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Synoptic Meteorology I: The Geostrophic Approximation 

For Further Reading 

Section 1.3 of Midlatitude Synoptic Meteorology by G. Lackmann introduces geostrophic balance 

and the Rossby number. Section 3.2 of Mid-Latitude Atmospheric Dynamics by J. Martin provides 

a discussion of the geostrophic approximation and geostrophic balance. Section 4.1 of Mid-

Latitude Atmospheric Dynamics provides a generalized discussion of how equations posed on 

constant height surfaces may be transformed into equations posed on isobaric surfaces.  

The Equations of Motion 

In their most general form, and presented without formal derivation, the equations of motion 

applicable on constant height surfaces and posed in Cartesian coordinates are given by: 
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From left to right, the terms of (1) represent the total derivative of the three-dimensional wind field 

v


, the Coriolis force, the pressure gradient force, effective gravity, and friction. The total 

derivative in the first term of (1) has the general form: 
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Equation (1) may be expanded into its component forms and recast into spherical coordinates. 

Presented without derivation, the corresponding equations of motion (for u and v only) are: 
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where ϕ = latitude, Ω = the rotation rate of the Earth (7.292 x 10-5 s-1), u = zonal component of the 

wind, v = meridional component of the wind, w = vertical component of the wind, p = pressure, ρ 

= density, f = 2Ω sin ϕ = Coriolis parameter, and a = Earth’s radius (6.378 x 106 m).  

The second and third terms of (2) represent terms related to the curvature of the Earth. The fourth 

term of (2b) and fourth and fifth terms of (2a) are Coriolis terms. The two terms on the right-hand 

side of (2) are pressure gradient and frictional terms, respectively. These equations, alongside the 

corresponding equation for w, define the equations of motion. We note that these forms of the 

equations of motion are presented with height, or z, as the vertical coordinate.  
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Scale Analysis of the Equations of Motion 

The equations of motion, as stated in their full form in (2) above, are quite complex. They describe 

all types and scales of atmospheric motions, including some (e.g., acoustic waves) that are either 

negligible or altogether irrelevant for the study of synoptic-scale motions. 

We desire to simplify (2) into a form that reflects only the most important processes on the 

synoptic-scale. In other words, we want to keep only those terms that are large for synoptic-scale 

motions. We do so by performing a scale analysis on the terms in (2). This is done by replacing 

each variable with an appropriate characteristic value for that variable based upon observed values 

for mid-latitude synoptic-scale motions. The characteristic values appropriate for the scale analysis 

of (2) are given by Table 1 below. 

Variable Characteristic Value Description 

u, v U ≈ 10 m s-1 Horizontal velocity scale 

w W ≈ 0.01 m s-1 Vertical velocity scale 

x, y L ≈ 106 m Horizontal length scale 

z H ≈ 104 m Depth scale 

δp/ρ δP/ρ ≈ 103 m2 s-2 Horizontal pressure fluctuation scale 

t L/U ≈ 105 s Time scale 

f, 2Ω cos ϕ f0 ≈ 10-4 s-1 Coriolis scale 

Table 1: Characteristic values appropriate for synoptic-scale motions for the variables in (2). 

Several important insights into ‘synoptic-scale motions’ can be drawn from the above: 

• Horizontal velocity is much larger – several orders of magnitude – than vertical velocity. 

• Synoptic-scale features have horizontal extent of hundreds of kilometers or more. 

• These features also extend through a meaningful depth (~10 km) of the troposphere. 

• Synoptic-scale motions evolve slowly, on the order of 1 day (8.64 x 104 s) or longer. 

• We limit ourselves to the midlatitudes given f0 ≈ 10-4 s-1, or its value at latitude ϕ = 45°N. 

If we plug in the appropriate characteristic values from the table above into (2), we obtain: 
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Scale U2/L f0u f0w UW/a U2/a δP/ρL DU/H2 

Value  

(m s-2) 

10-4 10-3 10-6 10-8 10-5 10-3 10-12 

Table 2: Scale analysis of the equations of motion. 
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Note that the D in the scaling of the frictional terms is the eddy diffusivity, a term related to 

turbulent (or frictional) processes within the boundary layer. It is of order D ≈ 10-5 m2 s-1. 

