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The converse of Lagrange’s theorem is false in general: if G is a finite group and d | |G|
then G doesn’t have to contain a subgroup of order d. (For example,|A4| = 12 and A4

has no subgroup of order 6). We will show the converse is true when d is prime. This is
Cauchy’s theorem.

Theorem. (Cauchy 1845) Let G be a finite group and p be a prime factor of |G|. Then
G contains an element of order p. Equivalently, G contains a subgroup of order p.

The equivalence of the existence of an element of order p and a subgroup of order p is
easy: an element of order p generates a subgroup of order p, while conversely any nonidentity
element of a subgroup of order p has order p because p is prime.

Before treating Cauchy’s theorem, let’s see that the special case for p = 2 can be proved
in a simple way. If |G| is even, consider the set of pairs {g, g−1}, where g 6= g−1. This
takes into account an even number of elements of G. Those g’s that are not part of such
a pair are the ones satisfying g = g−1, i.e., g2 = e. Therefore if we count |G| mod 2, we
can ignore the pairs {g, g−1} where g 6= g−1 and we obtain |G| ≡ |{g ∈ G : g2 = e}| mod 2.
One solution to g2 = e is e. If it were the only solution, then |G| ≡ 1 mod 2, which is false.
Therefore some g0 6= e satisfies g20 = e, which gives us an element of order 2.

Now we prove Cauchy’s theorem.

Proof. We will use induction on |G|.1 Let n = |G|. Since p | n, n ≥ p. The base case is
n = p. When |G| = p, any nonidentity element of G has order p because p is prime. Now
suppose n > p, p | n, and the theorem is true for all groups having order less than n that is
divisible by p. We will treat separately abelian G (using homomorphisms) and nonabelian
G (using conjugacy classes).

Case 1: G is abelian.
Assume no element of G has order p and we will get a contradiction.
No element has order divisible by p: if g ∈ G has order r and p | r then gr/p would have

order p.
Let G = {g1, g2, . . . , gn} and let gi have order mi, so each mi is not divisible by p. Let m

be the least common multiple of the mi’s, so m is not divisible by p and gmi = e for all i.
Because G is abelian, the function f : (Z/(m))n → G given by f(a1, . . . , an) = ga11 · · · gann is
a homomorphism:2

f(a1, . . . , an)f(b1, . . . , bn) = f(a1 + b1, . . . , an + bn).

That is,

ga11 · · · g
an
n gb11 · · · g

bn
n = ga11 gb11 · · · g

an
n gbnn = ga1+b1

1 · · · gan+bn
n

1Proving a theorem on groups by induction on the order of the group is a very fruitful idea in group
theory.

2This function is well-defined because gmi = e for all i, so ga+mk
i = gai for any k ∈ Z.
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from commutativity of the gi’s. This homomorphism is surjective (each element of G is a
gi, and if ai = 1 and other aj ’s are 0 then f(a1, . . . , an) = gi), so by the first isomorphism
theorem (Z/(m))n/ ker f ∼= G. Therefore

|G| = |(Z/(m))n|
| ker f |

=
mn

| ker f |
,

so |G|| ker f | = mn. Thus |G| is a factor of mn, but p divides |G| and mn is not divisible by
p, so we have a contradiction.

Case 2: G is nonabelian.
Assume no element of G has order p and we will get a contradiction.
In every proper subgroup H of G there is no element of order p (H may be abelian or

nonabelian), so by induction no proper subgroup of G has order divisible by p. For each
proper subgroup H, |G| = |H|[G : H] and |H| is not divisible by p while |G| is divisible by
p, so p | [G : H] for every proper subgroup H of G.

Since G is nonabelian it has some conjugacy classes with size greater than 1. Let these
be represented by g1, g2, . . . , gk. Conjugacy classes in G of size 1 are the elements in Z(G).
Since the conjugacy classes in G form a partition of G, computing |G| by adding the sizes
of its conjugacy classes implies

(1) |G| = |Z(G)|+
k∑

i=1

(size of conj. class of gi) = |Z(G)|+
k∑

i=1

[G : Z(gi)],

where Z(gi) is the centralizer of gi. (For each g ∈ G, its conjugacy class in G has size
equal to [G : Z(g)].) Since the conjugacy class of each gi has size greater than 1 we have
[G : Z(gi)] > 1, so Z(gi) 6= G for all i. Therefore p | [G : Z(gi)]. In (1), the left side is
divisible by p and each index in the sum on the right side is divisible by p, so |Z(G)| is
divisible by p. Since no proper subgroup of G has order divisible by p, Z(G) has to be all
of G. That means G is abelian, which is a contradiction. �

It is worthwhile reading and re-reading this proof until you see how it hangs together. For
instance, notice that we did not need the nonabelian case to treat the abelian case and the
abelian case did not require induction. In fact, quite a few books prove Cauchy’s theorem
at first just for abelian groups before they develop suitable material (like conjugacy classes)
to prove Cauchy’s theorem for nonabelian groups. We did implicitly need the abelian case
as part of the nonabelian case since in the inductive step the proper subgroups Z(gi) of the
nonabelian group G might be abelian. (All subgroups of abelian groups are abelian while
subgroups of nonabelian groups can be abelian or nonabelian, so there is an asymmetry
there.)

The proof above could be reorganized to treat the two cases in the reverse order, as
follows. If a finite group G with order divisible by p has no element of order p then first
assume G is nonabelian and run through the argument in Case 2 (assuming the theorem is
proved for all groups of smaller order, abelian and nonabelian) to see G has to be abelian.
Then run through the argument in Case 1 to get a contradiction, so G must have an element
of order p.


