under the restriction that q is a constant 
across J. Once these have been computed from the data, they 
can be used in conjunction with the MLEs for the unrestricted 
model (from Equation 33) to complete the likelihood ratio test. 
By inserting both sets of  MLEs into Equation 28, the likelihood 
ratio statistic G 2 can be computed, which in this case approxi- 
mates a x 2 statistic with J -  1 degrees of  freedom. 

The likelihood ratio test can now be conducted on the data 
in Table 1 to test the hypothesis that q is a constant across the 
three A-B presentations. We have performed this test across 
both test trials, yielding a G 2 statistic with 4 degrees of freedom 
(2 degrees of  freedom for each test trial). The test reveals that 
the null hypothesis of  constant q can be rejected, G2(4) = 
45.69, p < .01. Thus, the value ofq  significantly increases as the 
number of  A-B presentations increases. 

Hypothesis 2: rj is a constant. Although the significant in- 
crease in q is certainly to be expected, a more crucial issue is 
the effect that presentations of A-B have on the parameter r. 
Although the values of r do change somewhat over conditions, 
the question can be asked if these changes are large enough to 
be statistically significant. This would involve testing the null 
hypothesis that r is a constant across J. 

The likelihood ratio test can be used to test this hypothesis, 
in a manner analogous to the test for constant q. New MLEs 
can be derived for the model's parameters, under the restriction 
that r is now a constant. These MLEs are 

Z N,j 

P = J (37a) 
Z (N,j + N2j) 
J 

q = (N~ + N2j)P (37b) 
J (Nlj + N2j)P + N3j 

~j = ( N o + Nzj)P + N3j (37c) 
Uj; 

The MLEs from Equation 37, along with the MLEs for the 
unrestricted model from Equation 33, can now be used to com- 
plete the test. When this is done, the test reveals that the values 
of  parameter r do not significantly differ across conditions, 
Gz(4) = 6.47,p > .10. 

Conclusions 

The results of  the multinomial model support Martin's 
(1981) and Greeno et al.'s (1978 ) interpretation of  the indepen- 
dent retrieval phenomenon. As predicted, the value of  q signifi- 
cantly increases as a function of the number of  A-B presenta- 
tions, but without a corresponding decrease in the value of r. 

One important thing about these results is that nothing in the 
multinomial model itself constrains the results to come out as 
they do. For example, even though P(C)  is unaffected by the 
number of  A-B presentations, it does not necessarily follow 
from this that the value of  parameter r must be constant. As 
Greeno et al. (1978) pointed out, the model makes the straight- 
forward prediction that P(C)  = pr. Thus, one possible pattern 
of  results might be forp to increase and r to decrease as a func- 

tion of  A-B strength in such a way that pr and P(C)  appear to 
be constant. This would be a pattern of  results, quite possible 
for certain patterns of  the data statistics, that would be damag- 
ing to Martin's and Greeno et al.'s theory. But instead, the 
model's parameters behave as predicted. Therefore, the results 
oftbe model, coupled with the fact that retrieval independence 
is evident even after a direct experimental manipulation of  A -  
B strength, question the validity of  associative theories ofproac- 
tive interference. 

Storage and Retrieval 

The second example consists of  a model, originally presented 
in Batchelder and Riefer (1980), designed to measure, sepa- 
rately, storage and retrieval processes in human memory. The 
difference between storage and retrieval plays an important part 
in many theories of human memory (see Batehelder & Riefer, 
1986, for a partial review). Because of  this, a multinomial 
model capable of examining these processes separately has 
many potential uses for memory research and theory. As an 
illustration of  this, and in an attempt to relate this example to 
the previous one, we will conduct a storage-retrieval analysis of  
a common phenomenon related to interference theory--retro- 
active inhibition. 

Theoretical Background 

In contrast to proactive inhibition, retroactive inhibition is a 
form of interference in which recall of  material is inhibited by 
interpolated material learned at a later time. One theoretical 
issue in this area is whether this recall decrement is due to a 
storage loss or a retrieval failure ( or both). Storage explanations 
of  retroactive inhibition center on the "unlearning" of  item as- 
sociations (Barnes & Underwood, 1959; Melton & Irwin, 
1940). Presumably, this unlearning results from a weakening 
or loss of  memory traces caused by the interfering material 
(Earhard, 1976; Reynolds, 1977). In contrast, retrieval-based 
theories of interference state that interfered items are still fully 
available in memory but have trouble being retrieved (Miller, 
Kasprow, & Schactman, 1986; Newton & Wickens, 1956; Post- 
man & Stark, 1969). This idea is supported by the finding that 
retroactive inhibition disappears when recognition memory is 
used, because recognition presumably eliminates retrieval 
problems. 

Another piece of  supporting evidence for a retrieval explana- 
tion of  retroactive inhibition comes from an experiment by 
Tulving and Psotka (1971). In their study, subjects learned a 
series of free-recall lists containing words related by categories. 
Subjects memorized up to six oftbese lists and then attempted 
to recall all of  them in a final free recall. The main variable of  
interest was the recall of the first list as a function oftbe number 
of interpolated lists after it. TuNing and Psotka found that the 
number of words and the number of  categories recalled from 
the first list decreased as a function of  the number of  interpo- 
lated lists, reflecting the effects of retroactive inhibition. How- 
ever, the number of  words recalled per category remained rela- 
tively constant. From this, Tulving and Psotka concluded that 
retroactive inhibition influences the accessibility of  categories, 
but not the availability of  information within each category. 
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The main conclusion to be drawn from their study is that 
retroactive inhibition affects the retrieval of items but not nec- 
essarily their storage. However, this conclusion is not universally 
accepted. In particular, some researchers (Nelson & Brooks, 
1974; Sowder, 1976) have attempted to replicate Tulving and 
Psotka's results and have found that the number of words re- 
called per category is inhibited somewhat by retroactive inhibi- 
tion. Because of  this, these researchers have concluded that ret- 
roactive inhibition may have some effects on storage, contrary 
to Tulving and Psotka's conclusions. 