The Geostrophic Approximation on Constant Height Surfaces 

From Table 2 above, it is apparent that for synoptic-scale motions, two terms are at least one order 

of magnitude larger than the other terms. These are the Coriolis and pressure gradient terms. If we 

retain only these two terms in (2), the following expressions result:  
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Equation (3) represents the geostrophic relationship. The geostrophic relationship gives the 

approximate relationship between the horizontal pressure gradient and the horizontal velocity (as 

scaled by the Coriolis parameter) in large-scale extratropical/mid-latitude weather systems.  

Geostrophic balance is defined as the balance between the horizontal pressure gradient and 

Coriolis forces. This means that the horizontal pressure gradient force and Coriolis force are of 

equal magnitude to but directed in opposite directions from each other. The horizontal pressure 

gradient force always points from high toward low pressure, in contrast to the horizontal pressure 

gradient itself, which always points from low toward high pressure. Under the constraint of 

geostrophic balance, the Coriolis force points in the opposite direction of the horizontal pressure 

gradient force, or from low toward high pressure. This balance is depicted in Figure 1 below.  

 

Figure 1. Graphical depiction of geostrophic balance for an idealized example in the Northern 

Hemisphere with low pressure to the north and high pressure to the south. The pressure gradient 

force (pgf) is denoted in red, the Coriolis force is denoted in blue, and the resultant wind is denoted 

in grey. Black lines denote idealized isobars, here depicted on a constant height surface.  
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The magnitude of the horizontal pressure gradient force is directly proportional to the magnitude 

of the horizontal pressure gradient, as one might expect from inspection of the right-hand side of 

(3). Similarly, the magnitude of the Coriolis force is directly proportional to the horizontal wind 

speed (i.e., magnitude of the horizontal velocity vector), as one might expect from inspection of 

the left-hand side of (3). Thus, a larger horizontal pressure gradient requires a larger Coriolis force 

to balance it, thus necessitating a faster horizontal wind speed. 

Note that in the Northern Hemisphere, the Coriolis force always points perpendicular and to the 

right of the wind, as depicted in Figure 1 above. We can prove this from (2). If we retain only the 

total derivative terms and terms that involve the Coriolis parameter f in (2), we obtain: 
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The total derivative terms on the left-hand side of (4) represent accelerations; i.e., changes in u 

and v with time following the motion. Thus, (4) represents parcel accelerations due exclusively to 

the Coriolis force. Note that in the Northern Hemisphere, f is always positive. 

Consider air that is moving from south to north, such that v > 0. In this case, for f > 0, the left-hand 

side of (4a) must be positive. This means that, following the motion, the air parcel is accelerating 

to the east (u > 0). This is 90° to the right of the air’s motion from south to north. Similar arguments 

can be made for any given wind direction. Thus, the Coriolis force is always directed 90° to the 

right of the wind in the Northern Hemisphere. 

How is Geostrophic Balance Achieved? 

Consider air that is initially at rest. Because the Coriolis force is directly proportional to the wind 

speed, the Coriolis force is initially zero. Now consider there to be a horizontal pressure gradient 

on the synoptic-scale, such as is depicted in Figure 2 with lower pressure to the north and higher 

pressure to the south. In this case, the horizontal pressure gradient force is directed from south to 

north. This causes the air to accelerate and, thus, begin to move. This brings about a force 

imbalance. Initially, as the horizontal pressure gradient force is the only force acting upon the air, 

it moves from high toward low pressure – i.e., to the north. However, as the air begins to move, 

the Coriolis force becomes non-zero. Very quickly, on the time span of perhaps minutes, the 

horizontal pressure gradient force and Coriolis force come into (near-)balance, and the air is 

deflected to the right. 
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Figure 2. Schematic illustrating how geostrophic balance is initially achieved, what happens when 

geostrophic balance is disrupted, and the restoration of geostrophic balance through geostrophic 

adjustment. Figure obtained from Figure 6-17 of Meteorology: Understanding the Atmosphere, 4th 

Ed., S. Ackerman and J. Knox. 