Fortunately, Tulving and Psotka's claim that retroactive inhi- 
bition affects retrieval and not storage is a straightforward pre- 
diction that can easily be tested using Batchelder and Riefer's 
storage-retrieval model. We will begin with a description of  this 
model, followed by an application of  the model to a new experi- 
ment on retroactive inhibition. 

Model Development 

The experimental paradigm involves a free-recall task in 
which subjects are presented with a list of  words that are related 
by categories (see Murphy & Puff, 1982). In particular, the 
words consist of  several category pairs (e.g., oxygen and hydro- 
gen, doctor and lawyer), plus a number of  singleton words. Sub- 
jects are presented with this list of words, one word at a time, 
and are then required to recall the words in any order. 

The data consist of  the recall events for both the pair clusters 
and the singletons. Each category pair is scored in one of four 
mutually exclusive categories: 

E ~ - - b o t h  words recalled, adjacently 

E z - - b o t h  words recalled, nonadjacent ly  

E 3 - - o n l y  one word  in the pair  recalled 

E4- -ne i the r  word  in the pair  recalled. 

The recall of the singletons is scored into two categories: 

F~--recal led 

F z - - n o t  recalled. 

Let Ni be the frequency of occurrence for recall event Ei, and 
let Mi be the frequency of recall for event Ft. Because there are 
two distinct sets of  data, the model developed next will be a joint 
multinomial model. 

The following multinomial model describes the storage and 
retrieval of the category pairs as a function of  three hypothetical 
processes. 

Storage of clusters. After study, each pair of  items either is 
or is not stored as a cluster. Define c to be the probability that a 
pair is stored as a cluster, 0 ~ c < 1. 

Retrieval of clusters. I fa  pair is stored as a cluster, it either is 
or is not retrieved as a cluster during recall. Define r to be the 
conditional probability that a pair is recalled as a cluster, given 
that it is stored as a cluster, 0 < r ~ 1. It is assumed that retrieval 
of  a cluster results in adjacent recall of both category members 
(an E~ event) and that nonretrieved clusters lead to the nonre- 
call of  both items (an E4 event). 

Retrieval ofnonclustered items. If a pair is not stored as a 
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Figure 2. Tree diagram for Batchelder and Riefer's (1986) 
multinomial model for storage and retrieval. 

cluster (with probability (1 - c)), then it is assumed that each 
item either is or is not stored and retrieved independently. De- 
fine u to be the probability that a nonclustered item is recalled, 
0 < u < 1. It is assumed that if both nonclustered items are 
recalled, they are recalled nonadjacently (an E2 event). In addi- 
tion to the nonclustered items, singleton words are also as- 
sumed to be stored and retrieved independently. For the version 
of the model here, assume that singletons are recalled with 
probability u (F~ event) and not recalled with probability 1 - 
u (F2 event). 

As with the two previous models, the parameters of  the stor- 
age-retrieval model are simply the probabilities of  dichoto- 
mous processes. Thus, it is possible to represent the model in 
the form of a tree diagram, which is shown in Figure 2. Because 
this is a joint multinomial model, two separate tree structures 
are presented, one for the pair clusters and one for the unique 
stimuli. 

It should be easy to see from the tree diagram that the proba- 
bilities for the Ei and F i events are as follows: 

P(E1) = cr; 

P(E2)  = (1 - c)u2; 

P(E3)  = (I - c)2u(1 - u) ;  

P (E4)  = C(1 - r) + (1 - c)(1 - u)2; 

P(F1) = u ;  and  

P(F2)  = (1 - u).  

In summary, the storage-retrieval model consists of  the data 
vector D --- (NI,N2,Na,N4; M1 ,M2) and parameter space fl = 
{O=(c,r ,u) lO<c,r ,u<- 1}. 

The likelihood function for the model is 

L = N! [cr]Nl 
NI!N2!N3!N2 

• [(1 - c)u2JU2[(1 - c)2u(1  - u) ]  N3 
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X [c(1 - r) + (1 - c)(1 - u)21 N4 

M!  • - -  uM,(1 -- u)M2. 
MIIM2!  

(38) 

Batchelder and Riefer (1986) showed that if certain restric- 
tions are satisfied by the observed frequencies, then closed-form 
solutions can be found for the parameter estimators that maxi- 
mize Equation 38. These estimators are 

(2N= + Na + 2 M  + M~) 

- V(2N2 + 173 + 2 M +  M~) 2 - 8M(N2 + M~) 
(39a) 

2 M  

~ = N ~ ( 2  - f i ) -  (N2+N3) 
(39b) 

N~(2 - fi) 

~= NlU(2 -- U) 
(39c) 

N~(2 - ~ ) -  (Nz+N3)"  

Table 3 
Recall Frequencies for the Retroactive- 
Inhibition Experiment 

No. of 
interpolated 

lists N, N2 N3 N4 Ml M2 P(C) P(Cat) IPC 

0 97 5 9 39 38 37 .71 .74 .96 
1 71 2 6 71 24 51 .51 .53 .96 
2 55 3 10 82 25 50 .42 .45 .93 
3 51 2 9 88 20 55 .38 .41 .93 
4 54 2 9 85 22 53 .40 .43 .93 

Note. Each data set is based on N = 150 total observations (15 subjects 
per condition, 10 categories per subject). NI = number of times a pair 
is recalled adjacently; N2 = number of times a pair is recalled nonadja- 
cently; N3 = number of times only one word in a pair is recalled; N4 = 
number of times neither word in a pair is recalled; MI = recall of a 
singleton; M2 = nonrecall of a singleton; P(C) = proportion of items 
recalled; P(Cat) = proportion of categories represented in recall; IPC = 
items per category. 

E x p e r i m e n t  1 

The following experiment is basically a replication of Tulving 
and Psotka's (1971) study. One major difference between their 
experiment and this new one is that categories in this experi- 
ment consisted of two items, as compared with four items per 
category used by Tulving and Psotka. It was necessary, of 
course, to use category pairs in this study in order to provide 
data in the proper format for the multinomial model. 

If retrieval-based theories of interference are correct, and if 
the model performs as expected, then retroactive inhibition 
should have a large effect on the retrieval parameter r. More 
specifically, the value of r should decrease as the number of in- 
terfering lists increases, without a corresponding decrease in the 
value of c. 

Method. Seventy-five undergraduates from the University of Califor- 
nia at Irvine participated in the experiment for class credit. Each subject 
was tested individually and was presented with either one, two, three, 
four, or five successive lists of words. These words were shown on a com- 
puter screen, one word at a time, at an exposure rate of 5 s per word. 
Each list contained 25 words, consisting of l0 categories (with 2 high- 
associate words per category) and five singletons. Most of the categories 
were taken from Battig and Montague (1969), although some categories 
not found in Battig and Montague were also included in the lists. Selec- 
tion of categories and singletons appearing in each list was determined 
randomly. Presentation order for the words was also random, under the 
constraint that items from the same category were presented with no 
intervening items between them. Subjects were given 1'/2 min to recall 
in writing the 25 words from each individual list. After all of the lists 
had been presented, a final free-recall test was given in which subjects 
attempted to recall the words from all of the previous lists. Subjects were 
given up to 5 min for this final written recall. 

Results. As in the Tulving and Psotka ( 1971) study, the focus 
here is on the recall of the first-list words during the final recall 
task. But instead of concentrating directly on empirical data as 
Tulving and Psotka did, our analysis will be based on the stor- 
age-retrieval model. The basic recall statistics from the experi- 
ment are presented in Table 3, which shows the recall of the 
first-list words as a function of the number of interpolated lists. 
In addition to presenting the Ni and Mi data frequencies, Table 
3 also includes the three empirical data statistics examined by 

Tulving and Psotka: (a) P(C),  the proportion of items correctly 
recalled; (b) P(Cat),  the proportion of categories represented 
in recall; and (c) IPC, the proportion of items recalled per cate- 
gory. Only the pair-cluster data and not the singletons were used 
to compute these statistics. As can be seen, the basic empirical 
results of Tulving and Psotka's study are replicted here. P(C) 
and P(Cat) both decrease as the number of interpolated lists 
increases, whereas 1PC remains relatively constant. 

As mentioned before, it was this pattern of results that led 
Tulving and Psotka (1971) to conclude that retroactive inhibi- 
tion affects the retrieval of items but not their storage. Their 
conclusion, however, was not based on any substantive model. 
The multinomial model for storage and retrieval now allows us 
to conduct a more formal analysis of these data. The values of 
Ni from Table 3 were inserted into Equation 39 to derive esti- 
mates of the storage and retrieval parameters for each condi- 
tion, and these estimates are plotted in Figure 3. The results 
show that retroactive inhibition has a strong effect on the re- 
trievability of items, because of the decreasing value of parame- 
ter r. But the storage of items, represented by parameter c, is 
basically unaffected by the number of interpolated lists. 

Goodness  o f  Fi t  

Once the parameters of the model have been estimated, the 
next step is to determine if the model adequately fits the data. 
As described in the previous section, this involves a likelihood 
ratio test in which the value of the likelihood function with the 
estimated parameters is compared with the value of the func- 
tion under the general multinomial model. The storage-re- 
trieval model has three parameters and describes four indepen- 
dent data events, so a goodness-of-fit test with one degree of 
freedom can be conducted. Specifically, Equations 27 and 28 
can be used to compute the value ofG 2 for each of the five data 
sets in the experiment. These values are presented in Table 4. 
As can be seen, the fit of the model is excellent, with none of 
the data sets leading to rejection of the model. In fact, it is inter- 
esting to note that all of the values are extremely small, even 
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Figure 3. Estimates of the parameters c and r from the storage-retrieval 
model, plotted as a function of the number of interpolated lists. (C = 
correct response; CE = confusion error; and NCE = nonconfusion 
error.) 

less than what might be expected by chance. It is possible that 
some aspect of the experiment (perhaps the fact that category 
pairs were presented adjacently) may be in part responsible for 
this because goodness-of-fit values as small as these are not typi- 
cal of  those found in other applications of the model (cf. Bat- 
chelder & Riefer, 1980, 1986). 

This example also illustrates an important point concerning 
multinomial modeling. Earlier, we argued that multinomial 
models have certain advantages over methods of  data analysis 
based solely on ad hoc statistics like IPC or P(Cat).  This advan- 
tage can now be demonstrated very dearly using our earlier ex- 
ample. If the storage-retrieval model is true, then it is possible 
to derive an expression for IPC over the experimental condi- 
tions as a function of  the model's parameters. This expression 
is 

q(rj - uj) + uj 
IPCj q[rj - uj(2 - uj)] + uj(2 - u j ) '  (40) 

wherej is an index for each experimental condition. In an actual 
experiment, if the value of  q is a constant across j ,  it is possible 
for the values oflPCj also to be constant. According to Tulving 
and Psotka (1971), this pattern of  results would indicate that 
the storage of items is unaffected by the experimental manipu- 
lation. 