Consider air that is moving but that obeys geostrophic balance. It is possible for geostrophic 

balance to be disrupted, such as by localized heating, deflection of the flow by terrain features, 

and/or localized instabilities within the flow. The process by which geostrophic balance is restored 

is known as geostrophic adjustment. Simply put, during geostrophic adjustment, both the wind 

and pressure (and, by extension, mass) fields adjust to one another such that balance may again be 

achieved. The wavy path that the air takes in Figure 2 after it initially achieves geostrophic balance 

is an example of geostrophic adjustment; the horizontal pressure gradient and Coriolis forces adjust 

to each other, resulting in a temporarily wavy flow until balance is restored. Balance restoration is 

typically associated with gravity and/or inertia-gravity waves, the characteristics and dynamics of 

which are beyond the scope of this class. 

The Geostrophic Relationship on Isobaric Surfaces 

To obtain (3), we conducted a scale analysis of the equations of motion applicable on constant 

height surfaces. Consequently, (3) is applicable only on constant height surfaces. We wish to now 

obtain a form of (3) that is applicable on isobaric surfaces. To do so, a coordinate transformation 

from the z to the p vertical coordinate is necessary. First, consider an idealized example of two 

isobaric surfaces that vary in height only in the x-direction, as seen in Figure 3. 
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Figure 3. Idealized depiction of two isobaric surfaces, p0 and p0+∆p, that vary in height only within 

the x-direction. The distances ∆x and ∆z represent the distance between these two isobaric surfaces 

in the x- and z- directions, respectively. 

Consider the change in pressure as one moves from point A, where p = p0, to point B, where p = 

p0 + ∆p. This can be represented in terms of a partial derivative, where: 
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The subscript z in (5a) denotes that this partial derivative is evaluated on a constant height surface, 

which is appropriate because zB = zA here. If one were to apply a centered finite difference 

approximation halfway between point A and point B to the partial derivative in (5a), the right-

hand side of (5a) would simply become ∆p, equal to pB (p0 + ∆p) minus pA (p0). 

Likewise, consider the change in pressure as one moves from point B, where p = p0 + ∆p, to point 

C, where p = p0. This can also be represented in terms of a partial derivative, where: 
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The subscript x in (5b) denotes that this partial derivative is evaluated at a constant value of x, 

which is appropriate because xB = xC here. If one were to apply a centered finite difference 

approximation halfway between point B and point C to the partial derivative in (5b), the right-

hand side of (5b) would simply become -∆p, equal to pC (p0) minus pB (p0 + ∆p). 

Because pA = pC, we can substitute pA for pC in (5b). If we then multiply the resulting equation by 

-1, an expression for pB – pA results. Equating this to (5a), we obtain: 
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If we divide (6) by ∆x, we obtain: 
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Upon inspection of Figure 3, we can see that ∆z/∆x is equivalent to the slope of an isobaric surface. 

Taking the limit of this term as ∆x approaches 0 and applying the definition of the partial derivative 

to the result, we obtain: 
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In (8), the subscript of p indicates that the partial derivative is evaluated on an isobaric surface. If 

we substitute into (8) with the hydrostatic equation, we obtain: 

pz x

z
g

x

p

























  (9a) 

 

If we were to repeat the same process, except for pressure varying in the y-direction, we obtain: 
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It is the expressions in (9) that enable us to convert the pressure gradient terms evaluated on a 

constant height surface (3) to their equivalent forms evaluated on an isobaric surface. If we plug 

(9) into (3), we obtain: 
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Or, making use of the definition of the geopotential that we introduced in an earlier lecture, (10) 

can be written as: 
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Note that there is no reference to time in (3), (10), or (11). Thus, the geostrophic relationship is a 

diagnostic relationship; it can only be used to diagnose the horizontal velocity as a function of the 

pressure or height field at a given time. This stands in contrast to a prognostic relationship, or one 

that involves a reference to time (such as through the presence of a partial derivative with 

respective to time), which permits the prediction of the evolution of the velocity field. 

The Geostrophic Wind 

To express geostrophic balance, u in (3), (10), and (11) is replaced by ug while v is replaced by vg. 

These two variables, ug and vg, define what is known as the geostrophic wind. The geostrophic 

wind is a stable, slowly evolving flow. Contrast this with highly curved, rapidly accelerating, or 

near-surface flows, which can evolve more rapidly or may be unstable. Given that density is not 

routinely measured and that most meteorological analysis is conducted on isobaric surfaces, either 

(10) or (11) are used to evaluate the geostrophic wind from observations.  