But the actual values of  IPCj in Equation 40 need not be a 
constant value over j.  For example, suppose q is a constant and 
u i and rj have the simple linear relation uj = krj (where k is a 
constant). Then it can be shown that IPCj is a decreasing func- 
tion ofj. It is therefore possible for IPC to decrease across exper- 
imental conditions even when the storage parameter is totally 
unchanged, which might lead someone not using the model to 
the wrong general conclusions about storage. This empirical re- 
sult has in fact been obtained by other researchers (Nelson & 
Brooks, 1974; Sowder, 1976), who concluded that retroactive 
inhibition does result in a certain amount of  storage loss. The 
results of  the analysis conducted here suggest that this conclu- 
sion may be incorrect. 

Hypothesis Testing 

To complete the analysis of  this experiment, it is necessary 
to determine if the differences in the parameter values across 
experimental conditions are statistically significant. This in- 
volves using the likelihood ratio test to evaluate two null 
hypotheses: (a) q is a constant across J,  and (b) rj is a constant 
across J. These tests proceed similarly to the ones conducted 
for the Greeno et al. (1978 ) model, and a detailed discussion of 
them can be found in Batchelder and Riefer (1986). 

The results of the likelihood ratio test show that the decreas- 
ing value of parameter r is a statistically reliable effect, 
G2(4) = 35.81, p < .01. In contrast, the values of  parameter c 
do not significantly differ across conditions, G2(4) = 1.43, ns. 

Discrimination Learning 

In the previous two examples, we demonstrated how multi- 
nomial modeling can be used to explore and answer questions 
about cognitive processes. In addition, the examples managed 
to shed light on some unresolved theoretical issues concerning 
interference theory. However, both examples involved well-es- 
tablished models that have appeared previously in the psycho- 
logical literature. For this third example, we would like to intro- 
duce a new multinomial model that we have developed specifi- 
cally for this article. The model has been designed to analyze 
data from discrimination-learning experiments and is capable 
of separating memory for discriminable stimuli into learning 

Conclusions 

The results of  the multinomial model support Tulving and 
Psotka's (1971) conclusion that retroactive inhibition is essen- 
tially a retrieval phenomenon. Moreover, the fact that the stor- 
age parameter c was unaffected by the number of interfering 
lists would seem to be inconsistent with theories that imply that 
retroactive inhibition results in a weakening or a loss of mem- 
ory traces. Instead, these results are in accordance with theories 
of  interference that postulate retrieval explanations for retroac- 
tive inhibition, such as response set suppression theory 
(Postman & Stark, 1969). 

Table 4 
Goodness-of-Fit Statistics for the Retroactive- 
Inhibition Experiment 

No. of interpolated lists X 2 (1) 

0 0.02 
1 0.16 
2 0.07 
3 0.06 
4 0.01 

Note. dr= 1 for each test. 
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and discrimination parameters. Because this is a new model, 
our main goal here is not to explore any general theoretical is- 
sues, as we did in the previous examples. Instead, we will test 
the validity and usefulness of the model using a standard dis- 
crimination-learning experiment. The model will also enable 
us to illustrate some of the measurement advantages that multi- 
nomial modeling has over traditional methods of data analysis. 

Theoretical Background 

In a task involving discrimination learning, subjects are pre- 
sented with similar, potentially confusable stimuli. These stim- 
uli are paired with different responses (e.g., "new" or "old" in 
a recognition paradigm), and therefore subjects must learn to 
discriminate between the similar stimuli in order to make the 
proper responses. This task is analogous in some respects to sig- 
nal detection (Green & Swets, 1966), in which subjects must 
discriminate between signal and noise (as opposed to discrimi- 
nating between multiple stimuli). In the field of human mem- 
ory, models of signal detection have often been applied to recog- 
nition paradigms. This is an area in which multinomial meth- 
ods of measurement have been used quite successfully to 
supplement traditional statistical analyses of data. By separat- 
ing responses into false alarms, correct hits, and so forth, signal 
detection models can be used to derive parameter estimates for 
the detectability of stimuli. By now all researchers would proba- 
bly agree that these parameters reveal more about the underly- 
ing cognitive processes than the empirical statistics alone, and 
for this reason signal detection models have become quite popu- 
lar as measurement tools in recognition memory. 

However, we know of no comparable multinomial analysis 
that exists for measuring the underlying factors in discrimina- 
tion learning. It is true, of course, that a number of Markov 
models have been proposed that can be used to measure these 
processes separately. For example, Poison, Restle, and Polson 
(1965) and Brainerd, Howe, and Desrochers (1980) have pro- 
posed such models, and Atkinson and Estes's (1963) mixed 
model could also be applied to this situation. However, because 
Markov models postulate both cognitive states and the transi- 
tions between them, they make stronger theoretical assump- 
tions than multinomial models do. Because they are stronger 
models, they are more likely to fail to account for the data and 
thus may not be totally satisfactory as measurement tools. 

Instead of modeling approaches to measurement, data analy- 
sis in the area of human discrimination learning has tradition- 
ally involved the use of ad hoc statistics such as probability cor- 
rect, P(C), or mean number of errors. But as we have stated 
previously, global measures such as these also may not be totally 
satisfactory, because they may fail to reflect the individual con- 
tributions of different cognitive factors. Relevant to this idea, 
Yang (1985) has pointed out that research on the interfering 
effects of similar stimuli is usually totally confounded by learn- 
ing and similarity factors. Thus, there is a need for some type of 
simple multinomial approach in discrimination learning that is 
capable of separately measuring these processes. 

Model Development 

Although there exist many paradigms for studying discrimi- 
nation learning (see Houston, 1981, for a review), human dis- 

crimination learning is often studied within the framework of 
paired-associate learning (e.g., Craig, Humphreys, Rocklin, & 
ReveUe, 1979; Kitahama, 1982; Runquist & Runquist, 1978). 
In this standard experiment, discriminability is manipulated by 
having the stimulus terms of the paired associates related along 
some dimension, and this is the basic paradigm to be used for 
the model presented here. Specifically, the model is based on a 
theory of paired-associate learning that states that paired asso- 
ciates are learned in three distinct stages: (a) response learning, 
(b) stimulus encoding, and (c) stimulus-response learning (see 
Houston, 1981, chapter 5). In the research to follow, the re- 
sponse-learning component is minimized because all responses 
are familiar words that have previously been memorized by the 
subjects. For the other two stages, the model attempts to sepa- 
rately measure the stimulus encoding and stimulus-response 
learning components of paired-associate learning. Presumably, 
the process of discriminating between stimuli occurs during the 
stimulus encoding stage. Restle (1964) and Poison et al. (1965 ) 
have theorized that confusable stimuli will require more stimu- 
lus encoding in order to be sufficiently stored in memory, and it 
is this process that the multinomial model attempts to capture. 

The experimental paradigm used here for discrimination 
learning is similar in certain respects to the one described ear- 
lier for proactive inhibition. Subjects are presented with a list 
of paired associates. Within this list, some of the associates have 
unique stimulus terms, in the sense that the stimuli are distinct 
from one another. Another subset of the associates consists of 
pairs of similar stimuli coupled with different responses, which 
can be represented as A-B, A'-C. For example, if the paired 
associates consist of word-digit pairs, the critical stimuli might 
be synonyms paired with different responses (e.g., taxi-2 and 
cab-7). In the experiment analyzed here, an anticipation pro- 
cedure is used in which subjects attempt to give the response 
to each paired associate before the correct stimulus-response 
pairing is revealed. Over repeated trials, subjects learn to dis- 
criminate between the related stimuli in order to make the cor- 
rect response to each. 

In terms of data representation, we will consider separately 
the recall of the unique items versus the paired, similar items. 
For the unique items, it is natural to define two recall events: 

Fi--recalled (R)  and 

F2- -no t  recalled (R).  

When one of the paired items is tested for memory, three 
distinct recall events are possible: 

El - -correc t  response (C),  

E2--confusion error (CE),  and 

E3--nonconfusion error (NCE).  

These three events can be illustrated using a concrete example. 
Suppose the two related paired associates are taxi-2 and cab- 
7. If taxi-? is presented for recall, the correct response (E0 
would be 2, a confusion error (E2) would be 7, and a nonconfu- 
sion error (E3) would be any other incorrect response. This sep- 
aration of errors into confusion and nonconfusion errors is one 
of the key features of the model. 
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UNIQUE ITEMS PAIRED ITEMS 

/ c  CE 
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-s 1 -s 1-g -- ~ g CE 

--1-2g N C E 
Figure 4. Tree diagram for the multinomial 
model for discrimination learning. 

For notational purposes, let Mt denote the frequency of oc- 
currence for event Fi, and let Ni denote the frequency of  Ei. 
Also, let 

2 3 

M =  ~ M i  and  N =  ~ N i .  
i=1 i=1 

The experimental design just described generates two distant 
sets of data, one for the unique items and one for the paired 
items. The following model is therefore a joint multinomial 
model of  the type described in the previous section. 

The model attempts to describe the learning and recall of  re- 
lated paired associates as a consequence of  three hypothetical 
events: stimulus-response learning, stimulus confusion, and 
guessing. 

Stimulus-response learning. Learning occurs when an ade- 
quate representation of  the paired associate is stored in mem- 
ory, that is, with some response associated to a representation 
of the stimulus. For any given test trial, a paired associate either 
has or has not been learned for that trial. Define s to be the 
probability that it has been learned, 0 < s < 1. 

Stimulus confusion. If  a paired associate is successfully 
stored in memory, it is possible that the representation of  the 
stimulus term is confused with a related stimulus. This would 
occur, for example, when two similar stimuli have not been ade- 
quately discriminated. On any given test trial, a learned stimu- 
lus either is or is not confused with a related stimulus. Define c 
to be the probability that this occurs, 0 --< c ~ I. In this event, a 
confusion error will be given as a response. It is assumed that 
unique stimuli have no related stimuli to be confused with and, 
hence, are confused with other stimuli with probability zero. 

Guessing. I fa  paired associate remains unlearned on a given 
test trial, then the subject guesses from the set of  possible re- 
sponses with an equal probability of  guessing each response al- 
ternative. Define g to be this guessing probability, 0 < g < 1. 

As with the model for proactive inhibition, the parameters of 
this model represent the probabilities of dichotomous events. 
Thus, a tree diagram can be used to represent the model, which 
is illustrated in Figure 4. Because this is a joint multinomial 
model, a separate tree structure has been drawn for the unique 
stimuli and the similar stimuli. 

With the assumptions behind the model just outlined, it is 
possible to write expressions for the probabilities of  the data 
events: 

P ( R )  = s + (1 - s)g (41a) 

P ( R )  = (1 - s)(1 - g )  (41b) 

P ( C )  = s(1 - c) + (1 - s)g (41c) 

P ( C E )  = sc + (1 - s)g (41d) 

e ( N C E )  = (1 - s ) ( l  - 2 g ) .  ( 4 1 e )  

In summary, this model consists of  the data vector D = 
(MI,M2; N1,N2,N3) and parameter space f~ = {0 = (s, c, 
g)lO<__s,c,g,~ 1}. 

The likelihood function for the model is 

L = (  M ~ ) [ S + ( I - - s ) g ] M ' [ ( 1 - - S ) ( I - - g ) ] M 2  

N! 
• ( NI,~2,N3, ) [ S ( 1 -  C ) +  ( 1 - s ) g ]  N.. 