Because the pressure gradient and Coriolis forces are of equal magnitude but in opposite directions 

under the constraint of geostrophic balance, the geostrophic wind blows parallel to the isobars on 

a given height surface. This is depicted in Figure 1 above. The geostrophic wind similarly blows 

parallel to lines of constant geopotential height on an isobaric surface. This relationship between 

the wind and the isobars or constant height contours is one of the defining characteristics of 

geostrophic balance. An application of this relationship is the Buys-Ballot law, which states that 

when the (geostrophic) wind is at your back, low pressure or geopotential height is to your left. 

In the mid-latitudes, the geostrophic wind approximates the true horizontal velocity to within 

~10%. How closely the wind is to paralleling the isobars or isohypses on an analysis provides us 

a measure for how close the atmosphere is to geostrophic balance at that location. Departures from 

geostrophic balance occur most commonly when the centrifugal and/or frictional forces are non-

negligible. The former is associated with curved flow, whereas the latter is important primarily 

near Earth’s surface within the planetary boundary layer. We will consider how and when the wind 

is influenced by these forces in later lectures. 

An example of evaluating the geostrophic wind from observations can be drawn from Figure 4. 
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Figure 4. Hypothetical 500 hPa geopotential height (z; units: m) observations. 

In this example, hypothetical 500 hPa geopotential height observations are given, and we wish to 

use the observations to evaluate the geostrophic wind at the location of the red dot. First, we must 

establish the x- and y-coordinate axes needed for the calculation; these are depicted in blue and, 

given the definition of the partial derivative, cover only a finite distance (100 km in each direction 

from the red dot). Whether isoplethed or not, as in this example, we next interpolate between 

observations to obtain the geopotential heights at each of our four locations. Doing so, we obtain 

5865 m at x-1, 5820 m at x+1, 5885 m at y-1, and 5845 m at y+1. Assuming that we are at 38°N, 

where f = 8.98 x 10-5 s-1, we obtain the geostrophic wind as follows: 
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The magnitude of the geostrophic wind is equal to    
2 2

g gu v , or 32.89 m s-1. The geostrophic 

wind direction is equal to 
0180

arctan( , )u v


  , or 318.37°, slightly north of due northwest. 

The Ageostrophic Wind 

In defining the geostrophic relationship above, we neglected the total derivative terms on the left-

hand side of (2). We now want to revisit (2), keeping these terms (as well as the Coriolis and 

pressure gradient terms) while continuing to neglect the rest. The resultant equations are: 
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However, (3) – with ug and vg substituted for u and v – gives expressions for the pressure gradient 

terms that appear in (12). If we substitute for those terms into (12), we obtain: 
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The terms v – vg and u – ug define the ageostrophic wind, where v – vg = vag and u – ug = uag. What 

does (5) mean? Most simply, acceleration is tied to the ageostrophic wind, or departure of the total 

wind from the geostrophic wind. Acceleration is important on the synoptic-scale primarily in the 

vicinity of jet streams and jet streaks. Because the geostrophic wind approximates the full wind to 

within ~10%, the ageostrophic wind is said to be one order of magnitude smaller than the 

geostrophic wind. Given a typical scaling of U ~ 10 m s-1 on the synoptic scale, the characteristic 

scale for the ageostrophic wind is ~1 m s-1. 

The Rossby Number 

In our earlier scale analysis, we found that the acceleration terms (the total derivatives) are 

typically one order of magnitude smaller than the Coriolis and pressure gradient terms. Just how 

close this is to being true for any given weather situation can be assessed by determining the ratio 

between the characteristic scales of the acceleration and Coriolis terms. This defines the Rossby 

number, named after the famous meteorologist Carl-Gustav Rossby, and is given by: 
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Note that the U, f0, and L in (14) are not the same as their values in Table 1. Rather, they represent 

values specific to the synoptic-scale weather conditions being assessed.  

For Ro ≈ 0.1, the magnitude of the acceleration term is one order of magnitude smaller than the 

magnitude of the Coriolis term. This describes geostrophic balance. For Ro ≈ 1 or Ro > 1, the 

magnitude of the acceleration term is comparable to or exceeds the magnitude of the Coriolis term. 

In such situations, geostrophic balance does not hold. Instead, we must consider gradient wind 

balance or cyclostrophic balance for such situations. 