• [so+ (1 - s)g]N2[(1 - s)(1 - 2g)lN3. (42) 

By using the calculus methods in Equation 18, closed-form 
solutions can be derived for the parameter values that maximize 
this function. These MLEs are 

= N(M1 - M2) + MN3 (43a) 
N M  

= MI N - MNt  (43b) 
N(M~ - M2) + MN3 

o~ = NMz - MN3 (43c) 
2 NMz - MN3" 

Equation 43 can thus be used to compute estimates of  the 
model's parameters. But in addition to determining parameter 
estimates, it is also desirable to be able to test the goodness of 
fit for the model. Unfortunately, the model for discrimination 
learning contains three parameters and attempts to describe 
three independent recall events. Thus, like Greeno et al.'s 
(1978) model for proactive inhibition, there are no degrees of 
freedom with which to test the model. Because of  this, it would 
be desirable to develop some restriction that would free up at 
least one degree of  freedom for testing if the model adequately 
fits the data. 

One possibility along these lines is to note that the guessing 
parameter g should depend on the number of  response alterna- 
tives in the experiment. Specifically, if there are n such response 
alternatives, then a reasonable restriction on the model is to set 
g equal to 1/n. If we assume that g = 1 ]n in the likelihood 
function in Equation 42, then new estimates for s and c can 
be computed that will maximize this function. In this manner, 
parameter estimates for the model can be found that leave one 
degree of  freedom (the one gained by estimating g = 1/n) for 
testing the model. 

Unfortunately, we were unable to derive closed-form solu- 
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Table 5 
Recall Frequencies for the Discrimination- 
Learning Experiment 

A-Bitems A'-Citems 

~ial  R R C CE NCE R R C CE NCE 1 82 119 164 74 164 62 139 95 122 185 
2 118 83 201 68 133 93 108 152 89 161 
3 136 65 242 58 102 126 75 219 67 116 
4 156 45 288 46 68 144 57 256 58 88 
5 167 34 319 31 52 167 34 309 41 52 
6 175 26 324 18 60 175 26 328 23 51 
7 181 20 343 26 33 180 21 335 28 39 
8 181 20 351 15 36 181 20 345 21 36 
9 191 10 365 14 23 182 19 365 16 21 

Note. R = recalled; R = not recalled; C = correct response; CE = confu- 
sion error; NCE = nonconfusion error. 

tions for the parameters using this estimation procedure, but 
this is not a serious problem. When closed-form solutions can- 
not be found, computer search methods discussed earlier can be 
used to find the parameter values that maximize the likelihood 
function. This is the method that is used to compute the param- 
eter estimates in the example that follows. 

Experiment 2 

To test the validity and usefulness of this multinomial model, 
we will analyze the data from a multitrial experiment on dis- 
crimination learning. This experiment is similar in design to 
one conducted by Batchelder (1971), except that the paired 
stimuli in Batchelder's experiment had the same responses (A-  
B, A'-B)  as opposed to different responses in the current experi- 
ment (A-B, A' -C) .  

Method. Subjects consisted of 67 student volunteers from introduc- 
tory psychology courses. Each subject was presented with a list contain- 
ing 18 paired associates. The stimulus terms consisted of Gibson-form 
stimuli (Gibson, 1941), and the set of possible responses consisted of 
six previously memorized English words. The paired associates were 
presented one at a time using a slide projector. The first 9 paired associ- 
ates in the list were six A-B items and three unique items. The second 
half of the list contained six A'-C items (paired associates with stimulus 
terms similar to ones in the first half of the list) and three more unique 
paired associates. Presentation was random within each half of the list. 
Recall was by an anticipation procedure in which subjects were pre- 
sented with the stimulus term, given up to 6 s to make a push-button 
response, and then given a 2-s presentation of the correct stimulus-re- 
sponse pair. After the first presentation of the list (during which the 
subjects' anticipation responses were guesses), the list was presented for 
nine trials. 

Results. The recall frequencies for each of the nine anticipa- 
tion trials are presented in Table 5. Using subroutine ZXMIN 
from IMSL (1982), the values of s and c were found that maxi- 
mize the likelihood function in Equation 42, under the con- 
straint that g = 1/6. Figure 5 presents these MLEs for each of the 
nine trials in the experiment, plotted separately for the A-B and 
the A' -C items. As can be seen from the figure, the confusability 
of the A' -C items (as measured by c) is high for the early trials. 
In contrast, confusability is not as high for the A-B items, 

which have the advantage of being presented first. Moreover, 
confusability of both stimuli decreases across study trials. This, 
of course, represents the discrimination component of discrim- 
ination learning. 

Looking at the storage parameter s, one can see that the con- 
fusability of the stimuli also results in a storage deficit for the 
A'-C items (as compared with A-B).  This difference in storage 
disappears, however, as both items are learned over trials, and 
it is completely gone by Trial 5. Also, the storage parameter 
for both items monotonically increases across trials. This, of 
course, represents the learning component of discrimination 
learning. 

In addition to the point estimates for the parameters already 
given, confidence regions can also be derived for the parameters. 
These regions take the form of an ellipse given by the formula 

= 2 ( 1 - p Z ) l n ( 1 - a ) .  (44)  

The above ellipse gives the 100a% confidence region for the pa- 
rameters s and c. In Equation 44, u, and uo are the values of 
the parameters that maximize the likelihood function. (We are 
again assuming that g = 1/6.) The values of a,, ac, and p are 
obtained by computing the estimated information matrix from 
Equation 21 and then inverting this matrix to obtain the vari- 
ance-covariance matrix for s and c. 

Because the differences between the parameters are greatest 
for the first trial, we have computed the confidence ellipses for 
the first-trial data for both the A-B and A' -C items. These con- 
fidence ellipses are presented in Figure 6. As can be seen, the 
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Figure 5. Estimates of the parameters s and c from the discrimination- 
learning model. The estimates are plotted as a function of trials sepa- 
rately for the A-B and A'-C items. 
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Figure 6. Confidence ellipses for the values of parameters c and s from 
the discrimination-learning model, plotted separately for the A-B and 
A'-C items. 

major difference between the two stimuli is in their confusabil- 
ity, reflected by the displacement of the ellipses along the c di- 
mension. They differ to a lesser degree in their learnability, as 
evidenced by a smaller shift in the ellipses along the s dimen- 
sion. 

Goodness o f  Fit 

Once the parameters of  the model have been estimated, the 
likelihood ratio test can be used to determine whether the 
model adequately fits the data. To conduct this test for the cur- 
rent model, the parameter estimates in Figure 5 were inserted 
into Equation 42 to determine the value of  the likelihood func- 
tion for the substantive model. Next, the probabilities of the 
empirical data events were inserted into Equation 1 to deter- 
mine the value of the function for the general model. These val- 
ues were then placed into Equation 28 to compute the value of  
G z for this test. In this case, G z is an approximate chi-square 
value with one degree of  freedom. 

The data in Table 5 were used to compute this goodness-of- 
fit statistic for each condition in the experiment. The results are 
presented in Table 6. In general, the fit of  the model is quite 
satisfactory. Only 1 of  the 18 tests exceeds the limits for an ac- 
ceptable fit, a result not much different from what would be 
expected by chance. 

Conclusions 

The multinomial model for discrimination learning appears 
to do a satisfactory job of  separating the recall of  similar stimuli 
into storage and discriminability factors. The parameter esti- 
mates from the discrimination-learning experiment are easy to 
interpret, and the model does a good job of  fitting the data. It is 
our opinion that this type of  model has a large potential for 
supplementing research in the area of  stimulus discrimination 
and recall. To cite a few examples, the model could be used to 
explore such research issues as the interference effects of  similar 
stimuli (Kitahama, 1982; Nelson, Brooks, & Wheeler, 1975; 
Runquist & Runquist, 1978), developmental and personality 
differences (Carey, Diamond, & Woods, 1980; Craig et al., 

1979), and comparisons of  different types of  stimuli (Skaalvik, 
1977). 

As we stated earlier, there are other methods, principally 
Markov models, for separately measuring cognitive factors in 
discrimination learning. In fact, the multinomial model pre- 
sented here is related somewhat to a more complicated Markov 
model that was tested by Poison et al. (1965). It could be argued 
that from a theoretical standpoint, the stronger Markov is pref- 
erable to the multinomial model if both equally account for the 
data. But if one's goal is to statistically measure and experimen- 
tally study cognitive processes, then the multinomial model has 
the advantages of  statistical simplicity and wider applicability. 
In our personal research, we have tried to fit Markov models 
like Poison et al?s to the data analyzed here without much sue- 
cess, unless the models are made increasingly more compli- 
cated. For example, good fits can be obtained if the transition 
probabilities between states are allowed to change over trials (cf. 
Bush & Mosteller's, 1955, and Robbins's, 1970, "shrinkage" 
models). For basic theoretical purposes this may be the proper 
approach even if  it does lead to increasingly complex models. 
But as methods for analyzing data, such models become un- 
wieldy and difficult to use. If  one instead wants to study the 
separate effects of  an experimental variable on stimulus dis- 
crimination and associative learning, then the simpler multi- 
nomial model has many advantages over more complete and 
complex theories incorporating these processes. 

Another advantage of  multinomial models that we have at- 
tempted to emphasize is their improvement over traditional, 
general purpose statistical techniques such as ANOVAS. This 
certainly applies to the area of discrimination learning, because 
stimulus discrimination and recall may involve several separate 
cognitive processes, and empirical statistics only reflect the 
combined result of  these processes. Because of this, using AN- 
OVAS on data of this type may produce results that are hard to 
interpret or, as Batchelder and Riefer (1986) pointed out, totally 
misleading. 

In fact, the limitations of using ANOVAS on empirical statis- 
tics can now be illustrated very convincingly with the following 
demonstration. In order to present this demonstration more 
clearly, we will focus on a current research a rea - -memory  and 
recognition of unfamiliar faces. This is a task that involves 

Table 6 
Goodness-of-Fit Statistics for the Discrimination- 
Learning Model 

Trial A-B items A'-C items 

1 3 . 1 0  6 . 4 4 "  
2 0.0002 0.62 
3 0.02 0.08 
4 0.11 0.06 
5 0.05 0.05 
6 2.98 0.84 
7 0.01 0.34 
8 0.20 0.20 
9 1.02 1.45 

Note. df= 1 for each test. 
*p<.O1. 
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learning and discrimination processes, because people must 
first store a representation of  a face in memory and then dis- 
criminate it from a set of  distractors in order to recognize it 
correctly. A well-established finding in this area is that recogni- 
tion of  faces is much more difficult when they are viewed upside 
down than when they are viewed upright (Goldstein, 1965; 
Rock, 1974). Moreover, a change in orientation seems to hurt 
facial recognition more than it hurts the recognition of  other 
types of stimuli (Diamond & Carey, 1986; Yin, 1969). This 
Orientation • Stimulus Type interaction has led many re- 
searchers to conclude that the encoding of  faces involves "spe- 
cial" processes, unique to facial stimuli, that are disrupted 
when faces are inverted. However, exactly what these processes 
are and what generally causes the inversion effect remain open 
questions. 

For the purposes of  this demonstration, we will now make 
some hypothetical assumptions about the cognitive processes 
involved in memory for faces and other stimuli. First, suppose 
that stimulus inversion affects only the discriminability of  stim- 
uli, and not their storage in memory. Assuming that the multi- 
nomial model is true, this would mean that upright versus in- 
verted stimuli have different discriminability parameters (Cl 
and c2), but the same storage parameter s. For the sake of argu- 
ment, also assume that facial stimuli are not special (i.e., that 
the memory advantage that faces have over other stimuli is 
merely due to general encoding processes and nothing more). 
This would imply that the memory differences between faces 
and nonfaces lie in their memorability (parameters s~ vs. s2) 
and not in their discriminability. 

Thus, we have created a hypothetical scenario in which one 
variable (orientation) affects only discrimination, and another 
variable (stimulus type) affects only storage. One way of exam- 
ining this would be to run a paired-associate experiment that 
manipulates these variables in a factorial design and then to 
measure the effect of these variables on some commonly used 
statistic such as the proportion of  correct responses, P(C).  If  
such an experiment were run, one might expect to see signifi- 
cant main effects for each variable but no interaction, because 
it has been assumed that these variables affect storage and dis- 
criminability independently. However, we now show that strong 
empirical interactions are possible under just these circum- 
Stances. To illustrate this for the current example, Figure 7 pres- 
ents the values of  P(C)  (from Equation 41 c) computed for a 
hypothetical paired-associate experiment where c~ (upright) = 
.3, c2 (inverted) -- .9, s~ (faces) = .8, s2 (nonfaces) = .2, and 
g = .2. As can be seen, using P(C)  as the dependent measure 
results in a strong interaction between these two variables, even 
though in the example the underlying cognitive processes of 
storage and discrimination are assumed to be completely inde- 
pendent. Moreover, because it is a crossover interaction, no 
monotonic transformation of the dependent measure will elim- 
inate it. 

Of course, the previous example has been specifically con- 
structed to make a particular statistical point, and we are not 
advocating the aforementioned ideas as a new theory for the 
memory of faces. However, we feel that the above demonstra- 
tion effectively illustrates our main point, that the common 
practice of  applying ANOVAS to single empirical statistics may 
not provide an accurate picture of the underlying cognitive pro- 
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Figure 7. Results of a hypothetical experiment on the recall of inverted 
facial and nonfacial stimuli, in which orientation and type of stimulus 
are assumed to affect discrimination and storage independently. 
(P( c ) = probability correct. ) 

cesses involved. Interactions or nonmonotonic trends are often 
found between variables in discrimination tasks (e.g., Mac- 
Leod & Nelson, 1976). As long as the factorial analysis of  em- 
pirical measures constitutes the principal methodology for 
studying stimulus discrimination, the true properties of the cog- 
nitive processes involved may remain elusive. The multinomial 
model developed in this article can potentially provide a clearer 
picture of these processes, not just for the research questions 
outlined but for many others as well. 

S u m m a r y  

In this article we have attempted to evaluate a statistical 
methodology, called multinomial modeling, that we feel can be 
used very effectively for certain types of  research in cognitive 
psychology. By making a few situation-specific assumptions, 
multinomial models are capable of  measuring the types of psy- 
chological processes that cognitive psychologists frequently 
study. In addition, hypothesis-testing procedures can be used to 
determine which experimental variables significantly influence 
these processes. In this way, multinomial models can be a useful 
supplement to more traditional methods of  data analysis. In 
the second section, we pointed out that many explanations for 
cognitive phenomena postulate that discrete behavior derives 
from finitely many underlying cognitive states. We have seen 
that multinomial modeling can provide a useful statistical 
methodology for assessing such explanations without the neces- 
sity of constructing complete processing theories. 

The three empirical examples presented in this article illus- 
trate a number of important aspects of  multinomial modeling. 
For example, the model for proactive inhibition demonstrates 
how easily theoretical ideas can be expressed as a multinomial 
model and how data analysis based on such a model can reveal 
additional insights into cognitive processing. The theoretical 
ideas behind the proactive-inhibition model were originally for- 
mulated by Greeno et al. (1978); however, they did not statisti- 
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cally analyze these ideas to their fullest extent. Figure 1 illus- 
trates how Greeno et al 's  theoretical assumptions can be repre- 
sented in a tree diagram that leads directly to a simple 
multinomial model. Using the techniques outlined in the arti- 
cle, it is easy to obtain point estimates and confidence intervals 
for the model's parameters. Tests of hypotheses relating experi- 
mental variations to changes in the underlying parameters can 
also be easily conducted within the multinomial framework. 
These procedures provide a substantial amount of information 
that would not be available without the analysis of the multi- 
nomial model. 

Another important aspect of multinomial models is their 
ability to disentangle opposing cognitive processes. The stor- 
age-retrieval model, for example, is capable of measuring the 
separate contributions of storage and retrieval to recall. Bat- 
chelder and Riefer (1980, 1986) have shown how these pro- 
cesses can combine, sometimes in opposing ways, leading to 
empirical recall data that may not reflect the individual effect 
of either process. For example, the analysis of retroactive inhibi- 
tion in Tulving and Psotka's (1971) design demonstrated how 
an experimental variable can independently affect one process 
but not the other. The data directly revealed that overall recall 
decreased as a function of retroactive inhibition, but it was the 
analysis of the multinomial model that provided a rigorous ar- 
gument that the decrease was due to retrieval and not to storage 
factors. 

In conclusion, it should be emphasized that even though mul- 
tinomial models have a certain theoretical motivation, our in- 
tention in this article is not to develop yet another class of strong 
theoretical models. Instead, our goal has been to evaluate a class 
of models that can express substantive theoretical ideas as statis- 
tical models and that can be used to supplement more general- 
purpose models such as ANOVA. By their very design, these 
models are more situation specific and less of an approximation 
to the true operation of cognitive systems than strong theoreti- 
cal models. Nevertheless, multinomial models have enhanced 
scientific understanding in other fields, such as statistical genet- 
ics. It is our hope that multinomial modeling will be used more 
extensively in cognitive psychology to fill the gap between more 
empirical data-processing approaches and strong, theoretically 
motivated models. 
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